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Notations 

Table  I. 1 Table of notations 

Notation Description 

! Discrete time of day ! ∈ {!!, !! + Δ!, !! + 2Δ!,… , !! + (* − 1)Δ!} 

Δ! Time-step of discretisation 

/0"
# 1 = 0# Activity of individual 3 at time ! 

/4"
#1 = 4# Origin zone of individual 3 at time ! 

/5"
#1 = 5# Destination zone of individual 3 at time ! 

/6$
#1 = 6# Sequence of (chained) activities of individual 3 of length 7# 

7# = 86#8 Number of distinct activities in activity chain of individual 3 

!#,$ Time points of the 9-th activity in chain of 3 

!&
#,$ , !'

#,$
 Start/End time of 9-th activity in chain of 3   

!&
#,(), !'

#,()
 Start/End time of trip for individual 3 travelling from zone : to zone ; 

!!*
()

 The travel time from zone : to zone ; to engage in activity 0 

<"	 Cost of travelling 

>((!) The number of people engaged in non-travel activities in zone : at time ! 

?*) The number of people per day engaging in activity 0 in zone ; 

@()(!) Total number of trips departing zone : at time ! to travel to zone ; 

@(→(!) Total outgoing trips from zone : at time ! 

A*,)(!, !&) 
Marginal utility for performing an activity 0 in zone ; at time !, having 

started at time !& 

A" Marginal utility of travel is constant (A" ≤ 0)  

D*(!&, !' , ;,E) 
The utility accrued from engaging in activity 0 from time !& to !' in zone ;, 

travelling with mode E 

D# The total utility accrued for the entire activity chain of individual 3 
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F*
()(!&, !' , E) 

Probability of departing from zone : to go to zone ; with mode E in order 

to engage in activity 0 with start time !&	and end time !' . 

F*
()(!) 

Probability of departing from zone : at time !, to go to zone ; for activity 

0. 

F*(!&, !') Probability of engaging in activity 0 from time !&, to time !' 

H Scale parameter of the Multinomial Logit model 

I* Probability distribution of activity 0 starting time 

Parameters of the Activity-Specific Utility Functions 

D*,*- Magnitude-parameter of the marginal utility for activity 0 

J* 
Axis location-parameter of the marginal utility We will also sometimes omit 

for sake of readability and without loss of generality the subscript 0 

K* 
Steepness-parameter of the marginal utility. For the same reason above, 

subscript 0 can be at times omitted. 

τ* 
Starting time impact-parameter on the marginal utility. For the same reason 

above, subscript 0 can be at times omitted. 

M* 
Skewness-parameter of the marginal utility. For the same reason above, 

subscript 0 can be at times omitted. 

N*,) Relative attraction factor of zone ;	for activity 0 

O = (D,*- , J, K, τ, M) 
Set of parameters to be estimated for each marginal utility function of 

interest 

P Any single element of O 

P′ Proposed parameter for the Markov Chain related to element P 

F(O) 
Probability distribution function of the parameter independently from any 

evidence 

F(?) 
Probability distribution function of ? independently from any parameter 

value 

R(O) Prior density of the parameter O 

Δ. Step size of parameter P 
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3 Iteration number  

S Residual 

T Weight of the scoring function 

U/ Scale factor applied at the nth component of the likelihood  

ℒ Likelihood function 

W Total score value 

X Acceptance ratio 
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Chapter 1  

Highlights of the chapter 

1. Issues and challenges of mobility and its modelling in today’s world motivate the 

development of new approaches able to assess new transport and mobility services 

2. Advantages of a macroscopic activity-based demand models are discussed, in 

particular in terms of mathematical tractability and estimation accuracy 

3. Application opportunities of the proposed model are introduced 
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I. INTRODUCTION 

I.1. Context and motivation 

Despite the growing ecological responsibility, the development of new technologies, new modes 

of transport and new mobility solutions, traffic caused by people's journeys is still a source of 

considerable problems in dense urban areas. Not only are the environmental consequences 

significant, but also the time lost, and the dissatisfaction of users have a negative impact on society 

despite very high investments cost for transport in Western Countries. To address issues related 

to mobility, we believe it is essential to better understand how human movements work and what 

their spatial and temporal interactions are, to better estimate and predict the demand for transport 

and mobility services.  

A way to better understand how these movements work is to understand their cause, their type 

and above all to know what the alternatives are and what would make these alternatives more 

attractive in terms of, for instance, mode choice. In the current context, better understanding is 

also made difficult by the growing complexity of the mobility offer caused by the increase of 

multimodal trips, shared mobility, and the complex patterns emerging from individual activity-trip 

chains. In Luxembourg, the levels of congestion and car usage are particularly high. To counter 

that, the country set a series of strategies aimed at achieving objectives to address these issues and 

align themselves with European sustainability objectives. The mid-term mobility targets are 

ambitious and require adequate strategies to be achieved as they cannot be only accomplished 

through current infrastructural response. These objectives concern modal share for commuting 

with a particular attention given to the reductions of car drivers share with respect to car 

passengers. This cannot be done without increasing car occupancy drastically, e.g. via shared 

mobility services. They also concern the decarbonisation and reduction of CO2 generated by 

transport which is a direct consequence of the reduction of car usage and the electrification of the 

national fleet.  



 

 
17 

   

Figure I. 1 Objectives 2025-2030 in Luxembourg (source MoDu 2.0) (a) Modal Split (b) Emissions 

The usage of electric vehicles and services like carpooling bring challenges in terms of demand 

modelling. Demand modelling and forecasting are usually used to help making right decisions in 

terms of transport planning and policy making by understanding how many trips people will make 

and what will be their characteristics. We believe that an improvement of the current situation in 

terms of mobility can be achieved with the help of the three following steps: 

1. Firstly, estimating and modelling current and future mobility patterns in terms of flows 

and modal choice, 

2. then, assessing the impact of planning and management solutions, and finally 

3. recommending how to redesign future networks.  

In this thesis we focus mostly on the first step while keeping in mind the necessary application and 

thus implementation constraints. That is, we focus on the applicability of the proposed model in 

the perspective of large-scale transport network planning. In the current context, especially with 

resource sharing and other policies encouraging the use of electric vehicles, it is important to know 

not only the characteristics of the trip itself but also those of the idling periods and of the following 

trips. It is important to do so since, for instance, it may have an impact on the charging needs. 

While for years traffic was modelled without much concern for the reason of a movement but 

focusing more on individual trips and their effects on the network, the trend today is quite 

different. People move to perform specific activities and many modellers seek to understand what 

aspects of their activity chain conduct them to making decisions related to their related movements 

chain. In this work, we want to identify the ideal point where we can in some way benefit from 

two well-established modelling approaches: trip-based models and activity-based models. Both 

bearing several advantages and disadvantages, we propose a model that allows us to reproduce the 
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desired aspects of these two branches. To do so, it is reasonable to consider the following 

assumptions: 

- Travelling is a derived demand generated from the need of performing or participating to 

an activity 

- Travellers are rational decision-makers who try to maximize their utility 

- This need varies from one activity type to the other (from basic needs to self-fulfilment 

needs) 

- The travel itself brings a disutility to the user 

- This disutility is perceived differently depending on the activity executed at the destination 

- Attraction of a destination is higher for certain areas which can be worth longer trips 

These assumptions are common in demand estimation for transport planning in order to model 

users’ behaviour (Ortuzar and Willumsen 2011). We aim at developing a model which can consider 

these hypotheses inside the demand estimation framework and be applied for short-term to long-

term planning and resolution strategies.  

I.2. Objectives and scope 

To ensure the possible use of the proposed model in applications where the available resources do 

not allow for the representation of each individual, we propose in this work to focus on a 

macroscopic representation of the demand. This important issue, in the context of data protection 

is also motivated by the computational complexity of modelling single individuals and their 

interactions. In order to develop a robust model that can be calibrated and integrated with traffic 

assignment models, we also choose to aggregate demand at the scale of analysed traffic zones 

(TAZ). At the temporal level, we target a modelling of a 24-hour scenario in order to be able to 

capture the flows emerging from full daily travel chains inside the study area. The dynamics 

addressed in this thesis are thus spatial on the one hand and temporal on the other. Furthermore, 

we give a particular importance to mode choice modelling as one of the major solutions to reducing 

emissions and congestion is to shift from single car use to other modes of transport.  

The main research question we want to answer in this thesis is therefore: 

"Is it possible to capture spatial and temporal distribution of activity- and mode-specific 

flows over a day from aggregate data?” 

The complexity in answering this question lies in the fact that the modal choice is very complex 

and involves many criteria that are characterised by different levels of importance and have 
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different degrees of complexity to model, especially at a macroscopic scale. This is why we seek to 

reproduce emergent behaviours, i.e. patterns that appear when all individuals are seen as a whole 

and their singular behaviour result in recognizable trends. Also, even the simplest individual 

choices are correlated with each other and therefore we are looking for a "mesoscopic" approach 

to meet the feasibility criteria described above. Even though this term is usually used in traffic 

modelling, we apply it to demand modelling including behavioural individual characteristics to be 

used at the macroscopic application level. The trade-off between the rigorous level of detail 

obtained by activity-based models and that required for the validation of conventional traffic 

assignment models is ideally incorporated in the proposed estimation model. In order to answer 

this main question, we propose four intermediate questions that allow us first to explain, then to 

model and quantify and finally to predict these dynamics.  

RQ1: Can we quantify how much commuting mode choice has an impact on other activities or trips? 

This first question concerns the understanding of the existing dynamics and especially the 

correlations underlying modal flows. In particular, we seek to understand to what extent the modes 

of transport used are governed by characteristics specific to a chain of trips and activities, beyond 

the characteristics of the trip itself. In reference to the described dichotomy between modelling 

approaches, one of the main aspects of activity-based models is that they are also, often tour-based 

models. This means that all the trips belonging to a same tour, i.e. the chain of trips done starting 

and ending at a given location are jointly modelled. The car usage reduction objectives focus on 

the commuting trip. Indeed, the highest levels of congestion are often observed during the 

morning peak hour and these trips are often the most constrained ones in terms of destination, 

starting time and frequency. It is rational that modal choices are correlated to each other and that 

decisions are often made for an entire agenda and not just a single trip. It is therefore important 

to know and quantify the impact of commuting mode choices on the entire trip chain. We are 

therefore looking to find a way of linking, at the population level, the characteristics of a journey 

with the places visited so as to be able to use clear and precise indicators in predicting them. A 

sensible approach is to use existing models of destination choices and definition of user activity 

space in order to adapt them to homogeneous groups within the studied population. To answer 

this question, we use a multi-day travel survey collected in Belgium and analyse in particular the 

daily movement of commuters belonging to this database. This question is addressed in the first 

part of the thesis. 

RQ2: Can the trade-off governing individual activity scheduling explain emerging travel flows?  
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The second question is motivated by empirical observations described in the first part of this work 

but introduces the issue of modelling. The first step is to exploit the empirical analysis in order to 

point out the desirable features of a mesoscopic modelling framework as well as the possible 

modelling assumptions needed for feasibility issues. In addition, to answer this question we need 

to look at how existing models can take interdependencies into account and what their limitations 

are. The connection between individual tours and dynamic flows at the scale of zones has 

consequently a series of requirements in terms of modelling which can be done at different grades. 

A first way to connect activity scheduling to travel flows is simply to estimate activity-specific daily 

profiles of departure rates. A way to answer the trade-off aspect in scheduling more in detail is to 

propose a model that allows to work on two successive trips together and to estimate the different 

activity-specific demand in a certain environment. In the second part of this thesis, two important 

elements referring to those two aspects are introduced: trip- and utility-primitives. They allow the 

consideration of activities in the observed traffic dynamics and, more specifically, the activity-

specific choice process which can be modelled at the population level in order to connect 

individual behaviours and travel flows.  

RQ3: Can we model mode dynamics considering explicitly their correlation with activity-travel chaining? 

This question is strongly linked with the previous one but integrates other facets of trips performed 

by individual decision-makers. The activity-travel chaining binds successive trips and put their 

characteristics in relation. If the temporal succession of trips can simply be estimated through an 

estimation considering a full day, the spatial connections and correlations require more hypothesis. 

As with traditional demand modelling models, we focus on the generation and distribution of 

demand before we can incorporate the modal choice aspect into the proposed system. Each 

different step requires different degrees of input and modelling standards. The distribution and 

mode choice modelling are described in the third part of the thesis.  

RQ4: How can an activity-based aggregated model estimate and predict the effect of disruptive policies and new 

services? 

The last question, more than a methodological aspect, corresponds to a possible application to 

case studies of the demand generated according to the previous point. First of all, it requires 

creating a realistic base scenario containing a modal choice linked to the tour, i.e. where successive 

choices are constrained to each other. Given this scenario, we can observe to what extent it can 

be used to create value in a series of applications with respect to demand models currently in use. 

These applications can either concern supply characteristics with variations in their level of service 



 

 
21 

for different modes, or concern an analysis of the model itself to estimate, for example, the 

management of parking or charging stations.  

I.3. Thesis contributions 

The main contribution of this dissertation is the description of the proposed demand model.  In 

traditional demand modelling, mode choice is typically evaluated as the last aspect of the individual 

decision process before the route choice. Also, shifting to modes other than private car, even if it 

is one of the main targets of European governments, is far from being the sole solution for 

achieving greener mobility. Therefore, this thesis goes beyond mode choice modelling and 

integrates more levels of the decision-making process. This leads to a better approximation of 

mode choice on one side but also to intermediary results which can be used in some of the 

applications opportunities. Another contribution of this thesis, presented as first in this 

manuscript, is the empirical analysis of a multi-day travel survey which provides the basis and 

justification for the model proposed hereafter. We describe in detail the dynamics that exist in 

terms of workers' trips during business days. With a particular focus on mode choice, we analyse 

the impact of trip characteristics (e.g., time of day, activity at destination) but also of the trip chain 

(e.g., places visited, number of activities, modes used at home) on individual choices. The lessons 

learnt from this analysis allow to highlight the fundamental aspects to be integrated in the proposed 

macroscopic activity-based approach.  

To describe the contribution made in this thesis, we then propose an analogy with the traditional 

"four-step model" of demand modelling (Figure I. 2).  
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Figure I. 2 Methodological Framework 

On the left we can see the four elements of this modelling technique, commonly used by 

practitioners. On the right side are depicted three fundamental concepts used in the developed 

model, each of them corresponding to a given modelling scale. Starting from a well-established 

concept, commonly used at the individual level (marginal utility), we propose a definition of 

“utility-primitives” in order to generate “trip-primitives”, i.e., the single components of the daily 

demand profiles, each corresponding to either a given activity, mode of transport, OD pair or a 

combination of those. Given its aggregate nature, it can be used at a macroscopic level, as input to 

network loading models. The concept of utility-primitives can be used at different levels of the 

four-step model, depending on the modelling assumptions, available input, and desirable output. 

 

Generation: for a given study area or zone, we propose an estimate of the generated trips specific 

to a given activity type and by time of the day. For this purpose, the concept of "activity trip-

primitives" is defined and adopted to model daily demand profiles. For each given period of the 

day, we generate the number of trips to reach a destination where to perform an activity.  

Distribution: the choice of destination varies from one type of activity to another and here, we 

estimate dynamic, activity-specific origin-destination matrices. The technique used depends mainly 

on the activity itself, while taking into account the journey costs. In this case, the generation and 
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distribution of the demand is jointly modelled, and utility-primitives are used within the departure 

time and location choice model in order to generate activity-trip primitives as well as activity-

specific OD specific demand.  

Modal split: The last aspect modelled in this thesis is mode choice. For this component, we focus 

more on the components related to the trip itself (e.g., duration, access to the different modes, 

distance…) than in the two previous steps. In this case it is hardly conceivable to model the 

alternative between different choice options only through variations in terms of accumulated 

positive utility at the trip destination. In opposition to generation and distribution which are jointly 

modelled, mode choice is subsequent to those two steps and the calibration process is done in two 

distinct stages.   

Traffic Assignment: Finally, the traffic assignment, last part of the four-step approach is out of 

the scope of the proposed model, as our approach is mainly concerned with pre-trip choices. In 

this thesis, we include however an example of an integration of our generated trip-primitives and 

a traffic flow simulator in the case study section of the dissertation. 

 

The advantages of the proposed multi-scale approach are threefold: 

- First, we estimate activity-specific components of aggregated generated trips that are both 

consistent with individual mobility patterns (thanks to the utility functions used as a 

mainstay for the estimation process), and with the observed aggregated demand flows 

(thanks to the input data used as a reference for calibration).  

- Second, the primal outputs of this method are dynamic activity-specific demand flows. 

They can certainly be deployed at the origin-destination level and used as input for 

applications such as dynamic within-day Origin-Destination (OD) estimation, for creating 

synthetic trip data for transport simulation models, or even for reconstructing activity 

schedules (Ballis and Dimitriou 2020b).  

- Finally, thanks to the adoption of underlying functions often used for representing the 

marginal utility gained by individuals, we can estimate relevant behavioural parameters and 

acquire insight into complex decisions such as when to schedule activities and the related 

departure and arrival times, or which mode(s) to use in a daily trip chain. 

Application opportunities are therefore numerous. By estimating activity demand and typical 

duration, we can develop dynamic resource modelling and management strategies.  
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I.4. Thesis outline  

This manuscript is divided in four parts and consists of nine chapters (Figure I. 3). Firstly, after 

this introduction we review the state of the art, with a particular focus on existing demand models 

and the integration between microscopic representation of the demand and usage of emerging 

behaviours for planning purposes among others. The third chapter answers to the first research 

question (RQ). This allows us to sketch the conceptual framework of the modelling approach and 

specific indispensable functions to be integrated. In terms of modelling, we have thereafter two 

branches, on one side the temporal aspect (relating to the second RQ) and on the other side the 

spatial aspect (third RQ). While the temporal aspect is often dealt with after the distribution of 

trips inside the study area, we decide here to follow the parallel presented above and introduce as 

first the concept of trip-primitives. Indeed, the generation step is intrinsically time-dependent 

inside the proposed approach. Chapter 4 describes this concept and introduces a simplified case 

study with the estimation of a mixture model. The estimation process itself is also introduced in 

this chapter on the Markov Chain Monte Carlo calibration of the model’s parameters. The 

application of this calibration method is then described in the fifth chapter in the context of a 

utility maximization approach. This approach is used with the help of utility-primitives for 

estimating the distribution of trips in chapter 6 and the modal split in chapter 7. The last part of 

this thesis concerns the application opportunities an application on the network of Luxembourg 

(chapter 8) followed by conclusive remarks including possible improvements of each step of our 

macroscopic activity-based model.  
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Figure I. 3 Outline of the thesis 
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Chapter 2  
Highlights of the chapter 

1. Advanced models often require very detailed information, which may not be 

readily available or may require expensive surveys 

2. Utility maximization models can describe well individual decision processes, and 

relate them to explanatory and observable variables 

3. Limitations of integrated models due to balance between complexity and 

completeness 

 

In this chapter, we briefly describe the state of the art in the different areas related to the choice 

facets modelled in this thesis. That is, generation, distribution, and modal choice. The last aspect 

of the 4-step model, namely route assignment, is outside the scope of this work. Instead, we also 

discuss integrated models between traffic assignment and advanced demand models and what are 

the different types of proposed solutions. That is what are the best models to combine 

sophisticated methods of individual planning with road network loading or multimodal 

assignments. This chapter aims to highlight the research gap that motivates this PhD thesis and 

outlines the modelling strategy.  

  



 

 
27 

II. STATE OF THE ART 

II.1. Introduction 

As described in the introduction of this thesis, we argue that dynamic information on trip purpose 

needs to be included in macroscopic, aggregated models. It is essential to evaluate spatial and 

temporal travel demand dynamics and consequently to better predict the long-term impacts of 

planning, policy, and traffic management measures. In fact, research in demand modelling has 

evolved substantially during recent decades with growing interest in Activity-Based Models (ABM) 

as opposed to the more elementary Trip-Based Models (TBM) (Bowman and Ben-Akiva 2001b; 

Timmermans, Arentze, and Joh 2002). ABM usually reflect the scheduling of individual agendas 

and the derived trips in time and space. Because they are modelled in a disaggregate manner, the 

activity-travel prediction has a strong behavioural component and a high level of detail. In this 

chapter, we emphasize the differences between those two modelling approaches and the gap 

existing between them.  

Figure II. 1 shows on the left the level of detail in terms of schedule modelling in the existing 

literature. On one side activity-based models which can be used as tour-based models are the most 

advanced approaches to describe individual behaviours but usually rely on a simplified supply 

model. On the other side, dynamic traffic assignment models often use a less detailed 

representation of the demand as input but are very useful tools for modelling daily variations of 

the network state and predict congestion. Because the goal of this thesis is to propose an activity-

based approach of demand modelling able to seamlessly accommodate a Dynamic Traffic 

Assignment (DTA), the chart also includes the existing integrated models. Few works focus on 

the actual integration between DTA models and activity-based demand models (Boyce 1986; Lin 

et al. 2008).  
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Figure II. 1 Chart of relevant literature branches 

However, other approaches such as agent-based models can embed these two aspects in one 

singular simulation framework. By limiting our focus on the problem of linking input data and 

demand models, research can be divided in two main branches: including information on the trip 

purpose within standard trip-based models (macroscopic representation of the demand) and 

generating a fully disaggregate population of agents to evaluate tour of activities (microscopic 

representation of the demand).  

In this section of the thesis, we will describe these different existing models and the assumptions 

on which they are built in order to highlight their advantages, to be retained in the following 

proposed model as well as their disadvantages to be overcome. Following the conventional 

demand modelling framework presented in the introduction, we present a short description of 

alternative generation, attraction, and mode choice modelling approaches. Finally, the assignment 

step is handled within a short review of integrated models.  

II.2. Generation 

The first step in the four-step modelling approach is the generation model. In the case of activity-

based models, it consists in the creation of a population for which long-term, short-term plans and 

by consequence trips will be generated. Concretely, procedures are mostly based on the creation 

of a virtual set of agents and households, provided with specific attributes and subject to activity 

scheduling (T. A. Arentze and Timmermans 2004a; Bowman and Ben-Akiva 2001a). This founding 
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step of disaggregate demand modelling is well known in literature as “Synthetic Population 

Generation”. The starting point of synthetic population is usually composed of both aggregate 

socio-economic characteristics and disaggregate information of a sample of the population. 

Merging aggregate data from different sources means incorporating strong assumptions on their 

distributions (Farooq et al. 2013). The two main options to generate this data are synthetic 

reconstruction (and in particular Iterative Proportional Fitting (IPF)) and reweighting methods like 

Combinatorial Optimization (CO) (Mueller and Axhausen 2011). Farooq et al. (2013) introduced 

a third category: Markov process-based methods. In the IPF algorithm, a contingency table is 

evaluated iteratively, based on the correlation of attributes in the sample; a population is created 

by replicating the sample accordingly, it has been used since a long time and is still recently (T. 

Arentze, Timmermans, and Hofman 2007; Duguay, Jung, and McFadden 1976; Ye et al. 2009). In 

the CO, a weight is linked to the sample to select a combination of households from the dataset 

(Voas and Williamson 2000). 

The fact remains that, if these complex models can yield good results, major drawbacks appear 

when evaluating their usage. On one hand, the aggregate data required needs to be very consistent 

and extremely accurate. On the other hand, data sources need to be of good quality, recent and 

representative of the entire population. To get viable output of such models, a large amount of 

information is needed and the performance classically increases with the quantity, quality and 

precision of inputs (Barthelemy and Toint 2013; Farooq et al. 2013). Furthermore, in many 

countries, privacy restriction are so tight to make almost impossible to implement ABM without 

running conventional (expensive) travel surveys (Barthelemy and Toint 2013). In order to 

overcome this issue, sample-free synthetic reconstruction methods have recently appeared 

(Barthelemy and Toint 2013; Gargiulo et al. 2010). They overcome the restriction of micro-samples 

or travel-survey necessity but are still based on very specific probability distributions. Besides, 

experiments concluded their lower performance in comparison to sample-based approaches 

(Lenormand and Deffuant 2012).  

In principle, Synthetic Population Generation model discussed so far may be applied for 

introducing a trip purpose specification within time dependent OD matrices. However, since they 

require a large amount of data, they are usually implemented only to calibrate Activity-Based micro 

simulators, while time-dependent OD matrices are usually estimated using simpler approaches. 

Usually approximated for different trip purposes, the number of attracted and generated trips by 

TAZ depends on characteristics of this zone and of its residents.  
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Table  II. 2 

 ABM TBM 

+ Accuracy and level of detail Low data requirement 

- Complexity of the models Risk of consistency lack  

 

II.3. Distribution 

The balance between applicability and level of detail applies naturally as well to trip distribution or 

destination choice model. We can oppose on one side individual destinations within scheduling 

choice modelling (Bowman and Ben-Akiva 2001b) or agent-based simulators (Horni, Nagel, and 

Axhausen 2011) and on the other side the distribution part of the four-step model and the so-

called “Gravity model” (Voorhees 2013).  

Even though destination choice model (in the form for example of logit models) and distribution 

models can be seen as similar approaches using comparable trip characteristics when applied to 

large homogeneous groups, a discrete choice approach can model the impact in terms of utility. 

This improvement given certain attributes and explanatory variables is nonetheless at the cost 

sometimes of higher computational times and information requirements (Jonnalagadda et al. 

2001). Even if this travel decision is not the main focus of disaggregated modelling approach, it 

can result in better estimation than gravity model (C. Bhat, Govindarajan, and Pulugurta 1998). 

This allows indeed to incorporate for example trip chaining in the destination model  (Bernardin, 

Koppelman, and Boyce 2009) accounting for actual dependency between trips at the individual 

level (Kitamura 1984a). Time-geography theories can also be included for choice set simplification 

in the case of agent-based simulations (Horni et al. 2009). The usage of such theories derived from 

(Hägerstrand 1970) and especially space-time prism is particularly relevant to constrain the 

modelling of activities. The travel time budget, key element of these concepts, can be linked this 

way to the time allocation problem used in this work to understand the possible trade-off in time 

and space.  

Nevertheless, the most common approach to generate origin-destination matrices remains in 

practice the usage of impedance function of distance between zones but also cost and time of the 

trips and constrained iterative fitting. This often has limitations in terms of accuracy and 
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refinement because the level of aggregation is usually very high. These issues are raised particularly 

when dynamic OD matrices need to be generated.  

 

Table  II. 3 

 ABM TBM 

+ 
Consistency to individual decisions and 

variables 
Easy to implement 

- Choice set formation 
Low demand elasticity 

Aggregation problem 

 

II.4. Mode choice 

While in the past travel demand was mostly captured by single modes users, the development of 

new systems such as Mobility-as-a-Service, as well as policies aiming to reduce car use and 

ownership, enhance the multimodal behaviour of travellers. By definition, activity-based models 

ensure consistency of successive trips which are triggered for undertaking activities (Ben-Akiva 

and Bowman 1998). 

Mode choice is a complex decision that involves many determinants at various levels. Obviously, 

the level of service and trips characteristics impact the choice set and relative attractiveness of 

options, but the decision involves socio-demographic characteristics and personal preferences or 

habits as well (Tyrinopoulos and Antoniou 2013). (De Witte et al. 2013) undertook a 

comprehensive review and highlighted that, among a large number of interacting parameters, 

departure time and even more so, trip chaining are too often ignored, e.g. trip chaining is 

considered meaningful for 80% of the cases but included in only 20% of the papers. While many 

variables can be included at a macroscopic level, some characteristics are linked to individuals or 

households and their long-term decisions. For this reason, household travel surveys are commonly 

used for studying single modal choices. (Pucher and Renne 2003) show regional variations but also 

significant variations in modal split by trip purpose, nonmotorized modes being less represented 

for going to work. In the case of Melbourne, (Currie and Delbosc 2011) observe that complexity 

of tours is lower for car users and underline the need of adding a spatial perspective. On the 

contrary, (Hensher and Reyes 2000) rely on time budget and value of time and model mode choice 
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using different logit models in order to demonstrate to what extent trip chaining is a barrier to 

public transport use. In the same vein (Krygsman, Arentze, and Timmermans 2007) show that 

public transport hinders the inclusion of secondary activities in work tours, notably because of 

mode (un)availability at the workplace. Furthermore, they use a co-evolutionary approach to 

conclude that the intermediary activity decision is made most of the times before the mode 

decision. Similarly, (Ye, Pendyala, and Gottardi 2007) use econometric modelling to explore the 

directionality of the relationship between mode choice and complexity of trip chaining patterns 

using micro census travel survey and show that trip chain complexity precedes mode choice.  

The complexity of trip chaining and its impact on mode choice (as well as destination choice) can 

also been linked to the concept of activity space (AS)(Tsoleridis, Choudhury, and Hess 2022). The 

notion of time-space prisms, introduced by (Hägerstrand 1970) illustrates for example the necessity 

of carrying out “[roles] within a given duration, at given times and places” and constrains them 

with “geometrical shapes in terms of location in space, areal extension, and duration in time” 

whose parameters depend on the available modes of transport. This concept, refined by (Lenntorp 

1976) has been widely used notably in the activity-based approach to travel demand modelling 

(Bowman and Ben-Akiva 2001b). The AS geographical aspect has been described in many ways 

and applied for various purposes. (Patterson and Farber 2015) reference 66 applications of AS and 

potential path areas in diverse fields and highlight 4 main methods to estimate AS: ellipses and 

circles; network-based approaches; kernel density approaches; minimum convex-hull polygons. 

Some authors compared different models based on a series of criteria, for example (Schönfelder 

and Axhausen 2003) regret the rigid assumptions of the confidence ellipse that makes the AS’s size 

too high. However, the versatility of the AS concept prevents reaching a consensus on a single set 

of criteria appropriate for all use cases. In order to represent better AS, new geometries are still 

recently proposed (Li and Tong 2016) and notably for integration in MATSim (Rai et al. 2007). To 

reflect better AS, (Perchoux et al. 2014) combines different methods to create a set of indicators 

in order to qualify individual space-time patterns. This study also concludes that active modes are 

used in small AS centred around home and that larger AS correspond to the use of motorized 

modes. While most of explorations on AS focus on individuals, (Harding, Patterson, and Miranda-

Moreno 2013) assess the relationship between mode choice and AS at the city level. They selected 

convex hull for describing AS of sampled individuals and use ‘area to compactness ratio’ for 

comparing transit, car, and active modes. While they mostly have expected outcomes, transit users 

are associated to compactness ratios closest to 1.  

Making specific mode choices for an earlier trip influences following decisions, for example 

because of the consequent availability of transport alternatives at the origin or destination of the 
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trips. Few models are able to handle all feasible mode combinations for tour-based choices 

(Vovsha et al. 2017). Even though, to handle the aspects and correlation in mode choice, tour-

based models seem to be the most relevant. When a tour-based mode choice modelling approach 

is adopted explicitly in activity-based models, the mode choice usually follows an activity 

scheduling model. The output (i.e. agenda of individuals) is then fixed and used as starting point 

to estimate mode selections. For example, (Miller, Roorda, and Carrasco 2005) consider the 

schedule as an external input to their choice model.  Also, the mode choice may sometimes be 

limited to a single choice for the whole day. In many other cases tours are specified, based on the 

commute mode-choice only and without the possibility to change mode. This reduces the 

approach to unimodal tours without combinations available (T. A. Arentze and Timmermans 

2004b; Chandra R. Bhat 1997; Bowman and Ben-Akiva 2001b). More advanced models include a 

“main mode” which characterizes the tour and may then be used inside trip-based mode choice 

models, that are constrained by that choice (Bradley, Bowman, and Griesenbeck 2010).  

Table  II. 4 

 ABM TBM 

+ 
Activity space and trip chaining has a strong 

impact on mode choice 

Mode choice is affected by many non-

individual factors and data is easily collected 

- Often simplified into single mode usage 
No explicit correlation between trips within a 

tour 

 

II.5. Models’ integration with assignment models 

Trip-based origin-destination demand flows are the typical input for advanced DTA models, which 

have become the most commonly used tools for planning, optimizing and managing transportation 

networks (Peeta and Ziliaskopoulos 2001). DTA frameworks including mode choice under 

equilibrium conditions and including activity-related choices are an efficient way to represent full-

day schedules of a whole population, considering feasibility constraints. The usage of variational 

inequality dynamic user equilibrium model has been applied as first by (Lam and Yin 2001) to 

propose a concept associating activity-based demand on one side and time-dependent traffic 

assignment on the other side. The applied elastic demand is used in such way that, at equilibrium, 

perceived utilities of activities are maximal with a minimal travel time on selected paths. This 

supernetwork representation allows to model different choices as path choice through the 
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constructed network, offering a basis for activity-travel assignment. For example it allows to model 

multimodal travel choice problems in an integrated framework (Carlier et al. 2003). Although there 

is no critical distinction between a conventional traffic network and supernetworks, the latter are 

capable of illustrating the transition and interactions between distinct modes and so model 

multimodal journeys. Different facets of travel choice are turned into path choice through the 

different layers of constructed network, offering a basis for activity-travel assignment. Activity-

travel patterns are input of particular networks that range from PT-only networks with mode 

choice (Fu and Lam 2018), to multi-state supernetworks (Liao, Arentze, and Timmermans 2013). 

However, all these models are constructed at the individual level, together with the scheduling and 

activity chain planning. Time-based utility profiles can in this way be used for estimating scheduling 

as well as in a combined activity and route choice problem through a Dynamic Activity Travel 

Assignment (DATA) (Liu et al. 2016). The dynamic activity-travel assignments models are arguably 

the most advanced methods for capturing multiple choice dimensions such as activity sequence 

and duration that can be estimated through the DTA itself. However, because these networks are 

time expanded and at the individual level, size and complexity can grow extremely rapidly. 

Another common approach to integrate activity-specific aspects into the route choice modelling 

is to include a departure time aspect and combined activity-based and a traffic assignment models 

through feedback mechanisms (Lin et al. 2008). At each time interval the time-dependent activity-

travel demand is introduced as input into a distinct traffic flow model. A stochastic dynamic user 

equilibrium model which uses the travel plan at a user level is used as input demand to evaluate 

departure time, activity and route choice, for a limited number of activities and time periods 

(Abdelghany and Mahmassani 2003). More recently, (Halat et al. 2016) proposed an integration of 

the full activity-trip chain demand inside the assignment process. A dynamic traffic simulator 

(Dynasmart) is used in combination to the CT-RAMP activity-based demand model to use origin-

destination demand consistent with full-day schedules of the population, iteratively evaluated 

through a bi-criterion dynamic user equilibrium. Agent-based traffic simulators are one of the most 

advanced approach for modelling complex choices and their interactions (Patwary, Huang, and Lo 

2021). As an example, the population-based trip micro simulator MITO used as input to a DTA 

makes the demand sensitive and accurate (Moeckel, Huntsinger, and Donnelly 2017). In can be 

used as well to generated demand and activity chains for mesoscopic traffic simulators such as 

MATSim (Llorca et al. 2019).  

In order to estimate the aggregated demand emerging from these individual decisions, often 

complex frameworks are used. (Hesam Hafezi et al. 2021) include among others agenda formation, 

tour simulator or trip scheduler modules with various inherent techniques.  
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Observed traffic data, on the contrary, does not suffer this limitation as it is a consequence of 

travellers having diverse characteristics and needing to move for subjective reasons. While most 

of the above-mentioned methods rely on agent-based models, it is possible to incorporate 

information about daily activity scheduling and duration in order to derive dynamic OD flows, 

which are consistent across time periods (Cantelmo et al. 2018). In this way the relation between 

utility and dynamic user equilibrium is exploited without generating an SP. Works focusing on the 

estimation of activity schedules based on aggregated OD matrices are very few, but recent works 

use those data to convert purpose-dependant demand into realistic activity schedules (Ballis and 

Dimitriou 2020a; 2020b). 

II.6. Trip- vs. activity-based models 

Demand modelling in most cases is used in order to be associated with a supply model and estimate 

route choices to eventually assess congestion and service usage issues. 

Last decades have witnessed an immense effort in bringing travel demand modelling to a new level 

of comprehension. While, since the early 80s, person travel has been modelled with a trip-oriented 

rather than activity-oriented specification, this approach has been universally criticized for being 

unrealistic. Because of these challenges linked to application, traditional TBM continue to be 

widely adopted for forecasting travel demand (Ortuzar and Willumsen 2011). Relying on the 

traditional four-step demand model for transport planning (McNally 2007), TBM are sometimes 

inadequate for planning purposes and for incorporating departure time choice in demand 

estimation (Lindveld 2003) as they usually provide too coarse a representation of travel demand. 

For example, the introduction of mobility services like car sharing involves strongly interdependent 

decisions such that modelling the entire daily mobility patterns with their spatial and temporal 

variations is recommended. The main problem is that while researchers agree that travels are 

derived from the demand for activities and services (Axhausen and Gärling 1992), conventional 

macroscopic TBM do not explicitly account for trip-purpose, activity scheduling, nor duration 

constraints (Cantelmo et al. 2018). Despite these limitations, TBM provide essential application 

and interpretability opportunities, and are convenient to calibrate using observed traffic flows or 

other aggregate data, compared with agent-based models. 

Thus, advanced ABM allowing schedule-based and tour-based approaches, are nowadays the most 

active research branch in demand modelling with new tools still being developed. These models 
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often contain a set of detailed models (from synthetic population generation and long-term 

decision making to daily activity patterns and singular trip choices) which made their application 

limited due to the high cost of collecting input data (Bowman and Ben-Akiva 2001a). ABM are by 

nature able to integrate this behavioural component originally lacking in TBM. Tour-based 

approaches model individual choices and disaggregated mobility patterns, and have been 

developed to capture detailed individual responses, for instance, within the framework of agent-

based simulation (Charypar and Nagel 2005). These detailed models can generate plans at the 

individual or household level, allowing explicit representation of agents’ interactions (Khan and 

Habib 2021), which entails large numbers of parameters. This level of detail is hard to apply in 

large-scale analyses where calibration and consistency with macroscopic emergent behaviour 

remains an issue (Moeckel, Huntsinger, and Donnelly 2017). The application of these models also 

requires resources and skills which, while attainable in major cities like Zurich or Toronto,  are 

often not available in small and medium sizes cities (H. Becker et al. 2019; Gao, Balmer, and Miller 

2010). The advent of new technologies allowed researchers to gather immense volume of 

information, making possible to implement ABM on large urban and regional scenarios. Despite 

this technological advantage, to calibrate a reliable demand model is still a difficult challenge (Toole 

et al. 2015). One of the main reasons is that different assumptions within the demand model will 

lead to different errors. For instance, a disaggregate model can be extremely powerful for long-

term prediction of the demand or for evaluating phenomena such as activity relocation. However, 

when the congestion during the rush hour is the main concern of the modeller, this level of detail 

is not required and may even lead to biased analysis. It is thus difficult to estimate activity-specific 

trips at the aggregate level where the available information does not include such features (e.g., 

scheduling or trip chaining information). 

Because the application of the four-step model is nearly universal, various methods are still 

developed to tend improving the efficiency of this model (Lim and Kim 2016). However, all these 

models provide a limited insight in terms of temporal distribution of the demand and its activity 

specification. In this sense, the most established approach to reconstruct a realistic temporal profile 

for the travel demand is the dynamic OD estimation problem (Antoniou et al. 2016; Cascetta, 

Inaudi, and Marquis 1993). While many works focus on improving the consistency between OD 

matrix and traffic performances (Antoniou et al. 2015),  there are only a few works dealing with 

the critical point of explicitly capturing the behavioural component of the demand (Flötteröd 

2009a). Alternative demand generation methods emerged, which integrate inside the traditional 

Four-Step-Model a microscopic alternative (Vrtic et al. 2007). These models still rely on highly 

specific probability functions, which are very hard to calibrate without a large volume of data. 
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Due to anonymization, trips data are limited in providing relevant information such as the purpose 

of the trip, and the motivation for performing that trip with a specific mode of transport at a 

certain time of the day. This limitation is not likely to be overcome by new technologies (big data) 

due to privacy restrictions.  

In conclusion, we can say that because of the complexity of data collection and computational 

implementation, an alternative to synthetic population-based ABM is needed and that this 

alternative needs a higher level of consistency than the traditional TBM. We propose to define an 

activity-based trip model which has the following properties with respect to the described 

literature: 

Table  II. 5 Summary of gap model’s features from the literature review  

Significant features Inapplicable features 

Aggregate demand model  Synthetic population generation 

Adjustable data requirement Individual information requirement 

Flexibility to be applied to different modelling scales 
Necessity to model the most disaggregate 

aspect for every application case 

Modelling of successive trips interactions Full tour-based model 

Integrated model Succession of individual modules 

Computational simplicity  Risk of combinatorial explosion 

Activity-based model Trip-based model 
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Chapter 3  
Highlights of the chapter 

1. Empirical analysis of a rich dataset consisting of 5848 home-based tours is 

performed to gain insight into emerging regularities in the trip patterns 

2. Introduction of an aggregated probabilistic activity-space approach to quantify the 

probability of performing a certain activity given the locations of home and work 

3. Highlight the importance of tour-based mode choice modelling to explain 

individual choices of sequences of modes 

 

Individual chains of activities are governed by spatial and temporal constraints reflected in the 

successive mode choices as well as the locations of activities. To understand the measure of this 

phenomenon, we start this doctoral thesis with an analysis of a dataset collected in Belgium in 

2008. The main goal is to underline and quantify this impact in the emerging behaviour at the scale 

of the population of an average Benelux city. 

A first phase of this project consists of cleaning the processed data. This includes not only 

encoding in a format chosen to facilitate data analysis, but also checking the plausibility of given 

responses and finally grouping certain variables into consistent and uniform units. 

A cluster analysis made it possible to select the types of activities to be analysed together, according 

to classic criteria such as the frequency and duration of the activities but also according to their 

start and end time profiles. Likewise, the modes of transport used have been grouped manually 

according to the proximity of the type and estimated level of service. A check on the distribution 

of distances and travel times confirmed the validity of the selection. The trip analysis was carried 

out on the basis of 404 workers who described several consecutive days of their routine. 

This study allowed us to highlight factors that affect car use. Beyond an obvious link between the 

use of the car and topological data related to the trip made, a connection between the use of the 

car and the time of day as well as the type of activity was observed. In addition, a strong impact of 

vehicle ownership was seen as part of the chain of modes of transport employed throughout the 

day. We estimated that using a bicycle or car as the first mode of transportation of the day caused 

users to continue their tour with the same vehicle. 
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In a context other than that linked to the analysis described above, the impact of the complexity 

of the activity chain on the use of the car was established. Despite the size of the dataset used, a 

Structural Equation Modelling (SEM) analysis allowed us to measure the weight of the number of 

both work-related, non-work-related and late-hour activities on the rate of use of the car and usage 

amounts. 

This chapter makes it possible at the same time to motivate the modelling of the trip choices with 

a tour-based approach, even at a macroscopic scale, and to justify some assumptions within the 

modelling framework. Beyond that, a concept proposal is proposed in order to apply the notion 

of "activity space" to a group of people sharing certain characteristics. Indeed, we have extended 

the calculation of ellipses (SDE) in order to have a probabilistic approach and to estimate certain 

factors characterizing them according to the place of work and residence. The centre, shape factor 

and orientation can be characterized with the home-work journey (location of the two points and 

mode chosen).  

 

Figure III. 1 Thesis framework chapter 3 

On the thesis framework, we include on the left in blue the input data used in this chapter and the 

methodological aspect proposed, with respect to the modelling step. Because the analysis is done 

on mode choice in this chapter, only this cell is highlighted, even though we can apply the concept 

of generalized ellipses in the distribution part in the case of secondary activities location choice.  

 

The work presented in this chapter has been described in the following paper: 

 
“Trip chaining impact on within-day mode choice dynamics: Evidences from a multi-day travel 

survey” 
Transportation Research Procedia 
23rd EURO Working Group on Transportation Meeting, EWGT 2020, 16-18 September 2020 
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III. EMPIRICAL ANALYSIS 

III.1. Introduction 

Mode choice is influenced by a large variety of factors, as for example users’ socio-economic 

attributes or level of service for the different alternatives. In order to understand better what leads 

to temporal and spatial variations of modal split, we propose in this chapter an analysis of a multi-

day travel survey, with a series of descriptive statistics as well as inferential analysis on the 

correlation between mode choice and tour-specific attributes at both spatial and temporal levels. 

This chapter discusses the importance of considering tour-based mode choice not only because it 

brings consistency between successive mode choices but also allows the inclusion of relevant tours’ 

characteristics such as activity types, distances, time of the day, and previous mode choices. A total 

of 5848 home-based tours done in 2008 are studied in the area of Ghent, Belgium. Identified 

patterns show the importance of modelling dynamic mode choice with trip chaining and time of 

the day. The modal share of car drivers differs of more than 40% between hours of the day and 

about 30% between different activities. Furthermore, the definition of activity spaces by principal 

mode choice and home-work locations introduces the calibration of probabilistic aggregate 

Gaussian fit to visited points.  

In this section, we also propose a new definition of AS and propose to link it with mode choice 

through common factors for groups of users. Through analysis of multiday survey data, we 

quantify how the sequence of modes is impacted by the sequence of activities generating the travel 

need. The “Behaviour and Mobility within the week” (BMW) database used in this work is a 

multiday travel survey collected in Ghent in 2008 (Castaigne 2009). The opportunity to use the 

BMW database is twofold, not only the size of the database is large with representative modal split 

but also the duration of the survey allows to define AS for each individual in a robust way. Few 

similar databases exist and for example the “Mobidrive” study (Axhausen et al. 2002) constitutes 

an excellent reference in such analysis, as six weeks-diaries for 317 people were recorded and it 

was used for analysing both activity scheduling (Cinzia Cirillo and Axhausen 2010) and mode 

choice of complex tours (C. Cirillo and Axhausen 2002). However, the Mobidrive database 

contains a share of 86,1% unimodal tours, while the BMW database reaches 33% multimodal 

tours. This is an opportunity to study more in detail the correlations and interconnection between 

successive mode choices, time of the day and activity characteristics. 
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III.2. Methodology 

In order to test the following hypotheses, we analyse a travel diary collected for 707 individuals in 

the city of Ghent (Belgium) in 2008 (the city was about 237.250 inhabitants at that time). A 

description of the database and analysis of the variability of daily activity-travel pattern is available 

in (Raux, Ma, and Cornelis 2016). The goal here is to observe emerging behaviours from these 

respondents in order to detect quantitative characteristics to be applied in future aggregated 

dynamic mode choice models. The tested hypotheses are the following: 

1. Modal split changes over the day and is statistically correlated with activity choice dynamics 

2. The mode chosen for a trip strongly depends on the mode chosen at an earlier time of the 

day 

3. Owned resources such as bike and car increase this dependency 

4. AS varies with the most frequently mode used and can be described by knowing home and 

work locations 

III.2.1. Data 

We focus on the Home-Work (HW) trip chain of workers from a spatial and temporal dimension. 

404 respondents were selected for analysis who described at least one trip going to work, resulting 

in an average of 4 working days per person and 2.8 trips within the HW tour. 3543 unique points 

addresses of trip destinations were translated to GPS coordinates. The following assumptions are 

considered: 

- Each trip is described by its origin, destination, starting, ending and travel time, modes, 

activity at origin and destination and their duration.  

- Distances are the direct aerial distances.  

- Home/work locations were identified for each worker as the most visited locations they 

referred to as home/work.  

- The data includes 7 different modes of transport and their combination: car (or motorbike) 

driver, car passenger, train, bus (and tram), bike, walk and other  

- 12 activity types could be recorded in this multiday survey.  

The focus not being on activity choice, a simplification has been made by clustering the activity 

types based on the following criteria:  

- Occupancy, 
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- starting time profile, 

- weekly frequency (distribution from one to seven days in which the activity is done), 

- distribution of the duration.  

These four criteria have been normalized to one and grouped using k-means clustering into five 

groups of activities (home, work, daily tasks, personal business and eating). Figure III. 2 shows the 

original list of activity types and their observed weekly frequency. 

 

Figure III. 2 Weekly frequency of 12 original activity types 

The occupancy is the difference between cumulative people starting and people ending the activity. 

This indicator represents, at each time of day, the potential number of people who may start a trip 

at later time, in order to start a subsequent activity. The profiles of different activities suggest that 

the negative correlations and offset between these curves translate activity chaining. Figure III. 3 

shows the three clustering criteria for the five studied activity types. 
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Figure III. 3 Clustered activities characteristics 

K-means clustering was also applied to the 404 workers, to group them according to their mode 

use and their home and work locations. Because of the limited number of respondents belonging 

to each sub-group, geographical and behavioural attributes resulted in two independent groupings, 

applied for distinct parameters comparison. Users are firstly separated into groups based on the 

proportion of their trips done by each of the seven modes, resulting in the following five groups: 

car users, soft mode users, public transport users, train users and multimodal users (Figure III. 4 

a). Secondly, users were first classified by municipality. For those living and working in Ghent, 

home and work GPS coordinates and distance between the two points has been used. Using the 

Calinski-Harabasz criterion, suggested 5 groups. An example of resulting clusters is shown on 

Figure III. 4b.  
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Figure III. 4 (a) modal split of 5 mode-based clusters (b) example of a Ghent HW locations-based cluster 

III.2.2. Temporal analysis 

Intuitively, different modes have different typical usage patterns, in particular based on the land-

use and supply characteristics. In order to observe how they combine and how usage differs by 

time of day, we calculated the usage profiles for those modes and compared these patterns. The 

results are matched to individual observations through the transition probabilities. The transition 

matrix was calculated for all successive trips, for only commuting trips and finally for only 

intermediate trips, in order to estimate to what extent sets of modes complement one another and 

which are the most binding for round trips. To include all sizes of tours in the transition 

calculation, a notional mode corresponding to ending the trip chain was added. Additionally, we 

show that mode choice varies by trip purpose and secondly that the full activity sequence of 

workers impacts choices on the set of modes used. The way activities have been clustered 

distinguishes naturally systematic and non-systematic activities as can be seen in the weekly 

frequency (Figure III. 2). We believe that this difference impacts the travel time budget, due 

notably to the location that is more or less free to choose and leads to additional travel time for 

non-systematic activities higher than for systematic activities. This can explain, based on 

geographical dispersion, the relationship between the previously highlighted factors. In order to 

quantify the spatial aspect of mode choice dynamics, the AS of those workers has been analysed.  

III.2.3. Spatial analysis 

To show the link between temporal and spatial dynamics, the dispersion of each user’s AS has 

been estimated using the method of 95% confidence ellipse. Such ellipses have few parameters to 
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estimate and are commonly used for estimating AS. The 95% confidence ellipse ensures that 

number of visited points covered by the surface is high enough and so that it describes better the 

AS. The centre of the ellipse is the centre of mass of all visited points within the HW tour for the 

complete study period, weighted by the number of visits. The ellipse’s axes are the square root of 

the eigenvalues of the covariance matrix, and the ellipse is then scaled to get the desired confidence 

interval, based on the number of degrees of freedom and the Chi-Square distribution.  

The resulting ellipses are compared based on:  

- orientation angle  

- minor axis 

- major axis 

- aspect ratio  

- centre. 

The hypothesis is that the ellipse is strongly defined by the home and work location, considered 

as anchor points for the user. This can be observed through the position of the centre of the ellipse 

and its orientation.  

Because the multiday travel survey contains on average four working days for each worker, we first 

applied an outlier detection method, such that non-recurrent behaviours do not unduly impact the 

estimation of AS. This detection is based on the Orthogonalized Gnanadesikan-Kettenring robust 

estimator (Maronna and Zamar 2002) using the Mahalanobis distance:  

'(",$)()&)' = ()& − -)′/()()& − -)  

with respect to location - and covariance Σ. Detected outliers are not always deleted. Firstly, home 

and work locations are never discarded. Secondly, points closer than a given threshold to 

home/work are kept. If the number of visits to an outlier point is two or more, it is kept. Finally, 

for each user we try to retain enough points to compute the AS. Finally, 181 points have been 

removed: 26% of the personal business locations, 16% of daily tasks locations, 12,5% of eat 

locations and 8% of work locations. 

Properties of individual ellipses can reveal emerging trends for groups of individuals. However, 

the application to aggregate location choice models is limited with such strongly constrained 

geometrical units. In order to apply the observations to groups of users and to use soft constraints, 

a gaussian fitting has been chosen to make ellipses probabilistic. The multivariate gaussian 

describes plausible visited areas given home and work regions. It is again parametrized by the 
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centre of mass of the visited points and the model is estimated by the maximum likelihood, using 

the expectation-maximization algorithm.  

III.3. Results 

In this section, a selection of the most significant results is presented in order to support the 

validation of hypotheses noted above and highlight decision needed for modelling these 

behaviours. The section is separated into temporal and spatial analysis. Firstly, indicative results 

about the correlation between these two aspects are described in order support the link between 

them (Figure III. 5).  

 

Figure III. 5 (a) HW travel time vs. additional travel time for four mode-based clusters (b) Travel time distribution 
by activity type  
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First of all, the travel time inside the HW tour has been separated into two components: HW direct 

trip and extra travel time. For each of the five groups of users (according to their mode choice), 

the results indicate that there exists an upper bound, which differs with respect to the chosen 

mode. Public transport users reserve a large part to the HW travel time itself, in opposition to bike 

and car users who have an upper bound of respectively 80 and 100 minutes. This can be related 

to the question of the travel time budget and gives the idea of a threshold travel time which if not 

reached for HW trips can be allocated to secondary trips. This threshold seems to vary from one 

mode to another.  

Results indicate also that the travel time is also following different distributions with respect to 

trip purpose. For eating or daily tasks, the travel time is on average less than fifteen minutes while 

the average travel time for work-related trips approaches half an hour.  

III.3.1. Emerging behaviours at temporal levels 

We believe that these differences can be seen with emerging behaviours at the temporal level. 

Indeed, Given the information described on Figure III. 3, different activity types are not performed 

at the same time of the day and for the same duration. For example, eating activity has a strong 

peak around 12AM which result in a distinct usage of modes at this time of the day.  

 

Figure III. 6 (a) Modal split by time of the day (b) Boxplot of distribution of modal share 

 
Figure III. 6a shows the hourly values of the modal split for starting trips described in the observed 

database. We can see that modal share significantly varies along the day. On Figure III. 6b, these 
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variations are shown for each of the studied modes of transport. As an example, car use as driver 

varies between 23.8% and 66.7%. This variance is lower for urban public transport users which 

could reflect a more multipurpose mode of transport. 

 

 

Figure III. 7 Usage profile of different modes 

On Figure III. 7, the profile of each mode shows that they are used at different times of day which 

can on the contrary, be explained by different usage types of modes. For example, train seems to 

be used for commuting, while owned vehicles are more like the general demand profile. Walking 

seems to be used as complementing mode during off-peak hours.  

The difference between theoretical modal split by activity is indeed particularly significant for the 

following combination: train to go to work and walk to eat (Figure III. 9a). This matrix is calculated 

based on the contingency table of the variables “mode choice” and “activity type” from the list of 

available trips. We first calculate the observed frequencies 1*,+ and then the expected (theoretical) 

frequencies according to the following formulation: 2*,+ = ,!-"
.+*/01	.&31

. The matrix on Figure III. 

9 shows the difference in percentage of the expected value: 
4!,"(	5!,"

5!,"
	. 
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Figure III. 8 Divergence of activity modal split to theoretical share 

In terms of mode choice, this can be observed through the sequence of trip modes within tours. 

Figure III. 9 shows the transition matrices for choosing a mode after having used any other mode. 

The highest probabilities are walking after using public transport and for the rest is to use the same 

mode for successive trips. When looking at the two commuting trips, the probability to choose 

the same mode is always higher than 50% and higher than 90% for owned resources (reaching 

95% for car users). 

(b)  

Figure III. 9 Transition matrix for mode sequence 
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Figure III. 10 shows the example of car commuters in the form of a probability tree. From the 

dataset, we calculated, from the first trip of the day starting with the car, the share of travellers by 

decision. These decisions include :  

- continuing their chain with the car p(car) 

- continuing their chain with another mode than car p(other) 

- ending their tour, which in this particular case results in returning home p(end) 

When car is chosen to leave home the probability to choose the car later on the trip chain is much 

higher than other modes. Furthermore, when another mode is introduced in the chain, the 

probability of returning home is lower than to ultimately go back to car before ending the chain.  

 

Figure III. 10 Car use probability tree 

This shows the impact of owned resources on the propensity to have a multimodal trip chain. 

When a person leaves home with a bike or car, (s)he will return home with this mode, and mostly 

use this mode for intermediate trips. However, there is not a big difference in the total number of 

trips made during the day with respect to that decision.  

III.3.2. Emerging behaviours at the spatial level 

AS were calculated only when there were enough unique points, i.e. 283 workers were used for 

ellipses parameter estimation. Figure III. 11 shows the difference between the orientation of the 

calculated AS and the orientation of the HW direct segment. The points are displayed with 

increasing eccentricity, this means that when the ellipse is elongated, the difference tends to be 

very low while the highest errors appear when the ellipse has more of a round shape. The strong 
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correlation of 0.8 between the two values supports the use of HW axis as an approximation of AS 

orientation. 

 

Figure III. 11 Orientation vs HW axis (a) histogram of the distribution of angle difference (b) individual differences 

The correlation is even higher between the centre of the AS and the middle point of the HW 

segment Figure  III. 12. This can be explained because of the ellipses which have a less elongated 

shape, the centre remains fixed while variations in term of angle do not have a strong impact. 

Figure  III. 12 shows the distribution of the distance between these two points. The median is 

1.1km, being higher for two types of users: the commuting distance is high (more than 100 km) or 

home and work are both located in peripheral areas. 

 

Figure  III. 12 position of the centre vs HW centre 
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Figure III. 13 shows an indicator of ellipse’s radii and aspect ratio for different user types. We 

clearly see that the aspect ratio is low for public transport (close to zero for all train users) and that 

the area is also the smallest for urban public transport users. The size of the Ellipse is also small 

for bike users, which have a more round AS, this can be explained because they are not subject to 

any limitation for the direction they can go, such as train/bus line or even roads. A high aspect 

ratio (eccentricity tending to zero and circular shape) reflects an AS less impacted by home and 

work locations with secondary activities potentially off the HW direct route (typically car and bike 

users). In opposition, if the AS has an eccentricity closer to 1, it means that the secondary activities 

are more likely to be located on the HW segment or close around those two focal points. This is 

the case for public transport users. 

 

Figure III. 13 Characterization of ellipse shape by mode 

The clustered users reveal that the typical ellipses for the mode-specific groups have characteristic 

shapes: thin elongated ellipses for public transport users; larger for train and smaller for bus users. 

Ellipses are more rounded for private transport users: larger for car and smaller for bike users 

(Figure III. 14).  
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Figure III. 14 Typical ellipse for 5 mode-based clusters 

30% of the travellers visited only two points in their HW tour, each day and resulted in the 

estimation of a segment; in order to relax the constraint of choosing an activity location strictly 

between the home and work location for these users and estimate AS even with low number of 

observations, we use the revealed regularities of similar users and proposed a probabilistic 

approach to the AS estimation. Figure III. 15 shows the output of aggregate probabilistic AS for 

the same group of users as seen on Figure III. 4b and for which only seven out of eleven users 

where subject to the single AS calculation. 

 

Figure III. 15 Gaussian fit for visited locations of a Ghent HW cluster of users 
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We can see that, characteristics of the fitted gaussian after outlier detection and removal follows 

the same rules as what has been observed for individual workers. The centre is situated between 

the home and work areas and the contour lines of the distribution are oriented along this HW axis. 

Additionally, a single ellipse does not represent properly the option of ‘crossing the line’ and 

perform and activity outside the AS limits. This feature is very desirable when applied to modelling 

demand. That is why the estimation of distributions provides a more realistic perspective to be 

used in future research among other in order to estimate secondary activities’ locations.  

The following key aspects in terms of input-output of the demand modelled described in this thesis 

can be underlined: 

 

Table  III. 6 Summary of conclusions for the modelling approach 

Input possibilities Desirable output 

Clustered activities Occupation of the zone by time of the day 

Characterization of generalized AS Modal split by time of the day 

Correlation mode and distance travelled Usage profiles by mode 

Private vehicle constraint Activity durations by zone and time 
 

III.4. Conclusion 

This preliminary work presented descriptive statistics and empirical analysis on mode choice in 

relationship with time of day and chains of activities as well as spatial distribution of visited 

locations in the HW tour. Starting hypotheses have been supported by a sample of Ghent 

population described in the BMW database and these empirical observations can be used as the 

basis for more accurate travel demand modelling. The modal split varies throughout the day and 

successive mode choices are strongly correlated to each other. This stands in particular for owned 

vehicles (bicycle or car), as there is a constraint of carrying the resource around. The usage profile 

of modes and the transition matrix show complementarity of modes, in particular walking which 

can be considered as a mainstay of many multimodal trip chains. Activities which are most frequent 

are usually located within a shorter distance from home or work, while longer distances are 
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travelled for infrequent activities for which the destination cannot be substituted, like business 

trips or visits to family or friends. Parameters defining AS can be estimated by knowing the home 

and work locations of an individual which gives a good approximation of its centre, orientation 

and one of the axes of the ellipse. Aspect ratio and area are governed instead by the commuting 

mode choice. For applying these observations to aggregated groups and using AS as a soft 

constraint for choice modelling, we fit, instead of a single ellipse, a bivariate normal distribution 

for groups of users. These findings can be used for estimating mode specific travel demand by 

time of day and regions.  
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Chapter 4  
Highlights of the chapter 

1. Observable variations of daily demand emerge from distinct temporal profiles, 

defined as trip-primitives 

2. Description of a simplified activity-based approach to estimate dynamic trip 

generation 

3. We show Markov Chain Monte Carlo method’s ability to calibrate parameters with 

aggregated dynamic trip data 

 

In this chapter, we introduce two fundamental concepts applied to this thesis. First of all, the 

principle of "trip-primitives" which allows us to model the trips generated during the day according 

to the activities at their destination. A second pillar of the proposed methodological framework is 

the choice of the estimator applied to these functions. 

We introduce here a simplified approach, through a mixture model to introduce the estimation 

process. "Trip-primitives" are parametric functions that allow an ABM trip to be incorporated into 

a model based on an approach based on individual trips. Thus, we model a correlation between 

trips at different times of the day, even if this link is not formally modelled through explicit 

individual trip chains. In order to describe the primitive functions, we have selected a generalized 

extremum law for each of the five selected activities. The distribution of demand during the day is 

calculated by summing the estimated distributions for each activity, multiplied by a fixed factor, 

corresponding to the overall probability of performing one activity rather than another. 

The chosen probability density formula in this chapter was selected primarily for its simplicity of 

form as it is only described by two parameters. We also looked for a shape characterized by a 

maximum point at a certain time of day with variable variance and asymmetry. The two parameters 

are estimated by a Markov Chain Monte-Carlo (MCMC) method. 

This method is used in various fields of transport engineering and in particular in demand 

modelling, for example in the context of the generation of synthetic populations. Here, we use the 

MCMC method to calibrate the two parameters of each of the “trip-primitive” functions. To do 

this, we select a probability density function to define the plausible domain of each of the 

parameters and through an iterative learning algorithm, we update this density in order to obtain 
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the "posterior". The update is made by comparing the profiles generated by the addition of 

primitives with the observed departure rates. The distributions obtained as a result of this 

calibration process make it possible in this case to describe, for example, the variance of the time 

at which a starting peak for a given activity will occur. 

 

Figure IV. 1 Thesis framework chapter 4 

 

The work presented in this chapter has been described in the following paper: 

“Generating Macroscopic, Purpose-Dependent Production Factors Through Monte Carlo 

Sampling Techniques” 
 

Transportation Research Procedia 
20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-7 September 2017 
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IV. TRIP-PRIMITIVES 

IV.1. Introduction 

While estimating origin-destination (OD) demand flows usually requires a large amount of data, 

nowadays a key issue in traffic engineering is to estimate the trip purpose while protecting user 

privacy. The aim of this chapter is to derive from macroscopic and aggregate information 

production distribution for each Traffic Analysis Zone (TAZ) of a study area, with a trip-purpose 

specification.  

This chapter presents the possibility to use Monte Carlo simulation to characterize demand flows. 

We suggest a procedure for estimating activity-production factors with a Markov Chain Monte 

Carlo (MCMC) procedure. This approach is used to approximate a set of functions that describe 

the production of trips from one specific zone along the day. This method requires a low level of 

information and computes the likelihood with respect to the number of generated and attracted 

trips, reducing as much as possible the required information at the individual level.  

Since the proposed approach tries to estimate the number of (activity-based) components within 

an OD matrix, it can remind of the well-known Gaussian mixture model. However, an MCMC 

model has the advantage of including additional information in the estimation and so reduce the 

number of unrealistic solutions with respect to the Gaussian mixture model. MCMC methods are 

more and more used in the travel behaviour modelling and in the creation of synthetic population 

(Beckman, Baggerly, and McKay 1996; Saadi et al. 2016; Farooq et al. 2013) since they allow to 

draw samples and to estimate discrete outcomes from known probabilities for the different 

variables used to qualify agents of the disaggregate models.  

The rest of this chapter is structured as follows. The next section introduces the concept of trip 

primitives and the calibration process. Then, we test the reliability of the proposed approach and 

the case study. Lastly, conclusions are discussed to the possible development of the model.  

IV.2. Methodology 

IV.2.1. Trip primitives 

When modelling traffic demand at an aggregated level, the area of study is usually subdivided into 

zones of origin and destination (TAZ). Continuous-in-time mobility patterns are discretised and 
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collected into matrices, which represent the OD flows within a certain time period. In this matrix 

representation, the distribution of the mobility patterns is assumed stationary, i.e. intra-period 

dynamics are usually neglected. 

In our approach the demand is assumed to be derived through a convolution of different activity 

patterns, whose dynamics emerge from individual activity-travel behaviour. The methodology 

applied in this chapter is based on the concept of trip-primitives. The trip primitives are functions 

describing the variations in terms of generated trip in function of the time of the day. They are 

defined for a given activity type and their sum is equal to the total observed demand at every time 

of the day. An example of trip-primitives is shown in Figure IV. 2 representing the mobility in 

Luxembourg as described in the MODU 2.0. On this figure we can see three distinct primitives: 

work, duty, and leisure, each revealing a different dynamic. 

 

Figure IV. 2 Trip Primitives in MODU 2.0 

In this study, we consider that every zone may have a different profile and consequently trips to 

and from those zones may be derived from different trip-primitives. Trip-primitives can be defined 

in different ways which may depend on the generation model used. In this application, we want to 

show the possibility of modelling trip-primitives in the simplest way, without any data or 

behavioural assumption needed at the individual nor zonal level. To do so, we assume that the 

trip-primitives can be described by a generic probability density function. A distribution 4 is 

selected according to recommended characteristics such as the form and number of parameters. 

Each primitive could theoretically be modelled by a different kind of function. For each zone, we 
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consider that the complete demand 5 is the combination of the demand for n activity types, being 

each characterized by a probability of appearance 6+ and an individual probability distribution 4+.  

@ =Y?*

/

012

	I* (4.1) 

The distribution of the travel demand along the day is therefore modelled as the sum of the five 

distributions, multiplied by a factor corresponding to the global probability of performing one 

activity or the other. In the simple setup presented here, no variations of the activity type’s spread 

are taken into consideration. However, the value of 6+ are estimated as unknown variables.  

IV.2.2. Calibration process 

To separate the demand into activity-based flows, the distributions along the day are approximated 

through an MCMC. Figure IV. 3 describes the process used in this methodology. The filled blue 

boxes are the only necessary inputs, described in the following section. In yellow are the two main 

outputs. The first one “updated parameter distribution” is the raw product of the MCMC, used to 

define the trip-primitives. The last three elements are the actual core of the model. Once the 

generation model is selected, and the parameters defining it are chosen, the sampling process is 

used to calculate a proposed value of simulated trip and compare the outcome to a set of criteria 

in the Bayesian update. This mechanism is described thereafter.  

 

Figure IV. 3 Process of the MCMC calibration 
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IV.2.1. Input 

The necessary input of the process outlined in Figure IV. 3 can be the observed time-dependent 

aggregated demand flows, which are used as datapoints to fit, for each time of the day 

corresponding to an observation. This data can be obtained from an available dynamic OD matrix 

or from observed movements (e.g., probe data from smartphones, travel diaries).  

The prior information 7(8) can be of a different kind. It is a density function defined for each of 

the estimated parameters and reflects the a-priori knowledge about its behaviour. In the least 

demanding case in terms of data, it can simply be the modeller’s intuition, result from logic or be 

reduced to the “non-informative” case, where the observed data govern fully the estimation. 

Alternatively, a population sample, aggregate information or previously estimated posterior 

distributions can be used, if available. 

Finally, the initial values can be selected according to the prior and are used as a starting point for 

each Markov chain and can significantly influence the efficiency of achieving convergence, given 

the non-linear nature of the estimation problem, and the likely under-determinacy due to a limited 

set of observations.  

IV.2.2. Output 

The primary output of the iterative process is the posterior distribution value of every parameter 

resulting from the Markov Chain process. Its main characteristic is that it is sampled from a 

probability distribution which should be representative of the posterior distribution. Its average 

value is used as a point estimate to decompose the observed demand by activity type and trip type 

(start or end) and generate the utility primitives which can be used to estimate the activity-specific 

trips, or the departure times to /from an activity. The posterior can be regarded as a distribution 

over the population.  

IV.2.3. Operations 

Candidate parameters are drawn from a distribution function of possible values. They are either 

accepted or rejected according to a rule which depends on two components: the likelihood and 

the plausibility of the set of parameters. 

Because the target distribution 9(8) is unknown, direct sampling is not possible, unlike the case 

of standard Monte Carlo sampling methods. Additionally, the procedure is more efficient thanks 

to the availability of a prior. The used statistical inference (equation(4.2)) is based on the Bayes’ 
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formula which describes how the prior belief 7(8) is adapted thanks to observed data : and the 

calculated likelihood ℒ, into the posterior 9(8), for all parameters of the utility functions. It also 

includes the probability distribution of :. The term 9(:) is not known and fully independent from 

any parameter value 8 so it does not impact the output and is not included in the estimation 

process. The posterior is thus a product of the likelihood and prior only.  

F(O) = 	
ℒ ∙ R(O)

F([)
 (4.2) 

The initial belief 7(8) is updated in successive steps, which create a Markov Chain whose 

stationary distribution converges to the target distribution 9(8). 

To apply equation (4.2), we define the likelihood, priors, and a transition operator which allows 

the creation of a chain that converges to this condition. In this paper we make use of the most 

common sampling method developed for MCMC based on the Metropolis-Hastings algorithm 

(Metropolis et al. 1953). 

IV.2.4. Sampling 

For each of the parameters, a prior probability density function and starting point is defined. The 

following proposal function is used in each iteration to draw a new sample: 

P′# = P# +*4SE0\(0, Δ.) (4.3) 

This form justifies a key property of the Markov chain:  given <& , the =67 value of the chain, a 

proposed value <′& is generated in function only of the previous element of the chain defining the 

sampling density function at iteration =. The choice of Δ8 is adjusted in order to speed up the 

process and reduce autocorrelation. The variance influences the step size, i.e. the possible 

difference between the proposed value of a parameter and the current one. A step size which is 

too small takes too long to explore the feasible space while a high step size allows easy escape from 

local minima but struggles to converge. The objective being to have a mixed and converging chain, 

the value is selected such that it leads to an acceptance rate between 10% and 70% for each 

dimension. 

The model is applied to the proposed set of parameters in order to evaluate them against observed 

data.  
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IV.2.5. Score and update 

To reflect how the sampled parameter is related to the modeller’s assumption, the overall score is 

calculated as follows, implementing the prior as a log-likelihood penalization. Because of the 

logarithmic form of the likelihood and prior, equation (4.2) results in an additive score (equation 

(4.4)). The first element of the score reflects how close the modelled daily profile is with respect 

to observed data, and the second element serves as an evaluation with respect to expected values 

of each parameter.  

W# =	
ℒ#
T
+Ylog	(R(O#))

3

 (4.4) 

In some cases, the likelihood’s order of magnitude means that the impact of the prior is negligible. 

In order to balance the effect of data : and prior 7, a scaling parameter ? is added and tuned 

(with a trial-and-error method) to obtain a reasonable acceptance rate. Its value depends on the 

number of observed estimated parameters and datapoints as well as their order of magnitude. 

The score is then compared to the one evaluated in the previous iteration (equation (4.5)) through 

a logarithmic conversion of the acceptance ratio. On one hand, if the score improves, the proposed 

value is included in the Markov chain to build the posterior distribution and used as reference for 

the next candidate sampling. On the other hand, values leading to a decreasing score, even 

repeated, may or not be included, based on the rejection rule (equation (4.7)) to preserve the 

distribution density, and add flexibility. 

X = exp	(W# − W#42) (4.5) 

p(P, P′#) = min{X; 1} (4.6) 

P#52 = g
P′# 	h3!ℎ	jS4k0k3\3!:	j(P# , P′#)

P# 	h3!ℎ	jS4k0k3\3!:	1 − j(P# , P′#)
 (4.7) 

With this rejection rule, the Markov Chain approach can avoid remaining blocked into local optima 

and ends with a sample from the posterior target distribution. The chain will not stop at a “true 

solution” but sample around a plausible true solution. There is no pre-specified stopping criterion, 

the number of iterations or only the number of accepted steps is chosen beforehand. The necessary 

number of iterations rapidly increases with the size of the problem and the number of variables to 

estimate. In order to avoid obtaining a biased posterior due to the initial parameter selection, a 

burn-in period is also defined, and these first steps are removed from the chain because they are 

likely less representative of the posterior.  
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IV.3. Case Study 

IV.3.1. Database 

The data set used for validating the proposed model is the “Behaviour and Mobility within the 

Week” (BMW) dataset (Castaigne et al. 2009), which was collected by the KU Leuven and the 

University of Namur in 2008. 717 valid travel diaries were collected, which describe a one-week 

period for the city of Ghent, Belgium. This dataset is the same as the one used for the empirical 

analysis described in the previous chapter. 

In order to apply the proposed methodology, the first necessary step is to create a dynamic OD 

matrix. After ensuring the consistency of the database, we artificially generated an OD matrix by 

aggregating all trips occurring during weekdays of the study period. In the BMW study, the area 

was composed of 17 zones. Even though these zones are difficult to be identically recreated, postal 

codes have been used to cluster the respondents in 17 artificial zones. Five supplementary 

geographical units were created for the city centre of Ghent, inside which trips represent 61% of 

the complete demand.  

The activities considered in this case study are the following: 

- AT1 - Activities usually located in residential areas i.e. “Home” and “Visit to family of 

friends”; 

- AT2 – Activity “Work”; 

- AT3 - Leisure activities, such as “Walking/riding”, “Leisure/sport/culture” and “other 

activities”; 

- AT4 - Regular and unavoidable activities, such as “drop off/ pick up” and “eat”;  

- AT5 - Activities often located in town centres, such as “Shopping”, “School” and 

“Personal business” 

IV.3.2. MCMC settings 

4	is selected to follow an Extreme Value distribution. This form has been chosen for the 

following characteristics:  

- Low number of parameters (2) 

- One parameter describing the position of a peak on the x-axis (-) 

- One parameter describing the dispersion (@) 
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- A non-symmetric behaviour around the peak. 

The effect of the two parameters can be seen on Figure IV. 4. 

 

Figure IV. 4 Parameters of the Extreme Value law 

In each iteration of the MCMC, parameters are renewed, and their combination is evaluated 

according to the a-priori information. The likelihood of the set of parameters is calculated with 

respect to evidence. The ideal configuration is a dynamic OD matrix, nevertheless the method can 

be adapted to handle GSM data or loop detector, for example.  

The set of parameters is accepted or rejected as a whole, and each parameter serves as a starting 

point for the following proposed parameter. The algorithm can be performed for each zone in 

parallel, independently. For this reason, the methodology doesn’t get more complex, and the 

rapidity is stable with and increasing number of areas. 

The prior distribution of the sigma values is a uniform distribution, with values between zero and 

10. The location parameter, on the contrary, has a more meaningful interpretation. Because it 

relates directly to the typical departure time of a specific activity type, this is where the knowledge 

and assumptions are the most easily introduced. In this experiment, the approximation is limited 

to the determination of activities being more likely started in the morning, evening, or afternoon.  

IV.4. Results 

To test the method and observe results variations, the MCMC has been used to determine the 

primitives of trips departing from the largest zone outside Ghent. 1120 trips were analysed, and 
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departure times were used to determine two parameters of five functions. The total distribution 

between activities is fixed, based on the complete survey proportions. Analysis of the quality of 

the results is simply based on the comparison of profiles between the real demand and estimate 

generated demand for the traffic zone.  

 

 

Figure IV. 5 Departure profile by activity for zone 1 (a) From the survey; (b) From the simulation. 
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Comparing these two figures, it appears that the proposed methodology identifies activity patterns 

of the zone in their general shapes. In particular, peaks are identified to the appropriate trip-

purposes: the most straightforward are indeed “work” in the morning and “going home” in the 

afternoon. The model recreates the increased demand at lunch time and in the evening without 

being able to accurately determine the other activity components. Two reasons explain this 

observation; not only fewer observations exist for these activities but also the restriction about the 

form of the function is not as suited as for the peaks. Another test for the simulation quality is the 

comparison between the estimated location parameter of each evaluated distribution and the 

typical departure time of each activity calculated from the database. Here again, the two major 

activity types are correctly characterized, whereas the three secondary purposes compose peaks at 

regular interval during the day, without specific relationship to the real meaning of trip-purpose. 

It is important to note that the procedure treats without much difference these activity-types: same 

prior, almost same percentage of users, which can explain the inaccuracy to distinguish them. In 

sum, this experiment shows that this MCMC-based methodology is promising and allows 

determining activity-based priors, giving acceptable results for the most characteristic activity-

types. Nevertheless, more precision in the selection of probability distribution form and activity 

clustering would be necessary for a better recognition of the complete demand. Moreover, an 

advanced generation model would allow to distinguish better the activity profiles.  

IV.5. Conclusions 

In this chapter, we presented a novel procedure to estimate purpose specific flows in time with 

respect to the zone of departure of a journey and without information at the user-level. A Monte 

Carlo technique is proposed for evaluating dynamic classification of flows, with respect to trip-

purpose. For these simulations, flows are disaggregated and used as evidences for the calibration 

of an unknown distribution, with all the available information they can contain. Assumptions 

might be added to the models in order to improve their reliability. The validity of the models gets 

subject to particular care in case of a large number of parameters and requires a high amount of 

iterations of the simulation to get a stable result. It is still generally able to recognize typical 

characteristics, such as morning commute, but the link to specific activity can be concluded over 

a second phase. The components representing activities without preferred starting time and less 

occurrences are indeed harder to be identified in these settings. A drawback is that the quality of 

representation and evaluation of less common cases. In particular, small zones, off-peak hours as 

well as activities with fewer observations. Nevertheless, by choosing more constraints and selecting 
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each parameter with a great precision a priori, the model itself can also become more reliable. 

Furthermore, the inherent shapes of the selected functions do not have enough flexibility to 

reproduce complex demand profiles and so other formulations may be needed to recreate better 

observed demand. The proper distributions are function of the possible knowledge and 

assumption that can be made on the behavioural components, each activity can possibly be 

represented by a different kind of demand model.  However, this could mean handling more 

parameters for some cases and so, an increase in the complexity. 
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Chapter 5  
Highlights of the chapter 

1. Application of marginal utility formulation to model heterogenous groups of people is 

proposed to derive behavioural-based trip primitives 

2. Utility-primitives are introduced and defined at an aggregated level 

3. Departure time choice model calibration with MCMC is developed and assessed using 

multiday travel diary data. 

 

In order to reinforce the behavioural aspect of the proposed method, we integrate a third 

pillar, i.e. “utility maximisation”, into the "intermediate" model framework presented in the 

previous chapter. This chapter is also based on the assumption that the total daily demand is 

composed of activity-specific profiles. These profiles emerge in our approach from aggregated 

utility functions by adopting a probabilistic Logit model that gives them their functional form, 

instead of using the generic law of Extreme Values as it was done in the previous chapter. Here 

we present the methodology that allows to calculate these functions and the parameters estimated 

through the MCMC. The level of complexity of this model extension increases severely with the 

introduction of this method since the functions are parameterised by at least 12 parameters instead 

of the previous two.  

Indeed, for a given type of activity, we define three marginal utility functions. The main one 

corresponds to the activity in question itself, one to the whole chain of trips and activities before 

the trip to this activity and finally the chain after this activity. This simplification of a complex tour 

in which there is one type of activity, not only simplifies the problem but also allows for the 

inclusion of any type of chain and therefore any individual programme. This hypothesis is 

fundamental in order to apply advanced formulations from a behavioural point of view to the 

whole population, and to apply it to the whole area under study.  

The marginal utility functions used in this thesis are taken from the literature and some of their 

characteristics are fixed and selected according to the type of activity. The other variables, as well 

as some aggregate demand values, are estimated by the MCMC process. In the same way as in the 

previous chapter, the only information needed for the calibration, apart from the a priori estimates 

of densities, are profiles of the generated demand.  
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This methodology is developed to estimate the total demand generated in a study area by time of 

day and type of activity. 

 

Figure V. 1 Thesis framework chapter 5 
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V.  UTILITY-PRIMITIVES 

V.1. Introduction 

To capture individual daily scheduling and travel interdependencies, advanced demand models 

typically adopt the concept of tours or trip chains which require decisions to be modelled at a 

microscopic level. The objective of this section is to enhance the representation of the macroscopic 

aggregated model presented before and infer the trip purposes of a population, by employing utility 

theory and applying the same Bayesian approach to generate trips. A utility function that includes 

activity-specific terms is used to model departure times for different activities, at an aggregate level, 

and its parameters are estimated using dynamic trip counts. This methodology is characterised by 

low data requirements and is shown to be flexible and easy to implement. In this work, we do not 

seek to reproduce individual behaviour, and we avoid time-consuming simulations. Instead, we 

aim to directly model mobility patterns emerging from activity-travel choices of a heterogeneous 

population and calibrate them against aggregated traffic data using an iterative Bayesian estimation 

scheme. The proposed methodology is characterised by low data requirements and is shown to be 

flexible and easy to implement. The well-established utility maximisation principle is used to model 

departure times specific to an activity at origin or destination, and each activity-specific utility is 

defined for a group of users, as proposed in past research (Adnan, 2010; Cantelmo and Viti, 2019). 

The only input data needed to be collected in our approach can thus be aggregated trips, which 

can be collected in a variety of ways. These trips are used to calibrate the parameters of activity-

specific marginal utility functions, which in turn are applied in a departure choice model relying 

on utility maximization principles, used to generate activity-specific dynamic demand patterns. 

This chapter proposes a combination of established methods that enhances macroscopic demand 

modelling with interpretable results, consistent with utility maximisation. Furthermore, due to the 

flexibility of the process, it provides practical guidelines on how to use data in a sensible way. 

Hence, we refer to the research question on the modelling aspect and aim at answering to a specific 

proposition: “is it possible to model aggregate mobility patterns emerging from activity-travel 

choices of a heterogeneous population in a parsimonious way, avoiding the need to reproduce 

individual behaviour?”. To answer this question, we adopt principles relying on individual 

behaviour, (i.e. utility theory) and generate utility-primitives using macroscopic data, including 

heterogeneity through a Bayesian estimation process. This methodology is tested with case studies 

to validate its relevance. 
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This chapter of the thesis is structured as follows. After a brief review of existing marginal utility 

functions, we describe the methodological approach. The second part includes synthetic case 

studies showing the opportunities of the method, followed by an application to a multiday survey 

collected in the province of Ghent, Belgium (2008) which shows potential for estimating purpose-

specific demand patterns, consistent with observed individual behaviour. 

V.1. Marginal utility functions 

The core of the decision model used in this work relies on utility maximization principles. Many 

formulations have been proposed to be used in probabilistic models for travel behaviour. In the 

most simplified case, the scheduling problem can be linked to the preferred arrival time and include 

early and late arrival penalties due to congestion dynamics (Vickrey 1969; Small 1982). This often 

dubbed bottleneck model has been used to estimate departure time choices (Fosgerau and 

Engelson 2011; Tseng and Verhoef 2008). Activity time allocation models dealing with time as a 

finite resource (G. S. Becker 1965) are essential to focus on activities’ utility gain as the main reason 

for travel (Supernak 1992) and reflect the utility gain and satiation effect (Charypar and Nagel 

2005). The same connection and trade-off process can be extended to successive trips when 

including the activity duration (Zhang et al. 2005). The satisfaction linked to activity duration and, 

on the opposite, fatigue effect can however well be reproduced simply by a logarithmic decrease 

in time (Kitamura 1984b; C.R. Bhat and Misra 1999), which can be used for time allocation and 

for describing departure time and route choices (Yamamoto et al. 2000a). The trade-off between 

travel time and scheduling decisions can be modelled, instead of including early or late arrival 

penalties, by linking marginal utility and time of the day (Polak, Jones, and Vythoulkas 1993). In 

this approach, the departure time choice model includes a marginal utility for each time of the day, 

which expresses the utility gained from one-time unit of activity participation (Wang 1996). 

Nonetheless, flexible preferred hours can be modelled by relating the location of the satiety point 

to the starting time of the activity (Ettema and Timmermans 2003) or including delay and duration 

factors in activity-travel scheduling (Ettema et al. 2007). Depending on the adopted functional 

relations and assumptions, these models can be divided into either duration- or clock-based. A model 

being both duration and clock-based, can be achieved by combining a duration model and a 

discrete choice model to the scheduling of tours and individual daily travel patterns (Vovsha and 

Bradley 2004). More recently, an hybrid formulation that included a logarithmic decrease with 

respect to starting time, employing a time of the day-dependent marginal utility form was proposed 

(Cantelmo and Viti 2019). Another approach, which relates to satiation with activity frequency, is 
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to combine baseline utility for an activity type and additional utility reflecting satiation (Nurul 

Habib and Miller 2009), allowing introducing utility-maximization for unplanned activities within 

a time budget constraint.  

The utility-maximization process subject to such “space-time-needs” constraints can also capture 

heterogeneity and joint choices in activity travel decisions using inventory routing problems 

approach (Chow and Nurumbetova 2015). Even if utility models are often used for modelling 

disaggregated individual activity-scheduling (Arentze and Timmermans, 2004; Pendyala et al., 

1998), they sometimes are used within an assignment or an aggregated route choice model 

(Cantelmo and Viti 2019; Yamamoto et al. 2000a) and at the individual level, activity scheduling 

can be modelled including the effect of road network congestion (Adnan, 2010). Yet, few works 

have focused on the calibration of agent-based models (Flötteröd 2009b; Patwary, Huang, and Lo 

2021). (Yasmin, Morency, and Roorda 2017) focus on the aggregation level and different methods 

for validating the TASHA activity-based model (Toronto area) in Montreal Island. Without re-

calibrating parameters and without considering all the facets of the choice model, they determined 

a good transferability of the results in different contexts, at different scales. However, the 

calibration remains a complex, underdetermined problem when applied to both traffic and 

behaviour-related features.  

V.2. Methodology 

To develop a model that is still capable of representing and explaining the heterogeneous trips in 

a study area we propose a framework to partition time-dependent generated trips into activity-

specific components (Figure V. 2). Our model can take as input simply aggregated trips, collected 

for instance via traffic counts, but it can be used with any other type of data related to dynamically 

generated trips (mobile phone data, floating car data, license plate recognition data, etc.). Using a 

probabilistic approach based on MCMC sampling techniques, the parameters of pre-specified 

marginal utility functions are assigned in a stochastic way to match resulting demand to observed 

flows, via optimisation. 
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Figure V. 2 Methodological overview 

To connect the proposed methodology to well-established behavioural frameworks and make it 

sensitive to characteristics of both demand and supply, utility maximization principles underpin 

this approach and are applied to the activity-specific departure time choice process. The challenge 

is to use an individual-based formulation applied in an aggregated way in order to embed 

heterogeneity characteristics. This will allow revealed and observable preferences such as departure 

time and chosen mode, to be formally linked with underlying, latent characteristics, such as 

(marginal) utility gains/losses. Assuming that people seek to maximise their total daily utility, 

including travel time costs and (positive) accumulated utility, they will try to optimise their travel 

choices, in this case the trip schedule. The optimality of any trip schedule certainly depends on the 

marginal utilities of the sequence of activities. At an aggregate level, this phenomenon can be 

captured by departure time probabilities, resulting in emerging trip rates.  

The three main components of the proposed approach (Figure V. 2) are described in the following 

three sections, with special attention given to the estimation process which iteratively connects the 

utility formulation and departure choice model inside the MCMC sampling.  

This Bayesian approach results in both a distribution and point estimate for the model parameters. 

This is a method commonly used in SP creation, and in demand estimation when traffic counts 

are available, and we demonstrate here that it can be used with aggregated trip rates to calibrate 

the complex underlying behavioural functions. In order to apply traditional concepts from utility 
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theory and further generalize them in the context of this paper, the following section introduces 

definitions of fundamental concepts used in the proposed methodology.  

V.2.1. Definitions 

Marginal utility is an established economic concept, widely used in transportation science. It 

represents the satisfaction or benefit of a consumer from using a unit of a service. Often in travel 

demand modelling and in particular in this work, service corresponds to participation in an activity 

for a unit of time. The marginal utility will differ across individuals from a heterogeneous 

population, and this can be represented by having distributions of parameters for a common 

marginal utility functional form. 

A Utility-primitive describes the marginal utility of performing a specific type of activity at a 

certain location, for a certain time period within an activity-travel chain. A utility-primitive 

corresponding to a given activity type is thus determined by a set of three marginal utility functions, 

the central one corresponding to the “activity” itself, while the other two represent all other 

activities performed before and after the activity to be estimated. These aggregated activity-travel 

chains implicitly capture aspects of accessibility and hence of the impact of the quality of the 

underlying transport system, as well as the population’s heterogeneity in the activity scheduling. 

Utility primitives are used in the framework of utility maximization estimation for groups of users. 

Trip-primitives describe departure rates by activity type at the zonal level. These functions 

capture the aggregate quantity of users travelling by time of day, arriving to start, or departing 

having finished a given activity, hence giving rise to traffic flows across the area being modelled. 

Trip-primitives have previously been introduced in (Scheffer, Cantelmo, and Viti 2017) and in the 

previous chapter to describe the daily dynamics of activity-specific flows. 

 

These three concepts are aligned with modelling activity-travel choices at three scales: micro, meso 

and macro. Utility-primitives are proposed as a mesoscopic instrument, used to estimate trip 

primitives within a departure choice model at the macroscopic level. However, the estimation 

procedure also generates distributions (of parameters of) marginal utilities, which can be 

meaningful at the microscopic level and could be used as a proxy for individual heterogeneity. The 

latter aspect is not developed in this thesis but constitutes an application opportunity of the 

proposed methodology in Synthetic Population (SP) creation for example.  
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Activity type: let A be the set of all potential activity types, with travelling included as one of the 

activity types A = {&), &', … , &9}, with F being the number of considered activity types. For 

example, A = {&7:*1 , &;:<= , &.7://&>?, &01&.@<1 , &6<+A10}. 

The primitives described in the following section are used to describe emerging behaviours for 

groups of people, considering a convolution of individual activity-trips sequences. The notation 

and scheduling process of an individual characterizing the parameters results in the representation 

of utility-primitives. The activity sequence representation of any individual resulting in emerging 

patterns adheres to the following notation and assumptions:  

Activity sequence: we denote by A& = GA)& , A'& , … , A>$
& H the sequence of activities for the =-th 

individual, ignoring activity duration.  

An example could be: 

A& = GA)& , A'& , … , AB& H = G&7:*1 , &6<+A10 , &;:<= , &6<+A10 , &.7://&>?, &6<+A10 , &7:*1H.  

We do not seek to represent how individual activity chains are generated in this methodology.  

Time of the day: the 24h day is discretised into time steps ΔJ so that time J ∈
{JC, JC + ΔJ, JC + 2ΔJ, … , JC + (F − 1)ΔJ}. The sequence of activities [AD& ] partitions the 

discretised day into Q& blocks of time, with J&,D the set of time points in the R-th block.  

For convenience we also define activity start/end times and trip start/end times in a natural way.  

Individual = begins activity AD& , at time J.&,D = minVJ&,DW and finishes at time J1&,D = max{J&,D}.  

Travel time: in this chapter we assume that travel times are fixed throughout the model. The 

assumption of constant travel time can be easily relaxed and we can consider different constant 

trip times for incoming and outgoing trips, as well as considering travel times as demand- and 

time-dependent, as it was shown in (Cantelmo and Viti 2018). The inclusion of variable and mode-

specific travel times will be shown in the next chapters. 

V.2.2. Utility primitives 

For individual =, the marginal utility for engaging in activity & at time J, which may depend on the 

start time J., is %+& (J, J.). For a given activity, the marginal utility is not zone-dependent but can 

differ between individuals. The total utility accrued by individual = performing activity & from time 

J. to J1 is  
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D*# (!&, !') = ∑ A*# (!, !&)
"!
"1"" Δt (5.1) 

The marginal utility for travel activities will typically be negative, whereas other activities will likely 

generate positive utility, hence justifying the travelling activity. In this work, capturing the disutility 

of travel is most simply accomplished with a fixed cost per unit time: %6<+A10(J, J.) = %6 where 

%6 ≤ 0. This is sufficient to distinguish between short trips (more attractive) and long trips (less 

attractive) to access an activity.  

The utility accrued by individual =, when travelling from zone \ to engage in activity & from time 

J. to J1 is  

D*# (!&, !'|:) = A"!!*
( + Y A*# (!, !&)

"!

"1""

Δ! (5.2) 

The penalty associated with early and late arrival is only captured within equation (5.1). Let Q be 

the number of activities performed by individual =. For readability, we omit that Q = Q(=), and 

may simply denote activity using R rather than &D& . The R-th activity for individual = has (starting, 

ending) time denoted (J.&,D , J1&,D); these partitions the day. Each trip is included as an activity in the 

chain, and the associated %D& then represents the marginal (dis-)utility of travelling. We therefore 

have that individual = accrues total daily utility: 

n# = Y Y A$
#(!, !&

#,$)

"!
#,%

"1""
#,%

Δ!

/

$12	

 (5.3) 

When studying emerging behaviour, the level of complexity that results from individual-specific 

choices becomes very high; hence to adopt the concept of utility-primitives, we aggregate the 

activity chain of each individual into just four components. When considering the primitive 

specific to activity &, we consider the marginal utility of any/all activities performed before & 

(denoted & −), the trip to access the activity (denoted → &), the marginal utility specific to &, and 

the marginal utility of any/all activities performed after & (denoted & +). The activity chain for 

individual = is therefore [A+(& , A→+& , A+& , A+F& ]. Other inter-activity travel is subsumed into the 

before/after components. This simplification is one main assumption of the proposed approach. 

Listing all possible combinations and tour types would in fact unnecessarily increase the 

complexity of the system and the potential benefit would be minimal once aggregated at a 
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macroscopic level, where such interdependencies would be lost. Thus, the proposed way of using 

utility theory is reduced to a very simple degree of precision and doesn’t integrate the most 

advanced existing individual trip-based models. In line with this assumption, equation (5.4) 

expresses these three distinct activities, with times J. and J1 representing the start and end time of 

activity &. Departure time is chosen to arrive at the desired start time: JG = J. − 	JJ+H. Note that 

the trip components are assumed to be not individual specific. For individual =, with activity & 

starting and ending time (J., J1) given a zone of origin \ and a travel time  JJ+H. The start and end 

of the estimation period are JC, J9 , respectively. This implicitly defines the before/after marginal 

utility functions for individual =: 

n*# (!&, !'|(:)) = Y A*4# (!, !!)	Δ!

"&47"

"1"'

				+ 				A"!!→*
( 		+ 			Y A*# (!, !&)	Δ!

"!

"1""

				

+ 	 Y A*5# (!, !' + Δ!)	Δ!

"(

"1"!57"

 

(5.4) 

If we assume that the activity-specific marginal utility related to a certain time J, %+(J) does not 

depend on other parameters such as utility already accumulated or following utilities, a given time 

unit always yields to the same utility. The utility function becomes then separable meaning that 

treating each function independently does not introduce any further error (Cantelmo and Viti 

2018). This leads to a more computationally efficient formulation. This notation could be extended 

to a more detailed chain of activities. Alternatively, longer tours could be separated into sub-

components so that equation (5.4) would be applicable to study such sub-tours, focusing the 

estimation problem on one activity at a time. 

V.2.3. Activity-travel Choice Model 

The number of people based in each zone, \, with activity & in their activity chain is known and 

denoted ^+H. To determine the distribution over time, we use a choice model for activity starting 

and ending time, through a trade-off problem as illustrated in Figure V. 3 for J) = 8A`; 	J' =
5: 309`	; 	J6,+' = 30	e=Q. The shaded areas indicate the total accumulated utilities for the three 

activities; the red and blue lines correspond respectively to the start and end of trips. 
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Figure V. 3 Accumulated Utility for a sequence of activities 

For an individual in zone \	who wishes to perform activity & in its activity chain, the total utility 

accrued from travelling to f to do & will be g+&,H(J., J1), if the activity (start, end) times are (J., J1). 
This activity may be available in multiple zones, each with fixed access travel time and with an 

identical marginal utility. The probability of doing activity & between a starting time J. and an 

ending time J1 , starting from zone \ is:  

F*
((!&, !') = 	

expo(D*# (!&, !') + A"!!*
()/H)q

∑ ∑ expo(D*
# (!&8 , !'8 ) + A"!!*

()/Hq""8"!)9""8
 (5.5) 

The scale coefficient is fixed in the following of the thesis with @ = 1. 

Aggregating over all feasible end times gives the probability of departing zone \ for activity &, 

starting in zone f at time J: 

F*
((!) = 	 Y F*

((!, !')
"!9"

 (5.6) 

The number of trips departing zone \ at time J is therefore 

@:→(!) =YY >*
(	F*

((!, !')
"!9"*

 (5.7) 

There exist more sophisticated expressions for modelling this choice, and the independence axiom 

may be a limitation of the chosen formulation. However, the simplicity and ease of calculation of 
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the model makes it convenient, interpretable, and efficient enough in the framework of this work. 

More complex random utility models can be used, but this would not allow to use a closed form. 

The proposed transition from an individual-based formulation to the distribution of starting time 

at the population requires the assumption that the utility formulation can represent a group of 

individuals. While the meaning is not perfectly the same, this approach has been widely used when 

introducing utilities for population segments or considering a generic utility, for example in the 

conventional bottleneck model. To operate this transition from an individual to a group of users, 

some complexity of the trip chain is discarded. The usage of an artificial global accumulated utility 

before and after the relevant activity is selected to obtain the simplest possible formulation to 

consider trip chaining and so the lowest possible level of complexity required for the estimation 

purpose. In the resulting simplified form, individual heterogeneity across the population can be 

captured through having distributions of the model parameters in the case of a mesoscopic 

application of utility-primitives. 

V.2.4. Marginal Utility Function 

In order to apply equation (5.5) and estimate the total utility gain of performing activity & for each 

combination (J., J1), a time-dependent functional form is sought that can fit multiple activity 

types. These marginal utility functions represent any individual and result in a macroscopic demand 

pattern in the form of activity-specific trips. When a utility function is separable (clock-based), 

users’ behaviour depends only on the activity before and after (Adnan 2010; Cantelmo and Viti 

2019). An assumption of the model is that the two secondary functions, from an aggregate 

perspective, represent any activity or combination of activities other than & such that every daily 

chain can be represented by a tour of three activities. We therefore do not specify which activities 

were performed before (& −) or after (& +) the activity whose parameters need to be estimated, 

but we can represent an aggregated function of all alternatives. Hence, these generic utility 

functions are mostly used for the estimation of %+(J, J.). Recall that these utility-primitives will be 

combined with departure time choice models to give trip-primitives, which are used to determine 

aggregate trip rates. The representation of the marginal utility function is thus at a macroscopic 

level. Desirable features of the marginal utility formulation are: 

- Peak at a certain time of the day (clock-based) or after a given duration (duration-based) 

- Representation of fatigue effect, i.e. marginal utility may decrease while performing the 

activity for a period of time 

- Low number of parameters to estimate 
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We tested a series of marginal utility function following these indicators, starting from (Yamamoto 

et al. 2000b) for which the distinction between the impact of time of day and decay linked to 

fatigue is difficult to be strictly established. The second formulation that has been tested is 

described in (Cantelmo and Viti 2019). Even though the behavioural representativeness is better, 

its impact on the synthetic MCMC examples, didn’t prove an improvement of the likelihood 

functions at the level of generated trips. Furthermore, the complexity in terms of form and 

parameter description requires higher efforts for evaluating priors and especially computing 

accumulated utilities as their form depend both on starting and ending time.  

We selected a model fulfilling these requirements in efficient way, without additional complexity: 

the marginal utility proposed by (Ettema and Timmermans 2003): 

A*(!, !&) =
M*K*(D*,*-)

rsj[K*(! − (J* + !*
&u*))] . (1 + rsj[−K*(! − (J* + !*

&u*))]);*52
 (5.8) 

In order to evaluate 9+(J., J1) for each J. and J1 element of T, the 5 parameters for each marginal 

utility (%+(, %+ , %+F) should be estimated for each activity &, in addition to 6+	. 

Θ*
(=1>*+,>*,>*,) 	= 	 (D>,*- , J>, K>, u>, M>) (5.9) 

For all parameter settings the marginal utility is unimodal. We define saturation point the maximum 

value and the increasing period before is called the warming up phase. Parameters !, γ and $ play 

a role on its position on the temporal axis. In particular, the behaviour of the function depends on 

each parameter value: 

- !:  if γ = 1 and $ = 1 the saturation point is located at the ! value and the function is 

symmetric.  

- γ: if γ > 1, the saturation point is situated before ! and the steepness of the left part is 

higher than the right part, γ < 1 represents instead a longer warm up phase. 

- τ: controls whether saturation is reached at a fixed time of day, or is relative to activity 

duration. When τ is close to 0, utility is determined by time of day (regardless of activity 

start time). Whereas τ = 1 describes a fully duration-based utility function; the utility 

function is translated in time to follow the activity start time. 

- g*+I : the parameter g*+I represents the maximal possible accumulated utility for a 

certain activity, it impacts the magnitude of the marginal utility function. This parameter 

controls the gain in performing one activity relative to any other alternative. This means 

that by neglecting the travel costs, in this study the absolute values of g*+I will be relative 

to the assumed trip times for each activity. 
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- ": determines dispersion around the saturation point. " <<1 results in a flat marginal 

utility, while a larger " gives more peaked marginal utility around the saturation point.   

The possible shapes of function (11) in a 24h time-period, with respect to the 5 parameters is 

illustrated in Figure V. 4. Analysing the resulting shapes, we can provide a behavioural 

interpretation of the different components.  

 

Figure V. 4 Impact of the marginal utility formulation's parameters (reference: U max=10; !=720; "=0.01; #=1; 
$=0) 

The same functional form of marginal utility is used to calculate every utility g, though the 

parameters are activity-specific. This functional form has the flexibility to model, on the one hand, 

activities such as work, which is typically clock-time dependent (start times are usually concentrated 

in the morning and end times in the evening peak periods) and that is a resource which can 

potentially bring unlimited marginal utility, but it is subject to fatigue effects. On the other hand, 

activity types such as shopping are available rather uniformly throughout the day, hence less 

dependent on clock time, but are susceptible to stronger fatigue or satiation effects and are better 

described by their typical duration rather than the time at which they are performed. Individual 

heterogeneity is captured by probability distributions of model parameters, which emerge from 

the parameters’ estimation process.   

V.3. Model estimation and MCMC 
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The number of parameters to be estimated for deriving the total demand grows with the number 

of utility-primitives. Furthermore, the marginal utility functions are non-linear and the 

observations available for calibration are aggregated and can be limited in number. This encourages 

the usage of an extensive simulation-based approach for the estimation of parameters’ values. 

Moreover, data such as traffic or passenger counts contain different sources of stochasticity, 

stemming from the inherent variability of the demand, counting errors, etc. These are reasons why 

the estimation of the parameters is done using a Bayesian procedure, and more specifically a 

Markov Chain Monte Carlo (MCMC) modelled through the Metropolis-Hastings algorithm 

(Metropolis et al. 1953).  

As described in the previous section, plausible distributions from domain knowledge are used to 

initialise utility-primitive parameters. The estimation process then corrects these, based on 

available data. Given the aggregate nature of the estimation, this method is attractive because each 

variable is sampled without knowing its actual distribution but providing a posterior probability 

distribution as an output of the stochastic process. These parameter distributions are used to 

represent the heterogeneity of different users’ marginal utility for each activity type. The expected 

value of each parameter is used as the basis for the utility primitive, which is then used in the trip-

primitives estimation. Finally, the proposed method is flexible and can theoretically be applied to 

any kind of utility function and to different types of available data which makes it versatile. 

V.3.1. Process overview 

For each element of Θ (equation (5.9)), starting with initial values θC, the sampler proposes new 

values (equation (4.3)) for the parameters of each utility primitive (equation (5.8)). On one side, 

the proposed parameters are applied to the marginal utility function and used in the described 

departure time choice model (equation (5.5)) in order to calculate the estimated trips. These trips 

are then compared to the observed data, through the likelihood function computed according to 

equation (5.11). On the other side, the sampled parameters are evaluated in their plausibility, with 

respect to the prior, i.e. the probability of having the proposed value according to the modeller’s 

selected density function equation. Plausibility and likelihood are used together for updating the 

proposed set of values in the posterior or continue to use the previous one (equation (4.7)). The 

posterior built after iterations is finally used to evaluate the primitives of the demand.  
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Figure V. 5 Methodological Framework 

V.3.2. Parameter update 

The utility formulation and the departure choice model described in the previous sections are the 

central elements as they build the model which reproduces the observed distribution (i.e., the 

observed demand data). The sampler and the rule are the two components of the MCMC which 

allow an efficient estimation process.  

A conventional log-likelihood function is used to compare observed data to the model and a 

normal noise distribution is assumed, with no correlation, it is formulated as a simple function of 

residuals, at each iteration =: 

ℒ# =YY−
1

2
	(S#,"→)@ + S#,",)→@)

")

 (5.10) 

with the residual calculated as the difference between simulated trips and observed starting trips 

to enter and leave the zone:  

S#,",→) = @→)(!) + @A→)(!)x  (5.11) 

S#,",)→ = @)→(!) + @A)→(!)x   

where 5→3(J) is the total number of trips ending in zone f at time J and 53→(t) the total number 

of trips starting from zone f at time J and 5J	3→(J)o , 5J→3(J)o  their estimation at the =67 iteration. 
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V.3.3. Application to activity-specific demand-generation 

This methodology is applied in the remainder of the paper to the most aggregated possible 

information level, i.e. aggregate dynamic travel-demand generated at the level of a complete study 

area. Hence, starting from information on the observed aggregated time-dependent trips generated 

in a region, we want to distinguish which share of the said trips is done to perform a specific 

activity type. Although it is theoretically flexible enough to be applied at smaller scales, from OD 

pairs up to the most disaggregated agent-based models, this is the most delicate application level 

in terms of computation and the simplest in terms of data requirement.  

In the case of estimating a complete study area, where no information is available at the zonal level 

some assumptions are required.  

Since we do not give to the model any information which allow to distinguish if the trip is 

originating or ending at the activity location, there is no distinction in the observed 5→3(J) and 

53→(t) which are simplified to single a vector : = (:), :', … , :6). In the proposed study, it is 

used for a one-day estimation and with 30 minutes time interval it contains 48 elements. 

This impacts the estimation process, equation (5.10) becoming: 

ℒ# =Y−
1

2
	(S#,"@)

"

 (5.12) 

For this reason, the available information inside the estimation process is lower which increases 

the necessary number of iterations.  

In the case of only intrazonal trips, the influence of travel time is negligeable because it doesn’t 

impact the choice process. The period between J) and J) + JJ+ does not bring any positive utility 

and we neglect any disutility arising from these trips in this study. Again, the cost of the trips will 

be included in future research when we will extend the model to consider destination and mode 

choice. Here we simply consider that trips to a specific activity may be different, but they are fixed 

and constant by activity-type, during the day.  

Finally, the home activity is not designated in the single zone framework, because we consider that 

home is the starting and ending activity for each daily activity-trip-chaining schedule.   

This allows to apply the proposed formulation to the most extreme case where very few data is 

available. In order to show the potential of the proposed methodology, the following case studies 

are applied in this framework. Using more disaggregated data, and application opportunities to 
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model more accurate estimates such as OD-specific and mode-specific trips will be subject of 

future research. 

V.4. Case Study 

To apply the proposed MCMC as described in the previous section, we set up two case studies. 

The first is a controlled synthetic experiment that allows to compare the results of the calibration 

in a controlled scenario, and perform a sensitivity analysis of the parameters, while the second is 

using real data collected from a multiday travel survey. 

V.4.1. Case Study 1: Synthetic experiment 

V.4.1.1. Single primitive 

In order to test the estimation ability of the MCMC with a given number of datapoints and 

parameters, we created synthetic data representing one tour type only (i.e. one activity and one 

location), fixing the utility parameters of three functions and a demand of 5.000 people (table 1). 

The synthetic data have the same assumptions as the proposed model and are used to validate it 

in ideal conditions. With these three utility functions, we generate trip profiles using the probability 

choice model described in the methodological section, resulting in 10.000 trips. The synthetic 

dynamic trip counts are used as input of the MCMC without using further information about their 

formation in the process. This synthetic data is used as a benchmarking case where we know all 

the observed trips to engage on the given activity type. 6+3	is fixed in this specific optimization, 

while this number is estimated in the case of a more realistic experiment. Potential remaining trips 

can represent the demand which is not described by any tour. 

Parameter U1 U2 U3 

J 250 725 1225 

K 0.005 0.0075 0.005 

M 1 1 1 

D,*- 10 15 10 

u 0 0 0 

 

Table  V. 7 Parameter of the synthetic data            
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Figure V. 6 Synthetic experiment 

Different scenarios are tested, where both the initial value of the parameters and their prior vary 

in order to see the impact of different prior types and available information to the estimation. 

Scenario 1:  the prior is normally distributed around the target value, used for generating 

the demand profile. This is an accurate and precise belief and represents a model with a 

lot of information available.  

Scenario 2: the prior is slightly inaccurate with a positivity bias.  

Scenario 3: the prior is uniform. This represents a model where no information is available 

apart from its feasible range.  

Scenario 4: the prior is precise but not accurate. This represents a strong erroneous belief.  

The four fitted profiles are compared to each other by means of the normalized root mean squared 

error with respect to the observed hourly traffic (24 data points corresponding to the histogram 

on Figure V. 6 

Table  V. 7) on one hand and with respect to the 13 target parameters on the other hand. 

Table  V. 8 Result of the 4 scenarios 

 1 2 3 4 
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Prior normal (y, H) normal (y +

10%, 2H) 

truncated for x<0 

uniform 

(0,01y, 100y) 

normal  

(y + 80%, H) 

Initial value y + 50% y + 50% y + 50% y + 50% 

Iterations 15.000 15.000 15.000 15.000 

NRMSE (r2)     

traffic 0.05 (0.99) 0.193 (0.96) 0.578 (0.77) 0.217 (0.96) 

parameters 0.04 (0.99) 0.163 (0.99) 0.320 (0.97) 0.738 (0.90) 

 

This experiment allows to show the impact of prior types and step size for the different parameters, 

which will be used in the experiment using realistic data. For estimating the step size for each 

parameter, all parameters have been fixed but one, in turn, and step size changed for reaching 

better estimates, with the same settings. The results of this experiment show that in all cases the 

estimation is acceptable and that it is more interesting to have a uniformed prior instead of a wrong 

prior in terms of parameter estimation.  

With a given low number of observations (24), a good estimation will depend on how accurate the 

initial guess is and a good prior but that the procedure is adequate for this problem. 

V.4.1.2. Multiple primitives 

Another controlled experiment was conducted for the case of multiple activity types. This synthetic 

experiment is a proof of concept where the observed traffic is artificially created using three types 

of activity and where the flows going to and returning from these activities are not overlapping. It 

is not the case in real observed data and this simplification will be relaxed later. This is used here 

as a numerical example to test the model with mixed types of priors and a greater number of 

parameters to estimate: 39, comprising 3 demand values and 4 parameters for each of the 3 utility 

functions of 3 activity types. $ is fixed,  !, γ, g*+I set as type 2 (from table 2) and only the " 

parameter is of type 3. Each of the three components is generated in the same manner as the 

former and their profiles are summed up as aggregated trips given as input, which gives a distinct 

profile from the previous case.  

In Figure V. 7, the three components are compared one by one: the curve represents the estimated 

functions while the stems are the true underlying primitives used for generation we are seeking to 

estimate. As one can notice the MCMC identifies the shapes of each activity-specific trips 
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distribution in a satisfactory way, despite relatively small deviations are observed, which can be 

attributed to the stochastic nature of the methodology, which keeps on randomly sampling and 

perturbing the estimation parameters until the stopping criterion is reached. 

 

Figure V. 7 Estimated and reference trip-primitives by component 

With this fully controlled experiment, a comparison parameter by parameter can be done and it 

shows an excellent fit. The estimation is very stable for most of the parameters and the estimated 

value close to the reference one. In the case of the " parameters the estimation is slightly worse; 

we can assume that this is due to the type of prior which is less informative.  

V.4.2. Case Study 2: Ghent province trips 

V.4.2.1. Database 

The data used for the real case study results from a multiday travel survey collected in the area of 

Ghent in 2008 (Castaigne 2009). 707 individuals, randomly sampled with stratification criteria 

according to household size, gender and age, answered a 7-days travel diary. The database contains 

all their daily trips, 19.417 in total, described by origin, destination, starting, ending and travel time, 

modes, activity at origin and destination and their duration. 404 individuals were considered as 



 

 
92 

«workers» as they described at least one trip for going to work. A description of the database and 

analysis of the variability of daily activity-travel pattern is available in (Raux, Ma, and Cornelis 

2016).  

Every observed trip performed during all working days has been considered for this experiment 

in order to increase the total number of observations for the MCMC, even though they include 7 

different modes of transport. 12 specific activity types have been recorded in this multiday survey. 

In this paper, all survey categories apart from “home” are mapped to three modelled activity 

categories in the following manner: 

- A1. “Work” are mandatory, repeated activities, for career or education purpose: 

work + school 

A1.1. Work – morning shift 

A1.2. Work – afternoon shift 

A1.3 Full day work (non-stop) 

- A2. “Shopping” regroups necessary activities, mostly characterised by a relatively sharp 

duration constraint: 

long-term shopping + short-term shopping + drop off + personal business  

- A3. “Leisure” are non-mandatory activities, for recreational purpose, and considered very 

flexible in their duration and scheduling constraints: 

leisure + eat out + walking/riding + visits + other 

All starting times of the trips performed to reach those activities and the ending times of the 

activities have been considered summed over all days and counted as trips, used as input of the 

MCMC (Figure V. 8b). These aggregate trip numbers constructed from the survey data constitute 

the traffic data used in the estimation, at the scale of the complete study area.  
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Figure V. 8 (a) Study Area (b) Observed demand by time of the day and activity type 

V.4.2.2. Model Hypothesis and set up 

In order to estimate activities with respect to the selected utility formulation (equation (5.8)), the 

following parameters are estimated:  

	O	 = 	Θ*=	where	u = A*4, A* , A*5; 	0 = 1,… ,5	 (5.13) 

As described above, the activity A1 is divided into three components to reproduce the observed 

midday lunch break and consider part-time workers. The demand 6-) is estimated for the total 

work demand and an additional parameter corresponding to the split between the three 

components is added to 8. In order to include people working the full day but inserting a trip 

between the two working blocks, we have: 

?B2.2 +	?B2.@ + ?B2.D > ?B2 (5.14) 

Conceptually, the posterior could result in a bimodal distribution for the activity A1 duration, but 

one of the goals is to find a representative average, that is why we have split A1 this way. For the 

same reason, it is difficult to model at an aggregate perspective both the universally available utility 

and the individual-specific utility that leads to fatigue effects. That is why the parameter $@ is fixed 

to 0 or 1 depending on the activity type. For work (A1), we consider a fully clock-based utility with 

$@ = 0. For shopping (A2) and leisure (A3), $' = 1. As mentioned previously, fixing these 

parameters changes the meaning given to the parameter !' which, when $' = 1 corresponds to 

the time spent after which the marginal utility reaches its maximum value, it is thus coupled with 

a large ". 
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The time discretisation considered for calculation is 10 minutes. All feasible departure time 

combinations are evaluated for the proposed parameters 8 and compared. A constant travel time 

is selected for each activity type, based on preliminary data analysis (Scheffer, Connors, and Viti 

2021), partly presented in chapter 3: 

!!B2 = 	30min;	!!B@ = 	10min;	!!BD = 	20min; (5.15) 

Another feasibility constraint is added for the shopping activity in order to account for opening 

hours. All starting times earlier than 7AM and ending times later than 9PM are excluded. 

Because we focus on estimating expected values, priors are all assumed normal distributions. For 

parameters that we assume strictly positive, the selected prior is truncated from 0. Only the !) can 

be negative, and we assume negative values to represent a time of the day before midnight.  

The mean values are selected based on the data analysis from (Castaigne 2009) and logical intuition. 

Because of the experimental setting, a large variance is selected that varies slightly among parameter 

type with respect to the modeller’s confidence about the initial value. Preliminary experiments with 

synthetic data and order of magnitude impact this variance as well as the step size, which are 

defined by the following variance:  

ΔE,;,F-*.,G =	0.01		OHIHJH0K (5.16) 

ΔL = 	5	if	τ = 1	  

ΔL = 	20	if	τ = 0  

ΔM = 	0  

For every parameter, the initial values are set by the mean of the prior. The model has been 

implemented in MATLAB and run on a laptop with a 2.3 GHz Dual-Core and 8 GB memory. 

The computation time increases proportionately as the time interval decreases. Using a time 

interval of 30mins (10mins) takes 2700secs (8600secs) to complete 10 000 iterations. The 

computation time is drastically reduced when the assumed utility formulation is not dependent on 

activity starting time.  
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V.5. Results 

V.5.1. Departure time and parameter estimation 

After 150.000 iterations and considering a burn-in period of one-third we observe the total demand 

(red line) represented on Figure V. 9. The black line “initial estimation” represents the profile 

output from the first iteration, estimated with initial set of parameters. After the estimation 

process, the overall fit of the demand is significantly improved: the morning, afternoon and 

evening peak times are well estimated, and with the right order of magnitude. 

 

 

Figure V. 9 Aggregated demand estimation results 

The evolution of the score can be seen on the top left of Figure V. 10. We can see that a 

convergence in terms of likelihood has been reached after less than 10 000 iterations. The grey 

part is not taken into account in the final estimation as it represents the burn-in period. The plot 

below represents the part of the score which refers to the prior. Its value drops fast as the 

parameters leave the initial region; this shows the ability of the model to move away from the prior 

belief. The example of activity’s parameters A1.3	on the right shows this transition and the 

behaviour of the model. The estimation of # and g*+I do not show the same convergence 

stability as the other parameters. However, we can see that after the burn-in period they reach and 
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remain within a given range. Furthermore, we refer to Figure V. 3 to support the fact that observed 

variations do not have a strong impact on the form of the function in the case of # and in the case 

of g*+I; the relative magnitude between the three g*+I matters the most. The ratios of g*+I 

are more stable with a standard deviation of 0.05.  

 

  

Figure V. 10 Evolution through 100 000 iterations 

Even though the Metropolis process gives an acceptance rate of only 4%, we can see that the 

values continue to oscillate. Whereas for the parameters ! and ", and to some higher extent g*+I, 

the oscillations are relatively tight around a specific range, this is not the case for #, which reveals 

considerable dynamics still after 100k iterations. This may be explained by the presence of # in 

both the numerator, hence contributing to the overall magnitude of the utility, and as exponent in 

the denominator, hence contributing to the skewness of the marginal utility function.  

As an example of the rule’s output, we can see on Figure V. 11the evolution of the ! parameter 

of %) for A1.3. The red line describes all the proposed values from the sampling and corresponds 

to the explored space, the blue line indicates the retained values i.e. the posterior. 
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Figure V. 11 Example of a proposed and accepted values of the MCMC 

Finally, the total estimated demand shown on Figure V. 9 is decomposed into the six utility-

primitives representing the observed traffic shown in Figure V. 12. The Work activity is displayed 

as the sum of the three subcomponents (morning shift, afternoon shift and full day). It is sharply 

defined by the three peak periods of the day (around 8AM, 1PM, 7PM) while the Shopping and 

Leisure have a rather constant profile. These results confirm the intuition, i.e. working trips tend 

to be the main components of the morning, midday and afternoon peak period, whereas shopping 

and leisure activities do not have a sharp clock-time behaviour and are limited mainly by 

opening/closing times of the activities. 

 

Figure V. 12 Six estimated trip-primitives 
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V.5.1.1. Analysis of estimated utility parameters 

Differently from A1, in the case of A2 and A3 the utility varies with starting time and the 

accumulated utility depends on the ending times as well. In these two cases, the marginal utility 

has a very spiked profile with a very high g*+I compared to the one of %) and %K. This is a way 

to explain an activity which is still desirable despite the travelling loss but does not require a long 

duration time. In fact, the choice model focuses on starting and ending time knowing that a given 

number of people will be performing that activity at any moment of the day. 

 

Figure V. 13 Estimated utility primitives for the work activity (full-day) 

These functions are characterized by the final estimate of each parameter, which is represented by 

the average value of the posterior, after removing the burn-in period. At a mesoscopic level, the 

posterior of parameters can give information on their distribution in the population and their 

plausible values range. In most cases, parameters posteriors can be fitted with a normal 

distribution, the same shape as their prior. As an example, Figure V. 14 shows the histogram of 

the ! parameter for five activity types and the three marginal utility functions used for departure 

time estimation.  
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Figure V. 14 Posterior distribution of the a parameter [in minutes] for %% 

One can note here that in the case of A2 (shopping), the central ! does follow this typical 

distribution (Figure V. 15). An explanation of this output is that the aggregation concerns 

individuals but also activity types. As we interpret !, in the case of A3, as the time before reaching 

the maximal utility, we can explain these two peaks as on the one hand “short-term, daily 

shopping” which resembles a very short-lasting activity and on the other hand “weekly grocery” 

or “shopping sessions” which have a longer duration.  

 

Figure V. 15 Example of non-normal posterior – heterogeneity  
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V.5.1.2. Evaluation of the results 

In addition to actual trip data, we have additional information about the population’s behaviour in 

the used dataset, which can be compared to the model’s output. However, it is not possible to 

evaluate the veracity of the marginal utility parameters used as root for the trip estimation, since 

these are latent variables that cannot be observed or collected. Only a consistency-check is feasible 

with previous work which applied the same formulations. The output of the estimation procedure 

can be compared to ancillary indicators: for example, an index of the estimation plausibility is 

analysing the duration distribution of each activity. This indicator is an observed output based on 

the probability distribution for each time combinations corresponding to ΔJ. 

*7" = Y F(!@,!D). ?*
"/4("05"")17"

	 (5.17) 

Because it is not used as an input of the model, the comparison is fully independent from the 

estimation process. 

 

Figure V. 16 Activity duration distribution 

Due to the form of the utility function, it is hard to represent very short activities at the aggregate 

level, given the peaks for g) and gK which are considered clock-based in all cases. The duration 

for activities A2 and A3 is rightly distributed with the highest value close to zero and descending, 

but overall overestimated. The actual mean duration is 41 minutes for shopping and 64 minutes 

for leisure. We have estimated !) = 	18min and !' = 74min as the duration after which the 

utility reaches its maximum. If the value for leisure implies an overestimation, the order of 

magnitude supports the assumption on parameters τ and !.  
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In the case of the work activity, the bimodal distribution, resulting from the separation between 

part time and full day shifts is well represented with the two peaks pointing at the right locations 

(around 4 hours and 8 hours). However, the less observed durations (e.g. 6 hours) seem to be 

overestimated with our model. The duration distribution underlines that work is easier to be 

calibrated in comparison to secondary activities. Multiple reasons can explain this phenomenon. 

Firstly, the work activity is modelled in a more detailed way with three sub-activities, each of them 

having distinct specification. Secondly, the clock-based approach is easier to estimate with 

aggregated dynamic traffic counts as unique input information. Finally, the number of observations 

related to the work demand is larger than the secondary activities, which makes it easier to be 

distinct in the aggregate counts. Additionally, overestimation of the activity duration shopping and 

leisure may also be due to the assumption of fixed travel time, since short duration activities are 

likely performed after shorter travels (e.g. buying bread at a local bakery shop).  

Lastly, we can compare, in the case of work during the full day (A1.3), the estimated final values 

with the empirical estimation done by (Ettema and Timmermans 2003) using a genetic algorithm 

approach predicting the best parameters based on 79 observed individual travel times, work 

organization and personal characteristics. This procedure uses input data specific to the traditional 

home-work-other tour type (i.e., work trips starting between 6AM and 10AM). We can so assess 

the consistency of the MCMC by comparing these outputs, the “model” value in table (3) refers 

to these estimation results.  

Table  V. 9 comparison of parameter estimation 

 U1 U2 U3 

Parameter 
Ettema 

2003 

Initial 

MCMC 

Final 

MCMC 

Ettema 

2003 

Initial 

MCMC 

Final 

MCMC 

Ettema 

2003 

Initial 

MCMC 

Final 

MCMC 

J 335 250 369 753 725 665 1184 1225 1193 

K 0.023 0.005 0.024 0.011 0.050 0.010 0.020 0.005 0.021 

D,*- 9.77 10 9.97 9.78 15 21.83 8.35 10 8.35 

M 1 1 1.1 1 1 1.2 1 1 0.9 

 

The estimation procedure manages to get off non-optimal initial values and get closer to the ones 

estimated by (Ettema and Timmermans 2003). The most different parameters are referring to the 

activity work itself (U2); in particular, the maximal utility is higher and at an earlier time (11AM). 
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This could be explained by the fact that we separated the work activity in more activity types and 

so that we refer only to the full-time aspect. It can also be due to settings and environmental aspect 

of the experiment which is based on observed data. 

V.6. Discussion  

Because we used real data, we can compare the obtained results to the ground truth in terms of 

activity-specific trips. Validation is therefore based on the observed activity-specific trips.  

Firstly, we can compare the share of trips, by activity type and time of the day. The estimation 

loses in accuracy at such level of detail, in opposition to the aggregate estimation by time of the 

day which provides an r' = 0.99. The trips related to work demand has the best estimation which 

is satisfactory as it constrains traffic the most with a large number of generated trips and so impact 

more traffic conditions. Given the level of detail of input data, an  r' = 0.76 for work-related 

trips is considered satisfactory and we expect higher level of accuracy with different kind of data. 

In addition, the differentiation between incoming and outgoing trips is even more difficult to 

predict, in particular for this case where only intrazonal trips are considered and the problem is 

underdetermined. The time periods when those activity-specific trips are inexistant, we observe a 

clear overestimation by the model, due to the probabilistic estimation of generated trips that always 

give a non-zero value.  

Starting and ending trips are considered together and not using for example an origin-destination 

matrix to distinguish them. Therefore, the model’s division exaggerates the peak in the morning 

to start an activity and even more the peak in the afternoon to stop an activity. Almost all the 

demand falls in this category after 4PM, while in reality trips to start leisure or shopping are 

substantial during this period. The activity share is however coherent with real data. These results 

show the current model limitations when used in such aggregated form and it highlights the 

possibilities in order to further improve it. We believe that in the multiple OD case, using input 

data differentiating incoming and outgoing trips as well as distribution of travel times, these results 

can only get better. These current limitations are inherent to the assumptions and set up of this 

specific case study and will be studied in future research, giving also the possibility to include other 

decisions such as mode and destination choice estimation.  
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V.7. Conclusion 

In this chapter we described the core of a utility-based model relying on advanced sampling 

methods to determine activity-specific demand based on traffic data through the calibration of a 

departure time choice model. The concept of trip chaining is handled by first dividing the tour 

into separated sub tours and then estimating the two-parameters departure time choice. The 

proposed MCMC is shown to be able to distinguish activity-specific flows from the aggregated 

demand and the utility-based probabilities prove to be adequate for reproducing a whole day traffic 

pattern. Inserting strong constraints on the probability form allows to have a better interpretation 

of the results, however, these constraints make the model unable to reproduce distributions being 

away from their inherent form. Nonetheless, as the probability curves are calculated with the 

current model, the results when combined with the actual dynamic OD matrices, can give a useful 

interpretation to the flows. The errors in the estimation can be explained by constant and equal 

trip costs as well as the stochasticity and non-linearity of the calibration process. The trip cost is a 

factor that surely impacts the departure time choice as it varies throughout the day and by origin 

(or destination). A first measure has been taken, using different trips durations by activity types, 

however, there is still strong heterogeneity in clustered activities, a finer distinction of activity types 

could lead to a better estimation. At this stage, the proposed approach treats highly complex model 

output with the lowest possible dataset level of details, such that the points used for calibration 

are fewer than the number of parameters to calibrate and an many solutions can fit them. If more 

data is available, the process could further be guided towards real values. Despite simplifications 

in term of trip costs and trip chaining and the complexity of the calibration process, the 

comparison with real data shows already very good results. The unique framework proposes multi-

scale utility specifications which offers promising prospects at three different modelling scales. 
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Chapter 6  
Highlights of the chapter 

1. The mesoscopic activity-based model is extended for destination choice by explicitly 

accounting for OD-dependent trip distances 

2. A tour-based macroscopic estimation of trips distribution is proposed using the MCMC 

framework 

3. Application to OD generation in 2 case studies is showcased 

 

In order to further develop a complete activity- and mode-specific demand model, and to continue 

the analogy with the four-step model, it is natural to focus in this chapter on the choice of 

destination where to perform an activity. While the method has so far proved adequate for the 

estimation of demand generation in chapter 5, with very accurate results when comparing the total 

number of generated trips in a whole region, when comparing the trip primitives with microscopic 

data room for improvement is suggested. This relatively poorer estimation result is expected to be 

due to the choice of using a constant trip time for each activity, and a single set of parameters for 

the utility primitives. In this chapter we relax these two assumptions, but we also resort to more 

data or additional assumptions to be able to extend the modelling approach. The challenge here is 

to include in a formulation based essentially on the positive part of the accumulated utility a realistic 

distribution of trips, and therefore a more realistic disutility component.  

The spatial framework is therefore extended to traffic analysis zones and the temporal aspect 

remains the same with a one-day horizon. Two essential components are used. Firstly, we should 

have a reliable estimate of the number of people performing a given type of activity in each of the 

zones of the study area. This allows an additional variable to be approximated within the estimation 

to the marginal utility formulation. This is a factor applied to the maximum potential cumulative 

utility, which varies according to the destination area. The degree of complexity increases, resulting 

in higher computation times, as the accumulated utility for each pair of departure times has to be 

calculated for each potential zone. The second aspect used to estimate the distribution is included 

in the trip cost. Until now, the disutility of the trip was only reflected in the interruption of the 

positive utility accumulation during the trip time. To consider variable trip times, but still keeping 

a simplified approach to include travelling costs, we incorporate a formulation of the disutility 

associated with the trip, as a function of the typical travel time between two zones and within the 
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same zone. This time is estimated from the database used in the practical application but more 

generally it can be approximated by the distance and size of the zone pairs in question, or obtained 

from other available sources (e.g. Google API, TomTom). 

To be able to estimate this new component more correctly, a second component of the plausibility 

formula has been added, in addition to the total number of people attracted per area and per 

activity. This is a conservation control criterion. Indeed, although we model only one trip of the 

tour related to an activity, we also estimate the end time of the activity, in the chosen zone. Thus 

we can compare the number of trips starting in a zone at a certain time of day with the number of 

activities ending there. 

 

Figure VI. 1 Thesis framework chapter 6 

 

The work presented in this chapter has been described in the following paper: 

“Estimation of macroscopic activity-travel demand: A utility maximization approach” 

 

Poster at Scientific congress: 
Transportation Research Board TRB Annual Meeting 2020 

And 

The 25th International Conference of Hong Kong Society for Transportation Studies 9-10 December 2021 
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VI. DESTINATION CHOICE 

VI.1. Introduction 

In this chapter, we apply the model described in the previous chapters and propose a methodology 

to estimate the daily profiles of each identified activity components and the resulting Origin-

Destination matrices. Relying on the same general principle of utility maximization, this paradigm 

is applied at the population level like in the previous chapter to jointly estimate the starting times, 

destination, and activity at destination of all trips. All components of marginal utility functions are 

estimated through an MCMC. The principles of the MCMC are the same as described in chapter 

IV.2.2 and V.3 but some settings are adapted to the specific application and choice formulation 

employed. In the proposed form, trips resulting from the choice model are compared at each 

iteration to a new set of indicators. This model is tested on the same dataset as in the previous case 

studies, collected in the city of Ghent (2008), containing 15397 trips and four main activity types. 

We show that the proposed model can properly generate purpose-specific dynamic demand at 

zonal level and estimate daily origin-destination activity-travel demand. The result of this approach 

can therefore be applied to estimate activity-specific OD matrices that can for instance be used as 

input for dynamic origin-destination flow estimation from traffic data. 

VI.2. Methodology 

This chapter extends the methodology proposed in the previous chapter and includes to the choice 

facet the destination for every trip. To do so, in this chapter a new parameter is introduced in the 

marginal utility function, and travel times vary by origin and destination. In this chapter, travel 

time is not differentiated by time and mode, which is an assumption that will be relaxed in the next 

chapter. The notations and assumptions described in the previous chapter are used also for the 

methodology proposed here.  

VI.2.1. Utility accumulation 

An activity schedule performed by individual = is represented by a triple of vectors: uv& , w& , x&y. 
The activity vector v& = G&)& , … , &9& H shows the activity type engaged in at every discrete time 

point. Location is specified using two zone vectors: w& = Gz)& , … , z9& H and x& = G')& , … , '9& H, with 

F being the time periods. When engaging in an activity at time J in zone f: z6& = '6& = f. When 
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travelling from zone \ to zone f, z6& = \ and '6& = f for the duration of the trip. For example, an 

individual begins the day at home in zone 8, travelling to zone 4 to work, then shopping in zone 

3, returning home to zone 8 (Figure VI. 2). Elements corresponding to travel are highlighted in 

red. 

 

Figure VI. 2 Example of an activity-travel chain for individual i 

We discretise the time considering ΔJ = 60e=Q{ and encode each activity type as follows: 0 = 

travel, 1 = home, 2 = work, 3 = shopping, 4 = leisure. Hence, in this instance the vector triple 

corresponding to && = G&)& , &'& , … , &B& H = [1,0,2,0,3,0,1] could be represented as: 

&& = [1,1,1,1,1,1,0,0,2,2,2,2,2,2,2,2,0,0,3,3,0,1,1,1] 

z& = [8,8,8,8,8,8,8,8,4,4,4,4,4,4,4,4,4,4,3,3,3,8,8,8] 

'& = [8,8,8,8,8,8,4,4,4,4,4,4,4,4,4,4,3,3,3,3,8,8,8,8] 

 

With a slight abuse of notation, travel activity start/end times will also be denoted using the zone 

indices: individual = departs zone \ at time J.&,H3 to travel to zone f, arriving at J1&,H3. 

Let the travel time from zone \ to zone f to engage in activity & be JJH3; this variable is not 

considered here individual-specific but depends on time of day, and varies only by origin and 

destination. Intrazonal travel is denoted similarly, JJHH. Someone in zone \ who wishes to engage 

in activity & in zone f, starting that activity at time J′ therefore needs to depart from zone \ at 

JL − 	JJH3.  

The utility g+&  accrued by individual =, obtained by engaging in activity & from time J. to J1 is then: 

D*# (!&, !' , z) = Y A*,)# (!, !&)

"!

"1""

Δ!  (6.1) 
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This function has the same form as equation (5.1) but varies with the destination zone f as %+,3&  is 

the marginal utility function related to activity & for individual = in a specific zone.  

In the case of the “trip” activity, the accumulated utility is typically negative (disutility) and depends 

on the origin \, destination f, and departure time JG = J. − 		JJH3(JG). The cost associated to this 

travel time is calculated as follows: 

<"(!!()) = !!()(!G)@  (6.2) 

This form has been chosen in order to reflect in a very simple formulation the difference between 

actual travel time and the perceived travel time and in particular in order to support the 

attractiveness of very short trips while ensuring |6(0) = 0. With this form, very short trips have a 

lower cost than with a linear cost function while longer trips are fast penalized. This form can be 

adapted and updated to other attribute-specific functions, such as activity or mode specific cost, 

remaining consistent with basic concepts of perception (Clark 1982; Stevens 1957). The other 

costs related to travelling, such as access or waiting time, are ignored. 

With the assumption on activity chain simplification, this results in the following utility 

accumulated when studying activity &. The difference with the formulation proposed in the 

previous chapter (5.4) relates to the specificities introduced above, i.e. a marginal utility depending 

on the destination as well as a quadratic formulation of the cost. 

n*# (!&, !'|(:, ;))

= Y A*4# (!, !!)	Δ!

"&47"

"1"'

				+ 				A"!!()(tG)@ 		+ 			Y A*,)# (!, !&)	Δ!

"!

"1""

				

+ 	 Y A*5# (!, !' + Δ!)	Δ!

"(

"1"!57"

 

 (6.3) 

 

We assume individual(s) = to be based in zone \ and hence incurring travel time JJH3 when going 

to zone f to engage in activity &. Without regard to the details of the previous activity-travel chain 

A+(&  and characteristics of the person, the “base” is defined as origin zone of the trip to &. The 

trips after activity & is included in the activity & + which could be located in any zone. If compared 

to equation (5.4), equation (6.3) does include a more specific travel cost and a zone-specific utility 

accumulation for activity &. 
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VI.2.2. Marginal utility formulation 

The form chosen for the marginal utility formulation is derived from (Ettema and Timmermans 

2003) like in the previous chapter (equation (5.8)). However, an additional multiplicative factor has 

been added with respect to the original formulation in order to reflect that different zones may 

offer different marginal utility for a given activity type (e.g. some zone may offer better paid jobs 

or may be more attractive for leisure activities). All activity types, except travelling, bring positive 

utility in the following manner: 

A*,)(!, !&) =
M*K*(N*,)	. D*,*-q

rsj[K*(! − (J* + !&u*))] . (1 + rsj[−K*(! − (J* + !&u*))]);*52
  (6.4) 

 

where the model parameters are defined as in section V.2.4 and additionally: 

- }+,3 : is a new factor affecting g*+I. It reproduces the relative attraction of a zone f for 

the given activity type &. 	

Adding this term instead of defining	g+,3*+I has been decided in order to keep the exact same base 

structure for different zones, this means that the calibration process can be done in different phase. 

This could allow for example to apply the same methodology to different zoning or insert easily 

changes in attractiveness without calibrating any of the other parameters. Having a common 

variable for different zones also simplifies the approach for defining priors. The factor }+,3 can 

indeed be derived any available data and relative attractiveness of zones for specific activities. 

This formulation can still be used in two different formal types following the same rationale 

explained in the previous chapter. When τ is equal to 0, the utility is determined by time of day, 

regardless of activity start time. This represents activity types such as work. Whereas τ = 1 

describes a fully duration-based utility function: the utility function is offset in time in function of 

the activity starting time. In this case the saturation point describes an optimal duration instead of 

a time of the day. Here, for each activity &, the parameter τ is fixed to be τ = 0 or τ = 1 and does 

not vary in the calibration phase. 

VI.2.3. Choice model 

Given the formulations (6.1)-(6.4), and in line with the previous chapter, a logit model is used in 

order to determine the probabilities (and by extension the distribution over the population) of 

choosing an alternative for the following aspects: 
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- Starting time of activity & 

- Ending time of activity & 

- Zone where to perform activity v 

The destination choice is in this way dependent on the disutility of travelling and in particular on 

the expected travel time as well as the expected accumulated utility in a destination zone. The 

relative attractiveness varies thus with time of the day and trip purpose.  

In addition, to the number of people (based) in each zone, \, with activity & in their activity chain 

be ^+H, we now Let the total number of people doing each activity in each zone per day be 6+3 and. 

For all individuals in \ pursuing activity &, the attractiveness of different destination zones is 

distinguished by the relevant travel time. If travelling from zone \ to zone f, they will need to 

depart at J. − JJ+H3. Then the probability of choosing to perform activity & in zone f departing 

from zone \ starting at time J. will be: 

F*
()(!&, !') = 	

expo(D*# (!&, !') + A"!!*
())/H)q

∑ ∑ ∑ expo(D*
# (!&8 , !'8 ) + A"!!*

(N)/Hq""8"!)9""8N
 (6.5) 

With respect to the model presented in the previous chapter, here the lower sum includes only 

those zones (including the current zone) where activity & is available. 

Aggregating over all feasible end times gives the probability of departing zone \ to go to zone f 

for activity &, starting in zone f at time J: 

F*
()(!) = 	 Y F*

()(!, !')
"!9"

 (6.6) 

We associate the incoming trips to zone f at time J, including intrazonal trips, with the number of 

people engaging on activity & in zone f at that time: 

@→)(!) =YY>*
(	F*

()(!)
*

	

(

=YYY>*
(	F*

()(!, !')
"!9"*

	

(

 (6.7) 

Similarly, the number of trips departing (ending activity) zone f at time J is  

@)→(!) =YYY>*
(	F*

()(!&, !)
""O"*

	

(

 (6.8) 

We assume that the total number of people per day engaging in activity & in zone f is known: 
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?*) =YYYY>*
(	F*

()(!, !')
"!9"*

	

("

 (6.9) 

Finally, for each activity, the total number of participants matches the total demand summed across 

all zones. 

Y?*)

)

=Y>*
(

(

 (6.10) 

 

VI.2.4. Utility parameter distribution and calibration  

Marginal utility functions typically describe the possible utility accumulated by individuals, whereas 

we recall that in this thesis we use it to represent an aggregated variable. Each marginal utility 

function, including those composing the utility primitives, may have different values from 

individual to individual. This heterogeneity can be described through the distribution of 

parameters.  

VI.2.5. Process 

As in the previous chapters, each variable is sampled without knowing its actual distribution but 

providing a posterior probability distribution as an output of the stochastic process. These 

distributions can well represent the heterogeneity of different users and the marginal utility of 

different activity types and components of the utility-primitives. 

VI.2.6. Scoring 

The computed score is: 

W# =	ℒ# +Ylog	(R(O#))
3

  (6.11) 

In order to include multiple indicative aspects, output of the model, the likelihood function 

includes the following different components, all in terms of trip numbers: 

ℒ# = U2 ∗YY−
1

2
	oS2,#(;, !)@q

")

+ U@YY−
1

2
	oS@,#(;, 0)@q

*)

+ UDYY−
1

2
	oSD,#(;, !)@q

")

 

(6.12) 
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where 

- ~> is a scale factor applied to the Q67 component of the likelihood; 

- r),&(f, J) is the difference for generated demand by zone and time of the day; 

- r',&(f, &) is the difference for total attracted demand by zone and by activity type; 

- rK,&(f, J) is the conservation between attracted demand and generated demand at the zonal 

level. 

These residuals are calculated according to equations (6.13), as the difference between the observed 

data and the output of the utility-based choice model for departure time, destination, and mode.  

S2,#(;, !) = @P→(!) − @′P→x(!) 

S@,#(;, 0) = ?*) − ?*)á	 

SD,#(;, !) = 	@P→á (!) − @′P→x(!) 

 (6.13) 

The values of the scale factors are selected in order to give more or less importance to the different 

results and keep an order of magnitude comparable with the prior component. They are fixed for 

the full process and chosen based on the goal of the simulation as well as the number of datapoints 

included.   

VI.3. Case study 

VI.3.1. Dataset  

The proposed methodology has been applied to a dataset collected in the area of Ghent in 2008 

(Castaigne 2009). For this case study, the area of Ghent has been divided in 10 zones (Figure VI. 

3c). A total of 15397 trips is used in this application, for which we know the 

- Origin 

- Destination 

- Starting time 

- Ending time 

- Travel time 

- Modes 

- Activity at origin  
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- Activity at destination 

They result from a multi-day survey collected on 707 individuals, randomly sampled with 

stratification criteria according to household size, gender and age. A description of the database 

and analysis of the variability of daily activity-travel pattern is available in (Raux, Ma, and Cornelis 

2016). 
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Figure VI. 3 Study area (a) points visited (b) and zoning (c) in Ghent, Belgium 

The survey includes 12 activity types, clustered in the following categories:  

- Home 

- Work  

- Shopping & other mandatory activities 

- Leisure & other secondary activities 

The generated demand for different activities is similar from one zone to the other while the 

attracted demand varies more, in particular for home and work trips (Figure VI. 4).  
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Figure VI. 4 Proportion if total generated and attracted demand, by activity type, for each zone 

VI.3.2. Input to the MCMC 

In order to apply the Markov Chain Monte Carlo estimation process using the available dataset, 

needed input data are to start the procedure: 

- the total number of people willing to perform a certain activity from each zone ^+3	∀	f, & 

- for the likelihood estimation:  

- the number of trips starting by zone and time of the day: 5M→(J)	∀	f, J 
- the total number of people doing a certain activity in each zone  6+3	∀	f, & 

- and for calculating the trip duration and so the related disutility of the trip: 

- the average travel time for each OD pair 'H3	∀	\, f 

    

Figure VI. 5 average by OD pair for (a) distance travelled (b) travel time 

VI.3.2.1. Parameters to estimate 

In order to estimate the demand related to the 4 activities considered, assumptions are made to 

better reproduce typical behaviours. The home and work activities are separated into different 

subcategories having diverse characteristics.  

Table  VI. 10 Activity type definition 

 Activity type Type of utility A* Total observed demand 

1 Shopping Duration-based 3655 

2 Leisure  4280 
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3 Work AM Clock-based  

4 Work PM   

5 Work AMPM   

- Work - 1687 

6 Home AMPM Duration-based  

7 Home PM Clock-based  

- Home - 5775 

 

The parameter $> is fixed to τ = 0 for clock-based utilities and τ = 1 for duration-based utilities 

and all %+F and %+(. For each of these seven activities, 13 parameters are thus estimated in the 

MCMC, corresponding to the parameters of equation (6.4)  and the proportions of the whole 

demand corresponding to the given work-type and home-type:  

 

- Θ+N 	= 	 ug@,+*+I , !@,+ , "@,+ , #@,+y	where	u = %+(, %+ , %+F; 	& = 1,… ,7	 
- Θ+M 	= 	 υO,M	where	f = 1,… ,12; 	& = 1,… ,7 

- ΘPQORS(T)
(;U):K) = 9(4;) with  ∑ 9(4;) = 1;U):K   

with á = 1	ázrà	A`,	á = 2	ázrà	9`	and á = 3	ázrà	A`9` 

- ΘPQORS(W)
(7U):') = 9(â7) with  ∑ 9(â7) = 17U):'   

with ℎ = 1	ℎzeã	9`	and ℎ = 2	ℎzeã	A`9` 

 

8 =ååΘ+N
+

+å å Θ+M
+3

+åΘ.7+<1(X)
Y

;

+åΘ.7+<1(Z)Q

7@

	 

In total 8 contains 173 elements to estimate. For each of these parameters, a prior function is 

defined according to table 2. The initial value is set to the mean of the prior for every parameter 

apart from g*+I = 9 for all utilities in order to start from a neutral balance between alternatives. 

Table  VI. 11 Utility priors 

Shopping 
Parameter Shape Truncated [0;+inf] Mu Sigma Step size 

J Normal Yes [480;15;1080] [50;50;50] [20;5;20] 

γ - - 0 0.25 0.1/d 
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τ - - [0;1;0] - 0 
D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Leisure 

J Normal Yes [600;40;1440] [50;50;50] [20;5;20] 

γ - - 0 0.25 0.1/d 

τ - - [0;1;0] - 0 

D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Work AM 

J Normal Yes [250;600;960] [50;50;50] [5;5;5] 

γ - - 0 0.25 0.1/d 
τ - - [0;0;0] - 0 

D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Work PM 

J Normal Yes [600;900;1225] [50;50;50] [5;5;5] 

γ - - 0 0.25 0.1/d 

τ - - [0;0;0] - 0 

D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Work AMPM 

J Normal Yes [360;780;1225] [50;50;50] [20;20;20] 
γ - - 0 0.25 0.1/d 

τ - - [0;0;0] - 0 

D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Home AMPM 

J Normal Yes [0;60;1080] [100;50;50] [5;5;5] 

γ - - 0 0.25 0.1/d 

τ - - [0;1;0] - 0 

D,*- - - [10;15;10] 5 mu/d 

K - - [0.008;0.05;0.008] 0.2 0.01/d 
 
Home PM 

J Normal Yes [720;1380;1440] [100;100;10] [20;20;0] 

γ - - 0 0.25 0.1/d 

τ - - [0;0;0] - 0 

D,*- - - [10;15;0] 5 0 
K - - [0.008;0.05;0.008] 0.2 0.01/d 

 

The prior for parameters linked to the destination zone is selected based on the value of 6+3 and 

because this value is known the variance of this parameter is smaller than for the others. 

VI.4. Results 
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The presented results have been produced with the settings presented above and 3000 iterations 

of the MCMC. A burn-in period of 300 iterations has been chosen, i.e. all the values from iteration 

1 to 300 are not included in the posterior distribution.  

The iterative process shows a good convergence from the overall scoring function (Figure VI. 6a). 

The prior-related score is decreasing, this is because the initial values are in most cases the mean 

of the normal prior, such that the initial score is the highest score possible. This behaviour shows 

the ability of the MCMC to rectify the prediction while keeping plausible values. The score related 

to attraction is decreasing as well because its impact on the estimated choice model is very weak, 

in addition the factor ~) is higher than for the other components. 

 

 

Figure VI. 6 (a) Score's components for 3000 iterations (2) acceptance rate of sampled parameters 

One of the features of the adopted Metropolis algorithm is that a set of sampled parameters 

resulting in a lower score can be selected based on the acceptance criterion (equation (4.7)). Figure 

VI. 6b shows the proportion of parameters’ set increasing the score, decreasing the score but 

accepted and finally decreasing the score but rejected. The observed ratio of these three 

components is satisfactory because we can see that the score improves but that there is possibility 

of leaving local optima and search better the feasible range.  

VI.4.1. Generated demand: trip-primitives 

The total aggregated demand at the zonal level is reproduced with a very high accuracy (r' = 0.9) 

(Figure VI. 7). This complete demand profile is not used in the likelihood computation, the fitting 

is instead governed by the demand by time of the day and zone of origin.  



 

 
119 

 

Figure VI. 7 Generated demand by time of the day for the complete study area 

Figure VI. 8 shows the zone-specific results in terms of generated demand for all kind of activities 

in the case of different zone types. The procedure is slightly more efficient for bigger zones and 

this affects the final scoring. This result is not considered as a strong disadvantage of the 

methodology because a higher generated demand results also in contributing in stronger way to 

congestion, so it is more important to estimate well those components. We see however on Figure 

VI. 8 that atypical demand profiles are modelled properly as well. For example, zone 1 where the 

peak in the morning is almost not apparent. Despite a common utility formulation, as the examples 

in Figure VI. 8 show, the profiles can vary a lot from one zone to the other.  

 

Figure VI. 8 Modelled and observed demand for three zones 
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We can also describe in detail the different components of the full demand. Figure VI. 9 shows 

the trip-primitives estimated by the model for zone 9 in comparison with the reference values. We 

can see that the magnitude by activity type is broadly in line with the observations and that the 

overall daily dynamics are well reproduced. In particular, the peaks for working activity which 

corresponds well to the clock-based utility function and the more uniform demand for activities 

having a duration-based utility function. The different sub-activity types for home and work allow 

to reproduce very well the daily variations of these activities. The relative importance of the peaks 

depends on the proportions of activity sub-types. Similarly, the time limits for activity Shopping 

and Leisure could be included, to reflect opening hours and so represent better the starting and 

ending time of the uniform profile. 

 

Figure VI. 9 Trip-primitives for one zonem during one day 

Overall, the estimation of generated trips by activity type and time of the day is satisfactory, given 

the level of detail of the output. The estimation’s drawback is for times of the days, activity and 

zones which do not count many observations. In particular when the observed demand is close to 

0, the shape of the proposed utility function is unsuitable. In addition, when the demand is not 

following the usual form, expected for any zone, it is more difficult for the model to differentiate 

the relative components of the demand. 
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VI.4.2. Attracted demand 

The attracted demand results from the destination choice model, coupled to the departure time 

choice model. The estimation of these attracted trips depends on the difference in travel time and 

the attractiveness factor. However, the difference in travel time has a relatively minimal impact as 

the difference in travel time from one zone to the other is rarely higher than the considered time 

bins. Making the calculation with smaller time intervals increases drastically the duration of each 

iteration to detect differences, the average travel time differences between zones being less than 5 

minutes, we would ideally need a one-minute simulation. This can be done theoretically, but it 

would preferably require a level of input data (dynamic trip counts) which has the same level of 

precision and is in practice very hard to collect. The highest difference in the average travel time 

is 40 minutes (zone 5 internal is 7 minutes and from zone 5 to zone 10 is 47 minutes). Attracted 

demand is not controlled by dynamic data inside the likelihood function but only through the 

aggregated number of attracted trips by activity 6+3. For this reason, the daily profiles of attracted 

demand are not as accurate as the ones of the generated demand. However, the attracted demand 

by zone and activity type arrives to a close result. The estimated OD matrix is presented on Figure 

VI. 10a and is close to the actual one (~' = 0,72). Overall daily OD trips are modelled with a 

lower accuracy than the generated trips by zone and time of the day (~' = 0,85) but a higher one 

than activity specific OD demand (~' = 0,6). 

  

Figure VI. 10 (a) Estimated OD matrix and fit of (b) generated trips (c) activity-specific OD trips 

VI.4.3. Utility-primitives 

The utility-primitives are the main component resulting in the modelled demand. On Figure VI. 

11, we see the resulting utility functions for a selection of activities. The parameter values are the 
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average value of the posterior vector Π[ , (except the burn-in period). This estimation process is 

done individually for each activity type so the relative order of magnitude of these curves is relevant 

only within the three components of utility-primitives and among zones but not among distinct 

activity types.   

 

 

Figure VI. 11 Utility primitives of Work and Leisure 

VI.4.4. Supplementary indicators 

In addition to the aggregate travel, the choice model results in estimating the distribution of the 

duration of an activity which differs for each activity type and by extension it can provide an 

indication of the number of people staying in a zone (zonal occupancy). This occupancy can be 

calculated by the difference between the cumulative number of arriving trips and leaving trips by 

time of the day: 

 

â),*(!) = Y @*→)(!&)
""O"

	− Y @*)→(!')
"'O"

 (6.14) 

 

For the home activity, all trips at the end of the activity (returning) happen before 12PM because 

the studied time frame is from 00:00AM to 12:00PM. 
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Figure VI. 12 Total occupancy (study area) by activity type 

The occupancy is an interesting indicator for the assessment of management solutions and can be 

used on the side of the activity duration. For instance, it can be used to indicate the demand for 

parking in an area. 

However, the duration for every activity is mostly overestimated by our model, in particular for 

duration-based marginal utilities. We can explain this by the fact that %+( and %+F are assumed 

clock based. This means that no utility is gained from returning from that activity before a certain 

time of the day so the duration of this activity can be longer than expected. Having a duration-

based marginal utility formulation %+( and %+F	 would increase a lot the computational time and 

wouldn’t result in a better estimation of the resulting traffic. On the contrary, these formulation 

act as an upper and lower limit for activity participation. For the home activity, we can see well the 

two components which results in two peaks of duration. Finally, work is slightly overestimated, 

this can be due to a wrong estimation of the share between full time and part time work. This 

could easily get better if the share is used as input of the MCMC. 

VI.5. Conclusion 

In this chapter, we presented a model for recognizing activity-specific trips components in 

observed travel demand. Its application to the proposed case study shows the potential to model 
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accurate demand at the origin-destination level with a very low necessary level of detail for input 

data. In addition, the MCMC approach has the advantage of delivering information on the 

heterogeneity of the population and on the aggregation of activity types.  

While it impossible to observe actual utility values and so to calibrate marginal utility functions, 

we proposed here an alternative approach using trip counts deriving from these functions to 

describe accumulated utility for various activity types. Some assumptions needed to be made on 

those utility functions to be applied at the population level, with an aggregate perspective. Yet 

existing formulations designed for the individual scale can fit the proposed scope.  

The results of the case study show that the efficiency of the method is higher for large travel 

demand. Despite the parsimonious aspect of the method, it should be noted that the quality of the 

results increases with more detailed available information. Several aspects, in addition to the 

departure time choice model are integrated in the proposed model to include destination choice 

aspect. The potential applications of this additional level are however many with for example the 

creation of realistic seed matrices for OD estimation. It is also possible to understand the 

correlation between trips observed at different times of the day and between different zones and 

so to forecast better dynamic demand.  
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Chapter 7  
Highlights of the chapter 

1. Introduction and joint calibration of an activity-mode specific trip cost formulation 

2. Two approaches to activity mode choice approximation are presented and compared 

3. A two-step MCMC procedure to estimating OD specific modal split is proposed 

 

The last aspect of demand modelling that we include in the methodological contribution of this 

thesis naturally concerns modal choice. First, we describe a simple expansion of the model 

described in the previous chapter and then a version more adapted to the modelling of this aspect 

of demand estimation. These two approaches, according to the available data, could be combined 

in application. 

In order to integrate modal split and therefore generate activity-mode specific origin-destination 

trips, the simplest estimation consists in combining and integrating the choices of departure time, 

destination and mode within the utility maximisation formulation. The different modes are here 

distinguished by travel time. On the one hand, we use the hourly speed, in order to represent the 

level of service, affected by the frequency of public transport or the presence of traffic jams. On 

the other hand, the distance varies between the two zones in question. This provides an 

approximation of the travel time by mode, OD pair and time of the day and thus it creates a 

dynamic modal split.  

But unlike the choice of destination, it turns out in this section that this aspect can hardly be 

integrated through only regarding the marginal utility formulated at destination, and the journey 

costs then become an essential component. Thus, we propose a formulation of the cost depending 

on both the mode and the activity at destination. We incorporate a mode-specific system access 

cost that can be calibrated for each area to reflect both the size and the infrastructure and services 

available within that area. In addition, we assume that a journey time is not perceived in the same 

way depending on the activity at destination. This variation in the value of time is transcribed 

through a quadratic cost factor that allows us to model a higher acceptance for a commute than 

for a leisure trip, for example.  
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Thanks to the variation in utility between each destination zone, the different generation profiles 

of the origin zones, and a distinct activity split for each pair, we can with this last method also 

obtain a modal split that varies according to the time of day.  

In order to model this cost aspect as well as possible, we propose a two-step approach to 

calibration. A first quick MCMC allows us to fix the parameters related to the marginal utility and 

the positive share while in a second step, a second MCMC focuses on the different parameters 

related to the cost function. 

 

Figure VII. 1 Thesis framework chapter 7 

 

The work presented in this chapter has been described in the following paper: 

“Dynamic Modal Split Incorporating Trip Chaining: A Parsimonious Approach to Mode-Specific 

Demand Estimation” 

 

Transportation Research Procedia 
24th EURO Working Group on Transportation Meeting, EWGT 2021, 8-10 September 2021  
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VII. MODE CHOICE 

VII.1.1. Introduction 

Dynamic mode choice is essential to understand the potential effectiveness of policies aiming to 

achieve desirable modal split targets or to manage the demand for resource-limited systems such 

as shared mobility services. In this chapter, we propose two distinct approaches to modal split 

estimation. First, an estimation of dynamic modal split for work-related trips, including mode- and 

time-specific costs. To obtain an accurate profile while remaining at an aggregate level, three types 

of work activities are described (full time, morning and afternoon shift). The MCMC procedure is 

used to evaluate the marginal utility function parameters which are used in a joint departure time 

and mode choice evaluation. 

The second approach is less demanding in terms of dynamic input data but includes stronger 

assumptions at the modelling level. A function of the disutility of travelling including mode and 

activity specific components is proposed. The dynamic variations of modal split are in that case a 

consequence of variations in trip-purpose share. The estimation procedure is slightly different as 

the departure time and destination are estimated jointly over a first phase with an expected travel 

time while the mode choice is handled over a second phase. The two phases have different level 

of detail and so this reduces considerably the execution time. Indeed, the generation does not 

require to compute marginal utilities for each different zone while introducing the destination 

specific factor increases the computation time. Furthermore, in that application, we showcase a 

possible utilization of the MCMC calibration process where different parameters cannot or don’t 

need to be jointly estimated. 

The estimated modal split concerns motorized vehicles, soft modes but also train and urban public 

transport. Based on utility maximization principles, the accumulated utility is formulated within 

the departure time choice model described in the previous chapter.  

VII.2. Method I 

Mode specific travel speed for each time of the day is used to estimate also travelled distance 

distribution per mode. The methodology is applied and tested, using data collected in Ghent in 

2008, as in the previous chapters. 16.749 work-related trips have been considered in a simplified 

estimation where two successive trips are constrained to be done with the same mode. This 
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assumption is in line with the conclusions of the empirical analysis of chapter 3. The proposed 

method is easy to implement using only dynamic trip counts, without the need for simulation or 

traffic assignment.  

VII.2.1. Methodology 

In this part, we assume to have information, or a reliable estimation, of the total daily demand for 

work-related trips within a study area, 6; . Then, thanks to the proposed model, the time- and 

mode-dependent demand 6;*(J) is calculated according to departure time probabilities calculated 

based on utility maximization principles. Individuals are assumed to optimise their schedule to 

maximise their utility and the aggregated trips, resulting from a probability model which produces 

emerging traffic flows. We estimate their choices as a utility maximization problem with time-

dependent travel times which are mode-specific but not function of the estimated flows.  

Following the general framework proposed in (Yamamoto et al. 2000b), we define the overall net 

utility accumulated during the reference time period é as the sum of the disutility/cost of travelling 

and the positive utility of performing one or more activities (equation (5.3)).  

In this section, we do not include destination-specific utilities, however, equation (7.1) can easily 

be extended to capture zone-dependent marginal utilities simply by labelling activities in different 

zones as distinct activity types offering different marginal utilities. We believe anyhow that 

considering marginal utilities to be zone-independent is acceptable for this specific study since our 

focus is on generating dynamic modal split. Jointly estimating destination and mode choice would 

be a straightforward extension of the model proposed in the previous chapter. 

Additionally, in this study we focus on the work activity only, again for the sake of simplicity but 

the same approach can be used for estimating any activity type. In the same manner as we 

considered the notation for activity &, &(, &F in the previous chapters, for sake of clarity in this 

special application case, we use the following notation: 

- á( relates to all activities which took place before the trip to go to work  

- áF relates to all activities after leaving the work activity, including any trips made to access 

them.  

We formulate these two before/after blocks as singular activity types. We assume that the disutility 

of travelling has constant marginal cost, |6 < 0 per unit time. Travel time to the working activity, 

from zone \ to zone f by mode e, JJ;:<=
H3,* (JG), is OD- and mode-specific and depends on the 

departure time, JG . Departure time is chosen to arrive at the desired start time: JG = J. −
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	JJ;:<=
H3,* (JG). Note that the trip components are assumed to be not individual specific. For 

individual =, commuting using mode e, with work starting and ending time (J., J1) given a zone 

of origin \ and destination f and hence travel time  JJ;:<=
H3,* (JG), the total daily utility gained is 

nNQRS
# (!&, !' , E|(:, ;))

= Y AN4# (!, !!)	Δ!

"&47"

"1"'

				+ 				 <"!!NQRS
(),, (!G) 			+ 			Y ANQRS

# (!, !&)	Δ!

"!

"1""

				

+ 	 Y AN5# (!, !' + Δ!)	Δ!

"(

"1"!57"

 

(7.1) 

The total accumulated utility (2) includes four components. The first and last represent all trips 

and activities performed before and after work; the central components are the work activity and 

the trip to reach it. This formulation could easily be generalized to include dependence of the 

marginal utilities on the location where activities are performed, as shown in the previous chapter. 

This would result in estimating OD-specific parameters. However, location choice is not explicitly 

studied in this part of the study and hence marginal utilities are considered zone-independent. 

Similarly, without information at the zonal level, travel time is approximated based on the type of 

activity (at the destination) and is mode-specific, i.e.  JJ;:<=* (JG). These elements are the necessary 

components of the utility maximization process. 

VII.2.1.1. Marginal utility formulation 

All marginal utilities follow this functional form, including those capturing the ‘activities’ á(	and 

áF. In this model we use equation  (7.1) to express the expected marginal utility at an aggregated 

level, i.e. at a zone level. Individual heterogeneity is captured by probability distributions of model 

parameters, which emerge from the parameters’ estimation process. For a given activity, this 

collection of model parameters across individuals is denoted è. 

VII.2.1.2. Trip duration formulation 

At the aggregate level, a new assumption needs to be done in terms of experienced travel time. 

For each time of the day, various data sources can be used to get the expected travelling speed by 

mode ê*(JG), which is assumed to vary by time of day to consider congestion, varying service 

frequencies and quality levels. This value is considered as given and fixed while the travelled 

distance by mode is a distribution  '*, used to compute the expected travel time by mode and 

time of the day: 



 

 
130 

!!NQRS
, (!G) = ä,(!G) ∗ ã[5,] (7.2) 

VII.2.1.3. Estimation process 

Based on formulations (2)-(4), the departure time is expressed as a discrete choice process using a 

multinomial logit model like in the previous chapters. The probability of choosing the pair of 

starting and ending times (J., J1) and mode e is computed as follows: 

FNQRS(!&, !' , E) =
exp	(D(!&, !' , E) + <"!!NQRS

, )

∑ ∑ ∑ expoD*
# (!&8 , !'8 ) + <"!!NQRS

, q""8"!)9""8,
 (7.3) 

The time allocation probability is used to estimate the distribution of departure times of the 

complete population. The proposed framework is used to estimate all work-related trips inside a 

study area. This includes trips for which the activity at destination is work (6a) and the trips starting 

after the work activity (6b) which results in 2 trips for each worker (6c): 

@→NQRS(!) = ?NQRSY Y FNQRS(!& = ! + !!NQRS
, , !' , E)

"!9"",

 (7.4) 

@NQRS→(!) = ?NQRSYY	FNQRS(!&, !' = !,E)
"",

 (7.5) 

@NQRS(!) = 	@→NQRS(!) + @NQRS→(!) (7.6) 

The score ë= at iteration à is reflecting both the plausibility with respect to the defined prior (i.e. 

the a priori knowledge available on parameter’s values) and with respect to the observed data.  

WS =Ylog	(jS34S(ΘS))
3

+	ℒS(@) + ℒS(?) (7.7) 

The sampled values for the marginal utility functions are used in order to generate trip distributions 

during the day with respect with choice probability (equation (7.3)) and total demand 6;:<= . This 

output of trip generation model is compared to observed daily demand. In this application to mode 

choice estimation, the likelihood is made of two elements: ℒ=(5) relates to the observed total 

generated demand 5;:<=(J) for each time interval ΔJ calculated in equation (7.6) and ℒ=(6) 
relates to the known distribution of travelled distances for working purpose in the study area, 

regardless of the mode. 

VII.2.2. Case study 

To test the methodology, we use the same database used in the previous chapters, obtained from 

a multiday travel survey collected in the province of Ghent in 2008, including multiple users, days, 
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and tour types (Castaigne 2009). All trips to and from work are considered for this analysis. Since 

only substantial travel time differences will be influential, time resolution of 5 mins intervals for 

the observed demand is sufficient. 

Modes are grouped into the following categories, based on their travel time distribution: motorized 

modes, train, urban public transport, and soft modes (Figure VII. 2a). For each of these modes, 

we estimated the travelled distances directly from survey data (for all kind of trip purposes) and 

fitted this distribution as starting point for the estimation. One of the goals of the estimation is to 

estimate those distributions for the work activities. 

 

(a)  (b)  

(c)  
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Figure VII. 2 Observed (by mode) (a) trip duration frequency (b) travelled distance distribution (c) traffic by time of 
the day (5 minutes interval) 

The input of the MCMC are  

- The generated total demand by time of the day 

- the total travelled distance distribution, and, 

- the modal speed by time of the day (Figure VII. 2).  

The first two are used for assessing the estimation quality and calibrate the parameters while the 

last is used inside the derived estimation of the travel time distribution. To estimate realistic travel 

times with respect to the observed traffic, we calculate a truncated average of observed travel speed 

using survey answers for each time period. Despite the large number of observations, there was 

not much data for every mode in every time interval. Missing data was added via linear 

interpolation of neighbouring data. 

(a)  

(b)  
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Figure VII. 3 Input: (a) work-related generated demand by time of the day (b) Total travelled distance distribution 

To reproduce daily dynamics, particularly the lunch-time peak, work activity has been separated 

into three sub-components: áDU) is “work in the morning”, áDU'	is “work in the afternoon” and  

áDUK is “full-day work”. Each component has distinct marginal utilities for all three components 

of the estimation áD(, áD , áDF.  

The parameter $> is fixed to τ = 0, meaning that all marginal utilities are fully clock-based. For 

each of these three activities, 13 parameters are thus estimated in the MCMC, corresponding to 

the parameters the marginal utility function and the proportion of the whole demand 

corresponding to the given work-type. Two additional parameters are estimated for each mode in 

order to evaluate the distribution of travelled distance with a Pareto form: 

- θN\]^]\_
(>U):K) 	= 	 (g>*+I , !>, ">, $>, #>)  for all work-activity subtype R 

with Q = 1	={	á(,	Q = 2		={	ázrà	and Q = 3	={	áF 

- θPQORS
(DU):K) = 9uáDy with  ∑ 9uáDy = 1DU):K   

with R = 1	ázrà	=Q	Jℎã	ezrQ=Qí,	R = 2	ázrà	=Q	Jℎã	&ìJãrQzzQ	and R = 3	ì%îî −
'&\	ázrà 

- θG&.6+>`1
(*U):a) = ({|&îã*, {ℎ&ïã*) 

O =Y(θ$ +Yθ/,$)
/$

+Yθ,

,

 (7.8) 

In total 8 contains 48 elements to estimate. The total number of trips to be distributed is 

considered as fixed and known, since they represent the expected number of users working daily 

in a certain area, which is an information often available. Preliminary analysis showed that the 

number of successive trips performed by the same mode is higher than 80% and that this number 

is even higher for owned resources such as bike and car (Scheffer, Connors, and Viti 2021). For 

this reason and to accelerate the estimation procedure, we assume in the proposed case study that 

consecutive trips are done using the same mode.  

VII.2.2.1. Results 

The estimation procedure has been run for 15.000 iterations. The resulting final demand profile is 

rather accurate with respect to observed generated demand, with r' = 0,82. The main result of 

the estimation is the posterior distribution of estimated parameters. To estimate final marginal 

utilities, a burn-in period of 200 iterations is selected and all remaining values of the posteriors are 
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used to compute the average of each parameter. Figure VII. 4 shows the three estimated marginal 

utility functions. They are the primary component for the estimation of departure time 

distributions. The estimation of these three components is not correlated because the proportion 

is estimated independently. For this reason, the difference in the values of g*+I is relevant within 

a sub-activity only. 

 

Figure VII. 4 Estimated marginal utility functions of the three components 

Figure VII. 5a shows the final estimation for each time of the day. The separation of the work 

activity into three components makes it possible to better reproduce the mobility dynamics, with 

the three observed peaks which are well captured. The other derived output is the total travelled 

distance. In order to compare distance distributions, a number of distances values corresponding 

to the number of mode-specific trips is sampled from the estimated corresponding distribution. 

Figure VII. 5b shows the frequency of all modes together and the comparison of share for each 

interval of 5km (the intensity of the colour represents the length of the trip). Travelled distances 

are overall overestimated compared to the observed data. The relatively poorer fitting with respect 

to the demand is because the number of data points to fit and the order of magnitude is smaller, 

and also because the correlation between the estimated parameters and the output of each 

simulation is lower.  
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(a)  

(b)  

Figure VII. 5 Estimated (a) traffic for each time of the day (b) travelled distance distribution 

Including a mode component in the choice set results in a dynamic modal split estimation (Figure 

VII. 6a), which shows the ability of the model to produce such output even without resorting to 

advanced cost functions but only based on the positive component of the accumulated utility and 

a probability distribution of travelled distances. The estimation was done for a 5-minute interval, 

but the modal split results are shown for a 20-minute time interval. This avoids skewing the output 

with missing or outlying data, in terms of modal speed for example. The mode-specific departure 
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time profiles (Figure VII. 6b) indicate a good representation of large-scale temporal dynamics. For 

example, around mid-day, the peak is more visible for soft modes and car users and almost no 

train users appear. The estimated work-related trips can be compared to Figure VII. 3 that 

represent the real values for all kind of trip purpose.  

 

(a)  

(b)  

Figure VII. 6 Estimated (a) dynamic modal split (b) mode specific demand profiles 

However, the scale is slightly misrepresented because the total number of mode-specific users is 

not known or controlled in any manner, and there is no other component than the travel time, 

and the travelled distance distribution is not dependent on the time of the day. The peak of soft 

modes around 12AM can normally be explained by shorter trips associated to the shopping or 

eating activity. In general, there is an overrepresentation of modes for which trip duration is 

typically short, such as soft modes.  



 

 
137 

VII.3. Method II 

This correlation between mode choice and activity types can lead to temporal variations as well in 

an indirect manner. For the second section of modal choice modelling, the approach is different 

for two main reasons. The first reason is related to a practical issue of computation time. As soon 

as the choice model incorporates a destination for which the marginal utility function as a function 

of time varies from one area to another the computation time increases considerably. The second 

reason is related to the conclusions derived from the empirical analyses. By including modal choice 

and consequently a calibration of the travel cost function, the number of parameters increases, and 

we propose a simplification of the estimation procedure. 

VII.3.1. Rationale 

In order to apply the observations linking activity type to trip-characteristics, the objective in this 

section is to develop a cost function that reflects the variation in perception and disutility based 

on activity-chain characteristics, in a simple way. The two most important conclusions we draw 

from the database analysis are the following:  

- The disutility associated with a trip is perceived differently depending on the activity at the 

destination and, 

- Private transport modes such as bicycle or car have a high chance of being used in 

consecutive trips (Figure VII. 7). 

 

The first argument is built into the model within the trip cost function while the second allows for 

a penalty within the conservation function used in the likelihood formula, less constraining than 

in the previous section where all successive trips were performed with the same mode. 
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Figure VII. 7 Successive mode proportion with respect to current mode 

On this figure, we see that car drivers and bike users have the tendency (at more than 85%) to use 

again this mode of transport in their trip. While this was used in the previous method as argument 

to constrain the usage of the same mode for successive trips, we believe that it could be used as a 

softer indicator of the likelihood of modelled trips.   

 

Figure VII. 8 Average travel time by activity type 

Figure VII. 7 shows the average travel time by activity type. This suggests that a traveller does not 

have the same willingness to travel for any kind of activity. In particular, the work activity is the 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bus or tram or metro

Car as passenger

Walk

Train

Bike

Car or moto as driver

Successive mode choice proportion given current mode

Same mode Car or bike Other

-15

-10

-5

0

5

10

15

20

25

30

Home Daily Shopping Work Eat

Average travel time by activity type [min] and difference with mean 
travel time

Mean Diff Average



 

 
139 

only one which exceeds the observed average travel time. For daily shopping, the average travel 

time is more than 5 minutes lower than for another kind of trip. This can be due to many different 

reasons, for example the choice set for destination of this kind of activity or the level of importance 

of performing this activity or not. For both these examples, the impact can be translated in the 

utility maximization formulation we are using and so it justifies a particular form of the disutility 

based on the activity at destination.   

VII.3.2. Methodology 

In this section, the calibration process used is the same as in the previous chapters, however, the 

reference parameters and indicators are separated into two categories. On the one hand, we have 

those that concern generation (i.e. almost all parameters of the utility function) and on the other 

hand those that concern distribution and modal choice. This distinction is made in order to 

increase the computational capacity and to use a two-step estimation. 

VII.3.2.1. Disutility of travelling: 

In order to estimate the modal split and distribution of modelled trips generated by time of the 

day, we focus in this section on the difference in trip cost. Because the estimation is done for an 

aggregate group, the selected function is simple in its form and contains the following 

characteristics: 

- It varies with respect to the chosen mode of transport, 

- It varies with respect to the origin destination zone, 

- It can consider the accessibility of different modes of transport which can vary by time of 

the day and zones 

- Depending on the activity type, it can be perceived smaller or longer than the actual travel 

time until a certain threshold 

 

<""(!&) = j*!!()@ + <,
()(!&)  (7.9) 

with ï+ < 1 

as in the previous chapter, we select a quadratic function of the typical travel time between two 

zones (6.2), multiplied by an activity-specific parameter ï+. The component |*H3(J.) can be 
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interpreted as an access cost by mode of transport, which could depend on different factors in 

order to reflect their level of service by time of the day and OD. 

 

Figure VII. 9 Components of the travelling cost 

VII.3.2.2. Estimation process 

 

Figure VII. 10 Estimation process 

In Figure VII. 10 we indicate the two phases of the estimation: MCMC1 and MCMC2. The 

destination choice model, when including }+,3 requires calculating the possible marginal utility at 

each time of the day for each different destination zone at every iteration. For this reason, the time 
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needed for completing an iteration is more than Qf times longer than the otherwise. Qf is number 

of zones in the study area and so this issue becomes bigger with larger number of zones.  

A possibility to overcome this issue is to simplify this indicator and define it based on some zonal 

characteristics in order to make it common to groups of zones. However, given the relative 

independence of some parameters on certain indicators, we decided here to maintain the }+,3 

parameter and estimate the other marginal utility parameters over a first phase. In the light of 

previous chapters focusing on the generation part, it is reasonable to consider the parameters 

which are common to all the modelled zones to be estimated with enough accuracy during the 

generation process only, i.e. 	!+ , γ+ , τ+ , g+*+I , "+. The output if the MCMC1 is used in order to 

be included in the choice model estimated in the MCMC2. The expected value for the 60 calibrated 

parameters is fixed, given the estimated prior and used to calculate the marginal utilities of every 

utility-primitives. 

The number of parameters to be calibrated is lower but there are more likelihood components, 

however each of these components contains less elements to be fitted.  

VII.3.3. Case study 

In order to apply this methodology to a realistic case study, we consider the city of Ghent and the 

same database used in the Method I. However, we include this time the following activity types:  

- Home 

- Work  

- Shopping & other mandatory activities 

- Leisure & other secondary activities 

And modes have been grouped in the same four categories: 

- Private motorized mode 

- Soft 

- Urban public transport 

- Train 

The zoning is the same as the one used in the destination choice model for which we have the 

modal split shown in Figure VII. 11. 



 

 
142 

 

Figure VII. 11 Modal split by zone of generation 

In this case study, an assumption is made in terms of travelling disutility:  |*H3(J.) becomes |*H . 

This means that we do not include a variable access cost by time of the day neither do we include 

the impact of destination on that cost. This is due to the data availability for this case study. In this 

case, the parameter is calibrated because no information is available on the level of service of the 

different zones and time of the day, in particular in year 2007. If more data is available, this value 

can be averaged and fixed. In the case the data can be approximated, this approximation can be 

used as a prior for the calibration of more specific parameters.  

The two calibration models used are the same, but the parameters are different: 

Table  VII. 12 Properties of the two MCMCs 

 MCMC1 MCMC2 

Choice model F*
((!&, !') F*

()(!&, !' , E) 

Likelihood components @P→(!) 

@P→(!) 

@′P→x(!) 

?*) 

ç: 

Types of calibrated parameters J* , γ* , τ* , D*,*- , K* N*,), j*"" , <,
(

 

Fixed parameters !!*
() J* , γ* , τ* , D*,*- , K* 

Number of parameters to be 

calibrated 
60 56 

Iterations 25000 10000 
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Computation time <0. 20	ℎ4ASè <0. 20	ℎ4ASè 

Output @:→0(!) @,
()→0(!) 

 

The likelihood function is calculated in the following manner for the two MCMC: 
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where 

- ~>,b is a scale factor applied to the Q67 component of the likelihood for the `ñ`ñb; 

- r),&(f, J) is the difference for generated demand by zone and time of the day; 

- r',&(f, &) is the difference for total attracted demand by zone and by activity type; 

- rK,&(f, J) is the conservation between attracted demand and generated demand at the zonal 

level. 

- ra,&(f,e) is the different in modal usage at the zonal level. 

All these indicators’ unit is [trips]. 

VII.3.4. Results 

The result section of this modelling part focuses on the second level of the MCMC estimation. 

Figure VII. 12 shows the overall trip generation estimation after the MCMC2 and the comparison 

with the initial estimated demand at the end of MCMC1. With the set of parameters varying in the 

second estimation, we can see an improvement with respect to the first level, in particular the 

height of the peak which is closer to reality. This justifies the introduction of the likelihood 

component r),&(f, J) in the score as the impact of cost-related parameters is non negligible on the 

time profile of generated trips. To assess the impact of the MCMC1 output, three different 

marginal utility parameters values have been fixed in order to start the MCMC2 with the same 

other configuration.  
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Figure VII. 12 Complete estimated demand MCMC1 and MCMC2 

The different score components are shown in Figure VII. 13. The generation by zone and time of 

the day is the most well reproduced component. This is due to the impact of MCMC1, to the 

number of points to be estimated in each component and to the ~> factors. The issue linked to 

the relative magnitude of individual value also results, as described in the previous chapters, to a 

weaker representation of the lowest values. This can be seen in particular for mode choice where 

the differences between car-related trips and other modes is very high. In this case, values 

representing bus and train usage are counting for less than 10% of the total number of trips.  

 

Figure VII. 13 Scatter plot of three likelihood components 

On the modelling side, this results in a higher estimated value for access cost of those mode Figure 

VII. 14(a). The estimation of access cost seems realistic: it is fixed to 0 for cars. For soft modes 
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the value is almost null as well (<1 minute) and higher for public transport. The highest value for 

train (8 minutes) reflects the density of train station which is lower than the one of bus station for 

which the access time is estimated at 5 minutes. In this case study, the study area covers the city 

of Ghent which can explain low values for this component.  

(a) (b)  

Figure VII. 14 Components of the disutility by (a) mode (b) activity 

The activity-specific component of the disutility is seen on figure. While the value for leisure is 

overestimated, we can see for home, work and shopping that the relative order of magnitude is 

realistic: returning home is usually bringing the highest utility and shopping the lowest. While the 

starting value and prior was the same for all the activities, we can see that for work and shopping, 

the estimated value is in line with the observed data (Figure VII. 8). The point at which the function 

becomes higher than the green line is at a travel time of 9 minutes for shopping and 18 minutes 

for work.  

These estimated function result in variations of modal split by activity type and time of the day. 

As forseen on figure Figure VII. 13, the estimation for train and bus use, on another level than 

zonal, is lower than the actual distribution and the distribution is done mostly between soft modes 

and car.  In this case study, the travel time JJH3 does not depend on the mode chosen, in opposition 

to method 1. The impact of the mode is only included inside the access cost. For example, the 

cost for accessing train service is not gained by experiencing a faster journey. This results in an 

overestimation of soft modes for some trip type and by extension at some times of the day. For 

this reason, Figure VII. 15 shows only the car usage rate by time of the day and activity type.  
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(a) (b)  

Figure VII. 15 Car usage rate by (a) time of the day (b) activity type 

The final indicator of this case study concerns the duration of activities. The introduction of a 

more detailed travel cost has an impact on the estimation of activity durations. Compared to the 

durations estimated in the generation model, the model described in this section shows a better 

estimation for short activities like shopping, where the decrease is faster than in previous 

estimations. Even though the model allows to mimic activities chains continuing the next day, with 

continuous marginal utility functions after midnight, the duration is estimated until the end of the 

day only, this explains that the durations for home activity are lower than one could expect. 

Concerning the work activity, the two peaks are still visible and corresponding better to the actual 

value. In particular for the full day of work, we can observe a peak for a 9-hour activity which is 

in line with observed data and longer than the value estimated before. Introducing the trip 

disutility, perceived differently by activity, allows to model better the trade-off process and its 

results on activity characteristics.  
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Figure VII. 16 Duration distribution by activity 

VII.4. Conclusions 

In this chapter we proposed a Bayesian approach to estimate utility parameters of marginal utility 

and travel cost functions. The aspect of mode choice is estimated using dynamic speed and 

estimated distance travelled such that the total accumulated utility in a day, given mode choice and 

trip timings results in travel demand daily distributions. The application of the proposed 

methodology shows a relatively good estimation, in particular considering the low input data 

requirements. It also underlines the possibility to combine many information sources relating to 

diverse aspects of travel decisions. It is feasible with the proposed model to include the possibility 

of using different modes however this increases the computational time significantly and lacks to 

describe the strong existing correlation with the proposed, simplified choice model. Both methods 

show strengths and weaknesses but can be applied for different purpose and with different 

available of information. A better overall estimation can be reached if combining those methods 

if a modeller is able to access both speed variations by mode and time of the day and apply a more 

detailed cost function. However, this can also be done using probability distributions and 

combining the demand model with traffic simulators. Finally, this chapter shows the possibility to 

carry out an MCMC in multiple levels, which can be interesting in terms of computational time 

and transferability of the model. 
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Chapter 8  
Highlights of the chapter 

1. 24h demand model for Luxembourg nation 

2. Combination of a novel demand approach with commercial network loading models 

3. Description of possible application for real network situation  

 

In the last chapter of the thesis, an application of the method to another database and modelling 

environment is proposed. This shows the feasible integration and possible benefit of combining 

traffic modelling and the proposed demand model. The network of Luxembourg nation is 

modelled in a commercial software, and a 24h activity-based demand is generated for the country, 

based on a dataset collected in Luxembourg in 2017. The integration of this models outlines also 

the possible applications in terms of management and forecasting when the described demand 

model is applied within a real network.  

 

 

Figure VIII. 1 Thesis framework chapter 8 
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VIII. A CASE STUDY OF LUXEMBOURG 

The implementation of the model to be applied for the country of Luxembourg needs to generate 

two aspects of the full model. On one side, the network of Luxembourg is modelled using the 

VISUM software and open-source data including the road network as well as the public transport 

services. On the other side, the demand model described in the previous chapters is applied to 

data collected in Luxembourg to be consistent with the environment in question. To do so, a 

survey has been used as starting point. The input data is generated with available datasets in order 

to have a vision of the full population and trips of the study area. This chapter, rather than a 

validation of the model is thought to showcase application opportunities.  

 

Figure VIII. 2 Estimation framework - traffic model integration 

On Figure VIII. 2, the MCMC is connected to the VISUM model in an iterative manner. This is 

not applied in this way in the rest of the chapter but illustrates a possible way of integrating both 

systems. 

VIII.1. Data 

In this section, the demand model has been developed using a dataset collected in Luxembourg in 

2017. The LuxMobil travel survey (Ministère du Développement durable et des Infrastructures 
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2017) has been conducted by the ministry of sustainable development and infrastructure in order 

to describe the travel characteristics of residents and cross-borders of Luxembourg and support 

governmental decision in terms of mobility and transport. 37.500 respondents have described a 

typical day and the derived trips performed. This dataset contains personal, household and trips 

characteristics. For more information concerning the outcome of this survey, we refer to the report 

published by the government as well as publications focusing on various aspects of the survey or 

using its results, as for example (Ma and Xie 2021; Lambotte, Jean-Marc 2021; Ministère du 

Développement durable et des Infrastructures 2017).  

Concerning our study, variables of interest are related to the characteristics of activity and travel 

chains. In reference to the chapter 1, we describe here some aggregated indicators connected to 

tested hypothesis, in order to first support our conclusions and secondly to justify the usage of 

Ghent case study throughout this thesis, by showing divergence and similarities. 

Modal split changes over the day and is statistically correlated with activity choice dynamics 

The profile usage of 5 referenced modes is compared between the Luxmobil and BMW database. 

The Figure VIII. 3 shows these two profiles and their difference. The usage profile of these modes 

is strongly similar for the two dataset which confirm the typicity of different modes of transport 

and their usage by time of the day. In particular, the train which is mostly used for commuting.  

 

Figure VIII. 3 Daily profile of mode use of LuxMobil compared to Ghent database 

In order to confirm a connection between the observed daily profiles with the activities, we 

calculated the actual use of a certain mode of transport for an activity, compared to the expected 

utilization rate, as explained for Ghent for Figure III. 8.  
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This shows the same over- and under-representation of certain modes for given activities. We see 

for example that walking is a dominant mode for going to eat and soft modes in general for 

personal business. Train is mostly used for commuting while other modes (car, bus) have a more 

regular type of usage, they are the most “basic” modes of transport.  

 

Figure VIII. 4 Correlation mode choices 

The mode chosen for a trip strongly depends on the mode chosen at an earlier time of the day and owned resources 

such as bike and car increase this dependency 

For this second hypothesis, we reproduced also the matrix generated for Ghent, showing the 

transition from one mode to the other. The comparison reference here is Figure III. 9.  
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Figure VIII. 5 Transition Matrix modes 

As in Ghent, we can see that the probability of using twice the same mode is particularly high for 

cars. The value for bike is here the second highest but is lower than inside the BMW. Two reasons 

can be mentioned to explain this, first of all usage rate of bike is overall lower in Luxembourg and 

is less used than in Ghent. This can be explained by the fact the whole country is included and not 

only the city centre but it can also be explained by for cultural reasons. This means that we believe 

in Luxembourg, bike is used more for leisure than for commute for example. Furthermore, the 

city provides a service of bike sharing (which was not the case in Ghent in 2007). The usage of 

bike sharing service does not bring the same constraint as using its own vehicle for successive 

trips. Unfortunately, the dataset does not differentiate bikes provided by the Vel’oh service and 

private ones.  

Hypothesis concerning AS of single users is not handled in this section as we analysed only 

emerging behaviours at the population level. The data collected concerns a large set of individuals, 

but they described their travel behaviour only for one day. The estimation of their individual 

activity space from collected data cannot be done with only this level of information. 

VIII.2. Network 

Luxembourg, officially the Grand Duchy of Luxembourg, is a country situated in western Europe 

bordering France, Belgium, and Germany. Main center of gravity of the Great Region, 

Luxembourg attracts a high number cross-border workers (STATEC 2021). The Grand Duchy 
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has a multimodal connection system consisting of several motorways (Figure VIII. 6), railways and 

bus lines (Figure VIII. 7) and a recently built tram line. 

 

Figure VIII. 6 Private Network of Luxembourg 

 

Figure VIII. 7 Public Network of Luxembourg 

Following the zoning created ad hoc as part of the Luxmobil investigation, the area in question 

was divided into 153 zones of which 147 internal and 6 external. While the inland zones broadly 

represent the municipal boundaries and sometimes their sub-divisions, the outer areas represent 

the three neighboring countries of France, Belgium and Germany (Figure VIII. 8). 
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Figure VIII. 8 Zoning 

VIII.3. Demand model 

In this section, we used the Luxmobil dataset in order to generate the data needed for the 

calibration model described in the previous chapters. The input used for calculation is the total 

number of generated and attracted trips by zone. From the survey’s answers, each zone is given a 

percentage for each activity type. This factor is multiplied with the total number of trips in order 

to have the values in terms of trip number.  

The other series of data needed in the model is the reference data used for estimating the 

likelihood. This is dynamic trip data which in this case contains number of trips generated by zone 

and time of the day. To create these profiles, the data from the survey has been scaled up using 

the number of employments by zone and the population, for the internal zones of Luxembourg 

country. For the cross-border trips, the total number of workers living abroad and working in 

Luxembourg has been used. An example of the profile for three kind of zones is shown on Figure 

VIII. 9.  
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Figure VIII. 9 Input data MCMC - LuxMobil 

 

The other aspect that we extracted from the Luxmobil dataset are the desirable output values of 

the MCMC. The profiles by activity at the aggregated level, which we try to reproduce are the 

following: 

 

Figure VIII. 10 Primitives from the observed data 

The OD matrix derived from the survey is shown on Figure VIII. 11. Even though the number 

of answers does not allow to compare the MCMC estimation with it, it gives insights on the most 
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important OD pairs and trip generators/ attractors. Black cells are showing a value of 0. This also 

underlines the complexity of using the Luxmobil dataset in a straightforward scale up estimation 

process. 

 

Figure VIII. 11 OD matrix from database 

VIII.4. Applications opportunities 

VIII.4.1. Output of the model 

The first kind of application opportunity of the model, as exemplified with this application to 

Luxembourg, relates to the direct output of the MCMC calibration. First, the results described in 

this section suggest that the MCMC model is applicable, even though it has been developed using 

synthetic data and the BMW database, to other real setting. On Figure VIII. 12, we can see that 

the MCMC gives a good results for the three indicators, but does not reach the level of precision 

of generated trips shown in the previous chapters. This may be due to the fact that the travel time 

has not been taken into consideration but only the destination choice model presented in chapter 

V. Another factor explaining the level of precision is that the model has not been tuned to be 

applied for Luxembourg and for example we can see on Figure VIII. 10 that the work-related 
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profiles does not have two strong peaks like observed in Ghent. This suggests that the model can 

be applied but that it needs some specifications related to the area.  

 

Figure VIII. 12 Scatter plot of likelihood components 

An interesting output of the Luxembourg application is the comparison between the city centre 

of Luxembourg and other zones of the country. On Figure VIII. 13, we can see their demand 

profiles. It can be seen that the generated trips outside peak hours are very low for other areas 

than Luxembourg city and that the major demand results at the morning peak hour.  

 

Figure VIII. 13 Demand profile Luxembourg city and the rest of the country by time of the day 
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This can be explained when observing trips attracted towards these two zones by time of the day 

(Figure VIII. 14).  

 

Figure VIII. 14 Profile of attracted trips by time of the day for two types of zones 

It is interesting to see that the work profile does not differ much between the two kind of zones 

while shopping is uniform inside Luxembourg city and outside working hours for villages around 

the capital. For leisure, we also have a realistic output: the peak for leisure activities outside 

Luxembourg city is after the end of the working period while it is increasing with time and lasting 

until later for the city. It is important to note here that the marginal utilities related to shopping 

and leisure do not depend in any manner on the time of the day in their functional form. 

These preliminary results show that the model in its simple form can be applied to Luxembourg 

and that introducing a more detailed estimation of travel time we can obtain a good estimation of 

other indicators as presented in the rest of the thesis. For example, the occupancy by zone and the 

duration of activities by zone and time of the day can be used to model the dynamic demand for 

parking or charging stations.  

 

VIII.4.2. Network assignment 

A second possible utilization of the model’s output is its integration within a macroscopic traffic 

simulator. The model produces matrices at any level of detail, higher than the modelled time 
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intervals. With the approach presented in this thesis, the reduction of the time bin’s size does not 

increase the number of parameters to be calibrated. It only increases the computational time due 

to the resolution of calculation to be done. On the contrary commonly used methods to compute 

seed matrices usually calibrate individually values at each time interval, which raises the complexity 

and increases the potential errors. Potential errors also lie in the fact that the correlation between 

successive time-specific matrices is sometimes hard to be defined and integrated. In this model, 

each matrix results from a continuous in time demand profile which ensures stability and 

consistency.  

A series of 24 matrices (one for each hours of the day) has been produced for the country of 

Luxembourg with the zoning defined in section VIII.2. The estimation’s results show an 

underestimation of cross-borders demand. This is due to the fact that this demand has a very 

particular profile. It is reasonable to believe the utility of these transport users is different from the 

ones living in Luxembourg and that a large part of their trips is done outside of the study area. 

However, it is very easy to estimate, outside of the MCMC trips related to this section of travellers. 

On figure we can see the network state in terms of 
A:0@*1

`+/+`&6H
 for two different hours of the day, 

using the matrices generated by the MCMC and cross-border trips as input to a user equilibrium 

assignment.  

(a)  (b)  

Figure VIII. 15 State of Luxembourg network at (a) 7-8AM (b) 1-2PM 
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Another advantage of the MCMC is that the matrices can be generated by activity type. For 

example, if we take the same time interval as on Figure VIII. 15 but without work-related trips, we 

obtain the results depicted on Figure VIII. 16.  

(a) (b)  

Figure VIII. 16 State of Luxembourg network non-work trips (a) 7-8AM (b) 1-2PM 

Comparing Figure VIII. 16 with Figure VIII. 15 we can see that in both cases trips are reduced 

between the morning period and afternoon period but that this difference is stronger difference if 

we consider work trips. In the case of non-work-related trips, the reduction is smaller which 

reflects a more homogeneous demand through the day. The distribution of non-work-related trips 

suggest that those trips contribute only slightly to the congestion in the morning but has 

consequences on the one appearing in the city centre at lunch time.   

These results, apart from showing the generation of a consistent seed matrix for a 24h calibration, 

shows potential for application for different days of the week and off-peak hours for example. 

Such information can be valuable for certain policy or planning strategies that can be modelled 

either within the MCMC if they impact the input values used for the estimation, such as ^+H	or 6+3 

or within with the network model, like pricing strategies. In such cases, an iterative process could 

benefit from the modelling of the supply side integrated inside the MCMC (dis)utility functions 

variables and parameters. In an iterative setting, the MCMC can also include in its scoring function 

OD matrices produced over a first phase and (re-)calibrated through their application in the traffic 

simulator. This would allow to include a higher level of information to better estimate a set of 

parameters linked both to utility and trip costs.  
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VIII.4.3. Combination with other models 

The final application opportunity of the demand model and the output described above is its 

combination with other models. As described in section IV.2, the calibration process itself can be 

applied to any kind of generation model, and section VII.3 also described the possibility of 

including different models and formulation in a given stage of the MCMC procedure. A particular 

illustration of this would be the inclusion of probabilistic ellipses described in section III.3.2 within 

the destination choice part. For example, using the two-level approach, we could estimate over a 

first phase the distribution of home-work related trips. For those trips, data is usually the easiest 

to collect at a macroscopic scale, (e.g. employment and number of workers by zone). Secondary 

activities can be estimated using the aggregate activity space, knowing information related to the 

estimated home-work trips. The combination of the MCMC with other models can also refer to 

the form of the MCMC itself.  As described in the combination with VISUM, the MCMC can be 

used with different forms of components for the score calculation and likelihood estimation. This 

means for example, that if generated trips by time of the day are not available, other kind of 

dynamic information can replace those in the calibration phase, such as dynamic OD matrices or 

even the number of people present in a zone or doing a given activity in that zone, by time of the 

day (e.g. using a by-product of google popular times).  

Yet, even in the current application context, it can be used as a pure calibration method for any 

kind of marginal utility formulations and trip cost functions.  

Finally, given the general output of the MCMC can help to obtain a very precise input for models 

that can benefit from modal usage and their variations by time of the day and zones such as 

emissions model. More detailed output like the posterior of utility parameters can be used for 

generating agents with their own individual preferences taken from the obtained distributions. 
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IX. CONCLUSION 

The purpose of this thesis was to present a novel approach to demand choice estimation which 

would have the flexibility to be applied at different modelling levels with a focus on macroscopic 

activity-travel modelling. We also remind the focus on mode choice aspect, present in the main 

research question studied in this thesis: 

"Is it possible to capture spatial and temporal distribution of activity- and mode-specific 

flows over a day from aggregate data?” 

IX.1. Answer to the research questions: 

The overall goal of this model in the perspective of this thesis is to generate mode-specific flows 

at a macroscopic level. Travel flows are characterized by their spatial and temporal dynamics for 

which we want to ensure consistency with individual behaviour. To do so, and starting from the 

common activity-based paradigm, we introduced the concepts of “trip-primitives” and “utility-

primitives” to apply activity-specific choice models to the different milestones of a traditional 

demand model. These concepts are also tools used to translate methods used in individual travel 

modelling to heterogeneous groups of people. 

The research question has been also broken drown in four ancillary problems which have been 

answered through the manuscript. 

RQ1: Can we quantify how much commuting mode choice has an impact on other activities or trips? 

The first research question has been addressed in the second and third chapters of this thesis. First, 

the review of the literature shows that the mode choice in general, is modelled with a higher and 

adequate level of detail in an activity-based approach. 

The review of the literature also showed that the flows are modelled accurately with a trip based 

macroscopic approach. At this level, spatial and temporal dynamics are the essential emerging 

behaviour to be observed. In order to select more in detail, the characteristics of the tour-based 

approach which can result in variations at this level, chapter three used a multiday travel survey 

for a set of analysis. These permitted to make a selection of possible input and desirable outputs 

of a tour-based approach for explaining mode-related flows. The validated hypotheses encourage 

the usage of an activity-based approach as mode choice varies depending on activity chain 

characteristics which can be detected at both spatial and temporal level, due to inherent correlation 
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between choices. Indeed, daily variations of modal split can be explained by daily variations of 

activity share at destination, related distance travelled and visited locations. However, some 

indicators and aggregate statistics allowed to detect acceptable assumptions at the macroscopic 

level, keeping some of the tour-based approach.  

It is always delicate to use a single dataset in order to quantify relationships between a set of 

observed variables. In this thesis, we used multiple indicators in order to outline a qualitative 

relationship between characteristics of the home-work trip and the following trips. The usage of 

activity space at the level of groups of people sharing common characteristics is a way of 

quantifying the impact of commuting mode choice in a probabilistic manner. The ellipses 

described in chapter 3 are defined by the home and work location and can be characterized also 

by the used mode of transport. It is clear that the definition of the typical ellipse would vary from 

one environment to another, but it can be used as a proxy for delimiting the plausible activity area 

of destinations visited by commuters. In this way, commuting mode choice’s impact on other 

activity trip can affect the location, mode used but also number of activities performed during the 

day.  

RQ2: Can the trade-off governing individual activity scheduling explain emerging travel flows?  

This question has been answered in the fourth chapter with the introduction of the concept of 

trip-primitives. Trip-primitives are the most straightforward dynamic description of activity-

specific travel flows. We showed that their form can vary according to the generation model used 

as basis for their generation. Even in the simplest case of a probabilistic distribution, governed by 

a parametrized density law, the concept of trip-primitives does include underlying trade-off 

component as it allows to model dynamic variations through the day. However, to model this 

trade-off better, we also formally defined the concept of utility-primitives. This concept is a key 

contribution of this thesis as it allows to reproduce the classical choice mechanisms at the 

population level. The interpretation of utility-primitives used in this thesis allows to include 

heterogeneity and model variations in individual responses. We showed in chapter five, that the 

trade-off governing activity scheduling can explain and even allow to model emerging travel flows. 

“Primitives” are also a key element to the novelty proposed in this thesis, which is the definition 

of a multiscale approach where the balance between complexity of modelling and required data on 

one side and behavioural interpretation and consistency on the other side. 

RQ3: Can we model mode dynamics considering explicitly their correlation with activity-travel chaining? 
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Chapters six and seven are the last two steps of the step-by-step approach presented through this 

thesis for modelling activity-mode-specific travel flows considering correlations with activity travel 

chaining. These chapters introduce another level of “primitives” used in the generation model, to 

a more complex two-step integrated model. The model shows that a utility-maximization approach 

can be used for modelling mode dynamics. Even though a higher level of information on travel 

times would be required for modelling mode choice with accuracy, we showed the potential of our 

approach for obtaining spatial and temporal variations of modal split which are consistent with 

activity chaining.  

RQ4: How can an activity-based aggregated model estimate and predict the effect of disruptive policies and new 

services? 

A tour-based multimodal model, because of its level of detail can by definition be used to observe 

effects of policies and infrastructure on different aspects. Because it is multimodal, the interactions 

between modes and how they are impacted by new services such as car-sharing can be observed 

at the zonal level. Emerging behaviours linked to specific activity types can also be useful in the 

case of large-scale developments of the study areas. The connection of successive trips has proven 

to be fundamental in the decision process of singular travellers. However, modelling every agent 

of a population can be very accurate to detect these choices but is sometimes problematic in 

particular in forecasting disruptive services or new infrastructure. The model proposed in this 

thesis, because of its formulation can be used to include many relevant parameters, for example in 

the travel cost function and would allow to estimate the joint distributions of modes and activity 

starting time for each zone.  

IX.2. Main findings 

The main findings and practical contributions of this thesis can be separated in three aspects. The 

first one is related to the empirical analysis and its conclusions while the other two are more 

methodological.  

Empirical analysis: 

The main findings of the empirical analysis are listed below, the first half of the list has been 

confirmed by the usage of two different datasets, while the ones related to activity space are based 

on the BMW dataset only: 

- Modal split changes over the day  
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- These dynamics are statistically correlated with activity dynamics 

- The mode chosen for a trip strongly depends on the mode chosen at an earlier time of the 

day 

- Owned resources such as bike and car increase this dependency 

- Activity Space varies with the most frequently mode used 

- The centre of an Ellipse AS can be approximated by the centre of the home-work segment 

- The orientation of an Ellipse AS can be approximated by the orientation of the home-

work segment 

- Ellipse AS can be adapted to groups of people in a probabilistic manner 

 

Primitives: 

The second part concerns the introduction and formal definition of primitives concepts. These 

modelling tools are essential elements to answer the modelling challenge presented in this work, 

i.e. using individual-based principles and apply them to estimate emerging travel behaviours. The 

flexibility of their usage, with different formulations and different models, makes them an 

important instrument for multi-level estimation mechanism. We proved that they can be applied 

at all the stages of the traditional four-step model and the assumptions we used allow to give them 

a more universal value. This is the case in terms of distributions for example.  

 

Markov Chain Monte Carlo: 

This leads us to the third contribution of the thesis, which lies in the usage of a Markov Chain 

Monte Carlo to estimate and calibrate parameters of the proposed generation model. Utility-based 

models are often complicated to be calibrated as their values are not directly declarable or 

detectable. Furthermore, the proposed model has the flexibility to decide the degree at which the 

correlations between choice are explicit or not. The adaptability of the model depends obviously 

on the level of available information to be included in the objective function. This ranks from 

aggregate zonal characteristics to dynamic OD matrices or even socio-demographic distributions. 

IX.3. Future research 

The different chapters described in this thesis have all potential value for future research. First of 

all, the proposed method can be applied for various level of input data and with different modelling 

elements. This means that every choice model included within the MCMC estimator can be tuned 

for different application purposes. This includes for example, inside the destination choice, to 
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integrate the model outlined in chapter 3 with the Ellipses definition. Future work could focus on 

exploiting those implications in dynamic demand modelling and include the revealed regularities 

both in mode choice and location choice models. Observed outcomes on the individual AS will 

be included in the calibration of potential areas for secondary activities locations using the gaussian 

fit. Furthermore, limitations have shown to be linked to the neglect of level-of-service and land 

use. They can be included in the estimation of activity spaces to make them more accurate and 

adaptable in order to potentially apply it to planning and new services implementation. This 

includes the definition of a more accurate trip cost function which would allow to represent better 

the mode dynamics in particular. Chapter 7 also showed the possibility of decomposing the 

calibration of the different parameters within multiple MCMC simulations. This can be done as 

well by modelling commuting trip characteristics and distributions over a first phase and secondary 

trips at a later stage. This is made possible by the simple tour-based approach used inside the 

generation model that links two successive trips one to the other.  

Another major advancement in the potential research would be to benefit of the probabilistic 

output of the MCMC to integrate inside the calibration a set of distributions. For example, the 

travel time distribution by mode and OD pair could be modelled in order to estimate better the 

mode choice dynamics described in chapter 7.  

Other potential future research include the application of estimated distributions in synthetic 

population construction. 

Finally, a more comprehensive integration of travel cost could allow to apply this model to 

different scenarios and be used for actual planning and management purposes. 
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