
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Optimal Priority Assignment for Real-Time Systems:
A Coevolution-Based Approach

Jaekwon Lee · Seung Yeob Shin ·
Shiva Nejati · Lionel C. Briand

Received: date / Accepted: date

Abstract In real-time systems, priorities assigned to real-time tasks deter-
mine the order of task executions, by relying on an underlying task scheduling
policy. Assigning optimal priority values to tasks is critical to allow the tasks to
complete their executions while maximizing safety margins from their specified
deadlines. This enables real-time systems to tolerate unexpected overheads in
task executions and still meet their deadlines. In practice, priority assignments
result from an interactive process between the development and testing teams.
In this article, we propose an automated method that aims to identify the best
possible priority assignments in real-time systems, accounting for multiple ob-
jectives regarding safety margins and engineering constraints. Our approach is
based on a multi-objective, competitive coevolutionary algorithm mimicking
the interactive priority assignment process between the development and test-
ing teams. We evaluate our approach by applying it to six industrial systems

Jaekwon Lee
SnT, University of Luxembourg, Luxembourg
University of Ottawa, Canada
E-mail: jaekwon.lee@uni.lu

Seung Yeob Shin
SnT, University of Luxembourg, Luxembourg
E-mail: seungyeob.shin@uni.lu

Shiva Nejati
University of Ottawa, Canada
SnT, University of Luxembourg, Luxembourg
E-mail: snejati@uottawa.ca

Lionel C. Briand
SnT, University of Luxembourg, Luxembourg
University of Ottawa, Canada
E-mail: lionel.briand@uni.lu

2 Jaekwon Lee et al.

from different domains and several synthetic systems. The results indicate that
our approach significantly outperforms both our baselines, i.e., random search
and sequential search, and solutions defined by practitioners. Our approach
scales to complex industrial systems as an offline analysis method that at-
tempts to find near-optimal solutions within acceptable time, i.e., less than 16
hours.

Keywords Priority Assignment, Schedulability Analysis, Real-Time Sys-
tems, Coevolutionary Search, Search-Based Software Engineering

1 Introduction

Mission-critical systems are found in many different application domains, such
as aerospace, automotive, and healthcare domains. The success of such sys-
tems depends on both functional and temporal correctness. For functional
correctness, systems are required to provide appropriate outputs in response
to the corresponding stimuli. Regarding temporal correctness, systems are sup-
posed to generate outputs within specified time constraints, often referred to as
deadlines. The systems that have to comply with such deadlines are known as
real-time systems (Liu, 2000). Real-time systems typically run multiple tasks
in parallel and rely on a real-time scheduling policy to decide which tasks
should have access to processing cores, i.e., CPUs, at any given time.

While developing a real-time system, one of the most common problems
that engineers face is the assignment of priorities to real-time tasks in order
for the system to meet its deadlines. Based on priorities of real-time tasks, the
system’s task scheduler determines a particular order for allocating real-time
tasks to processing cores. Hence, a priority assignment that is poorly designed
by engineers makes the system scheduler execute tasks in an order that is far
from optimal. In addition, the system will likely violate its performance and
time constraints, i.e., deadlines, if a poor priority assignment is used.

In real-time systems, the problem of optimally assigning priorities to tasks
is important not only to avoid deadline misses but also to maximize safety
margins from task deadlines and is subject to engineering constraints. Tasks
may exceed their expected execution times due to unexpected interrupts. For
example, it is infeasible to test an aerospace system exhaustively on the ground
such that potential environmental uncertainties, e.g., those related to space ra-
diations, are accounted for. Hence, engineers assign optimal priorities to tasks
such that the remaining times from tasks’ completion times to their deadlines,
i.e., safety margins, are maximized to cope with potential uncertainties. Fur-
thermore, engineers typically have to account for additional engineering con-
straints, e.g., they assign higher priorities to critical tasks that must always
meet their deadlines compared to the tasks that are less critical or non-critical.

A brute force approach to find an optimal priority assignment would have
to examine all n! distinct priority assignments, where n denotes the number
of tasks. Furthermore, for a given priority assignment, schedulability analysis
is, in general, known as a hard problem (Audsley, 2001), which determines

Optimal Priority Assignment for Real-Time Systems 3

whether or not tasks will always complete their executions within their spec-
ified deadlines. Thus, optimizing priority assignments is also a hard problem
because the space of all possible system states to explore in order to find
optimal priority assignments is very large. Most of the prior works on opti-
mizing priority assignments provide analytical methods (Fineberg and Serlin,
1967; Leung and Whitehead, 1982; Audsley, 1991; Davis and Burns, 2007; Chu
and Burns, 2008; Davis and Burns, 2009; Davis and Bertogna, 2012), which
rely on well-defined system models and are very restrictive. For example, they
assume that tasks are independent, i.e., tasks do not share resources (Davis
et al., 2016; Zhao and Zeng, 2017). Industrial systems, however, are typically
not compatible with such (simple) system models. In addition, none of the
existing work addresses the problem of optimizing priority assignments by si-
multaneously accounting for multiple objectives, such as safety margins and
engineering constraints, as discussed above.

Search-based software engineering (SBSE) has been successfully applied in
many application domains, including software testing (Wegener et al., 1997;
Wegener and Grochtmann, 1998; Lin et al., 2009; Arcuri et al., 2010; Shin et al.,
2018), program repair (Weimer et al., 2009; Tan et al., 2016; Abdessalem et al.,
2020), and self-adaptation (Andrade and Macêdo, 2013; Chen et al., 2018;
Shin et al., 2020), where the search spaces are very large. Despite the success
of SBSE, engineering problems in real-time systems have received much less
attention in the SBSE community. In the context of real-time systems, there
exists limited work on finding stress test scenarios (Briand et al., 2005) and
predicting worst-case execution times (Lee et al., 2020b), which complements
our work.

In practice, priority assignments result from an interactive process between
the development and testing teams. While developing a real-time system, de-
velopers assign priorities to real-time tasks in the system and then testers stress
the system to check whether or not the system meets its specified deadlines.
If testers find a problematic condition under which any of the tasks violates
its deadline, developers have to modify the priority assignment to address the
problem. The back-and-forth between the development and testing teams con-
tinues until a priority assignment that does not lead to any deadline miss is
found or the one that yields the least critical deadline misses is identified. The
process is, however, not automated.

In this article, we use metaheuristic search algorithms to automate the pro-
cess of assigning priorities to real-time tasks. To mimic the interactive back-
and-forth between the development and testing teams, we use competitive
coevolutionary algorithms (Luke, 2013). Coevolutionary algorithms are a spe-
cialized class of evolutionary search algorithms. They simultaneously coevolve
two populations (also called species) of (candidate) solutions for a given prob-
lem. They can be cooperative or competitive. Such competitive coevolution is
similar to what happens in nature between predators and preys. For example,
faster preys escape predators more easily, and hence they have a higher prob-
ability of generating offspring. This impacts the predators, because they need
to evolve as well to become faster if they want to feed and survive (Meneghini

4 Jaekwon Lee et al.

et al., 2016). Hence, the two species, i.e., predators and preys, have coevolved
competitively. We note that no species has the competing traits of predators
and preys simultaneously as such species could not evolve to survive. In our
context, priority assignments defined by developers can be seen as preys and
stress test scenarios as predators. The priority assignments need to evolve so
that stress testing is not able to push the system into breaking its real-time
constraints. Dually, stress test scenarios should evolve to be able to break the
system when there is a chance to do so.
Contributions.We propose an Optimal Priority Assignment Method for real-
time systems (OPAM). Specifically, we apply multi-objective, two-population
competitive coevolution (Popovici et al., 2012) to address the problem of find-
ing near-optimal priority assignments, aiming at maximizing the magnitude
of safety margins from deadlines and constraint satisfaction. In OPAM, two
species relate to priority assignment and stress testing coevolve synchronously,
and compete against each other to find the best possible solutions. We eval-
uated OPAM by applying it to six complex, industrial systems from different
domains, including the aerospace, automotive, and avionics domains, and sev-
eral synthetic systems. Our results show that: (1) OPAM finds significantly
better priority assignments compared to our baselines, i.e., random search
and sequential search, (2) the execution time of OPAM scales linearly with
the number of tasks in a system and the time required to simulate task ex-
ecutions, and (3) OPAM priority assignments significantly outperform those
manually defined by engineers based on domain expertise.

We note that OPAM is the first attempt to apply coevolutionary algorithms
to address the problem of priority assignment. Further, it enables engineers
to explore trade-offs among different priority assignments with respect to two
objectives: maximizing safety margins and satisfying engineering constraints.
Our full evaluation package is available online (Lee et al., 2021).
Organization. The remainder of this article is structured as follows: Section 2
motivates our work. Section 3 defines our specific problem of priority assign-
ment in practical terms. Section 4 discusses related work. Sections 5 and 6
describe OPAM. Section 7 evaluates OPAM. Section 8 concludes this article.

2 Motivating case study

We motivate our work using an industrial case study from the satellite do-
main. Our case study concerns a mission-critical real-time satellite, named
ESAIL (LuxSpace, 2021), which has been developed by LuxSpace – a lead-
ing system integrator for microsatellites and aerospace system. ESAIL tracks
vessels’ movements over the entire globe as the satellite orbits the earth. The
vessel-tracking service provided by ESAIL requires real-time processing of mes-
sages received from vessels in order to ensure that their voyages are safe with
the assistance of accurate, prompt route provisions. Also, as ESAIL orbits the
planet, it must be oriented in the proper position on time in order to provide

Optimal Priority Assignment for Real-Time Systems 5

services correctly. Hence, ESAIL’s key operations, implemented as real-time
tasks, need to be completed within acceptable times, i.e., deadlines.

Engineers at LuxSpace analyze the schedulability of ESAIL across different
development stages. At an early design stage, the engineers use a priority as-
signment method that extends the rate monotonic scheduling policy (Fineberg
and Serlin, 1967), which is a theoretical priory assignment algorithm used in
real-time systems. At a later development stage, if the engineers found that
any real-time task of ESAIL cannot complete its execution within its dead-
line, the engineers, in our study context, reassign priorities to tasks in order
to address the problem of deadline violations.

The rate monotonic policy assigns priorities to tasks that arrive to be ex-
ecuted periodically and must be completed within a certain amount of time,
i.e., periodic tasks with hard deadlines. According to the policy, periodic tasks
that arrive frequently have higher priorities than those of other tasks that
arrive rarely. In ESAIL, for example, if the vessel-tracking task arrives every
100ms and the satellite-position control task arrives every 150ms, the former
has a higher priority than the latter. However, the rate monotonic policy does
not account for tasks that arrive irregularly and should be completed within
a reasonable amount of time, i.e., aperiodic tasks with soft deadlines. ESAIL
contains aperiodic tasks with soft deadlines as well, such as a task for updat-
ing software. Hence, the engineers extend the rate monotonic policy to assign
priorities to all tasks of ESAIL. The extensions are as follows: First, the en-
gineers assign priorities to periodic tasks based on the rate monotonic policy.
Second, the engineers assign lower priorities to aperiodic tasks than those of
periodic tasks. As aperiodic tasks with soft deadlines are typically considered
less critical than periodic tasks with hard deadlines, the engineers aim to en-
sure that periodic tasks complete their executions within their deadlines by
assigning lower priorities to aperiodic tasks while periodic tasks have higher
priority. Engineers use a heuristic to assign priorities to aperiodic tasks. They
treat aperiodic tasks as (pseudo-)periodic tasks by setting aperiodic tasks’ (ex-
pected) minimum arrival rates as their fixed arrival periods, making the tasks
frequently arrive. The engineers then apply the rate monotonic policy for the
aperiodic tasks with the synthetic periods while ensuring that aperiodic tasks
have lower priorities than those of periodic tasks.

A priority assignment made at an early design stage keeps changing while
developing ESAIL due to various reasons, such as changes in requirements
and implementation constraints. At a development stage, instead of relying
on the extended rate monotonic policy, the engineers assign priorities based
on their domain expertise, manually inspecting schedulability analysis results.
Hence, a priority assignment at later development stages often does not follow
the extended rate monotonic policy. For example, as aperiodic tasks are also
expected to be completed within a reasonable amount of time, some aperiodic
tasks may have higher priorities than some periodic tasks as long as they are
schedulable.

Engineers at LuxSpace, however, are still faced with the following issues:
(1) Their priority assignment method, which extends the rate monotonic

6 Jaekwon Lee et al.

name
priority
WCET
deadline

task

period
offset

periodic task

minimum inter-arrival time
maximum inter-arrival time

aperiodic task

scheduler scheduling policy

rate monotonic
scheduling policy

single-queue
multi-core

scheduling policy

≪schedules≫

≪triggers≫≪depends≫

1..*

0..*

1

1 1
0..*

0..*

0..*

Fig. 1: A conceptual model representing the key abstractions to analyze opti-
mal priority assignments.

scheduling policy, assigns priorities to tasks in order to ensure only that tasks
are to be schedulable. However, engineers have a pressing need to understand
the quality of priority assignments in detail as they impact ESAIL operations
differently. For example, once ESAIL is launched into orbit, the satellite oper-
ates in the space environment, which is inherently impossible to be fully tested
on the ground. Unexpected space radiations may trigger unusual system in-
terrupts, which hasn’t been observed on the ground, resulting in overruns of
ESAIL tasks’ executions. In such cases, a priority assignment assessed on the
ground may not be able to tolerate such unexpected uncertainties. Hence, en-
gineers need a priority assignment that enables ESAIL tasks to tolerate unpre-
dictable uncertainties as much as possible and to be schedulable. (2) Engineers
at LuxSpace assign priorities to tasks without any systematic assistance. In-
stead, they rely on their expertise and the current practices described above to
manually assign priorities to ensure that tasks are to be schedulable. To this
end, we are collaborating with LuxSpace to develop a solution for addressing
these issues in assigning task priority.

3 Problem description

This section defines the task, scheduler, and schedulability concepts, which
extend the concepts defined in our previous work (Lee et al., 2020b) by aug-
menting our previous definitions with the notions of safety margins, constraints
in assigning priorities, and relationships between real-time tasks. We then de-
scribe the problem of optimizing priority assignments such that we maximize
the magnitude of safety margins and the degree of constraint satisfaction.
Figure 1 shows an overview of the conceptual model that represents the key
abstractions required to analyze optimal priority assignments for real-time
systems. The entities in the conceptual model are described below.

Task. We denote by j a real-time task that should complete its execution
within a specified deadline after it is activated (or arrived). Every real-time

Optimal Priority Assignment for Real-Time Systems 7

task j has the following properties: priority denoted by pr(j), deadline denoted
by dl(j), and worst-case execution time (WCET) denoted by wcet(j). Task
priority pr determines if an execution of a task is preempted by another task.
Typically, a task j preempts the execution of a task j′ if the priority of j is
higher than the priority of j′, i.e., pr(j) > pr(j′). The pr(j) priority is a fixed
value assigned to task j. Such fixed priorities are determined offline; hence,
they are not changed online for any reason. Note that a real-time task scheduler
that relies on fixed priorities is applied in all the study subjects in this article
(see Section 7.2) and is commonly used in industrial systems (Briand et al.,
2005; Guan et al., 2009; Lin et al., 2009; Anssi et al., 2011; Zeng et al., 2014;
Di Alesio et al., 2015; Dürr et al., 2019; Lee et al., 2020a).

The dl(j) function determines the deadline of a task j relative to its ar-
rival time. A task deadline can be either hard or soft. A hard deadline of a
task j constrains that j must complete its execution within a deadline dl(j)
after j is activated. While violations of hard deadlines are not acceptable, de-
pending on the operating context of a system, violating soft deadlines may be
to some extent tolerated. Note that we use a metaheuristic search relying on
fitness functions quantifying the degrees of deadline misses, safety margins,
and constraint satisfaction. Such functions do not depend on the nature of the
deadlines. Our approach outputs a set of priority assignments that are Pareto
optimal with respect to safety margins and constraint satisfaction. Engineers
then perform domain-specific trade-off analysis among Pareto solutions. Hence,
in this article, we handle hard and soft deadline tasks in the same manner.

Real-time tasks are either periodic or aperiodic. Periodic tasks, which are
typically triggered by timed events, are invoked at regular intervals specified
by their period. We denote by pd(j) the period of a periodic task j, i.e., a
fixed time interval between subsequent activations (or arrivals) of j. Any task
that is not periodic is called aperiodic. Aperiodic tasks have irregular arrival
times and are activated by external stimuli which occur irregularly. In real-time
analysis, based on domain knowledge, we typically specify a minimum inter-
arrival time denoted by pmin(j) and a maximum inter-arrival time denoted
by pmax (j) indicating the minimum and maximum time intervals between
two consecutive arrivals of an aperiodic task j. In real-time analysis, sporadic
tasks are often separately defined as having irregular arrival intervals and
hard deadlines (Liu, 2000). In our conceptual definitions, however, we do not
introduce new notations for sporadic tasks because the deadline and period
concepts defined above sufficiently characterize sporadic tasks. Note that for
periodic tasks j, we have pmin(j) = pmax (j) = pd(j). Otherwise, for aperiodic
tasks j, we have pmax (j) > pmin(j).

Task relationships. The execution of a task j depends not only on its
own parameters described above, e.g., priority pr(j) and period pd(j), but
also on its relationships with other tasks. Relationships between tasks are
typically determined by task interactions related to accessing shared resources
and triggering arrivals of other tasks (Di Alesio et al., 2012). Specifically, if
two tasks j and j′ access a shared resource r in a mutually exclusive way, j
may be blocked from executing for the period during which j′ accesses r. We

8 Jaekwon Lee et al.

denote by dp(j, j′) the resource-dependency relation between tasks j and j′

that holds if j and j′ have mutually exclusive access to a shared resource r
such that they cannot be executed in parallel or preempt each other, but one
can execute only after the other has completed accessing r.

The other type of relationship between tasks is related to a task j trig-
gering the arrival of another task j′. This is a common interaction between
tasks (Locke et al., 1990; Anssi et al., 2011; Di Alesio et al., 2015). For example,
j may hand over some of its workload to j′ due to performance or reliability
reasons. We denote by tr(j, j′) the triggering relation between tasks j and j′
that holds if j triggers the arrival of j′. We note that both relationships are
defined at the level of tasks, following prior works (Locke et al., 1990; Anssi
et al., 2011; Di Alesio et al., 2015) describing the five industrial case study
systems used in our experiments (see Section 7.2).

Scheduler. Let J be a set of tasks to be scheduled by a real-time scheduler.
A scheduler then dynamically schedules executions of tasks in J according to
the tasks’ arrivals and the scheduler’s scheduling policy over the scheduling
period T = [0,T]. We denote by atk(j) the kth arrival time of a task j ∈ J .
The first arrival of a periodic task j does not always occur immediately at
the system start time (0). Such offset time from the system start time to the
first arrival time at1(j) of j is denoted by offset(j). For a periodic task j,
the kth arrival of j within T is atk(j) ≤ T and is computed by atk(j) =
offset(j)+ (k−1) ·pd(j). For an aperiodic task j′, atk(j

′) is determined based
on the k−1th arrival time of j′ and its minimum and maximum arrival times.
Specifically, for k > 1, atk(j

′) ∈ [atk−1(j
′) + pmin(j′), atk−1(j

′) + pmax (j′)]
and, for k = 1, at1(j

′) ∈ [pmin(j′), pmax (j′)], where atk(j
′) < T.

A scheduler reacts to a task arrival at atk(j) by scheduling the execution
of j. Depending on a scheduling policy (e.g., rate monotonic scheduling policy
for single-core systems (Fineberg and Serlin, 1967) and single-queue multi-core
scheduling policy (Arpaci-Dusseau and Arpaci-Dusseau, 2018)), an arrived
task j may not start its execution at the same time as it arrives when higher
priority tasks are executing on all processing cores. Also, task executions may
be interrupted due to preemption. We denote by etk(j) the completion time
for the kth arrival of a task j. According to the worst-case execution time of
a task j, we have: etk(j) ≥ atk(j) + wcet(j).

During system operation, a scheduler generates a schedule scenario which
describes a sequence of task arrivals and their completion time values. We
define a schedule scenario as a set S of tuples (j, atk(j), etk(j)) indicating that
a task j has arrived at atk(j) and completed its execution at etk(j). Due to
a degree of randomness in task execution times and aperiodic task arrivals,
a scheduler may generate a different schedule scenario for different runs of a
system.

Figure 2 shows two schedule scenarios S (Figure 2a) and S′ (Figure 2b)
produced by a scheduler over the [0, 23] time period of a system run. Both S
and S′ describe executions of three tasks, j1, j2, and j3 arrived at the same time
stamps (see ati in the figures). In both scenarios, the aperiodic task j1 is char-
acterized by: pmin(j1) = 5, pmax (j1) = 13, dl(j1) = 4, and wcet(j1) = 2. The

Optimal Priority Assignment for Real-Time Systems 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
at1 at2

j1
et2

at1 at2 at3

et1 et2 et3
j3

et1

deadline

at1 at2 at3

et2 et3et1
j2

priority

3

2

1

(a) Schedule scenario S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
at1 at2

j1
et2

at1 at2 at3

et1 et2 et3
j3

et1

deadline

at1 at2 at3

et2 et3et1
j2

priority

1

3

2

(b) Schedule scenario S′

Fig. 2: Example schedule scenarios S and S′ of three tasks: j1, j2, and j3.
(a) The S schedule scenario is produced when pr(j1) = 3, pr(j2) = 2, and
pr(j3) = 1. (b) The S′ schedule scenario is produced when pr(j1) = 1, pr(j2) =
3, and pr(j3) = 3.

aperiodic task j2 is characterized by: pmin(j2) = 3, pmax (j2) = 10, dl(j2) = 4,
and wcet(j2) = 1. The periodic task j3 is characterised by: pd(j3) = 8,
dl(j3) = 7, and wcet(j3) = 3. The priorities of the three tasks in S (resp. S′)
satisfy the following: pr(j1) > pr(j2) > pr(j3) (resp. pr(j2) > pr(j3) > pr(j1)).
In both scenarios, task executions can be preempted depending on their pri-
orities. Then, S is defined by S = {(j1, 5, 7), . . ., (j2, 4, 5), . . ., (j3, 8, 14),
(j3, 16, 19))}; and S′ is defined by S′ = {(j1, 5, 7), . . ., (j2, 4, 5), . . ., (j3, 8, 12),
(j3, 16, 19))}.

Schedulability. Given a schedule scenario S, a task j is schedulable if j
completes its execution before its deadline, i.e., for all etk(j) observed in S,
etk(j) ≤ atk(j)+dl(j). Let J be a set of tasks to be scheduled by a scheduler.
A set J of tasks is then schedulable if for every schedule S of J , we have no
task j ∈ J that misses its deadline.

As shown in schedule scenarios S and S′ presented in Figures 2a and 2b,
respectively, all three tasks, j1, j2, and j3, are schedulable. However, we note
that the overall amounts of remaining time, i.e., safety margins, from the tasks’
completions to their deadlines observed in S and S′ are different (see the second

10 Jaekwon Lee et al.

completion times and deadlines of j1, j2, and j3 in S and S′) because S and
S′ are produced by using different priority assignments. Engineers typically
desire to assign optimal priorities to real-time tasks that aim at maximizing
such safety margins, as discussed below.

Problem. In real-time systems, fixed priorities are typically assigned to
tasks (Davis et al., 2016; Lee et al., 2020a). Finding an appropriate priority
assignment is important not only for ensuring the schedulability of a system
but also for maximizing the safety margins within which a system can tolerate
unexpected execution time overheads. For example, if an unpredictable error
occurs and triggers check-point mechanisms (Davis and Burns, 2007), which
re-execute part or all of a task j, then the execution time of j unexpectedly
overruns. Hence, engineers need an optimal priority assignment that maximizes
the overall remaining times from task completion times to task deadlines, i.e.,
safety margins.

While assigning priorities to tasks, engineers also account for constraints,
that are often but not always domain-specific. For example, aperiodic tasks’
priorities should be lower than those of periodic tasks because periodic tasks
are often more critical than aperiodic tasks. Hence, engineers develop a system
that prioritizes executions of periodic tasks over aperiodic tasks. Recall from
Section 2, this constraint is desirable by engineers. When needed, however,
engineers can violate the constraint to some extent in order to ensure that
aperiodic tasks complete within a reasonable amount of time while periodic
tasks meet their deadlines. Constraints can be either hard constraints, which
must be satisfied, or soft constraints, which are desired to be satisfied. In
our study, hard constraints need to be assured while scheduling tasks, e.g., a
running task’s priority must be higher than a ready task’s priority, which are
enforced by a scheduler. In the context of optimizing priority assignments, we
focus on maximizing the extent of satisfying soft constraints. We refer to a
soft constraint as a constraint in this paper.

Our work aims at optimizing priority assignments that maximize the safety
margins while satisfying such constraints. Specifically, for a set J of tasks to
be analyzed, we define three concepts as follows: (1) a priority assignment for
J denoted by

#»

P , (2) the magnitude of safety margins for a priority assignment
#»

P denoted by fs(
#»

P), and (3) the degree of constraint satisfaction denoted by
fc(

#»

P). We note that Section 6.3 describes how we optimize
#»

P , and compute
fs(

#»

P) and fc(
#»

P) in detail. Our study aims at finding a set B of best possible
priory assignments that are Pareto optimal (Knowles and Corne, 2000) such
that a priority assignment

#»

P ∈ B maximizes both fs(
#»

P) and fc(
#»

P), and any
other priority assignments in B are equally viable.

4 Related Work

This section discusses related research strands in the areas of priority assign-
ments, real-time analysis using exhaustive techniques, search-based analysis in
real-time systems, and coevolutionary analysis in software engineering.

Optimal Priority Assignment for Real-Time Systems 11

Table 1: Comparing our work, OPAM, with existing priority assignment tech-
niques with respect to the properties captured in their underlying system mod-
els.

Properties OPAM RMPO DMPO OPA OPA-MLD RPA FNR-PA PRPA OPTA EPAF

Periodic
task ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Aperiodic
task ◦ ◦ ◦ ◦ ◦ ◦

Resource
dependency ◦

Triggering
relationship ◦

Multi-core
system ◦ ◦ ◦ ◦ ◦ ◦

Safety
margin ◦ ◦ ◦ ◦

Engineering
constraint ◦ ◦

Priority assignment. The problem of optimally assigning priorities to real-
time tasks has been widely studied (Fineberg and Serlin, 1967; Liu and Lay-
land, 1973; Leung and Whitehead, 1982; Audsley, 1991; Tindell et al., 1994;
George et al., 1996; Audsley, 2001; Davis and Burns, 2007; Chu and Burns,
2008; Davis and Burns, 2009, 2011; Davis and Bertogna, 2012; Davis et al.,
2016; Zhao and Zeng, 2017; Hatvani et al., 2018). Fineberg and Serlin (1967)
reported early work that relies on a simple system model, assuming, for ex-
ample, that all tasks arrive periodically, tasks run on a single processing core,
tasks’ deadlines are equal to their periods, and task executions are indepen-
dent from one another. They proposed a priority assignment method, named
rate-monotonic priority ordering (RMPO), that assigns higher priorities to the
tasks with shorter periods. RMPO can find a feasible priority assignment that
guarantees periodic tasks to be schedulable when such priority assignments
exist (Liu and Layland, 1973). Leung and Whitehead (1982) extended RMPO
to relax one of the underlying assumptions made in RMPO. Specifically, their
priority assignment approach, known as deadline-monotonic priority ordering
(DMPO), accounts for task deadlines that can be less than or equal to their
periods. In contrast to our work, however, these methods are often not applica-
ble to industrial systems that are not compatible with their simplified system
models. Recall from Section 3 that a realistic system typically consists of both
periodic and aperiodic tasks. Task executions depend on their relationships,
i.e., resource dependencies and triggering relationships, with other tasks.

Audsley (2001) designed a priority assignment method, named optimal
priority assignment (OPA), that relies on an existing schedulability analy-
sis method M . OPA guarantees to find a feasible priority assignment that is
schedulable according toM if such priority assignments exist. OPA is applica-
ble to more complex systems than those supported by the methods mentioned

12 Jaekwon Lee et al.

above, i.e., RMPO and DMPO. Specifically, OPA can find a feasible priority
assignment even in the following situations: (1) First arrivals of periodic tasks
occur after some offset time (Audsley, 1991). (2) Aperiodic tasks have arbi-
trary deadlines (Tindell et al., 1994). (3) Task executions are scheduled based
on a non-preemptive scheduling policy (George et al., 1996). (4) Tasks run on
multiple processing cores (Davis and Burns, 2011). Unlike our approach that
accounts for two objectives, safety margins and engineering constraints (see
Section 3), OPA attempts to find a feasible priority assignment whose only
objective is to make all tasks schedulable. Note that such a feasible priority
assignment does not necessarily maximize safety margins as discussed in Sec-
tion 3. Hence, a feasible priority assignment obtained by OPA is often fragile
and sensitive any changes in task executions and unable to accommodate un-
expected overheads in task execution times, which are commonly observed in
industrial systems (Davis and Burns, 2007).

OPA has been extended by several works (Davis and Burns, 2007; Chu
and Burns, 2008; Davis and Burns, 2009; Davis and Bertogna, 2012). Davis
and Burns (2007) presented a robust priority assignment method (RPA) with
a degree of tolerance for unexpected overruns of task execution times. Chu
and Burns (2008) introduced an extended OPA algorithm (OPA-MLD) that
minimizes the lexicographical distance between the desired priority assignment
and the one obtained by the algorithm. OPA-MLD enables important tasks to
have higher priorities. Davis and Bertogna (2012) proposed an RPA extension
(FNR-PA) to make RPA work when a system allows task preemption to be
deferred for some interval of time. Davis and Burns (2009) developed a prob-
abilistic robust priority assignment method (PRPA) for a real-time system to
be less likely to violate its deadlines. Even though the prior works mentioned
above improve OPA to some extent, they assume that task executions are
independent of one another. In contrast to these existing approaches, OPAM
accounts for dependencies among task executions, i.e., resource dependencies
and triggering relationships (see our problem description in Section 3).

Some recent priority assignment techniques address scalability. Hatvani
et al. (2018) presented an optimal priority and preemption-threshold assign-
ment algorithm (OPTA) that attempts to decrease the computation time for
finding a feasible priority assignment. OPTA uses a heuristic to traverse a
problem space while pruning infeasible paths to efficiently and effectively ex-
plore the problem space. Zhao and Zeng (2017) introduced an effective priority
assignment framework (EPAF) that combines a commercial solver for integer
linear programs and their problem-specific optimization algorithm. However,
these methods rely on simple system models that assume, for example, task
executions to be independent and running on a single processing core. There-
fore, the applicability of these techniques is limited. In contrast, recall from
Sections 2 and 3 that our approach aims at scaling to complex industrial sys-
tems while accounting for realistic system characteristics regarding task pe-
riods, inter-arrival times, resource dependencies, triggering relationships, and
multiple processing cores.

Optimal Priority Assignment for Real-Time Systems 13

Table 1 compares our work, OPAM, with the other priority assignment
techniques mentioned above. As shown in the table, we note that prior works
rely on system models that are very restrictive. In particular, existing work
assumes that task executions are independent of one another. However, task
dependencies such as resource dependencies and triggering relationships are
commonly observed in industrial systems. In addition, we note that no ex-
isting solution simultaneously accounts for safety margins and engineering
constraints. Hence, to our knowledge, OPAM is the first attempt to provide
engineers with a set of equally viable priority assignments, allowing trade-off
analysis with respect to the two objectives: maximizing safety margins and
satisfying engineering constraints.
Real-time analysis using exhaustive techniques. Constraint program-
ming and model checking have been applied to conclusively and exhaustively
verify whether or not a system meets its deadlines (Kwiatkowska et al., 2011;
Di Alesio et al., 2012; Nejati et al., 2012; Di Alesio et al., 2013). Existing re-
search on priority assignment based on OPA rely on such exhaustive techniques
to prove the schedulability of a set of tasks for a given priority assignment. We
note that schedulability analysis is, in general, an NP-hard problem (Davis
et al., 2016) that cannot be solved in polynomial time. As a result, exhaus-
tive techniques based on model checking and constraint solving are often not
amenable to analyze large industrial systems such as ESAIL – our motivating
case study system – described in Section 2. To assess if exhaustive techniques
could scale to ESAIL, as discussed in Section 7.8, we performed a prelimi-
nary experiment using UPPAAL (Behrmann et al., 2004), a model checker for
real-time systems. We observed that UPPAAL was not able to verify schedu-
lability of ESAIL tasks for a fixed priority assignment even after letting it run
for several days (see Section 7.8 for more details).
Search-based analysis in real-time systems. In real-time systems, most
of the existing works that use search-based techniques focus on testing (We-
gener et al., 1997; Wegener and Grochtmann, 1998; Briand et al., 2005; Lin
et al., 2009; Arcuri et al., 2010). Wegener et al. (1997, 1998) introduced a
testing approach based on a genetic algorithm that aims to check computa-
tion time, memory usage, and task synchronization by analyzing the control
flow of a program. Briand et al. (2005) applied a genetic algorithm to find
stress test scenarios for real-time systems. Lin et al. (2009) proposed a search-
based approach to check whether a real-time system meets its timing and
security constraints. Arcuri et al. (2010) presented a black-box system testing
approach based on a genetic algorithm. Beyond testing real-time systems, Ne-
jati et al. (2013, 2014) developed a search-based trade-off analysis technique
that helps engineers balance the satisfaction of temporal constraints and keep-
ing the CPU time usage at an acceptable level. Lee et al. (2020b) combined
a search algorithm and machine learning to estimate safe ranges of worst-case
task execution times within which tasks likely meet their deadlines. In con-
trast to these prior works, OPAM addresses the problem of optimally assigning
priorities to real-time tasks while accounting for multiple objectives regarding
safety margins and engineering constraints, thus enabling Pareto (trade-off)

14 Jaekwon Lee et al.

analysis. Further, OPAM uses a multi-objective, competitive coevolutionary
search algorithm, which has been rarely applied to date in prior studies of
real-time systems, as discussed next.
Coevolutionary analysis in software engineering. Despite the success of
search-based software engineering (SBSE) in many application domains includ-
ing software testing (Wegener et al., 1997; Wegener and Grochtmann, 1998;
Lin et al., 2009; Arcuri et al., 2010; Shin et al., 2018), program repair (Weimer
et al., 2009; Tan et al., 2016; Abdessalem et al., 2020), and self-adaptation (An-
drade and Macêdo, 2013; Chen et al., 2018; Shin et al., 2020), coevolutionary
algorithms have been applied in only a few prior studies (Wilkerson and Tau-
ritz, 2010; Wilkerson et al., 2012; Boussaa et al., 2013). Wilkerson et al. (2010,
2012) present a coevolution-based approach to automatically correct software.
Their work introduced a program representation language to facilitate their
automated corrections. Boussaa et al. (2013) developed a code-smells detection
approach. The main idea is to evolve two competing populations of code-smell
detection rules and artificial code-smells. Unlike these prior works, we study
the problem of optimally assigning priorities to tasks in real-time systems. To
our knowledge, we are the first to address the priority assignment problem
using a multi-objective, competitive coevolutionary search algorithm.

5 Approach Overview

Finding an optimal priority assignment is an inherently interactive process.
In practice, once engineers assign priorities to the real-time tasks in a system,
testers then stress the system to find a condition, i.e., a particular sequence
of task arrivals, in which a task execution violates its deadline. Testers typi-
cally use a simulator or hardware equipment to stress the system by triggering
plausible worst-case arrivals of tasks that maximize the likelihood of dead-
line misses. If testers find task arrivals that induce deadline misses, the task
arrivals are reported to engineers in order to fix the problem by reassigning
priorities. This interactive process of assigning priorities and testing schedu-
lability continues until both engineers and testers ensure that the tasks meet
their deadlines.

For such intrinsically interactive problem-solving domains, we conjecture
that coevolutionary algorithms are potentially suitable solutions. A coevolu-
tionary algorithm is a search algorithm that mutually adapts one of different
species, e.g., in our study, two populations of priority assignments and task-
arrival sequences, acting as foils against one another. Specifically, we apply
multi-objective, two-population competitive coevolution (Luke, 2013) to ad-
dress our problem of finding optimal priority assignments (see Section 3). In
our approach, the two populations of priority assignments and stress test sce-
narios, i.e., task-arrival sequences, evolve synchronously, competing with each
other in order to search for optimal priority assignments that maximize the
magnitude of safety margins from deadlines and the extent of constraint sat-
isfaction. Note that better priority assignments enable a system to achieve

Optimal Priority Assignment for Real-Time Systems 15

safety margins

find worst
task

arrivals

find best
priority

assignments

constraintstask
descriptions

Fig. 3: An overview of our Optimal Priority Assignment Method for real-time
systems (OPAM).

larger safety margins. Hence, those priority assignments have a higher chance
to pass stress test scenarios. This impacts the stress test scenarios because
they need to evolve as well, aiming at inducing deadline misses in the system.

Recall from Section 4 that most of the existing SBSE research relies on
search algorithms using a single population (Chen et al., 2018; Abdessalem
et al., 2020; Shin et al., 2020). However, such algorithms do not fit the problem
of priority assignments targeted here. When (1) two competing traits between
task arrivals and priority assignments are encoded together in an individual of
a single population and (2) two contradicting fitness functions regarding safety
margins and deadline misses, which are exact opposites, assess such individu-
als, the notion of Pareto optimality is not applicable. In that case, maximizing
the magnitude of safety margins necessarily entails minimizing the magnitude
of deadline misses. Hence, a single population-based search algorithm can-
not make Pareto improvements that maximize safety margins (resp. deadline
misses) while not minimizing deadline misses (resp. safety margins). Specifi-
cally, the dominance relation over such individuals does not exist because if an
individual I is strictly better than another individual I ′ in one fitness value,
I is always worse than I ′ in the other fitness value. Hence, we are not able
to obtain equally viable solutions with respect to the contradicting objectives
using such a method.

Figure 3 shows an overview of our proposed solution: Optimal Priority
Assignment Method for real-time tasks (OPAM). OPAM requires as input
task descriptions defined by engineers, which specify task characteristics and
their relationships (see Section 3). Given such input task descriptions, the “find
worst task arrivals’ and “find best priority assignments” steps aim at generat-
ing worst-case sequences of task arrivals and best-case priority assignments,
respectively. A worst-case sequence of task arrivals means that the magni-
tude of deadline misses, i.e., the amounts of time from task deadlines to task
completion times, is maximized when tasks arrive as defined in the sequence.
Note that if there is no deadline miss, a task-arrival sequence is considered
worst-case if tasks complete their executions as close to their deadlines as
possible. In contrast, a priority assignment is best-case when the magnitude
of safety margins is maximized. Beyond maximizing safety margins, the “find
best priority assignments” step accounts for satisfying engineering constraints
in assigning priorities to tasks. OPAM evolves two competing populations of
task-arrival sequences and priority assignments synchronously generated from
the two steps. OPAM then outputs a set of priority assignments that are Pareto

16 Jaekwon Lee et al.

optimal with regards to the magnitude of safety margins and the extent of sat-
isfying constraints. Hence, OPAM allows engineers to perform domain-specific
trade-off analysis among Pareto solutions and is useful in practice to support
decision making with respect to their task design. For example, suppose engi-
neers develop a weakly hard real-time systems (Bernat et al., 2001) that can
tolerate occasional deadline misses. In that case, engineers may consider a few
deadline misses as less important (as long as their consequences are negligi-
ble) than the overall magnitude of safety margins in their trade-off analysis.
Section 6 describes OPAM in detail.

6 Competitive Coevolution

Figure 4 describes the OPAM algorithm for finding optimal priority assign-
ments, which employs multi-objective, two-population competitive coevolu-
tion. The algorithm first randomly initializes two populations A and P for
task-arrival sequences and priority assignments, respectively (lines 13–15). For
A, OPAM randomly varies task arrivals of aperiodic tasks to create psa task-
arrival sequences, according to the input task descriptions D. Regarding P,
OPAM randomly creates psp priority assignments that may include one de-
fined by engineers if available.

The two populations sequentially evolve during the allotted analysis budget
(see line 17 in Figure 4). The best priority assignment is the one that makes
tasks schedulable and maximizes the magnitude of safety margins, while satis-
fying engineering constraints for a given worst sequence of task arrivals. Hence,
searching for the best priority assignments involves searching for the worst se-
quences of task arrivals. We create two populations A and P searching for the
worst arrival sequences and the best priority assignments, respectively. The
fitness values of task-arrival sequences in A are computed based on how well
they challenge the priority assignments in P, i.e., maximizing the magnitude
of deadline misses (line 20). Likewise, the priority assignments in P are evalu-
ated based on how well they perform against the task-arrival sequences in A,
i.e., maximizing the magnitude of safety margins while satisfying constraints
(line 25). Once the two populations are assessed against each other, OPAM
generates the next populations based on the computed fitness values (lines
21 and 26). OPAM tailors the breading mechanisms of steady-state genetic
algorithms (GA) (Whitley and Kauth, 1988) for A and NSGAII (Deb et al.,
2002) for P.

OPAM uses two types of fitness functions, namely internal and external fit-
ness evaluations, which play a different and complementary role as described
below. The two internal fitness evaluations in lines 20 and 25 of the listing
in Figure 4 aim at selecting individuals – task-arrival sequences and priority
assignments – for breeding the next A and P populations. OPAM evaluates
the external fitness for the P population of priority assignments to find a best
Pareto front (lines 28–31). As shown in lines 20 and 25, the internal fitness
values of individuals in A (resp. P) are computed based on how they perform

Optimal Priority Assignment for Real-Time Systems 17

1 Algorithm Search optimal priority assignments
2 Input D: task descriptions
3 Input nc: number of coevolution cycles //budget
4 Input psa: population size //task-arrival sequences
5 Input psp: population size //priority assignments
6 Input cpa: crossover probability //task-arrival sequences
7 Input cpp: crossover probability //priority assignments
8 Input mpa: mutation probability //task-arrival sequences
9 Input mpp: mutation probability //priority assignments

10 Input E: set of task-arrival sequences //external evaluation
11 Output B: best Pareto front
12
13 //initialize populations
14 A← randomize_arrivals(D, psa)
15 P← randomize_priorities(D, psp)
16
17 for nc times do
18 //evolution: find worst-case sequences of task arrivals
19 //objective: deadline misses
20 evaluate_internal_fitness_arrivals(A,P)
21 A← bread_arrivals(A,P, cpa,mpa) //GA
22
23 //evolution: find best-case priority assignments
24 //objectives: safety margins and constraints
25 evaluate_internal_fitness_priorities(P,A)
26 P← breed_priorities(P,A, cpp,mpp) //NSGAII
27
28 //external fitness evaluation
29 //objectives: safety margins and constraints
30 evaluate_external_fitness(P,E)
31 B← select_best(P ∪B)
32
33 return B

Fig. 4: Multi-objective two-population competitive coevolution for finding op-
timal priority assignments.

with respect to individuals in P (resp. A). Hence, an individual’s internal fit-
ness is assessed through interactions with competing individuals. For example,
a priority assignment in the first generation may have acceptable fitness val-
ues regarding safety margins and constraint satisfaction with respect to the
first generation of task-arrival sequences, which are likely far from worst-case
sequences. However, priority assignment fitness may get worse in later gen-
erations as the task-arrival sequences evolve towards larger deadline misses.
Thus, if OPAM simply monitors internal fitness, it cannot reliably detect co-
evolutionary progress as an individual’s internal fitness changes according to
competing individuals. The problem of monitoring progress in coevolution has
been observed in many studies (Ficici, 2004; Popovici et al., 2012). To address
it, OPAM computes external fitness values of priority assignments in P based
on a set E of task-arrival sequences generated independently from the coevo-
lution process. By doing so, OPAM can observe the monotonic improvement

18 Jaekwon Lee et al.

of external fitness for priority assignments. We note that, in general, if inter-
actions between two competing populations are finite and any interaction can
be examined with non-zero probability at any time, monotonicity guarantees
that a coevolutionary algorithm converges to a solution (Popovici et al., 2012).

We note that our approach for evolving task-arrival sequences is based
on past work (Briand et al., 2005), where a specific genetic algorithm con-
figuration was proposed to find worst-case task-arrival sequences. One signif-
icant modification is that OPAM accounts for task relationships – resource-
dependency and task triggering relationships – and a multi-core scheduling
policy based on simulations to evaluate the magnitude of deadline misses.

Following standard practice (Ralph et al., 2020), the next sections describe
OPAM in detail by defining the representations, the scheduler, the fitness func-
tions, and the evolutionary algorithms for coevolving the task-arrival sequences
and priority assignments. We then describe the external fitness evaluation of
OPAM.

6.1 Representations

OPAM coevolves two populations of task-arrival sequences and priority as-
signments. A task-arrival sequence is defined by their inter-arrival time char-
acteristics (see Section 3). A priority assignment is defined by a function that
maps priorities to tasks.
Task-arrival sequences. Given a set J of tasks to be scheduled, a feasible
sequence of task arrivals is a set A of tuples (j, atk(j)) where j ∈ J and
atk(j) is the kth arrival time of a task j. Thus, a solution A represents a valid
sequence of task arrivals of J (see valid atk(j) computation in Section 3). Let
T = [0,T] be the time period during which a scheduler receives task arrivals.
The size of A is equal to the number of task arrivals over the T time period.
Due to the varying inter-arrival times of aperiodic tasks (Section 3), the size
of A will vary across different sequences.
Priority assignments. Given a set J of tasks to be scheduled, a feasible
priority assignment is a list

#»

P of priority pr(j) for each task j ∈ J . OPAM
assigns a non-negative integer to a priority pr(j) of j such that priorities are
comparable to one another. The size of

#»

P is equal to the number of tasks in
J . Each task in J has a unique priority. Hence, a priority assignment

#»

P is a
permutation of all tasks’ priorities. We note that these characteristics of pri-
ority assignments are common in many real-time analysis methods (Audsley,
2001; Davis and Burns, 2007; Zhao and Zeng, 2017) and industrial systems
(e.g., see our six industrial case study systems described in Section 7.2).

6.2 Simulation

OPAM relies on simulation for analyzing the schedulability of tasks in a scal-
able way. For instance, an inter-arrival time of a software update task in a

Optimal Priority Assignment for Real-Time Systems 19

satellite system is approximately at most three months. In such cases, con-
ducting an analysis based on an actual scheduler is prohibitively expensive.
Also, applying an exhaustive technique for schedulability analysis typically
doesn’t scale to an industrial system (e.g., see our experiment results using
a model checker described in Section 7.8). Instead, OPAM uses a real-time
task scheduling simulator, named OPAMScheduler, which applies a schedul-
ing policy, i.e., single-queue multi-core scheduling policy (Arpaci-Dusseau and
Arpaci-Dusseau, 2018), based on discrete simulation time events. Note that we
chose the single-queue multi-core scheduling policy for OPAMScheduler since
our case study systems (described in Section 7.2) rely on this policy.

OPAMScheduler takes as input a feasible task-arrival sequence A and a
priority assignment

#»

P for scheduling a set J of tasks. It then outputs a sched-
ule scenario as a set S of tuples (j, atk(j), etk(j)) where atk(j) and etk(j)
are the kth arrival and end time values of a task j, respectively (see Sec-
tion 3). For each task j, OPAMScheduler computes etk(j) based on its WCET
and scheduling policy while accounting for task relationships (see the dp(j, j′)
resource-dependency relationship and the tr(j, j′) task triggering relationship
in Section 3). To simulate the worst-case executions of tasks, OPAMScheduler
assigns tasks’ WCETs to their execution times.

OPAMScheduler implements a single-queue multi-core scheduling pol-
icy (Arpaci-Dusseau and Arpaci-Dusseau, 2018), which schedules a task j with
explicit priority pr(j) and deadline dl(j). When tasks arrive, OPAMScheduler
puts them into a single queue that contains tasks to be scheduled. At any sim-
ulation time, if there are tasks in the queue and multiple cores are available to
execute tasks, OPAMScheduler first fetches a task j from the queue in which
j has the highest priority pr(j). OPAMScheduler then allocates task j to any
available core. Note that if task j shares a resource with a running task j′ in
another core, i.e., the dp(j, j′) resource-dependency relationship holds, j will
be blocked until j′ releases the shared resource.

OPAMScheduler works under the assumption that context switching time
is negligible, which is also a working assumption in many scheduling analysis
methods (Liu and Layland, 1973; Audsley, 2001; Di Alesio et al., 2015). Note
that the assumption is practically valid and useful at an early development step
in the context of real-time analysis. For instance, our collaborating partner,
LuxSpace, accounts for the waiting time of tasks due to context switching
between tasks through adding some extra time to WCET estimates at the
task design stage. Note that OPAM can be applied with any scheduling policy,
including those that account for context switching time and multiple queues.

6.3 Fitness functions

Internal fitness: deadline misses. Given a feasible task-arrival sequence A
and a priority assignment

#»

P , we formulate a function, fd(A,
#»

P), to quantify
the degree of deadline misses regarding a set J of tasks to be scheduled. To
compute fd(A,

#»

P), OPAM runs OPAMScheduler for A and
#»

P and obtains

20 Jaekwon Lee et al.

a schedule scenario S. We denote by distk(j) the distance between the end
time and the deadline of the kth arrival of task j observed in S and define
distk(j) = etk(j) − atk(j) + dl(j) (see Section 3 for the notation end time
etk(a), arrival time atk(j), and deadline dl(j)). We denote by lk(j) the last
arrival index of a task j in A. Given a set J of tasks to be scheduled, the
fd(A,

#»

P) function is defined as follows:

fd(A,
#»

P) =
∑

j∈J,k∈[1,lk(j)]

2distk(j)

Note that fd(A,
#»

P) is defined as an exponential equation. Hence, when
all task executions observed in a schedule scenario S meet their deadlines,
fd(A,

#»

P) is a small value as any distance distk(j) between the task end time
and the deadline of the kth arrival of task j is a negative value. In contrast,
deadline misses result in positive values for distk(j). In such cases, fd(A,

#»

P)

is a large value. The exponential form of fd(A,
#»

P) was precisely selected for
this reason, to assign large values for deadline misses but small values when
deadlines are met. By doing so, fd(A,

#»

P) prevents an undesirable solution
that would result into many task executions meeting deadlines obfuscating a
smaller number of deadline misses.

Following the principles of competitive coevolution, individuals in a popu-
lation A of task-arrival sequences need to be assessed by pitting them against
individuals in the other population P of priority assignments. We denote by
fd(A,P) the internal fitness function that quantifies the overall magnitude of
deadline misses across all priority assignment

#»

P ∈ P, regarding a set J of
tasks to be scheduled. The fd(A,P) fitness is used for breeding the next pop-
ulation of task-arrival sequences. OPAM aims to maximize fd(A,P), defined
as follows:

fd(A,P) =
∑
#»
P∈P

fd(A,
#»

P)/|P|

Internal fitness: safety margins. Given a feasible priority assignment
#»

P
and a task-arrival sequence A, we denote by fs(

#»

P ,A) the magnitude of safety
margins regarding a set J of tasks to be scheduled. The computation of
fs(

#»

P ,A) is similar to the computation of fd(A,
#»

P) regarding the use of OPAM-
Scheduler, which outputs a schedule scenario S. The difference is that OPAM
reverses the sign of fd(A,

#»

P) as OPAM aims at maximizing the magnitude of
safety margins. Given a set J of tasks to be scheduled, the fs(

#»

P ,A) function
is defined as follows:

fs(
#»

P ,A) =
∑

j∈J,k∈[1,lk(j)]

−2distk(j) (i.e,−fd(A,
#»

P))

Given two populations P and A of priority assignments and task-arrival
sequences, similar to internal fitness fd(A,P), priority assignments in P need
to be assessed against task-arrival sequences in A. We formulate an internal
fitness function, fs(

#»

P ,A), to quantify the overall magnitude of safety margins

Optimal Priority Assignment for Real-Time Systems 21

across all task-arrival sequences A ∈ A, regarding a set J of tasks to be
scheduled and a priority assignment

#»

P . OPAM relies on the fs(
#»

P ,A) function
to breed the next population of priority assignments. OPAM aims to maximize
fs(

#»

P ,A), which is defined as follows:

fs(
#»

P ,A) =
∑
A∈A

fs(
#»

P ,A)/|A|

Internal fitness: constraints. Given a priority assignment
#»

P , we formulate
an internal fitness function, fc(

#»

P), to quantify the degree of satisfaction of soft
constraints set by engineers. Such function is required as we recast the satis-
faction of such constraints into an optimization problem, in order to minimize
constraint violations. Specifically, OPAM accounts for the following constraint:
aperiodic tasks should have lower priorities than those of periodic tasks. Re-
call from Section 2 that engineers consider this constraint to be desirable. We
denote by lp(

#»

P) the lowest priority of periodic tasks in
#»

P . For a set J of tasks
to be scheduled, OPAM aims to maximize fc(

#»

P), which is defined as follows:

fc(
#»

P) =
∑
j∈J

{
lp(

#»

P)− pr(j), if j is an aperiodic task
0, otherwise

Greater pr(j) values denote higher priorities. Given a priority assignment
#»

P , if pr(j) for an aperiodic task j is lower than the priority of any of the
periodic tasks, lp(

#»

P)−pr(j) is a positive value. OPAM measures the difference
between priorities of aperiodic and periodic tasks. By doing so, fc(

#»

P) rewards
aperiodic tasks that satisfy the above constraint and consistently penalizes
those that violate it. Hence, OPAM aims at maximizing fc(

#»

P).
External fitness: safety margins and constraints. To examine the qual-
ity of priority assignments and monitor the progress of coevolution, OPAM
takes as input a set E of task-arrival sequences created independently from
the coevolution process. Given a set E of task-arrival sequences and a priority
assignment

#»

P , OPAM utilizes fs(
#»

P ,E) and fc(
#»

P) described above as exter-
nal fitness functions for quantifying the magnitude of safety margins and the
extent of constraint satisfaction, respectively. As E does not change over the
coevolution process, fs(

#»

P ,E) is used for evaluating a priority assignment
#»

P
since it is not impacted by the evolution of task-arrival sequences. Hence, exter-
nal fitness functions ensure that OPAM monitors the progress of coevolution
in a stable manner. Given two populations P and A of priority assignments
and task-arrival sequences, we recall that the fd(A,P) internal fitness function
quantifies the overall magnitude of deadline misses across all priority assign-
ments in P for the given sequence of task arrivals A. The fs(

#»

P ,A) internal
fitness function quantifies the overall magnitude of safety margins across all
sequences of task arrivals in A for the given priority assignments

#»

P . Hence, the
internal fitness of A (resp.

#»

P) is assessed through interactions with competing
individuals in P (resp. A). Therefore, if OPAM relies only on the internal fit-
ness functions, it cannot gauge the progress of coevolution in a stable manner
as an individual’s internal fitness depends on competing individuals.

22 Jaekwon Lee et al.

1 Algorithm Task-arrival sequences evolution
2 Input A: population of task-arrival sequences
3 Input P: population of priority assignments
4 Input cpa: crossover probability //task-arrival sequences
5 Input mpa: mutation probability //task-arrival sequences
6 Output A: population of task-arrival sequences
7
8 //evaluate internal fitness values for A
9 for each Ai ∈ A

10 for each
#»
P l ∈ P

11 S ← simulate(Ai,
#»
P l) //OPAMScheduler

12 //distk(j) is computed based on S

13 fd(Ai,
#»
P l) =

∑
j∈J,k∈[1,lk(j)] 2

distk(j)

14 fd(Ai,P) =
∑

#»
P l∈P fd(Ai,

#»
P l)/|P|

15
16 //breed task-arrival sequences
17 parents ← select_arrivals(A)
18 offspring ← crossover_arrivals(parents, cpa)
19 offspring ← mutate_arrivals(offspring,mpa)
20 //evaluate internal fitness values for offspring
21 for each Ai ∈ offspring

22 for each
#»
P l ∈ P

23 S ← simulate(Ai,
#»
P l) //OPAMScheduler

24 //distk(j) is computed based on S

25 fd(Ai,
#»
P l) =

∑
j∈J,k∈[1,lk(j)] 2

distk(j)

26 fd(Ai,P) =
∑

#»
P l∈P fd(Ai,

#»
P l)/|P|

27 A← replace_arrivals(A, offspring)
28
29 return A

Fig. 5: A steady-state GA-based algorithm for evolving task-arrival sequences.

We note that soft deadline tasks also require to execute within reason-
able execution time, i.e., (soft) deadline. As the above fitness functions return
quantified degrees of deadline misses and safety margins, OPAM uses the same
fitness functions for both soft and hard deadline tasks.

6.4 Evolution: Worst-case task arrivals

The algorithm in Figure 5 describes in detail the evolution of task-arrival
sequences in lines 18–21 of the listing in Figure 4. OPAM adapts a steady-state
Genetic Algorithm (GA) (Luke, 2013) for evolving task-arrival sequences. As
shown in lines 8–14, OPAM first evaluates each task-arrival sequence in the A
population against the P population of priority assignments. OPAM executes
OPAMScheduler to obtain a schedule scenario S for a task-arrival sequence
Ai ∈ A and a priority assignment

#»

P l ∈ P (line 11). OPAM then computes the
internal fitness fd(Ai,P) capturing the magnitude of deadline misses (lines
12–14). We note that a steady-state GA iteratively breeds offspring, assess
their fitness, and then reintroduce them into a population. However, OPAM

Optimal Priority Assignment for Real-Time Systems 23

computes internal fitness of all task-arrival sequences in A at every generation.
This is because internal fitness is computed in relation toP, which is coevolving
with A.

Breeding the next population is done by using the following genetic op-
erators: (1) Selection: OPAM selects candidate task-arrival sequences using a
tournament selection technique, with the tournament size equal to two which
is the most common setting (Gendreau and Potvin, 2010) (line 17 in Fig-
ure 5). (2) Crossover: Selected candidate task-arrival sequences serve as par-
ents to create offspring using a crossover operation (line 18). (3) Mutation:
The offspring are then mutated (line 19). Below, we describe our crossover
and mutation operators.

Crossover. A crossover operator is used to produce offspring by mixing
traits of parent solutions. OPAM modifies the standard one-point crossover
operator (Luke, 2013) as two parent task-arrival sequences Ap and Aq may
have different sizes, i.e., |Ap| 6= |Aq|. Let J = {j1, j2, . . . , jm} be a set of tasks
to be scheduled. Our crossover operator first randomly selects an aperiodic
task jr ∈ J . For all i ∈ [1, r] and ji ∈ J , OPAM then swaps all ji arrivals
between the two task-arrival sequences Ap and Aq. Since J is fixed for all
solutions, OPAM can cross over two solutions that may have different sizes.

Mutation operator OPAM uses a heuristic mutation algorithm. For a task-
arrival sequence A, OPAM mutates the kth task arrival time atk(j) of an
aperiodic task j with a mutation probability. OPAM chooses a new arrival
time value of atk(j) based on the [pmin(j), pmax (j)] inter-arrival time range
of j. If such a mutation of the kth arrival time of j does not affect the validity
of the k+1th arrival time of j, the mutation operation ends. Specifically, let d
be a mutated value of atk(j). In case atk+1(j) ∈ [d + pmin(j), d + pmax (j)],
OPAM returns the mutated A task-arrival sequence.

After mutating the kth arrival time atk(j) of a task j in a solution A, if
the k+1th arrival becomes invalid, OPAM corrects the remaining arrivals of
j. Let o and d be, respectively, the original and mutated kth arrival time of j.
For all the arrivals of j after d, OPAM first updates their original arrival time
values by adding the difference d− o. Let T = [0,T] be the scheduling period.
OPAM then removes some arrivals of j if they are mutated to arrive after T
or adds new arrivals of j while ensuring that all tasks arrive within T.

As shown in lines 20–26 in Figure 5, the internal fitness of the generated
offspring is computed based on the P population. OPAM then updates the A
population of task-arrival sequences by comparing the offspring and individuals
in A (line 27).

We note that when a system is only composed of periodic tasks, OPAM
will skip evolving for worst-case arrival sequences as arrivals of periodic tasks
are deterministic (see Section 3). Nevertheless, OPAM will optimize priority
assignments based on given arrivals of periodic tasks. When needed, OPAM
can be easily extended to manipulate offset and period values for periodic
tasks, in a way identical to how we currently handle inter-arrival times for
aperiodic tasks.

24 Jaekwon Lee et al.

1 Algorithm Priority assignments evolution
2 Input A: population of task-arrival sequences
3 Input P: population of priority assignments
4 Input psp: population size //priority assignments
5 Input cpp: crossover probability //priority assignments
6 Input mpp: mutation probability //priority assignments
7 Output P: population of priority assignments
8
9 //evaluate internal fitness values for P

10 for each
#»
P i ∈ P

11 for each Al ∈ A

12 S ← simulate(Al,
#»
P i) //OPAMScheduler

13 //distk(j) is computed based on S

14 fs(
#»
P i, Al) =

∑
j∈J,k∈[1,lk(j)]−2distk(j)

15 fs(
#»
P i,A) =

∑
Al∈A fs(

#»
P i, Al)/|A|

16 fc(
#»
P i) =

∑
j∈J

{
lp(

#»
P i)− pr(j), if j is an aperiodic task

0, otherwise
17
18 //breed priority assignments
19

#»
R ← sort_non_dominated_fronts(P)

20 assign_crowding_distance(
#»
R)

21 Pα ← NSGAII_breed(
#»
R, psp, cpp,mpp)

22 //evaluate internal fitness values for Pα
23 for each

#»
P i ∈ Pα

24 for each Al ∈ A

25 S ← simulate(Al,
#»
P i) //OPAMScheduler

26 //distk(j) is computed based on S

27 fs(
#»
P i, Al) =

∑
j∈J,k∈[1,lk(j)]−2distk(j)

28 fs(
#»
P i,A) =

∑
Al∈A fs(

#»
P i, Al)/|A|

29 fc(
#»
P i) =

∑
j∈J

{
lp(

#»
P i)− pr(j), if j is an aperiodic task

0, otherwise
30

#»
R ← sort_non_dominated_fronts(P ∪Pα)

31 assign_crowding_distance(
#»
R)

32 P← select_archive(
#»
R, psp)

33
34 return P

Fig. 6: An NSGAII-based algorithm for evolving priority assignments.

6.5 Evolution: Best-case priority assignments

Figure 6 shows the evolution procedure of priority assignments, which re-
fines lines 23–26 in Figure 4. OPAM tailors the Non-dominated Sorting Ge-
netic Algorithm version 2 (NSGAII) (Deb et al., 2002) to generate a non-
dominating (equally viable) set of priority assignments, representing the best
trade-offs found among the given internal fitness functions. This is referred
to as a Pareto nondominated front (Knowles and Corne, 2000), where the
dominance relation over priority assignments is defined as follows: A prior-
ity assignment

#»

P dominates another priority assignment
#»

P ′ if
#»

P is not worse

Optimal Priority Assignment for Real-Time Systems 25

than
#»

P ′ in all fitness values, and
#»

P is strictly better than
#»

P ′ in at least one
fitness value. NSGAII has been applied to many multi-objective optimization
problems (Langdon et al., 2010; Shin et al., 2018; Wang et al., 2020).

OPAM maintains a population P of priority assignments as an archive that
contains the best priority assignments discovered during coevolution. Unlike
a standard application of NSGAII, in our study, we need to reevaluate the
internal fitness values for priority assignments in P at every generation as
the internal fitness values are computed based on the A population of task-
arrival sequences, which coevolves. As shown in lines 9–16 in Figure 6, OPAM
first computes the internal fitness functions that measure the magnitude of
safety margins and the extent of constraint satisfaction. OPAM then sorts
non-dominated Pareto fronts (line 19) and assigns crowding distance (line 20)
to introduce diversity among non-dominated priority assignments (Deb et al.,
2002).

For breeding the next population of priority assignments (line 21 in Fig-
ure 6, OPAM applies the following standard genetic operators (Sivanandam
and Deepa, 2008) that have been applied to many similar problems (Islam
et al., 2012; Marchetto et al., 2016; Shin et al., 2018): (1) Selection. OPAM uses
a binary tournament selection based on non-domination ranking and crowd-
ing distance. The binary tournament selection has been used in the original
implementation of NSGAII (Deb et al., 2002). (2) Crossover. OPAM applies a
partially mapped crossover (PMX) (Goldberg and Lingle, 1985). PMX ensures
that the generated offspring are valid permutations of priorities. (3) Mutation.
OPAM uses a permutation swap method for mutating a priority assignment.
This mutation method interchanges two randomly-selected priorities in a pri-
ority assignment according to a given mutation probability.

For the generated population Pα of priority assignments, OPAM computes
the two internal fitness functions (lines 22–29 in Figure 6). OPAM then sorts
non-dominated Pareto fronts for the union of the current P and next Pα
populations (line 30), assign crowding distance (line 31), and select the best
archive by accounting for the computed non-domination ranking and crowding
distance (line 32).

6.6 External fitness evaluation

Figure 7 shows an algorithm that computes the external fitness functions
and finds the best Pareto front, which refines lines 28–31 in Figure 4. To
monitor the coevolution progress in a stable manner, OPAM takes as input
a set E of task-arrival sequences that are generated independently from the
coevolution process. We use an adaptive random search technique (Chen et al.,
2010) to sample task-arrival sequences in order to create E. The adaptive
random search extends the naive random search by maximizing the Euclidean
distance between the sampled points such that it maximizes the diversity of
task-arrival sequences in E.

26 Jaekwon Lee et al.

1 Algorithm Priority assignments evolution
2 Input E: set of task-arrival sequences //external evaluation
3 Input P: population of priority assignments
4 Input psp: population size //priority assignments
5 Input cpp: crossover probability //priority assignments
6 Input mpp: mutation probability //priority assignments
7 Output P: population of priority assignments
8
9 //evaluate external fitness values for P

10 for each
#»
P i ∈ P

11 for each El ∈ E

12 S ← simulate(El,
#»
P i) //OPAMScheduler

13 //distk(j) is computed based on S

14 fs(
#»
P i, El) =

∑
j∈J,k∈[1,lk(j)]−2distk(j)

15 fs(
#»
P i,E) =

∑
El∈E fs(

#»
P i, El)/|E|

16 fc(
#»
P i) =

∑
j∈J

{
lp(

#»
P i)− pr(j), if j is an aperiodic task

0, otherwise
17

#»
R ← sort_non_dominated_fronts(P ∪B)

18 assign_crowding_distance(
#»
R)

19 B← select_best_front(
#»
R) //|B| ≤ |P|

20
21 return B

Fig. 7: An algorithm for evaluating external fitness and finding the best Pareto
front.

As shown in lines 9–16 in Figure 7, OPAM computes the two external
fitness values for each priority assignment in the P population based on a
given set E of task-arrival sequences. OPAM then sorts non-dominated Pareto
fronts for the union of the P population and the current best Pareto front (line
17), assigns crowding distance (line 18), and selects the best Pareto front by
accounting for the computed non-domination ranking and crowding distance
(line 32). OPAM adopts NSGAII in order to maximize the diversity of priority
assignments in the best Pareto front.

7 Evaluation

This section describes our evaluation of OPAM through six industrial case
studies from different domains and several synthetic subjects. Our full evalu-
ation package is available online (Lee et al., 2021).

7.1 Research questions

RQ1 (Sanity check): How does OPAM perform compared with Random
Search? For search-based solutions, this RQ is an important sanity check to
ensure that success is not due to the search problem being easy (Arcuri and

Optimal Priority Assignment for Real-Time Systems 27

Table 2: Description of the six industrial subject systems: number of periodic
and aperiodic tasks, resource dependencies, triggering relations, and platform
cores.

Task types Relationships Platform

System Periodic Aperiodic Dependencies Triggering Cores

ICS 3 3 3 0 3
CCS 8 3 3 6 2
UAV 12 4 4 0 3
GAP 15 8 6 5 2
HPSS 23 9 5 0 1
ESAIL 11 14 0 0 1

Briand, 2014). Our conjecture is that a search-based algorithm, although ex-
pensive, will significantly outperform naive random search (RS).
RQ2 (Coevolution): Is competitive coevolution suitable to find best-case pri-
ority assignments? We conjecture that a coevolutionary algorithm is a suitable
solution to address the priority assignment problem since it is solved, in prac-
tice, through a competing interactive process between the development and
testing teams. To answer this RQ, we compare OPAM with a sequential ap-
proach that first looks for worst-case sequences of task arrivals and then tries
to find best-case priority assignments.
RQ3 (Scalability): Can OPAM find (near-)optimal solutions for large-scale
systems in a reasonable time budget? In this RQ, we investigate the scalabil-
ity of OPAM by conducting some experiments with systems of various sizes,
including six industrial and several synthetic subjects. We study the relation-
ship between OPAM’s performance measures and the characteristics of study
subjects.
RQ4 (Usefulness): How do priority assignments generated by OPAM com-
pare with priority assignments defined by engineers? OPAM can be considered
useful only when it finds priority assignments that show benefits over those
defined (manually) by engineers with domain expertise. This RQ therefore
compares the quality of priority assignments generated by OPAM with those
defined by engineers. We further discuss the usefulness of OPAM from a prac-
tical perspective, based on the feedback received from engineers in LuxSpace.

7.2 Industrial study subjects

To evaluate RQs in realistic and diverse settings, we apply OPAM to six indus-
trial study subjects from different domains such as aerospace, automotive, and
avionics domains. Specifically, we obtained one case study subject from our
industry partner, LuxSpace. We found the other five industrial study subjects
in the literature (Di Alesio et al., 2015), which, consistent with the LuxSpace
system, all assume a single-queue, multi-core, fixed-priority scheduling policy.

28 Jaekwon Lee et al.

Note that OPAM uses the same scheduling policy (described in Section 6.2)
as in Di Alesio et al.’s work. This policy uses fixed priorities that are deter-
mined offline and therefore do not change dynamically. Table 2 summarizes
the relevant attributes of these subjects, presenting the number of periodic
and aperiodic tasks, resource dependencies, triggering relations, and platform
cores. The subjects are characterized by real-time parameters, e.g., periods,
deadlines, and priorities, described in Section 3. We note that all the study
subjects are deadlock-free systems as they do not have circular resource de-
pendencies. Regarding task priorities, all tasks in the six subjects have fixed
priorities, which are defined by experts in their domains. The full task descrip-
tions (including WCET, inter-arrival times, periods, deadlines, priorities, and
relationship details) of the subjects are available online (Lee et al., 2021). The
main missions of the six subjects are described as follows:

– ICS is an ignition control system that checks the status of an automotive
engine and corrects any errors of the engine (Peraldi-Frati and Sorel, 2008).
The system was developed by Bosch GmbH1.

– CCS is a cruise control system that acquires data from vehicle sensors and
maintains the specified vehicle speed (Anssi et al., 2011). Continental AG2

developed the system.
– UAV is a mini unmanned air vehicle that follows dynamically defined

way-points and communicates with a ground station to receive instruc-
tions (Traore et al., 2006). The system was developed in collaboration with
the University of Poitiers France and ENSMA3.

– GAP is a generic avionics platform for a military aircraft (Locke et al.,
1990). The system was designed in a joint project with Carnegie Mellon
University, the US Navy, and IBM4, aiming at supporting several missions
regarding air-to-surface attacks.

– HPSS is a satellite system for two satellites, named Herschel and
Planck (Mikučionis et al., 2010). The two satellites share the same computa-
tional architecture, although they have different scientific missions. Herschel
aims at studying the origin and evolution of stars and galaxies. Planck’s pri-
mary mission is the study of the relic radiation from the Big Bang. ESA5

carried out the HPSS project.
– ESAIL is a microsatellite for tracking ships worldwide by detecting messages

that ships radio-broadcast (see Section 2). Luxspace, our industry partner,
developed ESAIL in an ESA project.

1 Bosch GmbH: https://www.bosch.com/
2 Continental AG: https://www.continental.com
3 ENSMA: https://www.ensma.fr/
4 IBM: https://www.ibm.com/
5 ESA: https://www.esa.int/

Optimal Priority Assignment for Real-Time Systems 29

1 Algorithm Synthetic task generation
2 Input n: number of tasks
3 Input ut: target utilization
4 Input pdmin: minimum task period
5 Input pdmax: maximum task period
6 Input g: granularity of task periods
7 Input γ: ratio of aperiodic tasks
8 Input µ: range factor to determine maximum inter-arrival times
9 Output S: set of tasks

10
11 S← {}, C← {}
12 // synthesize a set of periodic tasks
13 U← UUniFast_discard(n, ut) // task utilizations
14 I← generate_task_periods(n, pdmin , pdmax , g) // task periods
15 for each j ∈ [1, n]
16 C ← C ∪ {Uj ·Ij}, where Uj ∈ U and Ij ∈ I // WCETs
17 S← generate_task_set(I,C) // set of tasks
18 // convert some periodic tasks to aperiodic tasks
19 S← convert_aperiodic_tasks(S, γ, µ)
20
21 return S

Fig. 8: An algorithm for synthesizing a set of tasks.

7.3 Synthetic study subjects

To investigate RQ3, we use synthetic subjects in order to freely control key
parameters in real-time systems. We create a set of tasks by adopting a well-
known procedure (Emberson et al., 2010) for synthesizing real-time tasks,
which has been applied in many schedulability analysis studies (Davis et al.,
2008; Zhang and Burns, 2009; Davis and Burns, 2011; Grass and Nguyen,
2018; Dürr et al., 2019).

Figure 8 describes a procedure that synthesizes a set of real-time tasks.
For a given number n of tasks and a target utilization ut, the procedure first
generates a set U of task utilization values by using the UUniFast-Discard al-
gorithm (Davis and Burns, 2011) (line 13). The UUniFast-Discard algorithm
is devised to give an unbiased distribution of utilization values, where a uti-
lization Uj ∈ U is a positive value and

∑
Uj∈U Uj = ut.

The procedure then generates a set I of n task periods according to a log-
uniform distribution within a range [pdmin , pdmax], i.e., given a task period
(random variable) Ij ∈ I, log Ij follows a uniform distribution (line 14 in
Figure 8). For example, when the minimum and maximum task periods are
pdmin = 10ms and pdmax = 1000ms, respectively, the procedure generates
(approximately) an equal number of tasks in time intervals [10ms, 100ms]
and [100ms, 1000ms]. The parameter g is used to choose the granularity of
the periods, i.e., task periods are multiples of g. Such a distribution of task
periods provides a reasonable degree of realism with respect to what is usually
observed in real systems (Baruah et al., 2011).

30 Jaekwon Lee et al.

As shown in lines 15–16 of the procedure in Figure 8, a setC of task WCETs
are computed based on the set U of task utilization values and the set I of
task periods. Specifically, a task WCET Cj ∈ C is computed as Cj = Uj · Ij .

As per line 17 of the listing in Figure 8, the procedure synthesizes a set
S of tasks. A task j is characterized by a period Ij and a WCET Cj and
it is associated with a deadline dl(j) and a priority pr(j). According to the
rate-monotonic scheduling policy (Liu and Layland, 1973), tasks’ deadlines are
equal to their periods and tasks with shorter periods are given higher priorities.

To synthesize aperiodic tasks, the procedure converts some periodic tasks
to aperiodic tasks according to a given ratio γ of aperiodic tasks among all
tasks (see line 19 in Figure 8). A range factor µ is used to determine maximum
inter-arrival times of aperiodic tasks. Specifically, for a task j to be converted,
the procedure sets the minimum inter-arrival time pmin(j) as pmin(j) = Ij .
The procedure then selects a uniformly distributed value x from the range (1, µ]
and computes the maximum inter-arrival time pmax (j) as pmax (j) = x · Ij .

7.4 Experimental Design

This section describes how we design experiments to answer the RQs described
in Section 7.1. We conducted four experiments, EXP1, EXP2, EXP3, and
EXP4, as described below.
EXP1. To answer RQ1, EXP1 compares OPAM with our baseline, which
relies on random search, to ensure that the effectiveness of OPAM is not due
to the search problem being simple. Our baseline, named RS, replaces GA with
a random search for finding worst-case sequences of task arrivals and NSGAII
with a random search for finding best-case priority assignments. Note that RS
uses the same internal and external fitness functions (see Section 6.3) and also
maintains the best populations during search; however, it does not employ any
genetic operators, i.e., crossover and mutation. In EXP1, we applied OPAM
and RS to the six industrial subjects described in Section 7.2.

Recall from Section 6.3 that OPAM uses a set E of task-arrival sequences
that are generated independently from the coevolution process in order to
monitor the coevolution progress in a stable manner. As OPAM and RS use
the same set E of task-arrival sequences, EXP1 first compares OPAM and RS
based on E. In addition, EXP1 examines how well the solutions, i.e., priority
assignments, found by OPAM and RS perform with other sequences of task
arrivals. To do so, we create six sets of sequences of task arrivals for each
study subject by varying the method to generate task-arrival sequences and the
number of task-arrival sequences. Note that task-arrival sequences generated
by different methods are valid with respect to the inter-arrival times defined
in each study subject. Below we describe the six sets of task-arrival sequences
generated for each subject.

– T10
a : A set of task-arrival sequences generated by using an adaptive random

search technique (Chen et al., 2010) that aims at maximizing the diversity
of task-arrival sequences. The T10

a set contains 10 sequences of task arrivals.

Optimal Priority Assignment for Real-Time Systems 31

– T10
w : A set of task-arrival sequences generated by using a stress test case

generation method that aims at maximizing the chances of deadline misses
in task executions. The stress test case generation method extends prior
work (Briand et al., 2005). The extended method uses the fitness function
regarding deadline misses and genetic operators that OPAM introduces for
evolving worst-case task-arrival sequences (see Section 6). The T10

w set con-
tains 10 sequences of task arrivals.

– T10
r : A set of task-arrival sequences generated randomly. The T10

r set has
10 sequences of task arrivals.

– T500
a : A set of task-arrival sequences generated by using the adaptive random

search technique. The T500
a set contains 500 sequences of task arrivals.

– T500
w : A set of task-arrival sequences generated by using the stress test case

generation method. The T500
w set contains 500 sequences of task arrivals.

– T500
r : A set of task-arrival sequences generated randomly. The T500

r set has
500 sequences of task arrivals.

EXP2. To answer RQ2, EXP2 compares OPAM with a priority assignment
method, named SEQ, that relies on one-population search algorithms. SEQ
first finds a set of worst-case sequences of task arrivals using GA with the
fitness function that measures the magnitude of deadline misses (see fd() in
Section 6.3) and the genetic operators described in Section 6.4. Given a set
of worst-case task-arrival sequences obtained from GA, SEQ then aims at
finding best-case priority assignments using NSGAII with the fitness functions
that quantify the magnitude of safety margins and the degree of constraint
satisfaction (see fs() and fc(), respectively, in Section 6.3) and the genetic
operators described in Section 6.5.

We note that SEQ does not use the external fitness functions as it does
not coevolve task-arrival sequences and priority assignments. Hence, the num-
bers of fitness evaluations of the two methods are not comparable. To fairly
compare OPAM and SEQ, we set the same time budget for the two methods.
Specifically, we first measure the execution time of OPAM for analyzing each
subject. We then split the execution time in half and set each half time as the
execution budget of the GA and NSGAII steps in SEQ for the corresponding
subject. In order to assess the quality of priority assignments obtained from
OPAM and SEQ, we use the sets of task-arrival sequences described in EXP1,
i.e., T10

a , T10
w , T10

r , T500
a , T500

w , and T500
r , which are created independently

from the two methods.
EXP3. To answer RQ3, EXP3 examines not only the six industrial subjects
but also 370 synthetic subjects. We create the synthetic subjects to study
correlations between the execution time and memory usage of OPAM and
the following parameters: the number of tasks (n), a (part-to-whole) ratio of
aperiodic tasks (γ), a range factor for maximum inter-arrival times (µ), and
simulation time (T), as described in Sections 7.3 and 6. We note that we chose
to control parameters n, γ, and µ because they are the main parameters on
which engineers have control to define tasks in real-time systems. Simulation
time T obviously impacts the execution time of OPAM as well. But EXP3 aims

32 Jaekwon Lee et al.

at modeling such correlations precisely and providing experimental results.
Regarding the other factors that define, for example, task relationships and
platform cores, we note significant diversity across the six industrial subjects.

Recall from Section 7.3 that we use the task generation procedure presented
in Figure 8 to synthesize tasks. For EXP3, we set some parameter values of
the procedure as follows: (1) Target utilization ut = 0.7, which is a common
objective in the development of a real-time system in order to guarantee the
schedulability of tasks (Fineberg and Serlin, 1967; Dürr et al., 2019). (2) The
range of task periods [pdmin , pdmax] = [10ms, 1s], which are common values in
many real-time systems (Emberson et al., 2010; Baruah et al., 2011). (3) The
granularity of task periods g = 10ms in order to increase realism as most of the
task periods in our industrial subjects are multiples of 10ms. Because of some
degree of randomness in the procedure of Figure 8, we create ten synthetic
subjects per configuration. Below we further describe how synthetic subjects
are created for each controlled experiment.

EXP3.1. To study the correlations between the execution time and memory
usage of OPAM with the number of tasks n, we create nine sets of ten synthetic
subjects such that no two sets have the same number of tasks. Specifically,
we create sets with 10, 15, ..., 50 tasks, respectively. Regarding the ratio of
aperiodic tasks, γ = 0.4 as, on average, the ratio of aperiodic tasks to periodic
tasks in our industrial subjects is 2/3. For the range factor, µ = 2, which is
determined based on the inter-arrival times of aperiodic tasks in our industry
subjects. We set the simulation time T to 2s in order to ensure that any
aperiodic task arrives at least once during that time. We note that, given the
maximum task period pdmax = 1s and the range factor µ = 2, the maximum
inter-arrival time of an aperiodic task is at most 2s (see Section 7.3).

EXP3.2. To study the correlations between the execution time and memory
usage of OPAM with the ratio of aperiodic tasks γ, we create ten sets of
synthetic subjects by setting this ratio to the following values: 0.05, 0.10, ...,
0.50. We set the number of tasks to 20 (n = 20), which is the average number
of tasks in our six industrial subjects. Regarding the other parameters, range
factor and simulation time, µ = 2 and T = 2s are set as discussed in EXP3.1.

EXP3.3. To study the correlations between the execution time and memory
usage of OPAM with the range factor µ that is used to determine the maximum
inter-arrival times, we create nine sets of synthetic subjects by setting µ to 2,
3, ..., 10. We set the simulation time as follows: T = 10s. This ensures that
any aperiodic task arrives at least once during the simulation time when µ is
at most 10 (see Section 7.3). The other parameters, the number of tasks and
ratio of aperiodic tasks, n = 20 and γ = 0.4 are set as discussed in EXP3.1
and EXP3.2.

EXP3.4. To study the correlations between the execution time and memory
usage of OPAM with the simulation time T , we create nine sets of synthetic
subjects by setting T to 2s, 3s, ..., 10s. The other parameters, e.g., the number
of tasks, the ratio of aperiodic tasks, and the range factor, n = 20, γ = 0.4,
and µ = 2, are set as discussed in EXP3.1 and EXP3.2.

Optimal Priority Assignment for Real-Time Systems 33

EXP4. To answer RQ4, EXP4 compares priority assignments optimized by
OPAM and those defined by engineers. We apply OPAM to the six indus-
trial subjects (see Section 7.2) which include priority assignments defined by
practitioners. Note that we focus here on the ESAIL subject in collaboration
with our industry partner, LuxSpace; The other five subjects are from the
literature (Di Alesio et al., 2015) and hence we can only collect feedback from
practitioners for ESAIL.

7.5 Evaluation metrics

Multi-objective evaluation metrics. In order to fairly compare the results
of search algorithms, based on existing guidelines (Li et al., 2020) for assessing
multi-objective search algorithms, we use complementary quality indicators:
Hypervolume (HV) (Zitzler and Thiele, 1999), Pareto Compliant Generational
Distance (GD+) (Ishibuchi et al., 2015), and Spread (∆) (Deb et al., 2002).
To compute the GD+ and ∆ quality indicators, following the usual proce-
dure (Li et al., 2020), we create a reference Pareto front as the union of all
the non-dominated solutions obtained from all runs of the algorithms being
compared. Identifying the optimal (ideal) Pareto front is typically infeasible
for a complex optimization problem (Li et al., 2020). Key features of the three
quality indicators are described below.

– HV is defined to measure the volume in the objective space that is cov-
ered by members of a Pareto front generated by a search algorithm (Zitzler
and Thiele, 1999). The higher the HV values, the more optimal the search
outputs.

– GD+ is defined to measure the distance between the points on a Pareto
front obtained from a search algorithm and the nearest points on a refer-
ence Pareto front (Ishibuchi et al., 2015). GD+ modifies General Distance
(GD) (Veldhuizen and Lamont, 1998) to account for the dominance rela-
tions when computing the distances. The lower the GD+ values, the more
optimal the search outputs.

– ∆ is defined to measure the extent of spread among the points on a Pareto
front computed by a search algorithm (Deb et al., 2002). We note that
OPAM aims at obtaining a wide variety of equally-viable priority assign-
ments on a Pareto front (see Section 6). The lower the Spread values, the
more spread out the search outputs.

Interpretable metrics. The two external fitness functions described in Sec-
tion 6 mainly aim at effectively guiding search. It is, however, difficult for
practitioners to interpret the computed fitness values. Since they are not in-
tuitive to practitioners, to assess the usefulness of OPAM from a practitioner
perspective, we measure (1) the safety margins from tasks’ completion times
to their deadlines across our experiments and (2) the number of constraint vi-
olations in a priority assignment. In addition, we measure the execution time
and memory usage of OPAM.

34 Jaekwon Lee et al.

Statistical comparison metrics. To statistically compare our experiment
results, we use the Mann-Whitney U-test (Mann and Whitney, 1947) and
Vargha and Delaney’s Â12 effect size (Vargha and Delaney, 2000), which have
been frequently applied for evaluating search-based algorithms (Arcuri et al.,
2010; Hemmati et al., 2013; Shin et al., 2018). Mann-Whitney U-test deter-
mines whether two independent samples are likely or not to belong to the
same distribution. We set the level of significance, α, to 0.05. Vargha and De-
laney’s Â12 measures probabilistic superiority – effect size – between search
algorithms. Two algorithms are considered to be equivalent when the value of
Â12 is 0.5.

7.6 Parameter tuning and implementation

Parameters for coevolutionary search. For the coevolutionary search pa-
rameters, we set the population size to 10, the crossover rate to 0.8, and the
mutation rate to 1/|J |, where |J | denotes the number of tasks. We apply
these parameter values for both the evolution of task-arrival sequences and
priority assignments (see Section 6). These values are determined based on
existing guidelines (Arcuri and Fraser, 2011; Sayyad et al., 2013) and previous
work (Lee et al., 2020b).

We determine the number of coevolution cycles (see Section 6) based on an
initial experiment. We applied OPAM to the six industrial subjects and ran
OPAM 50 times for each subject. From the experiment results, we observed
that there is no notable difference in Pareto fronts generated after 1000 cycles.
Hence, we set the number of coevolution cycles to 1000 in our experiments,
i.e., EXP1, EXP2, and EXP3 described in Section 7.4.
Parameters for evaluating fitness functions. To evaluate external fitness
functions, we use a set of task-arrival sequences that are generated indepen-
dently from the coevolution process (see Section 6.6). We use an adaptive ran-
dom search (Chen et al., 2010) to generate a set E of task-arrival sequences,
which varies task arrival times within the specified inter-arrival time ranges
of aperiodic tasks. We set the size of E to 10. From our initial experiment,
we observed that this is sufficient to compute the external fitness functions of
OPAM under a reasonable time, i.e., less than 15s. We note that E contains
two default sequences of task arrivals as follows: (seq. 1) aperiodic tasks always
arrive at their maximum inter-arrival times and (seq. 2) aperiodic tasks always
arrive at their minimum inter-arrival times. By having those two sequences of
task arrivals as initial elements in E, the adaptive random search finds other
sequences of task arrivals to maximize the diversity of elements in E.

If a system contains only periodic tasks, the simulation time is often set as
the least common multiple (LCM) of their periods to account for all possible
arrivals (Peng et al., 1997). However, as the six industrial subjects include
aperiodic tasks, this is not applicable. For the experiments with the six indus-
trial subjects, we set the simulation time to the maximum time between the
LCM of periodic tasks’ periods and the maximum inter-arrival time among

Optimal Priority Assignment for Real-Time Systems 35

aperiodic tasks. By doing so, all possible arrival patterns of periodic tasks are
examined and any aperiodic task arrives at least once during simulation. Re-
call from Section 6.4 that OPAM varies arrival times of aperiodic tasks to find
worst-case sequences of task arrivals.

We note that the parameters mentioned above can probably be further
tuned to improve the performance of our approach. However, since with our
current setting, we were able to convincingly and clearly support our conclu-
sions, we do not report further experiments on tuning those values.

Implementation. We implemented OPAM by extending jMetal (Durillo
and Nebro, 2011), which is a metaheuristic optimization framework supporting
NSGAII and GA. We conducted our experiments using the high-performance
computing cluster (Varrette et al., 2014) at the University of Luxembourg.
To account for randomness, we repeated each run of OPAM 50 times for all
experiments. Each run of OPAM was executed on a different node (equipped
with five 2.5GHz cores and 20GB memory) of the cluster, and took less than
16 hours.

7.7 Results

RQ1. Figure 9 shows the best Pareto fronts obtained with 50 runs of OPAM
and RS, for the six industrial study subjects described in Section 7.2. The
fitness values presented in the figures are computed based on each subject’s
set E of task-arrival sequences (see Section 7.6), which is created independently
from OPAM and RS. Figures 9a, 9c, 9d, 9e, and 9f indicate that OPAM finds
significantly better solutions than RS for ICS, UAV, GAP, HPSS, and ESAIL.
Regarding CCS (see Figure 9b), it is difficult to conclude anything based only
on visual inspection. Hence, we compared Pareto fronts obtained by OPAM
and RS using the three quality indicators HV, GD+, and ∆, described in
Section 7.5.

Figure 10 depicts distributions of HV (Figure 10a), GD+ (Figure 10b),
and ∆ (Figure 10c) for the six industrial subjects. The boxplots in the figures
present the distributions (25%-50%-75%) of the quality values obtained from
50 runs of OPAM and RS. The quality values are computed based on the
Pareto fronts obtained by the algorithms and each subject’s set E of task-
arrival sequences (see Section 7.6). In the figures, statistical comparisons of
the two corresponding distributions are summarized using p-values and Â12

values, as described in Section 7.5, under each subject name.
As shown in Figures 10a and 10b, OPAM obtains better distributions of

HV and GD+ compared to RS for all six subjects. All the differences are
statistically significant as the p-values are below 0.05. Regarding∆, as depicted
in Figure 10c, OPAM yields higher diversity in Pareto front solutions than RS
for the following subjects: UAV, GAP, and HPSS. For ICS, CCS, and ESAIL,
OPAM and RS obtain similar∆ values. From Figures 10a and 10b, and Table 2,
we also observe that the higher the number of aperiodic tasks in a subject,
the larger the differences in HV and GD+ between OPAM and RS. Hence,

36 Jaekwon Lee et al.

−10

−5

0

5

−11.27 −11.275 −11.28
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(a) ICS

−20

−10

0

−25.09 −25.1 −25.11 −25.12
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(b) CCS

−40

−20

0

−840.8−840.4−840.0−839.6
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(c) UAV

−150

−100

−50

0

−1726 −1728 −1730 −1732 −1734
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(d) GAP

−200

−100

0

−69 −70 −71 −72 −73 −74
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(e) HPSS

−80

−40

0

−3300−3260−3220−3180
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) RS
OPAM

(f) ESAIL

Fig. 9: Pareto fronts obtained by OPAM and RS for the six industrial subjects:
(a) ICS, (b) CCS, (c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The fitness
values are computed based on each subject’s set E of task-arrival sequences
(see Section 7.6). The points located closer to the bottom left of each plot are
considered to be better priority assignments when compared to points closer
to the top right.

for these two quality indicators, OPAM outperforms RS more significantly for
more complex search problems. Note that the number of aperiodic tasks is one
of the main factors that drives the degree of uncertainty in task arrivals.

Given the Pareto priority assignments obtained by OPAM and RS, we
further assessed the quality values of the solutions by evaluating them with

Optimal Priority Assignment for Real-Time Systems 37

Table 3: Comparing OPAM and RS using the three quality indicators: HV,
GD+, and ∆. Average quality values computed based on 50 runs of OPAM
and RS using the different sets of task-arrival sequences (see Section 7.4).

ICS CCS UAV GAP HPSS ESAIL

T
1
0
a

(a
da

pt
iv
e,

si
ze

10
) HV OPAM 1.0000 0.7168 0.8923 0.8864 0.9629 0.9998

RS 0.9000 0.6633 0.7488 0.6278 0.5120 0.0000
p|Â12 0.02|0.55 0.00|0.80 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0203 0.0068 0.0067 0.0073 0.0135
RS 0.0883 0.0472 0.0745 0.0780 0.1380 1.0000

p|Â12 0.02|0.45 0.00|0.04 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.7650 0.4256 0.3631 0.5355 0.9433

RS 0.9766 0.5879 0.6112 0.6605 0.7508 1.0000
p|Â12 0.16|0.52 0.00|0.76 0.00|0.15 0.00|0.03 0.00|0.12 0.08|0.47

T
1
0
w

(w
or
st
,
si
ze

10
) HV OPAM 0.0000 0.7878 0.9152 0.9280 0.9652 0.9997

RS 0.0000 0.7591 0.7782 0.6743 0.5180 0.0000
p|Â12 1.00|0.50 0.01|0.65 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0809 0.0053 0.0042 0.0108 0.0135
RS 0.0200 0.0866 0.0740 0.0760 0.1405 1.0000

p|Â12 0.16|0.48 0.75|0.52 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.7012 0.4508 0.4009 0.4872 0.9433

RS 0.9600 0.4764 0.6032 0.7002 0.7328 1.0000
p|Â12 0.16|0.52 0.00|0.79 0.00|0.22 0.00|0.03 0.00|0.11 0.08|0.47

T
1
0
r

(r
an

do
m
,
si
ze

10
) HV OPAM 0.0000 0.8976 0.9792 0.9449 0.9837 0.9999

RS 0.0000 0.8517 0.8191 0.6879 0.5183 0.0000
p|Â12 1.00|0.50 0.00|0.90 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0806 0.0035 0.0043 0.0211 0.0134
RS 0.0200 0.1252 0.0912 0.0789 0.1580 1.0000

p|Â12 0.16|0.48 0.00|0.09 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.8662 0.4603 0.3951 0.4728 0.9433

RS 0.9600 0.6579 0.6331 0.7035 0.7617 1.0000
p|Â12 0.16|0.52 0.00|0.73 0.00|0.20 0.00|0.02 0.00|0.05 0.08|0.47

T
5
0
0

a
(a
da

pt
iv
e,

si
ze

50
0) HV OPAM 1.0000 0.7032 0.9424 0.9089 0.9803 0.9999

RS 0.9000 0.6518 0.7893 0.6561 0.5167 0.0000
p|Â12 0.02|0.55 0.00|0.86 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0159 0.0035 0.0051 0.0064 0.0134
RS 0.0883 0.0393 0.0850 0.0746 0.1422 1.0000

p|Â12 0.02|0.45 0.00|0.03 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.7842 0.4715 0.3680 0.4850 0.9433

RS 0.9766 0.5354 0.6357 0.6850 0.7565 1.0000
p|Â12 0.16|0.52 0.00|0.84 0.00|0.21 0.00|0.01 0.00|0.09 0.08|0.47

T
5
0
0

w
(w

or
st
,
si
ze

50
0)

HV OPAM 1.0000 0.6535 0.9223 0.9307 0.9635 0.9997
RS 0.9000 0.6050 0.7791 0.6770 0.5032 0.0000

p|Â12 0.02|0.55 0.00|0.77 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0302 0.0037 0.0040 0.0054 0.0136
RS 0.0883 0.0545 0.0768 0.0763 0.1408 1.0000

p|Â12 0.02|0.45 0.00|0.09 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.7899 0.4640 0.4077 0.5083 0.9433

RS 0.9766 0.5910 0.6114 0.7052 0.7448 1.0000
p|Â12 0.16|0.52 0.00|0.84 0.00|0.22 0.00|0.02 0.00|0.11 0.08|0.47

T
5
0
0

r
(r
an

do
m
,
si
ze

50
0) HV OPAM 1.0000 0.6936 0.9742 0.9481 0.9810 0.9999

RS 0.9000 0.6401 0.8138 0.6904 0.5183 0.0000
p|Â12 0.02|0.55 0.00|0.85 0.00|1.00 0.00|1.00 0.00|1.00 0.00|1.00

GD+ OPAM 0.0000 0.0169 0.0031 0.0041 0.0062 0.0134
RS 0.0883 0.0394 0.0914 0.0794 0.1420 1.0000

p|Â12 0.02|0.45 0.00|0.03 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00

∆
OPAM 1.0000 0.7415 0.4637 0.4077 0.4854 0.9433

RS 0.9766 0.5251 0.6358 0.7042 0.7535 1.0000
p|Â12 0.16|0.52 0.00|0.80 0.00|0.20 0.00|0.03 0.00|0.09 0.08|0.47

n.nnnn : OPAM outperforms RS n.nnnn : RS outperforms OPAM

38 Jaekwon Lee et al.

0.00

0.25

0.50

0.75

1.00

ICS CCS UAV GAP HPSS ESAIL

RS OPAM

0.02
0.55

0.00
0.97

0.00
1.00

0.00
1.00

0.00
1.00

0.00
1.00

p−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−value

Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12

(a) HV

0.00

0.25

0.50

0.75

1.00

ICS CCS UAV GAP HPSS ESAIL

RS OPAM

0.02
0.45

0.00
0.05

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

p−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−value

Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12

(b) GD+

0.00

0.25

0.50

0.75

1.00

ICS CCS UAV GAP HPSS ESAIL

RS OPAM

0.16
0.52

0.34
0.56

0.00
0.17

0.00
0.02

0.00
0.08

0.08
0.47

p−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−valuep−value

Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12Â12

(c) ∆

Fig. 10: Comparing OPAM and RS using the three quality indicators: (a) HV,
(b) GD+, and (c) ∆. The boxplots (25%-50%-75%) show the quality values
obtained from 50 runs of OPAM and RS. The quality values are computed
based on the Pareto fronts obtained by the algorithms and each subject’s set
E of task-arrival sequences (see Section 7.6).

different sets of task-arrival sequences. As described in Section 7.4, we created
six test sets of task-arrival sequences for each subject by varying the sequence
generation methods and the number of task-arrival sequences in a set (see
T10
a , T10

w , T10
r , T500

a , T500
w , and T500

r described in Section 7.4). Table 3 reports
the average quality values measured by HV, GD+, and ∆ based on 50 runs
of OPAM and RS with the different test sets of task-arrival sequences. The

Optimal Priority Assignment for Real-Time Systems 39

results indicate that OPAM significantly outperforms RS in most comparison
cases. Specifically, out of a total of 108 comparisons, OPAM outperforms RS
87 times (see the blue-colored cells related to OPAM in Table 3). Regarding ∆,
RS outperforms OPAM for the CCS subject (see the gray-colored cells related
to RS in Table 3). As shown in Table 2, CCS has only 3 aperiodic tasks and
RS was therefore able to find better solutions with respect to ∆ for such a
simple subject.

The answer to RQ1 is that OPAM significantly outperforms RS with respect
to HV and GD+. In particular, OPAM performs considerably better than
RS when more aperiodic tasks are involved.

RQ2. To compare OPAM and SEQ, we first visually inspect the best Pareto
fronts obtained from 50 runs of OPAM and SEQ for the six study systems
described in Section 7.2 by varying the test sets of task-arrival sequences for
each subject (seeT10

a ,T10
w ,T10

r ,T500
a ,T500

w , andT500
r described in Section 7.4),

which are created independently from OPAM and SEQ. Overall, we observed
that OPAM finds significantly better priority assignments in most cases. For
example, Figure 11 depicts the best Pareto fronts obtained by OPAM and
SEQ when the fitness values are computed based on each subject’s test set
T500
a of 500 task-arrival sequences, which are generated with adaptive random

search. The results clearly show that OPAM outperforms SEQ with respect to
producing more optimal Pareto fronts for ICS, CCS, UAV, HPSS, and ESAIL.
For GAP, the visual inspection is not sufficient to provide any conclusions.
Hence, we further compare OPAM and SEQ based on the quality indicators
described in Section 7.5.

Table 4 compares the quality values measured by HV, GD+, and ∆ for
the six study subjects. To fairly compare the priority assignments obtained by
OPAM and SEQ, we assess them with the test sets of task-arrival sequences for
each subject (seeT10

a ,T10
w ,T10

r ,T500
a ,T500

w , andT500
r described in Section 7.4).

Table 4 reports the average quality values computed based on 50 runs of OPAM
and SEQ. In Table 4, the statistical comparison of the two corresponding
distributions are reported using p-values and Â12 values.

As shown in Table 4, we compared OPAM and SEQ 108 times by vary-
ing the study subjects, the quality indicators, the number of task-arrival se-
quences, and the task-arrival sequence generation methods. Out of 108 com-
parisons, OPAM significantly outperforms SEQ 63 times. Specifically, out of
36 HV comparisons, OPAM obtains better HV values than SEQ 28 times. For
ICS (6 HV comparisons), the differences in HV values between OPAM and
SEQ are not statistically significant. In only one HV comparison for CCS,
SEQ outperforms OPAM (see the gray-colored cell related to HV and CCS in
Table 4). To interpret these results, one must recall from Table 2 that ICS and
CCS have only three aperiodic tasks that impact the degree of uncertainty in
task arrivals and therefore represent simple cases. Out of 36 GD+ compar-
isons, OPAM outperforms SEQ 32 times. SEQ outperforms OPAM only two
times for CCS. Hence, overall, the results indicate that OPAM outperforms
SEQ, in terms of generating more optimal Pareto fronts, when the subjects

40 Jaekwon Lee et al.

Table 4: Comparing OPAM and SEQ using the three quality indicators: HV,
GD+, and ∆. Average quality values computed based on 50 runs of OPAM
and SEQ using the different sets of task-arrival sequences (see Section 7.4).

ICS CCS UAV GAP HPSS ESAIL

T
1
0
a

(a
da

pt
iv
e,

si
ze

10
) HV OPAM 0.0000 0.6052 0.6011 0.6088 0.6290 0.9808

SEQ 0.0000 0.4172 0.5354 0.5868 0.6086 0.4470
p|Â12 1.00|0.50 0.00|1.00 0.00|0.95 0.00|0.76 0.02|0.63 0.00|1.00

GD+ OPAM 0.0000 0.0244 0.0175 0.0148 0.0529 0.0249
SEQ 0.2191 0.0835 0.0350 0.0201 0.0625 0.1887
p|Â12 0.00|0.01 0.00|0.00 0.00|0.01 0.00|0.25 0.00|0.26 0.00|0.03

∆
OPAM 1.0000 0.7653 0.4239 0.3343 0.5297 0.9444

SEQ 0.0200 0.5656 0.3628 0.2875 0.5706 0.8285
p|Â12 0.00|0.99 0.00|0.81 0.01|0.64 0.01|0.65 0.33|0.44 0.00|0.75

T
1
0
w

(w
or
st
,
si
ze

10
) HV OPAM 0.0000 0.7345 0.6258 0.6290 0.7460 0.9059

SEQ 0.0000 0.6794 0.5933 0.5928 0.6856 0.5046
p|Â12 1.00|0.50 0.00|0.82 0.00|0.82 0.00|0.88 0.00|0.87 0.00|1.00

GD+ OPAM 0.0000 0.0912 0.0191 0.0131 0.0340 0.0724
SEQ 0.0000 0.0695 0.0272 0.0211 0.0667 0.1720
p|Â12 1.00|0.50 0.00|0.86 0.00|0.12 0.00|0.14 0.00|0.03 0.00|0.07

∆
OPAM 1.0000 0.7009 0.4835 0.3616 0.4695 0.9470

SEQ 1.0000 0.5376 0.3111 0.3054 0.5453 0.7547
p|Â12 1.00|0.50 0.00|0.74 0.00|0.83 0.01|0.66 0.01|0.35 0.00|0.67

T
1
0
r

(r
an

do
m
,
si
ze

10
) HV OPAM 0.0000 0.8720 0.8653 0.6340 0.7714 0.9055

SEQ 0.0000 0.5478 0.7246 0.5879 0.7935 0.1139
p|Â12 1.00|0.50 0.00|0.99 0.00|1.00 0.00|0.92 0.06|0.39 0.00|1.00

GD+ OPAM 0.0000 0.0911 0.0205 0.0160 0.0472 0.0718
SEQ 0.0000 0.1358 0.0882 0.0277 0.0646 0.2838
p|Â12 1.00|0.50 0.00|0.01 0.00|0.00 0.00|0.10 0.00|0.19 0.00|0.06

∆
OPAM 1.0000 0.8605 0.4644 0.3825 0.4658 0.9456

SEQ 1.0000 0.5896 0.4072 0.3253 0.4620 0.9670
p|Â12 1.00|0.50 0.00|0.82 0.02|0.64 0.01|0.66 0.90|0.49 0.00|0.67

T
5
0
0

a
(a
da

pt
iv
e,

si
ze

50
0) HV OPAM 0.0000 0.6781 0.7134 0.6261 0.7332 0.9744

SEQ 0.0000 0.4854 0.6179 0.5981 0.7056 0.3571
p|Â12 1.00|0.50 0.00|1.00 0.00|1.00 0.00|0.83 0.00|0.73 0.00|1.00

GD+ OPAM 0.0000 0.0174 0.0140 0.0134 0.0320 0.0285
SEQ 0.2191 0.0727 0.0549 0.0197 0.0565 0.2153
p|Â12 0.00|0.01 0.00|0.00 0.00|0.00 0.00|0.20 0.00|0.08 0.00|0.04

∆
OPAM 1.0000 0.7833 0.4964 0.3588 0.4564 0.9442

SEQ 0.0200 0.7319 0.4002 0.3315 0.5312 0.8554
p|Â12 0.00|0.99 0.23|0.57 0.00|0.72 0.07|0.60 0.02|0.36 0.00|0.75

T
5
0
0

w
(w

or
st
,
si
ze

50
0)

HV OPAM 0.0000 0.4732 0.6330 0.6181 0.6990 0.8755
SEQ 0.0000 0.5564 0.5958 0.5792 0.6800 0.1183
p|Â12 1.00|0.50 0.00|0.04 0.00|0.85 0.00|0.90 0.00|0.70 0.00|1.00

GD+ OPAM 0.0000 0.0511 0.0141 0.0135 0.0258 0.0911
SEQ 0.2191 0.0343 0.0267 0.0226 0.0336 0.2849
p|Â12 0.00|0.01 0.00|0.96 0.00|0.05 0.00|0.11 0.00|0.24 0.00|0.06

∆
OPAM 1.0000 0.7569 0.4950 0.3751 0.5379 0.9469

SEQ 0.0200 0.7259 0.3315 0.3139 0.5102 0.8957
p|Â12 0.00|0.99 0.43|0.55 0.00|0.82 0.01|0.66 0.20|0.57 0.00|0.67

T
5
0
0

r
(r
an

do
m
,
si
ze

50
0) HV OPAM 0.0000 0.6646 0.8446 0.6321 0.7087 0.8782

SEQ 0.0000 0.4876 0.7242 0.5839 0.6786 0.1965
p|Â12 1.00|0.50 0.00|1.00 0.00|1.00 0.00|0.93 0.00|0.72 0.00|1.00

GD+ OPAM 0.0000 0.0184 0.0172 0.0165 0.0327 0.0900
SEQ 0.2191 0.0684 0.0791 0.0285 0.0580 0.2620
p|Â12 0.00|0.01 0.00|0.00 0.00|0.00 0.00|0.09 0.00|0.06 0.00|0.06

∆
OPAM 1.0000 0.7449 0.5059 0.3960 0.4502 0.9472

SEQ 0.0200 0.6798 0.4156 0.3341 0.5148 0.8546
p|Â12 0.00|0.99 0.19|0.58 0.00|0.71 0.01|0.66 0.03|0.38 0.00|0.67

n.nnnn : OPAM outperforms SEQ n.nnnn : SEQ outperforms OPAM

Optimal Priority Assignment for Real-Time Systems 41

−10

−5

0

5

−9.7575 −9.758
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(a) ICS

−20

−10

0

−21.265 −21.275 −21.285
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(b) CCS

−40

−20

0

−814.8−814.7
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(c) UAV

−150

−100

−50

0

−1646 −1646.5 −1647 −1647.5
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(d) GAP

−200

−100

0

−67.3 −67.4 −67.5 −67.6
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(e) HPSS

−80

−40

0

−3180.47 −3180.49
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) SEQ
OPAM

(f) ESAIL

Fig. 11: Pareto fronts obtained by OPAM and SEQ for the six industrial
subjects: (a) ICS, (b) CCS, (c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The
fitness values are computed based on each subject’s set T500

a of task-arrival
sequences (see Section 7.4). The points located closer to the bottom left of
each plot are considered to be better priority assignments when compared to
points closer to the top right.

feature a considerable degree of uncertainty in task arrivals and therefore make
our search problem more complex. Otherwise differences are not statistically or
practically significant. Regarding ∆, which focuses on the diversity of solutions
on the Pareto front, SEQ outperforms OPAM 24 times out of 36 comparisons
(see the gray-colored cells related to ∆ in Table 4). However, since OPAM pro-

42 Jaekwon Lee et al.

Table 5: Execution times and memory usage required to run OPAM for the
six industrial subjects. Average values computed based on 50 runs of OPAM
are reported.

Subject Execution time (s) Memory usage (MB)

ICS 104.34 89.97
CCS 165.50 111.85
UAV 1455.35 312.85
GAP 2819.03 730.29
HPSS 226.98 127.77
ESAIL 55844.23 2879.79

duces enough alternative priority assignments spreading across Pareto fronts
(as visible from the solutions obtained by OPAM in Figure 11), these differ-
ences in ∆ have limited implications in practice.

The answer to RQ2 is that OPAM significantly outperforms SEQ with re-
spect to HV and GD+ when in the presence of more than a few aperi-
odic tasks and therefore higher uncertainty in terms of task arrivals. OPAM
therefore generate solutions on a Pareto front that is closer to the unknown,
optimal one. In other words, coevolution is a suitable and successful strategy
for finding better priority assignments in complex systems.

RQ3. Table 5 reports the average execution times and memory usage required
to run OPAM for the six industrial subjects, over 50 runs. As shown in Table 5,
finding optimal priority assignments for ESAIL requires the largest execution
time (≈15.5h) and memory usage (≈2.9GB), compared to the other subjects.
We note that such execution time and memory usage are acceptable as OPAM
can be executed offline in practice.

Figures 12 and 13 show, respectively, the execution times and memory
usage from EXP3.1 (a), EXP3.2 (b), EXP3.3 (c), and EXP3.4 (d), described
in Section 7.4. The boxplots in the figures show distributions (25%-50%-75%)
obtained from 50 × 10 runs of OPAM for a set of 10 synthetic subjects, which
are created with the same experimental setting. Regarding the execution time
of OPAM, Figures 12a and 12d show that the execution time of OPAM is
linear both in the number of tasks and simulation time. As for the memory
usage of OPAM, results in Figures 13a and 13d indicate that memory usage
is linear both in the number of tasks and in the simulation time. However,
the results depicted in Figures 12b, 12c, 13b, and 13c indicate that there are
no correlations between OPAM execution time and memory usage and the
following two parameters: ratio of aperiodic tasks and range factor. Therefore,
we expect OPAM to scale well as the numbers of tasks and simulation time
increase.

Optimal Priority Assignment for Real-Time Systems 43

1000

2000

3000

4000

10 20 30 40 50
Number of tasks (n)

E
xe

cu
tio

n
tim

e
(s

)

(a) Number of tasks (n)

1000

1500

2000

2500

0.1 0.2 0.3 0.4 0.5
Ratio of aperiodic tasks (γ)

E
xe

cu
tio

n
tim

e
(s

)

(b) Ratio of aperiodic tasks(γ)

4000

6000

8000

10000

12000

2 4 6 8 10
Range factor (µ)

E
xe

cu
tio

n
tim

e
(s

)

(c) Range factor (µ)

3000

6000

9000

2000 4000 6000 8000 10000
Simulation time (T)

E
xe

cu
tio

n
tim

e
(s

)

(d) Simulation time (T)

Fig. 12: Execution times of OPAM when varying the values of the following
parameters: (a) number of tasks n, (b) ratio of aperiodic tasks γ, (c) range
factor µ, and (d) simulation time T . The boxplots (25%-50%-75%) show the
execution times obtained from 500 runs of OPAM, i.e., 50 runs for each of the
10 synthetic subjects with the same configuration.

The answer to RQ3 is that the execution time and memory usage of OPAM
are linear in the number of tasks and simulation time, thus scaling to indus-
trial systems. Further, across our experiments, OPAM takes at most 15.5h
using 2.9GB of memory to optimize priority assignments, an acceptable re-
sult since this is done offline.

RQ4. Figure 14 compares, with respect to external fitness (see the fs() and
fc() fitness functions and the set E of sequences of task arrivals described in
Section 6.6), the Pareto solutions obtained by OPAM against the priority as-
signments defined by engineers for the six industrial subjects: ICS (Figure 14a),
CCS (Figure 14b), UAV (Figure 14c), GAP (Figure 14d), HPSS (Figure 14e),
and ESAIL (Figure 14f).

As shown in the figure, the solutions obtained by OPAM clearly outperform
the priority assignments defined by engineers regarding the two external ob-

44 Jaekwon Lee et al.

200

300

400

500

600

700

10 20 30 40 50
Number of tasks (n)

M
em

or
y

us
ag

e
(M

B
)

(a) Number of tasks (n)

300

400

500

0.1 0.2 0.3 0.4 0.5
Ratio of aperiodic tasks (γ)

M
em

or
y

us
ag

e
(M

B
)

(b) Ratio of aperiodic tasks(γ)

1000

1500

2000

2 4 6 8 10
Range factor (µ)

M
em

or
y

us
ag

e
(M

B
)

(c) Range factor (µ)

500

1000

1500

2000 4000 6000 8000 10000
Simulation time (T)

M
em

or
y

us
ag

e
(M

B
)

(d) Simulation time (T)

Fig. 13: Memory usage of OPAM when varying the values of the following
parameters: (a) number of tasks n, (b) ratio of aperiodic tasks γ, (c) range
factor µ, and (d) simulation time T . The boxplots (25%-50%-75%) show the
memory usage obtained from 500 runs of OPAM, i.e., 50 runs for each of the
synthetic subjects with the same configuration.

jectives: the magnitude of safety margins and the extent to which constraints
are satisfied.

Table 6 summarizes safety margins from the task executions of ESAIL when
using one of our priority assignments optimized by OPAM and the one defined
by engineers at LuxSpace. Note that we focus on ESAIL as it is not possible to
access the engineers who developed the other five industrial subjects reported
in the literature (Locke et al., 1990; Traore et al., 2006; Peraldi-Frati and Sorel,
2008; Mikučionis et al., 2010; Anssi et al., 2011). For comparison, we chose the
bottom-left solution in Figure 14f since it is optimal for the constraint fitness,
which is the same as the fitness value of the priority assignment defined by
engineers, and the differences in safety margin fitness among our solutions are
negligible.

As shown in Table 6, our optimized priority assignment significantly out-
performs the one of engineers. Our solution increases safety margins, on av-

Optimal Priority Assignment for Real-Time Systems 45

−10

−5

0

5

−11.280−11.276−11.272−11.268
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

)

Initial
OPAM

(a) ICS

−20

−10

0

−25.16−25.14−25.12−25.10
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

)

Initial
OPAM

(b) CCS

−40

−20

0

−840.2−840.0−839.8−839.6
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

)

Initial
OPAM

(c) UAV

−150

−100

−50

0

−1726 −1727 −1728 −1729 −1730
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

)

Initial
OPAM

(d) GAP

−200

−100

0

−70 −72 −74 −76
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

)

Initial
OPAM

(e) HPSS

−80

−40

0

−3300−3260−3220−3180
Fitness: safety margins (fs)

F
itn

es
s:

 c
on

st
ra

in
ts

 (
fc

) Initial
OPAM

(f) ESAIL

Fig. 14: Comparing Pareto solutions obtained by OPAM and priority assign-
ments defined by engineers for the six industrial subjects: (a) ICS, (b) CCS,
(c) UAV, (d) GAP, (e) HPSS, and (f) ESAIL. The points located closer to the
bottom left of each plot are considered to be better priority assignments when
compared to points closer to the top right.

erage, by 5.33% compared to the engineers’ solution. For aperiodic tasks, our
solution decreases safety margins by 0.01% (4.2ms difference) when the safety
margins being compared are the maximum margins observed in both solutions
(see the maximum safety margins, 59710.3ms obtained by engineers’ solution
and 59707.2ms obtained by OPAM, in Table 6). Such a small decrease is
however negligible in the context of ESAIL as the maximum safety margin

46 Jaekwon Lee et al.

Table 6: Comparing safety margins from the task executions of ESAIL when
using our optimized priority assignment and the one defined by engineers.

Periodic tasks Aperiodic tasks All tasks

Engineer

Min -44.5 9.4 -44.5
Max 1879.7 59710.3 59710.3
Avg. 126.6 52.6 78.1

Median 82.1 9.4 48.1

OPAM

Min 48.1 9.4 9.4
Max 1879.7 59707.2 59707.2
Avg. 129.8 57.2 82.3

Median 85.7 9.4 48.1

% Difference

Min 208.09% 0.00% 121.12%
Max 0.00% -0.01% -0.01%
Avg. 2.53% 8.89% 5.33%

Median 4.38% 0.00% 0.00%
∗ Unit of time: ms

obtained by our solution is still large, i.e., ≈1m. For periodic tasks, we note
that our solution increases safety margins by 208.09% when the safety margins
being compared are the minimum margins observed in both solutions (see the
minimum safety margins, -44.5ms obtained by engineers’ solution and 48.1ms
obtained by OPAM, in Table 6). Note that the minimum safety margin of
-44.5ms obtained with the engineers’ solution indicates that a task violates
its deadline. In the context of ESAIL, which is a mission-critical system, such
gain in safety margins in the executions of periodic tasks is important because
the hard deadlines of periodic tasks are more critical than the soft deadlines
of aperiodic tasks.

Investigating practitioners’ perceptions of the benefits of OPAM is nec-
essary to adopt OPAM in practice. To do so, we draw on the qualitative
reflections of three software engineers at LuxSpace, with whom we have been
collaborating on this research. They have had four to seven years of expe-
rience developing satellite systems at LuxSpace, with more than 50 years of
collective experience in companies. All the reflections are based on observa-
tions made throughout our interactions. The engineers at LuxSpace deemed
OPAM to be an improvement over their current practice as it allows them
to perform domain-specific trade-off analysis among Pareto solutions and is
useful in practice to support decision making with respect to their task de-
sign. Encouraged by the promising results, we are now applying OPAM to new
systems in collaboration with LuxSpace.

The answer to RQ4 is that OPAM helps optimize priority assignments such
that they outperform those manually defined by engineers based on domain
expertise. Our results show that OPAM, compared to current practice, in-
creases safety margins, on average, by 5.33%.

Optimal Priority Assignment for Real-Time Systems 47

7.8 Threats to Validity

To mitigate the main threats that arise from not accounting for random varia-
tion, we compared OPAM against RS under identical parameter settings. We
present all the underlying parameters and provide the full package of our ex-
periments to facilitate replication. Also, we ran OPAM 50 times for each study
subject and compared results using statistical analysis, i.e., Mann-Whitney U-
test and Vargha and Delaney’s Â12.

We note that there are prior studies that aim at optimizing priority as-
signments such as OPA (Audsley, 1991) and RPA (Davis and Burns, 2007).
However, to our knowledge, none of the existing works offer ways to analyze
trade-offs among equally viable priority assignments with respect to safety
margins and the satisfaction of constraints. Nevertheless, we attempted to
compare OPAM with an extension of an existing method, e.g., RPA (Davis
and Burns, 2007). To do so, we first applied an exhaustive schedulability anal-
ysis technique to the ESAIL subject – our motivating case study – in order
to verify whether the ESAIL tasks are schedulable for a given priority as-
signment. Note that existing priority assignment techniques are built on such
schedulability analysis methods, which are therefore a prerequisite. We chose
UPPAAL (Behrmann et al., 2004), a model checker, for schedulability analysis
as it has been used in real-time system studies (Mikučionis et al., 2010; Yu
et al., 2010; Yalcinkaya et al., 2019). However, our experiment results using
UPPAAL for ESAIL showed that it was not able to complete the analysis
task, even after 5 days of execution, for a single priority assignment. We were
therefore not able to perform experimental comparisons with existing prior-
ity assignment methods. Since this evaluation is not the main focus of this
article, we point the reader to the UPPAAL specification of ESAIL available
online (Lee et al., 2021).

Recall from Section 6.2 that OPAM assigns tasks’ WCETs to their execu-
tion times when it simulates the worst-case executions of tasks while varying
task arrival times. In many real-time systems studies (Briand et al., 2005; Guan
et al., 2009; Lin et al., 2009; Anssi et al., 2011; Zeng et al., 2014; Di Alesio
et al., 2015; Dürr et al., 2019), static WCETs are often used instead of varying
task execution times for the purpose of real-time analysis. For example, practi-
tioners typically use WCETs to estimate the lowest bound of CPU utilization
required to properly apply the rate monotonic scheduling policy (Fineberg and
Serlin, 1967) to their systems. Similarly, OPAM assumes that near-worst-case
schedule scenarios can be simulated by assigning tasks’ WCETs to their exe-
cution times and varying tasks’ arrival times using search. A near-worst-case
schedule scenario entails that the magnitude of deadline misses is maximized
when tasks execute as per this scenario. Under this working assumption, we
were able to empirically evaluate the sanity, coevolution, scalability, and use-
fulness aspects of OPAM (see Section 7). The results indicate that OPAM is
a promising and useful tool. However, the formal proof of whether or not the
WCET assumption holds in the system model described in Section 3 requires
complex analysis, accounting for varying task arrival times, triggering relation-

48 Jaekwon Lee et al.

ships, resource dependencies, and multiple cores. When task execution times
need to be varied during simulation, engineers can adapt OPAM by utilizing
Monte-Carlo simulation (Kroese et al., 2014) to account for such variations.

The main threat to external validity is that our results may not generalize
to other systems. We mitigate potential biases and errors in our experiments
by drawing on real industrial subjects from different domains and several syn-
thetic subjects. Specifically, we selected two subjects from the aerospace do-
main, two from the automotive domain, and two from the avionics domain.
The positive feedback obtained from LuxSpace and the encouraging results
from our industrial case studies indicate that OPAM is a scalable and prac-
tical solution. Furthermore, we believe OPAM introduces a promising avenue
for addressing the problem of priority assignment by applying coevolutionary
algorithms, even for systems that use other scheduling policies, e.g., prior-
ity inheritance. In order for OPAM to support different scheduling policies,
the main requirement is to replace the existing simulator (described in Sec-
tion 6) with a new simulator supporting the desired scheduling policy. In our
approach, the coevolution part of OPAM is separated from the scheduling pol-
icy, which is contained in the simulator. Hence, we deem the expected changes
for the coevolution part of OPAM to be minimal. Future studies are neverthe-
less necessary to investigate how OPAM can be adapted to find near-optimal
priority assignments for other real-time systems in different contexts.

8 Conclusion

We developed OPAM, a priority assignment method for real-time systems,
that aims to find equally viable priority assignments that maximize the mag-
nitude of safety margins and the extent to which engineering constraints are
satisfied. OPAM uses a novel approach, based on multi-objective, competitive
coevolutionary search, that simultaneously evolves different species, i.e., pop-
ulations of priority assignments and stress test scenarios, that compete with
one another with opposite objectives, the former trying to minimize chances
of deadline misses while the latter attempts to maximize them. We evaluated
OPAM on a number of synthetic systems as well as six industrial systems
from different domains. The results indicate that OPAM is able to find signif-
icantly better solutions than both those manually defined by engineers based
on expert knowledge and those obtained by our baselines: random search and
sequential search. Further, OPAM scales linearly with the number of tasks in
a system and the time required to simulate task executions. Execution times
on our industrial systems are practically acceptable.

In the future, we will continue to study the problem of optimal priority
assignment by accounting for (1) priority assignments that change dynami-
cally, (2) WCET value ranges that account for non-deterministic computation
times, (3) interrupt handling routines that execute differently compared to
real-time tasks, and (4) hybrid scheduling policies that combine multiple stan-
dard policies. We also plan to develop a real-time task modeling language to

Optimal Priority Assignment for Real-Time Systems 49

specify task characteristics such as resource dependencies, triggering relation-
ships, engineering constraints, and behaviors of real-time tasks and to facilitate
real-time system analysis, e.g., optimal priority assignment and schedulability
analysis. In addition, we would like to incorporate additional analysis capa-
bilities into OPAM in order to verify whether or not a system satisfies the
required properties, e.g., schedulability of tasks and absence of deadlocks, for
a given priority assignment. For example, statistical model checking (Legay
et al., 2010) may allow us to verify whether tasks meet their deadlines for a
given priority assignment with a probabilistic guarantee. In the long term, we
plan to more conclusively validate the usefulness of OPAM by applying it to
additional case studies in different application domains.

Acknowledgements We thank Yago Isasi Parache, LuxSpace, for his support in conduct-
ing our industrial case study. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 694277), and NSERC of Canada under the Discovery and
CRC programs. The experiments presented in this paper were carried out using the HPC
facilities of the University of Luxembourg (Varrette et al., 2014) – see hpc.uni.lu.

References

Abdessalem RB, Panichella A, Nejati S, Briand LC, Stifter T (2020) Auto-
mated repair of feature interaction failures in automated driving systems.
In: Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’20), pp 88–100

Andrade SS, Macêdo RJdA (2013) A search-based approach for architectural
design of feedback control concerns in self-adaptive systems. In: Proceedings
of the 2013 IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO’13), pp 61–70

Anssi S, Tucci-Piergiovanni S, Kuntz S, Gérard S, Terrier F (2011) Enabling
scheduling analysis for AUTOSAR systems. In: Proceedings of the 14th
IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC’11), pp 152–159

Arcuri A, Briand LC (2014) A hitchhiker’s guide to statistical tests for as-
sessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24(3):219–250

Arcuri A, Fraser G (2011) On parameter tuning in search based software en-
gineering. In: Proceedings of the 3th International Symposium on Search
Based Software Engineering (SSBSE’11), pp 33–47

Arcuri A, Iqbal MZ, Briand LC (2010) Black-box system testing of real-time
embedded systems using random and search-based testing. In: Proceed-
ings of the IFIP International Conference on Testing Software and Systems
(ICTSS’10), vol 6435, pp 95–110

Arpaci-Dusseau RH, Arpaci-Dusseau AC (2018) Operating Systems: Three
Easy Pieces, 1st edn. Arpaci-Dusseau Books

http://hpc.uni.lu

50 Jaekwon Lee et al.

Audsley NC (1991) Optimal priority assignment and feasibility of static pri-
ority tasks with arbitrary start times. Tech. rep., Dept. Computer Science,
University of York

Audsley NC (2001) On priority assignment in fixed priority scheduling. Infor-
mation Processing Letters 79(1):39–44

Baruah SK, Burns A, Davis RI (2011) Response-time analysis for mixed crit-
icality systems. In: Proceedings of the 2011 IEEE 32nd Real-Time Systems
Symposium (RTSS’11), pp 34–43

Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL. In: Formal
Methods for the Design of Real-Time Systems: International School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems, pp 200–236

Bernat G, Burns A, Llamosí A (2001) Weakly hard real-time systems. IEEE
Transactions on Computers 50(4):308–321

Boussaa M, Kessentini W, Kessentini M, Bechikh S, Ben Chikha S (2013)
Competitive coevolutionary code-smells detection. In: Proceedings of the
5th International Symposium on Search Based Software Engineering (SS-
BSE’13), pp 50–65

Briand LC, Labiche Y, Shousha M (2005) Stress testing real-time systems
with genetic algorithms. In: Proceedings of the 7th Annual Conference on
Genetic and evolutionary Computation (GECCO’05), pp 1021–1028

Chen T, Li K, Bahsoon R, Yao X (2018) FEMOSAA: Feature-guided and
knee-driven multi-objective optimization for self-adaptive software. ACM
Transactions on Software Engineering and Methodology 27(2):1–50

Chen TY, Kuo FC, Merkel RG, Tse TH (2010) Adaptive Random Testing: The
ART of test case diversity. Journal of Systems and Software 83(1):60–66

Chu Y, Burns A (2008) Flexible hard real-time scheduling for deliberative AI
systems. Real-Time Systems 40(3):241–263

Davis RI, Bertogna M (2012) Optimal fixed priority scheduling with deferred
pre-emption. In: Proceedings of the 2012 IEEE 33rd Real-Time Systems
Symposium (RTSS’12), pp 39–50

Davis RI, Burns A (2007) Robust priority assignment for fixed priority real-
time systems. In: Proceedings of the 28th IEEE International Real-Time
Systems Symposium (RTSS’07), pp 3–14

Davis RI, Burns A (2009) Robust priority assignment for messages on Con-
troller Area Network (CAN). Real-Time Systems 41(2):152–180

Davis RI, Burns A (2011) Improved priority assignment for global fixed prior-
ity pre-emptive scheduling in multiprocessor real-time systems. Real-Time
Systems 47(1):1–40

Davis RI, Zabos A, Burns A (2008) Efficient exact schedulability tests for fixed
priority real-time systems. IEEE Transactions on Computers 57(9):1261–
1276

Davis RI, Cucu-Grosjean L, Bertogna M, Burns A (2016) A review of priority
assignment in real-time systems. Journal of Systems Architecture 65:64–82

Optimal Priority Assignment for Real-Time Systems 51

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2):182–197

Di Alesio S, Gotlieb A, Nejati S, Briand LC (2012) Testing deadline misses
for real-time systems using constraint optimization techniques. In: Proceed-
ings of the 2012 IEEE 5th International Conference on Software Testing,
Verification and Validation (ICST’12), pp 764–769

Di Alesio S, Nejati S, Briand LC, Gotlieb A (2013) Stress testing of task dead-
lines: A constraint programming approach. In: Proceedings of the IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE’13),
pp 158–167

Di Alesio S, Briand LC, Nejati S, Gotlieb A (2015) Combining genetic algo-
rithms and constraint programming to support stress testing of task dead-
lines. ACM Transactions on Software Engineering and Methodology 25(1):1–
37

Durillo JJ, Nebro AJ (2011) JMetal: A java framework for multi-objective
optimization. Advances in Engineering Software 42(10):760–771

Dürr M, Brüggen GVD, Chen KH, Chen JJ (2019) End-to-end timing analysis
of sporadic cause-effect chains in distributed systems. ACM Transactions on
Embedded Computing Systems 18(5s):1–24

Emberson P, Stafford R, Davis RI (2010) Techniques for the synthesis of mul-
tiprocessor tasksets. In: Proceedings of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS’10), pp 6–11

Ficici SG (2004) Solution concepts in coevolutionary algorithms. Ph.d. thesis,
Brandeis University, Department of Computer Science, Waltham, MA

Fineberg MS, Serlin O (1967) Multiprogramming for hybrid computation. In:
Proceedings of the AFIPS Fall Joint Computing Conference (AFIPS’67), pp
1–13

Gendreau M, Potvin JY (2010) Handbook of Metaheuristics. Springer
George L, Rivierre N, Spuri M (1996) Preemptive and non-preemptive real-
time uniprocessor scheduling. Research Report RR-2966, INRIA, projet RE-
FLECS

Goldberg DE, Lingle R (1985) Alleleslociand the traveling salesman problem.
In: Proceedings of the 1st International Conference on Genetic Algorithms,
pp 154–159

Grass W, Nguyen THC (2018) Improved response-time bounds in fixed priority
scheduling with arbitrary deadlines. Real-Time Systems 54(1):1–30

Guan N, Stigge M, Yi W, Yu G (2009) New response time bounds for fixed
priority multiprocessor scheduling. In: Proceedings of the 2009 30th IEEE
International Real-Time Systems Symposium (RTSS’09), pp 387–397

Hatvani L, Afshar S, Bril RJ (2018) Optimal priority and threshold assignment
for fixed-priority preemption threshold scheduling. ACM SIGBED Review
15(1):43–49

52 Jaekwon Lee et al.

Hemmati H, Arcuri A, Briand LC (2013) Achieving scalable model-based test-
ing through test case diversity. ACM Transactions on Software Engineering
and Methodology 22(1):1–42

Ishibuchi H, Masuda H, Tanigaki Y, Nojima Y (2015) Modified distance cal-
culation in generational distance and inverted generational distance. In:
Proceedings of the 8th International Conference on Evolutionary Multi-
Criterion Optimization (EMO’15), pp 110–125

Islam MM, Marchetto A, Susi A, Scanniello G (2012) A multi-objective tech-
nique to prioritize test cases based on latent semantic indexing. In: Proceed-
ings of the 2012 16th European Conference on Software Maintenance and
Reengineering (CSMR’12), pp 21–30

Knowles JD, Corne DW (2000) Approximating the nondominated front using
the pareto archived evolution strategy. Evolutionary Computation 8(2):149–
172

Kroese DP, Brereton TJ, Taimre T, Botev ZI (2014) Why the Monte Carlo
method is so important today. Wiley Interdisciplinary Reviews: Computa-
tional Statistics 6:386–392

Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of prob-
abilistic real-time systems. In: Proceedings of the 23rd International Con-
ference on Computer Aided Verification (CAV’11), pp 585–591

Langdon WB, Harman M, Jia Y (2010) Efficient multi-objective higher or-
der mutation testing with genetic programming. Journal of Systems and
Software 83(12):2416–2430

Lee H, Lee J, Yeom I, Woo H (2020a) Panda: Reinforcement learning-based
priority assignment for multi-processor real-time scheduling. IEEE Access
8:185570–185583

Lee J, Shin SY, Nejati S, Briand LC, Parache YI (2020b) Schedulability anal-
ysis of real-time systems with uncertain worst-case execution times. CoRR
abs/2007.10490

Lee J, Shin SY, Nejati S, Briand LC (2021) [Evaluation package] Optimal
priority assignment method for real-time systems. https://github.com/
SNTSVV/OPAM

Legay A, Delahaye B, Bensalem S (2010) Statistical model checking: An
overview. In: Proceedings of the International Conference on Runtime Ver-
ification (RV’10), pp 122–135

Leung JYT, Whitehead J (1982) On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance Evaluation 2(4):237–250

Li M, Chen T, Yao X (2020) How to evaluate solutions in Pareto-based search-
based software engineering? A critical review and methodological guidance.
IEEE Transactions on Software Engineering

Lin M, Xu L, Yang LT, Qin X, Zheng N, Wu Z, Qiu M (2009) Static se-
curity optimization for real-time systems. IEEE Transactions on Industrial
Informatics 5(1):22–37

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in
a hard-real-time environment. Journal of the ACM 20(1):46–61

Liu JWS (2000) Real-Time Systems, 1st edn. Prentice Hall PTR

https://github.com/SNTSVV/OPAM
https://github.com/SNTSVV/OPAM

Optimal Priority Assignment for Real-Time Systems 53

Locke CD, Vogel DR, Lucas L, Goodenough JB (1990) Generic avionics soft-
ware specification. Tech. rep., DTIC Document

Luke S (2013) Essentials of Metaheuristics, 2nd edn. Lulu, available for free
at http://cs.gmu.edu/∼sean/book/metaheuristics/

LuxSpace (2021) ESAIL. https://luxspace.lu/triton-2/
Mann HB, Whitney DR (1947) On a test of whether one of two random vari-
ables is stochastically larger than the other. Annals of Mathematical Statis-
tics 18(1):50–60

Marchetto A, Islam MM, Asghar W, Susi A, Scanniello G (2016) A multi-
objective technique to prioritize test cases. IEEE Transactions on Software
Engineering 42(10):918–940

Meneghini IR, Guimarães FG, Gaspar-Cunha A (2016) Competitive coevolu-
tionary algorithm for robust multi-objective optimization: The worst case
minimization. In: Proceedings of the 2016 IEEE Congress on Evolutionary
Computation (CEC’16), pp 586–593

Mikučionis M, Larsen KG, Rasmussen JI, Nielsen B, Skou A, Palm SU,
Pedersen JS, Hougaard P (2010) Schedulability analysis using UPPAAL:
Herschel-Planck case study. In: Proceedings of the International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’10), pp 175–190

Nejati S, Briand LC (2014) Identifying optimal trade-offs between CPU time
usage and temporal constraints using search. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis (ISSTA’14), pp
351–361

Nejati S, Di Alesio S, Sabetzadeh M, Briand LC (2012) Modeling and analysis
of CPU usage in safety-critical embedded systems to support stress test-
ing. In: Proceedings of the 15th International Conference of Model Driven
Engineering Languages and Systems (MODELS’12), vol 7590, pp 759–775

Nejati S, Adedjouma M, Briand LC, Hellebaut J, Begey J, Clement Y (2013)
Minimizing CPU time shortage risks in integrated embedded software. In:
Proceedings of the 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’13), pp 529–539

Peng D, Shin KG, Abdelzaher TF (1997) Assignment and scheduling commu-
nicating periodic tasks in distributed real-time systems. IEEE Transactions
on Software Engineering 23(12):745–758

Peraldi-Frati MA, Sorel Y (2008) From high-level modelling of time in MARTE
to real-time scheduling analysis. In: Proceedings of the MODELS’08 Work-
shop on Model Based Architecting and Construction of Embedded Systems
(ACES-MB), vol 503, pp 129–144

Popovici E, Bucci A, Wiegand RP, De Jong ED (2012) Coevolutionary prin-
ciples. In: Handbook of Natural Computing, Springer, pp 987–1033

Ralph P, bin Ali N, Baltes S, Bianculli D, Diaz J, Dittrich Y, Ernst N, Felderer
M, Feldt R, Filieri A, de França BBN, Furia CA, Gay G, Gold N, Graziotin
D, He P, Hoda R, Juristo N, Kitchenham B, Lenarduzzi V, Martínez J,
Melegati J, Mendez D, Menzies T, Molleri J, Pfahl D, Robbes R, Russo D,
Saarimäki N, Sarro F, Taibi D, Siegmund J, Spinellis D, Staron M, Stol K,

https://luxspace.lu/triton-2/

54 Jaekwon Lee et al.

Storey MA, Taibi D, Tamburri D, Torchiano M, Treude C, Turhan B, Wang
X, Vegas S (2020) Empirical standards for software engineering research.
2010.03525

Sayyad AS, Goseva-Popstojanova K, Menzies T, Ammar H (2013) On parame-
ter tuning in search based software engineering: A replicated empirical study.
In: Proceedings of the 2013 3rd International Workshop on Replication in
Empirical Software Engineering Research (RESER’13), pp 84–90

Shin SY, Nejati S, Sabetzadeh M, Briand LC, Zimmer F (2018) Test case prior-
itization for acceptance testing of cyber physical systems: A multi-objective
search-based approach. In: Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA’18), pp 49–60

Shin SY, Nejati S, Sabetzadeh M, Briand LC, Arora C, Zimmer F (2020) Dy-
namic adaptation of software-defined networks for IoT systems: A search-
based approach. In: Proceedings of the IEEE/ACM 15th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’20), pp 137–148

Sivanandam SN, Deepa SN (2008) Introduction to Genetic Algorithms, 1st
edn. Springer-Verlag

Tan SH, Yoshida H, Prasad MR, Roychoudhury A (2016) Anti-patterns in
search-based program repair. In: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE’16), pp 727–738

Tindell KW, Burns RA, Wellings A (1994) An extendible approach for ana-
lyzing fixed priority hard real-time tasks. Real-Time Systems 6(2):133–151

Traore K, Grolleau E, Cottet F (2006) Simpler analysis of serial transactions
using reverse transactions. In: Proceedings of the International Conference
on Autonomic and Autonomous Systems (ICAS’06), p 11

Vargha A, Delaney H (2000) A critique and improvement of the "CL" common
language effect size statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics 25(2):101–132

Varrette S, Bouvry P, Cartiaux H, Georgatos F (2014) Management of an
academic HPC cluster: The UL experience. In: Proceedings of the 2014
International Conference on High Performance Computing & Simulation
(HPCS’14), pp 959–967

Veldhuizen DAV, Lamont GB (1998) Multiobjective evolutionary algorithm
research : A history and analysis. Tech. Rep. TR–98–03, Air Force Institute
of Technology, Wright-Patterson AFB

Wang P, Huang J, Cui Z, Xie L, Chen J (2020) A gaussian error correction
multi-objective positioning model with NSGA-II. Concurrency and Compu-
tation: Practice and Experience 32(5):1–16

Wegener J, Grochtmann M (1998) Verifying timing constraints of real-time
systems by means of evolutionary testing. Real-Time Systems 15(3):275–
298

Wegener J, Sthamer H, Jones BF, Eyres DE (1997) Testing real-time systems
using genetic algorithms. Software Quality Journal 6(2):127–135

2010.03525

Optimal Priority Assignment for Real-Time Systems 55

Weimer W, Nguyen T, Le Goues C, Forrest S (2009) Automatically finding
patches using genetic programming. In: Proceedings of the 31st International
Conference on Software Engineering (ICSE’09), pp 364–374

Whitley D, Kauth J (1988) GENITOR: A different genetic algorithm. In: Pro-
ceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence,
pp 118–130

Wilkerson JL, Tauritz D (2010) Coevolutionary automated software correc-
tion. In: Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO’10), pp 1391–1392

Wilkerson JL, Tauritz DR, Bridges JM (2012) Multi-objective coevolutionary
automated software correction. In: Proceedings of the 14th Annual Confer-
ence on Genetic and Evolutionary Computation (GECCO’12), pp 1229–1236

Yalcinkaya B, Nasri M, Brandenburg BB (2019) An exact schedulability
test for non-preemptive self-suspending real-time tasks. In: Proceedings of
the 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE’19), pp 1228–1233

Yu F, Li G, Xiong N (2010) Schedulability analysis of multi-processor real-time
systems using UPPAAL. In: Proceedings of the 2nd International Conference
on Information Science and Engineering (ICISE’10), pp 1–6

Zeng H, Natale MD, Zhu Q (2014) Minimizing stack and communication mem-
ory usage in real-time embedded applications. ACM Transactions on Em-
bedded Computing Systems 13(5s):1–25

Zhang F, Burns A (2009) Schedulability analysis for real-time systems with
EDF scheduling. IEEE Transactions on Computers 58(9):1250–1258

Zhao Y, Zeng H (2017) The virtual deadline based optimization algorithm for
priority assignment in fixed-priority scheduling. In: Proceedings of the 2017
IEEE Real-Time Systems Symposium (RTSS’17), pp 116–127

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation 3(4):257–271

Jaekwon Lee is a Ph.D. candidate at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT), University
of Luxembourg. He received his M.S. in Computer Engi-
neering from Chungbuk National University (South Korea)
in 2015. His research interests are in search-based software
engineering, empirical software engineering, and machine
learning.

56 Jaekwon Lee et al.

Seung Yeob Shin is a Research Scientist at the Interdis-
ciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg. He received his Ph.D. degree
from the Laboratory for Advanced Software Engineering
Research (LASER) in the College of Information and Com-
puter Sciences at the University of Massachusetts Amherst
in 2016. His research interests are in software engineer-
ing, focusing on model-driven software development, search-
based software engineering, empirical software engineering,
and analysis of complex systems.

Shiva Nejati is an Associate Professor at the School of
Electrical Engineering and Computer Science of the Uni-
versity of Ottawa and a part-time Research Scientist at the
SnT Centre for Security, Reliability, and Trust, University
of Luxembourg. From 2009 to 2012, she was a researcher
at Simula Research Laboratory in Norway. She received her
Ph.D. degree from the University of Toronto, Canada in
2008. Nejati’s research interests are in software engineer-
ing, focussing on model-based development, software test-
ing, analysis of cyber-physical systems, search-based soft-
ware engineering and formal and empirical software engi-
neering methods. Nejati has coauthored over 50 journal and
conference papers, and regularly serves on the program com-
mittees of international conferences in the area of software
engineering. She has for the past ten years been conduct-
ing her research in close collaboration with industry part-
ners in telecommunication, maritime, energy, automotive
and aerospace sectors.

Lionel C. Briand is professor of software engineering and
has shared appointments between (1) The University of Ot-
tawa, Canada and (2) The SnT centre for Security, Reliabil-
ity, and Trust, University of Luxembourg. In collaboration
with colleagues, over 25 years, he has run many collabo-
rative research projects with companies in the automotive,
satellite, aeropsace, energy, financial, and legal domains. Li-
onel has held various engineering, academic, and leading
positions in six countries. He was one of the founders of
the ICST conference (IEEE Int. Conf. on Software Testing,
Verification, and Validation, a CORE A event) and its first
general chair. He was also EiC of Empirical Software En-
gineering (Springer) for 13 years and led, in collaboration
with first Victor Basili and then Tom Zimmermann, the
journal to the top tier of the very best publication venues
in software engineering.

Lionel was elevated to the grades of IEEE Fellow and ACM Fellow for his work on soft-
ware testing and verification. He was granted the IEEE Computer Society Harlan Mills
award and the IEEE Reliability Society engineer-of-the-year award for his work on model-

Optimal Priority Assignment for Real-Time Systems 57

based verification and testing, respectively in 2012 and 2013. He received an ERC Advanced
grant in 2016 – on the topic of modelling and testing cyber-physical systems – which is
the most prestigious individual research award in the European Union. Most recently, he
was awarded a Canada Research Chair (Tier 1) on "Intelligent Software Dependability and
Compliance". His research interests include: software testing and verification, applications
of AI in software engineering, model-driven software development, requirements engineering,
and empirical software engineering.

	Introduction
	Motivating case study
	Problem description
	Related Work
	Approach Overview
	Competitive Coevolution
	Evaluation
	Conclusion

