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tions en poro-élasticité
tionnaires, Poroélasticité

Résumé: Ce manuscrit traite d’estimation d’erreur
a posteriori pour la discrétisation d’éguations aux
dérivées partielles standard et fractionnaires par les
méthodes éléments finis ainsi que de I'application de
I'analyse fractionnaire a la modélisation du ménisque
humain par les équations de poro-élasticité. Dans I'in-
troduction, nous donnons un apercu de la littérature
sur I'estimation d’erreur a posteriori pour les méth-
odes éléments finis et des méthodes de raffinement
adaptatif. Nous insistons particulierement sur |'état de
I'art de la méthode d’estimation d’erreur a posteriori de

Titre: Estimation d’erreur a posteriori pour I'approximation de problemes Laplaciens fractionnaires et applica-

Mots clés: Méthodes éléments finis, Estimation d’erreur a posteriori, Equations aux dérivées partielles frac-

Bank-Weiser et sur les résultats de convergence des
méthodes adaptatives. Ensuite, nous nous intéres-
sons aux équations aux dérivées partielles fraction-
naires. Nous présentons certaines méthodes de dis-
crétisation d’équations basées sur I'opérateur Lapla-
cien fractionnaire et donnons I'état de I'art sur I’estima-
tion d’erreur a posteriori. Finalement, nous donnons
un apercu de la littérature concernant les applications
de la dérivée fractionnaire au sens de Caputo en nous
concentrant sur le phénomeéne de diffusion anormale
et les applications en poro-élasticité.

plications to poro—elasticity

elasticity

Abstract: This manuscript is concerned with a pos-
teriori error estimation for the finite element discretiza-
tion of standard and fractional partial differential equa-
tions as well as an application of fractional calculus
to the modeling of the human meniscus by poro-
elasticity equations. In the introduction, we give an
overview of the literature of a posteriori error estima-
tion in finite element methods and of adaptive refine-
ment methods. We emphasize the state—of-the-art of
the Bank—Weiser a posteriori error estimation method
and of the adaptive refinement methods convergence
results. Then, we move to fractional partial differen-
tial equations. We give some of the most common
discretization methods of fractional Laplacian opera-
tor based equations. We review some results of a pri-
ori error estimation for the finite element discretization
of these equations and give the state—-of- the-art of a
posteriori error estimation. Finally, we review the liter-
ature on the use of the Caputo’s fractional derivative
in applications, focusing on anomalous diffusion and

Title: A posteriori error estimation for finite element approximations of fractional Laplacian problems and ap-

Keywords: Finite element methods, A posteriori error estimation, Fractional partial differential equations, Poro—

poro-elasticity applications. The rest of the manuscript
is organized as follow. Chapter 1 is concerned with a
proof of the reliability of the Bank—Weiser estimator for
three—dimensional problems, extending a result from
the literature. In Chapter 2 we present a numerical
study of the Bank—\Weiser estimator, provide a novel
implementation of the estimator in the FEnICS finite
element software and apply it to a variety of elliptic
equations as well as goal-oriented error estimation. In
Chapter 3 we derive a novel a posteriori estimator for
the L2 error induced by the finite element discretiza-
tion of fractional Laplacian operator based equations.
In Chapter 4 we present new theoretical results on
the convergence of a rational approximation method
with consequences on the approximation of fractional
norms as well as a priori error estimation results for
the finite element discretization of fractional equations.
Finally, in Chapter 5 we provide an application of frac-
tional calculus to the study of the human meniscus via
poro-elasticity equations.
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“Evolution has developed the brain’s ability to solve puzzles, and at the
same time has produced in our brain a pleasure of solving problems.”

Martin Gardner
In John Tierney, ‘For Decades, Puzzling People With Mathematics’,
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Introduction

All scientific fields share the same underlying process of acquiring knowledge. This pro-
cess is based on a feedback loop, sketched in fig. [f} Information on a phenomenon is
collected from data gathering. From this information a model, i.e. a system of mathemat-
ical equations depending on diverse parameters, is established. Finally, a prediction is
drawn from the model and this prediction can be used to improve the model.

However, researchers know that this is a never—ending loop: each step of the above
process induces uncertainties. For example, the collection of data is always corrupted with
measurements errors, there is no complex enough (manageable) model to capture reality
exactly and finally, numerical experiments demand discrete (which means truncated) inputs
to perform and therefore, return an approximation of the solution.

Uncertainty can be divided into two categories: aleatory uncertainty and epistemic
uncertainty. Epistemic uncertainty arises from a lack of knowledge and can be reduced by
collecting more information on the system we are studying. In contrast, aleatory uncertainty
is considered as irreducible and inherent to the system. This distinction is not absolute,
the choice to classify uncertainty as aleatory or epistemic is a modeling issue [172].

Thus, the result of any scientific study always comes with uncertainties. This is fine
as long as we are aware of aleatory uncertainties and are able to quantify epistemic un-
certainties. This is what uncertainty quantification is all about: study the impact of these
uncertainties on the result of this process. Our interest here is on epistemic uncertainties
arising from numerical implementation, “Numerical uncertainties” in fig. {1l In what follows

Phenomenon Modeling . Prediction,
Numerical
Model
solve improvement
Model ’
Measurements <_» Parameter
calibration,
Data Model
uncertainties
Data Numerical
uncertainties uncertainties

Figure 1: Different sources of uncertainties in the process of numerical simulation.
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Xiv INTRODUCTION

we refer to these uncertainties as errors as it is usually the case in the finite element litera-
ture.

There are multiple sources of numerical errors, we can cite the discretization errors
induced by the use of a numerical scheme (such as e.g. finite element methods) [18, 252,
the algebraic errors coming from the use of (inexact) iterative solvers (such as e.g. conjugate
gradient methods) [167, [173], the rounding errors due to the floating—point arithmetic of
computers [147] and the linearization errors arising from the equations linearization in the
case of a non-linear problem [252]. It is of particular importance to balance these errors
to avoid wasted computation time and resources.

On a first time, in Chapters [1| to |4} we focus on a family of models based on linear
elliptic fractional partial differential equations. In particular, we look at the discretization
errors coming from two particular (families of) numerical methods: finite element methods
and rational approximation methods.

Then, on a second time, in Chapter , we consider a new fractional model for the
anomalous diffusion in human meniscal tissues and especially the parameter calibration of
this new model. This belongs to the “Model uncertainties” (see fig. [1) quantification.

A posteriori error estimation

In this section we review the literature on a posteriori error estimation techniques for fi-
nite element methods. We focus particularly on the implicit/hierarchical a posteriori error
estimation methods.

Introduction

Error quantification in finite element methods is based on two complementary concepts: a
priori and a posteriori error estimation. A priori error estimation gives global upper bounds
on the numerical errors and are often used to prove the convergence of uniform refinement
methods (in contrast to adaptive refinement methods we will consider here below).

A posteriori error estimation is meant to provide computable approximations to the
numerical errors and analysts should be able to use a posteriori error estimators to assess
the quality of the simulation they study. Thus, a special care is taken to avoid as much as
possible the dependence of a posteriori error estimators on unknown quantities.

The names a priori and a posteriori are transparent and come from the fact that, a priori
error estimation, as it might depend on unknown quantities, can be carried out before the
numerical solve while a posteriori error estimation takes advantage of the approximated
solution and therefore must be performed after the numerical solve.

A posteriori error estimation is a well established tool in finite element discretization
methods. Its origin and use in mesh adaptation techniques for finite element methods
goes back to the works of Babuska and Rheinboldt [34, [35] 36, [39] 4Q]. A posteriori er-
ror estimators are obtained from the derivation of quantities at the level of the domain, of
patches of mesh cells or of cells themselves, quantifying the global and/or local discretiza-
tion error.
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To fix ideas, let us consider a toy problem and an a posteriori error estimator based on
local quantities at the level of the cells. Let €2 be an open connected domain with polygonal
boundary I, H be an Hilbert space of functions definedon Q andlet F' : H — R be alinear
functional. We consider the following general (elliptic) partial differential equation: find « in
H such that

a(u,v) = F(v) Yv e H, 1)

wherea (-, ) : Hx H — Risabilinear form. Let 7, be a mesh on 2, where h is a parameter
encoding the coarseness of the mesh and composed of cells {T'}. Let V}, C H be a finite
element space associated to 7;,. The finite element problem associated to eq. (1) is: find
uy, in V3, such that

a (uh,vh) = F(’Uh) Yoy, € Vp,. (2)

The finite element discretization error is given in a certain norm by |ju — wuy||.

A simple example of boundary value problem is the Poisson equation with homoge-
neous zero Dirichlet boundary conditions on €. In this case, the “natural” space in which
the solution u is sought is H := H{ () the Sobolev space of order 1 of functions vanishing
onI. For (u,v) € H?, the bilinear form a is given by a(u, v) := [, Vu - Vv and the linear
form F by F(v) := [, fv, where e.g. f € L*(Q) is the data of the problem. Equation
becomes: find w in H such that

/QVU-Vv:/va Yv € H. 3)

In this particular case, a mesh 7;, on Q) consists e.g. in a partition of ) by a set of cells
{T}, the parameter h being a measure of the coarseness of the mesh 2. A finite element
space V;, C H is e.g. the space of continuous, piecewise linear functions on each cell T’
of the mesh, vanishing on 0 and 1. The finite element discretization of eq. (3) is then: find
uy, in V3, such that

/ Vuy, - Vo, = / fon Yy, € Vp,. (4)
Q Q

Thus, the finite element discretization error is given, for example, in the norm of the energy
by ||lu — up| = alu — up,u — up) = ||Vu — Vuy|| 2.

A typical a priori error estimation result would, for example, give a bound like the fol-
lowing
lu = unllr < CRO[lull2, (6)

where ||-||; and ||-||2 are two different norms, C' is an eventual unknown constant and ¢
is a real number giving the rate of convergence of the method as h — 0 (see e.g. [122]
Chapter 3.2]). Notice that in eq. (5), the bound depends on the unknown solution w.

In contrast, an a posteriori error estimation depends on known quantities only: the
problem data F', the bilinear form a and the finite element discretization uy, and is therefore
fully computable. Let n be an a posteriori error estimator, derived from local contributions,

such that
=)t 6)
TET,

Among the desirable properties for n, we can cite:
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i) global reliability, the existence of a constant C' > 0 independent from the solution
u, from wuy, and from the fineness of 7, such that

|lu — up|| < Cn+ osc, (7)

where osc are the data oscillations, measuring the discretization error on the data
of the problem (indeed, the linear form F' might depend on quantities that must be
discretized in order to solve eq. (2) numerically e.g. the data f € L?(Q) in eq. ) and
are usually higher order terms. Often, the constant C is difficult to evaluate. When
C is known (equivalently, when C = 1), the a posteriori error estimator is called
guaranteed estimator.

i) local efficiency, the existence of a constant ¢ > 0 independent from u, u; and from
the fineness of 7}, such that

cnr < Hu\wT - uh|wT”wT + OSClwps (8)

where wr is often a patch of cells containing 7" and oscy,,. is a localization of the data
oscillations to this patch. The constant ¢ is usually unknown.

il asymptotic exactness, the estimator tends to the exact error as we refine the mesh

n

e 1, ©)
lu = unl|

the ratio n/||u — uy|| is called efficiency index.

iv) robustness, the constants C, ¢ and the efficiency index do not depend on the pa-
rameters of the problem (e.g. coefficients in a or the finite element space V),

v) low computational cost, the computation of  should be significantly less expensive
than the computation of the finite element solution wy,.

Optimally, an estimator should satisfy egs. {7) and (8) with constants C and ¢ as close as
possible to 1. This guarantees two things, first the estimator is a good approximation to
the exact error

n 2~ [lu—un, (10)

and second, the estimator captures well the distribution of the error across the mesh 7y,
which is an essential feature for adaptive mesh refinement algorithms. When not explicitly
specified, we consider in the following that the norm ||-|| in Properties [i] tolii] is the energy
norm of the associated problem.

The literature on a posteriori error estimation is vast and to give an exhaustive list of a
posteriori error estimators would be a colossal task. Our goal here is to give an overview
of the principal families of estimators (keeping in mind that these families do not constitute
a partition of the set of estimators) and some of the seminal papers associated to their
introduction and to the study of Properties [i] to [v)j mostly in the context of linear elliptic
PDEs. We refer the reader to the following works for a broader view on the topic [18, (20,
92, 123, 124} 125|201}, 222, 248, [252].
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Explicit residual estimators

Residual error estimators are based on the residuals associated to the discretization of
a boundary value problem. The residuals are quantities measuring the misfit of the finite
element solution in the weak formulation eq. (1) and are derived from the following quantity

R(v) :==a(u,v) — a(up,v) = F(v) —a(up,v) . (11)
By definition the residual R is a global quantity so a first step is often to localize it to the
level of patches of cells or cells themselves.

Explicit residual estimators are based on norms of the quantity R. They are the first
type of estimators to have been introduced, in [36} (39, 40]. They are among the cheapest
estimators, therefore satisfy Property V], but they can sometimes largely overestimate the
discretization error [90]. Property|i)]has been established in [38] and Property i) in [247] for
an explicit residual estimator adapted to Stokes equations. A similar proof in the case of
Poisson equations can be found in [253]. Explicit residual estimators satisfying Property
in the context of reaction-diffusion and convection-diffusion have been introduced in
[249, [251]. Guaranteed explicit residual estimators satisfying Property [jj with C' = 1 can
be found e.g. in [88].

Flux recovery estimators

Fluxes of the solution u are usually the weighted gradient of v and are sometimes the
primary concern (e.g. for elasticity problems, practitioners are often interested in stresses
and strains, quantities derived from the fluxes of ). However, the normal component of the
fluxes of the approximation wy, is generally discontinuous across the cell boundaries. This
discontinuity is not present in the fluxes of the solution «, which induces an approximation
error.

Based on reconstructions of fluxes from wy, by averaging or smoothing techniques,
they are used to give an estimation of the error on the fluxes of the solution w. These
estimators are obtained by computing the norm of the discrepancy between the fluxes of
the finite element solution u;, and the reconstructed ones. Flux reconstruction estimators
have been introduced for the first time in [36] for one—-dimensional problems and have been
generalized in [262, 263, 264, 265]. In [19] the authors have shown that flux reconstruction
estimators satisfying the superconvergence of the recovered flux [266] satisfy Property [ii)
In [225], Property [i] is shown for the flux reconstruction estimator introduced in [262]. In
addition, it is shown that this estimator does not satisfy Property ii)in general. Property[i)is
established for all the flux recovery methods in [49, [87] and Property|ii)is proved for all the
methods in [86]. Some of the flux recovery estimators are particularly easy to implement
at a low computational cost (they satisfy Property V), see [18, Chapter 4].

Implicit residual estimators/Hierarchical estimators

These estimators are derived from the solutions of local auxiliary boundary value problems.
Since the estimator at the core of this thesis belongs to this family, we give more details in
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the next section.

Functional estimators

Derived from duality principles reformulating the boundary value problem into a minimiza-
tion one, functional estimators have been studied, originally for nonlinear problems, in
220, 221]. Such estimators are not local and consequently can not satisfy Property
or be used in adaptive mesh refinement methods. Moreover, these estimators do not
satisfy Property [v], However, they satisfy Property [ with C' = 1 by construction. These
properties are detailed in [218] 219].

Equilibration estimators

They are based on a reconstruction of discrete fluxes that satisfy a certain equilibration
equation. The particularity of these estimators is that they are designed to be a guar-
anteed upper bound of the error i.e. to satisfy Property []] with C = 1. One of the first
equilibration technique used in a posteriori error estimation comes from the work of [177].
An estimator based on local solves in patches around the vertices of the mesh is derived in
[A11]. In [183] the authors have derived an estimator computed via dual mesh techniques
that satisfies Property [i} Property [i]] and Property [iii)] in some particular sense. Robust
estimators, satisfying Property V)] have been introduced in [126, 257].

Implicit residual and hierarchical error estimators

In contrast to explicit residual a posteriori error estimators, implicit residual estimators are
not directly based on certain norms of quantities coming from the residuals but are derived
from the solutions to auxiliary problems for which the right-hand side data is based on R
from eq. (T1).

Hierarchical estimators are closely related to implicit residual estimators. Like implicit
residual estimators, hierarchical estimators are based on auxiliary problems. However, for
hierarchical estimators these auxiliary problems are solved on particular discrete spaces
defined from two (or more) nested (discrete) spaces, as we will see in this subsection.

Generalities about implicit and hierarchical estimators

The idea at the core of implicit error estimation techniques comes from the fact that the
discrepancy u — uy, is solution to the following boundary value problem

a(u—up,v) = R(v) Vv e H. (12)

For example, in the case of egs. (3) and {4), using an integration by parts formula on each
cell of the mesh, eq. becomes

/QV(u—uh).vv:Z/TrT+Z/EJE, (13)

T€Th EecoT
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where rp and Jg are certain functions depending on f and u;, we do not explicit here for
the sake of simplicity.

Then, implicit residual estimators are based on solutions to finite element discretizations
of eq. (12), eventually localized to patches of cells or to cells levels. For example, such a
problem at the level of a subdomain w (w can be e.g. a patch of cells, a cell...) would read:
seek e, in W,, such that

(¢79) (eanvw) = Rw(vw) va S Ww’ (1 4)

where a,, and R, are localized (and sometimes modified) versions of the bilinear form a
and of the residual R and W, is a local finite element space.

This approach rises several questions such as: in which spaces {W,}., do we seek
the solutions to these local problems ? Do we set these problems at the cell level or at
the level of patches of cells ? What boundary conditions do we choose ? There is no
definitive answers to these questions, different error estimators (with different properties)
arise depending on the decisions we take to tackle these questions.

For example, when the finite element space W, is based on a hierarchy of spaces
w, < W, the resulting estimator is called a hierarchical estimator. Hierarchical estimator
are an important class of estimators in the family of implicit residual estimators.

The first implicit residual estimators are due to Babuska and Rheinboldt [39, [34]. They
introduced the solves of local Dirichlet boundary value problems on patches of cells around
each vertex of the mesh. Implicit residual estimators have been popularized by the work
of Bank and Weiser [46] where three novel estimators are introduced, based on solves of
local Neumann problems at the level of cells themselves. One of the estimators introduced
in [46)] is at the core of this thesis. In [46] is shown that the introduced estimators satisfy
Property [i] and a global version of Property [ii], under a binding assumption called satura-
tion assumption. The saturation assumption is crucial in the analysis of hierarchical error
estimators, especially to prove Property [l

There exist several definitions of the saturation assumption but a common one is the
following: Let V' C V be two nested finite element spaces (e.g. V is defined on a finer
mesh or contains piecewise polynomial functions of higher degree than V) and wy and
uy- be the corresponding finite element solutions to eq. . Then, there exists a constant
0 < B < 1 such that

lv = ugll < Bllu — uv . (15)

In other words, the saturation assumption claims that the use of a finer finite element space
must improve the accuracy of the approximation. This assumption is very difficult to assert
in practice (since it requires the knowledge of the exact solution «) and it has been proved
not to be true even in very simple situations, especially in the preasymptotic regime [119].
This is why, after [46], many works tried to remove the saturation assumption from the
analysis of hierarchical estimators, see e.g. [6, 30, 111], 202, 253].

It is in this vein that our novel study in Chapter[1] proposes a proof of Property [ for the
third estimator introduced in [46], without requiring the saturation assumption. In addition,
a novel implementation in the finite element software FEnICS is proposed in Chapter[2]and
numerical evidences showing that this estimator also satisfy Property V)] are provided.
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Implicit residual estimators satisfying Property [j] and Property [ij] without the use of
the saturation assumption are proposed in [253]. A particular version of the third esti-
mator introduced in [46] is adapted to singularly perturbed reaction—diffusion equations
and convection—diffusion equations in [249] and [25Q] respectively. In these two papers,
the resulting estimators are proved to satisfy Property[j)]and i and Property [v)} This same
estimator has been also adapted to linear elasticity equations in [254] and is proved to
satisfy Property [ and [il]

In the case of linear elasticity problems, [30] proposes a proof of a variant of the satu-
ration assumption and a hierarchical error estimator satisfying Property [j] and Property i)
In addition, their estimator satisfy Property [iv]] with respect to the material parameters.

As it has already been discussed in [46], the choice of boundary conditions for the lo-
cal problems is one of the main parameters influencing the performance of implicit residual
estimators. The works [15,[16] develop a way to choose the local problems boundary con-
ditions following self—equilibration techniques introduced in [168]. The resulting estimator
satisfy a global version of Property [i]] and Property [ under some variant of the saturation
assumption. The question of finding appropriate boundary conditions for the local prob-
lems also led to novel estimators based on solves in patches of cells in [88, 1 11], [195]. In
[111] the boundary conditions inside the patches of cells are derived from equilibration.
In [88] a modification of the estimator derived in [39)] is proposed and is proved to satisfy
Property [ij with C' = 1 as well as Property [i] In [195], an estimator based on the solve
of local problems on stars of elements is introduced and it is shown that this estimator
satisfies Properties [] and [ij)] and shows very good accuracy for certain problems such as
Poisson problems with an interior layer behavior solution or on a domain with a crack.

A modified version of the Bank—Weiser estimator (based on Neumann problems solved
at the level of the cells) that satisfies Property [l Property [i)] and Property [iv]]is introduced
in [5], [6] for singularly perturbed reaction-diffusion equations. More recently, novel a pos-
teriori error estimators based on pairs of local Poisson equations with Neumann boundary
conditions have been introduced for mixed approximations of the Stokes [179] and lin-
ear elasticity equations [169]. These two estimators are proved to satisfy Property [j] and
Property [} In addition, the estimator in [169] satisfies Property [v]] in the incompressible
limit.

In [96] the implicit error estimator originally introduced in [195] is adapted to fractional
equations based on the spectral fractional Laplacian operator. This novel estimator is
proved to satisfy Property [ii)}

The Bank-Weiser estimator

In this work, we are particularly interested in the third estimator introduced in [46]. In the
rest of this dissertation, we refer to this estimator as the Bank-Weiser estimator. For a
cell T, the local contribution of the Bank—\Weiser estimator is defined from a hierarchy of
Lagrange finite element spaces Wy € Wr. The choice of the polynomial degrees of W
and Wr have a strong influence on the properties of the estimator, as well as on what we
are able to prove.



XXi

We summarize the state—of-the—art for the Bank—Weiser estimator with a list of prop-
erties that have been tackled in the literature:

Property|i] has been established in [46], under a variant of the saturation assumption
eq. (19),

a global version of Property|ij)] has been proved in [46].

Properties [i] and fii)] are proved in [253] for a particular version of the Bank-Weiser
estimator. Hereafter we refer to this estimator as Verfiirth’s estimator for clarity. As
we will see, Verfurth’s estimator belongs to a family of Bank—\Weiser estimators for
which Properties [i] and [i] can be established in many cases, without the use of the
saturation assumption. The main ingredient being restrictions on the space W, and
in particular the fact that W, must be of high enough degree.

In [117], Property [ii)|is shown for the Bank—Weiser estimator when wy, is piecewise
linear and on structured triangular meshes, but not in general.

The Bank-Weiser estimator is shown to satisfy Property []]in [202], without the need
of a saturation assumption but only when wuy, is piecewise linear and when 2 is two—
dimensional.

In [10Q], some particular cases of the Bank—Weiser estimator are studied and Property
lif)is proved for rectangular elements and when w, is a piecewise polynomial function
of odd—degree but is proved to be false when wy, is of even—degree or when T, is
made of non-rectangular elements.

In [203], Properties ] and i) are proved for Verfiirth’s estimator when ||-|| is the point-
wise horm.

In [11], numerical evidences show that the Bank—Weiser estimator does not satisfy
Property . Wlth respect to the choice of the spaces Wr and W on rectangular
meshes and when uy, is a piecewise polynomial of arbitrary degree. In other words,
in this context the choice of these spaces has an influence on the performance of
the estimator.

In [249], a proof is given that Verflrth’s estimator satisfy Property [iv]] with respect to
the coefficients of singularly perturbed reaction—diffusion equations.

In [254] is shown that Verflrth’s estimator, adapted to linear elasticity equations,
satisfy Properties i and i)}

In [251], a proof of Property[iv)with respect to the coefficients of stationary convection-
diffusion equations is proposed for Verfurth’s estimator.

In [169], the authors show that an estimator based on the solves of local Poisson
equations, similar to Bank—\Weiser estimator and applied to mixed formulations of
the linear elasticity equation satisfy Property|[iv]in the incompressible limit.
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* In Chapter([T] we extend the proof of Property [i)] for the Bank-Weiser estimator from
[203] to three—dimensional problems.

e In Chapter[2] we provide a novel implementation of the Bank-Weiser estimator in the
FENICS software and give numerical evidences of Property V] In addition, we use
the Bank—Weiser estimator to steer adaptive refinement methods.

* In Chapter [3, we propose a method to adapt the Bank-Weiser estimator to frac-
tional equations based on the spectral fractional Laplacian operator for the L? error
estimation.

Adaptive refinement

In finite element methods the physical domain must be meshed. The mesh plays a crucial
role in the accuracy and computational cost of the method. A natural question is: Can
we generate a mesh such that the method meets the expected accuracy at a minimal
computational cost ?

Answering this question is a difficult task and it is the main purpose of adaptive refine-
ment methods. These methods are based on the following feedback loop:

.-+ — SOLVE — ESTIMATE — MARK — REFINE — - --

This loop is in fact a particular case of fig. [1]in the context of finite element methods. The
finite element method is part of our model and the feedback loop of adaptive refinement
methods improves the mesh of the finite element method and consequently, improves the
model.

Initially a coarse mesh is chosen. The problem is solved (SOLVE) at a very low com-
putational cost on this mesh. An a posteriori error estimator is then used (ESTIMATE) to
quantify the discretization error. It is important that this estimator is local. Then depend-
ing on the values of the local contributions of the estimator, cells, edges or nodes where
the mesh should be refined are selected (MARK). Finally, the zones of the mesh that have
been marked during the previous step are refined in order to generate a new mesh. This
process is iterated until the global value of the a posteriori error estimator reaches a fixed
tolerance, for example. Then, we consider that the mesh is accurate and solve the finite
element problem one last time.

Parameters of the method

Adaptive refinement methods rise many questions such as: How should we chose the
initial mesh ? What estimator should we chose to steer the method ? What stopping
criterion should we use ? How to mark and refine the mesh ? Do adaptive finite element
methods converge and if yes, at which rate ?

The origin of adaptive finite element methods goes back [40] and nowadays most of
the above questions have been tackled. A detailed discussion on adaptive refinement
methods can be found in [204].
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The choice of the a posteriori error estimator steering the adaptive method is crucial for
the performance of the method. In [20] a numerical comparison between various estima-
tors shows that, for Poisson problems, the rate of convergence of the method is usually
not influenced by this choice while the global error (and consequently the accuracy of the
mesh) can be.

Several marking algorithms are available in the literature such as the maximum strategy,
marking the regions with the highest local estimators, proposed in [40], the bulk chasing
Strategy, finding the smallest set of marked elements such that the sum of the local es-
timators is higher than a percentage of the global estimator, introduced in [118] or the
equidistribution strategy, which aims at the equidistribution of the local contributions of the
error across the mesh, in [196).

One of the challenges of the REFINE step is to preserve the regularity of the mesh,
avoiding the creation of cells whose the ratio of the diameter over the diameter of their
inscribed ball becomes too large. In addition, the refining process must preserve the con-
formity of the mesh and avoid the creation of hanging nodes, nodes which are not vertices
of their neighboring cells. As for marking strategies, there are multiple refinement algo-
rithms [191], 209, 224, [253], one of the most common being the newest vertex bisection
introduced in [192].

Convergence

The convergence of adaptive refinement algorithms is an important matter and is studied
since the late 1990s to nowadays. The first convergence result is proved by Dorler in
[118] under the assumption of a sufficiently fine initial mesh and for two—dimensional prob-
lems. An overview of the state—of~the—art on the convergence of adaptive mesh refinement
methods is given in [91], 92}, [140].

Fractional Laplacians

In this section we first give a brief sight on fractional calculus, then we discuss different
numerical methods used to discretize fractional Laplacian operators and finally we present
an overview of the literature on error estimation for finite element discretizations of fractional
equations, especially focusing on a posteriori error estimation.

Let —A be the usual Laplacian operator. For s € (0, 1), we call fractional Laplacian
the fractional power of the Laplacian operator (—A)*. We are particularly interested in the
following fractional equation: let f € L?(2), find u such that

(=AYu=f in Q, (16a)
u =0 on 0f. (16b)

For the moment, (—A)# is just a notation, we need to precise what we mean by this. The
fractional Laplacian operator can be defined in multiple ways. In this work we will focus
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on the fractional operator called spectral fractional Laplacian and defined from the spec-
trum of the Laplacian operator on Q2 associated to homogeneous zero Dirichlet boundary
conditions.

Fractional calculus

The first written appearance of a fractional order derivative comes from a letter Guillaume
de I'Hopital wrote to Gottfried Leibniz in 1695 asking what would be the derivative of order
1/2 of a function. In his answer, Leibniz predicted that this notion would lead to a paradox
but many useful consequences would be drawn from this paradox. Leibniz was twice right.

Unlike the usual integer order derivative, there is no unique definition of the fractional
derivative. Many definitions coexist among others we can cite the Riemann-Liouville deriva-
tive [159], the Caputo derivative [82] and the Grinwald-Letnikov derivative [229]. None of
these definitions can take over the others, each one of them having its own advantages
and defects. For example, the Grinwald-Letnikov derivative is defined for a very narrow
class of functions while the Riemann—Liouville derivative of a constant function is not zero
[210Q].

Fractional calculus is not only interesting as a mathematical concept but also from
an application perspective, one of its main interests being its ability to model non-local
phenomena. During the last 50 years, the interest in fractional calculus has grown at an
exponential rate [242]. Nowadays, fractional calculus has applications in various fields
[241] such as e.g. quantum mechanics [178], economics [237], biology [223|, geology
[82], continuum mechanics [240], image processing [27].

In this work we focus on a particular fractional operator: the fractional Laplacian op-
erator. While the standard non—fractional Lapalcian operator is linked to brownian motion
and diffusion, the fractional Laplacian operator is related to Lévy stochastic processes with
arbitrary long jumps and anomalous diffusion [65], 212].

Fractional Laplacian definitions and discretizations

When defined on the whole space 2 = R", many definitions of the fractional Laplacian
are equivalent [175]. This is no longer the case when the domain € is bounded. In this
case the way the operator is defined has a significant influence on the solution to the
fractional Laplacian equation [115]. Moreover, these different operators are infinitesimal
generators of different stochastic processes with different physical interpretations [181].
Two definitions of the fractional Laplacian are particularly studied in the context of the
numerical analysis of fractional partial differential equations: the integral fractional Laplacian
operator also known as Riesz fractional Laplacian operator [7,[12},167],[181] and the spectral
fractional Laplacian operator [43, 160, [120, [181].

There are multiple ways to discretize egs. and when (—A)# is defined as
either the integral or spectral fractional Laplacian operator. Each one of these methods
has pros and cons and most of the time the choice of the method will depend on what we
want to achieve.
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Walk-on-spheres method (integral and spectral Laplacians)

Originally proposed in [199], it is a Monte—Carlo method used to simulate paths of s—stable
stochastic processes. Since this is a Monte—Carlo method, the main drawback is the
slow (logarithmic) convergence rate. However, the main advantages of this method are its
very good (linear) complexity scaling as the dimension increases and its “embarrassingly
parallel” nature [94].

Grinwald finite differences method (integral Laplacian)

A finite differences based method is proposed in [100] for one—dimensional problems and
modified in [188] for two—dimensional problems. This method shares the same drawbacks
as usual finite differences methods and is hardly applicable to domains with complicated
boundaries.

Direct (adaptive) finite element method (integral Laplacian)

Using the integral expression of the operator it is possible to derive a weak formulation of
egs. and suitable for finite element discretization. This will result in a dense linear
system where the matrix entries are based on singular integrals evaluations. A combination
of a sparse approximation of the dense matrix based on the panel clustering method and
a custom quadrature rule used to compute the singular integrals is proposed in [12, [13],
leading to a method with optimal convergence rate and quasi—optimal complexity.

Dirichlet-to-Neumann map method (integral and spectral Laplacians)

This method allows to reformulate the fractional problem in € into a non—fractional one with
mixed boundary conditions on an extended (semi-infinite cylindrical) domain Q x R. Such
extension results are obtained e.g. in [78, [239]. The Dirichlet—-to—-Neumann map method
is used e.qg. in [43, 165 196 [206], where a priori and a posteriori error analysis is proposed.
The main drawback of such approach is the fact that the discretization requires to work
in an extended space with an additional dimension, which makes it difficult to apply on
three—dimensional problems.

Spectral element method (spectral Laplacian)

This method consists in a direct approximation of the spectrum of the standard Laplacian
using a spectral element method. One of the main advantages of this method is that it
is applicable no matter the dimension of the problem. However, it requires the use of
quadrilateral meshes which are not always suited for adaptive refinement. Such a method
is used e.g. in [236].
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Eigenproblems solving method (spectral Laplacian)

This method consists in the computation of the full spectrum of the discrete standard
Laplacian (discretized using a finite element method). This method takes advantage of
the long existing literature on eigenproblems solving numerical methods [227]. A scalable
algorithm is proposed in [85] allowing to solve the eigenvalue problems in a parallel manner.
These methods are particularly advantageous when a large number of fractional equations,
based on the same spectrum, have to be solved.

(Best) Uniform rational approximation method (spectral Laplacian)

This method is based on the approximation of the scalar function A — A~* by rational
functions. They allow to reformulate the fractional problem in a family of non—fractional
parametric problems that can be solved independently. The main advantage of such
method is the reduced number of parametric problems to solve, however the compu-
tation of the rational function coefficients is not always a simple task. Best uniform rational
approximations are studied in [154] [155] 156, 161]. An efficient method to compute co-
efficients of rational functions, based on barycentric rational interpolation is proposed in
[162].

Semi-groups method (integral and spectral Laplacians)

This method is based on the reformulation of the fractional problem into a heat equation
which can then be solved using standard techniques such as Euler schemes combined
with finite element methods. Like the rational approximation method, it reduces the frac-
tional problem to a family of non—fractional parametric problems. However, in this case
the parametric problems cannot be solved independently but must be solved sequentially.
Such method is proposed in [102, [103].

Reduced order basis method (spectral Laplacian)

As for the rational approximation method, this method proposed in [68, [104], (105, [113] is
based on the solves of independent non—fractional parametric problems in order to ap-
proximate the solution to spectral fractional Laplacian problems. The particularity of this
method is to use techniques of model order reduction to optimize the number of para-
metric problems to solve. This method is particularly attractive when multiple fractional
Laplacian equations based on the same spectrum have to be solved.

Dunford-Taylor integral method (integral and spectral Laplacians)

This is the method we are particularly interested in in this work. It is based on the discretiza-
tions of integral representations of the fractional Laplacian operators using quadrature
rules. Originally developed for spectral fractional elliptic equations in [60], it has since been
applied to parabolic equations in [63], space-time fractional parabolic equations in [64],
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fractional powers of regularly accretive operators in [66] and the integral fractional Lapla-
cian in [67]. This method can be seen as a particular rational approximation method and
consists in the reformulation of the fractional problem into a family of non—fractional para-
metric problems that can be solved independently. We give more details on this method
in Chapters[3and

It is interesting to notice that, for the spectral fractional Laplacian operator, the Dirichlet—
to-Neumann map method, the (best) uniform rational approximation method and the
Dunford-Taylor method can all be viewed as rational approximation methods. The study
[161] proposes a unified view on these three methods as particular cases of rational ap-
proximation methods as well as numerical comparison of them.

Most of the methods mentioned above are semi—discretization methods and need to be
completed to obtain full discretizations. In this work, we focus on a Dunford—Taylor integral
method completed by a finite element method. We focus particularly on the discretization
error induced by the finite element method in this context.

Error estimation for the fractional Laplacian discretized with finite elements

In this section we give an overview of the literature on error estimation of finite element
discretization of fractional equations based on the Laplacian operator, with an emphasis
on a posteriori error estimation.

A priori error estimation

The first results on the a priori error estimation of fractional equations finite element dis-
cretization date back some fifteen years in [127, (128, [136]. These works focused on
fractional advection—diffusion equations. A priori error estimation of the discretization of
the integral fractional Laplacian goes back to the a priori estimation results of finite element
discretizations of peridynamics equations, see e.g. the review paper [110].

A priori error estimation results on the integral fractional Laplacian, seen as a particular
case of some non-local operator are proposed in [109]. The regularity of the solution to
fractional equations based on the integral Laplacian operator is studied in [7] and optimal
convergence rates for the (direct) linear finite element approximation, but only for some val-
ues of the fractional power, are derived. The integral Laplacian is discretized using a com-
bination of the Dirichlet-to—Neumann map method (see [7/8]) and a finite element method
in [206] and an a priori error estimation study is proposed. The exponential convergence
of the semi—discretization Dirichlet-to—-Neumann map method as well as the convergence
of the finite element discretization for both quasi—uniform and graded meshes are derived.

At the same time, a priori error estimation results were established in [60] for the spectral
fractional Laplacian, discretized using the combination of a Dunford—Taylor method and a
finite element method. The exponential convergence rate of the Dunford—Taylor method
is proved (in the L? norm) and the quasi—optimal convergence rate of the finite element
method (in the L? norm as well) under elliptic regularity assumptions (due to the use of
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the Aubin—-Nitsche argument). These results were further extended to parabolic equations
involving a fractional operator in space [63|, space-time fractional parabolic equations [64]
(extension of the semi—discretization Dunford-Taylor method convergence result), steady—
state equations but involving a larger class of operators [66] (and, especially, extending the
convergence result to fractional norms) and to the integral Laplacian [67].

The a priori error estimation result from [7] is improved in [12,[13] and holds for any value
of the fractional power in (0, 1), as long as the solution has sufficient interior regularity.

The convergence of spectral fractional Laplacian equations discretizations based on
the semigroup method is established in [102] [103], for finite elements of arbitrary order
and for various homogeneous boundary conditions (Dirichlet, Neumann and Robin).

Using lifting methods, representations of the spectral Laplacian operator associated to
non—homogeneous boundary conditions are derived in [29] and a priori error estimation
results for the Dirichlet—to—-Neumann map method combined to a finite element discretiza-
tion are obtained for problems with non-homogeneous Dirichlet and non—-homogeneous
Neumann boundary conditions respectively.

The exponential convergence of reduced basis methods applied to the spectral frac-
tional Laplacian is proved in [68] and [104}, [105].

A posteriori error estimation

The first a posteriori error estimator applied to fractional partial differential equations is
proposed in [205]. This estimator belongs to the family of explicit residual estimators and
is derived for a larger class of integro—differential equations, the integral fractional Lapalcian
is part of. The error estimation method is based on bounds of the dual fractional norm by
LP norms, allowing to derive an explicit residual estimator based on these norms. Property
[llis proved for this estimator and one—-dimensional numerical results with efficiency indices
are provided.

The work [96] proposes an a posteriori error estimator for the spectral fractional Lapla-
cian operator. In this work, the fractional operator is discretized using a combination of a
Dirichlet=to—-Neumann map method (the Caffarelli-Sylvestre extension method [78]) and a
finite element method.

Authors of [96] first claim that explicit residual error estimators cannot be derived in this
framework, due to the lack of integration by parts formula (see Section 4.1). Thus, they
derive an implicit residual estimator based on local problems on stars of cells (a star associ-
ated to a vertex is the set of all cells sharing this vertex), adapting the estimator introduced
in [195] to the fractional framework. In particular, due to the Dirichlet—-to—Neumann map
extending the domain with an additional dimension, the local problems are in fact solved
on cylindrical stars. One of the main difficulties in this approach is the anisotropy of the
mesh in the extended direction. This difficulty is avoided using a geometric condition on
the meshes, forcing the cells size in the physical domain direction and size in the extended
direction to be of comparable lengths.

Properties [i] and [i] are proved for this estimator. However, Property [i] stands under
the assumption of an unproved conjecture (see Conjecture 5.28 and Remark 5.39). The
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numerical results provided in the study suggest that this conjecture is in fact true but, to
our knowledge, its mathematical justification remains an open question.

It is important to notice that the resulting a posteriori error estimator can only handle
the error induced by the finite element discretization and not the error coming from the
truncation of the domain of the Caffarelli-Sylvestre extension. In fact, the error due to
this truncation decreases exponentially and thus, does not constitutes a bottleneck for the
method. However, the only upper bound on this truncation error derived in [96] depends
on a negative fractional Sobolev norm of the data of the problem and is thus not straight-
forwardly computable. Optimally, an a posteriori error estimator for the truncation error
would be required in order to quantify and balance the two sources of error.

Finally, an adaptive refinement method, based on this estimator, the bulk chasing mark-
ing strategy and the newest vertex bisection refinement method is designed and numerical
results show its quasi—optimal convergence rate.

An explicit residual a posteriori error estimator is proposed in [12],[13]. This estimator is
applied to the integral fractional Laplacian and is based on an estimator used in boundary
element methods from [129), [130] which is itself derived from the residual estimator intro-
duced in [39)]. Property|jand a global version of Property i) are established in [129] in the
two—dimensional case and in [130] for the three—dimensional case. In addition, Property
V] with respect to the finite element/boundary element polynomial degree is proved.

In [12], [13], the integral fractional Laplacian is discretized using a direct finite element
method, leading to a dense stiffness matrix. This stiffness matrix is then approximated by
sparse matrices via a cluster method borrowed from the boundary element methods liter-
ature. An adaptive refinement method is proposed, based on the residual estimator. One
and two—dimensional numerical results are provided showing optimal rates of convergence

A gradient recovery error estimation method is proposed in [261] for one—dimensional
fractional differential equations based on the Riesz fractional derivative of order in (1,2)
(which can be then considered as a fractional Laplacian operator). The discretization of this
operator by a direct finite element method leads to a dense stiffness matrix which is then
approximated by sparse H—matrices [151]. The error induced by the approximation of the
dense matrix by sparse H—matrices is bounded by a computable quantity that decreases
exponentially fast with respect to the approximation parameter.

The a posteriori error estimator is used in an adaptive refinement algorithm based on the
bulk chasing marking strategy and a bisection refinement strategy (only one—dimensional
problems are considered). Numerical experiments provide evidences of the efficiency of
the method on one—dimensional problems as well as the fact that the error estimator satisfy
Property V]l It is interesting to notice that the errors of the finite element discretization and
of the H—matrices method are both controlled and consequently can be balanced.

Fractional diffusion in poro—elasticity

The “real-world” application of this thesis is not concerned with fractional Laplacian equa-
tions but with fractional equations based on Caputo’s time derivative applied to the anoma-
lous diffusion that occurs in human meniscal tissues.
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Caputo’s fractional derivative

As we mentioned earlier, the fractional derivative can be defined in many different (and non—
equivalent) ways. The Caputo’s fractional derivative has been introduced in [82] where it
is used in dissipative elastodynamics modeling. This derivative has some advantages over
other definitions which make it particularly well-suited to fractional differential equations.

The main advantage is the fact that the initial conditions of fractional differential equa-
tions based on the Caputo’s derivative are conditions on the integer—order derivatives of
the solution(s) [210]. This is particularly useful since it eases the physical interpretation of
the initial conditions. Another advantage of Caputo’s derivative is that the derivative of a
constant function is zero, which is not the case e.g. for the Riemann-Liouville fractional
derivative [210]. We can also mention the fact that, unlike the integer—order derivatives,
fractional derivatives are not commutative in general. In other words, if D is a fractional
derivative of order o € R, thenif o # 8 € R, D*DPf + DBD*f # DB f. However,
the conditions of commutativity are less restrictive for the Caputo’s derivative compared
to e.g. the Riemann-Liouville derivative [210].

Caputo’s derivative found many applications in physics and engineering such as elas-
todynamics [82], fractional relaxation—oscillation and fractional diffusion equations [185],
rheology [186] or hydrogeology [165] and more generally in the study of porous media
|48, 184].

Fractional poro—elasticity of the meniscus

Among the applications of the Caputo’s derivative, we are particularly interested in anoma-
lous diffusion in poro—elastic material and more precisely, in human meniscal tissue. The
classical model for diffusion in porous media is given by Darcy’s law, stating the propor-
tionality between the flux and the pressure gradient [106, [135]. However, the classical
theory fails to render the behavior of media presenting a spatially and temporally vary-
ing permeability. This has for example been highlighted with drained sand layers in [165],
where a model of diffusion integrating memory based on Caputo’s fractional derivative [83]
is validated experimentally. Fractional operators, thanks to their inherent non—locality, are
well-suited to model memory effects since memory is equivalent to non-locality in time.

This anomalous behavior is physically interpreted as a consequence of the micro—
structural rearrangement of the pores during the water flow process, some of the pores
being closed, trapping pockets of water and reducing the flow rate while some others
remaining open increasing the flow rate [48], [165].

The (human) meniscus is an example of porous material where this type of behavior
is suspected to happen. Meniscal tissues are composed of a porous solid matrix filled
with fluid. The material these tissues are composed of is complex, with a non-uniform
and anisotropic porosity related to graded material properties [187]. The behavior of these
tissues is still not well understood [138] which prevents us from conceiving implants suc-
cessfully mimicking the properties of the meniscus [245].

In Chapter 5], we propose to use the fractional diffusion equation from [83] along with
(linear) poro—elasticity equations in order to model the behavior of meniscal tissue during
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uniaxial confined compression tests. In this particular case, the unidimensional system of
equations uncouple and is reduced to time—dependent Poisson equations with analytical
solutions [48], even in the fractional case.

We then validate and calibrate the parameters of our model by fitting experimental
results of creep and stress—relaxation tests.

Contributions

In Chapter [1] we provide a novel analysis of Property [ for the Bank—Weiser estimator
applied to three—dimensional problems.

The Chapter[2)is concerned with a novel implementation of Bank-Weiser type estima-
tors in the FENICS finite element software. In addition we propose several numerical results
from the application of the estimator to diverse Poisson problems, adaptive refinement al-
gorithms, goal-oriented error estimation as well as a linear elasticity problem. We also
provide a time—-scale study showing the optimal scaling of our method when implemented
using parallel computing.

We adapt the Bank-Weiser method to the estimation of the L? error induced by the
finite element discretization of the spectral fractional Laplacian in Chapter [3l We propose
a method to compute this estimator and to integrate it into an adaptive refinement al-
gorithm for this particular fractional problem. We give evidences of the efficiency of this
novel method with several numerical results and especially, provide results from a three—
dimensional fractional problem. In addition we provide an implementation of this method
in the FENICSx finite element software.

A novel study of the convergence of a rational approximation method is proposed in
Chapter [4] From this novel study we deduce a new result, extending an existing result
from the literature about the convergence of a particular rational approximation method for
the solution to spectral fractional Laplacian equations.

Finally, in Chapter[5we propose the experimental validation of a fractional poro—elastic
model to describe the anomalous diffusion in human meniscal tissues. In addition, calibrate
the fractional parameter from this model using a comparison of the model predictions and
unidimensional confined compression tests.
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Chapter 1

Reliability of the Bank-Weiser
estimator in dimension three

This chapter is based on the following published research article:

Removing the saturation assumption in Bank-Weiser error estimator analysis in di-
mension three,

R. B., Franz Chouly, Jack S. Hale, Alexei Lozinski,

Applied Mathematics Letters, Volume 107, 2020, 106429, ISSN 0893-9659,
https://doi.org/10.1016/j.am1.2020.106429

Contribution: conceptualization, formal analysis, investigation, methodology, software,
validation, visualization, writing — original draft, writing — review & editing.

Abstract

We provide a new argument proving the reliability of the Bank—\Weiser estimator for La-
grange piecewise linear finite elements in both dimension two and three. The extension to
dimension three constitutes the main novelty of our study. In addition, we present a numerical
comparison of the Bank—-Weiser and residual estimators for a three—dimensional test case.

Introduction

The Bank-Weiser error estimator was introduced in [46]. This seminal work contains a
proof that the Bank—Weiser estimator is both efficient and reliable —i.e. it is both a lower
and an upper bound of the error— without any restriction on the dimension or on the fi-
nite elements order. However, the argument for the upper bound was based on a fragile
saturation assumption known to be tricky to assert in practice [119]. The saturation as-
sumption was successfully removed from the upper bound proof in [202] in the case of
linear finite elements in dimension two, introducing the additional term referred to as the
"data oscillation”. An extension of this proof to dimension three does not seem immediate
although it is mentioned in the text. In particular, the proof uses the fact that Verfurth’s

1
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bubble functions [253] on edges are quadratic polynomial in dimension two, which is no
longer the case in dimension three. In this work, we propose a new proof that is valid both
in dimensions two and three. In addition, we provide a short numerical study comparing
Bank—Weiser and residual error estimators on a three dimensional test case.

1.1 Model problem and finite element discretization

Let Q ¢ R%, d = 2 or 3, be a bounded domain with polygonal or polyhedral boundary
0€). For any subdomain w C 2 (resp. (d — 1)-dimensional set w), we denote by |w| the
d—dimensional (resp. (d — 1)—dimensional) measure of w. On the domain © we consider
the usual functions spaces L?(£2) and H{ (). The respective usual norms will be denoted
|l for L?(w), w € Q and ||V-|| for HE (). For the sake of simplicity, we consider the
Poisson equation with homogeneous Dirichlet boundary condition

—Au=finQ, wu=0o0no. (1.1)

with given f € L?(2). The weak form of this problem reads: find w in HZ () such that for

any v in H} ()
/QVU'V’U—/Qf’U. (1.2)

We discretize this problem using Lagrange piecewise linear continuous finite elements. To
do so, we introduce a conformal triangulation 7 on €2 composed of triangles (resp. tetra-
hedrons) for d = 2 (resp. d = 3) hereafter called cells. We assume that the triangulation
T is regular in the sense of hp/pr < ~, VI € T, where hyp is the diameter of a cell T', pr
the diameter of its inscribed ball, and ~ is positive constant fixed once and for all. For a
cell T' € T and a non-negative integer p, we denote P,(1") the set of polynomial functions
of degree less than p on T and introduce the spaces of discontinuous and continuous
Lagrange finite elements of order p:

VPdG = Ly, € Py(T), VT €T, v, =0 on dQ}, VP :=VPIC N HI(Q).

The finite element approximation to problem eq. is: find u; € V! such that

/Vul-Vm = / fu1, Yo, € V5 (1.9)
Q Q

We now introduce some more notations needed in what follows. We call facets the
edges of cellsin T if d = 2 and the faces of cells in 7 if d = 3. The notion of triangulation
edges will also be important in dimension d = 3. We recall that a facet T' € T is a triangle
in this case and its boundary consists of 3 sides, called edges. The set of all interior facets
of T is denoted by F and the set of all the internal vertices of 7 is denoted by N. Finally,
we use the letter C for various constants that depend only on the triangulation regularity
parameter « and are allowed to change from one occurrence to another.
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1.2 A posteriori error estimators

Let 7 : V24¢ 5 V914G pe the cell by cell Lagrange interpolation operator. The first
step in the definition of the Bank—\Weiser estimator is to introduce the finite element space
VP = ker(Z) = {vo € V29¢, I(vy) = 0} . By definition, the functions of V"™ are piece-
wise quadratic polynomials on the triangulation that vanish at the vertices. Let ey, in VP¥
be the solution to

Z /Tvebw “Vupy = Z /vabw + Z /FJF {Ubw} Vopy € waa (1.4)

TeT TeT FeF

where Jp = [[f;mﬂ is the jump of the normal derivative of u; on F and {-} denotes the
n

average across edges. More precisely, the jumpis defined as Jr = (Vui |7, ,—Vuil|r,,)n
where Tr1,TF2 are the triangulation cells sharing the facet F' and n is the unit normal
directed from T to Tr2. The Bank-Weiser estimator is then defined as

Mow” 1= Y _ || Vepw|[F- (1.5)
TeT

We also recall the explicit residual error estimator

hes” = Y Dl fIF+ Y hell el (1.6)

TeT FeF

and the data oscillation indicator

osc®(f) = > _ hzllf = fri7 (1.7)

TeT

with A = diam T and fr = ﬁ Jr 1.

The following theorem establishes the equivalence of the two error estimators egs.
and modulo a data oscillation term. This proves the equivalence of the Bank—\Weiser
estimator to the true error ||Vu — Vuq||q since such an equivalence is well known to hold
for the residual estimator [253].

Theorem 1. Let uy be the solution of eq. for a regular triangulation T. Let nyy, and
es D€ the Bank-Weiser and explicit residual estimators defined respectively in eq.
and eq. . Let osc(f) be the oscillation of f defined in eq. . Then, there exists two
constants ¢ and C only depending on the triangulation regularity such that

Thow < CTres (1 88)

Mres < C(Mow + 0sc(f)). (1.8b)
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Proof. The arguments to prove eq. can be found in [253], applied to a slightly differ-
ent version of the Bank—Weiser estimator. These arguments consist in putting vy = epw
in eq. and noting (by scaling and equivalence of norms) that ||vny |7 < Chr||Vope|| T
and ||y ||r < CVAT||Vouy||7 for any vy, € VPV, T € T and F a facet of T.

The proof of eq. essentially proceeds in five steps.

Step 1) Subtracting eq. from eq. and integrating by parts we get

/fm-i—Z/JFvl /Vu—m Vo =0, Yo eVe (1.9)
TeET

Fer
Taking vo in V2 (continuous) and denoting v, = Z(v9), v1 belongs to V1 and can be used
in eq. (1.9). In addition, vs — Z(v2) belongs to V"V and can be used in eq. to get, for
all vy € V2,

/Vebw' vy — Z(v2))

Z/fw— (v2) +Z/JFU2— (v2))

TeT FeF
= Z/fv2+Z/JFUQ, (1.10)
TeT FeF

by linearity of the right hand side and eq. (1.9).
Step 2) For any vertex = € X, one can construct v, € V2 such that ¢, (z) = 1, ¥, = 0
outside of the patch w,, of triangulation cells sharing  and

/%:0 VF € F. (1.11)
F

In dimension d = 3, we can simply take v, = ¢, the shape function of V2 associated
to « and thus vanishing on the edges midpoints. Indeed, denoting by Mg the set of
edge midpoints on the facet I (a triangle in this case) we recall that the quadrature rule
[rv=3|F| > mem, v(m) is exact on polynomials of degree lower than two. In dimension
d =2, we take ¢, = @, — izme/m ©m, Where ¢, is again the shape function of 12
associated to z, M, is the set of midpoints of the edges sharing x, and ¢,, are the shape
functions of V2 associated to these midpoints. Equation (1.11) is checked for this 1, by
applying Simpson’s quadrature rule on the edges.

Using eq. and the fact that Jr is constant over any facet F, eq. with
vg = 1, IS reduced to

/szebw.V(%—I(%))—/ fwx—ZfT/wx+Z/f Fr)

TEwWy TEwg

Reordering the terms and using both Cauchy-Schwarz and triangle inequalities give

ZfT/Twm /f fr)y

TEUJI

(1.12)

< Vel IV (e = Z(Wa)llw, +

TEwy
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Using e.g. quadrature rules for any T' in w, we can compute fT Yy = —é\T| in dimension
d=2and [, = —2—10|T| in dimension d = 3. Applying the Cauchy-Schwarz inequality
twice we also get

2.

TeEwy

1/2
. (z Hffﬂl%) sl

TeEwy

[ = saye

Moreover, continuity of id — Z, Poincaré’s inequality as well as a scaling argument give

C
”V(% _I(wx))uwx < oV lwe| and Yz lw, < CV|wzl,

T

where h, is the size of the longest edge in w,.. Then, we finally get

> Tl fr

TeEwy

1/2
1
<c h||VebWsz+<Z|f—fT||%> Vil (.19

TEwy

Step 3) Now, forany facet F' € Fandanycell T € T suchthat F' c 9T, one can construct
Yrr € VPV such that g7 = 1 at all the edge midpoints on F (one midpoint if d = 2 and
3 midpoints if d = 3), ¥ pr = 0 outside of T" and

/¢F,T=0 VF' € F, F' +F. (1.14)
Fl

In dimension d = 2, we take g1 as the usual bubble function associated to the facet
F setting v = 0 on all the facets of T" other than F. In dimension d = 3, we put
Yrr(m) = —% if m is the midpoint of any edge of 1" that does not belong to F. Using
once again the quadrature rule on triangles [, Yrr = %|F| > mem,, Yrr(m), we can
check that this construction does the job.

Now we consider any facet F' € F, denote T, TF2 the two adjacent triangulation
cells and take vy = YF 1y, — YETR, IN €Q. . The integral of the average {vy } then

vanishes on all the facets and we get

Ve - Vg, —/ Ve - VUrTE, =/ JYFrT, —/ fYrre,. (1.19)
Tro Tr1 T2

Tr1

Introducing the average of f on cells and reordering the terms give

JTes VETr, — [Tps VETp, = Veny - VYFTR, — Veby - VYR T,
Tr1 TF,2 Tr1 Tr,2

+ /Tp,1 (fres = F) YEre, = /Tm (f1ps = f) VP10

Using quadrature rules in dimensions d = 2 and d = 3 give respectively [ vYrr = §|Ty
and [ Yrr = 1—30|T|. In addition, by Poincaré’s inequality and scaling arguments we have

C
IVrr|r < yV 7|, and |[[¢Yprllr < CVIT] (1.16)
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By the precedent quadrature computations, eg. (1.16) and Cauchy-Schwarz inequality we
get

1/2
1
| Tralfre, — | Trolfre,| < C EIIV%WHW + ( - fTQT) Viwr| (1.17)

Tewr

with wp = Tr1 U Tr2. Now, if we denote by F, the set of all facets having the vertex z

in common and if we consider the finite dimensional vectorial space E, := {(ar)rew, } =
R#“=, the following applications ni(a) := Y ;¢ lar|andna(a) := | re,,. ar|+X per, laTm, —
ary,|, define norms on E,. Then, using norm equivalence in finite dimension as well as

the regularity of the triangulation, we prove the existence of a constant C' only depending

on triangulation regularity such that

> ITlfrl < C < > IT|fr

TEwy TEwy

Step 4) We can now bound the right-hand side of eq. (1.18) using eq. (1.13) and eq. (1.17)
to get, for any node = € X,

+ > |1 Tealfrp, — 1Tz
FeF,

me\) . (1.18)

1/2
> [Tlifrl<C }LlHVebw||m+<ZHf—fTu%> Vsl (1.19)

TEwy TEwy

Taking the square of eq. (1.19) and using triangulation regularity, the fact that f7 is constant
over the cells and convexity of the square yields

> hilfrlz<C (Webwniz + ) hplf - fﬂ\%) :

TEwg TeEw,

Summing this over all the vertices and applying once more the triangle inequality as well
as triangulation regularity leads to

> hEIfIF < C (mow® + 05 (f)) - (1.20)
TeT

Step 5) It remains to bound the edge term of the residual estimator eq. (1.6). To this end,
we use the functions Y g1 € VDY again. For any facet F € F, take vy, = VETp, +VF Ty,

in eq. to get
JF/ Ubw / Vepy - Vopy / S Vbw| -
F T T

Then, by the same quadrature rules as before we have for T' = Tr1, TF2, fF YET = %\F\
in dimension d = 2 and [}, ¢rr = |F| in dimension d = 3. In addition, Cauchy-Schwarz

inequality as well as eq. (1.16) give

1
P11 <€ (Vetmllur + 1llr ) Vior

<y

Tewr

>

Tewr
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so that
hellTelE < CUIVerllor + hEFIE,)- (1.21)
Summing this over all the facets and combining with eq. (1.20) we get eq. (1.8b). O

1.3 Numerical results

We consider a three—dimensional domain 2 with a L—shaped polyhedral boundary, 2 :=
(—0.5,0.5)3\ ([0, —0.5] x [0, —0.5] x [~0.5,0.5]). We solve eq. (1.1) with f chosen in order
to get the following analytical solution defined on €2 and given, in cylindrical coordinates,
by u(r,0,z) = ¢(r,0,2)r*3sin (2) , where ¢ is a polynomial cut-off function defined (in
Cartesian coordinates) by ¢(z,y,2) = 0.2576(0.25 — 22)2(0.25 — 32)2(0.25 — 22)2. This
solution belongs to H®/3-¢(Q) for any e > 0 and its gradient admits a singularity along the
re—entrant edge [148].

We consider here two adaptive refinement algorithms respectively driven by the Bank—
Weiser estimator and the residual estimator. Each of these algorithms works as follow:

1. The primal problem eq. is discretized using piecewise linear Lagrange finite
elements.

2. The error is measured using implementations of the estimator (either Bank—\Weiser
or residual) in the FENICS Project [23].

3. The triangulation is marked according to the local contributions of the estimator and
using the Dorfler marking strategy. The marking strategy consists in finding the small-
est subset M in T such that, > ¢ v 13 = 6?1 where n = 1y Of s and (n7)rer
are the local contributions of the estimator, for a given parameter § € (0,1). Here,
we chose the value 8 = 0.5 [93] in both cases.

4. Finally, we refine the triangulation using the Plaza—Carey algorithm present in FEn-
iCS [209]. Details on the implementations can be found in |74} [75, [77].

On the left hand side of fig. we can see the final triangulation obtained with the
Bank—Weiser driven algorithm after four refinement steps. We notice that, as expected,
strong refinement occurs near the re—entrant corner edge around the origin. The choice
of the a posteriori error estimator does not have a strong influence on the mesh hierarchy.

On the right of fig. [1.1], the convergence curves of the estimator and the corresponding
exact error are plotted for both refinement algorithms. The approximated rates of conver-
gence (estimated with least squares) are, in the case of the Bank—Weiser driven adaptive
algorithm, —0.33 for the exact error and —0.31 for the Bank-Weiser estimator and, in the
case of the residual driven adaptive algorithm, —0.34 for the exact error and —0.33 for the
residual estimator.

In the case of the Bank—Weiser driven adaptive algorithm, we have also computed the
residual estimator on the same mesh hierarchy in order to compare estimators efficiencies
n/|IV(uw — up)|| for n = muy Or mes. Estimators efficiencies on the last refinement step are
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—h— Now == Nres
— = Exact error (bw) — = Exact error (res)

Number of dof

Figure 1.1: On the left: The triangulation after four refinement steps of the adaptive algo-
rithm driven by the Bank—\Weiser estimator. On the right: The convergence curves for the
estimator and exact error for each adaptive refinement algorithm.

respectively 1.9 for the Bank—\Weiser estimator and 5.9 for the residual estimator. We can
notice that the Bank—Weiser estimator is much sharper than the residual estimator but it
is not as sharp as for two—dimensional problems (see e.g. [46]). The fact that the Bank—
Weiser estimator is not asymptotically exact for non—structured meshes is known and was

proved in [117].



Chapter 2

Implementation of the Bank-Weiser
estimator in FEniCSx

This chapter is based on the following submitted research article:

Hierarchical a posteriori error estimation of Bank-Weiser type in the FEniCS Project,
R. B., Jack S. Hale, Alexei Lozinski, Stéphane P. A. Bordas, Franz Chouly,

Submitted to Computers & Mathematics with Applications on November 16 2021,
Pre—print version on https://arxiv.org/abs/2102.04360

Contribution: conceptualization, formal analysis, investigation, methodology, software,
validation, visualization, writing — original draft, writing — review & editing.

Abstract

In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp. 283-301] a new a
posteriori estimator was introduced. This estimator requires the solution of a local Neumann
problem on every cell of the finite element mesh. Despite the promise of Bank—Weiser type
estimators, namely locality, computational efficiency, and asymptotic sharpness, they have seen
little use in practical computational problems. The focus of this contribution is to describe a
novel implementation of hierarchical estimators of the Bank—Weiser type in a modern high-
level finite element software with automatic code generation capabilities. We show how to use
the estimator to drive (goal-oriented) adaptive mesh refinement for diverse Poisson problems
and for mixed approximations of the nearly-incompressible elasticity problems. We provide
comparisons with various other used estimators. Two open source implementations in the
DOLFIN and DOLFINx solvers of the FEnICS Project are provided as supplementary material.

2.1 Introduction

A posteriori error estimation [18] is the de facto tool for assessing the discretization error of
finite element method (FEM) simulations, and iteratively reducing that error using adaptive
mesh refinement strategies [204].

This paper is concerned with the description and justification of an implementation of
an error estimator introduced in the seminal paper of Bank and Weiser [46, Section 6]. In

9
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that paper an error estimate was derived involving the solution of local Neumann problems
on a special finite element built on nested or hierarchical spaces. Despite its excellent
performance and low computational cost, this estimator has seen relatively sparse use in
practical computational problems. The overarching goal of this contribution is to provide
access to an efficient, generic and extensible implementation of Bank—\Weiser type estima-
tors in a modern and widely used finite element software, specifically, the FEnICS Project
[23].

2.1.1 Background

The literature on a posteriori error estimation and adaptive finite element methods is vast,
so we focus on articles on practical software implementations of adaptive finite element
methods and comparative performance studies.

The T-IFISS [55] software package, based on the existing IFISS [121] package, is a
finite element software written in MATLAB/Octave with a focus on a posteriori error esti-
mation and adaptive finite element methods. Recently [54], T-IFSS has been extended to
solve adaptive stochastic Galerkin finite element methods. The stated emphasis of T-IFISS
[55] is on being a laboratory for experimentation and exploration, and also to enable the
rapid prototyping and testing of new adaptive finite element methods. A number of esti-
mation and marking strategies are implemented in T-IFISS, although not the Bank-\Weiser
estimator we consider in this paper. T-IFISS only works for two-dimensional problems and
it was never intended to be a high-performance code suitable for large-scale computations
e.g. high-performance computing systems using the Message Passing Interface (MPI).

The PLTMG package [45] is one of the oldest open finite element softwares for solving
elliptic problems that is still under active maintenance, and includes many advanced fea-
tures such as hp-adaptive refinement, a posteriori error estimation, domain decomposition
and multigrid preconditioning. The a posteriori error estimation is based on a supercon-
vergent patch recovery estimation technique introduced in [47]. PLTMG only works in two
dimensions and is naturally limited from a usability perspective due to the programming
tools available at its inception (Fortran and ANSI C).

In [139] an adaptive first-order polynomial finite element method was implemented in
a code called p1afem using MATLAB. The primary goal was to show how the basic finite
element algorithm could be implemented efficiently using MATLAB’s vectorization capa-
bilities. A standard residual estimator [37] is used to drive an adaptive mesh refinement
algorithm. Again, like T-IFISS, p1afem only works in two dimensions.

In [226] a novel methodology for automatically deriving adaptive finite element methods
from the high-level specification of the goal functional and (potentially non-linear) residual
equation was implemented in the FEnIiCS Project. The emphasis of the paper [226], in
contrast with the T-IFISS toolbox [55], is on the automatic construction of goal-oriented
adaptive finite element methods, without much knowledge required on the part of the user.
The implicit residual problems are automatically localized using bubble functions living on
the interior and facets of the cell, and the dual problem [144] is derived and solved automat-
ically on the same finite element space as the primal problem, before being extrapolated to
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a higher-order finite element space using a patch-wise extrapolation operator. In practice
the automatically derived estimators seem to be able to effectively drive adaptive mesh
refinement for a range of different PDEs.

Explicit residual estimators are also commonly employed by users of high-level finite el-
ement software packages as they can usually be expressed straightforwardly in a high-level
form language, e.g. [23, [213|. For example, [153] used the FEnICS Project to implement
an explicit residual error estimator for the Reissner-Mindlin plate problem from [53]. The
authors of [116] used the FENICS Project to implement an explicit residual estimator for
elasticity problems within a dual-weighted residual framework. The dual problem is solved
on a higher-order finite element space in order to ensure that the weighting by the dual
residual solution does not vanish [226]. In [163] the authors use an explicit dual-weighted
residual strategy for adaptive mesh refinement of discontinuous Galerkin finite element
methods. In addition, as the name suggests, they can be explicitly computed as they
involve only functions of the known finite element solution and the problem data.

In the present work, aside of the Bank—Weiser estimator we will consider an explicit
residual estimator [39] named residual estimator in the following, a flux reconstruction
based on averaging technique estimator [262], referred to as Zienkiewicz—Zhu estimator,
and a variant of the Bank—Weiser estimator introduced in [253] and referred to as the bub-
ble Bank-Weiser estimator. The residual estimator was proved to be both reliable and
(locally) efficient in [253] for any finite element order and in any dimension. The proof of
reliability and (local) efficiency of Zienkiewicz—Zhu estimator has been derived in [225], for
linear finite elements in dimension two and generalized to any averaging technique in any
dimension in [87] and any finite element order in [49]. The bubble Bank—\Weiser estima-
tor was proved to be reliable and locally efficient in [253] for any dimension and any finite
element order.

A proof of the equivalence between the Bank—\Weiser estimator and the exact error was
derived in the original paper [46]. However, this proof requires a saturation assumption
[46, (119, [202] asking for the best approximation with higher order finite elements to be
strictly smaller than that of lower order elements and which is known to be tricky to assert in
practice. Some progress has been made in [202] removing the saturation assumption from
the analysis. However, this progress was made at the price of restricting the framework to
linear polynomial finite elements and dimension two only. The equivalence proof between
Bank—Weiser and residual estimators have been improved by the authors in [76] where it
was extended to dimension three.

2.1.2 Contribution

We show how robust and cheap hierarchical error estimation strategies can be imple-
mented in a high-level finite element framework, e.g. the FEniCS Project [23], Firedrake
[143][216], freefem++ [157], Feel++ [213], GetFEM [217] or Concha [101]. Specifically, the
contribution of our paper to the existing literature is:

e A generic and efficient implementation of the Bank-Weiser estimator in the open
source FENICS Project finite element software that works for Lagrange finite elements
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of arbitrary polynomial order and in two and three spatial dimensions. We provide
implementations for the popular but legacy DOLFIN finite element solver [23], and
the new DOLFINXx solver [150]. The two versions are functionally identical, although
in terms of overall speed and parallel scaling the DOLFINX version is superior due to
underlying architectural improvements. Hence we only show parallel scaling results
with this new version. The code is released under an open source (LGPLV3) license
[75]. Because the code utilizes the existing automatic code generation capabilities of
FENICS along with a custom finite element assembly routine, the packages are very
compact (a few hundred lines of code, plus documentation and demos). Additionally,
the estimators are implemented in near mathematical notation using the Unified Form
Language, see Sections[2.7.1]and [2.8.1]for code snippets.

¢ A numerical comparison of the Bank—\Weiser estimator with various estimators men-
tioned earlier. We examine the relative efficiency, and their performance within an
adaptive mesh refinement loop on various test problems. Unlike [90], we do not
aim at running a competition of error estimators but at stressing the potential of the
Bank-Weiser estimator since, as the authors of [90] point out, a single error estima-
tion strategy is not sufficient to cover the particulars of all possible problems.

¢ Relying on results in [52], we show a goal-oriented adaptive mesh refinement algo-
rithm can be driven by weighted sum of estimators, computed separately on primal
and dual problems discretized on the same finite element space. This avoids the
extrapolation operation of [226] or the need to compute the dual solution in a higher-
order finite element space [51].

¢ Using the same basic methodology as for the Poisson problem, we extend our ap-
proach to estimating errors in mixed approximation of nearly incompressible elasticity
problems. This idea was originally introduced in [18] and is still an active research
topic, see e.g. [169] for a parameter-robust implicit residual estimator for nearly-
incompressible elasticity.

2.1.3 Outline

An outline of this paper is as follows; in Section we outline the main notation and
definitions used in this paper. In Sections[2.2]and [2.3]we show the derivation of the primal
problem and the Bank-\Weiser error estimator. In Section[2.4] we derive a new method for
computing the Bank—Weiser estimator and discuss its implementation in FEniCS. In Sec-
tion[2.5)we discuss the use of the approach for various applications such as goal-oriented
adaptive mesh refinement and for mixed approximations of PDEs. Then, in Section
we show some results on two and three dimensional Poisson test problems as well as on
linear elasticity problems, before concluding in Section 2.0}
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2.1.4 Notation

In this section we outline the main notations used in the rest of the paper. Let Q be an
bounded open domain of R? (d = 1,2 or 3), with polygonal/polyhedral boundary denoted
by I' := 0Q. We consider I' = I'p U I'y a partition of the boundary. We assume I'p is
of positive measure. We denote by n : I' — R¢ the outward unit normal vector along T".
Let w be a subset of Q. For [ € R we denote by H'(w) the Sobolev space of order I. The
space H%(w) = L?(w) is the Lebesgue space of square integrable functions over w. The
space H'!(w) is endowed with the usual inner product (-, )1 @nd norm |[-[|;,,. We omit
the subscript I when [ = 0 and subscript w when w = Q. We denote H7,(Q2) the subspace
of H'(2) of functions with zero trace on I'p. We make use of the notation d,,v := Vv - n
for the normal derivative of a smooth enough function ». For [ € R and for a d-dimensional
subset w of 2, we also define the following vector fields spaces L?(w) := (L2(w))d and

H'(w) := (H l(w))d, with respective inner products defined as their scalar counterparts,
replacing the scalar product by the Euclidean inner product or the Frobenius double dot
product. The space H} () is the subspace of H' () of functions with zero trace on I'p.
From now on, the bold font notation will be reserved to vector fields. With these notations
at hand we can proceed with the rest of the paper.

2.2 Primal problem statement and finite element discretization

We consider the Poisson problem with mixed Dirichlet and Neumann boundary conditions.
LetI' =I'p UT'y be a partition of the boundary. We apply a Dirichlet boundary condition
on I'p and a Neumann boundary condition on I'y. Let f € L*(Q), up € H'/?(T'p) and
g € L*(T'y) be known data. We seek a function u:

—Au= finQQ, u=uponTlp, Opu =gony. (2.1)

Problem eq. (2.1) can be written in an equivalent weak form: Find v € H(Q2) of trace up
on I'p such that
(Vu, Vo) = (f,v) + (g, 0)p Vo € Hp(9). @2

The weak problem eq. can be discretized using the Lagrange finite element method.
We take a mesh T of the domain 2, consisting of cells T = {T'}, facets £ = {E} (we
call facets the edges in dimension two and the faces in dimension three), and vertices
N = {x}. The mesh T is supposed to be regular in Ciarlet’s sense: hp/pr <, VT € T,
where hr is the diameter of a cell T', pr the diameter of its inscribed ball, and ~ is a positive
constant fixed once and for all. The subset of facets in the interior of the mesh (i.e. those
that are not coincident with the boundary T') is denoted &;. The subset of facets lying on
I'p is denoted £p. The subset of facets lying on I'y is denoted Ex. The subset of facets
lying on the boundary of the domain I' is denoted £ = Ep UEN. Until the end of this work
we assume that the mesh resolves the boundary conditions, in other words for any edge
EcTthenEecTporE cTly. Letnt € R? and n~ € R? be the outward unit normals
to a given edge as seen by two cells T+ and 7~ incident to a common edge E. If we
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denote Py (T") the space of polynomials of order k on a cell T', the continuous Lagrange
finite element space of order k£ on the mesh T is defined by

VF = {ve € H'(Q),vpr € Pe(T)VT € T} . (2.3)

We denote VDk the finite element space composed of functions of V* vanishing on the
boundary I'p. We consider the finite element problem: Find u;, € V* such that u;, = Up
onI'p and:

(Vur, Vop) = (f, o) + (g, va)p, » Yo € VP, (2.4)

and where up 4, is a discretization of up on V¥ (for example the Laplace interpolation or a
L? orthogonal projection).

2.3 The Bank-Weiser estimator

In this section we derive the general definition of the Bank—\Weiser estimator from the equa-
tion of the error as it was given in the original paper [46]. We also give a concrete example
of the Bank—\Weiser estimator for linear finite elements.

2.3.1 The global error equation

We are interested in estimating the error we commit by approximating the solution u by
ug € VD’“. We define this error by the function e := u —u; and we want to estimate its norm
lle|l1. The first step towards this will be to derive a new variational problem for which the
exact error e is the solution. For a cell T' of the mesh, we introduce the interior residual as

rr = (f + Aug)r, (2.9)
and for an edge F, the edge residual

0 if £ € &p,
Jg = [[8nuk]]E if £ e Er, (2.6)
(g—@nuk)‘E if £ e &En.

where the notation [v] ; := v+ — v~ denotes the jump in the value of the function across
an interior facet E € £;. Here, v and v~ denote the values of v on the facet E as seen
by the two incident cells T+ and T, respectively. The error function e satisfies what we
call the global error equation

(Ve,Vo) = (rp,0)p+ Y (Js,v)g+ Y. (Je,v)p, Yo HH(Q), (2.7)
TeT Ee&r Eeén

and e = up — uy, on the Dirichlet boundary I'p.
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2.3.2 The local Bank-Weiser space and the Bank-Weiser estimator

We introduce now local finite element spaces in order to derive the finite element approxi-
mation of the error. For a cell T' of the mesh we define

VEp = {vpr € Pu(T), vir =0in (Q\T)U (T NTp)}, (2.8)

as well as
Vi = {1 € Pr(T)}. (2.9)

A key idea in the Bank-Weiser estimator derivation is to introduce an appropriate finite
element space for the discretization of error. This non-standard space has two roles.
Firstly, for the local problems involving the cells with facets only in the interior of the domain
or on the Neumann boundary, it should remove the constant functions, giving a unique
solution. Secondly, and as we will notice in Section solving the local error equation on
the finite element space Vq’% p/R does not necessary lead to an accurate estimation of the
error. However, in some cases, the estimation of the error can be surprisingly accurate
when the space is judiciously chosen. We refer the reader to [11] for a full discussion.

Before introducing this non-standard space, we need some more notations. Let k.
and k_ be two non-negative integers such that k. > k_ > 0. Let T be the reference cell
fixed once for all (independent from the mesh 7). We denote

L~

k k k_
7o VAR VI Im(Lg) = VE (2.10)

T T

the Lagrange interpolation operator between the local spaces V%“* and Vflf‘ C ij*. More-
over, for any cell T' of the mesh, there exists an affine bijection

S: T — T

T — S@ =z @11

mapping T onto T. From the mapping S we deduce another mapping given by

S: Vit — lef+

_ ~ (2.12)
v(x) — S(v)(7) :=v(S(T)).
If we denote d_ the dimension of VTf* and d_ the dimension of VTE* , given ij, ={Q1, P}
the basis of shape functions of V%f* and B;E = {1, ,pq, } the basis of fo*, we can
always find a mapping S (and a mapping S) such that
S(eri) = ¢ry, Vie{l,---,di}, (2.13)

We choose S and S so. Foragiven cell T' of the mesh, we define the Lagrange interpolation
operator on T' as follows
L= SiloEToS. (2.14)
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Note, due to eq. , the matrix of S in the couple of basis (57, B) is the identity matrix

of size d; x d. Consequently, if we denote G the matrix of Lr in the basis B and G the
matrix of Lz in the basis BTT, we have

G=1d"'G1d = G. (2.15)

For a cell T of the mesh, the local Bank—Weiser space V}?W is defined as the null space of
L, in other words

VY = ker(Lr) = {UI%W € V;f*, Lropy = O} . (2.16)
Similarly, we define
VR = {Ugw eV W =0onTn rD} . (2.17)

With these new spaces in hands, we can derive a local discrete counterpart of eq. on
any cell T: Find er € V2" such that:

(Ve wop) = (rr, o) +% 3 (JE,UC]%W>E, VR e VR, (2.18)
EeoT
and er = 7 (up — ug) on T'p, where wb¥ : L?(T) — V2™ is a proper projection operator
(the way this projection is implemented is detailed in Section [2.4.1).

Note, the definition of the edge residual J takes into account the error on the Neu-
mann boundary data approximation. The Dirichlet boundary data approximation has to
be incorporated to the linear system during the solve of eq. (2.78), as well will see later.
For a detailed discussion on a priori and a posteriori error estimation with inhomogeneous
Dirichlet boundary conditions see [33, [50].

Finally, on the cell T' the local Bank-Weiser estimator n,,, 7 is defined by

Mow,r = || Ve |7, (2.19)

where e is defined in eq. and the global Bank-Weiser estimator by the sum of local
estimates
ne, = Z ngwj. (2.20)
TeT
Note, although it is not shown in this study, it is straightforward to generalize the
Bank—Weiser estimator for other kind of elliptic operators by changing the energy norm

in eq. (2.19) accordingly.

2.3.3 A particular example

If we assume k£ = 1 (i.e. we solve eq. using linear finite elements) one can define
the space V}JW from the choice of k. = 2, k- = k = 1. This example was the case
considered in the numerical tests of the original paper [46]. The space V}’W consists of
quadratic polynomial functions (in Vﬁ) vanishing at the degrees of freedom of the standard
linear finite element functions (in V}) i.e. the degrees of freedom associated with the vertices
of T.
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2.4 Algorithms and implementation details

The linear system corresponding to eq. is not accessible in FENICS. This prevent
us from directly solving the Bank-Weiser equation. We propose to bypass the problem
by constructing the linear system corresponding to eq. from another linear system
derived from finite element spaces that are accessible directly in FEnICS.

2.4.1 Method outline

1. We consider the following singular value decomposition (SVD) of G
G=UxVT, (2.21)

where X is a diagonal matrix composed of the singular values of G. The columns of
the matrix V' are singular vectors of G, associated with singular values. The columns
associated with singular values zero span the null space of G. We take the submatrix
N made of the columns of V' spanning the null space of G. Note that, since G does
not depend on any cell T', the same property holds for V.

2. We build the matrix A; and vector b} of the local linear system corresponding to the
following variational formulation in the space V’”, available in FENICS:

(Ver, Vor) = (rr,v7) +% > (Je,vf) . Vi€ Vit (2.22)
E€oT

We integrate the Dirichlet boundary condition directly into AJTr and b;, by considering

the vector associated to 7} (up —uy), where 7 is the L2 projection onto V;i*. More
precisely, the rows and columns of AJTr corresponding to degrees of freedom on the
Dirichlet boundary are zeroed and the corresponding diagonal entries are replaced
by ones. The entries of bJTr corresponding to these degrees of freedom are replaced
by the corresponding entries in the vector of w;(uD — Up).

3. We construct the matrix A% and vector bbY as follow
A = NTAZN and b3 = N, (2.23)

where AYY and b3 are the matrix and vector which allow to recover the bilinear and
linear forms of eq. (2.18) in a basis of V2.

4. We solve the linear system
ARV by — phv (2.24)

5. We bring the solution back to lef+ , considering Nzb¥, in order to post-process it
and compute the local contribution of the Bank—Weiser estimator eq. (2.19).
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Figure 2.1: Overall process of the Bank-Weiser estimator algorithm.

2.4.2 Computational details

We now give more details specific to our implementation in FEniCS of each one of the
above steps.

1. Computation of N. This is the key point of our implementation. The operator L can
be written as follows:

Lr: V5 — Vi — VY 2.25)
’U+ — Ql(vﬂ — QQ (Ql(v+)).
Then, the matrix G is obtained via the following product
G = GoGh, (2.26)

where GG; and G4 are respectively the matrix in the couple of basis (B% ,B) of the
Lagrange interpolation operator from lef+ to lef’, denoted G; and the matrix in the
same couple of basis of the canonical injection of VT’?‘ into V{f*, denoted G>. The ma-
trices G; and G2 can be calculated either using the Finite Element Automatic Tabulator
(FIAT) [12Q] or, as we choose to do, using the interpolator construction functions of the
DOLFIN/x finite element library [182]. The next step consists in computing the unitary
matrix V' of right singular vectors of G. This computation is done using the singular
value decomposition (SVD) algorithm available in the SciPy library [256]. We can write
the matrix V' as follows,

V= (1, 1618 ), (2.27)

where Bi‘;w = {9, ... ,fgbw} is the set of singular vectors of G corresponding to a zero
singular value, spanning VI‘L’W and {&1,- -+, &4_} is spanning the supplementary space.
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The matrix N is then chosen as the submatrix of V', keeping only the columns from
Bk
N:= (&)1, (2.28)

The linear algebra operations needed to form the submatrix N from V are performed
using the NumPy library [244].

2. Computation of A; and b}. The eq. is expressed directly in the Unified Form
Language (UFL) [22] and efficient C++ code for calculating the cell local tensors A7 and
b}“ for a given cell T is then generated using the FEnICS Form Compiler (FFC) [171],[267].
If the cell T has an edge on a Dirichlet boundary £p, the matrix A7 and vector b7, must
be modified in order to enforce the boundary condition.

3. Computation of A% and b5¥. The matrix AR and vector b2 are constructed using

eq. (2.23).

4. Solution of the linear system (2.24). The linear system eq. (2.24) is solved using a partial-
pivot LU decomposition algorithm from the Eigen dense linear algebra library [149] in
DOLFIN and xtensor-blas, which calls LAPACK’s dgesv in DOLFINX.

5. Computation of the Bank-Weiser estimator. Finally, the solution zb is sent back to

Vf* using NV and the norm of the corresponding function, giving the local estimator
eq. is computed using standard high-level functions already available within FEn-
iCS. The global estimator eq. is computed using the information of all the local
contributions.

2.4.3 Additional remarks

® The custom assembler composed of steps 2.-5. is performed by looping over every
cell of the mesh and, by virtue of using the abstractions provided by DOLFINx, works
in parallel on distributed memory computers using the Message Passing Interface
(MPI) standard. For performance reasons these steps have been written in C++ and
wrapped in Python using the pybind11 library so that they are available from the
Python interface to DOLFIN/x. In contrast, the first step must only be performed
once since the matrix IV is the same for every cell of the mesh.

® A posteriori error estimation methods such as the one we are considering here as-
sume that the linear system associated with the primal problem eq. is solved
exactly. However for performance reasons, here we use PETSc conjugate gradient
iterative method. Using inexact solutions can have an influence on the total error
but also on the a posteriori error estimator itself. It is a known issue [31] and sev-
eral authors have proposed ways to estimate the algebraic error, see e.g. [26, [207].
Since algebraic error estimation is beyond the scope of this work, in all our numerical
results we set PETSc residual tolerance small enough to neglect this part of the error.
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¢ Because we use the automatic code generation capabilities of FEnICS, our approach
can be readily applied to other definitions for the spaces lef+ and lef*, and to vec-
torial problems like linear elasticity, as we will see in the next section.

e For large problems the storage of the global higher order space V*+ can be an
issue since it requires a lot of memory space. However we avoid this problem by
considering the local higher order spaces fo* (and local lower order spaces fo*)
only.

¢ |In the numerical results section we compare several versions of Bank-Weiser esti-
mator and especially the one we call bubble Bank—Weiser estimator and denote an
which can be obtained with our method by taking V; as the space V2 + Span{¢r}
(the local space of quadratic functions enriched with the space spanned by the in-
terior bubble function) and lef* as VTl. The resulting space V})W is spanned by the
interior bubble function and the edges bubbles functions of the cell T'.

2.5 Applications

In this section we show a number of applications, including adaptive mesh refinement,
goal-oriented estimation and extensions to more complex mixed finite element formula-
tions for the nearly-incompressible elasticity problems.

2.5.1 Adaptive mesh refinement

As well as simply providing an estimate of the global and local error, the estimator can
be used to drive an adaptive mesh refinement strategies. In the following we compare
different refinement strategy all based on the following loop:

- — SOLVE — ESTIMATE — MARK — REFINE — - - -

The loop can be terminated once a given criterion e.g. maximum number of iterations,
or global error less than a given tolerance, has been reached. A detailed discussion on
adaptive refinement methods can be found in [204]. In the following we expand on the
specific algorithms used in our case.

Solve

The weak form eq. is discretized using a standard finite element method implemented
within FEnIiCS. The resulting linear systems are solved using the appropriate algorithms
available within PETSc [42], e.g. conjugate gradient method preconditioned with Hypre
BoomerAMG [131], or direct methods, e.g. MUMPS [24], [25].
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Estimate

The Bank-Weiser estimator n,,, is formulated and implemented as described in Section[2.4]
The local contributions of the estimator provide an estimate of the local error for each cell
in the mesh and are subsequently used to mark the mesh. In addition the global estimator
can be used to determine when to stop iterating.

Mark

We have used two distinct marking strategies throughout the results section: the maximum
strategy on the three-dimensional test cases and Dorfler strategy on the two-dimensional
ones. We follow the presentation in [208]. In the maximum marking strategy [37], a cell
is marked if its indicator is greater than a fixed fraction of the maximum indicator. More
precisely, given a marking fraction € (0, 1], the marked set M C T is the subset such
that:

Mow,T > fmax Mow,T's vI'eT. (2.29)

TeT

In the Dorfler marking strategy [118] (sometimes referred to as the equilibrated marking
strategy) enough elements must be marked such that the sum of their estimators is larger
than a fixed fraction of the total error. Given a marking fraction 6 € (0, 1], the marked set
M is the subset with minimal cardinality #.M such that

D e =0 M (2.30)

TeM TeT

We implement an O(N log N) with N := #7 complexity algorithm for finding the minimum
cardinality set by sorting the indicators in decreasing order and finding the cutoff point such
that eq. is satisfied. Because of the ordering operation this set is guaranteed to have
minimal cardinality. We note that recent work [160, 208] proposes a O(N) complexity
algorithm for finding the set with minimum cardinality.

Refine

We use two-dimensional and three-dimensional variants of the algorithm proposed in [209],
sometimes referred to as the Plaza algorithm. This algorithm works by subdividing the
facets of each marked triangle or tetrahedron cell and then subdividing each triangle or
tetrahedral cell so that it is compatible with the refinement on the facets. The algorithm
has O(M) complexity in the number of added mesh vertices M. This algorithm already
exists in DOLFIN [182] and was used for the numerical results in [220].

2.5.2 Goal-oriented adaptive mesh refinement

In many practical applications it is desirable to control the error in a specific quantity of
interest, rather than the (global, i.e. across the entire domain ) energy norm [51]. In this
section we show how the basic Bank—\Weiser estimator can be used to control error in a
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goal functional, rather than in the natural norm. To do this, we use a weighted marking
strategy proposed in [52].

Let J : L2(22) — R be a given linear functional. Associated with 7 () and the primal
problem eq. is the dual or adjoint problem: Find the dual solution z € H},() such
that

(Vu,Vz) = J(v), Yove HhH(Q). (2.31)

The dual problem, like the primal problem, can also be approximated using the finite ele-
ment method. Find 2z, € V* such that

(V’Uk, Vzk) = J(vk) = (C, Uk) + (h,vk)r, Yo, € Vk. (2.32)

Using Galerkin orthogonality and Cauchy-Schwarz, it follows that

T (u) = T (u)| = [(V(u — ug), Vz)| (2.33)
= |(V(u—ug), V(z — z))| (2.34)
< V(= u) IV (2 = zi)l, (2.35)

where the inequality holds due to Galerkin orthogonality.

Approximating the primal and dual errors ||V (u — ug)|| and |V (z — zx)|| with any es-
timators n,, and 7, respectively, gives us an estimator for the error in the goal functional
|J(u) — J(ug)| as the product of n,, and 7., thanks to eq. [2.35):

Th = N1z (2.306)

In addition, if n,, and n, are reliable estimators i.e. if there exist two constants C,, and C,
only depending on the mesh regularity such that

IV (u = up)|| < Cunpu, - and ||V (z = 2¢)[| < Conz, (2.37)

then, n,, is reliable as well

Note that because the error in the goal functional is bounded by the product of two es-
timates, the element marking strategy must incorporate information from local indicators
for both approximations to reduce the error on refinement. There are multiple strategies
for doing this in the literature, see e.g. [194]. We have chosen to implement the weighted
goal-oriented (WGO) marking strategy from [52]. The local WGO estimator is then defined
as

2 2
2 UE 2 U 2
N g o= o + ey, VI eT. (2.39)
w,T 771% + 772 u, T 773 + 772 z,T

The marking and refinement using 2 ;- then follows in exactly the same manner as in the
standard adaptive refinement strategy.
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2.5.3 Extension to linear elasticity problems

Our implementation of the Bank—Weiser estimator can be directly applied to mixed formu-
lations of (nearly-incompressible) linear elasticity problems using the results in [169]. In [17]
a new a posteriori error estimator is introduced for mixed formulations of Stokes problems
consisting in solving a local Poisson problem based on the local residuals on each cell.
This estimator has been proved to be reliable and efficient in [17] under a saturation as-
sumption. This assumption has been later removed in [179]. The reliability and efficiency
of the estimator for mixed formulations of linear elasticity is proved in [169] without the
need of a saturation assumption. In addition, they show that the estimator is robust in the
incompressible limit.

Nearly-incompressible elasticity

We consider the problem of linear deformation of an isotropic elastic solid Q2 using the
Herrmann mixed formulation. We consider the stress tensor o : Q@ — R4, the strain
tensor € : © — R%4, the load f : © — R? which belongs to (L2())?, the Dirichlet

boundary data up in (Hl/Q(FD))d, the Neumann boundary condition (traction) data g €

(L*(r N))d and displacement field u : @ — R%. The stress and strain tensors are defined
by

o :=2ue(u) — pld, (2.40a) e(u) = % (Vu + (Vu)T) . (2.40p)
where Id is the d x d identity matrix and p and A are the Lamé coefficients. The weak form
of this linear elasticity problem reads: find w in H'(Q) of trace up on I'p and p € L*(Q)
such that

24 (e(u),e(v)) — (p,div(v)) = (f,v) + (g,v)r,, Yv € Hp(Q), (2.41a)

(g, div(w)) + % (p.q) =0, Vg€ I2(Q). 2.41b)

The problem given by egs. (2.41a) and (2.41b) admits a unique solution (see e.g. [169)).
We introduce the finite element spaces Xp € H}(2) and M C L?(€) such that

Xp = (V3)", (2.42)

and M := V. Let w be a discretization of up € X. Considering the stable Taylor-Hood
method of discretization, the mixed finite element approximation of egs. (2.41a) and (2.410)
reads: find us € Xp with us = w onI'p and p; € M such that

21 (€(UQ), E(’Ug)) — (pl,div(’UQ)) = (f, ’U2) +(g,v2), VYv € Xp, (2.43a)
(a1, div(us)) + § (pr, ) =0, Var € M. (2.43b)

Similarly to egs. (2.414) and (2.410) transposed to the discrete context, egs. (2.43a) and (2.430)
have a unique solution. If we denote e := u — uy and € := p — py the discretization error
is measured by 2u||Ver| + ||r7|.
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For a cell T and an edge F the residuals are defined by

Ry = (f + div (2ue(uz)) — Vp1)ip, (2.44a8)  rri= (div(ug) + %pl)lT’ (2.44Db)

L1 1d —2ue(u2)) ] if E € &,
Rp=q0 it E € €p, (2.440)
g — (p11d —2pe(uz))n if E € &y,

Here, once again we derive the a posteriori error estimator from these residuals and a local
Poisson problem, following [169]. Let T be a cell of the mesh, the local Poisson problem
read: find ey € V2 such that

2u(Ver, Vor)y = (Rp,vr)p — Y (Rg,vr)p, Vor € Vg™ (2.45)
EeoT

The Poisson estimator is then defined by
2 2
M= Mo (2.46a)
TeT o = 2ullVer|F + [lrrl7.  (2.46D)
This estimator has been proved to be reliable and locally efficient in [169] as well as
robust in the incompressible limit.

2.6 Results

We illustrate our implementation first on several two dimensional problems as Poisson
problems with solutions of different regularities and with different boundary conditions.
Then, we also look at examples of linear elasticity, and goal-oriented problems. We now
treat a three dimensional example: a linear elasticity problem on a mesh inspired by a
human femur bone. One can find another example of three dimensional application in
[76].

All the numerical results were produced within DOLFIN except the strong scaling tests
in Section 2.9 which were performed using the DOLFINXx version of our code.

We apply different adaptive refinement methods as presented in Section [2.5.7] For
each method we perform the estimation step with a different estimator among the follow-
iNg: 7res the residual estimator, defined in appendix [A 7,, the Zienkiewicz—Zhu estimator,
defined in appendix [B] Note that we use the most basic version of the Zienkiewicz—Zhu
estimator which is not defined for quadratic or cubic finite elements nor for linear elastic-
ity problems, and consequently will be absent from the comparison in these cases (It is
possible to extend the idea of the Zienkiewicz—Zhu estimator to higher-order polynomials
via the definition of the Scott-Zhang interpolator, see [92, 231]). In addition we compare
several versions of the Bank—Weiser estimator: the bubble Bank—Weiser estimator UEW de-
fined from the enriched bubble functions space and n{fjv’k‘ for multiple choices of the fine
and coarse spaces orders ky and k_.

For each one of the following test cases we will first give a comparison of all the refine-
ment strategies by giving the efficiency of the a posteriori error estimator on the last mesh
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of the hierarchy, where the efficiency of an estimator n is defined as follows:

off := (2.47)

Eerr

where eq; is a higher order approximation of the exact error computed either from the
knowledge of the analytical solution or from a higher-order finite element method on a fine
mesh.

2.7 Poisson problems

2.7.1 Indicative snippet of error estimation for Poisson equation using Bank-
Weiser estimator

We present here a snippet of DOLFIN Python code showing function to compute the error
of a Poisson problem using the Bank—Weiser estimator.

from dolfin import *
import fenics_error_estimation

def estimate(u_h):
"""Bank-Weiser error estimation procedure for the Poisson problem.

Parameters
u_h: dolfin.Function
Solution of Poisson problem.

Returns

The error estimate on each cell of the mesh.

nmn

mesh = u_h.function_space() .mesh()

# Higher order space

element_f = FiniteElement("DG", triangle, 2)
# Low order space

element_g = FiniteElement("DG", triangle, 1)

# Construct the Bank-Weiser interpolation operator according to the
# definition of the high and low order spaces.
N = fenics_error_estimation.create_interpolation(element_f, element_g)

V_f = FunctionSpace(mesh, element_f)
e = TrialFunction(V_f)

v = TestFunction(V_f)

f = Constant(0.0)
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# Homogeneous zero Dirichlet boundary conditions
bcs = DirichletBC(V_f, Constant(0.0), "on_boundary", "geometric")

# Define the local Bank-Weiser problem on the full higher order space
n = FacetNormal (mesh)
a_e = inner(grad(e), grad(v))*dx
# Restdual
L_e = inner(f + div(grad(u_h)), v)*dx + \
inner (jump(grad(u_h), -n), avg(v))*dS

# Local solves on the implied Bank-Weiser space. The solution is returned
# on the full space.
e_h = fenics_error_estimation.estimate(a_e, L_e, N, bcs)

# Estimate of global error
error = norm(e_h, "H10")

# Computation of local error indicator.
V_e = FunctionSpace(mesh, "DG", 0)
v = TestFunction(V_e)

eta_h = Function(V_e, name="eta_h")

# By testing against v in DG_O this effectively computes
# the estimator on each cell.

eta = assemble(inner(inner(grad(e_h), grad(e_h)), v)*dx)
eta_h.vector()[:] = eta

return eta_h

2.7.2 L-shaped domain

We consider a 2D L-shaped domain © = (-1, 1)\ [-1, 0]2. We solve eq. with f = 0,
I'p =T, up given by the analytical solution defined below and I'y = @. In polar coor-
dinates, the exact solution is given by uexact (7, 0) = r2/3sin (2/3(6 + 7/2)). The exact
solution belongs to H/ 3=¢(Q) for any e > 0 and its gradient admits a singularity at the
vertex of the reentrant corner [148, Chapter 5]. L-shaped domains are widely used to test
adaptive mesh refinement procedures [193]. In both linear and quadratic finite elements all
the estimators reach an expected convergence rate (= —0.5 in the number of degrees of
freedom for linear elements and ~ —1 for quadratic elements). The choice of a posteriori
error estimator is not critical for mesh refinement purposes, every estimator leading to a
hierarchy of meshes on which the corresponding errors e, are similar. For brevity we have
not included the convergence plots of these results.

Linear elements. On fig. we can see the initial mesh (top left) used to start the
adaptive refinement strategies. Then, we can see the different refined meshes we obtain
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Figure 2.2: L-shaped Poisson problem with linear elements: On top left the initial mesh
used to start all the adaptive strategies. From top middle to bottom right, the adaptive
meshes obtained after seven iterations of refinement strategies steered respectively by

b 2.1 492
Thress Thyws Mzzs Ty and Mow

after seven refinement iterations

As we can see on fig. [2.3 the Zienkiewicz-Zhu estimator 7,, seems to perform the best
in terms of efficiency while the second best estimator is 7> . The bubble Bank-Weiser es-
timator nP, is outperformed by almost all the other Bank-Weiser estimators. The residual
estimator n,e5 largely overestimates the error while the estimators nﬁ;’k* for k_ > 1 largely
underestimates it, leading to poor error approximations. Among the poor estimators, 771:3;3
is surprisingly off for linear elements on this test case. This behavior seems to be specific
to the L—shaped test cases with linear finite elements as we will see below.

Quadratic elements. As shown on fig. the best estimator in terms of efficiency
is 2 which nearly perfectly matches the error e.,;. We can also notice the very good
efficiencies of ;> and 7>, Once again the Bank-Weiser estimators with k_ > 2 drastically
underestimate the error. We can notice that the residual estimator is less efficient as the
finite element degree increases.
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e 2 |3 | 4
0 [1.34|1.53]1.53]1.59
1 | @ [122|153|1.72 Thes | 3.56
2 | @ | @ | 00|07 n, [1.78
3 |9 | @ | @ (029 N | 0.99

k_

Figure 2.3: L-shaped Poisson problem with linear elements: efficiencies of n{j;’ and
other estimators on the last mesh of an adaptively refined hierarchy.
k1 2 | 3 ] 4

0 [0.66| 1.0 |112]1.27

1 g |161] 21 |2.28 Thes | 8.67

2 | 9 | 9 |092]1.07 n, | 1.84

3 %) %) %] 0.31 Nzz (%)
Figure 2.4: L-shaped Poisson problem with quadratic elements: efficiencies of nﬁ;’k‘ and

other estimators on the last mesh of an adaptively refined hierarchy.

2.7.3 Mixed boundary conditions L-shaped domain

We solve eq. on the same two-dimensional L—shaped boundary domain as in Sec-
tion but with different boundary conditions. We consider f = 0, I'y = {(z,y) €
R? z <0,y =0}andI'p = I'\ I'y. The boundary data are given by ¢ = 0 and
UD = Uexact = 7/3sin (1/3(0 + 7/2)). The exact solution belongs to H*/37¢(Q2) for any
e > 0 and its gradient has a singularity located at the reentrant corner of T" (see [148|
Chapter 5]). As before, each estimator is leading to a convergence rate close to the ex-
pected one (=~ —0.5 for linear elements, ~ —1 for quadratic elements) and the choice of
the estimator does not impact the quality of the mesh hierarchy.

Linear elements. First thing we can notice from fig. is that the estimators efficien-
cies are quite different from those in fig.[2.3 Most of the Bank-Weiser estimator efficiencies
have improved, except when k_ > 1. The Zienkiewicz—Zhu estimator 7,, is no longer the
most efficient and has been outperformed by 52, n2t and 7. The Bank-Weiser esti-
mator 773{3 still performs poorly as in fig. while the residual estimator 7,5 ONce again
largely overestimates the error.

Quadratic elements. As for linear elements, the efficiencies in fig. [2.6]are very different
from fig. many Bank-Weiser estimators are now underestimating the error. The most
efficient estimator is nﬁwl closely followed by the bubble Bank-Weiser estimator 7, . As
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e 1 2 | 3 ] 4
0 |0.83|1.06|1.08]1.14
1 | @ |094|1.21[1.34 Thes | 2.84
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Figure 2.5: Mixed boundary conditions L-shaped Poisson problem with linear elements:
efficiencies of nﬁ;’k‘ and other estimators on the last mesh of an adaptively refined hier-
archy.

e 1 2 | 3 | 4
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Figure 2.6: Mixed boundary conditions L-shaped Poisson problem with quadratic ele-
ments: efficiencies of nﬁ;’k* and other estimators on the last mesh of an adaptively refined
hierarchy.

for the previous test cases, the Bank—Weiser estimators with k_ > 2 are largely underes-
timating the error.

2.7.4 Boundary singularity

We solve eq. on a two-dimensional unit square domain = (0, 1)2 With © = eyact ON
I'p =T, (Cxy = @) and f chosen in order to have u(z, y) = Uexact (2, y) = %, with a > 0.5.
In the following results we chose o = 0.7. The gradient of the exact solution « admits a
singularity along the left boundary of Q (for z = 0). The solution u belongs to H%/>~< for all
e > 0 [164) [193]. Consequently, the value of a determines the strength of the singularity
and the regularity of .

Due to the presence of the edge singularity, all the estimators are achieving a con-
vergence rate close to —0.2 for linear elements. Moreover, this rate does not improve
for higher-order elements (for brevity, the results for higher-order elements are not shown
here). The low convergence rate shows how computationally challenging such a problem
can be. Once again the choice of estimator is not critical for mesh refinement purposes.

Linear elements. The best estimator in terms of efficiency is nf)wl which slightly over-
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k1 2 | 3 ] 4
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Figure 2.7: Boundary singularity Poisson problem with linear elements: efficiencies of

n{fjv’k‘ and other estimators on the last mesh of an adaptively refined hierarchy.

e 2 | 3 | 4
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Figure 2.8: Boundary singularity Poisson problem with quadratic elements: efficiencies of
n’gjv’k* and other estimators on the last mesh of an adaptively refined hierarchy.

estimates the error, closely followed by nﬁ;f underestimating the error as we can see on
fig. Unlike the previous test case, here the Zienkiewicz—Zhu estimator 7,, grandly un-
derestimates the error. The worst estimator is the residual estimator n..s which gives no
precise information about the error. We can notice that the poor performance of the esti-
mator 77{;3 on the L—shaped test case does not reproduce here.

Quadratic elements. Again, fig. [2.8/ shows that the best estimator is 7! closely fol-
lowed by 7Y and the bubble estimator 77, . The residual estimator is getting worse as the
finite element degree increases.

2.7.5 Goal-oriented adaptive refinement using linear elements

We solve the L—shaped domain problem as described in Section but instead of con-
trolling the error in the natural norm, we aim to control the error in the goal functional
J(u) = (¢, u) with ¢ a smooth bump function

3

. Zexp(—%) 0<F <1,
c(F) == { g exp (~7) f2—>7"1. (2.48)

where 72 = ((z — @) /e)® + ((y — §)) /¢)?, with € € R a parameter that controls the size of
the bump function, and z € R and § € R the position of the bumps function’s center. We
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Figure 2.9: L-shaped goal-oriented Poisson problem with linear elements: On top left
the initial mesh used to start all the adaptive strategies. From top middle to bottom right,
the adaptive meshes obtained after seven iterations of refinement strategies steered by
weighted estimators derived respectively from n}i’j y Tress nﬁw and n,, for both primal and
dual problems.

set e = 0.35 and £ = § = 0.2. With these parameters the goal functional is isolated to a
region close to the re-entrant corner.

We use the goal-oriented adaptive mesh refinement methodology outlined in Sec-
tion . We use a first-order polynomial finite element method for the primal and dual
problem, and the Bank-Weiser error estimation procedure to calculate both n,, and ..

The ‘exact’ value of the functional J(u) was calculated on a very fine mesh using a
fourth-order polynomial finite element space and was used to compute higher-order ap-
proximate errors for each refinement strategy.

The weighted goal—oriented strategy refines both the re-entrant corner and the broader
region of interest defined by the goal functional. Relatively less refinement occurs in the
regions far away from either of these important areas.

Figure shows refined meshes after seven iterations of the weighted goal oriented
method. We can see that the meshes are mainly refined in the re-entrant corner as well
as in the region on the right top of it where the goal functional focuses. In fig. we
show the convergence curves of some of these adaptive strategies. For each strategy,
N = 1) 1S the estimator specified in the legend and n,, = n,n.. All the strategies we have
tried led to very similar higher-order approximate errors. So for the sake of clarity we have
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ng,, (primal) Nz (primal) Nres (primal) N (primal)
A ngw (dual) —3¢— Nz (dual) —— Nres (dual) o ng‘,wz (dual) — = |stsq error
— 18, (Wgo) = MNzz (WgO) —— res (WQO) o 02 (wgo)
w bw

1071 3

Number of dof

Figure 2.10: L-shaped goal-oriented Poisson problem with linear elements: plot compar-
ing convergence of some goal-oriented adaptive strategies driven by four different estima-
tors. Expected rates for primal and dual problems (—0.5) and goal functional (—1) shown
by triangle markers. Comparison with an indicative line representing the higher order ap-
proximation of the errors of each strategy and obtained using least squares method.

replaced the approximate errors by an indicative line computed using a regression from
the least squares method (Istsq error), leading to the line that fits the best the values of
the different approximate errors. As we can see, these adaptive strategies are reaching an
optimal convergence rate. Although it is also the case for all the other strategies we have
tried, we do not show the other results for the sake of concision. In the left table of fig.
we show the efficiencies of the estimators n,, where n, = n, = n{fjv’k’. On the right table
of fig. [2.171] we take n, = 7. to be the estimators in the left column. As we can see on the
efficiencies are not as good as in Section[2.7.2] The two best estimators are those derived
from ) and 2. With 2, they are the only cases where the goal-oriented estimator
Nw IS performing better than the goal-oriented estimator derived from the Zienkiewicz—Zhu
estimator. The estimators n,, derived from the bubble Bank-Weiser estimator as well as
from the residual estimator are poorly overestimating the error.
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Figure 2.11: L-shaped goal-oriented Poisson problem with linear elements: efficiencies of
the dual weighted estimators derived from nﬁ;’k‘ and other estimators on the last mesh
of an adaptively refined hierarchy.

2.8 Linear elasticity problems

2.8.1 Indicative snippet of error estimation for linear elasticity equations us-
ing Poisson estimator

We give here a snippet of DOLFIN Python code showing function to compute the error of
a two-dimensional linear elasticity problem (discretized with Taylor-Hood element) using
the Poisson estimator, based on our implementation of the Bank—\Weiser estimator.

import scipy.linalg as sp.linalg
from dolfin import *
import fenics_error_estimation

def estimate(w_h, mu, lmbda):

nmnn

Parameters

w_h: dolfin.Function

Solution of the linear elasticity problem.
mu: float

First Lamé coefficient.

lmbda: float

Second Lamé coefficient.

Returns

The error estimate on each cell of the mesh.
nimn

mesh = w_h.function_space() .mesh()

u_h = w_h.sub(0)
p_h = w_h.sub(1)
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# Vectorial high order space.
X_element_f = VectorElement('DG', triangle, 3)

# Scalar high order and low order spaces.
S_element_f = FiniteElement('DG', triangle, 3)
S_element_g = FiniteElement('DG', triangle, 2)

# Construct the scalar projection matrixz according to the definition
# of the high and low order spaces.
N_S = create_interpolation(S_element_f, S_element_g)

# Construct the wvectorial projection matrixz as a block diagonal, each
# block corresponding to a scalar problem.
N_X = sp.linalg.block_diag(N_S, N_S)

f = Constant((0., 0.))
X_f = FunctionSpace(mesh, X_element_f)

TrialFunction(X_f)
TestFunction(X_f)

< o
Il
o

# Homogeneous zero Dirichlet boundary conditions.
bcs = DirichletBC(X_f, Constant((0., 0.)), 'on_boundary', 'geometric')

# Cell residual.
R_T = £ + div(2.*mu*sym(grad(u_h))) - grad(p_h)

# Facet restdual.
n = FacetNormal (mesh)
R_E = (1./2.)*jump(p_h*Identity(2) - 2.*mu*sym(grad(u_h)), -n)

# Local Potisson problem.
a_X_e = 2.xmuxinner(grad(e_X), grad(v_X))*dx
L_X_e = inner(R_K, v_X)*dx - inner(R_E, avg(v_X))*dS

# Solve Poisson equation locally on implicit Bank--Weiser space.
e_h = fenics_error_estimation.estimate(a_X_e, L_X_e, N_X, bcs)

# Cell residual.
rho_d = 1./(lmbdax*(-1)+(2.*mu)**(-1))
r_T = rho_d*(div(u_h) + lmbda*+*(-1)*p_h)

# Computation of local error indicator.
V_e = FunctionSpace(mesh, 'DG', 0)
v = TestFunction(V_e)

eta_h = Function(V_e)
# By testing against v in DG_O this effectively computes the estimator
# on each cell.
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eta = assemble(2.*mu*inner (inner(grad(e_h), grad(e_h)), v)x*dx + \
rho_d#*(-1)*inner (inner(eps_h, eps_h), v)x*dx)
eta_h.vector()[:] = eta

return eta_h

2.8.2 Nearly-incompressible elasticity

We consider the linear elasticity problem from [89] on the centered unit square domain
with homogeneous Dirichlet boundary conditions on I'p = I" (up = 0). The first Lamé
coefficient is set to u = 100 and the Poisson ratio to v = 0.3 and v = 0.499. The problem
data f is given by f = (f1, f2) with

fi(z,y) = —2um® cos(my) sin(my) (2 cos(27z) — 1), 2.49)
fa(z,y) = 2um® cos(mz) sin(rz) (2 cos(2my) — 1). '

The corresponding exact solution of the linear elasticity problem reads u = (uq, uz) with
ui(z,y) = mcos(my) sin? (wx) sin(my), uz(z,y) = —n cos(nz) sin(rz) sin®(7y), (2.50)

the Herrmann pressure is zero everywhere on 2. In each case we discretize this problem
using the Taylor—Hood element and an initial Cartesian mesh and we apply our adaptive
procedure driven by the Poisson estimator described in Section [2.5.3] We compare the
Poisson estimators derived from different Bank—Weiser estimators and the residual esti-
mator.

As before, all the refinement strategies are achieving an optimal convergence rate no
matter the value of v. fig. shows the results for v = 0.3. We notice that almost all
the Poisson estimators derived from Bank—-\Weiser estimators have a very good efficiency.
The best estimator in this case is 7. closely followed by 7, 7°. and 5. Although the
residual estimator still performs the worst, it is sharper than in all the previous test cases. As
we can notice on fig. all the estimators are robust with respect to the incompressibility
constraint. All the efficiencies have slightly increased and some estimators (7. and 7)
that where a lower bound of the error previously are now an upper bound.

2.8.3 Human femur modeled using linear elasticity

In this test case we consider a linear elasticity problem on a domain inspired by a human
femur bone ]

The goal of this test case is not to provide an accurate description of the behavior of
the femur bone but to demonstrate the applicability of our implementation to 3D dimen-
sional goal-oriented problem with large number of degrees of freedom: the linear elasticity
problem to solve on the initial mesh, using Taylor-Hood element has 247,233 degrees of
freedom while our last refinement step reaches 3,103,594 degrees of freedom.

"The STL model of the femur bone can be found at https://3dprint.nih.gov/discover/3dpx-000168
under a Public Domain license.


https://3dprint.nih.gov/discover/3dpx-000168
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Figure 2.12: Nearly-incompressible elasticity (v = 0.3) problem with Taylor-Hood ele-
ments: efficiencies of the Poisson estimators derived from n{f‘j}’k* and other estimators on
the last mesh of an adaptively refined hierarchy.

k1 2 | 3 ] 4
0 [0.94[1.02]1.04] 1.1
1 | @ |077 |11 |[1.22 Thes | 2.47
2 | @ | @ |067|077 no, [ 1.13
3 | o | o | o |044 Nz | @

Figure 2.13: Nearly-incompressible elasticity (v = 0.499) problem with Taylor-Hood ele-
ments: efficiencies of the Poisson estimators derived from n’g;’k’* and other estimators on
the last mesh of an adaptively refined hierarchy.
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The 3D mesh for analysis is build from the surface model using the C++ library CGAL
[21] via the Python front-end pygalmesh. The material parameters, namely the Young’s
modulus is set to 20 GPa and the Poisson’s ratio to 0.42 (see e.g. [228]). In addition, the
load is given by f = (0,0,0), the Dirichlet data by up = 0 on I'p C T represented as
the left dark gray region of the boundary in fig. [2.14]and g the traction data is defined as
g = (0,0,0) on the center light gray region of the boundary and is constant on the right
dark gray region of the boundary g = (—10~7, —10~7,10~5). The femur-shaped domain
as well as the initial and last meshes are shown in fig. As we can see, the refinement
occurs mainly in the central region of the femur, where the goal functional .J focus. Some
artifacts can be seen as stains of refinement in the central region due to the fact that we
use the initial mesh as our geometry and on the left due to the discontinuity in the boundary
conditions.

In fig. [2.15] the primal solution is given by the couple (us,p1) and the dual solution by
(z2,k1). As we can notice and as expected, the weighted estimator n,, converges twice
as fast as the primal and dual estimators.

2.9 Strong scaling study

Finally, we provide results showing that our implementation scales strongly in parallel and
that for a large-scale three-dimensional problem this error estimation takes significantly
less time than the solution of the primal problem. In this section we use the new DOLFINx
solver [150] with the matching implementation of our algorithm.

We briefly discuss some aspects that are important for interpretation of the results.
For a given cell the computation of the Bank-Weiser estimator requires geometry and
solution data on the current cell and on all cells attached across its facets. So in a parallel
computing context, cells located on the boundary of a partition require data from cells
owned by another process. Both DOLFIN and DOLFINx support facet-mode ghosting
where all data owned by cells on a partition boundary that share a facet are duplicated by
the other process (ghost data). After the solution of the primal linear system the ghost data
is updated between processes, which requires parallel communication. After this update,
each process has a local copy of all of the data from the other rank needed to compute
the Bank—Weiser estimator, and so the computation of the estimator is entirely local to a
rank, i.e. without further parallel communication.

Because of this locality a proper implementation of this algorithm should demonstrate
strong scaling performance. Furthermore, it would be desirable that the error estimation
takes significantly less time than the solution of the primal problem even when using state-
of-the art linear solution strategies. The results in this section demonstrate that this is
indeed the case.

We solve eq. where  is the unit cube [0, 1]3, T'p = 92 and T'y = @. The data of
this problem are given by f(z,y, z) = 1272 sin(27z) sin(27y) sin(272) and up (x,y, z) = 0.
These interior and boundary data are chosen such that the solution u of eq. is given
by u(z,y, z) = sin(27x) sin(27y) sin(27z). We use continuous quadratic Lagrange finite
elements and the Bank-Weiser error estimation is performed using the pair V;3/V.2. The
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Figure 2.14: Femur bone linear elasticity problem with Taylor-Hood elements: on the top,
the three different regions of the boundary corresponding to different boundary conditions:
the left dark gray region is the non-zero Neumann boundary, the middle light gray region
is the zero Neumann boundary and the right dark gray region is the Dirichlet boundary. In
the middle, the initial mesh. On the bottom, the last mesh after several steps of adaptive
refinement.
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Nu/u|[Vuz|| + [|pa]]) (primal) @@= nu/l/(uz, p1)| (Wgo)
=@ N:/(2u||[VzZ:|| + ||k1]]) (dual)
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Figure 2.15: Femur bone linear elasticity problem with Taylor-Hood elements: conver-
gence curves of the primal, dual and weighted estimators respectively scaled by the norm
of the primal solution, dual solution and magnitude of the goal functional evaluated in the
primal solution.
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primal linear system matrix and right-hand side vector are assembled using standard rou-
tines in DOLFINx. The resulting linear system is solved with PETSc [42] using the conjugate
gradient method preconditioned with Hypre BoomerAMG algebraic multigrid [131].

The strong scaling study was carried out on the Aion cluster within the HPC facilities of
the University of Luxembourg [246]. The Aion cluster is a Atos/Bull/AMD supercomputer
composed of 318 compute nodes each containing two AMD Epyc ROME 7H12 proces-
sors with 64 cores per processor (128 cores per node). The nodes are connected through
a Fast InfiniBand (IB) HDR 100Gbps interconnect in a ‘fat-tree’ topology. We invoke jobs
using SLURM and ask for a contiguous allocation of nodes and exclusivity (ho compet-
ing jobs) on each node. DOLFINx and PETSc are built using GCC 10.2.0 with Intel MP!I
and OpenBLAS. We use DOLFINx through its Python interface. The problem size is kept
fixed at around 135 million degrees of freedom and the number of MPI ranks is increased
from 128 (1 node, no interconnect communication) through to 2048 (16 nodes, intercon-
nect communication) by doubling the number of nodes and ranks used in the previous
computation.

In fig. [2.16| we show the results of the strong scaling study. We show wall time against
MPI ranks and dof per rank for the primal linear system assembly, primal linear system
solve, and the error estimation. For error estimation we are measuring steps 2 through
5 of Section[2.4.7] Both the solve and estimation scale almost perfectly down to around
65 thousand dof per rank. The primal system assembly does not scale as well as the
estimation. This is because the primal system assembly is constrained by communication
overheads and memory bandwidth, whereas the Bank—\Weiser estimator computation is
fully local and has much higher arithmetic intensity, so has not yet hit bandwidth limits of
our system on the largest run. A further study (results not shown) using 96 MPI ranks per
node yielded lower wall times and better strong scaling for primal linear system assembly,
but the overall time for estimation and linear system solve increased and dominated any
gains made in assembly. Comparing linear system assembly and solve with estimation
time we can see that estimation is approximately one order of magnitude faster than solve
time.

2.10 Conclusions

In this paper we have shown how the error estimator of Bank—\Weiser, involving the solution
of a local problem on a special finite element space, can be mathematically reformulated
and implemented straightforwardly in a modern finite element software with the aid of au-
tomatic code generation techniques. Through a series of numerical results we have shown
that the estimator is highly competitive in accurately predicting the global total error and
in driving an adaptive mesh refinement strategy. Furthermore, the basic methodology and
implementation for the Poisson problem can be extended to tackle more complex mixed
discretizations of PDEs including nearly-incompressible elasticity or Stokes problems. We
have also shown the (strong) scalability of our method when implemented in parallel and
that the error estimation time is significantly lower than the primal solution time on a large
problem.
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Figure 2.16: Strong scaling study on the University of Luxembourg Aion HPC. Wall times
for primal linear system assembly, primal linear system solve and error estimation of a three-
dimensional Poisson finite element problem on the unit square, discretized with quadratic
elements. 1/1 triangle represents ideal strong scaling.
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Supplementary material

The two versions of the code can be found at
® https://github.com/jhale/fenicsx-error-estimation (DOLFINX version),
® https://github.com/rbulle/fenics-error-estimation (DOLFIN version).

A simplified version of the code (LGPLv3) used to produce the results in this paper is
archived at https://doi.org/10.6084/m9.figshare.10732421. A Docker image [152] is
provided in which this code can be executed.


https://github.com/jhale/fenicsx-error-estimation
https://github.com/rbulle/fenics-error-estimation
https://doi.org/10.6084/m9.figshare.10732421

Chapter 3

L? error estimation for the spectral
fractional Laplacian

This chapter is based on the following submitted research article:

An a posteriori error estimator for the spectral fractional power of the Laplacian,

R. B., Olga Barrera, Stéphane P. A. Bordas, Franz Chouly, Jack S. Hale.

Submitted to Computer Methods in Applied Mechanics and Engineering on February 14
2022,

Pre—print version on arXiv.

Contribution: conceptualization, formal analysis, investigation, methodology, software,
validation, visualization, writing — original draft, writing — review & editing.

Abstract

We develop a novel a posteriori error estimator for the L? error committed by the finite el-
ement discretization of the solution of the fractional Laplacian. Our a posteriori error estimator
takes advantage of the semi—discretization scheme using a rational approximation which allows
to reformulate the fractional problem into a family of non—fractional parametric problems. The
estimator involves applying the implicit Bank—Weiser error estimation strategy to each para-
metric non—fractional problem and reconstructing the fractional error through the same rational
approximation used to compute the solution to the original fractional problem. We provide
several numerical examples in both two and three—dimensions demonstrating the efficiency of
our estimator for varying fractional powers and its ability to drive an adaptive mesh refinement
strategy.

3.1 Introduction

Fractional partial differential equations (FPDEs) are now applied in a wide range of fields
[187] such as anomalous diffusion [65], [85) 108, [115] [206], electromagnetism and geo-
physical electromagnetism [62), [258], phase fluids [12, 20, [114], porous media [20, 83],
quasi—geostrophic flows [59] and spatial statistics [58, [180].

43



44 CHAPTER 3. ERROR ESTIMATION OF FRACTIONAL LAPLACIAN

Fractional models can reproduce non-local behavior with a small number of parameters
[32, 182]. This non-locality, although useful from a modeling perspective, is a challenge
for numerical methods since it naturally leads to large dense linear systems that can be
computationally expensive to solve.

In the last decade various numerical methods have been derived in order to circumvent
the main issues associated with the application of standard numerical methods to FPDEs,
the two main ones being the non-locality leading to dense linear systems and, for some
particular definitions of the fractional operator, the evaluation of singular integrals [12], [13].

We focus on discretization schemes based on finite element methods, other methods
can be found e.g. in [4], [158, 211]. Among the methods addressing the above numerical
issues, we can cite: methods to efficiently solve eigenvalue problems [85], multigrid meth-
ods for performing efficient dense matrix-vector products [12, [13], hybrid finite element—
spectral schemes [14], Dirichlet—-to—-Neumann maps (such as the Caffarelli-Silvestre exten-
sion) [28],[78, 196/, [134], 206/, [239], semi—groups methods [102} [103],[238], rational approxi-
mation methods [2}, [156], [167], Dunford-Taylor integrals [58, 60, 63, (64, 66, [71], 142, [161]
(which can be considered as particular examples of rational approximation methods) and
reduced basis methods [104), [105] [113].

Although we focus exclusively on the spectral definition of the fractional Laplacian, there
is no unigue definition of the fractional power of the Laplacian operator. The three most
frequently found definitions of the fractional Laplacian are: the integral fractional Laplacian,
defined from the principal value of a singular integral over the whole space R¢ [12, [13|
67, [78, [109], the regional fractional Laplacian, defined by the same singular integral but
over a bounded domain only [95] 115} 132, 197] and the spectral fractional Laplacian,
defined from the spectrum of the standard Laplacian over a bounded domain [14], [29], 143,
103|, [156, [189]. The different definitions are equivalent in the entire space R¢, but this
is no longer the case on a bounded domain [65, [115], 175, [181]. These definitions lead
to significantly different mathematical problems associated with infinitesimal generators of
different stochastic processes [115, [181].

Efficient methods for solving fractional problems typically rely on a combination of dif-
ferent discretization methods. For example, [60], which is also the foundation of this work,
combines a quadrature scheme for the Dunford—-Taylor integral representation of the spec-
tral fractional Laplacian with a standard finite element method in space. Both the quadra-
ture scheme and the finite element method induce discretization errors. Each of these
schemes is associated with its own discretization error. In order to achieve a solution
to a given accuracy while avoiding wasted computational time, these errors need to be
balanced.

A priori error estimation has been tackled for some definitions of the fractional Lapla-
cian, such as the integral Laplacian [7, 12, 14, [60, 65, [145] and the spectral fractional
Laplacian [28, 29, [43), 60, (189, 206]. Unlike the standard Laplacian equation, solutions
to the fractional Laplacian problems often exhibit strong boundary layers even for smooth
data, particularly when the fractional power is low. These singularities lead to computa-
tional difficulties and have to be taken into account using, for example a priori geometric
mesh refinement towards the boundary of the domain [7,, [44], 67, [71), [134], or partition of
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unity enrichments [70]. We emphasize that [60] contains already an a priori error analysis
in the L2 norm for the combined rational sum finite element method that we use in this
work.

A posteriori error estimation has also been considered in the literature on fractional
equations. A simple residual based estimator is proposed for the integral fractional Lapla-
cian in [12]. A similar idea is used in the context of non-local variational inequalities in
[145] 205]. Gradient-recovery based a posteriori error estimation has been developed
in the context of fractional differential equations in [261]. In [65], 196] the authors present
another estimator, based on the solution to local problems on cylindrical stars, for the in-
tegral fractional Laplacian discretized using the Caffarelli-Silvestre extension. A weighted
residual estimator is derived in [133] in the same context.

To our knowledge, no a posteriori error estimation method has been derived for the
spectral fractional Laplacian, discretized using the rational approximation approach of [60].

3.2 Contribution

The main contribution of this work is the derivation of a novel a posteriori error estimator
for the combined rational finite element approximation of the spectral fractional Laplacian.
It is a natural a posteriori counterpart to the a priori results developed in [60].

Our work starts with the quadrature rule for the Dunford-Taylor integral proposed in
the seminal work [60]. This method, and other rational approximation—based discretization
methods, decompose the original fractional problem into a set of independent parametric
non-fractional problems. From this point we develop an associated set of independent
non—fractional a posteriori error estimation problems. We compute the Bank—\Weiser hi-
erarchical estimators [46] of the error between each non—fractional parametric problem
solution and its finite element discretization, then the fractional problem discretization error
is estimated by the sum of the parametric contributions via the rational approximation.

Our method leads to a fully local and parallelizable solution technique for the spectral
fractional Laplacian with computable L? error. Our method is valid for any finite element
degree (however, for the sake of brevity we do not show results with higher degree finite
elements) and for one, two and three dimensional problems [77].

We implement our method in DOLFINX [150], the new problem solving environment of
the FENICS Project [23]. A simple demonstration implementation is included in the sup-
plementary material. We show numerical results demonstrating that the estimator can
correctly reproduce the a priori convergence rates derived in [60].

Our newly developed error estimator is then used to steer an adaptive mesh refinement
algorithm, resulting in improved convergence rates for small fractional powers and strong
boundary layers.
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3.3 Motivation

Given a fractional power s in (0, 1) and a rational approximation Q% (\) of the function A~#,
it is possible to construct a semi—discrete approximation u,, of the solution « to a fractional
Laplace equation as a weighted sum of solutions (u;); to non—fractional parametric prob-
lems. Then, a fully discrete approximation of u is obtained by discretizing the parametric
solutions (u;); using a finite element method.

An a posteriori error estimator is then computed as the weighted sum of the Bank—
Weiser estimators of the error between each u; and its finite element discretization. As we
will see in the following, the resulting numerical scheme is simple and its implementation
in code is straightforward. Furthermore it maintains the appealing embarrassingly parallel
nature of rational approximation schemes [60), (142}, [156].

We remark on why we have chosen to use the Bank—\Weiser type error estimator, as
opposed to one of the many other error estimation strategies, e.g. explicit residual, equi-
librated fluxes, or recovery—type estimators (see [18], I90] and references therein). In the
case of fractional powers of the Laplacian operator, the resulting set of parametric prob-
lems consists of singularly—perturbed reaction—diffusion equations. It has been proven in
[249] that the Bank—Weiser estimator is robust with respect to the coefficients appear-
ing in these parametric problems when the error is measured in the natural norm. To
our knowledge, no such robustness has been established for the L2-norm for the Bank-
Weiser estimator. Nevertheless, our numerical experiments indicate that this does appear
to be the case. Moreover, the Bank—Weiser estimator can be straightforwardly applied
to higher—order finite element methods and higher—dimension problems. In addition, its
computational stencil is highly local which is particularly appealing for three—dimensional
problems see e.g. [77].

In this work we focus on error estimation in the L? norm, the estimation of the error in
the ‘natural’ fractional norm is the topic of ongoing work. For simplicity, we only consider
fractional powers of the Laplacian with homogeneous Dirichlet boundary conditions.

3.4 Problem statement

For any subset w of Q we denote L?(w) the space of square integrable functions on w and
(,-),, its usual inner product. Let H'(w) be the Sobolev space of functions with first order
weak derivatives in L?(w). The space H'(w) is endowed with the usual inner product
(Vo Vo) 20y (5 7) 20 We willomit the dependence in w in the subscripts when w = €.
We will make use of the notation dv/0n := Vv - n for the normal derivative of a smooth
enough function v. We denote H}(f2) the subspace of functions in H(Q) with a zero
trace on I".

We consider the family of eigenfunctions {1;}52, C Hg(Q) of the standard Laplacian
operator with uniform zero Dirichlet boundary condition on €2 as well as the correspond-
ing family of eigenvalues {\;}3°,. We assume the Laplacian eigenvalues are sorted in
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increasing order and we assume g € R is a lower bound of the spectrum
A< <A< A < (3.1)

The family {v;}22, is an orthonormal basis of L?*(Q2). For s in (0,1) we introduce the
spectral fractlonal Sobolev space H® and its natural norm

H* := {U € LQ(Q)v Z)‘f (U7¢i)2 < OO} ’ HUH%IS = ZAf (U7¢i)2 : (32)
i=1 i=1

Especially, for 0 < s < 1 we have H}(Q) = H(Q) C H¥(Q) C L*(Q2) =: H°(Q2) and the
norm ||-|lms coincide with ||-|| 2 when s = 0 and with |-| ;1 when s = 1.

3.4.1 The spectral fractional Laplacian

Let s be a real number in (0,1) and f be a given function in L?(£2). We consider the
following fractional Laplacian problem: we look for a function « such that

(=AYu=finQ, wu=0onT. (3.3)

The solution « of eq. is defined using the spectrum of the standard Laplacian [29]

U_ZA (f, b)) Ui (3.4)

For a data f in L?(12), the solution « belongs to H?* [29] and

l[ullpgze = N1 2 (3.5)

Using the spectrum of the Laplacian, we can derive a weaker formulation of eq. (3.3).
Multiplying eq. by test functions v in H*(2) and integrating over 2 gives

/(—A)suv = / fo, YveH(Q). (3.6)
Q Q
Now, considering the expansions of v and v in the basis {;}:°, we have
=3 N = Z N2 P (i, 45) = ((—A)S/Qu, (—A)S/%) .
i=1 i,j=1

Then, the solution « to eq. satisfies
((=2)72u, (-2)"20) = (f,v), Vo€ H(Q). 8.7)

The formulation eq. is weaker since it is valid for w in H*(£2) only while for eq. the
solution u belongs to H?*(). If we assume the solution to eq. to be in H* then the
formulations eq. and eq. are equivalent.
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3.4.2 Rational approximation

Our method relies on rational approximations of the real function A — A=* for s in (0,1)
and A > )\ for some fixed Ag > 0. We are particularly interested in an example provided
in [6Q]. This example is based on the following expression [60]

_ 2sin(7s)

+oo
P / Y (1+e¥A) 7 dy. (3.8)

™ —00

Then, the rational approximation is obtained from eq. by discretizing the integral on
the right-hand side with a trapezoidal quadrature rule,

A r(n) i 28Il gé) sl (1 e )\)_1 (3.9)
) ™) 7
where x > 0 is the fineness parameter and
7'1'2 71'2
M(k) = [4%2} , and N(k):= [4(1—5)/@2} , (3.10)

where [-] is the ceiling function.

This particular scheme has some advantages compared to other rational methods.
The coefficients (e?s)N , ‘and (e**)¥ _, are very easy to compute in comparison with
methods based on e.g. best uniform rational approximations (BURA) (see [2 156, [161]
162]). This scheme is also among the most efficient as shown in recent comparison stud-
ies (see [161], 243]). Various other examples of rational approximations can be found e.g.
in [2, 18, 141 156} 243]. We want to highlight again that the error estimation scheme de-
veloped later can be derived in the same manner regardless of the choice of the rational
approximation, as long as it leads to a set of well-posed non—fractional parametric prob-
lems.

It has been shown in [60] that Qf converges uniformly to A~* at an exponential rate as
k — 0. Especially, the approximation error is bounded by

A7 = QE (V)| < es(r), YA A, VR >0, (3.11)
with
2sin(ms) [ 1 1 1 -2
() = 2T 1] o), 12
I (K;) = |:28 + 2(1 - 8)A0:| |:1 o 6771-2/(2’{) + € (3 )

Asymptotically, e,() behaves like e=™/(2%) as 1 — 0.

3.5 Discretization

We combine the rational approximation eq. with a finite element method to derive a
fully discrete approximation of the solution u to eq. (3.7).
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3.5.1 Rational semi-discrete approximation

From eq. we can derive semi-discrete approximations of the solution u to eq.

by considering
N(k)

2sin(ms) 94l
Uy 1= ———— Z ey, (3.13)
T I=—M (k)

where the functions {u; }/Y | are solutions to the parametric problems: for each 7in [—M, N7,
find w; in H such that

(ug, w) + X (Vuy, Vw) = (f,w) Yw € H. (3.14)

It has been proved in [60] that the semi-discrete approximation wu, converges to « in
L?(9) at the same speed as Q%(\) converges to A~*. More precisely,

lu—uallps < s(W)flle, V> 0. 3.15)

where £4(x) is defined in eq. (3.12).

We can deduce from eq. the following two important points. Firstly, the rational
approximation u, converges to u exponentially fast in . Therefore, it does not constitute
a bottleneck in the rate of convergence when combined with a finite element method to
obtain a fully discrete approximation. Secondly, the right-hand side of eq. is techni-
cally an a posteriori estimation of the rational discretization error since ,5(x) and || || ;2 can
be calculated almost entirely using a priori known data. The only parameter that is not so
easily computable in €5 is Ag, a lower bound of the spectrum of the Laplacian on €. The
bound e4(x) can be optimized by taking Ay = A; but given its exponential convergence
rate, e5(x) will not drastically deteriorates if \y < A;. Moreover, precise guaranteed lower
bounds for A; could be obtained following e.g. [81],92].

3.5.2 Finite element discretization

In order to get a fully discrete approximation of u, we use a finite element method to
discretize the parametric problems eq. (3.74). Although it is not mandatory, we use the
same mesh and same finite element space for all the parametric problems. We discuss
this choice, and possible alternative strategies, in section[3.7]

Let 7 be a mesh on the domain 2, composed of cells 7 = {T'}, facets £ = {E} (we
call facets the edges in dimension two and the faces in dimension three), and vertices. The
mesh T is supposed to be regular, in Ciarlet’s sense: hy/pr < v, VI' € T, where hr is
the diameter of a cell T', pr the diameter of its inscribed ball, and ~ is a positive constant
fixed once and for all. The subset of facets that are not coincident with the boundary T’
(called interior facets) is denoted &;. Let nt and n~ in R? be the outward unit normals to
a given edge as seen by two cells '™ and T~ incident to a common edge E. The space
of polynomials of order p on a cell T" is denoted P, (1) and the continuous Lagrange finite
element space of order p on the mesh 7 is defined by

VP = {v, € H(Q),vp7 € Po(T)VT € T }. (3.16)
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We denote V{ the finite element space composed by functions of V? vanishing on the
boundary I'. For a given index [, the finite element discretization of eq. (3.14) reads: for
each lin [—M, NJ, find w;, in V" such that

(Ui p,vp) + Q2lm (Vuyp, Vup) = (f,vp), Yo, € Vop. (3.17)

Then, combining eq. (3.13) with eq. (3.17) we can give a fully discrete approximation of the
solution to eq.

. N(k)
U R Uy 1= M Z el y, (3.18)
Ry * TR l_iM( ) l7p. .

The computation of u, , is summarized in the top part of fig. [3.7}

3.6 Finite element discretization error analysis

According to what we have seen in section the rational approximation error, char-
acterized by ||u — u,|| 12 converges exponentially fast. Consequently, we will consider this
error to be negligible and assume that the rational scheme QF is precise enough (i.e. x is
small enough) so that

U U (3.19

Our goal is to bound the discretization error in the L? norm
= g pllpz > [lux — wepll 2. (3.20)

Since for any s € (0, 1), the discrepancy u — u,, , belongs to H* () C L?(Q2), the error can
be measured in the L2 norm for any value of the fractional power s.

3.6.1 Heuristics

Let us start with some heuristics motivating the derivation of our a posteriori error estimator.
The main idea is to derive a function e‘;WT that locally represents the discretization error in
the solution to the fractional problem (u, — uy,p);r 0N a cell T of the mesh. Thanks to the
rational approximation we notice that

2sin(ms) N 9slr
(Un — Uk )T = — E ™ (uy — upp) 7 (3.21)
I=—M

So we can use the framework proposed by Bank and Weiser in [46] to derive solutions
ey} such that

ey ~ (w — up)r, VIE[-M,NJ, VT €T. (3.22)
We obtain eEfVT using the rational approximation sum
e Zsin(rs) iv: e?5lF DY~ (u,, — U p)ir, VT €T. (3.23)
; J ;

I=—M
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Finally, we can estimate the L? error on the cell T by taking the norm of the function €2,

lerrllz2ry & llue — tnpll2er)- (3.24)

These heuristics are summarized in fig. [3.7]

We would like to emphasize that the Bank—\Weiser estimator is not the only possible
choice. Infact, the Bank—Weiser estimator could be replaced with another estimator based
on the solves of local problems, such as e.g. the one used in [206].

3.6.2 A posteriori error estimation

Let us now derive our a posteriori error estimation method more precisely. As mentioned
in the last subsection, this estimator is based on a hierarchical estimator computed from
the solves of local Neumann problems on the cells and introduced for the first time by Bank
and Weiser in [46].

Let T be a cell of the mesh. We make use of the following local finite element spaces

V2 = {v,1 € Pp(T), vpr =0in (Q\T)U (T NON)}. (3.25)

Let us now consider two non—-negative integers p4 and p_ such that p, > p_ > 0 and
Lr : Vi* — VI~ the local Lagrange interpolation operator. We introduce the local
Bank-Weiser space, defined by

VPY = ker(Lr) = {vp, 1 € VI, Lo(vp, 1) =0} . (3.26)

The local parametric Bank—\Weiser problem associated to the parametric problems eq. (3.14)
and eq. (3.17) reads

/€?¥Ubw+e2sm/ve /Tl o + 5 Z /JZ,E'U%Wa vopt € VP (3.27)

EEBT

where r; 7 and J; ¢ are defined as follow:

0
rir = fir = wppp + € Augpp,  and  Jyp = e [[ w,pﬂ : (3.28)
on | g

The solution el in V2" is the local parametric Bank-Weiser solution. More details about
the computatidn and implementation of the Bank—\Weiser solutions can be found in [46,[77].

Then, we derive the local fractional Bank—Weiser solution by summing the local para-
metric Bank—Weiser solutions into the rational approximation sum

2sin(7s) al
bw . 2slk _bw
e = Z e ey (3.29)
I=—M
The local fractional Bank—Weiser estimator is then defined as the L2 norm of this local

solution
o = [lel |l 2 (r)- (3.30)
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Figure 3.1: Summary of the computation of the fractional solution approximation and of
the fractional Bank—Weiser solution.

The global fractional Bank—\Weiser estimator is then defined by

2 2
nve = - (3.31)
TeT

3.7 Adaptive refinement

One of the main applications of a posteriori error estimation is to drive adaptive mesh refine-
ment algorithms. When the error is unevenly spread across the mesh, refining uniformly
is a waste of computational resources leading to sub—optimal convergence rates in the
number of degrees of freedom. This problem is compounded for computationally expen-
sive problems like fractional problems. Moreover, it is known that fractional problems often
show a boundary layer behavior, the discretization error is consequently large in a local-
ized region near the boundary [8, [72} 243]. This problem has been tackled using graded
meshes that are refined near the boundary based on a priori or a posteriori considerations
[65] 196, [145] [189]. As expected, the use of graded meshes improves the convergence of
the methods.
Adaptive refinement algorithms are based on the loop

«.. — Solve — Estimate — Mark — Refine — - --

In this work we are concerned with developments in the modules solve and estimate. We
are using totally standard approaches, namely the Dorfler algorithm [118] for the mark
module and the Plaza—Carey algorithm [209] for the refine module.

Rational approximation methods have the advantage of being fully parallelizable due
to the independence of the parametric problems from each other. Similarly, the local a
posteriori error estimation method we have presented earlier is also parallelizable since the
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Choose a tolerance € > 0

Choose an initial mesh 7,,—g

Choose « such that es (k)| |2 < e

Generate the rational approximation Q% coefficients
Initialize the estimator % =& + 1

While 72"

Initialize the local Bank-Weiser solutions {eP%.}r to zero
Initialize the solution u, , to zero
For each parametric problem [ € [-M, NJ:
Solve eq. on 7, to obtain u;,
Add (2 sm(ﬂ's)/ﬂ's) 25U8 1 10 U
For each cell T of T,:
Solve eq. 1' to obtain ¢
Add (2sin(7s)/rs) e?s® bw to 62“1[
Compute the L? norms of {e}" }T to obtain {n%}r
Take the square root of the sum of {1"%.*}; to obtain 7™

If v < e
Stop the loop
Return w,, , and n2"
Mark the mesh using {72%}r
Refine the mesh and replace Trn BY Tht1

Figure 3.2: Error estimation and adaptive refinement algorithm outline in pseudo—code.

computation of the local Bank—\Weiser solutions on the cells are independent from each
other. Our error estimation strategy combines these advantages and is fully parallelizable
both with respect to the parametric problems and local estimators computation. An exam-
ple of error estimation and adaptive refinement algorithm based on our method is shown
in fig.

The algorithm presented in fig. [3.2]is based on three loops: one While loop and two
For loops. The While loop is due to the adaptive refinement procedure and can not be
parallelized. However, the two For loops are fully parallelizable and this parallelization can
be highly advantageous for large three—dimensional problems.

Note that there is no guarantee that the mesh we obtain at the end of the main While
loop in fig. [3.2]is optimal for all the parametric problems. For some of the parametric solu-
tions without boundary layers the mesh is certainly over—refined. An alternative approach
could be to compute the L? norms of the parametric Bank-Weiser solutions e}’vf in order to
derive parametric Bank—-Weiser estimators and refine the meshes mdependently for each
parametric problem. This would require the storage of a possibly different mesh for each
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Frac. power || 0.1 0.3 05 0.7 09
Num. param. prob. || 408 176 149 176 408

Table 3.1: Number of parametric problems solved for each fractional power.

parametric problem at each iteration. More importantly, this would mean summing para-
metric finite element solutions coming from different and possibly hon—-nested meshes.
Properly addressing this question is beyond the scope of this study. Nonetheless, we give
some hints the numerical section section [3.9.11

3.8 Implementation

We have implemented our method using the DOLFINX finite element solver of the FEnICS
Project [23]. Each parametric subproblem is submitted to a batch job queue. A distinct MPI
communicator is used for each job. We use a standard first—order Lagrange finite element
method and the resulting linear system is solved using the conjugate gradient method
preconditioned using BoomerAMG from HYPRE [131] via the interface in PETSc [42]. To
compute the Bank—\Weiser error estimator for each subproblem we use the methodology
outlined in [77] and implemented in the FENICSx-EE package [74]. For every subproblem
the computed solution and error estimate is written to disk in HDF5 format. A final step,
running on a single MPI communicator, reads the solutions and error estimates for all sub—
problems, computes the quadrature sums using axpy operations, defines the marked set
of cells to be refined using the Dorfler algorithm [118], and finally refines the mesh using
the Plaza—Carey algorithm [209)].

A more complex implementation using a single MPI communicator split into several
sub—communicators would remove the necessity of reading and writing the solution and
error estimate for each subproblem to and from disk. However, in practice the cost of
computing the parametric solutions massively dominates all other costs.

3.9 Numerical results

First, we need to choose the value of x in order to guarantee that the rational approximation
error is negligible. From eq. (3.15), we know a bound that depends on s, Ao and | f| 2.
However, in all our test cases we know that \j = A1 = 1is alower bound for the spectrum
of the Laplacian and the data f is always chosen such that || f||zz = 1. It turns out that
taking = 0.26 ensures that |lu — u,||z2 < 1078, no matter the choice of s € (0,1).
This choice leads to a different number of parametric problems to solve for each fractional
power, these numbers are detailed in table[3.1]

When analytical solutions are known, we provide the efficiency indices of the Bank—
Weiser estimator, defined by n2 /||u, — e || 2.
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3.9.1 Two-dimensional product of sines test case

We solve eq. on the square 2 = (0, 7)? with data f(z,y) = (2/7)sin(x) sin(y). The
analytical solution to this problem is given by u(z,y) = 27%(2/7) sin(z) sin(y). Moreover,
the analytical solutions to the parametric problems eq. are also known u;(z,y) = (1+
2e2%)~1(2/m) sin(x) sin(y). The problem is solved on a hierarchy of structured (triangular)
meshes. For this test case the solution w shows no boundary layer behavior, therefore
adaptive refinement cannot improve the convergence rate. Consequently we only perform
uniform refinement on this case. As we can see on fig. the Bank-Weiser estimator
tends to be very accurate when the mesh is fine enough when s = 0.3 and s = 0.7. In
fact, its accuracy is robust with respect to the fractional power. The efficiency indices are
computed by taking the average of the ratios for the five last meshes of the hierarchy and
are shown for various fractional powers in table 3.3

Theorem 4.3 from [BQ] gives a convergence rate for the finite element scheme depend-
ing on the elliptic regularity index a of the Laplacian over €2, on the fractional power and on
the regularity index § of the data f. Since Q2 is convex the elliptic “pick—up” regularity index
« can be taken to be 1 [65] and since f is infinitely smooth the coefficient § can be taken as
large as wanted. Consequently, Theorem 4.3 in [60] predicts a convergence rate of dof *
for this test case. The convergence rates we measure in practice, shown in table[3.2] are
coherent with this prediction. These rates are computed from a linear regression fit on the
values obtained on the five last meshes of the hierarchy.

Parametric problems discretization error

Since we know the analytical solutions to the parametric problems in this case, it is possible
to compute the exact parametric discretization errors |ju; —u; 1 || 2, for each I € [—-M, N].
It is possible then to investigate the consequences of using the same mesh for all the para-
metric problems. In fig. [3.4] we have plotted the exact parametric errors after five steps of
(uniform) refinement. As we can notice, the same mesh leads to a wide range of parametric
errors values, especially for fractional powers s close to 1. These errors are particularly low
for high values of the index I, when the diffusion part of the operator is dominant. However,
when [ becomes less than zero, i.e. when the reaction part is dominant the mesh seems to
have an equal effect on the parametric errors. As expected these results suggest that the
method can be optimized by using different meshes depending on [. In particular, coarser
meshes would be sufficient for high values of [. These results are obtained for uniform
refinement, further investigations deserve to be carried out for adaptive refinement.

As we explained earlier, using a different hierarchy of meshes for each parametric prob-
lem may be computationally advantageous, at the expense of ease of implementation.
Several hierarchies of meshes would need to be stored and, in the case of adaptive mesh
refinement, interpolation between possibly non-nested meshes would be required in or-
der to compute the fractional solution . To avoid these complications when adaptive
refinement is used, we propose the following:

1. use the same hierarchy of meshes for all the parametric problems but not the same
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Figure 3.3: Two-dimensional product of sines test case: the Bank-Weiser estimator
nE™ in solid blue line is compared to the exact error in dashed light blue line for s = 0.3 and
s =0.7.

Frac. power || 0.1 0.3 0.5 0.7 0.9
Estimator || -0.92 -0.97 -0.99 -1.00 -1.00
Exact error || -1.00 -1.00 -1.00 -1.00 -0.94

Table 3.2: Two-dimensional product of sines test case: convergence rates of the
Bank-Weiser estimator and of the exact error for various fractional powers.

mesh. Some parametric problems might be solved on coarser meshes from the
hierarchy and others on finer ones. This would allow to keep only one hierarchy
of meshes stored in memory. Moreover, it would avoid the interpolation between
non-nested meshes, since meshes from the same hierarchy are always nested.

2. selectively refine the mesh hierarchy: estimate the error globally for each parametric
problem (this can be done using the local parametric Bank—\Weiser solutions) and
mark the parametric problems for which a finer mesh is required, using e.g. a marking
algorithm similar to Defiler’s marking strategy.

Frac. power | 0.1 0.3 05 0.7 09
Est. eff. index H 0.86 1.16 1.08 0.96 0.78

Table 3.3: Two-dimensional product of sines test case: efficiency indices of the Bank-
Weiser estimator for various fractional powers.
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Figure 3.4: Two-dimensional product of sines text case: variation of the exact para-
metric errors with respect to the index | € [—M, N] for three different fractional powers.

Frac. power || 0.1 0.3 0.5 0.7 0.9
Estimator || -0.56 -0.60 -0.63 -0.65 -0.66
Exact error || -0.69 -0.69 -0.69 -0.69 -0.69

Table 3.4: Three-dimensional product of sines test case: convergence rates of the
Bank—-Weiser estimator and of the exact error for various fractional powers.

3.9.2 Three-dimensional product of sines test case

This test case is the three—dimensional equivalent of the last test case. We solve eq.
on the cube Q = (0,7)3 with data f(z,y,2) = (2/m)%?sin(z)sin(y) sin(z). The analyti-
cal solution to this problem is given by u(z,y, z) = 37°(2/m)3/?sin(z) sin(y) sin(z). The
problem is solved on a hierarchy of uniformly refined Cartesian (tetrahedral) meshes. As for
the two—dimensional case, the solution u shows no boundary layer behavior and adaptive
refinement is not required. For the same reasons as for the two—-dimensional case, The-
orem 4.3 from [60] predicts a convergence rate of dof™ 2/3 for the finite element scheme.
fig. shows the values of the Bank—Weiser estimator and of the exact error (computed
from the knowledge of the analytical solution) for s = 0.3 and s = 0.7. As in the two—
dimensional case, the efficiency indices are relatively robust with respect to the fractional
powers. They are shown for various fractional powers in table and are computed by
taking the average of the indices from the three last meshes of the hierarchy. As we can
see, the Bank-Weiser estimator efficiency indices for this three—dimensional case are not
as good as in the two—dimensional case. We have already observed this behavior for non-
fractional problems [76]. We can notice that the convergence rates, given in table
are coherent with the predictions of Theorem 4.3 from [60]. The convergence rates are
computed from a linear regression on the values computed from the three last meshes of
the hierarchy.
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Figure 3.5: Three—-dimensional product of sines test case: the Bank—-Weiser estimator
nE™ in solid blue line is compared to the exact error in dashed light blue line for various
fractional powers.

Frac. power | 0.1 0.3 05 0.7 09
Est. eff. index H 2.12 38.20 3.08 2.77 2.45

Table 3.5: Three-dimensional product of sines test case: efficiency indices of the
Bank—Weiser estimator for various fractional powers.

3.9.3 Two-dimensional checkerboard test case

We solve the problem introduced in the numerical results of [60]. We consider a unit square
Q = (0,1)% with data f : Q — R given for all (z1,22) € Q by

1, if (z1 — 0.5)(2z2 — 0.5) > 0,

. (3.32)
0, otherwise.

f(x1,22) :{

The data f € H'/2-¢(Q) for all e > 0. So in Theorem 4.3 of [60] the index § < 1/2 and
since () is convex again « can be chosen equal to 1. Then, the predicted convergence
rate (for uniform refinement) is In(v/dof)dof ~* with

1, if s > 3,

= 3.33
b {s+}1, otherwise. (8.38)

The predicted (if we omit the logarithmic term) and calculated convergence rates for differ-
ent choices of s are given in table[3.6] As we can see on this table, the convergence rates
for the Bank-Weiser estimator is globally coherent with the predictions. fig. [3.6]shows that
adaptive refinement improves the convergence rate for small fractional powers. This is ex-
pected, the deterioration in the convergence rate is due to the boundary layer behavior of
the solution that is getting stronger as the fractional power decreases. When the fractional
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Figure 3.6: Two-dimensional checkerboard test case: for each fractional power we
compare the values of the Bank-Weiser estimator n°" when uniform refinement is per-
formed (dashed light lines) and when adaptive refinement is performed (solid lines).

power is close to 1, the solution behaves like the solution to a non—fractional problem for
which adaptive refinement is no longer needed. This can be seen on fig.[3.7] after 10 steps
of adaptive refinement, the mesh associated to fractional power s = 0.9 is almost uniformly
refined while the meshes associated to s = 0.5 and s = 0.1 show strongly localized re-
finement. This explains why in fig. [3.6] we barely see any improvement in the convergence
rate when the mesh is adaptively refined compared to uniformly refined when s > 0.7.

3.9.4 Three-dimensional checkerboard test case

This test case is the three—dimensional version of the above checkerboard problem. We
solve eq. on the unit cube Q = (0,1)3, with data f such that

1, if(z1 —0.5)(z2 —0.5) >0and (z3 —0.5) <0,
flx1,z9,23) = ¢ 1, if (x1 —0.5)(z2 — 0.5) < 0and (x3 — 0.5) > 0, (3.34)
—1, otherwise.

The finite element solution u; and the corresponding mesh after six steps of adaptive
refinement are shown in fig.[3.8|for the fractional power s = 0.5. As for the two—dimensional
case, f € HY 2=¢(Q) for all e > 0. Consequently, once again Theorem 4.3 of predicts
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Frac. power || 0.1 0.3 0.5 0.7 0.9
Theory -0.35 -0.55 -0.75 -0.95 -1.00

Est. (unif) | -0.35 -0.55 -0.76 -0.95 -1.00
Est. (adapt.) || -0.65 -0.84 -0.93 -0.97 -1.01

Table 3.6: Two-dimensional checkerboard test case: convergence slopes of the Bank-
Weiser estimator for uniform refinement and for adaptive refinement compared to the val-
ues predicted by for various fractional powers.

Figure 3.7: Two-dimensional checkerboard test case: meshes obtained after 10 steps
of adaptive refinement steered by the Bank-Weiser estimator for s = 0.1, s = 0.5 and
s = 0.9 from left to right.
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Figure 3.8: Three-dimensional checkerboard test case: finite element solution and
mesh after six steps of adaptive refinement when s = 0.5. The unit cube domain (0,1)3 is
truncated by the three planes passing through the point (0.25,0.25,0.25) and orthogonal
to the vectors (1,0,0), (0,1,0) and (0,0, 1) respectively.

Frac. power || 0.1 0.3 0.5 0.7 0.9
Theory -0.283 -0.37 -0.50 -0.63 -0.67

Est. (unif.) || -0.24 -0.38 -0.52 -0.62 -0.67
Est. (adapt.) || -0.33 -0.46 -0.55 -0.65 -0.68

Table 3.7: Three—dimensional checkerboard test case: convergence slopes of the
Bank—Weiser estimator for uniform refinement and for adaptive refinement compared to
the values predicted by for various fractional powers.

a convergence rate (for uniform refinement) equal to In (dofl/ 3) dof~2A/3 with A given by

eq. (3:33).

Once again, if we omit the logarithmic term, the predicted and calculated convergence
rates are given in table[3.7] As in the two—dimensional case, the convergence rates of the
Bank-Weiser estimator are globally coherent with the predictions and the boundary layer
behavior becomes stronger as the fractional power decreases leading to poorer conver-
gence rates. section[3.9.4]shows the values of the Bank-Weiser estimator for uniform and
adaptive refinement and for several fractional powers.
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Figure 3.9: Three-dimensional checkerboard test case: for each fractional power we
compare the values of the Bank-Weiser estimator n°" when uniform refinement is per-
formed (dashed light lines) and when adaptive refinement is performed (solid lines).
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3.10 Concluding remarks

In this work we presented a novel a posteriori error estimation method for the spectral frac-
tional Laplacian. This method benefits from the embarrassingly parallel character of both
the Bank—Weiser error estimator and the rational approximation methods, thus keeping
the appealing computational aspects of the underlying methodology in [60]. Here are two
important points we want to make to conclude this paper. First, the Bank-Weiser estima-
tor seems to be equivalent to the L? exact error at least when structured meshes are used
and when the solution u is smooth. Second, adaptive refinement methods drastically im-
proves the convergence rate compared to uniform refinement for fractional powers close
to 0.

Finally, we give some future directions that we think are worth considering. More nu-
merical tests could be performed, especially for higher order elements and/or using variants
of the Bank—Weiser error estimator as considered in [77].

We would like also to study the derivation of an algorithm that allows to use different
meshes to discretize the parametric problems in order to save computational time, as
explained in section (3.9.1

The a posteriori error estimation of the error in the “natural” norm of the problem i.e. the
spectral fractional norm defined in eq. is another extension of this work that is worth
to consider.

The replacement of the Bank—\Weiser estimator by an anisotropic a posteriori error
estimator would improve the convergence rate even further in case of boundary layers,
see e.g. [43,[134],

Another interesting extension would be to test our method on fractional powers of other
kinds of elliptic operators, following [60], on another definition of the fractional Laplacian
operator [67] and/or other boundary conditions, following [29].
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Chapter 4

Convergence of a rational
approximation method

This chapter is original and not based on any submitted or published articles.

Abstract

We propose a novel convergence result for a particular rational approximation method
based on a Dunford-Taylor integral introduced in [60]. Thanks to this new result we improve
the convergence result [66, Theorem 3.2] of a semi—discretization method of the solution to a
fractional Laplacian equation based on this rational approximation. We show the exponential
convergence rate of the method while alleviating the data regularity assumption. Finally, we
propose a conjecture on the existence of a rational approximation method allowing to further
improve this convergence result and provide a numerical study suggesting that the method from
|60] does not satisfy the assumptions of the conjecture.

4.1 Introduction

In [6Q], a method to solve fractional Laplacian equations is derived, based on a Dunford-
Taylor integral representation of the function A — A® (for s € (0,1)). The discretization
consists in the combination of a quadrature rule, leading to a rational approximation, with
a finite element method. The fractional problem is then reformulated into a family of non—
fractional parametric reaction—diffusion problems that can be discretized and solved inde-
pendently using the finite element method.

Originally proposed for fractional power of elliptic operators, this method has been ex-
tended to other kind of equations such as, parabolic equations involving fractional elliptic
operators [63], space-time fractional parabolic equations [64], equations based on regu-
larly accretive operators [66] and integral fractional Laplacian equations [67].

A convergence result for the scalar rational approximation method is established in
[60, Lemma 3.4], showing the exponential convergence rate of the method. From this
lemma, convergence results for the semi—discrete rational approximation of the solution to

65
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a fractional Laplacian equation are proposed in [60, Theorem 3.5] and in [61, Theorem 7.1]
for the L? norm and for a fractional Sobolev norm respectively. These results hold under
the assumption that the data of the fractional equation is regular enough to belong to a
fractional order Sobolev space.

4.1.1 Contribution

In this chapter we propose a novel convergence result (Lemma [1) for the scalar rational
approximation method introduced in [60]. From this lemma a novel convergence result for
the rational approximation of the solution u in a fractional Sobolev norm is derived (The-
orem [2) . This result shows the exponential convergence rate of the method introduced
in [60] under a weaker regularity assumption on the input data, compared to [61, The-
orem 7.1]. Finally, we make the conjecture of the existence of a rational approximation
method satisfying a stronger convergence assumption whose would improve our results
and simplify the proofs.

4.2 Problem statement

Let ©2 be an bounded open domain of R (d = 1, 2 or 3), with polygonal/polyhedral bound-
ary denoted by I' := 9Q. We denote L?(2) the Lebesgue space of square integrable
functions on Q and (-,-) and ||-|| ;2 its usual inner product and norm. We denote H()
the usual Sobolev space of order 1 and H}(f2) the subspace of functions with a trace
vanishing on T'. We denote (V-, V-) and |-| ;1 the usual inner product and norm of H} ().

Let {(:)2, ()2} C L2(Q) x RT* be the spectrum of the standard Laplacian op-
erator with uniform zero Dirichlet boundary condition on €2, where the eigenvalues (\;)5°,
are sorted in non—decreasing order. The family {«;}3°, is an Hilbert (orthonormal) basis of
L?(9). For s in [~1, 1] we introduce the spectral fractional Sobolev space [65]

H*(Q) := {v:ZUﬂm, vi € RVie N*: Z)\fv?<oo}, (4.1)

=1 i=1

of natural norm -
vl =) Aoy, (4.2)
=1

In particular, when s € [0, 1] we have the following spaces inclusion H*(Q2) € L?(2) and
the coefficients v; of v € H*(Q2) are given by v; = (v, ;) fori € N*. For s € [0, 1], the space
H~%(Q) is the dual of H*(Q2) [65]. When s € [—1, 1] the space H*(2) can be characterized
in terms of other fractional Sobolev spaces, see e.g. [29, 65, [181]. In particular, when
—1 < s < 1 we have the following sequence of spaces inclusions

H'(Q) C H*(Q) CH (). (4.3)

In addition, for s = 0 (resp. s = 1), H°(Q) = L%(Q2) (resp. HY(Q) = H}(22)) and the norm
||-||lms coincide with the norm ||-|| 2 (resp. |-|g1).
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4.2.1 The spectral fractional Laplacian

Let s be a real number in (0,1) and f be a given function in H?(Q) for § € [-1,1], of
coefficients (fl) C Rsuch that f = Y2, fii. We consider the following fractional
Laplacian problem we seek a function « such that

(—AYu=finQ, u=0onT. 4.4)

The solution « of eq. is defined using the spectrum of the standard Laplacian [29],
wi= YA fiahi. (4.5)
=1

Then u € H25+°(Q) and in particular,

[llp2ss = [f]lms- (4.6)

We can derive an equivalent formulation of eq. {4.4). Multiplying eq. by test func-
tions v in H*(£2) and integrating over 2 gives

/(—A)suv:/fv, Vv € H*(Q). 4.7)
Q Q

Now from the expansions of u and v in the basis {v;}5°; we obtain

:i)\fum—Z)\sm X2 (i, 1)) = ((—A)S/QU,(_M/%). (4.8)
=1

4,j=1

Then, the solution u to eq. satisfies
((=2)72u, (~a)"2) = (fv), Vo e H(Q). 4.9)

Conversely, if u satisfy eq. (4.9), then using the decompositions of u, v and f in the
basis (1;);-> we obtain

which is equivalent (by definition) to eq. (4.4).

4.3 Rational semi-discrete approximation

The method to derive a semi—discrete approximation to the solution u to eq. relies on
a rational approximation to the real function A — A= for s in (0,1) and A > g for some
fixed A\g > 0. In [6Q], the following integral representation is derived from the Balakrishnan’s
formula [41]

™

2si Foo _
Aszsm(”)/ > (1+e¥ )7 dy. (4.11)

—0o0
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When this integral is discretized using a rectangular quadrature rule, it is possible to derive
the following rational approximation

N
2 si ~1
A QN () = ’“1:(”5) N el (1 + 2 A) : (4.12)
I=—N

where k = 1/v/N.

Various other examples of rational approximations can be found e.qg. in [2, 3,141}, [156]
243]. Comparisons between different rational approximation schemes can be found in
98, 99, [161], [243].

From eq. we can derive the semi-discrete approximation to the solution u to
eq. . We denote ugn the semi-discrete approximation to u, defined by

2k sin(7s) N

2slk
= AT 413
UQN - zE—Ne ug, (4.13)

where the functions {u;}Y._ 5 are the solutions to the parametric problems: for each  in
[-N, NJ, find v in H} such that

(ug, w) + 2% (Vay, Vi) = ((—A)S/Qu,(—A)S/Qw) = (fiw), YweH.  (4.14)

The function ugn is not fully discrete. A fully discrete approximation to u could be obtained
e.g. by discretizing the parametric problems eq. {4.14) using finite element methods.

4.4 Convergence of the rational approximation

In this section we study the convergence of the rational approximation defined in eq. (4.12).
In particular, we show a convergence result slightly different from [60, Lemma 3.4] where
we explicit a dependence of the upper bound in A. From this novel convergence result
we deduce a new convergence result of the semi-discrete approximation ugy defined in
eq. (4.13) to the solution w. This convergence result extends the result [64, Theorem 7.1].

4.41 Convergence of the scalar rational approximation

The result in [60, Lemma 3.4] shows that Q2 (\) converges uniformly to A=* at an expo-
nential rate. In this study we establish a different convergence property for the rational
approximation, given by the following lemma.

Lemma . Let sbein (0,1), oin [0,s) and Ao > 0. Then,

A7 = QY (V] < A5, (), VA € [N, +00), (4.19)
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where e, (N) is given by

_ 2sin(rs) 2] 7F e (T*/2VN A7 Q2(s—)VN  2(0—s)VN

+(N) : + +
eo(N) m sin(rrs) (1 _ e—(w?ﬂwﬁ) 2(1 - s) 2(s — o)
(4.16)
Especially,
N= 0O 2max(s—1,0—5)vVN 417
gol )—N_H_me . 4.17)

Proof. We proceed as in [60], Section 3.3] and base our proof on Theorems 2.20 and 2.21
of [184]. Let s € (0,1) and Ao > 0. Let D be the infinite strip of the complex plane defined
by

D :={z € C,|Im(2)| < w/4}. (4.18)

For A > X\ and z € D, we denote gy (z) := e** (1 4 e** A)_l. According to eq. and
eq. (4.12), the rational approximation error can be written

s 2sin(7s +eo al
- ¥ = EE g ay-n 3 )|, @9
e I=—N
where k := 1/v/N. Thus, we have
\)\*S—QN(A)\<M /W (y) dy — io (k) (4.20)
s S - . a\\y) ay ’il:_oogk K .
400 —N-1
+le > aalr)|+ |k Y galik) )
I=N+1 l=—o0
Let us now bound the three terms on the right hand side. We denote
+00 +o00
Bim|[ o dy-x 3 o), @.21)
- l=—00
+oo
By = |k Z a(lK)|, (4.22)
I=N+1
—N-1
Bs := |k Z a(lK)]|. (4.23)
l=—o0

We start with B;. By [184, Theorem 2.20], if g, is analytic in D and, for some 0 <
a < 1, satisfy

w/4
[ s imian= g (=) .24
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and

+oo
N(gx, D)= lim {/ lgx(z —in)| + |gx(z + in)| dx} < 400, (4.25)
n—(m/4) —o0

then we have

o = N(nD)
- —K Y ) —n2/(4r)
By = ‘/oo ax(y) dy nli_oo a(lr)| < 3 sinh (72 (4r)) e . (4.26)

Let us check that the function g satisfies all the hypotheses.
First, for any A > 0 the function g, is analytic in D as a product of analytic functions in
D. Second, let us check eq. (4.24) for x > 0. The function g can be bounded as follow

lga(z +in)| = 52|14 2@Him )| =L L 2= Dz )\, (4.27)

Thus, since s < 1, forany 0 < a < 1 we have

w/4 w/4 T
lga(x 4+ in)|dn < e2(s—Dz )\aldn = — 2Dz )\al = O (|z|. (4.28)
—7/4 —7/4 2 T—r+00

Equation (4.24) for x < 0 is satisfied if we notice that
lga(x + in)| < . (4.29)

Then, since s > 0, forany 0 < a < 1 we have

/4 ' /4 ) T
[ o vimins [ emap=Te e 0 (a g0

Finally, let us verify eq. (4.25). To do so, we compute this limit. The integrand in eq. (4.25)
is given by

972 — in)] +lga e -+ im)] = [ |1 4+ =i o[ (4.3
I ‘623(364—%'77)‘ ‘1 1 o2a+in) )\‘71 .
On the one hand we have,
‘625(:5—1'77)‘ _ 25T ’ezs(x—mm)‘ and ‘QQS(x—i-in)‘ _ 2T ’e2s(r+i7r/4)‘ . (4.32)
And on the other hand,
1A = Re (1407 0) o (14 27 )
= (1+ e cos(—277))\)2 + (eh sin(—2n))\)2

=14 2e* cos(—2n)\ + (eQm )\)2 (cos(—277)2 + sin(—277)2)
= 2e* cos(—2n)\ + 1 + ¥ \? (4.33)
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So for |n| < 7/4 we have
‘1 + 2(z=in) )\‘ > (1 + 2o=im/4) )\‘ : (4.34)

and similarly
’1 + 2(a+in) )\‘ > (1 + 2(atin/4) )\‘ . (4.35)

In consequence, using egs. (4.32), (4.34) and (4.35) we have
lgx(z — )| + [gx(z + in)| < [gr(z —im/4)[ + [gr(y + im/4)]. (4.36)
So the integrand of eq. (4.25) is bounded uniformly in n by |gx(z — in/4)| + |gx(z + im /4)|.

Let us show that |gx(x — im/4)| + |gx(z + im/4)| is integrable. First, following eq. (4.33)
and since A > 0 we have

= 2e* cos(+m/2) + 1+ 17 \2
=1 + e4m )\2

’1 4 2akin/1) /\‘2

2%(14—&3%)\)2.

So,

+o00 1

+00
[l =)+t i) de = [

—c0 —00

. -1
+ ‘1 +e?(:v+wr/4) )\‘ ) dx

o257 <‘1 + eQ(ZE—iW/4) )\‘7

+oo
< 2\/5/ e (1+e* )\)_1 dez. (4.37)
Using eq. (4.11) we get

“+o0o
/ lga(x —im/4)| + |ga(x + i /4)| dz < 2\/§L>\_s (4.38)

. 2sin(7s)

Since the integrand of eq. is bounded by eq. (#.36) uniformly in n and since this
bound is integrable eq. (4.38), by the dominated convergence theorem we have

+oo

N D) = [ lonte — im/a)] + an(o + im/ )] dy, (4.59)
Then, if we take o € [0, s] by eq. (4.38) and since A > Ao we obtain

A Y2

2sin(7s) = sin(7s)

™

N(gx, D) < 2V2 AJTEATO. (4.40)
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Consequently, by eq. (4.26) for o € [0, s] we have a bound for the first of the three terms
of eq. (4.20)

A ® 2
B < 0 AT e /R 4.41
! V/2sin(rs) sinh(72/(4k)) 4.4%)

Using the definition of the hyperbolic sine we have,

—m2/(4r) —m2/(4r) —72/(2k)
. e S 2e 2 _ 2e i ’ (4.42)
sinh(7w2/(4k))  e™/(4r) — e=7?/(4K) 1 — e—72/(2r)
S0, .
g—5 —7°/(2K)
B < a0 YA e (4.43)

sin(rs) (1 — e~/ (7))

We now bound the second term B,. We first establish the following useful inequality
forvin[0,1],y € Rand A > 0,

(1+eN) <A Ve, (4.44)
The inequality eq. is equivalent to
I+e¥A—Xe?>0 WyeR. (4.45)
However, if we take z = Ae2¥ then if z > 1 we have = > 2 so
1+xz—2">0. (4.46)

Now if 1 > x then 1 > z¥ and
14+z—2">0. (4.47)

So eq. (4.45) is true and eq. (4.44) follows.
From eq. (4.44) we deduce an upper bound for the function g,. For any y € R, we

have 1
ay) =Y (LA <AVt (4.48)

If we use eq. (4.48) with v = 1 and the fact that Ao < A\ we have for any s in (0, 1) and
any o in [0, ],

+o0o +oo
By =k Z loa(lk)| < A7k Z 25— ik
I=N+1 I=N+1

+oo
< )\70)\8_1143 e2(371)(N+1).'-€ Z eZ(S*l)lli ) (4.49)
=0

Since s < 1, the geometric series on the right hand side is convergent and its sum is

+o0 ( ) 1
2(s—1)lk __
12_0 e = 2GDn" (4.50)



4.4. CONVERGENCE OF THE RATIONAL APPROXIMATION

If we recall k = \/% and using the fact that ;& < L for all z # 0, we have

1—e®
e2(871)l€

By < ANk (5= DNk T

73

(4.51)

< V)01 2(s—1)Nk K
SATA e 2(1—s)k
)\U—l
<A° 0 2(s—1)/k ]
21— s) *
Bound of the last term Bs. For s in (0,1), using eq. (4.48) with v = ¢ in [0, s) we
have
—N-1 400
Bs=r > |gr) =5 Y [gA(=1k)]
l=—00 I=N+1

+o0 1
- K Z e—2sln (1 + 6—215 )\)

I=N+1

+oo
— 2(o—s)l
<A e E:Q(US)H.
I=N+1

Once again, the geometric series on the right hand side is convergent, of sum

“+oo

Z Q208 _ 1
T 1 p2(0—s)k"
I=N+1 1—e

We can bound Bs the same way we did for eq. (4.51) to obtain

1
By <\°° 2(c—s)/k )
3 2(s—o0) ¢

Then, using egs. (4.43), (4.57) and (4.54) in eq. (#.20) we obtain

A5 = QN (V)| < A%, (N),

with,
e (N) = 2sin(7rs) ‘W\/Q)\S—S eszg(zn) N )\8—1 62(571)\/ﬁ . eg(a,s)\/ﬁ
| (e a6
In particular,

(N)= O (en2minlimen—alVIV),

] |

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)
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When o = 0 we recover a result that is very similar to [60, Lemma 3.4]. In [60, Remark
3.1] a rational approximation sum with an improved convergence rate is derived from Qﬁ,v
by considering a non-symmetric sum. A similar thing can be achieved here.

In the proof of Lemma [1] if we replace QY by the following non-symmetric rational
approximation sum depending on a fineness parameter 0 < < < 1,

M(R)

A& _ 2k sin(ms) 2slR 20k ) !
Fi(N) = TR N e (1 te )\) , (4.58)
I=—M'(R)
with
G d M G 4.59
M{R)=|—-= )= |—= .
0= || 0= tom] . we
it is possible to obtain the following upper bound
‘)\_5 _ éﬁ(x)) <A (R), YA€ [ho,+oo), (4.60)
where,
- 2 Sin(ﬂ'S) T['\/i)\g_s )\8_1 1 _( 2/2)/~
= 4 "o (4.61
£ () s [sin(ﬂs) (1 —e=(/2)/x) + 2(1—s) * 2(s — o) ¢ ;@80
In particular,
5 (F) = —(n?/2)/&
Es(R) = %(30 (e > . (4.62)

In comparison, if we explicit the dependence of ¢, in k = 1/v/N in eq. l» we have

eq(k)= O (e_Qmin{l_S’S_”}/”>. (4.63)

rk—0

Note that due to the definition of M’ in eq. (4.59), the number of terms in the sum eq. (4.58)
gets larger and larger as o tends to s. Moreover, &, and M’ become infinite when o = s.

4.4.2 Rational approximation error analysis

The norm ||-||ms is @ natural choice to measure the approximation error. In the following
theorem, we give a bound for the error between a function v and its semi-discrete approx-
imation given by the rational sum Q¥ defined in eq. (4.12).

Theorem 2. Let s € (0,1), o € [0,s] and v be a function of H**=27 (). Let in addition
{v Y.\ be the solutions to the following problems: foreachl € [N, N, find v, € H} ()
such that

(o1, w) + 2% (Vuy, V) = ((—A)S/%, (—A)s/2w) . Ywe HYQ), (4.64)
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and N
2k sin(ms) 9slr
oy = Z e“*"Fyy,
=N
where k = 1/v/N. Then,
lim |[jv —vgn|[ms = 0.
N—+4o00

Moreover, if o < s we have

v —vowllas < eo(N)[vflpss—2e,
where e,(N) is defined in Lemma

Proof. The proof follows the plan here below:

75

(4.65)

(4.66)

(4.67)

1. we first reduce this problem to a scalar function approximation problem and we use

Lemma([d]for the case o < s,

2. we then treat the remaining case o = s independently.

1. Expanding the functions v, {v;}¥_ and vgn in the basis of eigenfunctions of the

Laplacian we have

U—Zvﬂ/)z, v = Zv“wz, and UQN—ZUQN Vi

From eq. (4.64) we deduce for each [ in [-N, N] and each i in [[1, +oo[

21 -1
Ui,i = (1 +e ® )\z> )\f?)i,

thus,
v ;i = QN ().

Then, using egs. (4.69) and {4.70) we have

lv — vy i = Z Af(vi —von ;)

Now, using Lemmal([T]we have, for any o € [0, s)

+oo

lo —voy lfe < eo(N)? D AP 72707 < eo(N)? [0 Fsa—20

i=1

(4.68)

(4.69)

(4.70)

4.71)

4.72)

(4.73)

(4.74)



76 CHAPTER 4. NORM APPROXIMATION

Consequently, when v € H3$729(Q),

i [lv = voyllms =0, (4.75)

at an exponential rate.

2. The bound of Lemma[lis not valid when o = s because of the bound on the term
Bs, defined in eq. {4.23). Thus, we have to find another bound for Bs.

First of all, fory > 0 and A > Ay we have

e2(1=s)y . 1
ify < 51In(A)
—y) < A 2 4.76
92 (=) {e—zsy otherwise. (4.76)
We have
ez(l_s)y 9
A (=y) < — and ga(—y) <e ™ Wy >0, (4.77)
and
e2(1_5)y 1
T < e — y < 5hn(A). (4.78)
So, if we denote M the largest integer such that M« < £ In()) thenif N < M
—N-1 400
By=r Y o) =r Y |ga(=lr)|
l=—00 I=N+1
M+1 +oo
=k Y (=8 +5 D lga(=1k)|
I=N+1 I=M+2
=51 + 5. (4.79)
The sum S; can be bounded using the same arguments as for eq. (4.51)
MA1 e2(178)ll{
S1 <k 3
I=N+1

2(1=s)(M—N+1)k
< rA-le2—svne L€ (1=s)( )

1 — e2(1-8)x

2(1—s)k
< kAL e2(179) ) (eQ(l—s)Nfi_62(1—5)(M+1)/1)

1 — e2(1-9)x

< 1 K 2(1-s)Nr _ g2(1—s)(M+1)r )
SA G s (e ¢ )

Now, since M < 5= In()) then e2(1=9Mr L \1=5 So

1
<)\ ! 2(1-s)Mk 2(1—s)k [ 2(1—s)(N—M—-1)k _
S <A 2(5—1)e e (e 1)

1 2(1—s)r 2(1—8)(N—M—1)r
< - _
SA A e (1 ¢ )

<A L e0-an, (4.80)
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For Ss, using the arguments of eq. (4.51) we obtain

+oo 1
So < K Z e—QSlH < e—QS(M-‘rl)H 27
I=M+2 5

However, since M is the largest integer smaller than - In(\), we have M +1 > 5= In(X).

Then,
1 1

A N (4.81)
2s 2s

Now, if N > M using again the arguments of eq. we have

Gy < o 25(M+1)

N

“+o0o “+oo
1
_ —2slk —2sNk
Bi=r Y lgA(-l)| < Y e eV (4.82)
I=N+1 I=N+1
and since N = M + k with k > 0,
—2s(M+k)x 1
Bg <e -—
2s
1
< —2sMk ,—2skk —
(] (] 95
1
AT e 2ske (4.83)
2s
; _ 1
Note, since k = TN
1 1 2
N<M <— N<2—ln()\) = N K 51n(>\) . (4.84)
K

Consequently, using egs. (4.80), (4.87) and (4.83) the term Bj is bounded by

—s 1L ,2(1-s)/VN 4 1| < (1 2
B < N e *m}”N\@W”L (4.85)

)\73%672316()\)/” if N > (% ]n()\)) ,

1 2
where k(\) = N — “5 In(X\)) J
In summary, if o = s and if N < (4 In(A))” then
94
A - Q] < 2T (5 4 gy 4 By
. —(72/2)V'N s—1

< )\_8231n(7rs) m/2e (7)) T Ao o2(s=1)VN (4.86)

T [singrs) (1 - eV 21=s)

_ b easgww b
T o)
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If N > (11n()))” then

A5 =N (V)| <A

_;2sin(ms) M2 VR N W (4.87)
7T sin(rs) (1 — e_(”2/2)‘/ﬁ) 2(1-5)

+i o 2skN)/VN |
2s

Now, if we introduce the index Iy, (V) defined as
Luin(N) := min {z € [1, +oo, A; = exp (m/ﬁ)} , (4.88)

we have i < L(N) <= N > (5In(x))”. Then,

—+o00 Imin(N)_l

SO - QY AR = Y (A @) AP
i=1 i=1
+o0 )
+ Y (A= QN () AP
Z':Imin(N)

The second sum X»(NN) can be bounded using eq. (4.86)

+oo
So(N) <ea(N)? Y Al (4.89)
t=Inin(N)
with
. —(72/2)vV'N s—1 2(s—1)vVN
ca(N) = 2sin(7s) m/2e Ay e (4.90)
T sin(7s) (1 — e_(WQ/Q)VN) 2(1 - )
e21-9)/VN 1
T T
> ()
_ sin(7s

Moreover, since NlirJrrl Inin (V) = +o0o by definition and since v belongs to H*((2), i.e. the
—+o00

+oo
series Z o2 converges and the remainders of the series converges to zero
i=1

+oo

li 502 = (. _

yhm Z Ajv; =0 (4.92)
7::Imin(]\f)
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Thus, using egs. (4.97) and (4.92) we deduce

+oo
i < i 2 Sp2 = (). .
B0 iy a0 S g0 e

The first sum X1 requires more efforts. By eq. (4.87) and using the convexity of the square
function we have,

Inin(N)—1
—S 2 S
SN =Y (AT Q) ARY
i=1
_ <251n(7rs)>21mn(N)1 mEe VY T o yw
AN S |sin(ms) (1 - e-(aVE)  2A1=9)
1 2
4+ ef2sk(/\¢)/\/ﬁ )\sz
28 17
- 2
. 2 Imin(N)fl _ 7I'2 2 \/]v o—1
<2 (25111(778)) > my/2e (/%) I I TER V)
T i=1 sin(ms) (1 - e*(WQ/Q)\/N> 2(1 - s)
1 2]
1 2 o2k VN A2
28 171
2 . —
8sin(ms)? m/2e~ (/YN n 2! Q2(s—)VN Imm(z:N) 1/\3 2
~X ivi
2 sin(7s) <1 _ e—(n2/2)\/ﬁ) 2(1—s) P
. 2 Imin_l
28I NN Ak OV yoy2 (4.94)
m2s ;
=1
So,
Imin(N)_l 2811]_(7'['8)2 Imin(N)_l
SIN) Serl(N)? Y AP+ oo Y e VN AR, (4.95)
i=1 i=1
with
i —(n?/2)VN s—1
e1(N) = 2+/2 sin(7s) m™2e n DY 25-DVN ’ (4.96)
m sin(rs) (1 - e—(w?/zwﬁ) 2(1 - )

For the first term on the right-hand-side of eq. (4.95), by definition of £1(N) and Iy (N)
and since u belongs to H*(2), we have

Jim_ei(V) =0, (4.97)
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and
Luin(N)—1
Jlim ; Ao} = (vl (4.98)
So,
Imin(N)—1
Gl en(N) ; v = 0. (4.99)
It finally remains to show that
. 2sin(ms)? Imingz)l o—Ask/VN ys,2 _ ) (4.100)
N—+oo  m2s? — e '

To do so, we introduce a new particular index defined by
Jmin(N) := min {z € [1,+o0[, Ai = exp (\/N)} . (4.101)

Since the eigenvalues of the Laplacian are increasing, we have Jyin(N) < Inin (V). Now,
we can again split the sum from eq. (4.100) and get

2sin(ms)? T ()1 2sin(ms)? i)~
—4sk(X\)/VN ys,2 _ —4sk(X\;)/VN ys, 2
i=1 =1
. Imin(N)fl
2sm(7rs)2 —4sk(N; \/N s,2
i:Jmin(N)

We can show that the last sum tends to zero as N tends to +oo follow,

2Sin( 8)2 Imin(N)*l 2sin( 3)2 Imin(N)fl
Ll —4sk(\)/VN ys, 2 m 5,2
i:Jmin(N) i:JInin(N)
2sin(7s)? = s 2
< T3 Z ALV
7::Jmin(]v)
and since we have
lim  Jpin (V) = +o0, (4.104)
N——+oc0
thus,
_2sin(ms)? <R L,
NLITOOW, > A =0. (4.105)
Z:Jmin(N)
Consequently,
2sin(7s)? Taan (V)1
. 4 —4sk(X\;)/VN ys, 2 _
i Yooe® Xv7 =0. (4.106)

i:Jmiu (N)
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Now we bound the first sum in the right hand side of eq. (4.102). By definition of Jyin (V)
we have for each 7 in [1, Juyin (V) — 1],

K;m(Ai))zJ < K;)zNJ < <;>2N, (4.107)
so since k(\;)) = N — L(% ln(/\i))QJ,

cAFOVE ¢ ~AVN(1-(3)7) _ -ssVN VO (4.108)
—+00

Finally using eq. (4.108) in the first sum of the right-hand side of eq. (4.102),

2sin(7s)? Fuin ()1 /N 2sin(ms)? N Frin )=
—4sk(\; N ys 2 —3s
=D DI R P E Z v?, (4109)
i=1

and by eq. (4.104) and since v belongs to H*(Q2),

) 2 sin(ms)? o—3sVN Juia o 2sin(ms)? sV 2
N1—1>I—r|—loo w252 Z )\ N N1—1>r-I‘rloo w252 ¢ HUHHS =0 <41 10)
Consequently,
2sin(ms)? Tnin(N)=1
. —4sk(N\)/VN ys,2 _
G ; e Asvf = 0. (4.111)
Combining egs. (@.706) and (4.7711) we obtain
Jim £1(V) =0, (4.112)
thus,

—+oco
: —s Ny . 235, 2
Gl o = oyl < | im S0 (A7 = QI (X)) AP

1=

< lim 3(N)+ lim ¥a(N) = 0.

N—+o00 N—+o00

This conclude the proof of Theorem [2] for the case o = s. O

The above result guarantees an exponential convergence rate of the sequence (Ugé\] )N
to v in H*(Q2) only if v is more regular than H*(€2) functions. When v belongs to H*(Q2) the
convergence might be slower. In this case the bound we derive in the proof of Theorem 2]
is given by

2sin(ms)? 4. w
o= vy e < |1+ 2T sV ol

: 2
+{251;2(;;5) +52(N)2] Z A2, (4.113)

= Jmm(N)
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where £1(N) and e3(N) are respectively defined in eq. and eq. and where
Jnin(N) is defined in eq. (4.101). A similar result to Theorem [2]is given in [64], Theorem
7.1] when v = v solution to eq. but it requires f € L?(Q) while Theorem [2] only
requires f € H*~27(Q) for some o € [0, s) (especially, f belongs to negative order spectral
fractional Sobolev spaces if o > s/2) to ensure the exponential convergence rate.

4.5 Conjecture

The degenerated case o = s in Lemma [1] limits the result in Theorem 2| In fact, the
result of this theorem could be improved and the proof greatly simplified if the rational
approximation QY was replaced by another rational approximation R satisfying a certain
stronger convergence property (compared to eq. {4.15)).

We propose the following conjecture on the existence of such a rational approximation.

Conjecture 1. For s € (0,1) and Ao > 0, there exists a rational approximation scheme
RY such that:

N
RYN) :=Ce > a(1+bA)7", VA=, 4.114)
I=—N

where the coefficients Cs, {a;}1~._ and {b;}1*._, are positive real numbers and are inde-
pendent of A\. Moreover, we assume

A= RN < A%(N), VA A, VN € N, (4.115)

with g4 independent of A and lim e4(N) = 0 at an exponential rate.
N—+o00

If we assume Conjeotureand replace QY by RY in eq. (4.73), we would obtain
400
lo = voyllfs <Y es(N)*Afvf = es(N)?||v]| - (4.116)
i=1

The convergence rate of the rational semi—discrete approximation vgn to the function v in
the norm H*(Q2) would be preserved when v is exactly of H* () regularity, corresponding
to a regularity of H—* for the data f when v = u.

4.6 Numerical results

We give numerical evidences showing that the rational approximation QY proposed in [60]
does not satisfy eq. in Conjecture [Tl We compute the discrepancy between the
functions A — A7% and A — Q¥ (\) for a wide range of values of A and up to large values
of N, leading to very small outputs which can be polluted by rounding errors even with
double—precision arithmetic. We avoid this difficulty by using the multi-arithmetic precision
Python library gmpy2 [146].
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Figure 4.1: Plots of the function A — A* |A=* — Q)()\)| for a wide range of values of A
and various values of N. From left to right, the fractional powers are s = 0.3, s = 0.5 and
s = 0.7 respectively.

In fig. We can see the plots of the function A — A* [A=% — Q¥ ())|. According to
Conjecture|1|this function should be bounded uniformly by the quantity e5(V), converging
to zero as N tends to +oco and independent from A. However, the plots in fig. [4.1] suggest
that this is not the case for the rational approximation QY. Thus, QY does not seem to
satisfy Conjecture 1}

4.7 Perspective

A future work will consist in investigating the truthfulness of Conjecture [1} As far as we
know, no such rational approximation method satisfying eqg. is available in the liter-
ature. Although the property we are seeking is not plain uniform convergence, a direction
that might worth considering is uniform rational approximation methods since many nu-
merical evidences show their superiority over Q¥ in terms of convergence [154}, 155, [161].

Another interesting extension to this work would be a posteriori error estimation. If we
omit data approximation, eq. in Theorem [2]is in fact a computable upper bound
of the rational approximation error measured in the natural H*(£2) norm when v = u (us-
ing eq. ). However, the function ugn is only a semi-discrete approximation to the
solution u and a fully computable approximation to « can be obtained with the help of
an additional approximation method, such as a finite element method. Then, in order to
get a computable bound of the fully discrete approximation, a posteriori estimation of the
finite element discretization error is needed. To balance the discretization errors coming
from the rational approximation method and from the finite element method would allow
to derive efficient numerical methods to solve fractional Laplacian equations.

To our knowledge only very few works on a posteriori error estimation applied to frac-
tional problems are available in the literature [12, [29, 165l 206]. Except in [12], a posteriori
error estimators are all based on the Caffarelli-Silvestre extension allowing to reformulate
the fractional problem eq. into a non—fractional problem on € x R, which complicates
its implementation when €2 is a three—dimensional domain.
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Chapter 5

Application: poro-elasticity of the
human meniscus

This chapter is based on the following published research article:

The Human Meniscus Behaves as a Functionally Graded Fractional Porous Medium
under Confined Compression Conditions,

R. B., Gioacchino Alotta, Gregorio Marchiori, Matteo Berni, Nicola F. Lopomo, Stefano
Zaffagnini, Stéphane P. A. Bordas, Olga Barrera,

Applied Sciences, 11, 2021, no. 20:9405,

https://doi.org/10.3390/app11209405

Contribution: writing, tables, software, validation.

Abstract

In this study, we observe that the poromechanical parameters in human meniscus vary spa-
tially throughout the tissue. The response is anisotropic and the porosity is functionally graded.
To draw these conclusions, we measured the anisotropic permeability and the “aggregate mod-
ulus” of the tissue, i.e. the stiffness of the material at equilibrium, after the interstitial fluid has
ceased flowing. We estimated those parameters within the central portion of the meniscus in
three directions (i.e., vertical, radial and circumferential) by fitting an enhanced model on stress
relation confined compression tests. In fact, we noticed that a classical biphasic model was not
sufficient to reproduce the observed experimental behavior. We propose to adopt a poroelastic
model based on the assumption that the fluid flow inside the human meniscus is described by a
fractional porous medium equation analogous to Darcy’s law which involves fractional operators.
The fluid flux is then time—dependent for a constant applied pressure gradient (in contrast with
the classical Darcy’s law which describes a time independent fluid flux relation). We show that a
fractional poroelastic model is well-suited to describe the flow within the meniscus and identify
the associated parameters (i.e., the order of the time derivative and the permeability). Results in-
dicates that mean values of As, Bin the central body are Az = 5.5443x 1071022 3 = 0.0434,

Nsl—=87

while in the posterior and anterior regions are A\g = 2.851 x 10—1°N;{iﬁ, B8 = 0.0326 and

Mg = 1.2636 x 1071 N;ﬁ‘iﬁ , B = 0.0232 respectively. Furthermore, numerical simulations
show that the fluid flux diffusion is facilitated in the central part of the meniscus and hindered in
the posterior and anterior regions.
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Figure 5.1: (a) Schematic representation of the knee joint; (b) The different regions of the
meniscus: posterior horn, central body, anterior horn and the three directions: vertical,
radial and circumferential; (c) schematic representation of confined compression test set
up, (d) example of the variability of the porosity within meniscal samples from pCT scans;
(e) results show that the central body of the meniscus exhibits higher permeability values

5.1 Introduction

Human meniscus plays a key role in the functioning of the knee joint fig. [5.7]a). This tissue
has a number of functions such as: load bearing (about 45 — 75% of the total load on
the joint), joint stability and lubrication [174], 233]. Degenerative processes of the menis-
cus either from injuries or aging affect approximately 35% of the population [234]. When
required, the most common surgical procedure is currently total/partial meniscectomy (i.e
removal of the damaged tissue). Therefore, partial/total meniscal replacements are ex-
pected to help avoid articular cartilage degeneration. Currently the clinical outcomes of
these implants are not ideal due to the fact that they do not mimic the structure—
property relationships of the tissue as these are still not well understood [138]. Among
many biologic tissues, the meniscal tissue is composed of porous solid matrices —mainly
collagen- with fluid filing the pores [9, 169, (187} [255]. The overall mechanical behavior
of this type of tissues depends not only on the solid matrix deformation, but also on the
movement of the fluid in and out of the collagen channels [9, during the deformation.
Meniscal tissue exhibit a non—uniform and anisotropic porosity, which is related to graded
material properties. Such graded material properties are fundamental for the correct func-
tioning of this tissue [187]. The investigation of the material properties, coupled with the
quantification of architectural parameters such as porosity and channels interconnectivity,
will enable the design of artificial cellular structure, which can resemble the native behavior
of the tissue (see for instance [200]). More in depth, advanced microscopy investigations
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highlighted that collagen bundles form the wall of channels which can be observed both at
the macroscale and at the microscale |9, 1255]. Fluid is able to flow inside these channels
in response to physiological loading. Understanding and appropriately modeling the fluid
flow behavior in the different portions of the meniscal tissue, considering a range of various
loading conditions, is essential to gain insight on the biomechanical function of this tissue.
To date, limited information is available on region—specific and anisotropic permeability in
the meniscus, which is essential to understand the fluid flow evolution and its relationship
with the internal architecture.

Poromechanics experimental tests, such as confined compression tests —including both
stress relaxation and creep— are currently used in order to characterize material param-
eters, such as elastic modulus at equilibrium and permeability. In order to identify these
two parameters the main models used are based on the biphasic and poroelastic theories.
Even though these theories developed from different roots, it can be shown that they are
basically equivalent [73].

In this study, we focused our attention on the evaluation of the permeability in the
meniscus and in particular on its variation in the different regions of the tissue and direc-
tions (See fig. b). Moreover, we showed that the biphasic model does not provide a
good fit with the experimental curves, therefore we proposed a poroelastic model in which
the pore—pressure diffusion equation is derived by adopting a modified version of Darcy’s
law involving fractional derivatives [48]. It has been shown that in a high porosity medium
there is a departure from the Darcy’s law as the inertia (velocity—squared term), thermal
dispersion, convective (development term) and boundary (no-slip condition) effects not in-
cluded in the Darcy’s model may play a significant role [166]. Moreover, in the last few
decades experimental evidence of anomalous diffusive phenomena, i.e. not following a
Darcian behavior, has grown [1, 107, [165] (1786, [215]. This is mainly due to the fact that
the permeability, hence the rate of fluid flow, is not a constant quantity. Variations in perme-
ability occur, for example, when the fluid flow impacts the geometry or the micro—structural
features, such as the configuration of the pores. For example, experiments on water flow in
building materials highlighted that the permeability changes during the flowing process as
a result of the microstructural rearrangement of grains/pores. laffaldano at al. [165] hinted
that during compaction of sand, permeability might decrease due to the fact that the fluid
carries solid particles which then close some of the pores. Essentially, the configuration of
the medium, in particular the ratio between closed/open pores, changes during the pro-
cess. Fluid might be trapped in the medium leading to a slower fluid flow rate. On the
contrary, if during the fluid diffusion process some of the pores open creating conductive
microchannels, permeability might increase. Therefore, fluid can be transported for large
distance in a reduced time determining a faster diffusion process.

Modeling the anomalous fluid diffusion process is one of the key points when dealing with
poromechanics of biological tissues. Therefore, it is fundamental to develop a theory,
which can incorporate the change in microstructural features (for instance, the interaction
between fluid particle and open pores/channels) during the transport process. Recently
the stochastic Continuous Time Random Walk (CTRW) framework was proposed for this
purpose [190]. However a deterministic derivation, dual to the CTRW, can be represented
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by the introduction of a modified version of Darcy’s law involving linear fractional opera-
tors [84] 1214]. The goal of this chapter is to present the results of experimental confined
compression tests performed on samples extracted from the three portions of the human
knee meniscus (posterior, central and posterior). During confined compression, fluid flows
through the collagen channels with a rate depending on the permeability of the tissue itself
(fig. c). We aim at: (1) extracting the diagonal terms of the permeability tensor; (2)
studying, analyzing and modeling the observed decay of fluid flow during the test, which
is not captured by the classical Darcy’s law. Hence, we propose a generalization of such
law which involves time derivatives of non-integer order appropriate to model the fluid flow
in the meniscal tissue; (3) proposing a small deformation fractional poroelastic model for
the human meniscal tissue during confined compression. The model enables us to identify
the two parameters involved in the fractional pore pressure diffusion equation, namely the
permeability and the order of the (fractional) derivative. In this study, we do not consider
coupling between the flow in different directions, i.e. assume that the permeability tensor
is diagonal. The structure of the chapter is as follows: we introduce the rationale be-
hind a fractional Darcy’s law, we then summarize the main equations of both biphasic and
fractional poroelastic theories; we then present the confined compression poromechanics
experimental tests and discuss the material parameters (fractional permeability and order
of the fractional derivative) we recover through the fittings.

5.2 Fluid flow in complex porous media: time-fractional Darcy’s
law

Fluid flow in porous media is commonly modeled by Darcy’s law. This relation was ob-
served experimentally by Darcy [106] and derived in 1986 from the Navier Stokes equa-
tions using homogenization theory [259]. Darcy’s law states that the instantaneous flow
rate through a homogeneously permeable porous medium of permeability k is proportional
to the dynamic viscosity of the fluid and the pressure drop over a given distance. The total
discharge, J (units L3 /T, where L and T indicate units of length and time respectively)
equates the product of the intrinsic permeability, k (L?) with the cross—sectional area flow,
A (L?) and the total pressure drop pout — pin (F/L?), all divided by the dynamic viscosity, x
(FT/L?) and the length over which the pressure drop is taking place ¢:

_k “A- (Pout _pin)
lu

Jp =

More generally, Darcy’s law states that the discharge per unit area, jy = J;/A is propor-
tional to the pressure gradient, the intrinsic permeability and inversely proportional to the
dynamic viscosity:

. k
jfr=——Vnp.
T
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The derivation of Darcy’s law from Navier Stokes equations assumes a creeping, laminar,
stationary and incompressible flow of density p and velocity (u;)1<i<3. Incompressibility

implies: (Df)”;i = 0), which leads to Stokes’ equation, in the presence of gravity g;:

1V2u; + pgi — pi = 0.
Assuming that the viscous resisting force varies linearly with the velocity, introducing

the porosity ¢, and the second order permeability tensor k = k;;, a simple derivation leads
to:

—(kij) ™ ey + pgi — pi = 0.
The discharge per unit area in direction n can then be written as follows:

j :—@(p‘—pg‘)
fn 1 ) %

, k
Jr = —;(Vp—pg) :

If the resistance to fluid flow offered by the pores varies in space, the components of

the permeability tensor k;; vary in space. k;; is a symmetric (Onsager reciprocal relations),
positive definite (because the flow component parallel to the pressure drop occurs in the
same direction as the pressure drop) matrix. k;; may be isotropic, in which case it is diag-
onal and all diagonal entries are identical: k;; = kd;;. In general, the permeability tensor
is anisotropic, and may also not be diagonal. In all cases, the permeability tensor can be
diagonalized, as it is symmetric positive definite.
As previously underlined, when dealing with soft tissue and complex porous media, per-
meability changes during the deformation process, therefore, it is important to develop
a theory, such as the CTRW, which incorporates the change in microstructural features
during the transport process. A modified version of Darcy’s law involving linear fractional
operators can be seen as the deterministic version of CTRW [84], 1214]:

jr = —5D€ (Vp) (5.1)

In the following E \will be indicated as Az. D{f indicates the Caputo’s fractional derivative
of order 8 and origin a of Vp which is defined below:

t n
(DI = g [ (6= S vatrar 52)
The expression is valid for n — 1 < 8 < n, and I' is the Euler's Gamma function. In the
cases considered in this chapter the origin a = 0. The fractional derivative method offers
the possibility to model, with reduced number of parameters, all of the anomalous diffusion
behaviors by changing the order of the derivative. The main drawback is that it is difficult to
link the order of the derivatives with the microstructural features. Within this frame, in this
chapter we identify a simple mathematical model able to describe fluid flow in the human
meniscus.
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5.3 Biphasic and Linear fractional Poroelastic models

The assumptions at the basis of both the poroelasticity and biphasic theories are the fol-
lowing:

¢ the solid phase is incompressible, linear elastic, subject to infinitesimal strain, homo-
geneous and isotropic (i.e., the material parameters of the solid phase do not depend
on the orientation nor the position in the sample), non—dissipative;

¢ the fluid phase is incompressible, it flows slowly through the pores, it is homoge-
neous, isotropic and non—dissipative and there is no fluid source;

¢ the only dissipation comes from the frictional drag due to the relative velocities of the
two phases;

e the absence of external body forces (other than those explicitly mentioned for the
confined compression tests);

¢ the isotropy and homogeneity of the permeability tensor, which is then reduced to
the scalar k representing the averaged intrinsic permeability of the sample;

e the permeability k is a constant parameter (time—independent) in the biphasic model
and it is a time—dependent quantity in the fractional poroelastic model (due to the
time—fractional Darcy’s law described in eq. (5.7)).

5.3.1 Biphasic model — consolidation problem

For the purposes of this study, we restrict our formulation to small strain theory and con-
sider the linear biphasic model from [198]. We assume the solid matrix is incompressible,
linear elastic, isotropic, homogeneous and non-dissipative, whereas the interstitial fluid is
incompressible and non—dissipative. The only dissipation comes from the frictional drag
due to the relative velocities of the two phases. We denote Ay = k/u the averaged axial
permeability of the sample and H4 the aggregate modulus. Under these assumptions
and the additional assumptions coming from the confined compression tests setting, the
biphasic theory leads to the following unidimensional boundary value problem for the ver-
tical displacement u of the solid phase
0us 1 ous

55 = oe o MO xO.1), (5.3)

the boundary condition at z = 0 where the solid skeleton is fixed
ui(z=0,t)=0 on(0,7), (5.4)

the initial condition
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and finally the boundary condition at z = h which will be different for the creep test and for
the stress relaxation test [235]. For the creep test the condition is

ou’ Py
Z = —— T .
B2 |t a, " (0,7), (5.6)

where P, is the applied compressive stress and for the stress relaxation test the condition
is

_ =Vt i 0Lt <t
uz = h,t) = { ~Voto  if to <t <T,

where Vj and t( are input data from the stress relaxation test.

If we denote ¢, = (—1)"z (%)2 the solution to egs. to in the case of the
creep test reads

s Py 2 — Haon?m?t\ . /nmz
ui(z,t) = . —z+ 7 Z Cp €XP <_40h2 sin <E) , (5.8)
n=1,3

(5.7)

In the stress relaxation test case, if we denote p,, = (%)2 the solution to egs. to
and [235)] is given by

o]

2 _ .
Votz - ‘//\0 - Z 3/2 ( HA"”*Ot) sin (v/pnz) if0 <t < to,
Ao
us(z,t) = i~
Voto 2V o—Hapnot ((—HapnXot . -
~ Hh Z 3/2 APn20 (e APn20 —1) sin (y/pnz) ifto <t <T.
5.9

The stress relaxation response oy is given by H 4§ 82 SO:

|z=h’

Hat 2V &
YAl 2 St (e e} o<t <,
o= o O n=1 (5.10)
0 p—l —HapaAot ( —HApnAot_l) iftg <t <T.
Noh &

5.8.2 Linear fractional poroelastic model: fractional consolidation problem

The classical linear model of transient flow and deformation of a homogeneous fully sat-
urated elastic porous medium depends on an appropriate coupling of the fluid pressure
and solid stress. A change in applied stress produces a change in fluid pressure or fluid
mass and a change in fluid pressure or fluid mass is responsible for a change in the volume
of the porous material. The coupling term affects only the hydrostatic part of the stress
tensor. The stress tensor can be written as follows:

o = 2Ge + Mrace(e)l — apl (5.11)

where A = K — % is the Lamé constant and G, K are the shear and bulk modulus

respectively, p is the pore pressure, « is the Biot coefficient. In order to solve this one, we
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Figure 5.2: (a) Confined compression test set up. Cylindrical specimens are extracted from
a human meniscus. (b) The cylinder is then confined inside a glass chamber with a porous
base and compressed by a metal bar. During compression, the water in the meniscal
sample flows from the base of the cylinder.(b) Schematic representation of the boundary
conditions used to solve the boundary value problem.

need an additional equation, which is given by the pore pressure diffusion equation derived
considering a time fractional Darcy’s law in eq. ;

op &TH
ot 5o
Where Dg indicates the Caputo’s time fractional derivative [210]. It is important to note
that the classical (non—fractional) pore pressure diffusion equation is recovered in case of
B =0.Inthiscase \yg = & W|th dimension of £ In the case of B # 0 note that A\g has

KB
s DIV?p — (5.12)

[FTITT
dimension of W The pore pressure diffusion equation can also be written in terms
of strains [48]:
op K,—K b2 BKu— K Oeq
%= a2 gDy V<p " T (5.13)

The consolidation problem is modeled through the 1D uniaxial strain poroelastic problem
[48]. Equation adapted for the 1D case in which the only non-zero component of
strain is ¢,,, we obtain:

K+ = P - 14
+3 0z a@z 0 (5:14)

Equation is then coupled with the pore pressure diffusion equation in eq. in
order to obtain the following pore pressure diffusion equation:

( 4G) 0¢ 5, Op

2
(9}7 S\Dﬁa

T 05,2 (5.15)
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where A = USRS We indicate with the symbol A = BEEEEER=I0,

The boundary value problem is given [48]:

dp
— =0 5.16
Yoo~ O (5.16)
p(z = h,t) =0, (5.17)
u(z =h,t) =0 (5.18)
A constant compressive stress in the z direction is applied to the cylinder at z = 0:
0.:(0,t) = —Py (5.19)

where —P,4 is the applied compressive stress. The initial pore pressure is derived for
undrained conditions i.e:

3(K, — K)

=Py——— 5.20
The analytical solution in terms of pore pressure reads as follows:
> n2m2\ti-p nmz
=P B —— ) ¢, cOs — 21
p(z,1) A7Y nzl:?) 1-8,1 < 2 > Cn €08 (5.21)
where:
3(K, — K)
= — " 5.22
7T Q4G 1 3K,) 5.22)
2
e = (—1)"7 (Qh> (5.23)
nm

where E_g ; is the Mittag-Leffler function. In the case of 8 = 0 the solution is identical to
the classical Terzaghi’s solution in which Ey_g 1 = exp.
In the case of 5 = 0, it is possible to derive the following displacement analytical solution

[{12]:
P 2 & An2r2t\ | /nrwz
uy(z,t) = )\—‘2 —z+ 7 Z Cn €XP <_4h2> sin <%)] , (5.24)
n=1,3
n=1 ,op\2
where ¢, = (—1) 2 (22)".

5.3.3 Correspondence of parameters between the biphasic and the linear
fractional poroelastic model

The biphasic model depends essentially on two parameters: the aggregate modulus H 4
and the averaged axial permeability Ag. The linear fractional poroelasticity model of Biot
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Notation Name Expression Unit
K drained bulk modulus Pa
G drained shear modulus Pa
K, undrained bulk modulus Pa
Q Biot’s coefficient Unitless
B Skempton’s coefficient (Ky — K)/(aK,) Unitless
k averaged intrinsic permeability m?
U fluid viscosity N-s-m2
averaged axial permeability
Ao - compressible case “ﬁj&g{ggf D m3.g kg?
- incompressible case 1(4G + 3K)
s fractional averaged axial permeability m? . sTTF . kg™t
I} fractional power Unitless
Table 5.1: Parameters of the linear (fractional) Biot model.
Notation Name Expression Unit
~ ratio solid volume/fluid volume Unitless
K, solid phase bulk modulus Pa
G, solid phase shear modulus Pa
k intrinsic permeability m?
L fluid viscosity N.-s-m~?
Ao averaged axial permeability pw/(1++)%k) N-s-m™?
Hy aggregate modulus (4G5 + 3K,)/3 Pa

Table 5.2: Parameters of the Biphasic model.

depends instead on three parameters: the diffusion coefficient Az, the fractional power
and the ratio k/u. These parameters depend on the material parameters of the constituent
phases or have to be determined, for example using numerical experiments curves fitting.
The biphasic and linear fractional Biot models are equivalent under the above assumptions
when g8 = 0 (i.e. in the case of a non—fractional Biot’s model) and when H4 = .
Equations and show that biphasic and Biot models are equivalent when H4 =
Xo. Similarly, the displacement solution from the Biot’s model in the case of the stress
relaxation test can be obtained by replacing Ha by Ao in eq. (6.9). Tables and
summarize the relationships between the parameters for each models.
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5.4 Materials and methods

5.4.1 Poromechanics tests — Confined compression

Menisci were harvested from patients (age 65-76, mean 72, standard deviation 4) un-
dergoing total knee arthroplasty (ethical approval EM 249-2018 21/2017/Sper/IOR EM2,
Rizzoli Orthopaedic Institute, Bologna, Italy). Samples labeled as “degraded” by gross in-
vestigation of the surgeon were discarded. Three lateral menisci and three medial menisci
were collected and stored at -20 C [137], 197]. The day of the test, each meniscus was
thawed in a phosphate-buffered saline (PBS) bath at room temperature for about thirty
minutes [97]. Then, cylindrical samples (diameter of 3mm, height 3-4 mm) were extracted
from the central body, anterior and posterior region along three reference directions, i.e.
vertical, radial and circumferential (fig. [5.1]b), following a dedicated procedure [57], adapted
to the meniscal configuration. A total of 18 cylindrical samples were grouped considering
the the harvesting region (body, anterior and posterior) and the direction (vertical, radial,
circumferential) and then tested. The testing protocol was implemented on a multi-axis
mechanical tester (Mach-1, Biomomentum Inc., Canada) in a confined compression con-
figuration fig. [5.1k); with this specific setup, we were confident that the fluid could flow only
from the base of the cylinder. Insertion in the confining chamber, thickness measurement
and removal of the meniscal sample followed a dedicated procedure [57]. Concerning con-
fined compression, the setup involved a confining chamber with an inner diameter equal to
that of the tool used during the extraction of cylindrical samples, i.e. 3 mm. The bottom of
the chamber consisted of a porous—permeable platen, while the top allowed the insertion
of the piston. Both these components (Biomomentum Inc., Canada) were manufactured
to allow the leakage of the fluid only through the porous platen. Moreover, an additional
control was provided by visual inspection of the confining chamber transparent wall, which
allowed to check any fluid flow towards the piston (fig.[5.2]a). We measured the amount of
fluid flowing out each sample as result of the applied compression loading by monitoring
the weight of the samples throughout the test.

Testing protocols

Relaxation tests. For the relaxation tests, we followed the procedure for permeability
and aggregate modulus H 4 analysis, as recommended by the manufacturer of the testing
machine [57], [66]. More in detail, the test sequence considers a pre—compression with
ramp amplitude 10% of the sample thickness (h) and ramp velocity 0.3%h/s, followed by
five stress—relaxations with incremental ramp amplitude 2%h and ramp velocity 0.3%h/ s.
Creep tests The testing protocol — specifically the loading amplitude and the detection
of the fluid flow out of the sample — was designed and optimized for this specific study.
In particular, three testing phases were implemented for each meniscal sample. The first
phase, developed according to [57], consisted in five separated repetitions of confined
compression, 75 s each, thus to realize 450 s of total creep. More in detail, before and
after each compression, sample was removed from the confining chamber, weighed by a
microbalance (Tecnopound, Ravenna, Italy) and repositioned inside the chamber with the
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Bulk modulus K=1.6x10°Pa

shear modulus G=76923 Pa (E = 0.2 - 10°Pa, v = 0.3)
Skempton coefficient B=0.88

Biot coefficient «=0.65

Undrained bulk modulus  K,=K/1- o B

Table 5.3: Material parameters

previous vertical orientation. The second phase involved the resting of the sample in PBS
until its height returned to the pre-loading value, thus to recover the loading history. In
the final phase, i.e. third one, a single step of confined compression creep was applied to
the sample for 450 s. Similarly to what we reported for the phase one, also in this case
the weight of the sample was measured before and after the compression. It is crucial
to emphasize that this third phase served to calibrate the weights measured during the
phase one, when the multiple removals of the sample from the confining chamber and the
separated compressive ramps could have affected the creep. Stage velocity was 0.3 %
h, while the load target was 0.5 N, corresponding to a stress of about 0.07 MPa, which is
within the range of physiological values for human menisci [232]. The decrease in weight
of the sample has been monitored throughout the test and it has been correlated to the
amount of fluid discharged by the samples, hence it served to reveal information regarding
the rate of the fluid flow. In particular, the weight of the sample over time W (t) is related
to the initial weight of the sample W and the fluid flux:

t
W (t) = W —/ dr - weAdt (5.25)
0

With j; given by eq. , in which the gradient of the pressure is given by differentiating
the expression of the pressure in eq. (5.21), ws being the specific weight and A the cross—
sectional area. Substituting eq. and eq. (5.21) into eq. (5.25) we obtain the following
relation:

2 — PN A
W(t) =Wy — Pavyy > [)\Btl_BEl—ﬂ,Q—ﬂ <_4h2>] (5.26)
n=1,3

In eq. n=1 has been retained since no improvements are observed by adding more
terms to the series. This means that one term is enough to describe the physics of this kind
of test, but in more realistic conditions it is expected that more terms of the summation
are needed to accurately describe the solution.
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Figure 5.3: Examples of fittings of relaxation test data (only one of the 5-steps test is
reported) with eq. for a medial human meniscus (TK11) — central body (CB). a) b)
and d) samples extracted in radial direction and c¢) in vertical direction. Table 2 contains
the parameters H4 and permeability k£ of all the 5— steps.

5.5 Poromechanics test results and fittings

5.5.1 Relaxation tests results — biphasic model

By implementing the standard procedure (i.e., confined compression, stress relaxation, no
weight measurements and classic biphasic theory) — which was designed for cartilage, but
it is here adopted for meniscal cylinders — the revealed mechanical parameters presented
a large variability (fig. [5.3). Moreover, the expected trend of decreasing permeability with
increasing strain was visible only for one trial (“TK11-CB-Vert” in table[5.4). This fact, cou-
pled with high values of fitting root mean squared error (RMSE), underlines the difficulties
of this approach in characterizing meniscal tissue.

5.5.2 Creep tests results — fractional poroelastic model

Focusing on confined compression tests, we specifically measured the decrease in weight
of the cylinder during the tests and correlate this data to the amount of fluid discharged
by the samples j; during the test. We now illustrate the best-fitting procedure performed
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Ramp amplitude

Sample Step (% height) H, (MPa) | k (m*/s x N) | RMSE
1 2 0.180 0.858 x 10~12 | 0.0003
2 4 0.135 2.803 x 10712 | 0.0002
TK11-CB-Circ | 3 6 0.032 0.410 x 102 | 0.0011
4 8 0.122 0.953 x 10~'2 | 0.0004
5 10 0.058 1.714 x 10~ | 0.0004

1 2 - - -
2 4 0.044 1.572 x 1072 | 0.0005
TK11-CB-Rad | 3 6 0.007 3.383 x 10712 | 0.1533
4 8 0.037 0.870 x 10~'2 | 0.0003
5 10 0.030 0.525 x 1012 | 0.0008
1 2 0.0173 | 1.0190 x 10~ | 0.0023
2 4 0.0116 | 0.9400 x 10~*2 | 0.0100
TK11-CB-Vert | 3 6 0.0126 | 0.8100 x 1072 | 0.0120
4 8 0.0230 | 0.4760 x 10~12 | 0.0025
5 10 0.0173 | 0.4850 x 10~2 | 0.0080

Table 5.4: Complete set of the 5 step test results of the central portion of the medial
meniscus shown in fig. [5.3| for the three directions (vertical, radial, circumferential). Note
that the expected trend of decreasing permeability with increasing strain was visible only
for the vertical direction (TK11-CB-Vert). Root mean square error (RMSE) values are high
in some cases showing that the model does not always fit the experimental behavior.
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Sample I5; Ag <74> Medial/Lateral

Noxs1=7

TK11BV 0.0242 4.744 x 10719
TK11BR 0.0512 5.04 x 1010

TK11BC 0.0220 5.018 x 10~19
TK16PR 0.0426 4.619 x 10~19
TK16AR 0.0259 1.695 x 10~19
TK16AV 0.0178 0.765 x 10~ 10
TK16PV 0.0227 0.1083 x 10~10
TK16BV 0.0397 4.292 x 10~10
TK16BC 0.0655 10.926 x 10~19
TK16BR 0.0666 10.822 x 1010
TK17AR 0.0259 1.331 x 10710
TK17BV 0.0553 2.695 x 1010
TK17BC 0.0434 4.318 x 1019
TK18BV 0.0322 1.377 x 1010
TK18BR 0.0287 1.897 x 1019
TK18BC 0.0289 3.823 x 10~10
TK36BC 0.0519 7.877 x 10710
TK37BV 0.0450 7.868 x 1019

I ZZIZ e T 2 LZ

Table 5.5: Results of the fittings. First column shows the name of the sample, second
column B the order of derivative, third column Ag is the anomalous permeability, forth
column specifies if the sample is extracted from a medial (M) or lateral (L) meniscus.

between the proposed model in eq. and the experimental results as shown in fig.
a—f for a few samples taken from one of the three lateral menisci. In particular, two free
parameters are considered: 5 and Ag. We perform the best-fitting procedure for a time
window extended from ¢t = 0 to 450s and v = 0.695 has been fixed by considering specific
mechanical parameters which are summarized in table [5.3]

The values of the parameters obtained through the fittings are reported in table [6.5]

5.6 Discussion

In this study, we assumed that the fluid flow is ruled by a modified version of Darcy’s law
(eq. (6.1)). According to eq. (6.1), the fluid flow is not steady as modeled by the classi-
cal Darcy’s law. Instead the fluid flow rate evolves with time, more specifically it evolves
with a fractional time derivative (of order ). Equation also implies that the perme-
ability is anomalous in the sense that its units are function of the order of the derivative
g = [ﬁiﬁ]. The classical Darcy’s law is recovered for 8 = 0 in eq. . In order to
estimate how closely both models (classical and fractional Darcy’s law) fit the experimen-
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Figure 5.4: Evolution of the decrease in weight during the confined compression test which
has been correlated with the amount of the fluid discharged upon compression of the
tissue. The fittings relation is given in eq. (6.26). The graphs shown are related to samples
extracted from a lateral meniscus (tk16). (a) Sample from the central body (B) and along
the circumferential direction (C). (b) Sample from the posterior horn (P) and along the radial
direction (R). (c) Sample from the central body (B) and along the vertical direction (V). (d)
Sample from the posterior horn (P) and along the vertical direction (V). (€) Sample from the
central body (B) and along the radial direction (R). (f) Sample from the anterior horn (A) and
along the radial direction (R).
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TK 18: medial meniscus
B

Posterior horn

Central body
Anterior horn

Figure 5.5: Graphical explanation of the region (central body) /direction (vertical, radial and
circumferential) corresponding to the parameters highlighted in table 5.5
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tal data we compared the RMSE values. We observe in 12/18 fitted experimental tests
reported in table[5.5)the RMSE given by the fractional model is lower by 10% with respect
to the classical model. Although this might seem not enough to justify a new theory, it
is important to note that this is the first attempt to use this type of model for interpreting
the rate of fluid flow inside a biological tissue. We are confident that a more precise ex-
perimental set up will give more emphasis of the benefit of having a generalized fractional
model which allow to incorporate the classical one by simply setting 5=0.

Furthermore, it would be interesting to study the evolution of fluid flow inside the meniscus
and how it varies both spatially (within the posterior/central/anterior portions) of the tissue
and directionally (in the vertical/radial/circumferential directions) considering the parame-
ters in table [5.5] A first analysis of the parameters highlights that the values of the order
of the fractional derivative 8 and the anomalous permeability Az are higher for the central
body of the meniscus with respect of the anterior and posterior horns. Mean values of g, 3

in the central body are A\g = 5.5443 x 10710 N;ﬁliﬂ, 5 = 0.0434, while in the posterior and
4

anterior regions are Ag = 2.851 x 10710 N;ﬁfiﬁ, 8 =0.0326 and A\g = 1.2636 x 10710 &=,
B = 0.0232 respectively.

[t can be noted that, although the values of 5 in the three regions might not significantly
diverge from zero, they indeed affect the evolution of the fluid flow rate.
In order to investigate the role of the order of the fractional time derivative g3, we specifically
realized a computational simulation in which we applied a constant gradient of pressure
IIVp|| and we calculated the fluid flow rate by applying the fractional Darcy’s law relation

as given in eq. (5.9).
Figure shows the normalized flow rate (5;) calculated considering eq. in the

case of a constant value of gradient of pressure ||[Vp| = 3 x 10852, A3 = 5.5443 x
10‘101\1;“14,[3 and the three values of 5 = 0.0434,0.0326,0.0232 obtained for the central

body, posterior and anterior horns respectively. It can be noted that even a small value
of the time fractional derivative § affects the fluid flow response. 8 = 0 is equivalent to
considering the classical Darcy law, i.e. fluid flow rate is constant in time. From fig.
it is possible to observe that the higher the value of 5 the faster the decrease in the fluid
flow rate is. Furthermore, we analyzed the evolution of the fluid flow rate in the central
body, posterior and anterior horns using the mean values of the parameters 3, A3 above.
Figure[5.6b shows the response of the normalized flux in the three regions. It can be noted
that as the value of the anomalous permeability Ag in the central body is about four times
higher than in the anterior horn, the value of flux is higher in the central body and lowest
in the anterior region. Moreover, as the value of g is larger compared to the anterior and
posterior horns, the fluid flux is faster (i.e. decrease in fluid flow rate) in the central body.

It would be also important to consider how the fluid flow rate evolves in different direc-
tions, i.e. radial, vertical or circumferential. In this regard, given the paucity of data re-
lated to anterior and posterior horns, it is only possible to analyze the central body of the

meniscus. Mean values of 3, Ag in the circumferential, radial and vertical directions are
4

B = 0.0421,\5 = 6.3924 x 10*10ﬁ, B = 0.0488,\5 = 5.9196 x 10*101%?;7% and

B = 0.0393,\5 = 4.321 x 10710 Ns?l‘im, respectively. Figure pictures the evolution
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of the normalized fluid flow rate in the three directions. It can be noted that the values of
B are very close for all the three directions, differing within a few percents. Therefore the
decrease of flux in time (i.e., the flux velocity) can be considered as almost identical in the
three main directions.

The value of 3 rules the time evolution of the pore pressure diffusion in eq. (5.21).
Increasing the value of g implies a faster pore pressure diffusion with time. At the beginning
of the test, when the fluid saturates the pores, the pore pressure carries most of the load.
As the test continues, the fluid flows out of the specimen. The pore pressure decreases
and hence the solid structure starts deforming. The rate at which the fluid flows and the
pore pressure decrease and the solid structure deformation increases is ruled by the value
of the fractional derivative 5. A higher value of 5 implies a faster pore pressure diffusion
and hence a faster solid deformation. Figure[5.7|shows the evolution of the adimensional
pore pressure (p = p(z,t)/Pa in eq. (5.21)) throughout the length of the sample along the z
axis for different values of 5 = 0,0.1, 0.5 at time 15s. It can be seen that the pore pressure
drops at a faster rate with increasing 5.

5.7 Conclusions

This work focuses on the understanding of the evolution of the fluid flow inside the human
meniscal tissue. We showed through pCT scans of the meniscus that the porosity signifi-
cantly varies spatially within small portions of the tissue. This leads to a functionally graded
permeability across the meniscal tissue. We wanted to address a question regarding how
to appropriately model the fluid flow inside the meniscus. We specifically performed con-
fined compression tests on samples extracted from three portions (posterior/central/an-
terior) of the structure and in three directions (vertical / radial / circumferential) in order to
measure experimentally the anisotropic permeability of the human meniscal tissue. We
then correlated the weight loss of the sample with the evolution of the fluid discharged
upon compression of the tissue. Results show that the weight loss of the sample is well
described by a three—parameters equation derived from a fully coupled poroelastic model
in which the fluid flux evolution is ruled by a generalized Darcy’s law involving fractional op-
erators such as derivatives of non—-integer order. We obtained the anisotropic parameters
needed to characterize the fluid flow evolution inside the different parts of the meniscus,
i.e. the "anomalous” permeability as well as the order of the derivative. We noticed that the
parameters of this porous medium equation are functionally graded in space. Our results
preliminary suggest that the fluid flow in the central part is faster than in the posterior and
anterior regions. Moreover, we noted that the flux is higher in the circumferential direction
of the central body compared to the radial and vertical directions. However, the decrease
in flux over time (i.e. flux velocity) can be considered almost identical in the three direc-
tions.

We believe that this work is a fist attempt and a pioneering study which experimentally
investigates the anomalous behavior of the meniscal tissue. Furthermore, the presented
approach can be easily adapted to study other types of biological tissues. On the other
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Figure 5.6: a. Normalized fluid flow rate (j}) calculated considering eq. in the case of

a constant value of gradient of pressure Vp = 3 x 108Pa/m, Ag = 5.5443 x 10710 N’S’}fﬁ

and three values of g = 0.0434,0.0326,0.0232 obtgined for the central body, anterior and
posterior horns. b. Normalized fluid flow rate (j;) for the three regions (central body,
anterior and posterior horns) calculated considering eq. in the case of a constant

value of gradient of pressure Vp = 3 x 108 Pa/m and with Az = 5.5443 x 10‘10%14,5, B =

0.0434 in the central body, \s = 2.851 x 10710 Nfs’f,ﬁ , B = 0.0326 in the posterior horn and
Ag = 1.2636 x 10710 Ng’f,ﬁ , 8 =0.0232 in the anterior horn. c. Evolution of the normalized
fluid flow rate in circumferential, radial and vertical directions of the central body portion of

the meniscus with 8 = 0.0421, A\g = 6.3924 x 10719 Ngriiﬁ for the circumferential direction,

B = 0.0488, g = 5.9196 x 10_10N7S’§4_ﬂ for the radial direction and 8 = 0.0393,\3 =

4.321 x 10710 g™ for the vertical direction.
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Figure 5.7: Evolution of the adimensional pore pressure (p = p(z,t)/Pa in eq. (6.21))
throughout the length of the sample in the z axis for different values of 5 = 0,0.1,0.5 at a
time of 15s.

hand, there are several limitation of this study, as hereinafter summarized:

e additional experimental tests (unconfined compression, confined compression with
control of the pressure) need to be performed in o_rder to fully characterize the single
poromechanics parameters appearing in Ag and A;

e a wider sample size and additional information is required to perform a reliable sta-
tistical analysis (so far we tested one cylinder per portion of meniscus in the vertical,
radial and circumferential directions).

¢ This work focuses on the 1D poromechanics behavior in the three directions, how-
ever in order to build the full anomalous permeability tensor, the coupled behavior
should be assessed in depth. Nevertheless, this study requires a more complex
experimental set up.
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Perspective

No matter how accurate scientific models and theories become, the quantification of un-
certainties will remain of crucial importance. In this dissertation we have contributed to
improve and extend some techniques of error estimation in the context of finite element
methods with a particular emphasis on fractional Laplacian equations.

Despite the extensive literature on the Bank—\Weiser estimator, some open questions
remain. We can cite particularly the proof of Property [i] without the use of the saturation
assumption for the general definition of the Bank—\Weiser estimator. Especially for finite
elements of degree higher than one. The dependence of the Bank—\Weiser estimator per-
formance on the choice of the spaces used in the estimator definition would also be worth
to investigate further. The derivation and study of Bank—\Weiser-like estimators for finite el-
ements other than Lagrange elements is also to be explored. Finally, a convergence proof
of adaptive refinement algorithms steered by the Bank—Weiser estimator still remains to be
derived.

In this manuscript we have introduced the first FEniCS library dedicated to a posteriori
error estimation: FEniCS—-Error-Estimation. The library is mostly focused on the imple-
mentation of the Bank—\Weiser estimator, only the simplest versions of two other kinds of
estimators (explicit residual and Zienkiewicz—Zhu) being implemented in the library. In the
future, it would be interesting to add new a posteriori error estimation techniques to this
library, especially the methods giving proper boundary conditions to the local problems in
order to derive guaranteed implicit residual estimators. Flux equilibration estimators would
be another interesting and useful addition to the library. Beside other a posteriori error esti-
mation techniques, new test cases would be worth to implement such as time—-dependent
equations, non-linear equations or equations based on non-local and fractional operators.
For the moment only Lagrange finite elements have been implemented. Thus, adding a
posteriori error estimators for other kinds of elements would also be an interesting future
direction.

In Chapter [3| we have introduced a novel a posteriori estimator for the L? error in-
duced by a finite element discretization of spectral fractional Laplacian operators, based
on a particular rational approximation method. In the future it would worth considering the
generalization to other types of rational approximations (following e.g. [161]). To adapt the
estimator to integral fractional Laplacian equations would be another interesting generaliza-
tion. This could be achieved, for example, following [65, Equation 1.13]. The mathematical
justification of our estimator is missing and would be worth to investigate. It is well-known
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that the justification of a posteriori estimators of the error is often more demanding in the
L?-norm than in the energy norm (the spectral fractional Sobolev norm in our case) since
it requires the use of the Aubin—Nitsche argument which demands a sufficient regularity on
the solution (see e.g. [18]). So, another very interesting direction would be to adapt this
method to the estimation of the spectral fractional norm of the error. Finally, from a compu-
tational perspective it would be interesting to control the error on the rational approximation
scheme in order to balance the two sources of error: the rational approximation one and
the finite element discretization one. In addition, our method allows to estimate the er-
ror committed on each parametric problem of the rational decomposition and therefore
allows to derive a specific adaptive strategy for each one of these parametric problems.
This would reduce the computational cost of the overall method e.g. by calibrating a mesh
for each parametric problem.

An interesting extension to Chapter |4] would be to combine the error estimation of
the rational approximation method with an a posteriori error estimation of a finite element
method in order to derive an efficient adaptive mesh refinement strategy for the discretiza-
tion of the spectral fractional Laplacian.

In Chapter |5| we proposed the first experimental investigation of the anomalous be-
havior of the meniscal tissue. Additional experimental tests need to be performed to fully
determine the poromechanics parameters of the model. In particular, additional informa-
tion is required to make a reliable statistical analysis. Our work only treats one—dimensional
experiments (in the three directions). The characterization of the full permeability tensor re-
quires a three—dimensional study which involves a more complex uncoupled poro—elastic
model and necessitates a more complex experimental set up. We only tackled the non-
locality in time (memory) of the tissue, an interesting extension would be to investigate
non-locality in space via e.g. fractional Laplacian equations.



Appendix A

The residual estimator

A.1 Poisson equation

The class of residual estimators, the explicit residual estimator is part of, have been intro-
duced for the first time in [39]. Let hp be the diameter (see e.g. [230Q]) of the cell T' and
hg be the diameter of the facet E. The explicit residual estimator [18] on a cell T for the
Poisson problems egs. and is defined as

1
Mes7 = W T+ Awe 7+ > §hEH[[3nuk]]EH%+ > hillgs = Owurlh, (A1)
Ee&noT EcENNOT

where f, and g;, are the L? projections of f and g on V* respectively. In order to take into
account inhomogeneous Dirichlet boundary conditions, we define in addition the Dirichlet
oscillations. If E:=T'pNT # &, then

0s¢h g = hul|Vr (98 — w) [ F2(m)s (A2)

where Vr is the surface gradient and g := 7 (g) is the L? projection of g onto VA [33].
The global residual estimator reads

2 § : 2 2
Tres *= Tres,T + OSCD7TQFD : (AS)
TeT

A.2 Linear elasticity equations

The residual estimator for the linear elasticity problem egs. (2.41a), (2.41b), (2.43a) and (2.43b)
is given by

Wor = prlRrll3 + palirrll3 + . pelRel?, (A4)
EeoT
where the residuals R, r and Ry are respectively defined in egs. (2.444a) to (2.44c) and
the constants pr, pqs and pg are given by

h(2u) /2
T = >

hp(2u)~!

5 , (A.5)

y  Pd = ()‘_1 + (QIU)_I)_1> PE ‘=
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with hp the diameter of the cell T and hg the length of the edge E. The global estimator
reads

nfes = Z nges,T‘ (A6)
TeT



Appendix B

The Zienkiewicz-Zhu estimator

The Zienkiewicz—Zhu estimator is a gradient recovery estimator based on an averaging
technique introduced in [262]. This estimator belongs to a general class of recovery esti-
mators, see [79, 180, 260] for recent surveys and a reformulation of the recovery procedure
in an H (div)-conforming space that has superior performance for problems with sharp in-
terfaces. Despite the fact that some recovery estimators, especially when based on least
squares fitting, are available for higher order finite elements (see for example [263]) we only
consider the original estimator, defined for a piecewise linear finite element framework.

Given the finite element solution u; € V! the numerical flux p; := Vu; is a piecewise
constant vector field. For each vertex x € N in the mesh we denote w,, the domain covered
by the union of cells 7' having common vertex x. The recovered flux G(p1) € [V1]? has
values at the degrees of freedom associated with the vertices N given by

1

G(p1)(x) : prdz, VyxyeN. (B.1)

B |wX| Wy

The local Zienkiewicz—Zhu estimator is then defined as the discrepancy between the re-
covered flux and the numerical flux

N1 = ||G(p1) — p1ll7, VT €T. B.2)

As for the residual estimator, we add Dirichlet oscillations (see eq. (A.2)) to take into account
the Dirichlet boundary error. The global Zienkiewicz—Zhu estimator is given by

2= S nk s g 83)
TeT

The code in the supplementary material contains a prototype implementation of the Zienkiewicz—
Zhu estimator in FEnICS. We have implemented the local recovered flux calculation in
Python rather than C++, so the runtime performance is far from optimal.
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