

PhD-FSTM-2022-032

The Faculty of Sciences, Technology and Medicine

DISSERTATION

Defence held on 22/03/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN Biologie

by

Pedro Miguel TEIXEIRA QUEIRÓS
Born on 22 July1992 in Rio Tinto, (Portugal)

DEVELOPMENT OF DATA INTEGRATION TOOLS

WITHIN FUNCTIONAL GENOMICS

Dissertation defence committee

Prof. Dr. Paul Wilmes
Professor and head of the Systems Ecology group, Université du Luxembourg

Dr. Patrick May
Head of the Genome Analysis group, Université du Luxembourg

Prof. Dr. Emma Schymanski, Chairwoman
Professor and head of the Environmental Cheminformatics, Université du Luxembourg

Prof. Dr. Rob Finn
Professor and head of the Microbiome Informatics team, EMBL-EBI

Prof. Dr. Thomas Rattei
Professor and head of the division of Computational Systems Biology, University of Vienna

Affidavit

I hereby confirm that the PhD thesis entitled ”Development of data integration tools within

functional genomics” has been written independently and without any other sources than

cited.

Luxembourg,

Pedro Queirós

ii

02/04/2022

1 Preface

My academic background is slightly unconventional; I completed my Nutritional Sciences

BSc (which had a heavy focus on Clinical Nutrition) in 2015 and then decided to change into

a career that better aligned with my propensity towards the computational fields. I finished

my Bioinformatics MSc in 2018, which served as an integral foundation to my programming

and Data Science skills. In 2019 I started my PhD, which was a precious learning experience

in some highly specific fields in Biology (for which I quickly realised I lacked some knowledge

due to my background in Nutrition), in addition, it also allowed me to practice and develop my

Data Science skills. Indeed, these past three years allowed me to find a field I’m passionate

about - data engineering. I would like to thank the University of Luxembourg for giving me

this opportunity. I would also like to thank Patrick May and Paul Wilmes for their mentoring

and supervision, and my colleagues and friends for their support. I would like to thank all the

jury members and Francesco Delogu and Benoit Kunath for reviewing this thesis. Finally,

I would like to thank my family and girlfriend for their unconditional support, you were the

supporting pillars that made all of this possible.

In retrospect, this thesis is also the culmination of the many years of my life spent as a

student. Having made my fair contribution in the form of publications and past theses, I have

allowed myself lighter tones of speech, if only to softly introduce the reader to the heavier

and, without a doubt, more serious topic of bioinformatics and derivatives.

Data is not inherently knowledge. This is especially evident in the present Age of In-

formation when data massively towers above the methodologies that attempt to dent it. As

with any overwhelming endeavour, it often helps to start by decomposing and analysing the

problem by raising different questions: Why and how was this data generated? How is it

structured? What do we want to do and what can we actually do with it? While data may

be trivially defined as a ”piece of information”, the Science of data cannot be addressed in

the same carefree and superficial manner, as data is generated for many reasons, in many

ways, and in many shapes; and so, in order to infer knowledge out of data, it is essential

to tread mindfully and carefully. This idea of putting good data to good use is the core of

iii

this thesis, that is, there is no central biological question or hypothesis, instead, this thesis

focuses on how to make the best possible use of the already available towering amounts of

data, i.e., data integration. Specifically, this PhD focuses on the integration of biological data

which goes in accordance with the interdisciplinary nature of the Systems and Molecular

Biomedicine programme of the Doctoral School in Science and Engineering.

iv

2 Abstract

Due to technological advances across all scientific domains, data is generated at an ex-

tremely fast pace. This is especially true in biology, where advances in computational and

sequencing technologies led to the necessity to develop automated methods for data analy-

sis; thus the field of bioinformatics was born. This thesis focuses on one specific field within

bioinformatics - functional genomics. To be precise, in the development of techniques and

software for the integration of data to generate novel insights. Indeed, as the amount of

knowledge increases, so does the need to integrate it systematically. In this context, the

work described herein relates to the integration of multiple resources to improve the func-

tional annotation of proteins, which led to the development of two bioinformatic tools - Mantis

and UniFunc. For the downstream integration and analysis of functional predictions, a net-

work annotation tool was developed - UniFuncNet, which, together with the previous tools,

enables the efficient functional characterisation of individual organisms or communities.

v

Index

1 Preface iii

2 Abstract v

3 Scientific output ix

4 Thesis structure xi

5 Introduction 1

5.1 The life cycle of data . 1

5.2 Data integration . 4

5.3 Protein function annotation . 7

5.4 Function similarity analysis . 10

5.5 Network annotation . 12

5.6 Scope and objectives of the presented work 14

6 Publications 16

6.1 Mantis: flexible and consensus-driven genome annotation 17

6.1.1 Summary . 17

6.1.2 Background . 19

6.1.3 Mantis . 23

6.1.4 Analysis . 25

6.1.5 Discussion . 34

6.1.6 Conclusion . 39

6.1.7 Methods . 39

6.1.8 Availability of source code and requirements 52

6.1.9 Availability of supporting data and materials 52

6.1.10 Concluding remarks . 57

6.2 Unification of functional annotation descriptions using text mining 58

6.2.1 Summary . 58

vi

6.2.2 Abstract . 59

6.2.3 Introduction . 60

6.2.4 Results . 61

6.2.5 Discussion . 65

6.2.6 Materials and methods . 67

6.2.7 Acknowledgements . 73

6.2.8 Concluding remarks . 74

6.3 UniFuncNet: a flexible network annotation framework 75

6.3.1 Summary . 75

6.3.2 Concluding remarks . 95

7 Discussion 96

7.1 Software improvements and future work . 96

7.1.1 Mantis . 97

7.1.2 UniFunc . 100

7.1.3 UniFuncNet . 101

7.2 Application of work . 102

7.2.1 Mantis . 102

7.2.2 UniFunc . 103

7.2.3 UniFuncNet . 103

8 Conclusion 108

vii

List of Figures

1 The life cycle of data . 3

2 Data integration . 6

3 Overview of the Mantis workflow . 24

4 Homolog selection for the 3 hit processing algorithms in Mantis 26

5 Annotation F1 score per hit processing algorithm and sample 29

6 F1 score per hit processing algorithm and organism, with and without using

taxonomy information . 31

7 Annotation F1 score of Mantis, eggNOG-mapper, and Prokka using different

reference data . 33

8 The impact of the reference data completeness on protein function annotation 37

9 Inter-HMMs hit processing steps . 48

10 Overview of the UniFunc workflow . 62

11 Performance of the baseline and SciSpacy models and UniFunc according to

precision and recall . 63

12 Use cases workflows . 83

13 UniFuncNet overview . 84

14 UniFuncNet search modes . 87

15 UniFuncNet results as a multipartite graph . 88

16 Neo4j database . 105

viii

3 Scientific output

Pedro Queirós, Francesco Delogu, Oskar Hickl, Patrick May and Paul Wilmes, ”Mantis:

flexible and consensus-driven genome annotation”, GigaScience, Volume 10, Issue 6, 2021,

https://doi.org/10.1093/gigaScience/giab042

Pedro Queirós, Polina Novikova, Paul Wilmes and Patrick May. ”Unification of functional

annotation descriptions using text mining” Biological Chemistry, Volume 402, Issue 8, 2021

https://doi.org/10.1515/hsz-2021-0125

Pedro Queirós, Oskar Hickl, Susana Martı́nez Arbas, Paul Wilmes and Patrick May, ”Uni-

FuncNet: a flexible network annotation framework”. Manuscript submitted.

Susana Martı́nez Arbas, Susheel Bhanu Busi, Pedro Queirós, Laura De Nies, Malte Herold,

Patrick May, Paul Wilmes, Emilie EL Muller, and Shaman Narayanasamy. ”Challenges,

Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome

Studies.” Frontiers in Genetics Volume 12, 2021 https://doi.org/10.3389/fgene.2021.

666244

Tim Van Den Bossche, Benoit J. Kunath, Kay Schallert, Stephanie S. Schäpe, Paul E. Abra-

ham, Jean Armengaud, Magnus Ø. Arntzen, Ariane Bassignani, Dirk Benndorf, Stephan

Fuchs, Richard J. Giannone, Timothy J. Griffin, Live H. Hagen, Rashi Halder, Céline Henry,

Robert L. Hettich, Robert Heyer, Pratik Jagtap, Nico Jehmlich, Marlene Jensen, Cather-

ine Juste, Manuel Kleiner, Olivier Langella, Theresa Lehmann, Emma Leith, Patrick May,

Bart Mesuere, Guylaine Miotello, Samantha L. Peters, Olivier Pible, Pedro T. Queirós,

Udo Reichl, Bernhard Y. Renard, Henning Schiebenhoefer, Alexander Sczyrba, Alessan-

dro Tanca, Kathrin Trappe, Jean-Pierre Trezzi, Sergio Uzzau, Pieter Verschaffelt, Martin von

Bergen, Paul Wilmes, Maximilian Wolf, Lennart Martens, and Thilo Muth, ”Critical Assess-

ment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established

ix

https://doi.org/10.1093/gigaScience/giab042
https://doi.org/10.1515/hsz-2021-0125
https://doi.org/10.3389/fgene.2021.666244
https://doi.org/10.3389/fgene.2021.666244

workflows.” Nature communications Volume 12, Issue 1, 2021 https://doi.org/10.1038/

s41467-021-27542-8

Oskar Hickl, Pedro Queirós, Paul Wilmes, Patrick May, and Anna Heintz-Buschart. ”binny:

an automated binning algorithm to recover high-quality genomes from complex metage-

nomic datasets.” bioRxiv 2021. https://doi.org/10.1101/2021.12.22.473795

Benoit J. Kunath, Oskar Hickl, Pedro Queirós, Camille Martin-Gallausiaux, Laura A. Le-

brun, Rashi Halder, Thomas S. Schmidt, Matthew R. Hayward, Dörte Becher, Anna Heintz-

Buschart, Carine de Beaufort, Peer Bork, Patrick May, Paul Wilmes. ”Alterations of oral mi-

crobiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by multi-omic

analysis”. Submitted to the Microbiome Journal in the ”Integrative multi-omics approaches

to elucidate microbiome dynamics and ecosystem processes” collection.

Francesco Delogu, Benoit J. Kunath, Pedro Queirós, Patrick May, Paul Wilmes ”Can we

forecast a microbial ecosystem?”. Manuscript in preparation.

Selected talk in Metaproteomics Symposium 2021 ”Mantis: flexible and consensus-driven

genome annotation”

Selected talk in Univeristy of Luxembourg PhD days 2021 ”Mantis: flexible and consensus-

driven genome annotation”

Poster presentation in German conference on Bioinformatics 2021 ”Mantis: flexible and

consensus-driven genome annotation”

x

https://doi.org/10.1038/s41467-021-27542-8
https://doi.org/10.1038/s41467-021-27542-8
https://doi.org/10.1101/2021.12.22.473795

4 Thesis structure

The present document is a cumulative thesis, therefore it is centred around the work devel-

oped during my PhD and the respective publications. For this reason, it is organised in such

a way that the reader is introduced to the several challenges of biological data integration

in respect to the various publications. This thesis starts by discussing the life cycle of data

and how several aspects need to be tackled so that data can be successfully integrated. A

general introduction follows into various topics (protein function annotation, functional simi-

larity analysis, and network annotation), followed by a brief mention of the data integration

challenges inherent to them.

The three first-author publications resulting from this PhD are then presented. This is

followed by a general discussion on how the work developed during this PhD addressed

these challenges. The publications are as follows:

• Mantis: flexible and consensus-driven genome annotation [176]

• Unification of functional annotation descriptions using text mining [179]

• UniFuncNet: a flexible network annotation framework [174]

In addition, the continued development and use of the tools presented is discussed.

Some of the remaining challenges in data integration and future perspectives is also dis-

cussed.

xi

1

5 Introduction

5.1 The life cycle of data

As with many other data-driven fields, Bioinformatics is rooted in the need to use biological

data in an automated manner. Bioinformatics, etymologically derived from ”biology ” and

”informatics”, was initially defined in 1970 as the ”study of informatic processes in biotic sys-

tems” [88]. Bioinformatics started with the application of computational methods for protein

sequence analysis [66] but, with advances in molecular biology, computer Science, and se-

quencing technology [66], bioinformatics soon started using exponentially larger amounts

of data (i.e., big data). The advent of big data brought with it new technical challenges in

regards to data mining, that is, the extraction of facts, truths, or principles (i.e., knowledge),

from the investigation of large datasets.

Data is not inherently knowledge, so researchers are tasked with generating data and

transforming it so that new knowledge can be created. This process can be represented

as a cycle (Figure 1), where data is generated, processed, and then used to drive new hy-

potheses and produce new data. The first step in the life cycle of data (Figure 1) is planning.

In this step, the case study is designed according to previous knowledge or observations.

To this end, past data can be reused (e.g., re-analysis of public datasets) or serve as the

foundation for new hypotheses. After planning, the data collection can then start. Because

the methods used to generate biological data are highly dependent on the field and case

study at hand, the respective representation of this data is therefore naturally inherent to

the continuously evolving technical methodologies of the field it originates from (e.g., in the

field of genomics, fastq is a common format to store sequencing data). These formats are

regularly processed, leading to the branching of the original format into other formats that

aim to address more specific tasks (e.g., sequences are extracted from fastq files to cre-

ate fasta files). However, these data representation formats (either raw or processed) may

still not necessarily contain any intrinsic knowledge, so researchers frequently apply further

downstream analysis to extract knowledge from this data. This downstream analysis is often

not done by the same researchers, while some may generate data, others may be respon-

2

sible for analysing it. Data and corresponding data-derived knowledge may be integrated

in multiple manners, depending on the specific needs of the case study. This leads to the

creation of data in various formats which are hard to integrate in an automated and scalable

manner. This is not only due to the fact that bioinformatics is a rapidly evolving field, but also

because it bridges two very different fields (i.e., biology and informatics), which makes it

challenging to decide on ”universal” data formats. Researchers coming from the field of biol-

ogy often prefer human-readable formats, whereas researchers from the field of informatics

tend to prefer machine-readable formats that may be efficiently stored and accessed. Thus,

it is crucial to consider both viewpoints’ needs and use formats that address human needs

such as readability and interpretability, whilst also preserving the qualities of machine-centric

formats (which ultimately provide a crucial quality of data integration - scalability). Data is

then stored and later used by the scientific community according to the expertise of each

researcher. Hence, data needs to be stored in a manner that allows researchers locally or

remotely connected to collaboratively use it. Fortunately, in recent years there have been ef-

forts to standardise data representation and storage, such as the FAIR initiative [236] which

intends to provide guidelines to improve the Findability, Accessibility, Interoperability, and

Reuse of digital assets. Paired with such guidelines, is the promotion of Open Science

[238], which scientific journals, data repositories, and institutions are increasingly adopting

[63, 55, 17].

Despite significant efforts, data representation and storage standardisation remain chal-

lenging, due to technical, monetary, and subjective reasons (e.g., resistance to adopt guide-

lines). Data is also often associated with metadata, which, depending on the collection pro-

tocols, can be largely unstructured. Additionally, data is often re-analysed and restructured

into secondary databases, all of which have their own end-goal and, by extent, structure; for

example, the Nucleic Acids Research journal reported, in 2021, a total of 1641 databases

just in their database issue [182]. This abundance of data and databases highlights the need

to discuss how data can be complementarily used and integrated in a multitude of scenarios.

3

Figure 1 The life cycle of data encompasses several integration steps. These range from
data-related integration steps to the integration of divergent expertise, and cultural norms.
Adhering to collaborative behaviours and guidelines eases the transition between each of
these steps.

4

5.2 Data integration

Due to technological advances, scientific data is routinely generated by thousands of sci-

entists at a quicker pace than ever before [39]. This data is then processed and stored

in widely different platforms, leading to the creation of numerous repositories rich in highly

complex data. Despite challenges [243, 72, 71] such as: (i) data disparity, (ii) scalability,

(iii) accessibility, and (iv) storage and computation costs, data integration (i.e., the process

of combining data from multiple sources into one composite resource) is becoming increas-

ingly important. In fact, multiple initiatives and organisations that promote biological data

integration have been formed, e.g., ELIXIR [79] and EMBL-EBI [40].

Selecting informative data is challenging, not only due to the existence of copious amounts

of highly complex data, but also because of differences (e.g., structure or resolution) in the

manner at which this data is generated (for example, due to the end-goal of the case study,

or monetary restrictions). At the core of data integration is the identification of shared fea-

tures between disparate data (either obtained directly or through data transformation); this

is followed by the creation of downstream data integration methods that reflect the nature of

the respective data, but are also specific to the end-goal of the analysis (which, often lead

to the creation of new knowledge bases, i.e., databases). Data integration is not a linear

process though, data is often transformed multiple times until it suits the desired framework.

For example, enzymatic rates are experimentally measured within a certain experimental

context, and this data is published; other researchers then integrate this data into external

databases (which for example, requires standardisation of units of measurement); and a

researcher working on constraint-based modelling then takes these enzymatic rates and in-

cludes them into a metabolic model, which they then archive in a repository such as BiGG

[110]. Despite any disparities found in data, data integration is increasingly seen as a ne-

cessity in the field of bioinformatics, since using data in a complementary manner tends to

lead to a more comprehensive analysis of biosystems [213].

Data selection also entails determining which data should be used based on the premise of

providing a solution that scales to the problem at hand. While applying the correct technical

methods is essential (e.g., choosing the most appropriate database type and structure), it

5

is crucial to acknowledge computational bottlenecks, and thus select data accordingly; that

is, the amount and complexity of the data used should scale to the scope of the problem at

hand. Overall, the selection of data needs to take into account the different aspects of data,

whilst also ensuring it can be efficiently used towards the pre-established end-goal.

Accessibility is a more complex issue to tackle since it relies on the community adopting

guidelines such as FAIR, which, unfortunately, are still met with some resistance [24, 198].

Accessibility is not only a matter of providing data though, it is also related to, for example, (i)

the acquisition cost (which is why it is important to promote open access), (ii) the acquisition

ease (e.g., the existence of file transfer protocols), and (iii) the way it is made available

(e.g., structured/unstructured). In my experience, a lack of a machine-readable structure

is one of the main issues to tackle when trying to integrate biological data. Depending on

the data at hand, this lack of structure can even prohibit its use, as the effort to integrate it

would outweigh its utility, and the structural variability (i.e., no discernible structural patterns)

makes it impossible to parse systematically.

Data also has a monetary and environmental impact that should not be ignored. Indeed,

it is progressively relevant to consider the energy consumption associated with data storage

[184] and analysis [248, 74]. Therefore, it is vital to promote sustainable data warehousing

and the production of efficient data analysis workflows.

To conclude on this topic, the steps preceding data integration can be thought of as a

filtering process, that is, data is highly abundant, and so it is the task of the data engineer

to select data based on project-specific criteria and requirements. This effectively means

analysing multiple datasets (e.g., determining which data is required and how to access it),

checking and understanding their structural divergences, efficiently extracting the desired

data, and finally being able to develop data models that satisfy the requirements of the

resulting composite dataset (Figure 2).

While some of the most general challenges in data integration were covered, this is

heavily application-specific; therefore, the various publications enclosed in this thesis dis-

cuss in greater detail the various aspects of the data being integrated and the methodology

to do so. In order to provide a theoretical background to the reader, the central topics of

6

Figure 2 Data integration is the process of merging multiple sources of data into a com-
posite dataset. To do so, a thorough analysis and selection of each data source according
to the stipulated end-goal/application of the composite dataset are necessary. This entails
the selection of data that fits within certain criteria, e.g., the scale, complexity, or resolution
of the current application. Data sources may also contain data that is not relevant in the
current context, inaccessible, or is not appropriately formatted, being therefore necessary to
extract, transform and load the integrated data into a standardised format.

7

each publication will be introduced as follows: (i) protein function annotation, (ii) function

similarity analysis, and (iii) network annotation. Note that each publication provides a more

in-depth introduction and thus, each topic will only be summarily introduced in order to avoid

redundancy.

5.3 Protein function annotation

Protein function annotation (PFA) is the process of identifying regions of interest in a pro-

tein sequence and assigning these regions a certain biological function [176]. PFA has

been applied to genomics for many years [58], however, with the arrival of high-throughput

shotgun sequencing methodologies it has become increasingly important to rapidly func-

tionally describe the metagenome-assembled genomes (MAGs) [155, 180] recovered from

vast and diverse microbial communities. Functional annotation plays an important role in

many bioinformatic workflows [153, 247] as it is an integral foundation of many downstream

omics analysis (e.g., genomics or proteomics). It may be used, for example, to describe the

functional properties of organisms and communities [185, 152], or to create genome-scale

metabolic models [18]. Function annotation can be done in several manners, such as:

• sequence homology - where an unknown sequence is compared to a collection of well-

annotated sequences (i.e., reference database), and, provided these are sufficiently

similar, the function from the well-annotated sequence is transferred to the unknown

sequence. Commonly used tools for this purpose include BLAST [3], Diamond [26])

and HMMER [183];

• protein structure similarity - through different methods (e.g., deep learning or crystal-

lography), the structure of an unknown protein sequence is predicted through multiple

approaches (e.g., modelling, X-Ray, NMR, Cryo-EM) ; this structure is then compared

(using protein structure alignment or 3D structure motif searches) to functionally anno-

tated protein structures, and, provided enough similarity is found, the function is trans-

ferred from the functionally annotated protein structures to the predicted structure [234,

122, 103]. Particularly interesting tools for structure prediction and annotation include

8

AlphaFold [103] and ProFunc [122], respectively;

• genomic context [97] of genes, e.g., using gene neighbourhood; since genes within

an operon are functionally associated [112], the function of unknown genes can be

infered by the function of their neighbours. Operons are a fairly common gene or-

ganisation structure in Bacteria and Archaea (but, to a lesser extent, also present in

Eukaryotes [20]) where clusters of genes are co-expressed from a single promoter,

i.e., polycistronic transcription [19].

Depending on the omics data being used, PFA can entail functional potential (in the case

of genomics) or functional activity (in the case of transcriptomics and proteomics). This is an

important caveat to consider when performing functional analysis since functional potential

does not directly correlate to functional activity.

Homology relates to the concept of common evolutionary ancestry, which implies that if two

sequences share more similarity than what would be expected by chance, then it is more

likely that this similarity originates from common ancestry rather than independent evolution

[167]. If two sequences are homologs, then it is likely (but not certain) that they have similar

structure and function [167]. However, the lack of sequence similarity does not mean that

two sequences are not homologs, as there may also be conservation of structure or specific

regions within the sequence [167]. Through the use of multiple sequence alignment (MSA)

it is also possible to identify conserved regions in sequences (i.e., patterns seen across

multiple sequences) and use these to infer function.

As homology is determined by excess similarity, statistical approaches and respective tools

are used, such as, Diamond [26] for whole sequence homology or HMMER [183] for region-

specific sequence homology. Through the creation of highly comprehensive databases

(e.g., eggNOG [94], Pfam [67], and KOfam [6]) it is then possible to identify homologs and

transfer the function from the reference database to the unknown sequence. The gold-

standard manner to generate reference databases is through experimental validation; how-

ever, computationally generated references are becoming increasingly common, where a

reference is created via highly stringent computational methods (e.g., eggNOG [95]). Ideally,

9

computationally-generated reference databases would then be experimentally validated, but

this is not feasible at the scale they are created. For ease-of-use, these methods and

databases are often wrapped in larger frameworks such as Prokka [194], eggNOG-mapper

[96], and RAST [10]. Despite the existence of many of these tools, some issues with the

current methods were identified:

• comprehensive integration of region-specific function annotations - typically only the

best match (match between an unknown sequence and the reference) is taken into

account, which may ignore many of the putative functions of the unknown sequence.

• integration of knowledge from multiple reference sources - it has been shown that in-

cluding multiple reference databases and using different tools leads to improved func-

tional annotations [75]. Unfortunately, the majority of the tools are associated with

either their own or a single reference database, which makes them hard to integrate.

If using multiple databases, simply outputting all the possible annotations often leads

to redundant or even discrepant functional annotations, which can be problematic in

downstream analysis. In addition, different reference databases tend to have different

resolutions or use different descriptions and identifiers to describe function, increasing

the challenge of integrating them into one composite output. To our knowledge, no tool

flexibly integrated multiple databases into a composite non-redundant output.

• lack of taxonomic resolution - many tools do not offer taxa-specific function annotation,

which may result in a larger number of wrongly inferred functions due to the use of

highly evolutionarily distant ”homologs”.

• setup and customisation issues - many tools have an extremely streamlined imple-

mentation, not offering any customisation possibilities. On the other hand, some tools

rely heavily on user-expertise, decreasing usability or affecting results quality.

• scalability - many tools scale poorly in a big data context (e.g., poor memory efficiency,

no parallelisation, or server-based)

10

As such, Mantis [176], a protein function annotation tool, was created to addressed these

challenges. Regarding the main topic of this thesis - data integration, Mantis is a tool that

flexibly (the user can remove or add additional reference databases at will) incorporates

multiple databases into a composite consensus-driven output. To do so, Mantis attempts

to find matches between unknown sequences and multiple reference databases, it then

gathers potential matches, and tries to integrate them by finding a region-specific consensus

from the conglomerate of matches. The pre-processing of data (in this context, downloading

and structuring the reference databases) is also done automatically, eliminating the need

to rely on user expertise. To do so, it was necessary to implement extract, transform, load

(ETL) methods so that reference data could be restructured into a standardised format that

is modular (which allows for reference databases to be independent of each other) but also

fairly straightforward to create by users (which facilitates customisation). In essence, Mantis

does not rely on a centralised reference database, instead, reference databases are used

independently and then integrated through internal processes. Not relying on a centralised

database (which most tools tend to do) eliminates the need to provide regular maintenance,

which increases user autonomy (i.e., using Mantis to re-download the reference databases

keeps them up to date), but more importantly, it future-proofs Mantis’ implementation. Mantis

is described in further detail in the respective publication ”Mantis: flexible and consensus-

driven genome annotation” [176].

5.4 Function similarity analysis

In an effort to integrate functional descriptions from different databases (which enables Man-

tis to output consensus-driven functional annotations), it was necessary to implement a tool

for the similarity analysis of protein functional descriptions - UniFunc [179]. This tool uses

natural language processing (NLP) to compare functional descriptions in a pairwise manner.

NLP is the process of exploring and analysing large amounts of unstructured text (in this

case, the functional descriptions) through the use of software [61]. While different projects

exist in the field of NLP [61], they tend to be specific to the end-goal application. This is

because NLP relies on the implementation of methods that take into account the peculiarities

11

of the textual data being used and the application of algorithms that use processed textual

data to derive knowledge.

Most NLP workflows tend to start with pre-processing, which entails processing natu-

ral/human language/text (i.e., textual data encoding) so that it may be used downstream by

different algorithms. NLP can be used for many generic tasks such as:

• part of speech tagging (i.e., lexically classifying words, e.g., ”We are in Luxembourg”,

”are” would be classified as a verb and ”Luxembourg” as a noun);

• named entity recognition (i.e., identify and classify important words within a sentence)

• sentiment analysis (extraction of textual connotation, e.g., expression of subjective

features such as happiness or sadness)

• speech recognition

As with any other artificial intelligence field, improper data pre-processing can heavily

skew the subsequent data analysis and, by extent, any of the conclusions drawn from it. A

large part of NLP encompasses applying methods that can correctly pre-process the data

for downstream encoding. While some frameworks contain methods for the pre-processing

of data (e.g., NLTK [16], Keras [34], and TensorFlow [138]), it is ill-advised to blindly apply a

stack of generic pre-processing methods to a piece of data and expect good results. Instead,

the multiple data pre-processing steps should be carefully adjusted or implemented accord-

ing to the input data. In the context of integrating functional descriptions, data pre-processing

can be especially difficult, since these tend to contain highly technical nomenclature that is

not easily parsed by conventional tools. Additionally, textual data from multiple databases

often contain inter (due to different resolutions) and intra (originating from multiple authors,

since no universal scientific writing style exists) differences.

After pre-processing, documents (i.e., a document is an individual entry of textual data)

are typically tokenized (i.e., a document is split into tokens - tokens are usually words but

may represent more complex entities). These tokenized documents can then be encoded

(e.g., transforming tokenized documents into vectors) into a structure that fits the posterior

12

analytical steps. There are many manners to encode tokenized documents, e.g., one hot

encoding is one of the simplest. With this method, a zero vector of length C is created,

where each vector component represents a token in the vocabulary (i.e., the collection of

tokens). If a certain token is present in the document, the component corresponds to 1, if

absent to 0. Unfortunately, this method leads to very sparse vectors where all tokens have

the same distance between each other, which does not capture semantic similarity. Other

methods such as word embedding, encode tokens so that tokens that appear in the same

context (i.e., surrounded by similar tokens) are represented by similar vectors, which, by

extent, should have similar meanings [78]. In this manner, word embedding methods such

as FastText [22] attempt to capture contextual information, which typically leads to better

results.

The main objective of pre-processing is thus to provide high quality data that can be en-

coded into a structure that can be used by posterior methods. The NLP techniques applied

for the analysis of the encoded textual data are very diverse and depend on the scope of the

problem (e.g., categorisation and summarisation). In the context of UniFunc, the method-

ology applied enabled the processing of functional descriptions so that a similarity analysis

could be done between each encoded functional description. The aforementioned topics

and methodologies are discussed in greater detail in the respective publication ”Unification

of functional annotation descriptions using text mining” [179].

5.5 Network annotation

Graph theory relates to the mathematical study of graphs, which are structures composed

of vertices and edges. In network Science, a graph is commonly referred to as a network, a

vertex as a node, and an edge as a link; regardless of the field, the nomenclature is often

used interchangeably as the underlying structure is the same. A network is an extremely

versatile concept, being therefore capable of capturing many types of entities (e.g., diseases,

genes, proteins, and compounds) and having many different biological applications [115], for

example, disease maps [60], protein-protein interaction networks [217], metabolic networks

[32], and phylogenetic networks [118]. While various graph categories exist (e.g., directed,

13

hypergraph, weighted), mono and multipartite graphs are fairly common representations of

biological data [115] since they can be particularly useful to model omics data where each

ome can be typically represented as a subset (”part(ite)”) of the respective graph.

VMH’s ReconMap3 visualisation [159] and Metscape [62] (metabolomics data visualisation

tool) are good examples of monopartite (i.e., one node type - homogeneous) graphs that

represent metabolic networks containing compounds as nodes, and reactions as edges.

Gene co-expression networks are also a good example of monopartite graphs where co-

expressed genes are linked together and the corresponding network can be used used to

predict gene-disease associations [225]. STRING [218] is another example that connects

proteins (protein-protein interaction network) through the use of multiple sources such as

experimental data, computational predictions, or text mining. Similarly, multiple omics can

be integrated through the use of multipartite graphs, where nodes can be partitioned into

subsets (according to their node type). For example, Lee et al [125] describe how hetero-

geneous multi-layered networks (HMLN) can be used to integrate omics data in a manner

that each layer contains one node type and these nodes are connected through intra or

inter-layer edges. An excellent example of a HMLN is Hetionet [87] which contains eleven

different types of node types (hendecapartite graph) and multiple types of edges/connec-

tions between each node type.

A common practice to integrate biological data within a function-centered network is to pre-

dict the functional potential, activity, and interactions within single or multiple layers of omics

data [156, 117]. These networks can then be structured according to the end-goal of the

analysis, e.g., visualisation [196, 245], identification of key functions [185] or species [152],

pathway enrichment and network analysis [120, 85].

In this context, it is possible to use functional annotation information to build multipartite

graphs, where each node type (e.g., proteins) can be connected to its corresponding func-

tional annotations (e.g., UniProt ID). Such a network would thus be k+j-partite graphs where

k corresponds to the number of subsets containing the main nodes (i.e., the main biological

entities such as proteins) and j to the number of subsets containing the sub-nodes (i.e., the

type of functional annotation, e.g., UniProt [37] or KEGG [104] IDs). With the use of prior

14

knowledge, it is then possible to build these functional multipartite graphs, i.e., using refer-

ence databases (e.g., KEGG or MetaCyc [30]) to connect functional annotations from some

biological entities (e.g., proteins) to others (e.g., reactions). Such a network framework could

then be repurposed towards a multitude of downstream analyses. For example, organism-

specific networks can be generated by sampling from community-wide networks, creating

sub-networks that can used to investigate community interactions [152]. With the end-goal

of creating a flexible framework for these types of analysis, a network annotation tool - Uni-

FuncNet [174], was developed. This tool integrates data from multiple databases and allows

for the generation of annotated networks. As the goal was to provide a network annotation

framework that could be used for multiple purposes, UniFuncNet was implemented so that

it could generate annotated networks with four different types of entities (genes, proteins,

reactions, and compounds), and also different types of network generation protocols. The

integration of data was done through the implementation of several web scraping (i.e., ex-

traction of information from the web) and parsing methods, and posterior merging of data

into a composite output. A thorough discussion on the methodologies and applications of

UniFuncNet is presented in the respective manuscript ”UniFuncNet: a flexible network an-

notation framework” [174].

5.6 Scope and objectives of the presented work

To reiterate, this thesis focuses on the development of data integration tools within the do-

main of functional genomics, that is, the study of how the genome contributes to biological

processes. Different Data Science methodologies were applied, and multiple tools were

developed to integrate functional annotation data within different contexts.

The first publication relates to the dynamic integration of multiple reference data sources

for protein function annotation. Due to the need to use textual data for the integration of

multiple sources of data, a function similarity analysis (using NLP) tool was then developed

(second publication). Lastly a network annotation tool was developed to provide a holistic

approach to functional analysis. This tool enables a comprehensive integration of multiple

data sources by using a network-based approach to collect and connect of functional an-

15

notation data. Together, these tools enable end-users to perform a highly comprehensive

functional analysis of organisms and/or communities.

16

6 Publications

In this section, all the publication resulting from this PhD will be presented:

• Mantis: flexible and consensus-driven genome annotation [176]

• Unification of functional annotation descriptions using text mining [179]

• UniFuncNet: a flexible network annotation framework [174]

All publications have been adapted to fit with the template of this thesis. In addition,

all references and abbreviations have been merged into their respective sections within the

present document. Supplementary material, unless specified otherwise, is available at the

respective publications doi. All publications are open-access.

17

6.1 Mantis: flexible and consensus-driven genome annotation

6.1.1 Summary

Protein function annotation can be summarised as the process that identifies regions of in-

terest in a protein sequence and the assignment of a biological function to these regions.

Protein function annotation is of interest to numerous downstream analysis, such as func-

tional profiling of an organism or community, describing the functional interactions within a

community, and creating genome-scale or community metabolic models. Different methods

exist for this process, depending on the available data and the preferred methodology; some

of these methods are sequence homology, protein structure, genomic context, and protein

networks. This chapter describes Mantis, a protein function annotation tool that attempts to

address some specific challenges in this field: (i) region-specific annotation; (ii) integration

of multiple reference databases; (iii) integration of taxonomic information; (iv) customisation

of reference sources; and (v) scalability.

The authors for this publication[176] are as follows: Pedro Queirós, Francesco Delogu, Os-

kar Hickl, Patrick May and Paul Wilmes. All authors contributed to the writing, revision,

methodology, and study design. I was the main author of this publication and the developer

of the tool associated with it.

18

Mantis: flexible and consensus-driven genome annotation

Abstract

Background: The rapid development of the (meta-)omics fields, has produced an unprece-

dented amount of high-resolution and high-fidelity data. Through the use of these datasets

we can infer the role of previously functionally unannotated proteins from single organisms

and consortia. In this context, protein function annotation can be described as the iden-

tification of regions of interest (i.e., domains) in protein sequences and the assignment of

biological functions. Despite the existence of numerous tools, some challenges remain,

specifically in terms of speed, flexibility, and reproducibility. In the big data era, it is also

increasingly important to cease limiting our findings to a single reference, coalescing knowl-

edge from different data sources, and thus overcoming some limitations in overly relying on

computationally generated data from single sources.

Results: We implemented a protein annotation tool - Mantis, which uses database identifiers

intersection and text mining to integrate knowledge from multiple reference data sources into

a single consensus-driven output. Mantis is flexible, allowing for the customization of refer-

ence data and execution parameters, and is reproducible across different research goals

and user environments. We implemented a depth-first search algorithm for domain-specific

annotation, which significantly improved annotation performance compared to sequence-

wide annotation. The parallelized implementation of Mantis results in short runtimes while

also outputting high coverage and high-quality protein function annotations.

Conclusions: Mantis is a protein function annotation tool that produces high-quality consensus-

driven protein annotations. It is easy to set up, customize, and use, scaling from single

genomes to large metagenomes. Mantis is available under the MIT license available at

https://github.com/PedroMTQ/mantis.

https://github.com/PedroMTQ/mantis

19

6.1.2 Background

On a cellular scale, life is, in essence, the activity and the interaction of a plethora of differ-

ent molecules, among which proteins are responsible for the vast majority of processes. A

primary task in understanding how biology works is to resolve its actors properly (e.g., the

proteins) and place them into context. The past decades have seen the development of the

(meta-)omics fields, unlocking an unprecedented amount of data and deepening our under-

standing in several fields of biology [195, 151]. Alongside the evolution of the technologies

and the increase in data volume, the identification of proteins transitioned from purely ex-

perimental techniques (e.g., chemical essays and spectroscopy) toward the computational-

based sequence analysis thanks to the discovery of the relationship between conservation

of proteins’ functions and sequences [235]. Therefore, the current challenges are to make

use of the vast number of protein sequences and annotations available and to link new pro-

tein sequences to the previously established knowledge. High-throughput methods, such as

next-generation sequencing, are able to produce a large amount of data, which then need

to be analysed and interpreted. One of the ways to make sense of this data is through

protein function annotation (PFA), which is, in the context of this article, the identification of

regions of interest (i.e., domains) in a sequence and assignment of biological function(s) to

these regions. This strategy has proven effective in the study of single organisms, as well as

consortia [8, 33, 99, 83, 139, 166]. Function prediction is based on reference data, i.e., trans-

ferring the function from protein X to the unknown protein Y if they are highly similar [235].

Different approaches may be used, the most common being the comparison of an unknown

protein sequence to reference data composed of well-studied and functionally annotated

proteins (homology-based methods) [216, 229, 23, 208, 194, 96, 10]. Other methods may

infer function through the use of machine learning [216, 186], protein networks [244, 218],

protein structure [45], or genomics context-based techniques [161], but these are not be

covered in this article. For sequence alignment, BLAST [4] or Diamond [26] are commonly

used, whereas, for profile hidden Markov models (PHMM), HMMER [183] is most widely

used. In PFA, these tools are often integrated into larger pipelines to provide enhanced out-

put interpretability, workflow automation, and parallelization [194, 96, 10, 101]. Some PFA

20

tools target specific taxa [130], while others are designed with large-scale omics analysis in

mind [239, 147, 108]; indeed, each PFA tool is designed to cater to its niche research topic.

While experimental validation remains the gold standard, PFA, despite its many shortcom-

ings [171], is an increasingly valuable strategy that aims to tackle the progressively more

difficult task of making sense of the large quantities of data being continuously generated.

The most common method of processing candidate annotations (i.e., sequences or

PHMM that are highly similar to the query sequence) involves capturing only the most sig-

nificant candidate (”best prediction only”, hereinafter called the BPO algorithm). This PFA

approach works well for single-domain proteins, but multi-domain proteins may have mul-

tiple putative predictions [240, 50, 127], whose location in the sequence may or may not

overlap. This selection criterion may potentially lead to missing annotations and is there-

fore not suitable in complex PFA scenarios. To tackle this problem, domain-specific PFA is

necessary. A simple approach, previously discussed in Yeats et al.[240], would be to order

the predictions by their significance and iteratively add the most significant one, as long as it

does not overlap with the already added predictions (henceforth referred to as the heuristic

algorithm). Owning to the biased selection of the first prediction, this algorithm does not

guarantee an optimal solution (e.g., a protein sequence may have multiple similarly signif-

icant predictions). It has been previously shown that incorporating prediction significance

and length may produce better results [224]. We implemented a depth-first search (DFS)

algorithm that improves on the previous approaches.

The selection of reference PHMMs is also critical, because PFA will ultimately be based

on the available reference data. Whilst using unspecific PHMMs to annotate a taxonom-

ically classified sample may result in a fair amount of true-positives (TP) results (correct

annotations), depending on the confidence threshold used, it may also increase the rate

of false-positives (FP) results (over-annotation, due to a less strict confidence threshold)

or false-negatives (FN) results (under-annotation, due to a more strict confidence threshold)

[193]. Using taxon-specific HMMs (TSHMM) rather than unspecific PHMMs should, in princi-

ple, provide better annotations on a taxonomically classified sample, a feature that is already

integrated into some PFA tools such as eggNOG-mapper [96] and RAST [10]. In essence,

21

TSHMMs-based annotation limits the available search space, which may have positive and

negative consequences. Because the search space is more specific, the annotations pro-

duced should be of higher quality; however, this higher specificity of the TSHMM could also

lead to under-annotation (incomplete reference TSHMMs) or mis-annotations (low-quality

reference TSHMM) [59]. This underlines the necessity to use specific (e.g., TSHMMs) and

unspecific PHMMs in a complementary manner. In this regard, the use of multiple sources

of reference data remains a challenging aspect of PFA, and, with multiple high-quality refer-

ence data sources available, it is increasingly important to coalesce knowledge from different

sources. While some PFA tools allow for the use of multiple reference data sources, either

as a separate [101] or a unified [96, 7] database, it is still challenging to integrate multiple

data sources dynamically.

When using reference data from multiple high-quality sources, the most common and

straightforward approach is to consider the output from each reference data source inde-

pendently (e.g., [101]). However, by doing so, we overlook that many sources can overlap

and/or complement each other. Commonly this is compensated for via manual curation,

which is feasible only for a limited number of annotations. An automated approach would be

to assume only the most significant annotation source for any given sequence and disregard

other sources; this may result in vast losses of potentially valid and complementary informa-

tion (e.g., database identifiers). Because this is not desirable, the challenge is in both in de-

ciding which source(s) provide the best annotation as well as identifying complementary an-

notations. In the present context, complementary annotations can be defined as functional

annotations that are functionally similar but originate from difference data sources; as such,

while functionally similar, different data sources are likely to contain information that is ab-

sent in other data sources and vice versa. This unique functional information (i.e., database

identifiers or functional descriptions) may prove essential in downstream data analysis. A

straightforward approach to verify whether functional annotations are functionally similar is

to check whether they share a database identifier (ID), e.g.,

(i) Function: ”Responsible for glucose degradation”; IDs: K00844, EC:2.7.1.1, PF03727

22

(ii) Function: ”Responsible for glucose degradation”; IDs: P52789, PF03727, IPR022673

We can observe that the annotations (i) and (ii) share the database ID PF03727, thus it can

be concluded that these annotations are functionally similar. If we were only to select the

first annotation, we would ignore potentially useful information (IDs P52789 and IPR022673).

However, it may be the case that no IDs are shared between the different annotations, for

example:

1. Function: ”Responsible for glucose degradation”; IDs: K00844, EC:2.7.1.1

2. Function: ”Responsible for glucose degradation”; IDs: P52789, IPR022673

We can observe that even though the annotations (i) and (ii) no longer share an ID, they

still have the same function ”Responsible for glucose degradation”. Humans can quickly

surmise that these annotations are the same because they share the same function de-

scription. Should the descriptions be identical or very similar, a machine could achieve the

same conclusion with relative ease. However, in our experience, these free-text functional

descriptions are often moderately or heavily dissimilar [111, 203], with only a few keywords

allowing us to ascertain that they are indeed the same. This then makes it more difficult to

use multiple reference data sources. For example:

1. Function: ”Responsible for glucose degradation”; IDs: K00844, EC:2.7.1.1

2. Function: ”Protein is an enzyme and it is responsible for the breakdown of glucose”;

IDs: HXK2 HUMAN

In such a scenario, someone trained in a biology-related field can quickly identify the most

important words (”degradation”/”breakdown” and ”glucose”) in both sentences and conclude

that both annotations point to the same biological function. The challenge is now to en-

able a machine, deprived of any intellect and intuition, to eliminate confounders (ubiquitous

words, e.g., ”the”), identify keywords and their potential synonyms, and reach the same con-

clusion. A possible strategy is to use text mining, which is the process of exploring and

analysing large amounts of unstructured text data aided by software, identifying potential

23

concepts, patterns, topics, keywords, and other attributes in the data [61]. Text mining has

been previously used with biological data [231, 170, 242, 202, 92], and even more specifi-

cally with regards to gene ontologies [13, 168, 128, 43, 49, 116] and PFA [242]. However,

to our knowledge, there is no tool for the dynamic generation of a consensus from multiple

protein annotations. This article solves the problem of scaling the integration of different an-

notation sources, integrating a compact and flexible text mining strategy. We implemented

a 2-fold approach to build a consensus annotation, first by checking for any intersecting

annotation IDs and second by evaluating how similar the free-text functional descriptions

are. This approach attempts to address 3 very relevant issues with PFA [193, 59, 172, 52]:

over-annotation, under-annotation, and redundancy. Another challenge in PFA is the lack of

flexibility of some tools, as these are often intrinsically connected to their house-generated

reference data, and therefore hard to customize. In contrast, we developed a tool that, while

offering high-quality unspecific and specific PHMMs, is independent of its reference data,

thus being customizable and allowing dynamic integration of new data sources.

We hereby present Mantis, a Python-based PFA tool that overcomes the previously pre-

sented issues, producing high-quality annotations with the integration of multiple domains

and multiple reference data sources. Mantis automatically downloads and compiles several

high-quality reference data sources and efficiently uses the available hardware through par-

allelized execution. Mantis is independent of any of the default reference data, resulting in

a versatile and reproducible tool that overcomes the challenge of high-throughput protein

annotation coming from the many genome and metagenome sequencing projects.

6.1.3 Mantis

Mantis is available at https://github.com/PedroMTQ/mantis, and its workflow (see Fig. 3)

consists of 6 main steps: (i) sample pre-processing, (ii) PHMM-based homology search, (iii)

intra-PHMM hits processing, (iv) metadata integration, (v) inter-PHMMs hits processing, and

(vi) consensus generation. For future reference, an instance when a PHMM matches with a

protein sequence is referred to as a ”hit”. The workflow starts with sample pre-processing,

in which the sample(s) is/are split into chunks. This is followed by homology search, where

https://github.com/PedroMTQ/mantis

24

Figure 3 Overview of the Mantis workflow. KOfam [6], Pfam [67], eggNOG [95], NCBI
protein family models (NPFM) [131], and TIGRfams [76] are the reference PHMMs currently
used in Mantis. CustomDB can be any PHMM library provided by the user.

25

query sequences are searched against the available reference data using HMMER. Dur-

ing intra-PHMM hits processing the DFS algorithm is used to generate and select the best

combination of hits per PHMM source; Fig. 4 shows how different algorithms may lead to

a different selection of hits. Metadata integration adds the metadata (functional description

and IDs) to the respective hits. During inter-PHMMs hits processing, the DFS algorithm is

used to generate all the combinations of hits from all PHMM sources (in this step all hits are

pooled together). Finally, consensus generation ensures that the best combination of hits

among all hits from the multiple reference data sources is selected. This combination is ex-

panded by adding additional hits with consistent metadata (intersecting identifiers or similar

functional descriptions) (see Methods section for a detailed description of all these steps).

We provide default execution parameters, however, the user is free to fully customize Mantis,

not only the parameters but also the reference databases used. Mantis requires a FASTA-

formatted protein sequence file as input, where the user can also provide the organism’s

taxon which will allow for taxa-specific annotation. Reference databases are downloaded

automatically. The MANTIS.config file allows for configuration of the reference data and its

respective weights and enables the compilation of specific eggNOG TSHMMs. For more

details, see the documentation at [175]. Owing to issues with Python’s multiprocessing in

MacOS, and the fact that HMMER is not available on Windows, Mantis is only available on

Linux-based systems.

6.1.4 Analysis

To analyse and validate the performance of Mantis, we performed several in silico experi-

ments. We annotated a reference dataset containing curated protein entries from UniProt to

set default parameters and evaluate the impact of different Mantis’ features: (i) impact of the

e-value threshold; (ii) impact of the hit processing algorithm; (iii) how each reference data

source contributed to the final output and (iv) impact of the consensus generation on anno-

tation quality. Furthermore, we annotated several sequenced organisms, with and without

TSHMMs, thus evaluating the impact of using taxon-resolved reference data. Finally, we

compared Mantis against eggNOG-mapper [96] and Prokka [194]. A description of the sam-

26

Figure 4 Homolog selection for the 3 hit processing algorithms in Mantis. The selection
of the hit(s) depends on the underlying algorithm. In the case of the portrayed protein with 6
hits (A) (which are overlapping to various degree) that have varying significance values (B)
the three algorithms would behave as follows: (i) BPO would select only the most significant
hit (No. 2); (ii) the heuristic algorithm initially selects the most significant hit (No. 2) which
then restricts (due to overlapping residues) the hits available for selection (hits No. 1, 3,
and 4 can no longer be selected), leading to the selection of the next most significant hit
(No. 6), and finally the selection of hit #5; (iii) the DFS algorithm generates all possible
combinations of hits, which are then scored according to the e-value, hit coverage and total
combination coverage (for more details, please see ”Multiple hits per protein”. According to
these parameters, the most likely combinations of hits would be hits No.1 and 4.

27

ples used for this benchmark is available in ”Sample selection”. Prokka was only used for the

annotation of prokaryotic data (i.e., all except for Saccharomyces cerevisiae and Cryptococ-

cus neoformans). To compare the performance between the different tests, we calculated

a confusion matrix for each test. For future reference, a TP occurs when a functional an-

notation (predicted from a PFA tool) shares one or more database IDs with the respective

reference annotation (e.g., Pfam ID); a FP when no database IDs are shared; a FN when

the PFA tool does not annotate a protein sequence but a reference annotation is available;

and a TN when the PFA tool does not annotate a protein sequence and no reference anno-

tation is available. Precision is defined as TP
TP+FP , Recall as TP

TP+FN , and F1 score(harmonic

mean of precision and recall) as 2× Precision×Recall
Precision+Recall . The F1 score is used as a performance

metric. Further details on the benchmark are available in ”Establishing a test environment”.

Initial quality control

Function assignment e-value threshold It is known that the e-value threshold directly

affects annotation quality, however, no gold-standard threshold exists [224]. Depending on

the reference data source’s size, quality, and specificity, we may use more or less stringent

thresholds. It is therefore essential to test annotation quality with different thresholds. As

such, we tested different static e-value thresholds and a dynamic threshold, which has been

described in ”Testing different e-value thresholds”. As can be seen in the Supplementary

Table 1, precision was similar across the range of e-value thresholds tested, with recall/sen-

sitivity decreasing with lower e-value thresholds. Unexpectedly, unlike recall, precision was

not directly correlated with the e-value threshold; indeed a maximum precision of 0.747 was

obtained for the e-value threshold 1e−6, with precision slightly decreasing with more stringent

e-value thresholds. A maximum F1 score of 0.827 was observed for the e-value threshold

1e−3, as such, we chose this value as the default e-value threshold for Mantis.

Impact of hit processing algorithms To understand whether the different hit process-

ing algorithms resulted in statistically significant differences in F1 scores, we created syn-

28

thetic samples and performed pairwise comparisons between the DFS and the other algo-

rithms: (i) DFS and heuristic, and (ii) DFS and BPO. We rejected the H0: ”no differences

in F1 score between the tested algorithms” in both comparisons since p-value ¡ 0.01. The

DFS algorithm resulted in a greater F1 score (mean = 0.827) than the heuristic (mean =

0.826) and BPO (mean = 0.816) algorithms. Further details on results can be found in the

Supplementary Table 2, and further details on the testing method can be found in ”Testing

hit processing algorithms”.

Impact of sample selection Testing exclusively against well-annotated organisms is

a recurring issue with protein annotation benchmarking, resulting in the re-annotation of se-

quences already present in the reference data used, leading to a biased annotation quality

evaluation. To avoid this bias, we downloaded all the curated UniProt (i.e., Swiss-Prot) pro-

tein entries (as of 2020/04/14) and selected entries by their creation date such that we have

four samples that contain protein entries created in different date ranges (2010-2020, 2015-

2020, 2018-2020, and 2020). Samples with more recent protein entries are increasingly

more likely to lack any proteins used to generate Mantis’ reference data, which increases

the likelihood that potential annotations are due to true sequence homology (and not to

circular re-annotations). We annotated these samples using three different hit processing

algorithms (DFS, heuristic, and BPO), determining the impact of each on the F1 score.

As seen in Fig. 5, the F1 score decreased as the sample was restricted to more recent data.

As seen in the Supplementary Table 3, when comparing the hit processing algorithms, we

found that the DFS algorithm consistently outperformed the other algorithms, with an mean

F1 score 0.021 and 0.003 higher than the BPO and heuristic algorithms, respectively. In

addition, the F1 score difference between the multiple hits algorithms (DFS and heuristic)

and the single hit algorithm (BPO) increased as the entries in a sample were restricted to

more recent years.

Contribution of the different reference data sources We analysed each reference

data source’s contribution to the output annotation for the UniProt 2010-2020 sample. By

29

Figure 5 Annotation F1 score per hit processing algorithm and sample. Overall, the
DFS and heuristic algorithms achieve similar results, outperforming the BPO algorithm.

checking the column ”HMM files” in the consensus annotation.tsv file, we found that Pfam

was present in 24.4% of the sequence annotations, KOfam in 62.37%, eggNOG in 76.52%,

NPFM in 13.91%, and TIGRfam in 12.96%. Note that, since multiple reference data sources

may be present in one sequence (due to the consensus generation and hit processing algo-

rithms), the sum of the previous values is above 100%.

Impact of consensus generation During consensus generation, two methods are

used for checking the consistency of the hits metadata: IDs intersection and text mining.

We analysed the contribution of both methods for the annotation of the UniProt 2010-2020

sample, and found that roughly 35.1% of the consistency checks were due to the text mining

approach, and the remaining were due to IDs intersection.

We also tested the impact of text mining on annotation performance: to do so, we an-

notated the Uniprot 2010-2020 sample but restricted the consensus generation in different

manners and with different algorithms. Six different test conditions were created: (i) DFS

30

with default consensus generation, (ii) DFS with consensus generation restricted to IDs (i.e.,

IDs intersection but no text mining), (iii) DFS without consensus generation (i.e., neither IDs

intersection nor text mining), (iv) BPO with default consensus generation, (v) BPO with con-

sensus generation restricted to IDs, and (vi) BPO without consensus generation. We also

annotated the same sample using eggNOG-mapper - condition (vii). Prokka was not used

here because the present sample contains non-prokaryotic data. The F1 scores were as

follows: (i) 0.827, (ii) 0.790, (iii) 0.774, (iv) 0.814, (v) 0.779, and (vi) 0.763, and (vii) 0.703.

Further details can be found in Supplementary Table 4.

Hit processing approximation During hit processing, two algorithms may be used,

the DFS, and, as a backup (if the DFS algorithm’s runtime exceeds 60 seconds), the heuris-

tic. We calculated how many times the heuristic algorithm was used as a backup during

the hit processing of the 2010-2020 UniProt sample. We found that for the intra-PHMM hit

processing, the heuristic algorithm was used in roughly 7.2% of the sequences, and for the

inter-PHMMs hit processing in 0.5% of the sequences.

Quality control with sequenced organisms As a secondary quality control, to assess

the impact on F1 score when using taxon-resolved reference data, we annotated several

sequenced organisms (for more details, see the Supplementary Table 5) with and without

TSHMMs. We also evaluated the impact of the different hit processing algorithms on these

samples. As seen in Fig. 6, well-studied organisms (e.g., Saccharomyces cerevisiae) had

better annotations, especially when applying TSHMMs, unlike poorly described organisms.

The mean F1 score gain with TSHMMs was 0.006. With TSHMMs, the DFS algorithm

had, on mean, 0.001 and 0.010 higher F1 scores than the heuristic and BPO algorithms,

respectively. Without TSHMMs, the DFS algorithm had, on mean, 0.008 and 0.013 higher

F1 scores than the heuristic and BPO algorithms, respectively. Further details can be found

in the Supplementary Table 6.

31

Figure 6 F1 score per hit processing algorithm and organism, with and without using
taxonomy information. F1 score was higher for well-studied organisms, TSHMMs also
tend to perform better with these organisms.

32

Comparison between Mantis and other PFA tools The sequenced organisms enumer-

ated in the Supplementary Table 5 were annotated with Mantis, eggNOG-mapper, and

Prokka (for the latter non-prokaryote organisms were excluded). To evaluate the added

value of using the very comprehensive eggNOG reference data source, we also assessed

Mantis’ F1 score using different reference data. In total, six different tests were performed

for each organism: (i) Mantis with default data sources and with taxonomy information; (ii)

Mantis with default data sources except for eggNOG’s data and with taxonomy information;

(iii) Mantis with default data sources but without taxonomy information; (iv) eggNOG-mapper

without tax scope option; (v) eggNOG-mapper with tax scope option; (vi) Prokka with default

data sources and default execution.

On mean, (i) had a F1 score and annotation coverage of 0.857 and 96.56%, respectively,

(ii) 0.832 and 89.82%, (iii) 0.850 and 96.14%, (iv) 0.734 and 88.45%, (v) 0.725 and 88.02%,

and (vi) 0.507 and 62.38%. As seen in Fig. 7, Mantis outperformed the other PFA tools

in all tests (with one exception in the organism Saccharomyces cerevisiae, where eggNOG-

mapper without taxonomy had an F1 score of 0.841 and Mantis without taxonomy had an F1

score of 0.830). The mean Mantis F1 score with default execution and TSHMMs was 0.131

higher than eggNOG-mapper (with tax scope) and 0.360 higher than Prokka. Mantis’ setting

without the eggNOG reference data had an mean F1 score 0.107 higher than eggNOG-

mapper (both tools with taxonomy information) and an mean F1 score 0.025 lower than

Mantis’ with the eggNOG reference data. Further details are available in the Supplementary

Table 7.

Annotating metagenomes To our knowledge, there are no manually curated metagenome

annotations, therefore annotation validation was not performed, instead we only calculated

the annotation coverage. We selected four samples from different environments and pre-

dicted the protein coding genes with Prodigal v2.6.3 [98]. The annotated samples were:

• Biogas highly efficient cellulose-degrading consortium (SEM1b) [44, 119] with 39411

sequences;

• Glacier-fed stream sediment (GFS) [28] with 270341 sequences (phenol-chloroform

33

Figure 7 Annotation F1 score of Mantis, eggNOG-mapper, and Prokka using different
reference data. Each slice represents an organism and contains the F1 score obtained
between the different conditions.

34

extraction batch number 37);

• Marine [214] with 605043 sequences (ERR1726751);

• Human gut microbiome (MuSt [83]) with 692061 sequences (M05-01-V1).

The performance of Mantis varied per metagenome sample; it annotated 213539, 162133,

33016, and 559792 sequences in the samples GFS, marine, SEM1b, and MuSt, respec-

tively. The respective annotation coverage was as follows: 78.99%, 26.80%, 83.77%, and

80.89%. We repeated the same test for eggNOG-mapper and Prokka (in the case of Prokka

by annotating the original nucleotide sequences), the coverage for the samples GFS, ma-

rine, SEM1b, and MuSt, was, respectively, 77.52% and 10.87%, 16.21% and 1.01%, 81.95%

and 32.32%, and 78.72% and 20.37%.

Computational efficiency We ran Mantis against samples with a different number of se-

quences and a different number of available CPUs. We performed this test for the DFS

and heuristic algorithm only. As expected, we found that the heuristic algorithm was faster

than the DFS algorithm. The heuristic algorithm was, on mean, 1.42 times faster than the

DFS algorithm. As expected, runtimes were inversely correlated to the number of CPUs and

sequences. Further details can be found in the Supplementary Table 8.

We also aimed at allowing Mantis to be run on personal computers, which requires re-

moving the eggNOG dataset. However, as we have previously shown in Comparison be-

tween Mantis and other PFA tools, this does not cause a high impact on F1 score. We

annotated the previously enumerated sequenced organisms (Supplementary Table 5) on a

Dell XPS 13-9370 with Ubuntu 20.04.1 LTS 64 bit, 16GB RAM, 512 GB SSD, and an 8 core

Intel Core it-8550U CPU. The mean runtime for prokaryotes and eukaryotes was 28 and 93

minutes, respectively. Further details are available in the Supplementary Table 9.

6.1.5 Discussion

We herein presented Mantis, an open-access PFA tool that produces high-quality annota-

tions and is easily installed and integrated into other bioinformatic workflows. Mantis uses a

35

well-established homology-based method and produces high-quality consensus-driven an-

notations by relying on the synergy between multiple reference data sources and improved

hit processing algorithms.

Mantis addresses some major challenges in PFA, such as flexibility, speed, the inte-

gration of multiple reference data sources, and use of domain-specific annotations. It also

addresses under-annotation through the use of multiple reference data sources, which im-

plicitly leads to a wider search space. Additionally, redundancy, which is a drawback inherent

to consensus-driven annotation, is ameliorated by removing duplicate database IDs and/or

identical descriptions. We have attempted to avoid over-annotation through the generation of

a consensus-driven annotation, which identifies and merges annotations that are consistent

(i.e., similar function) with each other (e.g., if three out of five independent sources point to-

wards the same function and two others point towards other, unrelated functions, then these

three annotations are more likely to be valid), and eliminating the remaining inconsistent

annotations.

We have shown that a stricter/lower e-value threshold did not necessarily lead to a higher

F1 score. As expected, a lower threshold restricted the amount of hits, lowering the recall.

However, we also found that more stringent e-value thresholds may result in a lower pre-

cision; this behaviour is connected to Mantis’s consensus generation and hit combinations

scoring. A thorough explanation is available in the Supplementary PDF.

Well-curated and commonly used resources were chosen as the default reference data

sources for Mantis, containing both unspecific and specific reference data (e.g., taxa-specific).

As we have shown, no single reference data source accounted for most annotations, each

offering both unique and overlapping insight into protein function, thus confirming their syn-

ergy and partial redundancy. These are integrated through a consensus-driven approach,

which Mantis uses as an additional quality control step, and a means to automatically in-

corporate a broader variety of IDs. The intersection of IDs was, as expected, the main

contributor towards this integration (since most databases provide cross-linking), however,

we found that the text mining approach still contributed considerably (35.12% for the UniProt

2010-2020 sample), which clearly highlights the need to use such a method.

36

We additionally evaluated the impact of not using text mining during consensus gener-

ation and removing the consensus generation altogether on the DFS and BPO algorithms.

The benchmark using the BPO algorithm without consensus generation represented the

baseline approach towards the integration of multiple reference data sources (merely se-

lecting the most significant hit during inter and intra-PHMMs hit processing). In contrast,

the benchmark using the DFS algorithm with the consensus generation depicted the accu-

mulation of all the features introduced by Mantis. Overall, we found a difference of 0.064

in F1 scores, which suggests the additive effect of Mantis’s various data integration meth-

ods. Mantis, in respect to this specific benchmark, also obtained a F1 score higher than

eggNOG-mapper in all conditions, which suggests the importance of using multiple refer-

ence data sources.

We have implemented two algorithms for domain-specific homologs search (DFS and

heuristic as backup), and have not only shown that these algorithms perform better when

annotating previously described protein sequences, but that their impact on the F1 score

increased when annotating previously uncharacterized protein sequences (e.g., mean F1

score gain with DFS and BPO algorithms in the UniProt 2010-2020 and 2020 samples was

0.013 and 0.033, respectively). We hypothesize that for the latter, a homology search is

not capable of finding whole-sequence homologs, finding, however, multiple domains that

partially constitute the protein sequence. As such, we argue that by increasing the resolu-

tion (sequence homology to domain homology) of homology-based reference data, domain-

specific algorithms may become increasingly valuable. We think this would be especially

important when annotating protein sequences without well-described homologs but that con-

tain previously characterized conserved protein domains. In Fig. 8.A, we can observe that

the current query sequence is already used to generate the PHMM in the reference data,

matching with the PHMM containing it. Such a scenario is common when annotating well-

described organisms (e.g., Escherichia coli). However, as is often the case when annotating

non-model organisms and metagenomes, the query sequence is absent from the reference

data (Fig. 8.B), thus partially matching with several PHMMs (which may correspond to multi-

ple domains, depending on the resolution of the reference data). Unlike the BPO algorithm,

37

Figure 8 The impact of the reference data completeness on protein function annota-
tion. A. the functional prediction is facilitated by the query sequence being previously identi-
fied and included in the reference PHMMs. B. if the query sequence has not been previously
annotated, multiple regions in the protein may match with different reference PHMMs.

the heuristic and DFS algorithms are able to incorporate multiple homologs. While these

may not be enough to determine a protein’s biological function, they still provide a better

biological context than a single functional annotation.

Further improvements in annotation quality may also require the use of motif-based

and/or genomic context-based (e.g., operon context information, co-expression, and sub-

systems) methods such as those described by Sigrist et al.[200], Mooney et al. [149],

Mavromatis et al.[140], Overbeek et al.[161], and Hannigan et al.[77]. Nevertheless, the

significantly higher F1 score seen when comparing the DFS and BPO algorithms highlights

the need to adopt better hit processing methods, especially for non-model organisms. With

samples ranging from thousands to millions of protein sequences, sub-optimal hit processing

algorithms may cascade into unnoticeable pitfalls in downstream data analysis (e.g., accu-

38

mulation of incomplete or low-quality genome annotation, which may lead to false biological

interpretations). While we have shown that the DFS algorithm outperforms the heuristic al-

gorithm, both achieve a very similar F1 score when applied to non-synthetic samples; since

the heuristic algorithm is much more time efficient (as seen in Supplementary Table 8), a

user may confidently set it as primary algorithm.

The use of TSHMMs resulted in a 0.006 higher F1 score, however, this improvement (as

seen in Fig. 6) was not consistent across all the annotated organisms (as expected, a similar

trend was also seen with eggNOG-mapper). We believe this is due to a poorer quality of the

TSHMMs for some organisms, which is a consequence of the issues with the current taxon-

omy classification system [165, 164] and lack of knowledge regarding highly resolved taxa

[27]. Model organisms such as Escherichia coli and Saccharomyces cerevisiae clearly ben-

efited from TSHMMs, both since the reference data already contains data specific to these

organisms and that functions of proteins within model organisms are better experimentally

described. Conversely, non-model organisms are often only computationally annotated by

association, contributing to a weaker reference annotation (which can be observed by the

higher rate of potentially new annotations in these organisms, as seen in the Supplemen-

tary Table 6). Nonetheless, while experimental evidence remains the gold standard, it is

unfeasible to ignore the need for computational methods to infer function. While steps in this

direction have been taken [95, 10], taxon-resolved PFA remains a challenge.

We benchmarked Mantis against two other PFA tools - eggNOG-mapper and Prokka,

and have shown that Mantis achieves a higher F1 score (0.131 higher than eggNOG-mapper

and 0.350 higher than Prokka). Although Mantis’ default execution heavily relies on the

eggNOG reference data, we have also shown that even without it, it is possible to achieve

an almost similar F1 score. This attests to the quality of the various reference data used,

showcasing as well the possibility of running Mantis on a personal computer (something that

would be impossible with eggNOG’s prohibitive size).

We also evaluated the annotation coverage of Mantis and the other PFA tools when an-

notating metagenomes. Mantis had the highest annotation coverage among the tested PFA

tools, but eggNOG-mapper was close behind. All PFA tools had a low annotation coverage

39

for the marine sample. We believe this may be due to a lack of reference PHMMs for this

specific environment. This metagenomic sample has data from varying ocean depths, with

many novel sequences from viruses, prokaryotes, and picoeukaryotes [215].

Finally, as shown in Accessibility and Scaling, a conda environment and automated refer-

ence data download are provided. In addition, Mantis accepts several formats as input (i.e.,

protein FASTA file, TSV file with paths, directories, or compressed archives), outputting easy

to parse TSV files. We believe these features address some of the reproducibility challenges

the bioinformatics community still faces [135].

As discussed, there is still room for improvement in the hit processing algorithm DFS

(since it does not provide large F1 score gains over the heuristic algorithm). In the future,

Mantis could also include genomic context-based annotation methods. Despite the previ-

ously discussed challenges, we have clearly shown that Mantis is a flexible tool while also

producing annotations with high precision and recall.

6.1.6 Conclusion

By making use of the synergistic nature of differently sourced high-quality reference data,

Mantis produces reliable homology-based annotations. By allowing for total customization of

these reference data, Mantis is also flexible, easily integrated and adapted towards various

research goals. In conclusion, we have shown that Mantis addresses a number of the current

PFA challenges, resulting in a highly competitive PFA tool.

6.1.7 Methods

Accessibility and Scaling Mantis automatically sets up its reference data by downloading

PHMMs from different sources, and, when necessary, reformatting the data to a standard-

ized format and downloading any relevant metadata. Reference data can be customized

via a config file. It also dynamically configures its execution depending on the resources

available. A conda environment and extensive documentation [175] are available.

Mantis splits most of the workflow into sub-tasks and subsequently parallelizes them

40

by continuously releasing tasks to workers from a global queue (via Python’s multiprocess-

ing module). During each main task of the annotation workflow, workers are recruited (the

number of workers depends on the available hardware and work required), these will then

execute all the queue tasks. When a worker has finished its job, it will execute another task

from the queue, until there are no more tasks to execute. If the queue is well balanced,

minimal idle time (time spent waiting for workers to get a new task) can be achieved. Load

balancing is achieved by splitting the sample and reference data into chunks. During setup,

large reference data sources (more than 5000 PHMM) are split into smaller chunks, this

enables parallelization and ensures each annotation sub-task takes approximately the same

time. Samples are equally split into chunks (sample chunk size is dynamically calculated).

If the sample has 200,000 or fewer sequences, sequences are distributed by their length

among the different chunks, so that each chunk has approximately the same number of

residues. If the sample has more than 200,000 sequences, then sequences are distributed

to each chunk independently of their length (this alternative method is an efficiency safe-

guard). This two-fold splitting achieves quasi-optimal load balancing. With the sample and

reference data in chunks, posterior workflow steps can be parallelized wherever applicable.

To note that Mantis uses HMMER’s hmmsearch for homology search, which outputs an e-

value scaled to the sample/chunk size. Since Mantis splits the samples into chunks, during

hit processing, the e-value is scaled to the original sample size.

Input and output MANTIS accepts protein sequence FASTA files as input. If the sample

has been previously taxonomically classified, the user can add this information when running

Mantis. For example, if annotating an Escherichia coli sample, the user could add −od

followed by the NCBI ID or the organism name:

$ python mantis run mant is − t sample . faa −od 562

Mantis outputs, for each sample, three tab-separated files, each corresponding to a dif-

ferent step in Mantis’ workflow: (i) a raw output output annotation.tsv (generated during

Fig. 3.Intra-PHMM hits processing), with all the hits, their e-value, and coordinates; (ii)

integrated annotation.tsv (generated during Fig. 3.Metadata integration), with the same in-

41

formation as output annotation.tsv, but also with hits metadata (e.g., KEGG orthology IDs

(KO), enzyme commission (EC) numbers, free-text functional description, etc); and (iii) the

main output file consensus annotation.tsv (generated during Fig. 3.Consenus generation),

with each query protein ID and their respective consensus annotation from the different ref-

erence data sources (e.g., Pfam). These files provide contextualized output in a format that

is both human and machine-readable. AMantis.out file is also provided per sample, serving

as a log file for each execution step.

Reference data and customization Mantis, by default, uses multiple high-quality refer-

ence PHMM sources – Pfam [67], eggNOG [95], NPFM [131], KOfam [6], and TIGRfam

[76] (these default PHMMs can be partially or entirely removed). To find more mean-

ingful homologs through taxa-specific annotation, Mantis uses TSHMMs, originally com-

piled by eggNOG and NPFM. eggNOG TSHMMs were compiled by downloading all the

TSHMMs at http://eggnog5.embl.de/download/latest/per_tax_level/, their respec-

tive metadata originates from the metadata available in the previous link as well as the

metadata within the eggNOG-mapper SQL database. NPFM TSHMMs were compiled by

downloading all the NPFM PHMMs at https://ftp.ncbi.nlm.nih.gov/hmm/current/ and

assigning each PHMM into their respective TSHMM. A general NPFM PHMM was created

by pooling all non-assigned PHMM and the TSHMMS from the following NCBI IDs: 2157

(Archaea), 2 (Bacteria), 2759 (Eukaryota), 10239 (Viruses), 28384 (Others), and 12908

(Unclassified). These IDs correspond to NCBI’s top level taxonomy rank IDs. A general

eggNOG PHMM was created by pooling together the TSHMMs from the same aforemen-

tioned NCBI taxon IDs. The user can customize which eggNOG TSHMMs are downloaded

by Mantis by adding the line nog tax = NCBI ID1, NCBI ID2 to the config file. Custom

PHMM sources can also be added by the user, metadata integration of these is also possible

(an example is available in Mantis’ repository). Since some sources are more specific than

others, the user may also customize the weight given to each source during consensus gen-

eration. PHMM often only possess an ID respective to the database they were downloaded

from, which may not directly provide any discernible information. Mantis, when necessary,

http://eggnog5.embl.de/download/latest/per_tax_level/
https://ftp.ncbi.nlm.nih.gov/hmm/current/

42

ensures that the hits from these PHMMs are linked to their respective metadata. For future

reference, while an PHMM is an individual profile, Mantis compiles all related PHMM into a

single file making it indexable by HMMER. Thus when a certain PHMM source is mentioned,

it refers to the collection of related PHMMs.

Taxa-specific annotation Taxa-specific annotation (TSA) uses the TSHMMs and unspe-

cific PHMM made available by eggNOG and NPFM. TSA, however, works differently from the

annotation method of the other reference data. When given taxonomy information (either a

taxa name or NCBI ID) the organism’s taxonomic lineage is computed (e.g., for Escherichia

coli the lineage would be 2 - 1224 - 1236 - 91347 - 543 - 561 - 562). TSA starts by

searching for homologs in the most resolved TSHMM (in this case for taxa 562, if it exists).

All valid homologs (respecting the e-value threshold) are extracted for each query sequence,

and unannotated sequences are compiled into an intermediate FASTA file. A new homology

search round starts with the sequences in the current intermediate FASTA, but now in the

TSHMM one level above (in this case the TSHMM 561). This cycle repeats until all query se-

quences have valid homologs or until there are no more TSHMMs to search for. If there are

still sequences to annotate, then these homologs are searched for in the general eggNOG

and NPFM PHMMs. If no taxonomy information is given, the homology search starts with

the general NPFM and eggNOG PHMMs. Non-taxa specific PHMMs (i.e., Pfam, KOfam,

and TIGRfams) are always used, regardless of the sample’s taxonomy.

Multiple hits per protein HMMER outputs a domtblout file [183], where each line corre-

sponds to a hit/match between the reference data and the query protein sequence. The

e-value threshold within the HMMER command limits the amount of hits to be analyzed in

the posterior processing steps. Each hit, among other information, contains the coordinates

where the query sequences matched with the reference PHMM and the respective confi-

dence score (e-value) (Fig. 4.A and .B). Mantis uses HMMER’s independent e-value when

using the DFS and heuristic algorithms, whereas it uses the full sequence e-value when

using the BPO algorithm (since only the best hit is extracted per protein sequence). For

43

simplicity purposes, both are simply referred to as e-value throughout this paper. The an-

notation of a protein sequence with multiple hits is a nontrivial problem, thus requiring the

implementation of a method for the processing of hits. We designed a method that gener-

ates and evaluates all possible combinations of hits by applying the DFS algorithm [106].

This algorithm allows the traversal of a tree-structured search space (i.e., each node is a

hit), whilst pruning solutions that do not respect predefined constraints (i.e., overlapping hit

residues coordinates), backtracking from leaf to root until the possible solution space is ex-

hausted. Our method generates all the possible combination hits with the following method:

(i) Get one hit from the collection of hits and define it as the combination root hit; (ii) Check

which other hits overlap up to 10% (default value) [240] with previous hits and select one to

add to our current combination of hits; (iii) Repeat step (ii) until no more hits can be added;

(iv) Repeat steps (i-iii) so that we loop over all the other hits and all possible combinations

are generated. We used Cython [12] to speed up the DFS implementation. Cython is an

optimising static compiler for the Python programming language, allowing the compiler to

generate C code from Cython code, in this case, functioning as a wrapper for the DFS algo-

rithm. The total number of possible combinations is 2N −X − 1, where N is the number of

hits the protein sequence has, X the number of impossible combinations (combinations with

overlapping hits), and 1 the empty combination. Due to exponential scaling, this method is

not always computationally feasible (e.g., the query sequence is very large and has many

small-sized hits). In such a scenario, the DFS algorithm may exceed the system’s recursion

limit or be unable to find a solution in optimal time (60 seconds by default, but customiz-

able). Should this happen, Mantis employs the previously described heuristic algorithm,

which scales linearly (a warning is written in the Mantis.out log).

After generating all the possible combinations, each combination is evaluated according to

several parameters:

• querylength - number of residues in the query sequence.

• hitlength - number of residues in the hit.

• combolength - number of hits in the respective combination.

44

• Total coverage (TC) – number of non-redundant residues in all the combination’s hits

divided by querylength. A high TC implies the combination covers a large percentage

of the protein sequence.

• Average hit coverage (HC) – sum of the coverage of each hit (hitlength

querylength
). This sum is

then meand by dividing by combolength. A high HC implies the hits in the combination

are large, thus benefiting combinations with a low amount of large hits rather than

combinations with a high amount of small hits.

• Combination e-value (CE) – the e-value of each hit is scaled twice, once to reduce

the range between different e-values (log10) and the second to understand how each

hit e-value compares to the best/lowest hit e-value found for a particular sequence

(minmax scaling). The scaled e-values are then summed and divided by combolength.

The combination score is defined by the following equation:

TC ×HC × CE (1)

The combination with the highest combination score is then selected, where the available

choices will ultimately depend on the algorithm used (Fig. 4.C). Our intra-PHMMs hit pro-

cessing implementation thus applies a two-fold quality control, initially by limiting the amount

of hits in HMMER’s domtblout (i.e., e-value threshold) and secondly by hierarchically order-

ing and selecting the most significant combination of hits.

Using multiple reference data sources An unannotated protein sequence may match

with zero, one, or multiple reference PHMM, from one or more data sources. When a protein

sequence has multiple hits from different data sources, it is important to identify functionally

similar annotations so that no information is lost (i.e., functional descriptions or IDs that may

be in one reference data source but not in another). By linking the metadata respective to

the PHMM to the now annotated protein sequence, we can identify functionally similar anno-

tations and integrate multiple reference data sources into one final consensus annotation. In

45

this manner, functionally similar annotations are merged, and any complementary informa-

tion they provide can then be used in downstream analysis (e.g., annotation 1 has a Pfam

and KO ID, annotation 2 has an EC number and the same KO ID, merging these will result

in a final annotation with more information).

For the integration of functional annotations from multiple data sources, a two-fold ap-

proach was used: (i) Consensus between IDs; and (ii) Consensus between the free-text

functional description. The latter is used as a backup, since IDs cross-linking is not univer-

sally available. Each reference data source includes metadata relevant to the PHMM herein;

this metadata may include multiple intra and/or inter database IDs as well as free-text func-

tional descriptions. IDs are extracted either through source-specific metadata parsing and

regular expressions. Free-text functional descriptions are extracted by source-specific meta-

data parsing. With this information it is then possible to identify annotations that are func-

tionally similar/consistent, and may thus be complementary to each other. The consensus

between IDs is calculated by identifying intersections between the functional annotations of

different reference data sources (e.g., both annotations have the same Pfam ID). IDs within

the free-text functional descriptions are extracted (with regular expressions) and also used

here. If no consensus between IDs is found, then we proceed with a consensus calculation

between functional descriptions (further described in the Supplementary PDF).

Inter-PHMMs hit processing starts by pooling together all hits from the different refer-

ence data sources and generating all possible combinations of hits (Fig. 9.A). The same

method used in intra-PHMM hit processing is applied, where the DFS algorithm is used by

default (again using the heuristic algorithm as a backup), but the BPO and heuristic algo-

rithms can also be used. We then check the metadata consistency (either through IDs or

free-text functional descriptions) of each hit against the current sequence’s other hits. With

this information, a metadata consistency graph is generated (Fig. 9.B). With the metadata

consistency graph and all possible combinations of hits, we can then calculate the consen-

sus combination score using equation 2. This requires calculating of the combination score,

using equation 1. This score is then multiplied by an additional score, comprised of the

following parameters:

46

• Average hit consistency (HCN) - number of hits (among all hits) with metadata directly

consistent (i.e., nodes directly connected in the metadata consistency graph) to the hits

in the current combination. Consistency checks are restricted to other reference data

sources besides the hit own’s reference source (e.g., if a hit is from Pfam, we would

only check hits that are not from Pfam). This number, plus the number of hits in the

combination, is divided by the total number of hits for the respective query sequence

(e.g., if a combination has two hits, with these having metadata consistent with three

other hits, and if there are ten hits in total, HCN would equal to 2+3
10 = 0.5). This is

an important parameter since it entails independent sources are describing the same

function.

• Reference HMM weight (HMMW) - mean weight of all the reference data sources

within the combination. This is calculated by adding all hits’ PHMM weights and di-

viding this sum by the number of hits in the combination (e.g., if a hit comes from

Pfam, that has a weight of 1, and another from eggNOG, that has a weight of 0.8,

HMMW would equal to 1+0.8
2 = 0.9). The default weight for each default reference

data source has been set according to the authors’ perception of the reference quality

- creation method, curation level, and annotation completeness (eggNOG - 0.8, Pfam

- 0.9, NPFM and KOfam - 0.7, and TIGRfam - 0.5). This weight is customizable, the

default weight for custom reference data is 0.7 (which can also be customized).

• Metadata quality (MQ) - mean metadata quality of each hit in the combination. If a

hit has no annotation data (IDs or description) it is given a score of 0.25, 0.5 if only

the description, 0.75 if only the IDs, 1 if IDs and description. All hit’s metadata quality

score is summed and divided by the number of hits in the combination.

Note that hit metadata consistency (through IDs or descriptions) requires a minimum of 70%

residues overlap (default but can be changed). Using the previously calculated combination

score, we then calculate the consensus combination score using the following equation:

Combinationscore ×
HCN +HMMW +MQ

3
(2)

47

The combination with the highest consensus combination score is selected and expanded

by concatenating additional metadata from other consistent hits (Fig. 9.C). In this step,

consistent hits can be either directly or indirectly connected in the metadata consistency

graph (a minimum of 70% residues overlap is still required). This expanded combination is

then merged into the final query sequence consensus annotation (Fig. 9.D). Redundant (i.e.,

repeated identifiers or functional descriptions) or poor quality information (e.g., ”hypothetical

protein”) is removed from the consensus annotation.

Sample selection As an initial testing dataset we started by downloading all the curated

Uni-Prot [37] (i.e., Swiss-Prot) protein entries created after 2010 (until 2020/04/14), along

with their respective sequences, annotations, and annotations scores. We then split these

entries by date, 2010-2020, 2015-2020,2018-2020, and 2020 only. For genomic sample

benchmarking we selected organisms widely used in microbial community standards. The

respective genomes, proteomes, and reference annotations were then downloaded from

Uniprot on 2020/05/26 (Supplementary Table 5). These samples were also used for com-

paring Mantis to eggNOG-mapper and Prokka.

Establishing a test environment For annotation quality benchmarking, we evaluate each

annotation produced by Mantis and check whether it agrees (database IDs intersection) with

the respective reference annotation, creating a confusion matrix. We created two main types

of test samples, the first consisting exclusively of curated UniProt [37] protein entries (and

the respective annotations) which were then split by date of creation (2010-2020, 2015-

2020, 2018-2020, 2020). The second type consisting of organism-specific UniProt protein

entries, with a mix of curated and automatically generated annotations. Each sequence’s

reference annotation consists of the UniProt protein function annotations. Each sequence

reference annotation and the respective PFA tool’s annotation is composed of a set of iden-

tifiers (if available: enzyme ECs, Gene ontology (GO) IDs, eggNOG IDs, KEGG orthology

IDs, Pfam IDs, and TIGRfam IDs) and functional descriptions. During the benchmark pro-

cess, each sequence’s reference annotation (e.g., ”glucose degradation ID1”) is compared

48

Figure 9 Inter-PHMMs hit processing steps. Inter-PHMMs hits processing starts by pool-
ing all hits [A1,AN] together (regardless of the reference data source), and generating all the
possible (non-overlapping coordinates) combinations [c1,cN] (A). A metadata consistency
graph (B) is also built by connecting all nodes [M1,MN] that have intersecting IDs or highly
similar descriptions (e.g., A1’s metadata M1 is consistent with A2’s metadata M2 - shared
ID1, and A5’s metadata M5 is consistent with A6’s metadata M6 - similar description ’glu-
cose degradation’). With this metadata consistency graph, the hit consistency HCN score
of each combination is calculated. For c1, for example, a sub-graph containing M1, M5 and
all directly connected nodes (only M2 and M6, but not M4, since it has insufficient residues
overlap - A4) would be created. The number of nodes in this sub-graph would then be di-
vided by the total number of nodes in the original graph, therefore c1 would have an HCN of
2+2
8 = 0.5. The remaining parameters would then be calculated and the best combination,

according to equation 2, would be selected. Finally, if, for example, the best combination is
c1, then this combination is expanded by merging all nodes directly or indirectly connected
to M1 and M5 in the metadata consistency graph (C) and with sufficient residues overlap
(i.e., M2, M6, M7, M8). The expanded combination is then merged into the final consensus
annotation (D).

49

against the PFA tool (i.e., Mantis, eggNOG-mapper, and Prokka) annotation (e.g., ”degrades

glucose ID1”). This comparison entails checking whether any of the database IDs present

in the reference annotation (i.e., ID1) are also present in the PFA tool annotation (i.e., ID1);

if they are, we consider this annotation to be the same. This has some significant limita-

tions: (i) the functional description is the same but the corresponding set of identifiers is

not; and (ii) when annotating multiple regions of the protein (which is the case when using

Mantis’ DFS and heuristic algorithms), it is possible that only one of the annotated regions

has IDs that intersect with the respective sequence reference annotation. Unfortunately,

due to the different resolutions of the reference PHMMs, it is not always possible to un-

derstand whether an annotation refers to a specific domain or a partial whole-sequence

hit. While a domain-centric benchmark would be feasible for Pfam, the same is not true for

the remaining reference PHMMs with broader resolutions (e.g., TIGRFams provides general

functional annotations). However, as we have previously shown, even when using the BPO

algorithm, Mantis has shown to output almost equally high F1 scores. Despite these lim-

itations, since whole-sequence reference annotations contain comprehensive cross-linking

with other databases, it provides clear benefits: (i) it fits better for the wide-ranging scopes

of the reference data sources, and (ii) allows for a more fair benchmark of the different PFA

tools that may use different reference data sources (and thus output annotations with dif-

ferent database IDs). This method then allows for the construction of a confusion matrix,

where each pairwise whole sequence annotation comparison (PFA tool/reference annota-

tion) corresponds to a single class. TPs occur when the PFA tool generated annotation and

the reference annotation share one or more database IDs (e.g., Pfam ID), FPs when no

database IDs are shared. FNs when the PFA tool does not annotate a protein sequence,

but a reference annotation is available, and TNs when the PFA tool does not annotate a

protein sequence, and no reference annotation is available. The functional text descriptions

are not taken into account during the benchmark, therefore if an annotation has no IDs, we

simply consider there is no annotation. Protein sequences annotated with the descriptions

”unknown function”, ”uncharacterized protein”, ”hypothetical protein” or with Pfam’s ”domain-

unknown-function”/DUF IDs are not taken into account during benchmarking (for reference

50

and PFA tools annotations). In addition, it is also possible that the reference or PFA tool

do not have an annotation for a certain sequence. In any of the these three scenarios, if

the PFA tool manages to annotate the sequence, this case is classified as potentially new

annotation (PNA). Since no ground-truth exists in these scenarios, PNAs are excluded from

the confusion matrix classes (not used during any performance metrics) and are only used

to calculate the annotation coverage. PNAs can potentially provide novel insight into protein

sequences without any previous annotation. Since, by default, most sequences used during

benchmarking will have an annotation, TNs, ergo any metrics using TNs (e.g., specificity),

are irrelevant.

Annotation coverage is defined here as the number of annotations produced by the PFA tool

divided by the total number of protein sequences in a sample Totalseqs. Totalseqs includes

sequences with and without a reference annotation (since not all sequences have a refer-

ence annotation), the total number of the PFA tool annotations includes TPs, FPs, and PNAs.

Annotation coverage is calculated with TP+FP+PNA
Totalseqs

. Numerous metrics can be calculated

from the various confusion matrix categories, we considered precision and recall/sensitivity

to be among the most important. Precision is defined as TP
TP+FP and corresponds to the

number of correctly annotated protein sequences, out of all the protein sequences the PFA

tool managed to annotate. Recall is defined as TP
TP+FN and corresponds to the number of

correctly annotated protein sequences, out of all the protein sequences that we know the

function of (i.e., protein sequences that have a reference annotation). Both are equally im-

portant, a tool with low precision will incorrectly annotate protein sequences, whereas a tool

with low recall will not produce sufficient annotations. A way to converge both scores into

one is to use the F1 score, which is defined as 2× Precision×Recall
Precision+Recall . Unless otherwise stated,

values shown in this paper are shown as absolute values ranging from 0 to 1.

Finally, we benchmarked Mantis against two other PFA tools - eggNOG-mapper and Prokka.

For homology search, Mantis uses HMMER [183], for eggNOG-mapper we used the Diamond-

based [26] search (as suggested by the authors), and Prokka uses BLAST and HMMER.

All tests ran on an HPC with Dell C6320, 2 * Intel Xeon E5-2680 v4 @ 2.4 GHz [228],

each core had 4GB of RAM. Unless specified, all tests ran with 25 cores and 100GB

51

RAM (actual Mantis minimum hardware requirements are much lower). In addition, the

same methodology and nomenclature apply to any other benchmarked tools described

in this paper. Mantis used HMMER v3.2.1. The local version of eggNOG-mapper used

was v2.0.6 with database v5.0.1 found at https://github.com/eggnogdb/eggnog-mapper/

commit/41ec3566ab00fd437f905dfde592c553632a9eae. The local version of Prokka used

was v1.14.6 found at https://github.com/tseemann/prokka/releases/tag/v1.14.6.

For details on execution commands please see the Supplementary PDF.

Testing different e-value thresholds Different e-value thresholds were tested: 1e−3, 1e−6,

1e−9, 1e−12, 1e−15, 1e−18, 1e−21, 1e−24, 1e−27, 1e−30, and a dynamic threshold. The dynamic

threshold was set according to the query sequence length, which was previously shown

to provide better results with BLAST [224]. For the dynamic threshold, for sequences with

less than 150 amino acids, the e-value threshold was set to 1e−10, if above 150 and below

250, 1e− sequencelength

10 , and if above 250, 1e−25. The UniProt 2010-2020 sample was then

annotated with all the different e-value thresholds, and each output was compared to the

reference annotations.

Testing hit processing algorithms In order to understand whether the different hit pro-

cessing algorithms resulted in statistically significant differences in F1 scores, we created

5000 randomized synthetic samples with 5000 sequences each, which were randomly se-

lected from the 2010-2020 UniProt sample. Per algorithm, we compared the Mantis annota-

tions of each subset to the reference annotations (to allow for pairwise comparison of each

algorithm, the same subsets were used in all algorithms). This resulted in a list of confu-

sion matrices (5000 per algorithm), from which we calculated the F1 score. We applied the

Wilcoxon signed-rank test, with the H0: no differences in F1 score between the tested algo-

rithms. As a non-parametric test, this test makes no assumptions on the distribution of the

data. A pairwise comparison was done between DFS and the other algorithms: (i) DFS and

heuristic, and (ii) DFS and BPO.

https://github.com/eggnogdb/eggnog-mapper/commit/41ec3566ab00fd437f905dfde592c553632a9eae
https://github.com/eggnogdb/eggnog-mapper/commit/41ec3566ab00fd437f905dfde592c553632a9eae
https://github.com/tseemann/prokka/releases/tag/v1.14.6

52

6.1.8 Availability of source code and requirements

• Project name: Mantis

• Project home page: https://github.com/PedroMTQ/mantis

• Operating system: Linux

• Programming language: Python

• Other requirements: Python 3+, HMMER 3+, and several Python packages (please

see the provided environment for a full list)

• License: MIT license at https://github.com/PedroMTQ/mantis/blob/master/LICENSE

• RRID: SCR 021001

• Biotools ID: mantis pfa

6.1.9 Availability of supporting data and materials

The data and code supporting the results of this article are available at https://git-r3lab.

uni.lu/pedro.queiros/mantis_supplements. The Supplementary pdf ”supplements.pdf”

contains: (i) discussion on how the e-value threshold may change Mantis’ output, (ii) exe-

cution commands, and (iii) information on how the similarity analysis was performed. The

supplements.xlsx file contains all tables referenced in this article. The first sheet ToC con-

tains the table of contents. An archival copy of the code and supporting data is available via

the GigaScience repository, GigaDB [178].

Competing Interests The authors declare that they have no competing interests.

Funding Supported by the Luxembourg National Research Fund PRIDE17/11823097.

https://github.com/PedroMTQ/mantis
https://github.com/PedroMTQ/mantis/blob/master/LICENSE
https://git-r3lab.uni.lu/pedro.queiros/mantis_supplements
https://git-r3lab.uni.lu/pedro.queiros/mantis_supplements

53

Acknowledgements Author contributions according to the contributor roles taxonomy CRediT

was as follows: Conceptualization: P.Q. and P.M.; Data curation: P.Q.; Formal Analysis: P.Q.;

Funding acquisition: P.W. and P.M.; Investigation: P.Q.; Methodology: P.Q. and P.M.; Project

administration: P.Q. and P.M.; Resources: P.Q.; Software: P.Q.; Supervision: P.M. and P.W.;

Validation: P.Q. (lead), F.D., and O.H.; Visualization: P.Q.; Writing – original draft: P.Q. (lead),

and P.M.; Writing – review & editing: P.Q., P.M., F.D. , O.H., and P.W.. All authors proof-read

and approved of the content in this research paper.

The experiments presented in this paper were carried out using the HPC facilities of the

University of Luxembourg [228]. P.W. acknowledges the European Research Council (ERC-

CoG 863664). We would like to thank Tomila Litvishko for proof-reading this research paper.

We would like to acknowledge all the creators of the reference data and software used by

Mantis, building upon the complementary knowledge of others truly moves the field forward.

54

In an effort to further understand the impact of the e-value threshold on protein function

annotation, I dedicated a supplementary chapter regarding this topic. Below follows the

transcript from the supplementary material of the Mantis article.

Impact of the e-value threshold

As an initial quality control of Mantis, we tested different static e-value thresholds and a

dynamic threshold to set a default HMMER e-value threshold within Mantis. Interestingly,

we saw (supplemental Table 1) that a stricter/lower e-value threshold did not necessarily

lead to a higher F1 score. By limiting the amount of hits output by HMMER, the e-value

threshold will significantly affect the intermediate Mantis’ processing steps and therefore its

final output.

Naturally, a more stringent e-value threshold results in fewer HMMER hits; this in turn re-

duces the amount of annotations produced by Mantis, and, by extent, the amount of TPs in

the benchmark’s confusion matrix.

Unlike TPs, FPs do not necessarily decrease with a lower e-value threshold. For example,

the confusion matrix for the sample Uniprot 2010-2020 annotated with an e-value threshold

of 1e−6 and 1e−30 had 12360 and 12199 FPs, respectively. This goes according to the

expectation that a more strict e-value threshold results in better HMMER hits. However,

using an e-value threshold of 1e−21 resulted in 12497 FPs, which contradicts the expected

trend (lower threshold would, in theory, equal to less FPs). This occurs because of Mantis’

quality control during consensus generation, in particular due to the fact that Mantis attempts

to find different reference data sources that point towards the same function. When a higher

e-value threshold is used, more hits are available, and thus finding multiple hits that point

towards the same function is ”easier” than when the available solution space is more limited.

As an example, we selected a protein sequence that has the following reference functional

annotation IDs:

go:0000160 go:0003677 go:0006355 kegg ko : K07774 pfam : PF00072 pfam : PF00486

Note that while several variables are taken into account for hit combination scoring, for

55

simplicity here we will only refer to the e-value. We then extracted the Mantis functional

annotation for the same sequence in the Uniprot 2010-2020 sample, first when using an

e-value of 1e−6 and secondly when using an e-value of 1e−21. The sample annotated

with an e-value threshold of 1e−6 resulted in the following functional annotations (from the

integrated annotation.tsv file):

Database HMM h i t e−value | Annotat ion

t igr fam merged TIGR01387 2.2e−50 | t i g r f a m : TIGR01387

Pfam−A Response reg 6.5e−25 | pfam : PF00072

Pfam−A Trans reg C 5.7e−19 | pfam : PF00486 d e s c r i p t i o n : T r a n s c r i p t i o n a l

r e g u l a t o r y p ro te in , C te rm ina l

NOGG merged 2SE5K 2.3e−63 | d e s c r i p t i o n : T r a n s c r i p t i o n a l

r e g u l a t o r y p ro te in , C te rm ina l

NCBIG merged cztR si lR copR 2.2e−50 | t i g r f a m : TIGR01387

kofam merged K02483 2.9e−69 | cog :COG0745 go:0000156 kegg ko : K02483

For this threshold, the consensus annotation.tsv file contained the PHMM hits 2SE5K and

Trans reg C. The hit with the best e-value wasK02483, but, since 2SE5K and Trans reg C

shared the description ”Transcriptional regulatory protein, C terminal”, these two hits were

chosen and merged as the consensus annotation. This consensus annotation shares the ID

PF00486 with the reference annotation and is therefore marked as a TP.

The same sequence but now using using an e-value threshold of 1e−21:

Database HMM h i t e−value | Annotat ion

t igr fam merged TIGR01387 2.2e−50 | t i g r f a m : TIGR01387

Pfam−A Response reg 6.5e−25 | pfam : PF00072

NOGG merged 2SE5K 2.3e−63 | d e s c r i p t i o n : T r a n s c r i p t i o n a l

r e g u l a t o r y p ro te in , C te rm ina l

NCBIG merged cztR si lR copR 2.2e−50 | t i g r f a m : TIGR01387

kofam merged K02483 2.9e−69 | cog :COG0745 go:0000156 kegg ko : K02483

In this case, the hit Trans reg C is no longer available since it had an e-value of 5.7e-

19, which is above the e-value threshold. Consequently, the consensus annotation.tsv file

contained instead the PHMM hit K02483, since, among all available hits, it’s the one with

the lowest e-value. The consensus annotation now does not share an ID with the reference

annotation and is therefore marked as a FP.

The e-value threshold can also have an impact on the choice of the best combination. Since

56

the combination e-value is calculated by scaling with log10 and minmax, different e-value

thresholds will result in different minmax values, and, by extent, different scores for the

same combination of hits. For example, if we find 3 hits when using an e-value threshold of

1e−3:

• hit 1 with e-value 1e-5

• hit 2 with e-value 1e-15

• hit 3 with e-value 1e-10

By applying log10 and minmax scale to each hit we get:

• hit 1 with minmax log10 e-value of 0

• hit 2 with minmax log10 e-value of 1

• hit 3 with minmax log10 e-value of 0.5

Now with an e-value threshold of 1e−6:

• hit 2 with e-value 1e-15

• hit 3 with e-value 1e-10

By applying log10 and minmax scale to each hit we get:

• hit 2 with minmax log10 e-value of 1

• hit 3 with minmax log10 e-value of 0

In the first scenario, should hit 3 score well in the other combination score variables, it

can still be picked above hit 2 (should hit 2 score poorly in the other combination score

variables). In the second scenario, it is highly unlikely that hit 3 will be chosen since it is now

has the worst e-value of all the hits.

While these are anecdotal examples, they depict why and how different e-evalue thresh-

old may lead to unexpected results.

57

6.1.10 Concluding remarks

The published version of this paper can be found at https://doi.org/10.1093/gigaScience/

giab042

The GitHub repository for this tool is available at https://github.com/PedroMTQ/mantis

In this manuscript, the Mantis protein function annotation tool was described and how it

addresses the previously enumerated challenges. Extensive benchmarking was also per-

formed with multiple samples, environments, search parameters and reference data. Finally,

Mantis’ overall annotation quality was compared against other state-of-the-art tools.

In order to integrate multiple reference sources, it was necessary to develop a NLP tool

that compares protein function annotations from multiple sources, being thus generalizable

to different writing styles but also being specific to the particularities of protein function de-

scriptions (e.g., highly specific nomenclature).

https://doi.org/10.1093/gigaScience/giab042
https://doi.org/10.1093/gigaScience/giab042
https://github.com/PedroMTQ/mantis

58

6.2 Unification of functional annotation descriptions using text mining

6.2.1 Summary

Functional descriptions often contain discrepancies (e.g., different nomenclature) between

and within databases, which required the development of a specialised method for the cor-

rect pre-processing and similarity analysis of functional descriptions. UniFunc was therefore

developed to address this issue and then integrated into Mantis to allow the use of multiple

reference sources during protein function annotation.

The authors for this publication[179] are as follows: Pedro Queirós, Polina Novikova, Paul

Wilmes and Patrick May. All authors contributed to the writing, revision, and study design. I

was the main author of this publication and the developer of the tool associated with it.

59

Unification of functional annotation descriptions using text
mining

6.2.2 Abstract

A common approach to genome annotation involves the use of homology-based tools for the

prediction of the functional role of proteins. The quality of functional annotations is depen-

dent on the reference data used, as such, choosing the appropriate sources is crucial. Unfor-

tunately, no single reference data source can be universally considered the gold standard,

thus using multiple references could potentially increase annotation quality and coverage.

However, this comes with challenges, particularly due to the introduction of redundant and

exclusive annotations. Through text mining it is possible to identify highly similar functional

descriptions, thus strengthening the confidence of the final protein functional annotation and

providing a redundancy-free output. Here we present UniFunc, a text mining approach that

is able to detect similar functional descriptions with high precision. UniFunc was built as a

small module and can be independently used or integrated into protein function annotation

pipelines. By removing the need to individually analyse and compare annotation results,

UniFunc streamlines the complementary use of multiple reference datasets.

60

6.2.3 Introduction

Protein function annotation is the process of identifying regions of interest in a protein se-

quence and assigning a certain biological function to these regions. It enables the under-

standing of the physiology and role of single or multiple organisms in a community/ecosys-

tem, which is particularly important to define the metabolic capacities of newly sequenced

organisms or communities [204]. Function assignment is based on reference data, such that

if we have an unknown protein X which is similar to protein Y (e.g., by sequence or structure

similarity) then we can infer these proteins share the same function(s) [129, 235]. By extent,

we can then assume that protein X can be assigned the same protein functional description

and/or database identifiers (ID) such as protein Y.

The reference data used for this purpose usually stems from a single source, however, some

protein function annotation tools use multiple sources, e.g., InterProScan [102]. The latter

provides several advantages: reinforcement of annotation confidence (several independent

sources indicating the same function), improvement of downstream data integration (wider

variety of different database IDs), and higher annotation coverage (wider search space). Si-

multaneously, using multiple references gives rise to various challenges, in particular, uncer-

tainty to define which annotation best represents the functional role of a certain protein (es-

pecially when multiple sources infer mutually exclusive functions) and dealing with the intro-

duction of redundancy. These disadvantages are commonly addressed via manual curation,

however, this is not feasible in large-scale projects. Many databases provide cross-linking

(e.g., UniProt [37]), which permits automating this process by checking for intersecting IDs,

however, some functional annotations only contain free-text descriptions. Applying the same

intersection methodology for text is not viable due to human language’s intrinsic richness in

confounders (e.g., determiner ”the”). This leads to the omission of such functional annota-

tions and may cause the exclusion of potentially useful information. Through the use of text

mining techniques, it becomes possible to integrate these functional annotations.

Text mining is the process of exploring and analysing large amounts of unstructured text

data aided by software. It allows identifying potential concepts, patterns, topics, keywords,

and other attributes in data [61]. A review by Zeng et al. [242] has shown some of the

61

potential and diverse techniques and applications of text mining in bioinformatics, some of

which include literature mining [218, 231], protein research [230], and ontologies [202].

We herein present UniFunc (Unified Functional annotations), a text mining tool designed to

assess the similarity between functional descriptions, thus allowing for the high-throughput

integration of data from multiple annotation sources. UniFunc is available at https://

github.com/PedroMTQ/UniFunc

6.2.4 Results

UniFunc UniFunc’s workflow is composed of four main steps: (i) pre-processing, (ii) part-

of-speech tagging (PoST), (iii) token encoding and scoring (TES), and (iv) similarity analysis.

The first two steps comprise the natural language processing (NLP) of the functional descrip-

tions (e.g., removing extra spaces and eliminating confounders), the last two the text mining

(i.e., text encoding and similarity analysis). Figure 10 showcases UniFunc’s workflow when

comparing two functional descriptions, each step is described in ”Material and methods”.

While context dependant, we will henceforth refer to an annotation as a functional descrip-

tion of a particular protein (e.g., ”glucose degradation”). Each annotation may contain one

or multiple sentences, which are composed of one or multiple tokens (e.g., ”glucose”). A

collection of independent annotations constitutes here the annotation corpus.

Benchmark As validation, we downloaded all of Swiss-Prot’s [37] protein entries (N=563973,

as of 2021/01/16) and selected those that had a functional description, and at least one EC

number, Pfam [67] ID, or eggNOG [94] ID resulting in a validation dataset with 133450 en-

tries. We then generated two sets of pairwise functional annotation comparisons. One set of

pairs with intersecting identifiers (positive cases) and the other with non-intersecting identi-

fiers (negative case). We then calculated the similarity score of the functional descriptions in

each pairwise comparison using different models. In order to understand the impact of the

NLP and text mining approach used in UniFunc we built a baseline model that employs very

simplistic pre-processing and text encoding methods. We also compared UniFunc against

a SciSpacy [154] model, a python library that offers biomedical NLP models. With this pre-

https://github.com/PedroMTQ/UniFunc
https://github.com/PedroMTQ/UniFunc

62

Figure 10 Overview of the UniFunc workflow. UniFunc starts by extracting all the IDs (cIDs
and pIDs). It then removes uninformative parts from the annotation and splits it by sentences
and tokens. UniFunc then furthers processes the tokens, by tagging each token, and only
keeping the most relevant tokens within each annotation and these tokens are encoded
into TF-IDF scaled vectors. Finally, the cosine distance between the two annotation vectors
and the Jaccard distance between the pIDs are calculated. If any cIDs intersected, the
similarity score is 1, otherwise, both previously mentioned distances are used to calculate
the entry’s similarity score. Abbreviations used in this figure include cIDs (common database
identifiers), pIDs (possible database identifiers), PoST (part-of-speech tagging), and TES
(token encoding and scoring).

63

trained SciSpacy model we used the same simplistic pre-processing as the baseline model.

All three models used the same similarity metric, i.e., cosine distance.

The results of this pairwise similarity comparison were then compiled into threshold-specific

confusion matrices, where true positives (TP) correspond to pairs of entries with intersecting

identifiers and a similarity score above the threshold, true negatives (TN) to non-intersecting

identifiers and a similarity score below the threshold, false positives (FP) to non-intersecting

identifiers and a similarity score above the threshold, and false negatives (FN) to inter-

secting identifiers and a similarity score below the threshold. These matrices were then

used to calculate several performance metrics: Specificity = TN
TN+FP , Precision = TP

TP+FP ,

Recall = TP
TP+FN , and Fβscore = (1+β2)×Precision×Recall

β2×Precision+Recall with β equal to 1. These metrics

are available in the supplemental excel spreadsheet. We then plotted precision and recall

(Figure 11) with a threshold ranging from 0 to 1 in increments of 0.01. The area under the

ROC curve (AUC) was also calculated, with the baseline model having an AUC of 0.835,

UniFunc 0.868, and SciSpacy 0.876.

Figure 11 Performance of the baseline and SciSpacy models and UniFunc according to
precision and recall

Case studies In the following section, we will provide two case studies that will serve as

examples for the potential application of UniFunc. The first entails functionally annotating a

sample with multiple reference databases and using UniFunc for integrating these different

sources of functional annotations. The second the generation of a profile Hidden Markov

Model (PHMM) reference database, using UniFunc to evaluate the functional homogeneity of

64

the PHMM. Methodology details are available in the ”Case studies methodology” section.

Using multiple reference data sources As an example, we annotated the proteome

from the organism Bacillus subtilis (Uniprot proteome ID UP000001570) using HMMER [183]

against two reference databases (KOfam [6] and NCBI’s protein family models [131]).

Using as reference the KOfam PHMMs and NCBI’s protein family models (NPFM) we

annotated 3324 and 2895 out of 4260 sequences, respectively. Combined, both references

annotated 3444 sequences. For each sequence, we checked which functional annotations

from KOfam and NPFM shared IDs, those that shared IDs were identified as being func-

tionally equal, of which 492 sequences were found. The remaining sequences would then

need to be evaluated according to their functional annotation description; doing so manually

would only be feasible for a select number of sequences (not feasible in a high-throughput

pipeline). As such, UniFunc was used to evaluate the similarity of functional descriptions

and thus aid in the integration of these two reference data sources. Using UniFunc, we cal-

culated the similarity between the functional annotation descriptions from KOfam and NPFM.

By setting a similarity threshold of 0.9 (merely an example), we found that 266 were in func-

tional agreement. In this manner, we were able to integrate two reference data sources into

a single, non-redundant annotation. A similar protocol could be applied for the annotation of

metagenome-assembled genomes or full metagenomes.

Functional homogeneity of a protein cluster During the creation of multiple se-

quence alignment-based reference data sources, e.g., PHMMs, it is common to cluster

protein sequences by their sequence and functional similarity. UniFunc can automate func-

tional similarity analysis. As an example, we evaluated the functional homogeneity and

average pairwise sequence distance of a collection (N=4100) of clustered Archaea protein

sequences. We then kept only the clusters with at least 10 proteins sequences and with a

minimum 80% of functionally annotated protein sequences, resulting in 2516 clusters. We

then used UniFunc to measure the functional pairwise similarity (i.e., cluster functional ho-

mogeneity) between each pair of protein sequences within the clusters. These clusters were

65

further refined by setting a minimum of 0.9 functional homogeneity and a maximum average

pairwise sequence distance of 0.1, thus obtaining 2182 highly homogeneous clusters (func-

tion and sequence-wise). These new clusters could then be used to create highly-specific

PHMMs, which could then be used to functionally annotate Archaea samples.

6.2.5 Discussion

We have developed a method that processes and encodes free-text functional descriptions,

allowing for high-throughput pairwise similarity analysis, ultimately enabling the comparison

of functional annotations obtained from multiple sources. We designed UniFunc with two ap-

plications in mind, first to facilitate redundancy elimination when consolidating protein func-

tion annotations, secondly as a cross-linking mechanism for functional annotations devoid of

IDs. While more sophisticated methodologies have been applied in related fields [126, 232,

154], we aimed to create a method with low complexity that could be easily integrated into

more complex annotation pipelines.

UniFunc was developed to identify and eliminate confounders (e.g., determiner ”the”) from

functional annotations (i.e., noise reduction). Without noise reduction, annotations such

as ”this is an oxidase” and ”this is a kinase” may be indicated as being similar (three out

of five identical tokens). On the other hand, without noise reduction, annotations such as

”believed to be an oxidase” and ”this is an oxidase” may be indicated as being dissimilar (two

out of seven identical tokens). Fundamentally, confounder elimination increases ”purity” of

annotations, resulting in more polarized (close to 0 or 1) similarity scores.

As seen in Figure 11 UniFunc can achieve high precision, in fact, initial convergence to

high precision was much faster for UniFunc than for the other models. This is explained by

the extreme distribution of the similarity scores, which registers high density toward 0 or 1,

whilst in the other models they are more evenly distributed. This extreme distribution of the

scores confirms UniFunc’s superior noise reduction ability, which is especially useful when

comparing functional descriptions with a high amount of confounders (e.g., when comparing

functional annotations with multiple sentences).

Neither UniFunc nor the baseline model achieved high recall at higher similarity thresholds.

66

This can be explained by the fact that while two functional annotations may imply the same

function (and thus share IDs), they may also use different nomenclature (e.g., quercetin can

also be called meletin or xanthaurine). In these scenarios, a comprehensive biological lexi-

con would be required, and while such lexicons exist [222], they are usually behind pay-walls,

which limits their use by open source projects following FAIR principles set by Wilkinson et

al. [236]. Since several databases (e.g., [30, 36]) provide ontology systems, a future solu-

tion may be to use these to create a lexicon from these. Improving UniFunc’s NLP (e.g.,

lemmatization - ”methyltransferase” to ”methyl transfer enzyme”), could aid in the reduction

of false negatives. Among various text mining techniques, word embedding [169, 144] could

prove beneficial; this technique permits identifying tokens as similar when they appear in

similar contexts. This could prove advantageous in UniFunc’s workflow (i.e., specifically dur-

ing part-of-speech tagging), where instead of removing certain lexical tags (e.g., pronouns),

we could use word embedding to understand how related two tokens are (e.g., ”enzyme”

is closer to ”protein” than to ”gene”). Word embedding, or similar techniques, could poten-

tially improve UniFunc’s recall. However, this added complexity could also reduce UniFunc’s

robustness when dealing with tokens absent or underrepresented in the annotation corpus

(e.g., some tokens appear only once in the whole corpus). In addition, higher complexity

techniques also tend to be more costly, both in term of time and hardware requirements.

At higher thresholds, UniFunc had a higher recall than the baseline model, while having

similar precision. This is again due to noise reduction and its resulting extreme distribution

of scores. Since the baseline model does not eliminate confounders, its ability to produce

high similarity scores is reduced, leading to a lower recall when the similarity threshold is too

high. SciSpacy and UniFunc behaved very differently along the different thresholds. Uni-

Func quickly achieved high precision at the expense of a rapid decrease in recall, whereas

SciSpacy only achieved a higher precision at higher thresholds. Despite this, the AUC dif-

ference between the two model was low, UniFunc’s AUC was 0.008 lower than SciSpacy’s,

in essence, both have their own advantages. SciSpacy is applicable on a broader range

of scenarios, whereas UniFunc was specifically implemented to compare protein function

annotations. On the other hand, we believe that UniFunc’s implementation may offer more

67

future-proofing as its corpus can be updated by re-downloading Swiss-Prot’s protein anno-

tations and gene ontologies.

Overall, all models had an AUC above 0.8, indicating that these performed well in predicting

the correct classes of the validation dataset. At a baseline, we consider UniFunc’s perfor-

mance to be consistent (high precision) to allow for its reliable use in the scenarios it was

built for. Future iterations will address UniFunc’s lower recall.

We have also provided two case studies where UniFunc could be easily applied. In the

first, we have shown that UniFunc can aid the integration of multiple reference data sources.

This methodology could also prove advantageous when functionally annotating samples with

very specific reference data sources (e.g., Resfams [68]). In addition, we have shown that

UniFunc can be used to measure functional homogeneity when creating functional reference

data sources.

In conclusion, while the standardization of functional annotation data (including IDs and

free-text) still constitutes a challenge for successful data integration [92, 121, 205], we have

shown that functional descriptions from multiple references/sources can be successfully in-

tegrated using text mining, complementing ID-based data integration.

6.2.6 Materials and methods

Baseline model workflow In the baseline model, descriptions are split into tokens by

using spaces as delimiters. Each annotation is then encoded according to the presence (1)

or absence (0) of all tokens within both annotations (i.e., one-hot encoding). For example,

if the first annotation contains the tokens [”lipids”, ”degradation”] and the second [”glucose”,

”degradation”], the union of tokens would correspond to [”lipids”, ”glucose”, ”degradation”].

We then check the presence/absence of the first token ”lipids” in the first annotation: since

it is present, we add a ”1” to the first annotation vector. We do the same for the second

annotation: since it is absent, we add ”0” to the second annotation vector. We repeat the

same process for the second token ”glucose”, so the first annotation vector now is [1,0] and

the second [0,1]. We then do the same for all the remaining tokens (i.e., ”degradation”)

and obtain, for each annotation, a vector with the number of token as entries. Here, where

68

the first annotation is encoded as [1,0,1] and the second as [0,1,1]. One minus the cosine

distance of these vectors will correspond to the similarity of these two annotations.

UniFunc workflow UniFunc’s workflow is comprised of four main steps: (i) pre-processing,

(ii) part-of-speech tagging, (iii) token encoding and scoring, and (iv) similarity analysis. NLP

includes steps i and ii, which were tailored towards the removal of confounder tokens, thus

preserving only the most significant tokens within the functional description. Steps iii and iv

refer to the text mining part of the workflow and involves the encoding of annotations, making

them comparable. Figure 10 shows an overview of UniFunc workflow.

(i) Pre-processing NLP starts with ID extraction via the use of regular expressions in

two manners, the first looks for common database IDs (cID) patterns (i.e., enzyme ECs -

Cornish-Bowden [42]; TCDB - Saier, Tran, and Barabote [187], KO - Kanehisa and Goto

[104]; TIGRfam - Haft et al. [76]; Pfam - El-Gebali et al. [67]; COG - Tatusov et al. [219];

and GO - Consortium [36]), the second finds possible IDs (pID) with the regular expression:

”[A-Z]+\d{3,}(\.\d+)?([A-Z]+)?” , which captures ”words” with capital letters followed

by a set of numbers (possibly followed by a dot and digits or more capital letters). While

ID structure varies, in our experience, this is the most standardized format across multiple

databases. Protein acronyms are also captured by this regular expression, which, due to

the increased weight of pIDs in comparison to tokens, will increase the similarity score of

annotations containing the same protein acronyms. IDs are put aside for later use during

similarity analysis.

After ID extraction, the annotation is pre-processed, where unnecessary punctuation and

filler entities (e.g., extra spaces) are removed, followed by standardization of nomenclature

(e.g., ”-->” to ”to”) and numerals (e.g., ”III” to ”3”). Annotations are then split into sen-

tences (sentence segmentation) and each sentence is split into tokens (tokenization, e.g.,

”lipid degradation” is split into two tokens ”lipid” and ”degradation”). Each plural token is then

converted to its singular form (stemming). Finally, we also aggregate certain tokens (e.g., to-

kens ”terminal” and ”N” to token ”terminal N”) into a single token. Tokens within parentheses

69

are removed (except when they are acronyms) as, in our experience, they tend to contain

tokens irrelevant for similarity analysis (e.g., ”Seems to play a role in the dimerization of PSII

(By similarity).”).

(ii) Part-of-speech tagging Part-of-speech tagging (PoST) is the method of lexically

classifying/tagging tokens based on their definition and context in the sentence. The aim

here is the identification and elimination of tokens that could introduce noise during sim-

ilarity analysis (e.g., the very common determiner ”the”). We use two taggers, a custom

tagger, and NLTK’s pre-trained Perceptron tagger [16, 89]. The first tagger is independent

of context and uses Wordnet’s lexicon [145] to identify the most common lexical category of

any given token. Should a token be present in Wordnet’s lexicon, a list of potential lexical

categories for the token is given (e.g., noun, synonym, verb, etc), the token is then assigned

the most common tag. To adjust this tagger’s lexicon to biological data, gene ontologies [9,

36] names, synonyms, and definitions are processed and tagged (using the pre-trained Per-

ceptron tagger). Those not classified as adpositions, conjunctions, determinants, pronouns,

or particles are added to the custom tagger as nouns. Tokens are then classified by both

taggers, tokens untagged by the custom Wordnet tagger are assigned the Perceptron’s tag.

The Perceptron tagger is only used as a backup since it has been pre-trained with the Penn

Treebank dataset [220], thus its corpus is unspecific to UniFunc’s target data. Finally, tokens

that have not been tagged as adjectives, adverbs, nouns, or verbs, that belong to a pre-

compiled list of common biological terms, or are common English stop words are removed

from the annotation. Ideally, more tag types would be removed (e.g., adverbs), however,

we found that doing so eliminated important tokens. In addition, since some annotations

may contain synonym tokens (e.g., a annotation contains the token ”identical” and another

annotation contains the token ”equal”), we use Wordnet to find synonyms and replace the re-

spective tokens, such that both annotations contain the same token. This is only applicable

to the tokens kept after PoST.

70

(iii) Token encoding and scoring Token encoding is similar to the baseline’s model

token encoding, with a key difference, unlike the baseline model’s binary vector, UniFunc

uses a Term Frequency-Inverse Document Frequency (TF-IDF) scaled vector. Therefore, the

annotation vectors will contain only elements with values ranging from 0 to 1, the higher the

value the more important the token is in the annotation. TF-IDF measures the importance of

each token relative to a annotation and the annotation corpus, therefore tokens that are

frequent in a single annotation but infrequent in the annotation corpus receive a higher

weight.TF-IDF has been successfully used in past projects, such as Benabderrahmane et al.

[13] and Huang, Gan, and Jiang [93].

As a reference corpus, we downloaded all of Swiss-Prot’s protein entries (N=563973, as of

2021/01/16) and their respective functional description (”Function [CC]”) and protein names,

as well as the gene ontologies ”go.obo” file. From the go.obo file we extracted the ”name:”,

”synonym:”, and ”def:” entries, from the Swiss-Prot file, all the functional descriptions and

protein names. This data was then pre-processed (using the same method used by UniFunc)

and split into tokens, we then created a frequency table with the number of times each token

appeared in the corpus.

TF-IDF is calculated with the equation NW
TW ×

TC
NC , where NW is the number of times a to-

ken appears in the annotation, TW the total number of tokens in the annotation, TC the

total number of annotation in the annotation corpus, and NC the total number of times a

certain token appears in the corpus. We apply a log10 scale to reduce the distance be-

tween the vectors’ elements and a MinMax scale to sort the tokens by their intra-annotation

importance.

(iv) Similarity analysis Each functional description now has an associated set of IDs

and an annotation vector. When two functional descriptions share a cID (i.e., enzyme ECs,

TCDB, KO, TIGRfam, Pfam, COG, and GO), the similarity score corresponds to 1. When

both functional descriptions have pIDs we calculate the Jaccard distance between these sets

of pIDs and subtract it to 1, obtaining pIDs similarity pIDsim. We then calculate the cosine

distance between both annotations and subtract it to 1 to obtain the annotation similarity

71

Docsim. If pIDsim is above 0, then the similarity score corresponds to 2×pIDsim+Docsim
3 ,

otherwise, it corresponds to Docsim.

SciSpacy models workflow As an additional comparison we used SciSpacy’s [154]

”en core sci lg” model. SciSpacy offers biomedical NLP models, which are integrated into

the Spacy [90] framework, a NLP Python library. In this model, descriptions are split into

tokens by using spaces as delimiters (similarly to the baseline model).

Case studies methodology For the ”Using multiple reference data sources” case study

the functional annotations were generated by using HMMER’s hmmsearch command against

the KOfam and NPFM PHMMs. Since NPFM provides taxon-specific PHMMs, protein se-

quences were annotated hierarchically, meaning that, if available, we used the PHMMs re-

spective to each taxon of the Bacillus subtilis taxonomic lineage (i.e., 131567> 2> 1783272

> 1239 > 91061 > 1385 > 186817 > 1386 > 653685 > 1423). In each hmmsearch iter-

ation, only the protein sequences left to annotate were used. The functional annotations

metadata was then assigned to the hits from HMMER’s output.

For the ”Functional homogeneity of a protein cluster” case study, a collection of 4570

archaeal genomes was downloaded from different sources, 1162 from the UHGG collection

of MGnify [146], 371 from NCBI [41], and 3037 from the GEM catalogue [158]. CheckM

[162] was run on the entire collection to ensure high-quality archaeomes (> 50% complete-

ness, < 5% contamination). Sourmash [25] was used to identify groups of highly similar

genomes in the collection. Similarity of genomes in each group was validated based on their

GC content and related taxonomy. Within each group of highly similar genomes, a genome

with the highest completeness and lowest contamination was selected as a group repre-

sentative. As a result, a collection of 1681 non-redundant high-quality archaeal genomes

was composed and used to create archaea-specific PHMMs. Protein-coding genes were

predicted with Prodigal [98], and functionally annotated with Mantis [176]. MMseqs2 [206]

was used to cluster proteins by sequence similarity. Average pairwise distance of each clus-

ter was calculated with Clustal omega [199]. Protein clusters were used to build multiple

72

sequence alignments (MSAs) using MUSCLE [48], and the MSAs were used to construct

PHMMs using HMMER [183].

Model validation In order to understand the performance impact of the NLP (context-

specific pre-processing and PoST) and encoding (TF-IDF scaled document encoding) ap-

proach used by UniFunc, we compared its performance against the previously described

baseline model.

As a validation dataset, we started by downloading all the Swiss-Prot [37] entries (N=563973,

as of 2021/01/16) with the columns ”Entry”, ”Function [CC]”, ”EC number”, ”Cross-reference

(Pfam)”, and ”Cross-reference (eggNOG)”. All the entries with a functional description

(”Function [CC]”), and at least one EC number, Pfam ID, and eggNOG ID, were selected,

resulting in a validation dataset with a total of 133450 entries.

This dataset allows for the benchmark of each model’s ability to correctly identify similar and

non-similar functional descriptions, where similar functional descriptions should have inter-

secting identifiers (positive class), and non-similar descriptions non-intersecting identifiers

(negative class).

Each entry (with a set of IDs S1 and a description D1) in the validation dataset is paired with

up to 500 other entries (with a set of IDs S2 and description D2) where S1 ∩ S2 6= ∅ (positive

cases). We then randomly selected an equal number of pairs where S1 ∩ S2 = ∅ (negative

cases). As an example, a positive case for the entry ”glucose degradation K01” (S1={K01})

would be ”enzyme that uses glucose as a substrate K01 KO2” (S2={K01,K02}), whereas

a negative case for the same entry would be ”lipid degradation KO3” (S2={K03}). In the

positive case the ID KO1 is common to both entries ({KO1} ∩ {KO1,KO2} 6= ∅), whereas

in the negative case no IDs are shared ({KO1} ∩ {KO3} = ∅). Assigning an equal number

of positive and negative cases to each entry ensures class balance which validates AUC as

a global performance metric [100].

We then use UniFunc and the other models to calculate the similarity score (SS) between

each pair of entries’ description. Finally, confusion matrices are created with threshold (T)

∈ [0, 1, 0.1], where:

73

• true positives (TP) = S1 ∩ S2 6= ∅ ∧ SS > T

• true negatives (TN) = S1 ∩ S2 = ∅ ∧ SS < T

• false positives (FP) = S1 ∩ S2 = ∅ ∧ SS > T

• false negatives (FN) = S1 ∩ S2 6= ∅ ∧ SS < T

The test case entries are the same for all models. During benchmark, UniFunc does not use

IDs for similarity analysis.

6.2.7 Acknowledgements

Author contributions according to the contributor roles taxonomy CRediT was as follows:

Conceptualization: P.Q.; Data curation: P.Q.; Formal Analysis: P.Q.; Funding acquisition:

P.W. and P.M.; Investigation: P.Q.; Methodology: P.Q.; Project administration: P.Q. and P.M.;

Resources: P.Q. and P.N.; Software: P.Q.; Supervision: P.M. and P.W.; Validation: P.Q.;

Visualization: P.Q.; Writing – original draft: P.Q. (lead), and P.M.; Writing – review & editing:

P.Q., P.N, P.M., and P.W.. All authors proof-read and approved of the content in this research

paper. The authors declare that they have no competing interests.

The experiments presented in this paper were carried out using the HPC facilities of the

University of Luxembourg [228]. This study was supported by the Luxembourg National

Research Fund PRIDE17/11823097.

74

6.2.8 Concluding remarks

The published paper can be found at https://doi.org/10.1515/hsz-2021-0125

The GitHub repository for this tool is available at https://github.com/PedroMTQ/unifunc

In this manuscript, the UniFunc tool was described and how it can be integrated into larger

workflows, such as Mantis. UniFunc’s methodology was described, alongside on how it

performs against other methodologies.

https://doi.org/10.1515/hsz-2021-0125
https://github.com/PedroMTQ/unifunc

75

6.3 UniFuncNet: a flexible network annotation framework

6.3.1 Summary

The downstream integration of functional annotations often requires techniques compatible

with large-scale analysis. A common approach is to use network-based methodologies,

which enable the study of biological processes and how they are interlinked within and be-

tween organisms. UniFuncNet is a network annotation tool that aims to provide a flexible

and hands-free framework for the generation of annotated networks in multiple scenarios.

In that sense, UniFuncNet generates networks consisting of four different entity types (i.e.,

genes, proteins, reactions, and compounds) and many different network generation pro-

tocols. These network generation protocols mirror the intrinsic structure of the biological

databases (which is also a reflection of biological processes) mined by UniFuncNet, i.e., the

structure corresponds to the underlying idea of genes being connected to proteins (through

transcription and subsequent translation), how some proteins are connected to reactions,

and how reactions involve two or more compounds; to summarise, the structure is the follow-

ing: gene→protein→reaction→compound. UniFuncNet collects extensive data on multiple

entity types and connects these entities in a graph-based manner, thus being more easily

used in the downstream analysis.

The authors for this publication[174] are as follows: Pedro Queirós, Oskar Hickl, Susana

Martı́nez Arbas, Paul Wilmes and Patrick May. All authors contributed to the writing, revision,

and study design. I was the main author of this publication and the developer of the tool

associated with it.

76

UniFuncNet: a flexible network annotation framework

Abstract

Summary: Functional annotation is an integral part in the analysis of organisms, as well

as of multi-species communities. A common way to integrate such information is using bio-

logical networks. However, current data integration network tools are heavily dependent on

a single source of information, which might strongly limit the amount of relevant data con-

tained within the network. Here we present UniFuncNet, a network annotation framework

that dynamically integrates data from multiple biological databases, thereby enabling data

collection from various sources based on user preference. This results in a flexible and com-

prehensive data retrieval framework for network based analyses of omics data. Importantly,

UniFuncNet’s data integration methodology allows for the output of a non-redundant com-

posite network and associated metadata. In addition, a workflow exporting UniFuncNet’s

output to the graph database management system Neo4j was implemented, which allows

for efficient querying and analysis.

Availability: Source code is available at https://github.com/PedroMTQ/UniFuncNet.

Introduction

There exists an unprecedented amount of biomolecular data available thanks to the ad-

vances in, among others, sequencing, mass spectrometry and bioinformatics techniques.

This allows for the study of function across several biological levels at high resolution, from

single organisms to the combined functional potential of microbial communities. This wealth

of information is difficult to access and use in a straightforward and scalable manner, e.g.,

due to the lack of a universal data repository and the use of a multitude of data formats and

annotations.

Networks are frequently used for large-scale omics data analyses as these are versatile

77

tools that can be used to model complex biological systems [115]. The identification and

mapping of functional entities (e.g., proteins) to networks are central tasks performed during

large-scale studies of new species or microbial communities. For example, networks have

been used to study ecological interactions such as metabolic cross-feeding, synergism, and

antagonism [152], to detect correlations in metabolic networks [209], to identify keystone

functions and genes [185].

Given the available functional annotations linked to omics data, a common modelling

approach, among others [64], is to use genome-scale metabolic models (GSMM) to inte-

grate all, or part, of the metabolic and transport reaction network(s) within an organism or

community [73, 57]. Such networks are usually derived by mapping functional annotations

to the corresponding reactions and pathways [221, 157], and can be used for the in silico

simulation of metabolism.

Several methodologies [29] and tools [143] are now available for the automated generation

and semi-curation of GSMMs. Many methods are able to automatically and accurately re-

construct well-known parts of metabolism, which, due being shared by many taxa [189],

have been more extensively studied [114]. While the apparent conservation in function

based on homology is advantageous when modelling well-studied metabolism, the resulting

GSMMs are often very general and redundant, which may not capture the peculiarities of

individual organisms. Modelling species-specific metabolic pathways is important, e.g., for

understanding microbial interactions [192], but challenging, since annotations are often in-

complete [35, 173]. Here, knowledge integration from multiple databases (e.g., MIBiG [107],

KEGG [105], and MetaCyc [31]) may help.

Even though some resources provide frameworks for mapping functional entities (e.g.,

KEGG [105] and MetaCyc [31]), combining them into a more comprehensive resource at a

case-by-case basis is laborious, since this integration requires extensive cross-linking, and

often manual review/curation. One additional complication is the use of different ontologies

78

[210], which leads to the necessity of cross-linking ontology systems with varying struc-

tures and resolutions (e.g., KEGG orthologs and gene ontologies[9, 36]). Additionally, while

some databases are structured and provide access through the use of application program-

ming interfaces (API) (e.g., KEGG), relational or non-relational or other standardized formats

(e.g., json and xml), others provide data in semi-unstructured formats, thereby requiring the

implementation of more specialized data processing methodologies (e.g., text mining [218]).

In essence, the diversity and quantity of biological databases, constitute some of the

major challenges in the integration of such data. These, and other technical challenges,

make such resources inaccessible to researchers without a computational background.

The challenge of integrating knowledge from multiple sources in an automated manner in the

context of network analysis was tackled through the development of the presented network

annotation framework - (Uni)fied (Func)tional (Net)work (UniFuncNet). UniFuncNet auto-

mates the highly time-consuming process of searching multiple databases, extracting and

integrating data into a composite output. Biological databases commonly contain multiple

entry types (e.g., compounds or genes), therefore, UniFuncNet’s implementation reflects the

general structure of such databases; for this purpose, we modelled four different entity types:

genes, reactions, proteins, and compounds. In turn, these data models can then be linked as

a network, and used for storing and exporting information in machine and human-readable

formats. Combining data models with multiple data collection methodologies results in a

flexible yet robust data retrieval framework. In turn, this allows researchers to fine-tune Uni-

FuncNet to their specific routine data integration tasks, starting from simple use cases such

as collecting ChEBI identifiers (IDs) for a list of compound names and finding reactions for

certain protein IDs to linking compounds to organisms, or expanding GSMMs. To showcase

how the user can include UniFuncNet in their analysis, the last two previously mentioned

use cases have been implemented as separate example workflows; while these are simple

wrappers around UniFuncNet and other tools, they may serve as a template for future, and

potentially more complex, workflows.

UniFuncNet aims to provide a straightforward, versatile, and accessible data collection

and network annotation framework. UniFuncNet will prove useful across multiple domains

79

of bioinformatics, especially at a moment in time where large-scale data integration is seen

as fundamental rather than optional. In order to provide an easily and efficiently queryable

database, we implemented an API that exports UniFuncNet’s data to Neo4j.

Materials and methods

Implementation UniFuncNet was implemented in Python (v3.9) and currently collects

data from KEGG [105], MetaCyc [31], Rhea [11], ChEBI [80], HMDB [237], UniProt [38]

and PubChem [109], cross-linking the information between these databases. For web data

collection, UniFuncNet uses the Python package ”requests” (v2.25.1), which queries each

database and collects the respective response (usually HTML or json). To parse the HTML

responses the ”beautiful soup” [181] package is used (v4.10.0). For some of the databases,

i.e., MetaCyc [31], Rhea [11] and ChEBI [80] the database flat files are first downloaded,

parsed and stored locally in a SQLite (v3.36.0) database. In order to use the MetaCyc

database, the user must obtain a license (academic licenses are freely available) from Meta-

Cyc (which we recommend since it’s a highly curated and comprehensive resource). For

web data collection, UniFuncNet makes use of API calls to retrieve information (if possible).

However, whenever necessary, data is collected by querying the database’s website and

parsing the query result (i.e., web scraping). Each query result (web or local data) is parsed

according to the step of the workflow and database being queried (with database-specific

scrapers), and standardized according to UniFuncNet’s framework. This data parsing allows

for the retrieval of annotations (IDs and synonyms) as well as any connections between

database entries.

To avoid overloading the respective web servers, UniFuncNet works in a strictly sequential

manner and additionally enforces a time-out for requests to the same server (10 seconds

in-between queries by default). Additionally, in order to avoid repeating web queries, Uni-

FuncNet saves past web queries in memory and retrieves the necessary entity whenever a

query is repeated. This sequential methodology has the additional benefit of not creating re-

dundant entities which may lead to downstream issues with redundancy and output network

connectivity.

80

The results shown in this paper were collected from multiple sources, MetaCyc version

25.1 was used; the Rhea and ChEBI data corresponded to the flat files uploaded on the 17th

of November, 2021; and all data extracted from the multiple websites was collected on the

24th of January, 2022. The version of UniFuncNet used in this paper is v1.02.

Input and output UniFuncNet takes as input a tab-separated file, containing a list of IDs

(e.g., ”P02769”), ID types (source of the IDs, e.g., ”uniprot”), entity types (e.g., ”protein”),

and search modes (e.g., ”pg”, for ”protein-to-gene”).

UniFuncNet outputs one tab-separated file per entity type, i.e., genes, proteins, reac-

tions, and compounds, listing all the searched entities along with any associated metadata

(e.g., database IDs) and all the associations between each entity. Additionally, it outputs a

file in simple interaction format (SIF), which allows for integration into network frameworks,

such as Cytoscape [196] or Neo4j.

For a detailed description of input format requirements and all outputs, as well as a usage

guide refer to UniFuncNet’s documentation at https://github.com/PedroMTQ/UniFuncNet.

Workflows methodology We implemented two example workflows to showcase potential

applications of UniFuncNet. The first workflow relates to the expansion of GSMMs using

UniFuncNet, and the second to the mapping of compounds to organisms. An example

use case is provided for each of these workflows. In these use cases, UniFuncNet col-

lected information from the databases KEGG, MetaCyc, Rhea, and ChEBI. The code used

for the generation of results is available at https://gitlab.lcsb.uni.lu/pedro.queiros/

benchmark_unifuncnet. After installation and download of the required tools and data, the

workflows are fully automated (e.g., automatically launching tools and doing the necessary

data processing). Mantis [177] v1.3 was run for the functional annotation, using the KOfam

[6], Pfam [67] and MetaCyc [31] reference databases (the MetaCyc database was generated

with the code in https://github.com/PedroMTQ/refdb_generator).

https://github.com/PedroMTQ/UniFuncNet
https://gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet
https://gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet
https://github.com/PedroMTQ/refdb_generator

81

Workflow I - Expansion of GSMMs This workflow (Figure 12.A) receives as input

multiple protein fasta files, i.e., proteomes, and outputs an expanded network per sample

in SIF format. The proteomes are passed to Mantis [177] while GSMMs are created with

CarveMe [132]. The enzyme commission numbers (ECs) and MetaCyc protein IDs ab-

sent in the CarveMe GSMMs are exported from the Mantis’ functional annotations into a

UniFuncNet-formatted input file (using the ”prc” search mode). In this manner UniFuncNet

can be used to collect data on the additional ECs and MetaCyc protein IDs and connect

them to the original GSMMs. In order to exclude unspecific interactions, edges connecting

to common cofactors were removed (this list of cofactors has been manually curated but

can be edited and is available at https://github.com/PedroMTQ/UniFuncNet/tree/main/

Resources/cpd_to_ignore.tsv).

The workflow was implemented with CarveMe [132] v1.5. Additional information is avail-

able at https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/GSMM_Expansion.

It is crucial to note that this workflow is merely an example use case, therefore any output

files created should be thoroughly curated.

As an example application (henceforth referred to as ”use case I”), we used the following

five organisms’ SwissProt[38] reference proteomes: UP000001031 [227] for Akkermansia

muciniphila, UP000025221 [201] for Bradyrhizobium japonicum, UP000018291 [142] for Mi-

crothrix parvicella, UP000002528 [70] for Pelagibacter ubique, and UP000000586 [91] for

Streptococcus pneumoniae.

To evaluate the functional redundancy of the baseline and expanded networks, a pres-

ence/absence encoding of each network’s ECs was applied, followed by a cosine distance

calculation using the NLTK package (v3.5), where equal encoded vectors have a score of 1

and completely different a score of 0. This calculation is henceforth referred to as the ”ECs

functional redundancy”.

Workflow II - Omics cross-linking. The second workflow (Figure 12.B) attempts to

link compounds to specific organisms by searching for information on compounds and link-

ing them to functionally annotated organisms. The input are multiple species proteomes

https://github.com/PedroMTQ/UniFuncNet/tree/main/Resources/cpd_to_ignore.tsv
https://github.com/PedroMTQ/UniFuncNet/tree/main/Resources/cpd_to_ignore.tsv
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/GSMM_Expansion

82

and information (i.e., IDs) on the compounds of interest. The output is a network con-

necting each compound to all proteomes, and hence, to all organisms. Additional infor-

mation is available at https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/

Compounds_to_Organisms_Mapping.

As an example application of this workflow (henceforth referred to as ”use case II”), we

applied it to the metabolomics dataset MTBLS497 from Metabolights [81]. In the respective

experimental study [123] four organisms, Escherichia coli, Klebsiella pneumoniae, Pseu-

domonas aeruginosa, and Staphylococcus aureus, were cultured, sampled and analysed

to link them with 13 compounds of interest. The following proteomes from UniProt were

used: E. coli UP000001410 [233], K. pneumoniae UP000000265 [141], P. aeruginosa the

proteome UP000002438 [211], and S. aureus UP000008816 [69].

Results

UniFuncNet UniFuncNet is a network annotation framework that collects user-defined

data from multiple biological databases, e.g., KEGG orthology IDs (Figure 13). The user

input determines which information is collected by UniFuncNet. UniFuncNet retrieves data

from the respective biological databases and parses it; if applicable, it then branches out

and gathers any additional data associated with the originally retrieved data. This is re-

peated iteratively until all sources of information are exhausted. When retrieving information

for compounds, UniFuncNet can retrieve data based on synonyms, and not only IDs, as

it may facilitate the integration of data where only synonyms are available. However, the

reliability of synonyms-based data retrieval is inferior to IDs due to its ambiguity [150]. Uni-

FuncNet is available as a conda package, and it’s respective documentation is available at

https://github.com/PedroMTQ/UniFuncNet.

Data models In order to standardize the representation of the multiple types of data

within the UniFuncNet framework, we implemented multiple data models, each one repre-

senting an entity type, i.e., compounds, reactions, proteins, and genes. In general, entities

are associated with IDs from multiple databases and other entity-specific data (e.g., com-

https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/Compounds_to_Organisms_Mapping
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/Compounds_to_Organisms_Mapping
https://github.com/PedroMTQ/UniFuncNet

83

Figure 12 Use cases workflows. A Workflow I: UniFuncNet is used to aid in the expansion
of a previously generated GSMM. First, a draft GSMM (grey network) and functional anno-
tations (dashed box with grey and yellow nodes) are extracted from the input proteome (top
dashed box with grey nodes). Next, all functional annotations absent (dashed box with yellow
nodes) in the model are input into UniFuncNet. Lastly, all of the metabolic model’s entities
are connected to UniFuncNet’s output (yellow and grey nodes connected with non-dashed
edges). Optionally, the user may also add all remaining nodes in UniFuncNet’s network (yel-
low nodes connected with dashed edges). B Workflow II: UniFuncNet is used to identify the
proteins of an organism involved in the metabolism of specific compounds. First, proteomes
for all organisms were collected (represented by the first dashed box with black dots), these
were then functionally annotated with Mantis (represented by the second dashed box with
black dots, note the lower number of nodes in each proteome, which represents the lack of
functional annotations for some proteins). Using UniFuncNet, we created a network with the
reactions and respective proteins associated with each input compound. Lastly, using the
previously created network, we linked the compounds with their respective proteins in each
proteome.

84

Figure 13 UniFuncNet overview. The input of UniFuncNet is a list of IDs, ID types, entity
types, and search modes, which are processed line by line. In this example, UniFuncNet
starts by collecting data on the first query (Q1), which is a gene. According to the search
mode ”gprc” it then searches for data for the connected proteins, reactions and compounds.
For the second query (Q2) - a reaction, UniFuncNet first collects data on the reaction and
then on the associated compounds (search mode ”rc”). UniFuncNet then outputs the results
for each collected entity in the respective tsv file, as well as the resulting network in SIF
format.

85

pounds may have an associated chemical formula). The respective data models allow for

a standardized in-memory integration, storage, and manipulation of data. For example, the

reaction data models are especially helpful for integrating the same reaction from multiple

databases; since some reaction database entries do not provide cross-linking, it may be

necessary to match reaction entities through their stoichiometry and the compound entities

they are associated with (i.e., reactants and products). If the stoichiometry and the reactants

and products compound entities are the same, the reactions can be considered the same

and merged into the same data model, thus avoiding redundancy. Additionally, these entities

can be connected to other entities (e.g., a gene can be connected to a protein), and can thus

be exported as a network. Entities are connected within the network following the search

mode and databases used (Figure 14).

Search modes UniFuncNet’s data models represent the four main entity types (”g”

= gene, ”p” = protein, ”r” = reaction, ”c” = compound, see above). These data models

are then organized to be retrieved according to the underlying structure of each database;

i.e., biological databases entities are generally connected in two directions: g→p→r→c and

c→r→p→g.

UniFuncNet can process entities in 14 possible search modes, i.e., ”gp”, ”gpr”, ”gprc”,

”pg”, ”pr”, ”prc”, ”rpg”, ”rp”, ”rc”, ”cr”, ”crp”, ”crpg”, ””, and ”global”. Each letter in the search

mode corresponds to one of the four different entity types. The ”global” search mode corre-

sponds to a search in both directions, e.g., while searching for a given protein, UniFuncNet

retrieves information on the associated genes - ”pg”, as well as the associated reactions and

compounds - ”prc”. The ”” search mode corresponds to an ”in situ” search on the same en-

tity, i.e., UniFuncNet retrieves information on the given input IDs without connecting them to

additional other entities, e.g., when one aims to fetch ChEBI IDs from compound synonyms

or for ID conversion. Figure 14 represents a generic example of multiple search modes and

how these drive network generation.

The user input and search mode are inherently linked to the data that is collected, i.e.,

the user input ID is used as a seed for data retrieval and to generate an entity, whereas the

86

search mode is used to impose a direction and stop criterion on the data retrieval process.

If, for example, the user inputs a reaction ID - the resulting entity will contain the database

IDs associated with this reaction. During data retrieval this entity may also be connected

to different types of entities, e.g., a reaction entity is usually associated with two or more

compound entities. The IDs of these connected entities are then used for posterior data

retrieval and generation of the respective entities (Figure 14). The user is able to input

multiple search modes (comma separated) for the same input ID, which may be useful, e.g.,

for connecting a reaction entity to its respective compound and protein entities.

UniFuncNet to Neo4j API In order to provide users with the possibility to efficiently

query and manage the UniFuncNet results (for example during network analysis), an API

importing UniFuncNet’s output into Neo4j a highly-flexible graph database management sys-

tem, was implemented.

UniFuncNet’s output can be depicted as a multipartite graph, which is a graph whose

nodes can be split into multiple independent sets. In the case of UniFuncNet each output file

contains multiple entities (e.g., proteins) with entity related annotations (e.g., ECs) (Figure

15). Since Neo4j is a highly flexible graph-based database it provides a natural integration

of UniFuncNet’s data models.

The API takes as input a folder containing all the UniFuncNet output tsv files and stores

the data in a Neo4j database. This database can then be queried using Cypher (Neo4j’s

querying language) or using any programming language Neo4j API (e.g., the Python or

Java drivers). Additionally, we added the option to input Mantis consensus annotations to

query the Neo4j database and create the respective SIF networks.

Use cases UniFuncNet is a flexible network annotation framework, being usable within di-

verse contexts. We provide two case scenarios, the first using UniFuncNet for the expansion

of GSMMs, and the second for linking compounds with specific organisms.

87

Figure 14 UniFuncNet search modes: Example of three different search modes available
in UniFuncNet and how they sequentially link entities, generating a connected network. The
first input line contains a gene ID with search mode ”gprc”, UniFuncNet searches first for
information on this gene and subsequently the directly or indirectly connected entities (one
protein, one reaction and three compounds). The second input line contains a protein ID
with the search mode ”prc”. UniFuncNet retrieves first information on the protein, then on two
reactions and four compounds; notice how one of the compounds found in the second search
is linked to the network created already during the processing of the first input. The third
input line contains a compound ID, and the search mode ”crp”, UniFuncNet then retrieves
information on four compounds, three reactions and four proteins. Again, since one of the
proteins was already searched during the processing of the second input line, the resulting
network will connect these inputs’ entities.

88

Figure 15 UniFuncNet results as a multipartite graph. The output from UniFuncNet can
be represented as a multipartite graph, where the central layers correspond to the entity
types (e.g., proteins), and the outer layers to the annotations (e.g., IDs or synonyms). The
protein layer contains a protein complex (red dashed circle), comprised of multiple subunits
(i.e., protein nodes).

89

Use case I In this use case we used UniFuncNet to expand GSMMs built with CarveMe[132],

exploring how many putative connections UniFuncNet could add to the original GSMM. To

that end, Mantis is used to provide additional functional annotations, and UniFuncNet to map

those functional annotations to the GSMM (Figure 12.A).

As an example, we expanded the GSMMs of multiple organisms that have been shown

to be relevant in multiple ecosystems; (i) Akkermansia muciniphila has been shown to play

an important role in human intestinal health as part of the gut microbiome [160]; (ii) Bradyrhi-

zobium japonicum, has been shown to be a key organism in nitrogen fixation, essential for

e.g. soybean plant growth [84]; (iii) Microthrix parvicella, has been shown to be the domi-

nant species involved in the bulking of activated sludge and lipid accumulation in wastewater

treatment plants [197]; (iv) Pelagibacter ubique, has been shown to be an ubiquitous ocean-

dwelling bacterium that belongs to the SAR11 clade, which is reported to account for 25%

of all cells in the ocean [70], and (v) Streptococcus pneumoniae, has been shown to be a

key human pathogen, which is one of the leading causes of pneumonia, bacterial meningitis,

and sepsis [21].

This workflow compiled a list of all ECs and MetaCyc protein IDs found by Mantis that are

not part of the original GSMM (generated by CarveMe). A non-redundant list of IDs over all

species was generated. This list was converted to a UniFuncNet input file, which contained

1329 unique EC numbers and 1052 unique MetaCyc protein IDs. UniFuncNet were then run

for all these IDs with the ”prc” search mode to connect the (p)rotein function annotations to

the (r)eactions and (c)ompounds.

UniFuncNet collected 5244 putative reactions, which were then filtered according to mul-

tiple steps: (i) filter for proteins associated to at least one reaction (ii) filter for proteins that

were also absent in the original GSMM (iii) extract all reactions connected to these proteins,

(iv) exclude reactions that were already present in the original GSMM, and (v) match the

compounds obtained from UniFuncNet with the GSMM compounds to match reactions and

exclude redundant reactions.

For each proteome, a baseline directed network from the initial GSMM was created,

where reactions and their respective substrates and products are represented as nodes (i.e.,

90

reactant(s)→reaction→product(s)). We then expanded the network by adding UniFuncNet’s

nodes, either by adding new connections to the baseline network or adding new nodes.

The draft GSMMs and expanded networks were evaluated according to: (i) % of reac-

tions in the largest network component (%RLC); (ii) % of dead end metabolites (%DEM), i.e.,

metabolites without a transporter reaction that are produced but not consumed or consumed

but not produced [133]; (iii) % of newly connected dead end metabolites (%CDEM); and (iv)

the amount of new putative reactions that could be added to the GSMM.

On average %RLC decreased from 99.6% (sd=0.4%) to 95.0% (sd=0.7%), &DEMs in-

creased from 4.2% (sd=0.6%) to 12.8% (sd=0.6%), and 0.1% (sd=0.06%) of DEMs were

successfully connected in the expanded network. Finally, on average 1005 (sd=485.5) reac-

tions could be added per proteome.

The expanded networks resulted in a substantial enzyme-specific enrichment (i.e., ECs),

the most enriched ones being transferases, oxidoreductases and hydrolases. We also anal-

ysed the ECs functional redundancy of the each organisms’ baseline and expanded net-

works, i.e., each baseline network was compared to all others baseline networks, and the

same was repeated for the expanded networks. On average, we found that the ECs func-

tional redundancy for the ”only baseline”, ”only expanded”, ”baseline+expanded” networks

was 0.74, 0.44, and 0.66 (0-1, 1 being equal), respectively.

When analysing KEGG pathways, the most enriched metabolic capacities corresponded

to the metabolism of carbohydrates, lipids, and cofactors and vitamins (from least to most en-

riched). In the Akkermansia muciniphila expanded network, the biosynthesis and metabolism

of glycans was among the metabolic capacities most enriched by the network expansion

(161 ECs in the baseline to 166 additional ECs in the expanded network mapped to the

kegg pathway ”Glycan biosynthesis and metabolism”). In the Microthrix parvicella expanded

network, the metabolism of lipids was the metabolic capacity most enriched by the network

expansion (31 ECs in the baseline to 218 additional ECs in the expanded network mapped

to the kegg pathway ”Lipid metabolism”).

These results are available in Supplementary table ”results.ods” available at https://

gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet.

https://gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet
https://gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet

91

Use case II In order to understand how UniFuncNet could be used to link different

omics levels, we used it to connect functionally annotated reference proteomes to a metabolomics

dataset, i.e., linking metabolism related proteins to their reactions and respective com-

pounds (Figure 12.B).

As an example, we used a metabolomics study [123] that cultured four organisms in arti-

ficial sputum and nutrient broth mediums and sampled their headspaces for 13 compounds.

These compounds were used as potential biomarkers in order to determine the most appro-

priate antimicrobial therapy in the treatment of ventilator-associated pneumonia.

In order to find the reactions and proteins associated with each compound, UniFuncNet

ran with the search mode ”crp”. The proteins found to be connected with the compounds via

UniFuncNet were then intersected with the functional annotations of each proteome, thus al-

lowing for the identification of the enzymes within each organism involved in the metabolism

of these compounds.

After running this workflow we successfully retrieved information on 11 of 13 compounds,

eight of these were linked to a total of 30 reactions. These reactions were then connected

to a total of 17 proteins. We then linked the proteins connected to reactions (n=17) to the

functional annotations of each organism, finding which of these organisms could potentially

be involved in the metabolism of studied compounds. We found that all organisms were

involved in the metabolism of indole and that Pseudomonas aeruginosa was additionally

involved with the metabolism of 2-furanmethanol.

Discussion and conclusion

Here we present UniFuncNet, a network annotation framework that collects and integrates

data from multiple biological databases. UniFuncNet can be used to search for informa-

tion and generate annotated networks in a flexible manner (i.e., various search modes and

input ID types). UniFuncNet automates data collection into a human-readable output, by

connecting the different biological entities (i.e., genes, proteins, reactions, and compounds),

and it provides a network-structured output, which can be easily used in network-based

downstream analysis. An added benefit of UniFuncNet is the standardization of the search

92

methodology, potentially decreasing the accidental omission of information during manual

collection/curation.

UniFuncNet collects data from live websites/application programming interfaces and al-

lows the user to update their own local flat files (e.g., MetaCyc or Rhea). UniFuncNet en-

sures that the collected data is up to date, which represents a limitation in similar projects

[150]), since they require regular database maintenance. However, UniFuncNet faces its

own challenges: (i) a website’s HTML structure or API may change over time, which re-

quires maintenance of UniFuncNet’s data collection protocols, (ii) live retrieval of information

tends to be slower than using a centralized source of data, and (iii) websites may block

scraping attempts if these are done too frequently, which is circumvented by UniFuncNet by

having 10 second waiting period between each web query to the same database. While reli-

able and large data collection is provided by UniFuncNet, as a framework that can speed-up

the work of researchers requiring comprehensively annotated networks, it is advisable to

perform manual curation during downstream data integration. Overall though, we believe

that the benefits of having a lightweight framework with very low storage footprint, always

retrieving the latest information, clearly outweigh the aforementioned downsides.

Current automated reconstruction tools are capable of generating GSMMs ready for

modelling. However, divergent implementations [246, 132, 47] may lead to different out-

comes (i.e., the models) due to multiple factors, e.g.: (i) different gene predictions, (ii) differ-

ent functional annotation reference databases, and (iii) different automated curation imple-

mentations [56, 82]. While automated curation offers a good modelling basis, it is unlikely

that the current methods will ever be able to encompass the complexity of in vivo biolog-

ical networks. As such, manual curation and expansion of GSMMs remain essential; the

latter is routinely done through the iterative analysis of the subsystems for genes, proteins,

and reaction(s) of interest. In particular, the end-user searches for information regarding a

certain ontology ID, such as KEGG [105] orthology IDs, ECs, or others, in highly compre-

hensive (and partially redundant) biological databases. To avoid introducing redundancy,

cross-linking entities between databases is necessary, which can be done manually or par-

tially automated through ID mapping tools offered by MetaNetX [150] or UniProt [38]. To

93

this end, we implemented a workflow that uses UniFuncNet to facilitate the cross-linking and

expansion of GSMMs.

We have shown that the networks enriched with UniFuncNet’s workflow were better able

to capture organism-specific characteristics, e.g., in Microthrix parvicella the metabolism of

lipids was the most enriched KEGG pathway, which agrees with the findings of Sheik et al.

[197]. Similarly, in Akkermansia muciniphila the metabolism and biosynthesis of glycans

was amongst the most enriched KEGG pathways, which supports the hypothesis that this

organism and glycans play an important role in human gut health [160, 113]. Lastly, the

metabolism of cofactors and vitamins was, on average, the most enriched KEGG pathway

among all organisms.

In general, we found that this workflow could add a substantial amount of reactions to the

GSMMs, which, as previously shown [177], is likely due to the more comprehensive refer-

ence databases used (Mantis with the KOfam, Pfam, and MetaCyc databases and CarveMe

with the BIGG database [191]). In addition, we also found that the similarity between the

functional profiles (i.e., ECs functional redundancy) between each organism’s network was

substantially lower in the expanded networks, highlighting the benefit of applying UniFunc-

Net to discover functions unique to each organism. It is important to emphasize that the ex-

panded networks would still require curation; indeed the aim of this workflow is not to directly

output an expanded GSMM ready for modelling, but to provide the user with a framework

that automates some of the most time-consuming curation steps, i.e., expanding and enrich-

ing the network. Altogether, these results show the potential of UniFuncNet to support the

expansion of GSMMs, provided additional curation steps are implemented by the end-users.

While in this manuscript we have shown how UniFuncNet can be used in a targeted manner,

it could also be used for the generation of genome-scale metabolic networks.

We have also shown how UniFuncNet can be used to link different datasets, in particu-

lar how it can be used for linking different omics, which should prove useful for multi-omics

network-based analysis. Specifically, in the second workflow, we have shown how UniFunc-

Net may be used for the mapping of compounds to specific organisms. The results shown in

the use case II were not able to connect the organisms and compounds in the same resolu-

94

tion as the respective study [123], which further highlights the need to create and use more

comprehensive functional annotation reference databases. However, we found that indole’s

metabolism was shared among all organisms, which is a clear indication of conservation of

function in prokaryotes[134, 223, 241]. Despite this, we believe this workflow could be com-

bined with more resolved input proteomes (i.e., using proteomics data instead of reference

proteomes) and as such could be an even more powerful screening tool for more thorough

investigations.

In conclusion, in this article we have highlighted UniFuncNet’s ability to automatically

and comprehensively annotate networks. Additionally, we have showcased two use cases

which could be used as baseline examples for more intricate analysis. We believe that

UniFuncNet’s flexible search modes and varied input formats expands its utility into a variety

of analysis well beyond the ones shown in this paper.

Acknowledgements

All authors proof-read and approved of the content in this research paper. The authors

declare that they have no competing interests. We would like to acknowledge Ines Thiele

and Alberto Noronha for their supervision during the initial stages of this project. Supported

by the Luxembourg National Research Fund PRIDE17/11823097 and the European Re-

search Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (grant agreement No. 863664).

Conflict of interest statement.

None declared.

95

6.3.2 Concluding remarks

This manuscript has been submitted and the pre-print is available at https://doi.org/

10.1101/2022.03.15.484380 The GitHub repository for this tool is available at https://

github.com/PedroMTQ/unifuncnet

In this manuscript, UniFuncNet was described and how it can be used to generate highly

annotated networks, integrating knowledge from multiple databases into one composite net-

work. Two case studies and respective workflows were showcased, which I believe could be

useful within their target community; moreover, they could be used as a basis for additional

workflows. Finally, an API that uses UniFuncNet’s output to automatically generate a Neo4j

database was developed. This database can be easily queried in high throughput analysis.

https://doi.org/10.1101/2022.03.15.484380
https://doi.org/10.1101/2022.03.15.484380
https://github.com/PedroMTQ/unifuncnet
https://github.com/PedroMTQ/unifuncnet

96

7 Discussion

In this thesis, I have shown how relevant data integration is within different bioinformatic

domains, particularly at the speed and quantities in which data is currently generated. I

believe data integration will be increasingly more important in the years to come. In that

regard, it is expected that new tools and methodologies for the integration of biological data

will be created. With that said, I believe it is important to discuss some of the issues with

the current tool development environment in bioinformatics. The harsh ”incentive” to publish

(tools) without regards to maintenance and quality has led to the creation of hundreds of

one-time use bioinformatics tools [137, 136]. Indeed, this proliferation of tools without qual-

ity control exacerbates many of the issues felt by the end-users of those same tools, such

as: (i) tool is not open-access, (ii) tool is not properly archived or versioned, (iii) tool cannot

be installed or run, (iv) tool is not maintained, and (v) authors do not provide user support.

This of course happens for many reasons, e.g., lack of funding, the absence of a plan to

maintain the tool, or lack of expertise to implement production-ready software (or a meagre

semblance of it). Despite the grim criticism, this has been steadily improving in the past

years; e.g., peer-reviewed journals now require higher standards for published software,

there is more emphasis on reproducibility, there are more software frameworks supporting

researchers (e.g., Snakemake [148] and Nextflow [46]), and more and better training re-

sources are available. Naturally, as the field of bioinformatics matures, so will the standards

regarding software production.

7.1 Software improvements and future work

Sustained software development provides major benefits [65] (e.g., accuracy), to contribute

to this end (i.e., software maintenance), I have tried to continuously support users (answer-

ing users within a reasonable time frame and implementing user requests) and also intro-

duced major features in the software developed. I hope I am able to provide maintenance

and user support for years to come.

97

7.1.1 Mantis

The Mantis tool has seen considerable development since publication, new major features

were added and efficiency improvements were made. Specifically, the following was imple-

mented:

1. ability to use Diamond [26] for homology search; while the original version of Mantis

included only HMMER as a method for homology search, Diamond is now also sup-

ported (sequence-based homology search). This is highly relevant as it allows for the

use of reference databases where PHMM are not available; this can be simply due to

the fact that the reference database has an insufficient number of sequences to build

proper MSAs (and, by extent, PHMMs), or because it has a resolution better suited for

sequence homology-based search. The addition of Diamond brings more versatility to

Mantis, which I believe will make it a more widely used protein function annotation tool.

2. the NOG reference database implementation was changed so that both PHMMs or

Diamond databases can be used. This is an important improvement since the NOG

PHMMs had limited use due to their size (around three terabytes). In addition, the NOG

PHMM reference database transferred the function from multiple sequences, resulting

in an PHMM with more noisy functional annotations (i.e., more FPs).

3. the option to generate a KEGG module completeness matrix for each sample (user

request) was added. KEGG is a commonly used tool for pathway-based downstream

analysis. To do so, Mantis compiles a list of all the KOs annotated on any given sample

and attempts to generate the most likely KEGG module pathway [54] (since multiple

KO pathways per module are possible). A KEGG module completeness score is then

output (the number of KOs in the sample divided by the total number of KOs for the

best KO pathway of any given KEGG module) per sample, which can then be used for

comparative analysis.

4. a GTDB [163] to NCBI taxa converter (and vice-versa) was implemented. Previously,

Mantis only accepted the input of NCBI IDs (these are used to determine which taxa-

98

specific reference databases to use), it now accepts both NCBI and GTDB taxa, which

should provide more input versatility. Since some taxa from NCBI and GTDB may be

ambiguously mapped to multiple taxonomic lineages, an algorithm to determine the

last common ancestor for all the possible lineages was implemented.

5. Metadata (i.e., the functional descriptions and IDs associated with each entry in the ref-

erence database) is now stored in SQLite databases, which increases the efficiency at

which metadata is associated with each hit. This is especially important for databases

with metadata files containing multiple gigabytes of data.

6. mantis is now installable through conda at https://anaconda.org/bioconda/mantis_

pfa

7. addition of the TCDB [188] transporters database and removal of TIGRfams (since

these are included in the NCBI protein family models).

While the default reference databases used by Mantis are quite comprehensive, they

may not be applicable in more specific scenarios. For this reason, a small repository that

automatically creates additional Mantis-compatible reference databases was created. These

tend to be more context-specific and have therefore not been added to Mantis. These in-

clude Rhea reactions, Reactome reactions, and EC PHMMs, as well as BIGG genes, Swis-

sProt and Trembl diamond databases. To note that each database used in the creation

of these references required the implementation of different methodologies for data extrac-

tion. PHMMs are created by clustering sequences by the respective ID (e.g., for Rhea

PHMMs, we group all sequences for a given Rhea reaction ID into one fasta file), and pos-

terior similarity clustering with mmseqs2 [207] (e.g., splitting the Rhea ID specific fasta file

into multiple fasta files, based on how the sequences cluster). This project is available at

https://github.com/PedroMTQ/refdb_generator.

While Mantis provides significant improvements in the associated field through its highly

flexible and consensus-driven protein function annotation, it is also limited by the method-

ologies that it uses, i.e., homology-based methods. Indeed, there is only so much time and

funding available for experimental validation, only so many appropriate experiments for the

https://anaconda.org/bioconda/mantis_pfa
https://anaconda.org/bioconda/mantis_pfa
https://github.com/PedroMTQ/refdb_generator

99

generation of reference databases, and only so much that can be done until computationally-

generated reference databases become too far-fetched. Despite these limitations, homology-

based methods will likely remain the basis for function annotation for several more years.

Despite this, we can not ignore the major improvements in the methods to predict structure,

which could be particularly useful for functionally describing sequences unsuccessfully an-

notated by homology-based methods. In the field of structure prediction, two major tools

should be highlighted - AlphaFold [103] and trROsetta [212]; these two tools are at the fore-

front of structure prediction through the use of deep learning.

Deep learning is a sub-field of machine learning that uses artificial neural networks. Deep

learning models generally have a multi-layered structure, i.e., an input layer, hidden layer(s),

and an output layer [124]. These models require a large amount of training data (and time)

and are generally challenging to train, not only due to their lack of interpretability, but also

because they are very hardware dependent (due to the scale of data required). Despite

some drawbacks, when large amounts of data are available, deep learning tends to outper-

form more traditional machine learning [1]. In recent years, the application of deep learning

has exploded in biology and other fields [190].

Deep-learning-based structure prediction tools have recently been brought to the spotlight

as substantial advances in the field have been achieved by non-academic parties, e.g.,

AlphaFold [103] by Deepmind, a subsidiary of Alphabet/Google. Methods like AlphaFold

could allow for the analysis of biological data not currently annotated by more conventional

methods [51].

Since homology-based methods may sometimes fail to functionally annotate sequences (in-

sufficient reference data), it may be interesting to use AlphaFold to predict the structure of

these sequences (especially for niche taxa). For example, one could create a workflow that

would receive a list of protein sequences; these would then be annotated with Mantis, and

those that are not annotated would have their structure predicted with AlphaFold. One could

then take this structure prediction and use tools such as ProFunc [122] to associate a func-

tion to the structure. ProFunc is a server for predicting protein function from 3D structure via

the use of sequence scans (e.g., sequence search in PDB [14]), fold and structural motifs,

100

and n-residue templates.

7.1.2 UniFunc

The UniFunc tool was developed within the scope of Mantis, i.e., it was developed so that

consensus annotations could be extracted from the multiple databases used by Mantis.

Due to its scope, this tool has not seen any major improvements nor did it require major

maintenance. UniFunc is now also installable through conda at https://anaconda.org/

conda-forge/unifunc

While it is unlikely that major improvements will be implemented, UniFunc could ben-

efit from a larger lexicon, as well as more sophisticated methodologies for evaluating the

similarity of functional descriptions. While UniFunc’s lexicon is already quite comprehen-

sive (it contains data from eggNOG, Pfam, KOfam, NCBI, GO, and UniProt and uses the

respective metadata as a corpus), additional databases could be potentially added. More

importantly, UniFunc would also benefit from a dictionary-based system containing tokens

and respective synonyms, which would improve UniFunc’s ability to handle nomenclature

discrepancies. Such dictionaries are especially hard to create due to the heavily techni-

cal nature of functional descriptions. Such highly specific lexicons are scarce or behind

paywalls [222], prohibiting their use; manually replicating such work would require consid-

erable expertise and time investment. A potential approach to do this automatically would

be to gather a large corpus of functional descriptions and mine them for synonyms based

on token associations (e.g., using a graph-based approach [2]). Another potential approach

would be to improve the encoding of functional descriptions, in particular, one could use a

word embedding model to encode the pre-processed functional descriptions and use this

instead of the current approach which doesn’t capture contextual information. This would

potentially eliminate the need to use a lexicon for synonym retrieval, instead, the word em-

bedding could create similar vectors for tokens that appear in similar contexts. Finally, while

UniFunc aims to provide an interpretable and scalable approach to similarity analysis, more

complex (and potentially more widely applicable) NLP methodologies could be used . For

example, Google’s Natural Language API could be used for PoST, instead of the currently

https://anaconda.org/conda-forge/unifunc
https://anaconda.org/conda-forge/unifunc

101

used Perceptron tagger.

7.1.3 UniFuncNet

In order to integrate functional annotations (coming from Mantis) into graph-based down-

stream analysis, a network annotation tool was created - UniFuncNet. UniFuncNet inte-

grates data from multiple databases and structures this data into a network. To showcase

how versatile UniFuncNet is, two workflows that use UniFuncNet were also implemented; I

believe these will not only be useful to the community but also hopefully serve as a founda-

tion for users to build their workflows.

While UniFuncNet is a flexible tool, it has one major flaw - it does not contain any proper

data storage framework (i.e., it exports data to a tsv), which reduces scalability and reusabil-

ity in more complex downstream analysis. A solution to this problem is to take the data

output by UniFuncNet and store it in relational or non-relational databases (e.g., SQL, Mon-

goDB, etc). Since UniFuncNet’s data inherently has a network topology, a good solution is

to use a graph-based non-relational databases such as Neo4j.

Another major limitation of UniFuncNet is the fact that it requires web scraping (i.e.,

collection of data from website), which can be inefficient, but, more importantly, requires

continued maintenance (since websites continuously change their structure). In that regard,

it would be optimal to collect data from downloadable files that include the whole database

(i.e., database dump); which could then be parsed and integrated into a composite frame-

work. Unfortunately, some of the databases used by UniFuncNet require a subscription to

access these database dumps. In any case, since UniFuncNet’s framework is quite flexible

(e.g., Rhea and MetaCyc are parsed from their database dumps, while the others are web

scraped), additional databases could be added to UniFuncNet, either through web scraping

or parsing of downloaded files.

102

7.2 Application of work

It is important to highlight the applications of the work developed during this PhD, after all,

the aim of software development is for it to be used by the respective audience. In that

regard, I will now go over some of the applications of the software developed, these include

how the community applied this software and also how I applied it within other projects.

7.2.1 Mantis

At the time of writing, the Mantis publication has been cited 8 times, and the respective

GitHub project has been starred by 34 people. Mantis is being used in a few different

projects:

• it was used for the functional comparison of different omics domains in the publication

”Critical Assessment of Metaproteome Investigation (CAMPI): A Multi-Lab Comparison

of Established Workflow” [226]

• it is used by the binning tool ”binny” [86] for functional annotation with a marker gene

reference database.

• it is used in the scope of a metabolic modelling tool for the functional annotation of

genomes using the BIGG genes diamond reference database (submission pending).

• it was used for the functional annotation of Archaeal proteins, so that, in conjunction

with AlphaFold[103], it could be used for better resolution of functions of unknown

Archaeal proteins (submission pending).

• it was used to functionally annotate the lipid accumulating organisms coming from

wastewater treatment samples

• it is used in the in-house developed multi-omics processing and analysis pipeline IMP

[153]

103

7.2.2 UniFunc

UniFunc was initially created in order to allow for the creation of consensus annotation with

Mantis, i.e., similarity analysis of functional descriptions between the multiple databases

used by Mantis. Additionally, per a user request, a new workflow that uses UniFunc was

created. This workflow analyses the functional annotations of orthogroups (i.e., ”set of genes

that are descended from a single gene in the last common ancestor of all the species being

considered” [53]) and selects a representative function per orthogroup. This is done in the

following manner:

1. parse orthogroups (i.e., cluster IDs), gene IDs and respective gene annotations

2. compare intra-orthogroup functional annotations in a pairwise manner

3. build clusters of functional annotations per orthogroup (identified as similar by Uni-

Func) and calculate the intra-cluster functional similarity, which should indicates how

coherent (in terms of function) the cluster is

4. obtain counts for all functional annotations per orthogroup, which indicates how many

times a certain function appears in the orthogroup

5. scale the functional clusters similarity (min-max scaling), so that is within the range 0

to 1

6. sum the functional annotations counts per cluster to obtain the total counts per cluster.

Scale the cluster counts (min-max scaling) so that it is also within the range 0 to 1.

7. average the functional cluster similarity and counts to obtain a functional cluster score

8. select the highest functional cluster score as the representative function for the or-

thogroup

7.2.3 UniFuncNet

As previously mentioned, it would be beneficial to store UniFuncNet’s data within a database.

In this regard, an API that receives data from UniFuncNet, and stores it in a Neo4j database

104

(available at https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_

Neo4j_Connector) was implemented. This API was designed to store UniFuncNet’s multi-

partite output graph into a Neo4j database, i.e., four main node types exist (one for each

entity type - genes, proteins, reactions, and compounds); similar to how UniFuncNet enti-

ties contain information such as database IDs and connections to other entities, this Neo4j

database also contains such associations, however, these are now done by generating sub-

nodes that are connected with the main node types. Please refer to Figure 15 for a visualisa-

tion of this multipartite graph and Figure 16 for an example on how this data is represented

in the Neo4j database.

Since UniFuncNet can dynamically generate annotated networks (depending on the user

input), this database’s structure depends on the output generated by UniFuncNet. In order to

create a generic database that integrates data from multiple sources a list of 6614 ECs, 5935

KOs, 13886 Rhea reactions and 20795 MetaCyc protein IDs into a single UniFuncNet in-

put file (available at https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/

Input_Generator) was automatically compiled. This file was then used by UniFuncNet to

generate a total of 27824 protein, 19850 reaction, and 21064 compound entries. This data

was then fed into the Neo4j database to create a database with 502992 nodes (entities as

main nodes plus entity annotations as sub-nodes) and 1445108 edges.

This database has since been tested with two different end goals in mind: (i) creation of

organism-specific functional networks and (ii) binning refinement.

Using this Neo4j database it is possible to create functional annotation derived net-

works, i.e., functional annotations are extracted (from Mantis’ output) and used to query

the database. By extracting protein-reaction-compound connections, a functional network is

created, which is then exported in SIF format (other formats could be added). This network

can then be studied or visualized by different network analysis tools. This workflow is avail-

able at https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_

Neo4j_Connector. It would then be interesting to complementarily use different meta-omics

layers and implement a network-based downstream analysis; e.g., (i) functionally annotate

MAGs with Mantis (ii) generate MAG-specific (or community-wide) functional networks, (iii)

https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_Neo4j_Connector
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_Neo4j_Connector
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/Input_Generator
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/Input_Generator
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_Neo4j_Connector
https://github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/UniFuncNet_Neo4j_Connector

105

Figure 16 Neo4j database - this figure shows how UniFuncNet’s data is represented in
Neo4j. Now how each node main node (protein, reaction, and compound) is connected to
sub-nodes (e.g., Identifiers and Synonyms). In this figure the command used was ”match
(r:reaction) with r limit 1 match (i)–(p:Protein)–(r)–(c:Compound)–(j) where not i:Reaction
and not j:Reaction) with i,p,r,c,j match (r)–(k) return i,p,r,c,j,k”, which matches with one re-
action node, and then with the connecting protein and compound nodes as well as their
respective annotations.

106

apply topological analysis and use meta-transcriptomics and meta-proteomics for the iden-

tification of keystone nodes [185] or differential analysis [5].

Another possibility would be to use the Neo4j database to aid in binning refinement.

Assembly can be defined as the problem of reconstructing a contig (a contig represents a

set of overlapping DNA) from the set of its k-mers/substrings (derived from reads). Binning

refers to the clustering of assembled contigs to form MAGs. Current binning tools commonly

use sequence features such as kmer-frequency, GC content, and read depth [86]. These

features and associated methodologies vary depending on the underlying sequence tech-

nology (e.g., short vs long-read sequencing). Since metabolic information can be extracted

from the binned and unbinned contigs, we attempted to use metabolic connectivity to assign

unbinned contigs to bins. This work was based on a previously published proof of concept

[15], that discussed how contigs could be potentially binned by mapping these to gaps in

a metabolic network. To do so contig and bin-specific metabolic networks are generated

and we then try to assign contigs based on whether any of their respective reactions fill any

gaps in the bins’ metabolic networks. Technically, this is done by checking the substrate(s)

and product(s) of each reaction within the contig-specific metabolic network and then check-

ing if the same substrates and products are present in any of the bins’ metabolic network

reactions. This can be scored via the metabolite connectivity score (MCS):

MCSij =
|RSi ∩NSj |
|RSi|

+
|RPi ∩NPj |
|RPi|

(3)

where RSi and RPi are the set of substrates and products for reaction i, respectively; and NSj

and NPj are the set of compounds not consumed or produced by any reaction in network j,

respectively. In addition, to the MCS, we also used the following features to identify putative

contigs assignments: paired-end reads information, taxonomy, kmer frequency, and read

depth. Unfortunately, this project was discontinued since the refinement resulted in higher

contamination (i.e., contigs assigned to the wrong bins) with negligible improvements in

completeness (contigs assigned to the correct bins). We hypothesise this was due to the

following reasons: poor or nonexistent contigs functional annotations, functional potential

107

redundancy, the fact that most enzymatic reactions are reversible (which affects the NSj and

NPj), the existence of very common cofactors (to address this we tried to scale cofactors

using a method similar to TF-IDF). However, we found that the use of paired-end reads

information led to minor improvements in the bins, therefore this information will be added to

the in-house developed binning tool - binny.

Overall, this dynamically generated Neo4j database could provide a flexible framework

in many different scenarios. By providing an API to generate (i.e., using UniFuncNet to

integrate data from multiple databases) and interact with this network database, additional

workflows could be built on top of it, depending on the users end goal.

108

8 Conclusion

In this thesis, I have shown how the different software developed during my PhD can ad-

dress the challenge of integrating biological data in a scalable manner but also able to deal

with the requirements of different types of users. Thematically, this thesis is mostly related

to function annotation, however, I believe my main contribution towards the field lies in the

ability to integrate data from multiple sources into a composite framework, be it in relation to

protein function or network annotation. The tools developed offer significant customisation

and can be used in multiple scenarios; emphasising versatility in software development is

important, as it reduces the waste of human expertise that would otherwise be spent on

developing partially redundant software. In this regard, I have shown how these tools are

being applied by the community they were built for, but also how they can be used in differ-

ent scenarios (e.g., Mantis is being used for different end-goals, i.e., functional annotation,

binning, metabolic modelling).

I hope this thesis inspires future PhD students to develop their own high-quality software.

Bioinformatics tools provide the foundation of many great works, accordingly, it should not

be an afterthought in Science. While I expect the tools I implemented may one day be

surpassed by better tools, I hope they can be useful to the community for years to come.

Developing user-friendly, customizable, and scalable tools, should not have to be a naive

dream.

109

Acronyms

API application programming interface.

AUC area under the ROC curve.

BPO best prediction only.

CDEM newly connected dead end metabolites.

CE combination e-value.

cID common database identifier.

DEM dead end metabolites.

DFS depth first search.

DNA deoxyriboNucleic acid.

EC enzyme commission identifier.

ERC European Research Council.

ETL extract, transform, load.

FAIR findability, accessibility, interoperability, and reuse.

FN false negative.

FP false positive.

GFS glacier fed stream sediment.

GO gene ontology identifier.

110

GSMM genome-scale metabolic model.

HC average hit coverage.

HCN average hit consistency.

HMLN heterogeneous multi-layered network.

HMM hidden Markov model.

HMMW reference hidden Markov model weight.

ID identifier.

KO KEGG orthology identifier.

MAG metagenome-assembled genomes.

MCS metabolite connectivity score.

MQ metadata quality.

MSA multiple sequence alignment.

NLP natural language processing.

NPj set of compounds not produced by any reaction in network j.

NPFM NCBI protein family models.

NSj set of compounds not consumed by any reaction in network j.

PFA protein function annotation.

PHMM profile hidden Markov model.

pID possible database identifier.

PNA potentially new annotation.

111

PoST part-of-speech tagging.

RLC reactions in the largest network component.

RPi set of products for reaction i.

RSi set of substrates for reaction i.

SIF simple interaction format.

SS similarity score.

TC total coverage.

TES token encoding and scoring.

TF-IDF term frequency-inverse document frequency.

TN true negative.

TP true positive.

TSA taxa-specific annotation.

TSHMM taxon-specific hidden Markov model.

VMH virtual metabolic human.

112

References

[1] Md Zahangir Alom et al. “A state-of-the-art survey on deep learning theory and ar-

chitectures”. In: Electronics 8.3 (2019), p. 292.

[2] Hend Alrasheed. “Word synonym relationships for text analysis: A graph-based ap-

proach”. In: Plos one 16.7 (2021), e0255127.

[3] Stephen F Altschul et al. “Basic local alignment search tool”. In: Journal of molecular

biology 215.3 (1990), pp. 403–410.

[4] Stephen F. Altschul et al. “Basic local alignment search tool”. In: Journal of Molec-

ular Biology 215.3 (1990), pp. 403–410. ISSN: 0022-2836. DOI: 10.1016/S0022-

2836(05)80360-2.

[5] Victória Pascal Andreu et al. “BiG-MAP: an automated pipeline to profile metabolic

gene cluster abundance and expression in microbiomes”. In: mSystems 6.5 (2021).

[6] Takuya Aramaki et al. “KofamKOALA: KEGG Ortholog assignment based on profile

HMM and adaptive score threshold”. In: Bioinformatics 36.7 (2020), pp. 2251–2252.

ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btz859. (Visited on 06/25/2020).

[7] Fabricio Almeida Araujo et al. “GO FEAT: a rapid web-based functional annotation

tool for genomic and transcriptomic data”. In: Scientific Reports 8.1 (2018), p. 1794.

ISSN: 2045-2322. DOI: 10.1038/s41598-018-20211-9.

[8] Carolina Arias et al. “KSHV 2.0: A Comprehensive Annotation of the Kaposi’s Sarcoma-

Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel

Genomic and Functional Features”. In: PLOS Pathogens 10.1 (2014), e1003847.

ISSN: 1553-7374. DOI: 10.1371/journal.ppat.1003847.

[9] Michael Ashburner et al. “Gene Ontology: tool for the unification of biology”. In: Na-

ture genetics 25.1 (2000), pp. 25–29. ISSN: 1061-4036. DOI: 10.1038/75556.

[10] Ramy K. Aziz et al. “The RAST Server: Rapid Annotations using Subsystems Tech-

nology”. In: BMC Genomics 9.1 (2008), p. 75. ISSN: 1471-2164. DOI: 10.1186/1471-

2164-9-75.

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/bioinformatics/btz859
https://doi.org/10.1038/s41598-018-20211-9
https://doi.org/10.1371/journal.ppat.1003847
https://doi.org/10.1038/75556
https://doi.org/10.1186/1471-2164-9-75
https://doi.org/10.1186/1471-2164-9-75

113

[11] Parit Bansal et al. “Rhea, the reaction knowledgebase in 2022”. In: Nucleic acids

research (2021).

[12] Stefan Behnel et al. “Cython: The Best of Both Worlds”. In: Computing in Science

Engineering 13.2 (2011), pp. 31–39. ISSN: 1558-366X. DOI: 10.1109/MCSE.2010.

118.

[13] Sidahmed Benabderrahmane et al. “IntelliGO: a new vector-based semantic similar-

ity measure including annotation origin”. In: BMC Bioinformatics 11 (2010), p. 588.

ISSN: 1471-2105. DOI: 10.1186/1471-2105-11-588.

[14] Helen M Berman et al. “The protein data bank”. In: Nucleic acids research 28.1

(2000), pp. 235–242.

[15] Matthew B. Biggs and Jason A. Papin. “Metabolic network-guided binning of metage-

nomic sequence fragments”. In: Bioinformatics 32.6 (Nov. 2015), pp. 867–874. ISSN:

1367-4803. DOI: 10.1093/bioinformatics/btv671. eprint: https://academic.

oup.com/bioinformatics/article-pdf/32/6/867/32742932/btv671.pdf. URL:

https://doi.org/10.1093/bioinformatics/btv671.

[16] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with

Python. 2009. URL: https://www.nltk.org/book/.

[17] Bo-Christer Bjork and Timo Korkeamaki. “Adoption of the open access business

model in scientific journal publishing: A cross-disciplinary study”. In: arXiv preprint

arXiv:2005.01008 (2020).

[18] Edik M Blais, Arvind K Chavali, and Jason A Papin. “Linking genome-scale metabolic

modeling and genome annotation”. In: Systems Metabolic Engineering. Springer,

2013, pp. 61–83.

[19] Thomas Blumenthal. “Gene clusters and polycistronic transcription in eukaryotes”.

In: Bioessays 20.6 (1998), pp. 480–487.

[20] Thomas Blumenthal. “Operons in eukaryotes”. In: Briefings in Functional Genomics

3.3 (2004), pp. 199–211.

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1186/1471-2105-11-588
https://doi.org/10.1093/bioinformatics/btv671
https://academic.oup.com/bioinformatics/article-pdf/32/6/867/32742932/btv671.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/6/867/32742932/btv671.pdf
https://doi.org/10.1093/bioinformatics/btv671
https://www.nltk.org/book/

114

[21] Debby Bogaert, Ronald de Groot, and PWM Hermans. “Streptococcus pneumoniae

colonisation: the key to pneumococcal disease”. In: The Lancet infectious diseases

4.3 (2004), pp. 144–154.

[22] Piotr Bojanowski et al. “Enriching word vectors with subword information”. In: Trans-

actions of the association for computational linguistics 5 (2017), pp. 135–146.

[23] Karsten M. Borgwardt et al. “Protein function prediction via graph kernels”. In: Bioin-

formatics 21 (suppl 1 2005), pp. i47–i56. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/

bti1007.

[24] Götz Bosse, Jan-Philipp Breuer, and Claudia Spies. “The resistance to changing

guidelines–what are the challenges and how to meet them”. In: Best Practice & Re-

search Clinical Anaesthesiology 20.3 (2006), pp. 379–395.

[25] C. Titus Brown and Luiz Irber. “sourmash: a library for MinHash sketching of DNA”.

In: J. Open Source Softw. 1.5 (2016), p. 27.

[26] Benjamin Buchfink, Chao Xie, and Daniel H. Huson. “Fast and sensitive protein align-

ment using DIAMOND”. In: Nature Methods 12.1 (2015), pp. 59–60. ISSN: 1548-

7105. DOI: 10.1038/nmeth.3176.

[27] Robin Buell et al. Breaking the Bottleneck of Genomes: Understanding Gene Func-

tion Across Taxa. US Department of Energy, Office of Biological and Environmental

Research, 2018, p. 72.

[28] Susheel Bhanu Busi et al. “Optimised biomolecular extraction for metagenomic anal-

ysis of microbial biofilms from high-mountain streams”. In: PeerJ 8 (Oct. 2020),

e9973. ISSN: 2167-8359. DOI: 10.7717/peerj.9973. URL: https://doi.org/

10.7717/peerj.9973.

[29] Tunahan Çakır and Mohammad Jafar Khatibipour. “Metabolic network discovery by

top-down and bottom-up approaches and paths for reconciliation”. In: Frontiers in

Bioengineering and Biotechnology 2 (2014), p. 62.

https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.7717/peerj.9973
https://doi.org/10.7717/peerj.9973
https://doi.org/10.7717/peerj.9973

115

[30] Ron Caspi et al. “The MetaCyc database of metabolic pathways and enzymes - a

2019 update”. In: Nucleic Acids Res. 48 (2019), pp. 445–453.

[31] Ron Caspi et al. “The MetaCyc database of metabolic pathways and enzymes-a 2019

update”. In: Nucleic acids research 48.D1 (2020), pp. D445–D453.

[32] Claudine Chaouiya. “Petri net modelling of biological networks”. In: Briefings in bioin-

formatics 8.4 (2007), pp. 210–219.

[33] Agnès Chapel et al. “An Extended Proteome Map of the Lysosomal Membrane Re-

veals Novel Potential Transporters”. In: Molecular & Cellular Proteomics 12.6 (2013),

pp. 1572–1588. ISSN: 1535-9476, 1535-9484. DOI: 10.1074/mcp.M112.021980.

[34] Francois Chollet et al. Keras. 2015. URL: https://github.com/fchollet/keras.

[35] Peter Cimermancic et al. “Insights into secondary metabolism from a global analysis

of prokaryotic biosynthetic gene clusters”. In: Cell 158.2 (2014), pp. 412–421.

[36] Gene Ontology Consortium. “The gene ontology resource: 20 years and still GOing

strong”. In: Nucleic acids research 47.D1 (2019), pp. D330–D338.

[37] UniProt Consortium. “UniProt: a worldwide hub of protein knowledge”. In: Nucleic

acids research 47.D1 (2019), pp. D506–D515.

[38] UniProt Consortium. “UniProt: a worldwide hub of protein knowledge”. In: Nucleic

acids research 47.D1 (2019), pp. D506–D515.

[39] Charles E Cook et al. “The European Bioinformatics Institute in 2016: data growth

and integration”. In: Nucleic acids research 44.D1 (2016), pp. D20–D26.

[40] Charles E Cook et al. “The European Bioinformatics Institute in 2020: building a

global infrastructure of interconnected data resources for the life sciences”. In: Nu-

cleic acids research 48.D1 (2020), pp. D17–D23.

[41] NCBI Resource Coordinators. “Database resources of the National Center for Biotech-

nology Information”. In: Nucleic Acids Res. 46 (2017), pp. 8–13.

[42] Athel Cornish-Bowden. “Current IUBMB recommendations on enzyme nomenclature

and kinetics”. In: Perspectives in Science 1.1 (2014), pp. 74–87.

https://doi.org/10.1074/mcp.M112.021980
https://github.com/fchollet/keras

116

[43] Nikolai Daraselia et al. “Automatic extraction of gene ontology annotation and its

correlation with clusters in protein networks”. In: BMC bioinformatics 8 (2007), p. 243.

ISSN: 1471-2105. DOI: 10.1186/1471-2105-8-243.

[44] Francesco Delogu. fdelogu/SEM1b-Multiomics. 2019.

[45] Lei Deng et al. “MADOKA: an ultra-fast approach for large-scale protein structure

similarity searching”. In: BMC Bioinformatics 20.19 (2019), p. 662. ISSN: 1471-2105.

DOI: 10.1186/s12859-019-3235-1.

[46] Paolo Di Tommaso et al. “Nextflow enables reproducible computational workflows”.

In: Nature biotechnology 35.4 (2017), pp. 316–319.

[47] Oscar Dias et al. “Reconstructing genome-scale metabolic models with merlin”. In:

Nucleic acids research 43.8 (2015), pp. 3899–3910.

[48] Robert C Edgar. “MUSCLE: a multiple sequence alignment method with reduced

time and space complexity”. In: BMC Bioinform. 5.1 (2004), pp. 1–19.

[49] Rezvan Ehsani and Finn Drabløs. “TopoICSim: a new semantic similarity measure

based on gene ontology”. In: BMC bioinformatics 17.1 (2016), p. 296. ISSN: 1471-

2105. DOI: 10.1186/s12859-016-1160-0.

[50] Diana Ekman et al. “Multi-domain Proteins in the Three Kingdoms of Life: Orphan

Domains and Other Unassigned Regions”. In: Journal of Molecular Biology 348.1

(2005), pp. 231–243. ISSN: 0022-2836. DOI: 10.1016/j.jmb.2005.02.007.

[51] Kenneth W Ellens et al. “Confronting the catalytic dark matter encoded by sequenced

genomes”. In: Nucleic acids research 45.20 (2017), pp. 11495–11514.

[52] Kenneth W. Ellens et al. “Confronting the catalytic dark matter encoded by sequenced

genomes”. In: Nucleic Acids Research 45.20 (2017), pp. 11495–11514. ISSN: 1362-

4962. DOI: 10.1093/nar/gkx937.

[53] David M Emms and Steven Kelly. “OrthoFinder: solving fundamental biases in whole

genome comparisons dramatically improves orthogroup inference accuracy”. In: Genome

biology 16.1 (2015), pp. 1–14.

https://doi.org/10.1186/1471-2105-8-243
https://doi.org/10.1186/s12859-019-3235-1
https://doi.org/10.1186/s12859-016-1160-0
https://doi.org/10.1016/j.jmb.2005.02.007
https://doi.org/10.1093/nar/gkx937

117

[54] A Murat Eren et al. “Community-led, integrated, reproducible multi-omics with anvi’o”.

In: Nature microbiology 6.1 (2021), pp. 3–6.

[55] Commission European. Open Research Europe. URL: https://open-research-

europe.ec.europa.eu/.

[56] José P Faria et al. “Methods for automated genome-scale metabolic model recon-

struction”. In: Biochemical Society Transactions 46.4 (2018), pp. 931–936.

[57] Adam M Feist et al. “Reconstruction of biochemical networks in microorganisms”. In:

Nature Reviews Microbiology 7.2 (2009), pp. 129–143.

[58] Iddo Friedberg. “Automated protein function prediction—the genomic challenge”. In:

Briefings in bioinformatics 7.3 (2006), pp. 225–242.

[59] Iddo Friedberg. “Automated protein function prediction—the genomic challenge”. In:

Briefings in Bioinformatics 7.3 (2006), pp. 225–242. ISSN: 1467-5463. DOI: 10.1093/

bib/bbl004.

[60] Kazuhiro A Fujita et al. “Integrating pathways of Parkinson’s disease in a molecular

interaction map”. In: Molecular neurobiology 49.1 (2014), pp. 88–102.

[61] Sonali Vijay Gaikwad, Archana Chaugule, and Pramod Patil. “Text mining methods

and techniques”. In: International Journal of Computer Applications 85.17 (2014).

[62] Jing Gao et al. “Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic

data in the context of human metabolic networks”. In: Bioinformatics 26.7 (2010),

pp. 971–973.

[63] Leyla Garcia et al. “FAIR adoption, assessment and challenges at UniProt”. In: Sci-

entific data 6.1 (2019), pp. 1–4.

[64] Beatriz Garcı́a-Jiménez, Jesús Torres-Bacete, and Juan Nogales. “Metabolic mod-

elling approaches for describing and engineering microbial communities”. In: Com-

putational and Structural Biotechnology Journal 19 (2021), pp. 226–246.

https://open-research-europe.ec.europa.eu/
https://open-research-europe.ec.europa.eu/
https://doi.org/10.1093/bib/bbl004
https://doi.org/10.1093/bib/bbl004

118

[65] Paul P Gardner et al. “Sustained software development, not number of citations or

journal choice, is indicative of accurate bioinformatic software”. In: bioRxiv (2021),

p. 092205.

[66] Jeff Gauthier et al. “A brief history of bioinformatics”. In: Briefings in bioinformatics

20.6 (2019), pp. 1981–1996.

[67] Sara El-Gebali et al. “The Pfam protein families database in 2019”. In: Nucleic Acids

Res. 47 (2019), pp. 427–432.

[68] Molly K Gibson, Kevin J Forsberg, and Gautam Dantas. “Improved annotation of

antibiotic resistance determinants reveals microbial resistomes cluster by ecology”.

In: ISME J 9.1 (2015), pp. 207–216.

[69] Allison F Gillaspy et al. “The Staphylococcus aureus NCTC 8325 genome”. In: Gram-

Positive Pathogens (2006), pp. 381–412.

[70] Stephen J Giovannoni et al. “Genome streamlining in a cosmopolitan oceanic bac-

terium”. In: science 309.5738 (2005), pp. 1242–1245.

[71] Vladimir Gligorijević and Nataša Pržulj. “Methods for biological data integration: per-

spectives and challenges”. In: Journal of the Royal Society Interface 12.112 (2015),

p. 20150571.

[72] Carole Goble and Robert Stevens. “State of the nation in data integration for bioin-

formatics”. In: Journal of biomedical informatics 41.5 (2008), pp. 687–693.

[73] Willi Gottstein et al. “Constraint-based stoichiometric modelling from single organ-

isms to microbial communities”. In: Journal of the Royal Society Interface 13.124

(2016), p. 20160627.

[74] Jason Grealey et al. “The carbon footprint of bioinformatics”. In: BioRxiv (2021).

[75] Marc Griesemer et al. “Combining multiple functional annotation tools increases cov-

erage of metabolic annotation”. In: BMC genomics 19.1 (2018), pp. 1–11.

119

[76] Daniel H. Haft et al. “TIGRFAMs and Genome Properties in 2013”. In: Nucleic Acids

Research 41 (Database issue 2013), pp. D387–D395. ISSN: 0305-1048. DOI: 10.

1093/nar/gks1234.

[77] Geoffrey D Hannigan et al. “A deep learning genome-mining strategy for biosynthetic

gene cluster prediction”. In: Nucleic Acids Research 47.18 (Aug. 2019), e110–e110.

ISSN: 0305-1048. DOI: 10.1093/nar/gkz654.

[78] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954), pp. 146–162.

[79] Jennifer Harrow et al. “ELIXIR-EXCELERATE: establishing Europe’s data infrastruc-

ture for the life science research of the future”. In: The EMBO Journal 40.6 (2021),

e107409.

[80] Janna Hastings et al. “ChEBI in 2016: Improved services and an expanding collection

of metabolites”. In: Nucleic acids research 44.D1 (2016), pp. D1214–D1219.

[81] Kenneth Haug et al. “MetaboLights: a resource evolving in response to the needs of

its scientific community”. In: Nucleic acids research 48.D1 (2020), pp. D440–D444.

[82] Almut Heinken et al. “DEMETER: efficient simultaneous curation of genome-scale re-

constructions guided by experimental data and refined gene annotations”. In: Bioin-

formatics 37.21 (2021), pp. 3974–3975.

[83] Anna Heintz-Buschart et al. “Integrated multi-omics of the human gut microbiome in a

case study of familial type 1 diabetes”. In: Nature Microbiology 2.1 (2016). Number:

1 Publisher: Nature Publishing Group, pp. 1–13. ISSN: 2058-5276. DOI: 10.1038/

nmicrobiol.2016.180.

[84] Hauke Hennecke. “Nitrogen fixation genes involved in the Bradyrhizobium japonicum-

soybean symbiosis”. In: FEBS letters 268.2 (1990), pp. 422–426.

[85] Rafael Hernández-de-Diego et al. “PaintOmics 3: a web resource for the pathway

analysis and visualization of multi-omics data”. In: Nucleic acids research 46.W1

(2018), W503–W509.

https://doi.org/10.1093/nar/gks1234
https://doi.org/10.1093/nar/gks1234
https://doi.org/10.1093/nar/gkz654
https://doi.org/10.1038/nmicrobiol.2016.180
https://doi.org/10.1038/nmicrobiol.2016.180

120

[86] Oskar Hickl et al. “binny: an automated binning algorithm to recover high-quality

genomes from complex metagenomic datasets”. In: bioRxiv (2021).

[87] Daniel S Himmelstein and Sergio E Baranzini. “Heterogeneous network edge pre-

diction: a data integration approach to prioritize disease-associated genes”. In: PLoS

computational biology 11.7 (2015), e1004259.

[88] Paulien Hogeweg. “The roots of bioinformatics in theoretical biology”. In: PLoS com-

putational biology 7.3 (2011), e1002021.

[89] Matthew Honnibal. A Good Part-of-Speech Tagger in about 200 Lines of Python.

2013. URL: https://explosion.ai/blog/part- of- speech- pos- tagger- in-

python.

[90] Matthew Honnibal et al. spaCy: Industrial-strength Natural Language Processing in

Python. 2020. DOI: 10.5281/zenodo.1212303.

[91] JoAnn Hoskins et al. “Genome of the bacterium Streptococcus pneumoniae strain

R6”. In: Journal of bacteriology 183.19 (2001), pp. 5709–5717.

[92] Chung-Chi Huang and Zhiyong Lu. “Community challenges in biomedical text mining

over 10 years: success, failure and the future”. In: Briefings in Bioinformatics 17.1

(2016), pp. 132–144. ISSN: 1477-4054. DOI: 10.1093/bib/bbv024.

[93] Yue Huang, Mingxin Gan, and Rui Jiang. “Ontology-Based Genes Similarity Calcu-

lation with TF-IDF”. In: LNCS 7473 (2012), pp. 600–607.

[94] Jaime Huerta-Cepas et al. “eggNOG 5.0: a hierarchical, functionally and phylogenet-

ically annotated orthology resource based on 5090 organisms and 2502 viruses”. In:

Nucleic Acids Res. 47 (2018), pp. 309–314.

[95] Jaime Huerta-Cepas et al. “eggNOG 5.0: a hierarchical, functionally and phyloge-

netically annotated orthology resource based on 5090 organisms and 2502 viruses”.

In: Nucleic Acids Research 47 (D1 2019), pp. D309–D314. ISSN: 0305-1048. DOI:

10.1093/nar/gky1085.

https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://explosion.ai/blog/part-of-speech-pos-tagger-in-python
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1093/bib/bbv024
https://doi.org/10.1093/nar/gky1085

121

[96] Jaime Huerta-Cepas et al. “Fast Genome-Wide Functional Annotation through Or-

thology Assignment by eggNOG-Mapper”. In: Molecular Biology and Evolution 34.8

(2017), pp. 2115–2122. ISSN: 0737-4038. DOI: 10.1093/molbev/msx148.

[97] Martijn Huynen et al. “Predicting protein function by genomic context: quantitative

evaluation and qualitative inferences”. In: Genome research 10.8 (2000), pp. 1204–

1210.

[98] Doug Hyatt et al. “Prodigal: prokaryotic gene recognition and translation initiation

site identification”. In: BMC Bioinformatics 11 (2010), p. 119. ISSN: 1471-2105. DOI:

10.1186/1471-2105-11-119.

[99] Massimo Iorizzo et al. “De novo assembly and characterization of the carrot transcrip-

tome reveals novel genes, new markers, and genetic diversity”. In: BMC Genomics

12.1 (2011), p. 389. ISSN: 1471-2164. DOI: 10.1186/1471-2164-12-389.

[100] László A Jeni, Jeffrey F Cohn, and Fernando De La Torre. “Facing imbalanced data–

recommendations for the use of performance metrics”. In: 2013 Humaine association

conference on affective computing and intelligent interaction. IEEE. 2013, pp. 245–

251.

[101] Philip Jones et al. “InterProScan 5: genome-scale protein function classification”.

In: Bioinformatics 30.9 (2014), pp. 1236–1240. ISSN: 1367-4803. DOI: 10 . 1093 /

bioinformatics/btu031.

[102] Philip Jones et al. “InterProScan 5: genome-scale protein function classification”. In:

Bioinformatics 30.9 (2014), pp. 1236–1240.

[103] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In:

Nature 596.7873 (2021), pp. 583–589.

[104] Minoru Kanehisa and Susumu Goto. “KEGG: Kyoto Encyclopedia of Genes and

Genomes”. In: Nucleic Acids Res. 28 (2000), pp. 27–30.

[105] Minoru Kanehisa and Susumu Goto. “KEGG: kyoto encyclopedia of genes and genomes”.

In: Nucleic acids research 28.1 (2000), pp. 27–30.

https://doi.org/10.1093/molbev/msx148
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2164-12-389
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1093/bioinformatics/btu031

122

[106] Navneet Kaur and Deepak Garg. “Analysis of the Depth First Search Algorithms”. In:

Data mining and knowledge engineering 4 (2012), pp. 37–41.

[107] Satria A Kautsar et al. “MIBiG 2.0: a repository for biosynthetic gene clusters of

known function”. In: Nucleic acids research 48.D1 (2020), pp. D454–D458.

[108] Kevin P. Keegan, Elizabeth M. Glass, and Folker Meyer. “MG-RAST, a Metagenomics

Service for Analysis of Microbial Community Structure and Function”. In: Methods in

Molecular Biology (Clifton, N.J.) 1399 (2016), pp. 207–233. ISSN: 1940-6029. DOI:

10.1007/978-1-4939-3369-3_13.

[109] Sunghwan Kim et al. “PubChem substance and compound databases”. In: Nucleic

acids research 44.D1 (2016), pp. D1202–D1213.

[110] Zachary A King et al. “BiGG Models: A platform for integrating, standardizing and

sharing genome-scale models”. In: Nucleic acids research 44.D1 (2016), pp. D515–

D522.

[111] William Klimke et al. “Solving the Problem: Genome Annotation Standards before the

Data Deluge”. In: Standards in Genomic Sciences 5.1 (2011), pp. 168–193. ISSN:

1944-3277. DOI: 10.4056/sigs.2084864.

[112] Jan O Korbel et al. “Analysis of genomic context: prediction of functional associations

from conserved bidirectionally transcribed gene pairs”. In: Nature biotechnology 22.7

(2004), pp. 911–917.

[113] Nicole M Koropatkin, Elizabeth A Cameron, and Eric C Martens. “How glycan metabolism

shapes the human gut microbiota”. In: Nature Reviews Microbiology 10.5 (2012),

pp. 323–335.

[114] Masaaki Kotera and Susumu Goto. “Metabolic pathway reconstruction strategies for

central metabolism and natural product biosynthesis”. In: Biophysics and physicobi-

ology 13 (2016), pp. 195–205.

[115] Mikaela Koutrouli et al. “A guide to conquer the biological network era using graph

theory”. In: Frontiers in bioengineering and biotechnology 8 (2020), p. 34.

https://doi.org/10.1007/978-1-4939-3369-3_13
https://doi.org/10.4056/sigs.2084864

123

[116] Michael Kramer et al. “Inferring gene ontologies from pairwise similarity data”. In:

Bioinformatics (Oxford, England) 30.12 (2014), pp. i34–42. ISSN: 1367-4811. DOI:

10.1093/bioinformatics/btu282.

[117] Michal Krassowski et al. “State of the field in multi-omics research: From computa-

tional needs to data mining and sharing”. In: Frontiers in Genetics 11 (2020).

[118] Sudhir Kumar, Glen Stecher, and Koichiro Tamura. “MEGA7: molecular evolutionary

genetics analysis version 7.0 for bigger datasets”. In: Molecular biology and evolution

33.7 (2016), pp. 1870–1874.

[119] Benoit J. Kunath et al. “From proteins to polysaccharides: lifestyle and genetic evolu-

tion of Coprothermobacter proteolyticus”. In: The ISME Journal 13.3 (2019), pp. 603–

617. ISSN: 1751-7370. DOI: 10.1038/s41396-018-0290-y.

[120] Tien-Chueh Kuo, Tze-Feng Tian, and Yufeng Jane Tseng. “3Omics: a web-based

systems biology tool for analysis, integration and visualization of human transcrip-

tomic, proteomic and metabolomic data”. In: BMC systems biology 7.1 (2013), pp. 1–

15.

[121] Vasileios Lapatas et al. “Data integration in biological research: an overview”. In: J

Biol Res (Thessalon) 22.1 (2015). DOI: 10.1186/s40709-015-0032-5.

[122] Roman A Laskowski, James D Watson, and Janet M Thornton. “ProFunc: a server for

predicting protein function from 3D structure”. In: Nucleic acids research 33.suppl 2

(2005), W89–W93.

[123] Oluwasola Lawal et al. “Headspace volatile organic compounds from bacteria im-

plicated in ventilator-associated pneumonia analysed by TD-GC/MS”. In: Journal of

breath research 12.2 (2018), p. 026002.

[124] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436–444.

[125] Bohyun Lee et al. “Heterogeneous multi-layered network model for omics data inte-

gration and analysis”. In: Frontiers in genetics 10 (2020), p. 1381.

https://doi.org/10.1093/bioinformatics/btu282
https://doi.org/10.1038/s41396-018-0290-y
https://doi.org/10.1186/s40709-015-0032-5

124

[126] Jinhyuk Lee et al. “BioBERT: a pre-trained biomedical language representation model

for biomedical text mining”. In: Bioinformatics 36.4 (2020), pp. 1234–1240.

[127] Jonathan G. Lees et al. “Gene3D: Multi-domain annotations for protein sequence

and comparative genome analysis”. In: Nucleic Acids Research 42 (Database issue

2014), pp. D240–D245. ISSN: 0305-1048. DOI: 10.1093/nar/gkt1205.

[128] Meng Liu and Paul D. Thomas. “GO functional similarity clustering depends on sim-

ilarity measure, clustering method, and annotation completeness”. In: BMC bioinfor-

matics 20.1 (2019), p. 155. ISSN: 1471-2105. DOI: 10.1186/s12859-019-2752-2.

[129] Yaniv Loewenstein et al. “Protein function annotation by homology-based inference”.

In: Genome Biol. 10.2 (2009), pp. 1–8.

[130] Marc Lohse et al. “Mercator: a fast and simple web server for genome scale func-

tional annotation of plant sequence data”. In: Plant, Cell & Environment 37.5 (2014),

pp. 1250–1258. ISSN: 1365-3040. DOI: 10.1111/pce.12231.

[131] Shennan Lu et al. “CDD/SPARCLE: the conserved domain database in 2020”. In:

Nucleic acids research 48.D1 (2020), pp. D265–D268.

[132] Daniel Machado et al. “Fast automated reconstruction of genome-scale metabolic

models for microbial species and communities”. In: Nucleic acids research 46.15

(2018), pp. 7542–7553.

[133] Amanda Mackie et al. “Dead end metabolites-defining the known unknowns of the E.

coli metabolic network”. In: PloS one 8.9 (2013), e75210.

[134] Stefanı́a Magnúsdóttir et al. “Generation of genome-scale metabolic reconstructions

for 773 members of the human gut microbiota”. In: Nature biotechnology 35.1 (2017),

pp. 81–89.

[135] Serghei Mangul et al. “Challenges and recommendations to improve the installability

and archival stability of omics computational tools”. In: PLOS Biology 17.6 (June

2019), pp. 1–16. DOI: 10.1371/journal.pbio.3000333. URL: https://doi.org/10.

1371/journal.pbio.3000333.

https://doi.org/10.1093/nar/gkt1205
https://doi.org/10.1186/s12859-019-2752-2
https://doi.org/10.1111/pce.12231
https://doi.org/10.1371/journal.pbio.3000333
https://doi.org/10.1371/journal.pbio.3000333
https://doi.org/10.1371/journal.pbio.3000333

125

[136] Serghei Mangul et al. “Challenges and recommendations to improve the installability

and archival stability of omics computational tools”. In: PLoS biology 17.6 (2019),

e3000333.

[137] Serghei Mangul et al. Improving the usability and archival stability of bioinformatics

software. 2019.

[138] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.

org/.

[139] Olivia U. Mason et al. “Metagenomics reveals sediment microbial community re-

sponse to Deepwater Horizon oil spill”. In: The ISME Journal 8.7 (2014), pp. 1464–

1475. ISSN: 1751-7370. DOI: 10.1038/ismej.2013.254.

[140] Konstantinos Mavromatis et al. “Gene Context Analysis in the Integrated Microbial

Genomes (IMG) Data Management System”. In: PLOS ONE 4.11 (2009), e7979.

ISSN: 1932-6203. DOI: 10.1371/journal.pone.0007979.

[141] Michael McClelland et al. “Complete genome sequence of Salmonella enterica serovar

Typhimurium LT2”. In: Nature 413.6858 (2001), pp. 852–856.

[142] Simon Jon McIlroy et al. “Metabolic model for the filamentous ‘Candidatus Microthrix

parvicella’based on genomic and metagenomic analyses”. In: The ISME journal 7.6

(2013), pp. 1161–1172.

[143] Sebastián N Mendoza et al. “A systematic assessment of current genome-scale

metabolic reconstruction tools”. In: Genome biology 20.1 (2019), pp. 1–20.

[144] Tomas Mikolov et al. “Efficient estimation of word representations in vector space”.

In: arXiv (2013).

[145] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM

38.11 (1995), pp. 39–41.

[146] Alex L Mitchell et al. “MGnify: the microbiome analysis resource in 2020”. In: Nucleic

Acids Res. 48 (2019), pp. 570–578.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1038/ismej.2013.254
https://doi.org/10.1371/journal.pone.0007979

126

[147] Alex L. Mitchell et al. “MGnify: the microbiome analysis resource in 2020”. In: Nucleic

Acids Research 48 (D1 2020), pp. D570–D578. ISSN: 0305-1048. DOI: 10.1093/nar/

gkz1035.

[148] Felix Mölder et al. “Sustainable data analysis with Snakemake”. In: F1000Research

10 (2021).

[149] Michael A. Mooney et al. “Functional and Genomic Context in Pathway Analysis of

GWAS Data”. In: Trends in genetics : TIG 30.9 (2014), pp. 390–400. ISSN: 0168-

9525. DOI: 10.1016/j.tig.2014.07.004.

[150] Sébastien Moretti et al. “MetaNetX/MNXref: Unified namespace for metabolites and

biochemical reactions in the context of metabolic models”. In: Nucleic Acids Re-

search 49.D1 (2021), pp. D570–D574.

[151] Emilie Muller et al. “Condensing the omics fog of microbial communities”. In: Trends

in microbiology 21 (June 2013). DOI: 10.1016/j.tim.2013.04.009.

[152] Emilie EL Muller et al. “Using metabolic networks to resolve ecological properties of

microbiomes”. In: Current Opinion in Systems Biology 8 (2018), pp. 73–80.

[153] Shaman Narayanasamy et al. “IMP: a pipeline for reproducible reference-independent

integrated metagenomic and metatranscriptomic analyses”. In: Genome biology 17.1

(2016), pp. 1–21.

[154] Mark Neumann et al. ScispaCy: Fast and Robust Models for Biomedical Natural

Language Processing. ACL, 2019, pp. 319–327.

[155] Felicia N. New and Ilana L. Brito. “What Is Metagenomics Teaching Us, and What

Is Missed?” eng. In: Annual Review of Microbiology 74 (Sept. 2020), pp. 117–135.

ISSN: 1545-3251. DOI: 10.1146/annurev-micro-012520-072314.

[156] Nam D Nguyen and Daifeng Wang. “Multiview learning for understanding functional

multiomics”. In: PLoS computational biology 16.4 (2020), e1007677.

[157] Zoran Nikoloski et al. “Metabolic networks are NP-hard to reconstruct”. In: Journal of

theoretical biology 254.4 (2008), pp. 807–816.

https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1093/nar/gkz1035
https://doi.org/10.1016/j.tig.2014.07.004
https://doi.org/10.1016/j.tim.2013.04.009
https://doi.org/10.1146/annurev-micro-012520-072314

127

[158] Henrik Nordberg et al. “The genome portal of the Department of Energy Joint Genome

Institute: 2014 updates”. In: Nucleic Acids Res. 42 (2013), pp. 26–31.

[159] Alberto Noronha et al. “The Virtual Metabolic Human database: integrating human

and gut microbiome metabolism with nutrition and disease”. In: Nucleic acids re-

search 47.D1 (2019), pp. D614–D624.

[160] Jing Ouyang et al. “The bacterium Akkermansia muciniphila: a sentinel for gut per-

meability and its relevance to HIV-related inflammation”. In: Frontiers in immunology

11 (2020), p. 645.

[161] Ross Overbeek et al. “The subsystems approach to genome annotation and its use

in the project to annotate 1000 genomes”. In: Nucleic Acids Research 33.17 (2005),

pp. 5691–5702. ISSN: 1362-4962. DOI: 10.1093/nar/gki866.

[162] Donovan H Parks et al. “CheckM: assessing the quality of microbial genomes recov-

ered from isolates, single cells, and metagenomes”. In: Genome Res. 25.7 (2015),

pp. 1043–1055.

[163] Donovan H Parks et al. “GTDB: an ongoing census of bacterial and archaeal diversity

through a phylogenetically consistent, rank normalized and complete genome-based

taxonomy”. In: Nucleic Acids Res (2021).

[164] Donovan H. Parks et al. “A complete domain-to-species taxonomy for Bacteria and

Archaea”. In: Nature Biotechnology 38.9 (2020), pp. 1079–1086. ISSN: 1546-1696.

DOI: 10.1038/s41587-020-0501-8.

[165] Donovan H. Parks et al. “A standardized bacterial taxonomy based on genome phy-

logeny substantially revises the tree of life”. In: Nature Biotechnology 36.10 (2018),

pp. 996–1004. ISSN: 1546-1696. DOI: 10.1038/nbt.4229.

[166] Edoardo Pasolli et al. “Extensive Unexplored Human Microbiome Diversity Revealed

by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle”.

In: Cell 176.3 (2019), 649–662.e20. ISSN: 0092-8674. DOI: 10.1016/j.cell.2019.

01.001.

https://doi.org/10.1093/nar/gki866
https://doi.org/10.1038/s41587-020-0501-8
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1016/j.cell.2019.01.001
https://doi.org/10.1016/j.cell.2019.01.001

128

[167] William R Pearson. “An introduction to sequence similarity (“homology”) searching”.

In: Current protocols in bioinformatics 42.1 (2013), pp. 3–1.

[168] Jiajie Peng et al. “Measuring semantic similarities by combining gene ontology an-

notations and gene co-function networks”. In: BMC bioinformatics 16 (2015). ISSN:

1471-2105. DOI: 10.1186/s12859-015-0474-7.

[169] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global Vec-

tors for Word Representation. 2014, pp. 1532–1543.

[170] Catia Pesquita et al. “Semantic similarity in biomedical ontologies”. In: PLoS com-

putational biology 5.7 (2009), e1000443. ISSN: 1553-7358. DOI: 10.1371/journal.

pcbi.1000443.

[171] Friedhelm Pfeiffer and Dieter Oesterhelt. “A Manual Curation Strategy to Improve

Genome Annotation: Application to a Set of Haloarchael Genomes”. In: Life 5.2

(2015), pp. 1427–1444. ISSN: 2075-1729. DOI: 10.3390/life5021427.

[172] Vasilis J. Promponas, Ioannis Iliopoulos, and Christos A. Ouzounis. “Annotation in-

consistencies beyond sequence similarity-based function prediction – phylogeny and

genome structure”. In: Standards in Genomic Sciences 10 (2015). ISSN: 1944-3277.

DOI: 10.1186/s40793-015-0101-2.

[173] Michael E Pyne, Lauren Narcross, and Vincent JJ Martin. “Engineering plant sec-

ondary metabolism in microbial systems”. In: Plant physiology 179.3 (2019), pp. 844–

861.

[174] Pedro Queiros et al. “UniFuncNet: a flexible network annotation framework”. In: bioRxiv

(2022).

[175] Pedro Queirós. Mantis - Wiki. https://github.com/PedroMTQ/mantis/wiki. 2020.

[176] Pedro Queirós et al. “Mantis: flexible and consensus-driven genome annotation”. In:

GigaScience 10.6 (June 2021). giab042. ISSN: 2047-217X. DOI: 10.1093/gigascience/

giab042. eprint: https://academic.oup.com/gigascience/article-pdf/10/6/

https://doi.org/10.1186/s12859-015-0474-7
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.1371/journal.pcbi.1000443
https://doi.org/10.3390/life5021427
https://doi.org/10.1186/s40793-015-0101-2
https://github.com/PedroMTQ/mantis/wiki
https://doi.org/10.1093/gigascience/giab042
https://doi.org/10.1093/gigascience/giab042
https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf
https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf
https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf

129

giab042/38445405/giab042_reviewer_2_report_revision_1.pdf. URL:

https://doi.org/10.1093/gigascience/giab042.

[177] Pedro Queirós et al. “Mantis: flexible and consensus-driven genome annotation”. In:

GigaScience 10.6 (2021), giab042.

[178] Pedro Queirós et al. Supporting data for ”Mantis: flexible and consensus-driven genome

annotation”. 2021. URL: http://dx.doi.org/10.5524/100903.

[179] Pedro Queirós et al. “Unification of functional annotation descriptions using text min-

ing”. In: Biological Chemistry 402.8 (2021), pp. 983–990.

[180] Christopher Quince et al. “Shotgun metagenomics, from sampling to analysis”. eng.

In: Nature Biotechnology 35.9 (Sept. 2017), pp. 833–844. ISSN: 1546-1696. DOI:

10.1038/nbt.3935.

[181] Leonard Richardson. “Beautiful soup documentation”. In: April (2007).

[182] Daniel J Rigden and Xosé M Fernández. “The 2021 Nucleic Acids Research database

issue and the online molecular biology database collection”. In: Nucleic Acids Re-

search 49.D1 (Dec. 2020), pp. D1–D9. ISSN: 0305-1048. DOI: 10.1093/nar/gkaa1216.

eprint: https://academic.oup.com/nar/article- pdf/49/D1/D1/35364664/

gkaa1216.pdf. URL: https://doi.org/10.1093/nar/gkaa1216.

[183] Sean Roberts Eddy. HMMER: biosequence analysis using profile hidden Markov

models. 2020. URL: http://hmmer.org/.

[184] Huigui Rong et al. “Optimizing energy consumption for data centers”. In: Renewable

and Sustainable Energy Reviews 58 (2016), pp. 674–691.

[185] Hugo Roume et al. “Comparative integrated omics: identification of key functionalities

in microbial community-wide metabolic networks”. In: npj Biofilms and Microbiomes

1.1 (2015), pp. 1–11.

[186] Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. “Deep learning enables high-quality

and high-throughput prediction of enzyme commission numbers”. In: Proceedings of

https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf
https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf
https://academic.oup.com/gigascience/article-pdf/10/6/giab042/38445405/giab042_reviewer_2_report_revision_1.pdf
https://doi.org/10.1093/gigascience/giab042
http://dx.doi.org/10.5524/100903
https://doi.org/10.1038/nbt.3935
https://doi.org/10.1093/nar/gkaa1216
https://academic.oup.com/nar/article-pdf/49/D1/D1/35364664/gkaa1216.pdf
https://academic.oup.com/nar/article-pdf/49/D1/D1/35364664/gkaa1216.pdf
https://doi.org/10.1093/nar/gkaa1216
http://hmmer.org/

130

the National Academy of Sciences 116.28 (2019), pp. 13996–14001. ISSN: 0027-

8424, 1091-6490. DOI: 10.1073/pnas.1821905116.

[187] Jr Saier Milton H., Can V. Tran, and Ravi D. Barabote. “TCDB: the Transporter Clas-

sification Database for membrane transport protein analyses and information”. In:

Nucleic Acids Res. 34 (2006), pp. 181–186.

[188] Milton H Saier Jr et al. “The Transporter Classification Database (TCDB): 2021 up-

date”. In: Nucleic Acids Research 49.D1 (2021), pp. D461–D467.

[189] Gayathri Sambamoorthy and Karthik Raman. “Understanding the evolution of func-

tional redundancy in metabolic networks”. In: Bioinformatics 34.17 (2018), pp. i981–

i987.

[190] Iqbal H Sarker. “Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions”. In: SN Computer Science 2.6 (2021), pp. 1–

20.

[191] Jan Schellenberger et al. “BiGG: a Biochemical Genetic and Genomic knowledge-

base of large scale metabolic reconstructions”. In: BMC bioinformatics 11.1 (2010),

pp. 1–10.

[192] Kirstin Scherlach and Christian Hertweck. “Mining and unearthing hidden biosyn-

thetic potential”. In: Nature Communications 12.1 (2021), pp. 1–12.

[193] Alexandra M. Schnoes et al. “Annotation Error in Public Databases: Misannotation of

Molecular Function in Enzyme Superfamilies”. In: PLoS Computational Biology 5.12

(2009). ISSN: 1553-734X. DOI: 10.1371/journal.pcbi.1000605.

[194] Torsten Seemann. “Prokka: rapid prokaryotic genome annotation”. In: Bioinformatics

30.14 (2014), pp. 2068–2069. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/

btu153. (Visited on 06/25/2020).

[195] Nicola Segata et al. “Computational meta’omics for microbial community studies”. In:

Molecular Systems Biology 9 (May 14, 2013). ISSN: 1744-4292. DOI: 10.1038/msb.

2013.22.

https://doi.org/10.1073/pnas.1821905116
https://doi.org/10.1371/journal.pcbi.1000605
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1093/bioinformatics/btu153
https://doi.org/10.1038/msb.2013.22
https://doi.org/10.1038/msb.2013.22

131

[196] Paul Shannon et al. “Cytoscape: a software environment for integrated models of

biomolecular interaction networks”. In: Genome research 13.11 (2003), pp. 2498–

2504.

[197] Abdul R Sheik et al. “In situ phenotypic heterogeneity among single cells of the fil-

amentous bacterium Candidatus Microthrix parvicella”. In: The ISME journal 10.5

(2016), pp. 1274–1279.

[198] Dan Sholler et al. “Resistance to Adoption of Best Practices”. In: (2019).

[199] Fabian Sievers et al. “Fast, scalable generation of high-quality protein multiple se-

quence alignments using Clustal Omega”. In: Mol. Syst. Biol. 7 (2011). DOI: 10.

1038/msb.2011.75.

[200] Christian J. A. Sigrist et al. “New and continuing developments at PROSITE”. In:

Nucleic Acids Research 41 (Database issue 2013), pp. D344–347. ISSN: 1362-4962.

DOI: 10.1093/nar/gks1067.

[201] Arthur Fernandes Siqueira et al. “Comparative genomics of Bradyrhizobium japon-

icum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for un-

derstanding symbiotic performance with soybean”. In: BMC genomics 15.1 (2014),

pp. 1–21.

[202] Luke T Slater et al. “Improved characterisation of clinical text through ontology-based

vocabulary expansion”. In: J Biomed Semant (2021). DOI: 10.1186/s13326-021-

00241-5.

[203] “Standardizing data”. In: Nature Cell Biology 10.10 (2008), pp. 1123–1124. ISSN:

1476-4679. DOI: 10.1038/ncb1008-1123.

[204] Lincoln Stein. “Genome annotation: from sequence to biology”. In: Nat. Rev. Genet.

2.7 (2001), pp. 493–503.

[205] Lincoln D Stein. “Integrating biological databases”. In: Nat. Rev. Genet. 4.5 (2003),

pp. 337–345.

https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1093/nar/gks1067
https://doi.org/10.1186/s13326-021-00241-5
https://doi.org/10.1186/s13326-021-00241-5
https://doi.org/10.1038/ncb1008-1123

132

[206] Martin Steinegger and Johannes Söding. “MMseqs2 enables sensitive protein se-

quence searching for the analysis of massive data sets”. In: Nat. Biotechnol. 35.11

(2017), pp. 1026–1028.

[207] Martin Steinegger and Johannes Söding. “MMseqs2 enables sensitive protein se-

quence searching for the analysis of massive data sets”. In: Nature biotechnology

35.11 (2017), pp. 1026–1028.

[208] Martin Steinegger et al. “HH-suite3 for fast remote homology detection and deep

protein annotation”. In: BMC Bioinformatics 20.1 (2019), p. 473. ISSN: 1471-2105.

DOI: 10.1186/s12859-019-3019-7.

[209] Ralf Steuer et al. “Observing and interpreting correlations in metabolomic networks”.

In: Bioinformatics 19.8 (2003), pp. 1019–1026.

[210] Robert Stevens et al. “Ontologies in bioinformatics”. In: Handbook on ontologies.

Springer, 2004, pp. 635–657.

[211] C K. Stover et al. “Complete genome sequence of Pseudomonas aeruginosa PAO1,

an opportunistic pathogen”. In: Nature 406.6799 (2000), pp. 959–964.

[212] Hong Su et al. “Improved Protein Structure Prediction Using a New Multi-Scale Net-

work and Homologous Templates”. In: Advanced Science (2021), p. 2102592.

[213] Indhupriya Subramanian et al. “Multi-omics data integration, interpretation, and its

application”. In: Bioinformatics and biology insights 14 (2020), p. 1177932219899051.

[214] Shinichi Sunagawa et al. “Structure and function of the global ocean microbiome”.

In: Science 348.6237 (2015). Ed. by Emmanuel Boss et al. ISSN: 0036-8075. DOI:

10.1126/science.1261359. eprint: https://science.sciencemag.org/content/

348/6237/1261359.full.pdf. URL: https://science.sciencemag.org/content/

348/6237/1261359.

[215] Shinichi Sunagawa et al. “Structure and function of the global ocean microbiome”.

In: Science 348.6237 (2015). Publisher: American Association for the Advancement

https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1126/science.1261359
https://science.sciencemag.org/content/348/6237/1261359.full.pdf
https://science.sciencemag.org/content/348/6237/1261359.full.pdf
https://science.sciencemag.org/content/348/6237/1261359
https://science.sciencemag.org/content/348/6237/1261359

133

of Science Section: Research Article. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/

science.1261359.

[216] Ahmet Sureyya Rifaioglu et al. “DEEPred: Automated Protein Function Prediction

with Multi-task Feed-forward Deep Neural Networks”. In: Scientific Reports 9.1 (2019),

p. 7344. ISSN: 2045-2322. DOI: 10.1038/s41598-019-43708-3.

[217] Damian Szklarczyk et al. “STITCH 5: augmenting protein–chemical interaction net-

works with tissue and affinity data”. In: Nucleic acids research 44.D1 (2016), pp. D380–

D384.

[218] Damian Szklarczyk et al. “STRING v11: protein-protein association networks with

increased coverage, supporting functional discovery in genome-wide experimental

datasets”. In: Nucleic Acids Research 47 (D1 2019), pp. D607–D613. ISSN: 1362-

4962. DOI: 10.1093/nar/gky1131.

[219] Roman L. Tatusov et al. “The COG database: a tool for genome-scale analysis of

protein functions and evolution”. In: Nucleic Acids Res. 28 (2000), pp. 33–36.

[220] Ann Taylor, Mitchell Marcus, and Beatrice Santorini. The Penn Treebank: An Overview.

Ed. by Anne Abeillé. Springer Netherlands, 2003, pp. 5–22.

[221] Ines Thiele and Bernhard Ø Palsson. “A protocol for generating a high-quality genome-

scale metabolic reconstruction”. In: Nature protocols 5.1 (2010), pp. 93–121.

[222] Paul Thompson et al. “The BioLexicon: a large-scale terminological resource for

biomedical text mining”. In: BMC Bioinformatics 12.1 (2011), p. 397. ISSN: 1471-

2105. DOI: 10.1186/1471-2105-12-397.

[223] Liang Tian et al. “Deciphering functional redundancy in the human microbiome”. In:

Nature communications 11.1 (2020), pp. 1–11.

[224] Michelle L. Treiber et al. “Pre- and post-sequencing recommendations for functional

annotation of human fecal metagenomes”. In: BMC Bioinformatics 21.1 (2020), p. 74.

ISSN: 1471-2105. DOI: 10.1186/s12859-020-3416-y.

https://doi.org/10.1126/science.1261359
https://doi.org/10.1126/science.1261359
https://doi.org/10.1038/s41598-019-43708-3
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1186/1471-2105-12-397
https://doi.org/10.1186/s12859-020-3416-y

134

[225] Sipko Van Dam et al. “Gene co-expression analysis for functional classification and

gene–disease predictions”. In: Briefings in bioinformatics 19.4 (2018), pp. 575–592.

[226] Tim Van Den Bossche et al. “Critical Assessment of MetaProteome Investigation

(CAMPI): a multi-laboratory comparison of established workflows”. In: Nature com-

munications 12.1 (2021), pp. 1–15.

[227] Mark WJ Van Passel et al. “The genome of Akkermansia muciniphila, a dedicated

intestinal mucin degrader, and its use in exploring intestinal metagenomes”. In: PloS

one 6.3 (2011), e16876.

[228] Sébastien Varrette et al. “Management of an Academic HPC Cluster: The UL Expe-

rience”. In: (2014). URL: https://hpc.uni.lu.

[229] Alexei Vazquez et al. “Global protein function prediction from protein-protein interac-

tion networks”. In: Nature Biotechnology 21.6 (2003), pp. 697–700. ISSN: 1546-1696.

DOI: 10.1038/nbt825.

[230] Karin M. Verspoor et al. “Text Mining Improves Prediction of Protein Functional Sites”.

In: PLOS ONE 7.2 (2012), pp. 1–16.

[231] Sheng Wang et al. “Annotating gene sets by mining large literature collections with

protein networks”. In: Pacific Symposium on Biocomputing. Pacific Symposium on

Biocomputing 23 (2018), pp. 602–613. ISSN: 2335-6936.

[232] Leon Weber et al. “HunFlair: an easy-to-use tool for state-of-the-art biomedical named

entity recognition”. In: Bioinformatics (2021). DOI: 10.1093/bioinformatics/btab042.

[233] Rodney A Welch et al. “Extensive mosaic structure revealed by the complete genome

sequence of uropathogenic Escherichia coli”. In: Proceedings of the National Academy

of Sciences 99.26 (2002), pp. 17020–17024.

[234] James C Whisstock and Arthur M Lesk. “Prediction of protein function from protein

sequence and structure”. In: Quarterly reviews of biophysics 36.3 (2003), pp. 307–

340.

https://hpc.uni.lu
https://doi.org/10.1038/nbt825
https://doi.org/10.1093/bioinformatics/btab042

135

[235] James C. Whisstock and Arthur M. Lesk. “Prediction of protein function from protein

sequence and structure”. In: Quarterly Reviews of Biophysics 36.3 (2003), pp. 307–

340. ISSN: 0033-5835. DOI: 10.1017/s0033583503003901.

[236] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management

and stewardship”. In: Scientific Data 3.1 (2016), p. 160018. ISSN: 2052-4463. DOI:

10.1038/sdata.2016.18.

[237] David S Wishart et al. “HMDB 4.0: the human metabolome database for 2018”. In:

Nucleic acids research 46.D1 (2018), pp. D608–D617.

[238] Michael Woelfle, Piero Olliaro, and Matthew H Todd. “Open science is a research

accelerator”. In: Nature chemistry 3.10 (2011), pp. 745–748.

[239] Sitao Wu et al. “WebMGA: a customizable web server for fast metagenomic se-

quence analysis”. In: BMC genomics 12 (2011). ISSN: 1471-2164. DOI: 10.1186/

1471-2164-12-444.

[240] Corin Yeats, Oliver C. Redfern, and Christine Orengo. “A fast and automated solution

for accurately resolving protein domain architectures”. In: Bioinformatics 26.6 (2010),

pp. 745–751. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btq034.

[241] JIA Yu and Joann K Whalen. “A new perspective on functional redundancy and phy-

logenetic niche conservatism in soil microbial communities”. In: Pedosphere 30.1

(2020), pp. 18–24.

[242] Zhiqiang Zeng et al. “Survey of Natural Language Processing Techniques in Bioin-

formatics”. In: Computational and Mathematical Methods in Medicine 2015 (2015),

p. 674296. ISSN: 1748-6718. DOI: 10.1155/2015/674296.

[243] Zhang Zhang et al. “Data integration in bioinformatics: current efforts and challenges”.

In: Bioinformatics-Trends and Methodologies (2011), pp. 41–56.

[244] Bihai Zhao et al. “An efficient method for protein function annotation based on mul-

tilayer protein networks”. In: Human Genomics 10 (2016). ISSN: 1473-9542. DOI:

10.1186/s40246-016-0087-x.

https://doi.org/10.1017/s0033583503003901
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1186/1471-2164-12-444
https://doi.org/10.1186/1471-2164-12-444
https://doi.org/10.1093/bioinformatics/btq034
https://doi.org/10.1155/2015/674296
https://doi.org/10.1186/s40246-016-0087-x

136

[245] Guangyan Zhou and Jianguo Xia. “OmicsNet: a web-based tool for creation and

visual analysis of biological networks in 3D space”. In: Nucleic acids research 46.W1

(2018), W514–W522.

[246] Johannes Zimmermann, Christoph Kaleta, and Silvio Waschina. “gapseq: Informed

prediction of bacterial metabolic pathways and reconstruction of accurate metabolic

models”. In: Genome biology 22.1 (2021), pp. 1–35.

[247] Francisco Zorrilla et al. “metaGEM: reconstruction of genome scale metabolic models

directly from metagenomes”. In: Nucleic Acids Research 49.21 (Oct. 2021), e126–

e126. ISSN: 0305-1048. DOI: 10.1093/nar/gkab815. eprint: https://academic.

oup.com/nar/article-pdf/49/21/e126/41503923/gkab815.pdf. URL: https:

//doi.org/10.1093/nar/gkab815.

[248] Simon Portegies Zwart. “The ecological impact of high-performance computing in

astrophysics”. In: Nature Astronomy 4.9 (2020), pp. 819–822.

https://doi.org/10.1093/nar/gkab815
https://academic.oup.com/nar/article-pdf/49/21/e126/41503923/gkab815.pdf
https://academic.oup.com/nar/article-pdf/49/21/e126/41503923/gkab815.pdf
https://doi.org/10.1093/nar/gkab815
https://doi.org/10.1093/nar/gkab815

	Preface
	Abstract
	Scientific output
	Thesis structure
	Introduction
	The life cycle of data
	Data integration
	Protein function annotation
	Function similarity analysis
	Network annotation
	Scope and objectives of the presented work

	Publications
	Mantis: flexible and consensus-driven genome annotation
	Summary
	Background
	Mantis
	Analysis
	Discussion
	Conclusion
	Methods
	Availability of source code and requirements
	Availability of supporting data and materials
	Concluding remarks

	Unification of functional annotation descriptions using text mining
	Summary
	Abstract
	Introduction
	Results
	Discussion
	Materials and methods
	Acknowledgements
	Concluding remarks

	UniFuncNet: a flexible network annotation framework
	Summary
	Concluding remarks

	Discussion
	Software improvements and future work
	Mantis
	UniFunc
	UniFuncNet

	Application of work
	Mantis
	UniFunc
	UniFuncNet

	Conclusion

		2022-04-02T10:08:20+0200
	Esch-sur-Alzette
	Pedro Queiros
	I am approving this document with my legally binding signature

