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Abstract

We introduce an extension of Nagin’s finite mixture model to underlying Beta distributions
and present our R package trajeR which allows to calibrate the model. In a second part of
the paper, we use this model to analyse the efficiency of the sanitary measures taken by the
different countries during the first part of the COVID-19 pandemics.

1 Introduction

Finite Mixture Models in the sense of Nagin (2005) are fuzzy logic cluster analysis models for
time series. Starting from a sample of trajectories, the aim is to detect a number of subgroups
of the sample, so that subjects in the same group exhibit quite similar data trajectories, whereas
two subjects from two different groups have trajectories that differ in some sense. These models
are part of a larger strand of models that analyze latent evolutions in longitudinal data.

Model-based approaches comprise latent class growth analysis, growth mixture modeling and
group-based trajectory models (van der Nest et ali. 2020). The objective of all these approaches
is to capture information about interindividual differences in intraindividual change over time
(Nesselroade 1991).

There are a host of model-based techniques for analysing outcome development over time
(see Verbeke et ali. 2014). According to van der Nest et ali (2020), they can be divided into
models comprising the estimation of one latent class, such as growth curve models (Laursen and
Hopf, 2006), or more than one latent class, such as latent class growth analysis (Berlin, Parra
and Williams 2014), examples of which includer growth mixture models (Muthén and Shedden
1999) and group-based trajectory models (Nagin 2005).

Growth curve models are not categorizing subjects, but try to explain the relationship between
explanatory variables and the trajectories of interest as a whole. Most modern econometric
techniques fall into this category (see Greene 2018).

In latent class growth analysis, the relationship between the explanatory variables and the
trajectories of interest is group-specific. Growth mixture modeling, introduced by Muthen &
Shedden (1999), is a very suitable framework to handle the issue of unobserved heterogeneity. In
growth mixture modeling, there are random effects influencing all the parameters defining the
typical group trajectories for all subjects in the sample. This has the advantage that fewer groups
are required to specify a satisfactory model, but the groups are not always clearly defined and
group cross-over effects may exist. Group-based trajectory modeling, also called finite mixture
models (Nagin 2005) on the other hand has no random effects to capture individual differences in
a continuous way. All individual deviations from the typical trajectory of a group are treated as
residual errors. It was originally introduced by Nagin & Land (1993) and is actually specifically
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designed to detect the presence of distinct subgroups among a set of trajectories. Thus, it
represents an interesting compromise between analysis around a single mean trajectory and case
studies (VonEye & Bergman). Compared to subjective classification methods, the nonparametric
mixed model has the advantage of providing a formal framework for testing the existence of
distinct groups of trajectories. Furthermore, in finite mixture models, the error variance is
supposed to remain constant over all groups and the complete time line. This implies that far
fewer parameters need to be estimated and these kind of models remain useful for small samples.
Schiltz (2015) introduced a generalization of this model in which the error variance remains
constant inside a given group, but is allowed to differ across groups, which is a far more realistic
assumption in a lot of applications. While the conceptual aim of the analysis is to identify clusters
of individuals with similar trajectories, the model’s estimated parameters are not the result of a
classical cluster analysis, but of maximum likelihood estimation (Nagin 2005). Let’s also point
out that finite mixture models are actually fuzzy logic cluster analysis of time series models and
should not be confounded with finite mixture models in the sense of McLachlan & Peel (2000),
which refer to mixtures of probability distributions.
This paper extends finite mixture models to the case of an underlying Beta distribution and
presents the R package trajeR which allows to calibrate the model. The package can be seen as
an extension of the SAS procedure Proc Traj developed by Jones, Nagin & Roeder (2001), Jones
& Nagin (2007) and their Stata version (Jones & Nagin 2012) to the generalized finite mixture
model, with the additional advantage that, as an R package, it is open source software and can
be adapted to the needs of the users.

There a hundreds of papers that have been published on research about the COVID-19
pandemics over the last two years and an excellent overview about the different strands of research
thematic and the corresponding papers can be found in Masters & Spiegelhalter (2021). The
use of a cluster analysis methodology in this context is however much rarer. Chandu (2020)
analyzes 89 countries by means of a K-means clustering algorithm and identifies two groups of
countries, showing that a high COVID-19 case fatality rate, higher proportion of positive test
results, higher percentage of GDP spent as public health expenditure and a greater percentage
of elderly people are related. Zarikas et ali. (2020) use hierarchical cluster analysis to analyze
active cases, active cases per population and active cases per population and per area based on
John Hopkins epidemiocolgical data and they identify four different shapes in the evolution rate
of COVID-19. Alvares et ali. (2020) use hierarchical cluster analysis methods on time series
with the aim of identifying groups of countries with a similar spread of the coronavirus. They
show that there are groups of countries with differentiated contagion dynamics and conclude
that the actions taken by the countries, the speed at which they were taken and the number of
tests carried out may explain part of the differences in these dynamics. Rahman et ali (2020)
propose a data-driven dynamic clustering framework for moderating the adverse economic impact
of COVID-19 flare-up. They model lockdown as a clustering problem and design a dynamic
clustering algorithm for localized lockdown by taking into account the pandemic, economic and
mobility aspects. James and Menzies (2020) propose a hierarchical and K-means cluster-based
method to analyze COVID-19 pandemic cases and death counts. They study the change in both
quantities over time and identify anomalous countries in the progression from COVID-19 cases
to deaths. This analysis can aid in highlighting the most and least significant public policies in
minimizing a country’s COVID-19 mortality rate. Kinnunen et ali. (2021) identify the groups
of countries with similar Covid strategies on the one hand and groups with similar performance
success on the other hand, and construct a composite Covid Mitigation Index for comparative
purposes, thus, implying how to redesign the strategic policies. They use dynamic clustering with
a Gaussian Mixture Model in the sense of McLachlan on 2 month periods in order to achieve this.
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In the second part of this paper, we use a generalized finite mixture with underlying Beta
distribution to study the rate of COVID-19 contamination during the first part of the pandemic.
The remainder of this paper is structured as follows. In section two, we present the generalized
finite mixture model for an underlying Beta distribution. Section three introduces our R package
trajeR and section four shows how the model introduced in section two can be calibrated with
the help trajeR.

2 The generalized finite mixture model for an underlying Beta
distribution

2.1 Finite mixture models

In group based trajectory modeling, we consider a population of size N divided into K latent
classes. The assignment of the individuals into classes is based on the degree of similarity of the
developmental trajectories.

More precisely, consider a time-varying variable of interest Y defined in a population Ω of
size N . Let Yi = yi1 , · · · , yiT

be T measures of the variable Y , taken at times t1, · · · , tT for subject
number i belonging to a sample of size n.

The aim of the analysis is to divide the population into K sub-populations G1, ...GK , which
are homogeneous in the sense that two subjects in the same group have similar trajectories for
the variable of interest Y and two subjects in different groups have quite different trajectories
for the variable of interest Y .

Let Pk(Yi) be the probability of Yi given membership in group Gk and P(Yi) the unconditional
probability of observing the realization Yi of Y . Furthermore, for a given group Gk, we suppose
conditional independence for the sequential realizations of the elements yit

over the T periods of
measurements. Then,

P(Yi) =
K
∑

k=1

P (Gi = k) Pk(Yi). (1)

By definition of a finite mixture model (Nagin 2005), the density f of Y is given by

f (yi;ψ) =
K
∑

k=1

πk gk(yi;Θk). (2)

The role of the parameters Θk is to describe the shape of the trajectories in group k.

This models supposes no structural between-subject variability within a class, hence the error
variance is assumed to be constant inside a given class. Moreover, the group size πk > 0 denotes
the probability of a given subject to belong to group number k and thus

K
∑

k=1

πk = 1.

Since in practice, it is difficult to constraint the πk to be numbers between 0 and 1, we link the
πk to a set of parameters θ1, ...,θK such that

πk =
eθk

K
∑

k=1

eθk

.
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The model depends thus on the parameter set ψ= (K ,θ1, · · · ,θK−1,Θ1, · · · ,ΘK).

If we suppose moreover that the trajectories of Y are influenced by a static set of R risk
variables X = (X1 · · ·XR), as well as by a time-dependent covariate W which is independent of X ,
the conditional density of Y given X and W is given by

f (yi |x i , wi) =
K
∑

k=1

�

P (Gi = k|X i = x i)
T
∏

t=1

P
�

Yit
= yit

|X i = x i , Wi = wi , Gi = k
�

�

, (3)

which can be written as

f (yi |x i , wi) =
K
∑

k=1

 

R
∑

j=1

ex j
i θ

j
k

1+ ex j
i θ

j
k

T
∏

t=1

P
�

Yit
= yit

|Wi = wi , Gi = k
�

!

. (4)

Nagin (2005) defined this model for underlying logit, (censored) normal and zero inflated
Poisson distributions. In this paper, we extend the model to an underlying Beta distribution.

2.2 The Beta distribution

The Beta distribution is quite useful for modelizing percentages and proportions, since it takes
values between 0 and 1. Its density depends on the two positive shape parameters α and β . The
primary advantage of this distribution is the flexibility of the shape of its density, as can be seen
in Figure 1.
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Figure 1 – Example of different shapes of the Beta density for some parameters.

In a regression context,another parametrization of the density is commonly used (Ferrari and
Cribari-Neto 2004). Let Y be a random variable following a Beta distribution with mean µ.
Consider the parameter φ defined by

var(Y ) =
µ(1−µ)

1+φ
.

φ can be interpreted as a precision parameter, in the sense that a large value of φ implies a
small variance of Y . The density f of Y can be written as
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f (y;µ;φ) =
Γ (φ)

Γ (µφ)Γ ((1−µ)φ)
yµφ−1(1− y)(1−µ)φ−1,

where 0< µ < 1 and φ > 0.

2.3 Finite mixture models for the Beta distribution

For the finite mixture model with underlying Beta distribution, called here the BETA model, we
consider a latent variable y∗i t such that

y∗i t = f (ai t ;βk,δk) + εi t = βkAi t +δkWt + εi t , (5)

where εi t ∼ N (0, σk), Ai t = (1, ai t , a2
i t , · · · , a

nβ−1
i t )t , Wt = (wi1, · · · , winδ)

t , βk = (βk1, · · · ,βknβ )
and δk = (δk1, · · · ,δknδ). nδ denotes the dimension of the covariate W and nβ the number of
measurements of Y for every individual. Here, and in the rest of this paper, we take into account
that in some applications the data are actually given as a function of the age ai t of the subjects
at the time of measurement.
The usual assumption is that yi t = 1 if y∗i t > 0 and yi t = 0 if y∗i t ≤ 0.

The density of yi t conditional to membership in group Ck can then be written as

gk(yi t ;µikt ,φikt) =
Γ (φikt)

Γ (µiktφikt)Γ ((1−µikt)φikt)
yµiktφikt−1

i t (1− yi t)
(1−µikt )φikt−1,

with

µikt =
eβkAi t+δkWi t

1+ eβkAi t+δkWi t
and φikt = ζkAi t . (6)

One difficulty with the Beta distribution is that for some values of the parameters the density
may converge to infinite in the neighborhood of 0 and 1. In case a big part of the data has values
close to 0, it is advisable to transform the raw data y into (y · (n− 1) + 0.5)/n, where n is the
sample size (Smithson and Verkuilen 2006).

To fit the model, we use the quasi Newton method BFGS, which calculates an iterative
approximation of the inverse of the Hessian matrix, to maximize the log-likelihood of the data.

l =
n
∑

i=1

log

�

K
∑

k=1

πk

T
∏

t=1

Γ (φikt)
Γ (µiktφikt)Γ ((1−µikt)φikt)

yµiktφikt−1
i t (1− yi t)

(1−µikt )φikt−1

�

. (7)

3 The R package trajeR

The R package trajeR allows to calibrate finite mixture models for different types of densities
(Noel and Schiltz 2022). The proofs of all used algorithms inside this package can be found
in Noel’s PhD thesis (Noel 2023). For an underlying Beta distribution, trajeR maximizes the
log-likelihood by direct optimization of its derivative. The package trajeR is written in R and
C++. The linkage between R and C++ is achieved through the packages Rcpp (Eddelbuettel &
François 2011) and RcppArmadillo (Eddelbuettel & Sanderson 2014).
Missing numbers are supposed to be missing at random by following Rubin’s missing data
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mechanisms (Rubin 1976).

The package trajeR is built around the core function trajeR which fits the model and
computes its parameters for given degrees of the polynomial trajectories in the different groups.
The function signature for trajeR is

R> trajeR(Y, A, Risk = NULL, TCOV = NULL, degre, degre.nu = 0,

+ Model, Method = "L",

+ ssigma = FALSE, ymax = max(Y) + 1, ymin = min(Y) - 1,

+ hessian = TRUE, itermax = 100, paraminit = NULL,

+ ProbIRLS = TRUE, refgr = 1,

+ fct = NULL, diffct = NULL, nbvar = NULL, nls.lmiter = 50)

Some of these arguments are mandatory others optional.

The mandatory arguments are the main data matrices Y, A, as well as degre, Model and
Method.

Here Y is the matrix containing the values of the variable of interest and A is the matrix
containing the age or time variable. In most applications, this matrix just contains times of
measurement that are the same for each individual in the sample, implying that all lines of the
matrix A are equal, but this is not necessarily the case. A can for instance contain the age of the
different individuals at the times of measurement, which is generally different for each individual
in the sample.
degre is a vector indicating the degree of the polynomials describing the typical trajectories
in the different groups. Implicitly, the dimension of this vector also determines the number of
groups into which we want to divide the population,
Model is a string defining the underlying distribution used in the model. The possible choices are
LOGIT for the Logistic Regression Mixture Model, CNORM for the Censored Normal Mixture
Model, ZIP for the Zero Inflated Poisson Mixture model and BETA for the BETA model.
Method, finally, is a string to decide which algorithm is used for estimating the model parameters.
In case of the BETA model, only L for direct optimization is possible.

The optional arguments are Risk, TCOV, degre.nu, ssigma, ymax, ymin, hessian, itermax,
paraminit, ProbIRLS, refgr, fct, diffct, nls.lmiter, ng.nl and nbvar.

Risk is a data matrix that contains the values of the covariate X modifying the group
membership probability. By default, there is no such variable and Risk is a one-column matrix
with value 1.
ProbIRLS allows to decide which method is used to compute the predictor probabilities. If
its value is TRUE (default setting) we use the IRLS method and if it is FALSE we use the
optimization method.
TCOV is an optional data matrix containing a time-dependent covariate W that influences the
trajectories themselves. By default its value is NULL.
To ensure the identifiability of the parameters of the predictor, we have to fix a reference group.
This can be done by the refgr command. It’s default value is 1.
hessian indicates if we want to calculate the Hessian matrix, the default value being FALSE. If
the method used is direct optimization, the Hessian matrix is computed by inverting the Fisher
Information Matrix.
itermax gives the maximal number of iterations for the optim function or for the EM algorithm.
The choice of the initial parameters is very important in optimization problems. We can specify
these initial parameters by paraminit. By default trajeR calculates the initial value based on
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the range or the standard deviation of the data (for the details, see Noel (2023)).

The output of trajeR for the BETA model is an object of class Trajectory.BETA, as described
in following sections.

4 An example with simulated data

We use the simulated data set BETA\_data01 that comes with installing the package from the
CRAN repository. The sample consists of 500 trajectories with 6 time-points each, the values
of the variable Y being between 0 and 1. The data set consists in a simulated 2 group solution,
with respective group sizes are π1 = 0.65 and π2 = 0.35. In group one, the typical trajectory is
a polynomial of degree 2 with parameters β1 = (−6,3.7,−0.5), whereas in group 2, the typical
trajectory is a polynomial of degree 1 with parameters are the parameters β2 = (3.8,−1).

The variable of interest Yi is contained in data[,2:7], the time variable Ai in data[,8:13],
the time-dependent covariate W , which could for instance indicate the presence of a characteristics
of the individual, in data[,15:20] and a covariate X influencing group membership probabilty
in data[,14]. Hence,

� data[,2:7] is a matrix with values between 0 and 1.

� data[,8:13] is a matrix with timepoints from 1 to 6.

� data[,14] is a column with real numbers.

� data[,15:20] is a matrix with real numbers.

We first plot the trajectories of Y to get a first impression of our sample.
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To fit the model, we specify the number of group to two, ng=2, and fix the degree of the
polynomial shape of the trajectories. Here we choose a line and a cubic polynomial, so degree is
the vector (1,2).
We specify hessian=TRUE to ask the computation of the Hessian matrix.
In case of a Beta distributions, the computations are sensible to the starting values of the
algorithm. By default, the starting value for the dispersion parameter is set to 5 for each group,
which can give rise to numerical errors. So we use the paraminit parameter to manually set
more sensible values.

Finally, to use the Likelihood method we call trajeR with option Method ="L".

> paraminit = c(0, -0.9292991, 0, 0, 0.904195 , 0, 1, 0, 1, 0)

> solL = trajeR(Y = data[,2:7], A = data[,8:13],

+ param=paraminit,

+ degre=c(2,1), degre.phi = c(1,1),

+ Model = "BETA", Method = "L", hessian = T)

The basic results are contained in the object solL.

> solL

## trajeR with 2 groups with trajectories of degrees 2 and 1.
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## Model : Beta

## Method : Likelihood

##

## group Parameter Estimate Std. Error T for H0: Prob>|T|

## param.=0

## --------------------------------------------------------------------

## mean

## 1 Intercept -5.95316 0.1281 -46.4734 0

## Linear 3.66558 0.07649 47.92297 0

## Quadratic -0.49316 0.01027 -48.04232 0

## var.

## 1 Intercept 2.26533 0.0993 22.81197 0

## Linear -0.00558 0.02466 -0.22636 0.82094

##

## mean

## 2 Intercept 3.73504 0.04525 82.53444 0

## Linear -0.98061 0.01144 -85.70519 0

## var.

## 2 Intercept 2.35458 0.07128 33.03302 0

## Linear -0.00144 0.01771 -0.08113 0.93534

## --------------------------------------------------------------------

## 1 pi1 0.344 0.02069 0 0

## 2 pi2 0.656 0.02069 31.19708 0

## --------------------------------------------------------------------

## Likelihood : 2516.737

We find that...

Next, we add a covariate that influences the group membership probabilities probability to
the model. By default, the first group is the refernce group, meaning that the influence of the
covariate is compared to the first group, but we can change this setting with the argument refgr.

> paraminit = c(0, 0, -0.9292991, 0, 0, 0.904195 , 0, 1, 0, 1, 0)

> solLRisk = trajeR(Y = data[,2:7], A = data[,8:13], Risk = data[,14],

+ param=paraminit,

+ degre=c(2,1), degre.phi = c(1,1),

+ Model = "BETA", Method = "L", hessian = T)

> solLRisk We get the following results.

## Call TrajeR with 2 groups and a 2,1 degrees of polynomial shape of trajectory.

## Model : Beta

## Method : Likelihood

##

## group Parameter Estimate Std. Error T for H0: Prob>|T|

## param.=0

## --------------------------------------------------------------------
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## mean

## 1 Intercept -5.95316 0.12845 -46.34479 0

## Linear 3.66558 0.07666 47.81836 0

## Quadratic -0.49316 0.01031 -47.82021 0

## var.

## 1 Intercept 2.26532 0.09986 22.68433 0

## Linear -0.00558 0.02483 -0.22484 0.82212

##

## mean

## 2 Intercept 3.73504 0.04676 79.8723 0

## Linear -0.98061 0.0117 -83.81714 0

## var.

## 2 Intercept 2.35458 0.07022 33.53206 0

## Linear -0.00144 0.01749 -0.08219 0.9345

## --------------------------------------------------------------------

## 1 Baseline 0 NA NA NA

##

## 2 Intercept 0.64783 0.09442 6.86114 0

## X -0.09072 0.05239 -1.7316 0.08345

## --------------------------------------------------------------------

## Likelihood : 2518.219

We find...
Finally, we add a time-dependent covariate that influences the shape of the trajectories

directly. We introduce their effects by using the option TCOV in the command trajeR.

> paraminit = c(0, -0.9292991, 0, 0, 0.904195 , 0, 1, 0, 1, 0, 0, 0)

> solLTCOV = trajeR(Y = data[,2:7], A = data[,8:13], TCOV = data[,15:20],

+ param=paraminit,

+ degre=c(2,1), degre.phi = c(1,1),

+ Model = "BETA", Method = "L", hessian = T)

We get the following results.

> solLTCOV

## Call TrajeR with 2 groups and a 2,1 degrees of polynomial shape of trajectory.

## Model : Beta

## Method : Likelihood

##

## group Parameter Estimate Std. Error T for H0: Prob>|T|

## param.=0

## --------------------------------------------------------------------

## mean

## 1 Intercept -5.95198 0.1294 -45.99705 0

## Linear 3.66416 0.0771 47.52598 0

## Quadratic -0.49294 0.01036 -47.57542 0

## TCOV1 -0.0081 0.01256 -0.64495 0.51901

## var.
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## 1 Intercept 2.26489 0.10084 22.46055 0

## Linear -0.00542 0.02503 -0.21647 0.82863

##

## mean

## 2 Intercept 3.73513 0.04761 78.45198 0

## Linear -0.98071 0.01179 -83.1569 0

## TCOV1 -0.00324 0.00919 -0.3524 0.72456

## var.

## 2 Intercept 2.3544 0.07265 32.40833 0

## Linear -0.00137 0.01818 -0.07554 0.93979

## --------------------------------------------------------------------

## 1 pi1 0.344 0.02161 0 0

## 2 pi2 0.656 0.02161 29.86858 0

## --------------------------------------------------------------------

## Likelihood : 2517.012

We find...

There are different possibilities to present the results graphically. The basic graph consists
in plotting the typical trajectories of the different groups, which can be done with the command
plotrajeR included in our trajeR package, applied to an object of class Trajectory. By default
colors are gray scale, but we can specify any colors we want, for instance pink and light blue for
the two groups in our example.

> plotrajeR(solLTCOV, col =

vcol)
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But the graph looks much nicer if we add the initial longitudinal data. In order to achieve
this, we have to specify the variables Y and A in the function plot().

> # Defining the colours

> trans = "70"

> col1 = "#034569"

> col1.1 = paste0("#64AAD0", trans)

> col2 = "#750062"

> col2.1 = paste0("#D962C7", trans)

> cols1 = c(col1.1, col2.1)

> cols2 = c(col1, col2)

> vcol = c(cols1, cols2)

>

> plotrajeR(solLRisk, Y = data[,2:7], A = data[,8:13], col = vcol)
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We can add the average of the data points on the plot for each time values. For each group and
each time the mean of the data are calculated and add to the plot.

We use option mean =TRUE.

> # colour's defintion

> trans = "70"

> col1 = "#034569"

> col1.1 = paste0("#64AAD0", trans)

> col2 = "#750062"

> col2.1 = paste0("#D962C7", trans)

> cols1 = c(col1.1, col2.1)

> cols2 = c(col1, col2)

> vcol = c(cols1, cols2)

>

> plotrajeR(solLRisk, Y = data[,2:7], A = data[,8:13],

+ col = vcol, mean = TRUE, alpha = 0.3)
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If we want show the impact of a particular value of the time covariate in the trajectory, we
can add this to the plot by plotcov option.
The fill line is the trajectory with the time covariate matrix and th dashed one show the impact
on this trajectory of a particular value.

> plotrajeR(solLTCOV, col = vcol, plotcov = c(100,100,100,100,100,100))

14



1 2 3 4 5 6

0.
2

0.
4

0.
6

0.
8

pas

ve
c

5 An application to COVID-19 data

5.1 Data

The data used in this article comes from the site ”Our World In data”. A complete description
of this data can be found in Hasell and ali. (2020).
The data concerns 219 countries or groups of countries around the world. We remove this group,
like North America, Europe, Africa, to keep only individual countries. We obtain 190 different
countries. For each country, we are interested in new cases, population for million, total cases per
million, media age, population’s density, number of people over 65, an index of stringency, gpd
per capita, an index of extreme poverty, the rate of cardiovascular death, the rate of prevalence
of diabetes, an index of handwashing facilities, the rate of hospital’s beds per thousand, the life
expectancy and an index of human development.
We summarize all this covariates by month by taking the sum of new cases, the mean of the
population by millions and by taking the last of the values for all others.
Some covariates contain missing values. We completed it : the median age, the density of the
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population, the over 651, the gdp per capita2 and the life expectancy3. Finally we replace the
value 8???? for Luxembourg that is negative and we replace it by 0.

So we created an 16-period panel, starting at month January 2020 and finishing at month April
2021. Alvarez, Brida and Limas (2020), who studies longitudinal COVID data too, have created
period panel by considering as start value the first case (or the tenth) of COVID in each country.
Their choice is motivating by the fact that their time period is shorter than our (they consider
daily data too and not monthly on a period of 100 days) and a shift can produce bad results. Our
choice is to consider the same date as staring value. First our period is long, 14 months. Then an
eventual shift will have less consequences on the cluster and the data are grouped by month, that
limit the shift. Furthermore, in the data group by month, we van remark that the rate increase
rapidly for each countries in some epoch. Second, it is very difficult to determine the beginning
of the epidemic and in the data we can differences the NA values, there are no positive case or
we are not make test. Moreover, the missing data are considering as missing at random, not as 0.

We observed the rate of contamination for a country i at time t, Yi t for n = 190 subjects at
T = 16 time periods. Yi = (Yi1, · · · , YiT ) denotes the rate history for the country i. The figure 2
shows the longitudinal trajectories of rate for each of the 190 countries.
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Figure 2 – Rate of contamination for each countries.

1https://www.nationmaster.com
2https://tradingeconomics.com

https://www.macrotrends.net
https://georank.org

3https://data.worldbank.org
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5.2 Choice of the model

To find the model, we have to find first the number of groups and second, the parameters. Indeed,
the number of groups is a parameter that is unknown. At the beginning, we don’t know how
many groups to take. To make the choice between different models, we use BIC criteria or AIC
criteria or use a metric to compare more than 2 models provided by Kass and Wasserman (1995).
Let pk the probability that a model with k groups be the correct model from a set of K different
models. They show that pk is approximated by

eBICk−BICmax

∑

k eBICk−BICmax

Furthermore, Nagin (2005) proposes different methods to check the accuracy of the model
and in particular the Average Posterior Probability (AvePP). Ideally it would be 1, and Nagin
considered that it should be at least 0.7 for all groups. Anyway, a model with group with AvePP
0 is a bad model.

We follow Nagin’s procedure (Nagin 2005) to find the best model. First step : choice of the
group, second step : choice of the degree of the polynomial shape. We could have followed the
method resumed in (Nguena Nguefack and ali. 2020) too. It begins with 2 groups and finds
the best model with BIC and adds group until it doesn’t increase BIC. The problem here is the
choice of starting point that encourages us to the first method. So, we fix the number of the
polynomial for the mean to degree 3 to take account of, eventually, two points of inflection and
for the precision parameter to degree 2.

Optimization methods suffer from choice of starting value. If it is bad value, the algorithm
may not converge or converges to a local extremum. Unfortunately we have no method to choose
this starting point. In a first time, our strategy is to choose, for starting value, k lines parallel to
the axis x, i.e. the parameters βk = (β0, 0, 0, . . . ) and ζk = (ζ0, 0, 0, . . . ) for k = 2 groups to 10. In
a second time, we try some affine functions to take into account the growth of the data during
the time period. Most of tries converge to 2 groups (row 1 of figure 4) and some to 3 groups (row
2 of figure 4). In a last time, we use the different groups found in the previous step for starting
values to test 4 and 5 groups (rows 3 and 4 of figure 4).
Before using BIC or AIC to choose the model, we look if the models found in the previous step are
well defined by using average posterior probability. We removed the model which some groups
contains 0 individuals.

Finally, we find 7 models with 2 until 5, plot in the figure 4. To choose between them, we
compute BIC, AIC and the probability pk, see table 1. The greatest values of BIC and AIC
are calculated for the model with 5 groups, BIC = 15558.41 and AIC = 31241.46. Then the
probability for the 5 model is the greatest, 0.99999. The table 2 show the parameters of this
model. We can see that for some parameters φ, the probabilities are zero and they doesn’t be
significant. So we can remove them. The final model is given in table 3. We can note that
the trajectory of the parameters φ for the group 5 is a line parallel to the abscissa and so, for
this group the precision is constant throughout times, while for the precision in this group, its
trajectory becomes more heterogeneous during time.

5.3 Analysis of the model

The chosen model has 5 groups. Group 1, which can be called ”growth”and contains 57 countries;
group 2, ”moderate growth” and contains 35 countries; group 3, ”high growth” and contains 30
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Figure 3 – Growth of the precision parameters for each group.

Number of
groups AIC BIC Prob

2 29851.99 14902.64 0.00000
3 30341.00 15142.28 0.00000
3 29945.96 14936.64 0.00000
3 30777.14 15352.23 0.00000
4 30839.69 15370.52 0.00000

4 31192.78 15547.06 0.00001
5 31241.46 15558.41 0.99999

Table 1 – Some criteria computed to choose the right model

countries; group 4, ”no contamination”and contains 61 countries and group 5, ”mountain growth”
and contains 7 countries. The names of these countries can be found in table 4. Figure 5 shows
the data divided in 5 groups following their own trajectory. These groups are presented on a
world map, see figure 6. The model, in group 5, finds the particular behaviors of countries like
Chile or Brazil which see the rate of contamination increase then decrease and finally increase
again, certainly because of the presence of new variant described in Hojo de Souza et ali. (2021).
Group 1, ”growth”, contained countries rate increase across time. Group 2, ”moderate growth”,
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Figure 4 – Different models found with some choice of starting values and number of groups.

contained countries which increase slowly. Group 3, ”high growth”, contained countries rate
increase quickly. Group 4, ”no contamination”, contained countries rate are almost zero.
The table 4 shows the principal characteristics of the different groups. The median age grows
with the rate of contamination. The ”no contamination” group has the smallest median age
(23.49) while the ”high growth” group has the highest median age (41.67). The same note can be
make to the covariates rate of people aged 65 older or 70 older and life expectancy. On the other
hand, we can note that the variability of the measures of stringency are almost the same for
each group and the mean of these measures do not seem to correspond to a particular behavior
linked to a group. For example, the ”no contamination” group and the ”high growth” are the
lower (resp. 49.9 and 58.01), although the first one is further from the others than the second one.

Carrillo-Larco and Castillo-Cara (2020) use k-means to search some clusters but not taking
account time series. They find 5 or 6 clusters that divide the data considering selected diseases,
socio-economic status, air pollution and health system. Their groups show us a difference between
the number of confirmed cases and we can see a lot of countries classify in the same group as us.
Therefore we have more information as them with shape of trajectory of the rate.
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Param. sd Test

Beta 1
-5.902 0.018 0.000
-0.052 0.013 0.000
0.020 0.002 0.000

-0.001 0.000 0.000

Beta 2
-5.927 0.003 0.000
-0.015 0.003 0.000
0.005 0.001 0.000
0.000 0.000 0.005

Beta 3
-5.659 0.133 0.000
-0.119 0.066 0.071
0.040 0.009 0.000

-0.002 0.000 0.000

Beta 4
-5.962 0.011 0.000
0.018 0.005 0.000

-0.002 0.001 0.000
0.000 0.000 0.000

Beta 5
-7.511 0.370 0.000
0.911 0.143 0.000

-0.102 0.016 0.000
0.004 0.001 0.000

Param. sd Test

Phi 1
14.648 0.299 0.000
-1.253 0.071 0.000
0.045 0.004 0.000

Phi 2
20.026 0.354 0.000
-1.818 0.089 0.000
0.066 0.005 0.000

Phi 3
9.461 0.377 0.000

-0.601 0.098 0.000
0.022 0.005 0.000

Phi 4
13.212 0.367 0.000
0.007 0.086 0.935

-0.008 0.004 0.063

Phi 5
7.713 1.021 0.000

-0.136 0.245 0.579
0.010 0.013 0.445

Param. sd Test

Probability 1
0.301 0.035 0.000

Probability 2
0.183 0.030 0.000

Probability 3
0.160 0.028 0.000

Probability 4
0.319 0.035 0.000

Probability 5
0.036 0.013 0.005

Table 2 – parameters of the 5 groups model
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Param. sd Test

Beta 1
-5.902 0.018 0.000
-0.052 0.013 0.000
0.020 0.002 0.000

-0.001 0.000 0.000

Beta 2
-5.927 0.003 0.000
-0.015 0.003 0.000
0.005 0.001 0.000
0.000 0.000 0.005

Beta 3
-5.659 0.133 0.000
-0.119 0.066 0.071
0.040 0.009 0.000

-0.002 0.000 0.000

Beta 4
-5.962 0.011 0.000
0.018 0.005 0.000

-0.002 0.001 0.000
0.000 0.000 0.000

Beta 5
-7.511 0.370 0.000
0.911 0.143 0.000

-0.102 0.016 0.000
0.004 0.001 0.000

Param. sd Test

Phi 1
14.648 0.309 0.000
-1.253 0.072 0.000
0.045 0.004 0.000

Phi 2
20.026 0.280 0.000
-1.818 0.088 0.000
0.066 0.005 0.000

Phi 3
9.454 0.374 0.000

-0.600 0.099 0.000
0.022 0.005 0.000

Phi 4
13.212 0.360 0.000
0.007 0.085 0.934

-0.008 0.004 0.061

Phi 5
7.422 0.146 0.000

Param. sd Test

Probability 1
0.302 0.034 0.000

Probability 2
0.183 0.028 0.000

Probability 3
0.159 0.028 0.000

Probability 4
0.319 0.034 0.000

Probability 5
0.036 0.014 0.008

Table 3 – parameters of the final model
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Figure 5 – Curve of the trajectories of the 5 groups for the rate of contamination. The group 1 is called
?growth?, the group 2 is called ?moderate growth?, the group 3 is called ?high growth?, the group 4 is
called ?no contamination? and the group 5 is called ?mountain growth?.
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Map of the different groups

gr 1 gr 2 gr 3 gr 4 gr 5

Figure 6 – Colored countries by groups. The group 1 is called ?growth?, the group 2 is called ?moderate
growth?, the group 3 is called ?high growth?, the group 4 is called ?no contamination? and the group
5 is called ?mountain growth?.

23



Group 1 Albania, Argentina, Azerbaijan, Bahamas, Belize, Bolivia, Bosnia and
Herzegovina, Bulgaria, Canada, Cape Verde, Colombia, Costa Rica, Croatia,
Cyprus, Denmark, Djibouti, Dominican Republic, Ecuador, Equatorial
Guinea, Finland, Gabon, Georgia, Germany, Greece, Guatemala, Honduras,
Hungary, Iran, Iraq, Jordan, Kazakhstan, Kosovo, Kyrgyzstan, Latvia,
Lebanon, Libya, Lithuania, Malta, Mexico, Moldova, North Macedonia,
Norway, Palestine, Paraguay, Poland, Romania, Russia, Sao Tome and
Principe, Saudi Arabia, Seychelles, Slovakia, South Africa, Suriname, Turkey,
Ukraine, United Arab Emirates, Uruguay

Group 2 Algeria, Antigua and Barbuda, Bangladesh, Barbados, Botswana, Comoros,
Cuba, El Salvador, Eswatini, Gambia, Ghana, Guyana, India, Indonesia,
Jamaica, Japan, Lesotho, Malaysia, Mauritania, Mongolia, Morocco,
Myanmar, Namibia, Nepal, Pakistan, Philippines, Saint Lucia, Saint Vincent
and the Grenadines, Sri Lanka, Trinidad and Tobago, Tunisia, Uzbekistan,
Venezuela, Zambia, Zimbabwe

Group 3 Andorra, Armenia, Austria, Bahrain, Belarus, Belgium, Czechia, Estonia,
France, Iceland, Ireland, Israel, Italy, Liechtenstein, Luxembourg, Monaco,
Montenegro, Netherlands, Panama, Portugal, San Marino, Serbia, Singapore,
Slovenia, Spain, Sweden, Switzerland, United Kingdom, United States,
Vatican

Group 4 Afghanistan, Angola, Australia, Benin, Bhutan, Brunei, Burkina Faso,
Burundi, Cambodia, Cameroon, Central African Republic, Chad, China,
Congo, Cote d’Ivoire, Democratic Republic of Congo, Dominica, Egypt,
Eritrea, Ethiopia, Fiji, Grenada, Guinea, Guinea-Bissau, Haiti, Kenya, Laos,
Liberia, Madagascar, Malawi, Mali, Marshall Islands, Mauritius, Micronesia
(country), Mozambique, New Zealand, Nicaragua, Niger, Nigeria, Papua
New Guinea, Rwanda, Saint Kitts and Nevis, Samoa, Senegal, Sierra Leone,
Solomon Islands, Somalia, South Korea, South Sudan, Sudan, Syria, Taiwan,
Tajikistan, Tanzania, Thailand, Timor, Togo, Uganda, Vanuatu, Vietnam,
Yemen

Group 5 Brazil, Chile, Kuwait, Maldives, Oman, Peru, Qatar

Table 4 – Names of countries belonging to each group.
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5.4 Explanatory variables

We tested several covariates to understand if some of them influenced the group’s membership
probability. We tested the median age, the population density, the rate of people aged 65 older,
the gdp per capita, the life expectancy and to catch the effect of the measures of stringency, the
mean of the mean and the standard deviation of stringency during time period for each country
inside a group. The mean of the standard deviation is used to catch some variations around
the mean and some different country’s strategy of stringency inside a group. Classically, in a
multinational regression, we have to use one group as basis. We chose to use the group 4, ?no
contamination? to analyze another one. After having fit the model, we note that the GPD is
linked to any group. So, we removed it to the analysis.

Table 6 resumes the estimation of the parameters fit by the model and the probability.
The median age is linked to groups ”growth” (p = 0.02445) and ”up and down” (p = 0.04142),
the density is very lightly bound with the group ”growth” (p = 0.09272), the 65 old is linked
to ”up and down” group (p = 0.00188), the life expectancy with groups ”high” (p = 0.00388)
and ”up and down” (p = 0.02254)and the mean of stringency is linked to all groups (in order
p = 0, 0.00008, 0.00058, 0.00228).

For each group, the mean of stringency differs from the base group. To understand if it differs
between groups, we use a χ2-based test of multiple contrasts. The degree of freedom of this test
equals the number of equality constraints being tested or the number of different coefficients
being tested minus 1. Here, the degree of freedom is 3.

We tested if each coefficient, noted θ st
i , of mean of stringency differs from one group to

another. Let

H0 : θ st
2 = θ

st
3 and θ st

2 = θ
st
4 and θ st

2 = θ
st
5 (8)

H1 : θ st
2 6= θ

st
3 or θ st

2 6= θ
st
4 or θ st

2 6= θ
st
5 (9)

Let denoted
θ =

�

θ st
2 ,θ st

3 ,θ st
4 ,θ st

5

�′

We tested the hypothesis above in the form

H0 : Hθ = q (10)

H1 : Hθ 6= 0 (11)

where q = (0,0, 0)′ and H =















1 −1 0 0

1 0 −1 0

1 0 0 −1















.

The χ2 test is computed by

χ2 =
�

Hθ̂ − q
�′ �

HVθ̂H ′
�−1 �

Hθ̂ − q
�

(12)

where θ̂ is the counterpart vector of estimations and Vθ̂ is the matrix variance/covariance of

the parameter estimated in θ̂ .
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By applying this formula to the estimations of the mean of stringency, we obtain χ2 = 5.62
with 3 degree of freedom which is far short of significance. This result implies that the hypothesis
the mean of stringency has no differential impact across the rate of contamination trajectory is
supported. Thus, while the results in table 6 show that high stringency is linked to the rate
of contamination, the χ2 based statistic implies that high stringency does not distinguish the
specific developmental course of rate. Presumably, we can suppose that the mean of stringency is
a consequence of the rise of the rate of contamination, these countries try to stem the pandemic
and it is not responsible for the shape of the rate.
The groups ”high” and ”up and down” are linked to life expectancy which is the two oldest ages
(80.97 and 77.9) and the group ”growth” is linked to the median age which is the second oldest
(33.67). Table 6 shows the boxplot of the median age for each group. We can note that the
median age is relatively important for almost all the individuals in this group. We can conclude
that the shape of the rate is link to the age variable, and more particularly, older is the age,
higher is the level of contamination.
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Figure 7 – Distribution of the median age of each group.

5.5 Stringency as time dependent covariate

GBTM allows us to use some covariates which depend on time, as explanatory variables that
can modify the shape of the trajectory. It is the part Wi t in equation (6). We can wonder if the
different measures of stringency, taken by the different countries, have influenced the shape of
the trajectory of the rate of the contamination and, in particular, if this curve was flatten by
these measures.
Thus, Wi t is composed by the measures at time t, for 1≤ t ≤ 16, of the stringency for the country
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Group 1 Group 2

Estimate Std. Error Prob>|T| Estimate Std. Error Prob>|T|

intercept -16.812 4.681 0 -4.805 3.422 0.16

median age 0.193 0.086 0.024 0.172 0.101 0.088

population density -0.003 0.002 0.093 0.000 0.001 0.869

aged 65 older -0.021 0.132 0.871 -0.060 0.126 0.631

life expectancy 0.073 0.080 0.364 -0.073 0.071 0.304

mean of stringency 0.112 0.023 0 0.092 0.023 0

Group 3 Group 5

Estimate Std. Error Prob>|T| Estimate Std. Error Prob>|T|

intercept -67.733 19.400 0 -73.689 23.469 0.002

median age 0.129 0.158 0.412 0.418 0.205 0.041

population density 0.000 0.001 0.784 0.000 0.001 0.926

aged 65 older 0.109 0.178 0.542 -0.640 0.206 0.002

life expectancy 0.646 0.223 0.004 0.646 0.283 0.023

mean of stringency 0.185 0.054 0.001 0.228 0.075 0.002

Table 6 – Estimation of the parameters of the covariate.

i. We removed from the data the countries with no stringency value 4 and we completed the
eventual missing values for the others by linear interpolation.

The table (7) shows the parameters of the model. Their interpretation is the same as above
except for delta which refers to the stringency time covariate. For the groups with high rate, the
values of delta parameters are positive while, for the other, they are null or almost. Therefore,
a high value of stringency implies a raise of the trajectory.

4Antigua and Barbuda , Armenia , Comoros , Equatorial Guinea , Grenada , Guinea-Bissau , Liechtenstein
, Maldives , Marshall Islands , Micronesia (country) , Montenegro , North Macedonia , Saint Kitts and Nevis ,
Saint Lucia , Saint Vincent and the Grenadines , Samoa , Sao Tome and Principe , Vatican.
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Param. sd Test

Beta 1
-5.843 0.026 0.000
-0.120 0.024 0.000
0.029 0.004 0.000
-0.001 0.000 0.000

Beta 2
-5.927 0.003 0.000
-0.014 0.004 0.000
0.005 0.001 0.000
0.000 0.000 0.001

Beta 3
-5.602 0.117 0.000
-0.421 0.070 0.000
0.076 0.009 0.000
-0.003 0.000 0.000

Beta 4
-5.972 0.012 0.000
0.012 0.005 0.018
-0.001 0.001 0.043
0.000 0.000 0.027

Beta 5
-7.304 0.366 0.000
0.701 0.147 0.000
-0.078 0.017 0.000
0.003 0.001 0.000

Param. sd Test

Phi 1
14.337 0.317 0.000
-1.164 0.076 0.000
0.040 0.004 0.000

Phi 2
19.866 0.570 0.000
-1.710 0.125 0.000
0.061 0.006 0.000

Phi 3
9.624 0.369 0.000
-0.521 0.097 0.000
0.016 0.005 0.003

Phi 4
12.887 0.372 0.000
0.148 0.085 0.082
-0.015 0.004 0.000

Phi 5
7.384 0.137 0.000

Param. sd Test

Delta 1
0.001 0.000 0.001

Delta 2
0.000 0.000 0.955

Delta 3
0.010 0.001 0.000

Delta 4
0.000 0.000 0.000

Delta 5
0.004 0.001 0.004

Param. sd Test

Prob. 1
0.328 0.039 0.00

Prob. 2
0.175 0.030 0.00

Prob. 3
0.156 0.030 0.00

Prob. 4
0.301 0.035 0.00

Prob. 5
0.040 0.016 0.01

Table 7 – parameters of the final model with time dependent covariates.

In figure (8), we plot an example of the influence of the stringency. The plain line is the
trajectory when the stringency is zero during all time periods while for the dotted line, the
stringency is 100, the maximal value. We can see, for the 3 groups with high contamination rate,
that highest is the stringency, highest is the trajectory. For the group with low contamination
rate, the shape is unchanged.

We retrieve the conclusion that stringency is linked to the contamination rate and that it is
a consequence of the raise of the contamination.

6 Conclusion

In this paper, we presented an extension of finite mixture models to Beta distributed data and
showed how to calibrate this kind of models with our R package trajeR. Further extensions of the
package will allow to handle multitrajectory models, as well as incorporate different strategies to
handle missing data, which is quite important in some research areas like medicine, where missing
data often cannot be assumed to happen randomly (there are for instance patient dropouts, due
to the death of patients).
In a second part of the paper, we used the before introduced model to discover and validate
five groups of countries that follow distinct rate of contamination trajectories during the first
phase of the COVID-19 pandemics. We found a significant difference in the treatment between
countries with no contamination, and the ones that can be interpreted like a response to the
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Figure 8 – Curve of the trajectories of the 5 groups for the rate of contamination with stringency as time
dependent covariate. The dotted line is the trajectory when the stringency is maximal, i.e. 100, while
the plain line is the trajectory when the stringency is zero.

growth of the pandemic and a way to contain it. We also found a significant link between the
age of the population and the rate of contamination. In conclusion, this study seems to show
that among the analyzed factors the only which influences the rate of contamination is the age
of the population. Specifically, the level of stringency of the different measures adapted by the
countries does not influence the contamination rate. In the same way, in their meta analysis,
Herby, Jonung and Hanke (2022) conclude too that the lockdowns have not a large effect on the
mortality rate.
Of course, this conclusion must be seen cautiously. First of all, the group-based model trajectory
method is more accurate with a lot of individuals and the number of countries is low. Second,
the beta distribution is sensible to values which are close to 0 and 1, which is the case here.
Nevertheless, it remains a means of trying to understand the evolution of the epidemic.

In further works, it would be interesting to include other variable in these studies, like, for
example, the presence of variants. It would also be interesting to study more finely the impact of
the measures of stringency on the trajectory, particularly by using its longitudinal reporting and
the dual trajectory model (METTRE REF VERS article dual). Finally, it would by interesting
to study the second wave of the pandemic with several new variants, and by including the rate
of vaccination in each countries.
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