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Excitonic-insulator instability and Peierls distortion in one-dimensional semimetals
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The charge density wave instability in one-dimensional semimetals is usually explained through a Peierls-like
mechanism, where the coupling of electrons and phonons induces a periodic lattice distortion along certain
modes of vibration, leading to a gap opening in the electronic band structure and to a lowering of the symmetry
of the lattice. In this work, we study two prototypical Peierls systems: the one-dimensional carbon chain and
the monatomic hydrogen chain with accurate ab initio calculations based on quantum Monte Carlo and hybrid
density functional theory. We demonstrate that in one-dimensional semimetals at T = 0, a purely electronic
instability can exist independently of a lattice distortion. It is induced by spontaneous formation of low energy
electron-hole pairs resulting in the electronic band gap opening, i.e., the destabilization of the semimetallic phase
is due to an excitonic mechanism.
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I. INTRODUCTION

The static charge density wave (CDW) regime is a broken
symmetry state induced by electron-phonon or electron-
electron interactions. It can occur in certain semimetals when
cooled down below a given critical temperature. In this state,
the charge density is not uniform, but displays a spatial os-
cillation that is, generally, accompanied by a periodic lattice
distortion (PLD) so that it is often referred to as CDW/PLD
[1]. Even if CDW/PLD dates back to the early days of quan-
tum mechanics [2,3], it is still nowadays a fascinating and not
completely understood research topic. Indeed, even though
in several classes of materials displaying CDW/PLD order
much has been understood about the structural and electronic
properties and about the nature of the CDW/PLD phases, we
are still far from understanding how and why CDW/PLDs are
formed.

Common phenomenological models used to describe the
CDW/PLD phase transition are the Peierls mechanism and
the Jahn-Teller effect. In both cases the driving force re-
sponsible for the CDW/PLD order is the electron-phonon
interaction, in contrast with a purely electronic mechanism
[4] also called excitonic insulator (EI), that could develop
in both semimetals and semiconductors [5–7]. In this case,
due to the attractive electron-hole (e-h) interaction induced by
exchange-correlation (xc) effects, bound e-h pairs (excitons)
can be formed spontaneously at zero energy cost if the exciton
binding energy is large enough. The instability towards the
spontaneous formation of e-h pairs results in the softening
of an exciton or plasmon mode that is accompanied by the
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formation of a CDW as well as by a change of the electronic
band structure. In addition, the electric field caused by the
CDW in general leads to the displacement of the positive
ions from their ideal equilibrium positions (i.e., the positions
before the distortion) giving rise to a PLD.

After its theoretical prediction, the EI phase has been
intensively searched in different kinds of materials such as
semimetals [8–10], photoexcited semiconductors [11], as well
as two-dimensional systems [12,13] and single wall carbon
nanotubes [14,15]. Nevertheless, despite the great efforts, a
conclusive experimental evidence for the existence of this
phase remains elusive.

Among CDW/PLD systems, the simplest and most stud-
ied ones are probably the one-dimensional (1D) atomic
chains. They are prototypical Peierls unstable systems where
the instability arises from the cooperation between the per-
fect Fermi surface nesting and electron-phonon interaction
and represent standard textbook examples to explain the
CDW/PLD physics. However, the Peierls mechanism has
been questioned in several works that, based on model Hamil-
tonians, speculated about the possibility that in 1D semimetals
such as polyacene based systems the CDW/PLD has a purely
electronic nature [16–18].

In this paper we address again the basic academic question
concerning the physical origin of the CDW in 1D systems.
Combining fully ab initio calculations based on quantum
Monte Carlo (QMC) and density functional theory (DFT)
we investigate the CDW/PLD in two prototypical 1D sys-
tems: the carbon chain, namely, cumulene (CU), which is
predicted to dimerize through a Peierls mechanism in the
most stable polyyne conformation (PO), and the monatomic
hydrogen chain, that with a single half-filled band constitutes
the simplest 1D material and thus a suitable model system
to investigate the basic CDW physics. We demonstrate that
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in these materials, in contrast to the previous interpretations,
there is a CDW of purely electronic origin, followed by a PLD
due to the electron-phonon interaction.

II. COMPUTATIONAL METHODS

A. Quantum Monte Carlo

The ab initio QMC calculations [19–21] are performed
with the TURBORVB package [22]. In particular, the method
used to optimize the wave function and the structural param-
eters and used to compute the forces and total energies is that
of variational Monte Carlo (VMC). In the rest of the paper we
will use in general the term QMC. The electronic structure of
our system is described through variationally optimized wave
functions built as the product of the antisymmetrized geminal
power (AGP) [23,24] ansatz and a Jastrow factor [25]. The
AGP wave function is derived from the BCS theory of super-
conductivity [26–28] and explicitly describes the correlation
between electron pairs [23,24,29,30]. For closed shell sys-
tems the AGP is the determinant of a N↑

e × N↓
e square matrix

G: �AGP(x̄) = det[G] whose elements Gi j = φG(r↑
i , r↓

j ) are
geminal pairing functions that couple electrons of opposite
spin in an antisymmetric state. The spatial part of the geminal
functions is a linear combination of products of two atomic
orbitals weighted by a set of coefficients,

φG(r↑
i , r↓

j ) =
Q∑

q,p=1

λqpφq(r↑
i )φp(r↓

j ),

multiplied by a spin-antisymmetric singlet state. For a spin
restricted calculation the coefficients λqp must be symmet-
ric (λqp = λpq) in order to guarantee that the spatial part is
symmetric with respect to the exchange of the two electrons’
coordinates. It has been shown that the AGP can be rewritten
as a multideterminantal expansion of a full set of constrained
excitations and in particular it is able to describe properly
diradical configurations of an even number of degenerate fron-
tier states [31–33]. The Jastrow factor [34] used contains the
homogeneous two body and one body terms necessary for de-
scribing correctly the electron-electron and electron-nucleus
cusp conditions (used for the hydrogen chain), and three/four
body terms that describe the electronic correlation between
the electron pairs with respect to the positions of one or two
nuclei. This last factor is important to recover a high level of
dynamical correlation between electron pairs [25].

We have used localized basis sets for both the AGP wave
function and for the dynamical part of the Jastrow factor.
The AGP basis set for the carbon atoms corresponds to a
combination of contracted Gaussian type orbitals (GTOs),
(5s5p2d )/[2s2p1d], while for the hydrogen atoms it corre-
sponds to a combination of Gaussian and Slater type orbitals
(STOs), (2s1s∗1p∗)/[1s1s∗1p∗] (the asterisk indicates the un-
contracted STO orbitals). The basis set used to build the
dynamical part of the Jastrow factor is composed of pure un-
contracted GTOs: (2s2p1d ) for the carbon atoms and (2s1p)
for the hydrogen ones. The 1s core electrons of the carbon
atoms are substituted through energy-consistent pseudopoten-
tials with relativistic corrections [35].

In order to describe the infinite chains with QMC, we
have used periodic boundary conditions [29] extrapolating

the results to the infinite supercell limit. For each supercell,
with number of atoms NC ∈ [8 : 40] and NH ∈ [8 : 48], we
have optimized the wave functions with the linear method
[36,37] with Hessian acceleration as described in Ref. [38],
and the structural geometries with the method described in
Refs. [39,40]. The infinite length extrapolations are done us-
ing the function f (x) = a + bxc (with x = 1/N) that for long
enough cells reduces to a second order polynomial c = 2.

B. Density functional theory

The DFT calculations presented in this work have been
done with the CRYSTAL17 program [41] using the pob-TZVP
basis set [42] built of localized Gaussian type orbitals and
optimized to guarantee reasonably converged results on peri-
odic systems. All the calculations have been done with 300 k
points in the irreducible Brillouin zone using the long-range
corrected CAM-B3LYP hybrid xc functional [43]:

Exc = EL
xc + α0

[
ENL

x,SR(ω) − EL
x,SR(ω)

]
+α

[
ENL

x,LR(ω) − EL
x,LR(ω)

]
, (1)

where EL
xc is the local xc functional evaluated in generalized

gradient approximation (GGA), EL
x its exchange counterpart,

and ENL
x the nonlocal exchange correction evaluated in the

Hartree Fock (HF) approximation. Both, local and nonlocal
exchange functionals are separated in a short-range and long-
range contribution whose length scale is set by ω according to
the following representation of the Coulomb potential:

1

|r − r′| = 1 − erf(ω|r − r′|)
|r − r′|︸ ︷︷ ︸

SR

+ erf(ω|r − r′|)
|r − r′|︸ ︷︷ ︸

LR

, (2)

where erf denotes the error function.

III. RESULTS AND DISCUSSION

The Peierls mechanism for CU is schematically repre-
sented in Fig. 1. Here the sp hybridization results in the
formation of a σ covalent bond and a metalliclike bond with
mixed πx-πy character which gives rise to the formation of a
twofold degenerate metallic band [Fig. 1(a)].

After dimerization [see Fig. 1(b)], a configuration with an
alternating single covalent σ bond and triple (σ plus mixed
πx-πy) covalent bonds becomes energetically favored with
respect to the previous homogeneous electronic configuration
and a gap opens at the boundary of the first Brillouin zone
(BZ) at k = π

2a (a being the lattice constant). The resulting
CDW/PLD phase (or PO phase) with wave vector q = π

a is
described by a new unit cell with two carbon atoms and a
finite bond length alternation (BLA): the difference between
the lengths of the singlet and triplet bonds.

In the alternative EI picture, xc effects induce the sponta-
neous formation of bound e-h pairs with relative wave vector
q = π

a . They involve transitions around the Fermi surface
from k = − π

2a to k = π
2a . Equivalently, if described using a

supercell made of two carbon atoms (folding q onto the 	

point), there will be vertical transitions at the boundary of the
BZ [see Fig. 1(c)]. This gives rise to a CDW with wave vector
q = π

a opening a gap at the BZ boundary [see Fig. 1(d)]. In
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FIG. 1. (a) Band structure of cumulene, containing a single car-
bon atom per unit cell. (b) Band structure of polyyne, containing two
atoms per unit cell. (c) Excitonic effect in cumulene. (d) CDW band
structure: the gap opens because of exciton formation.

the following we will call this hypothetical phase EI CDW.
Obviously, this purely electronic CDW induces a PLD that
will drive the system into a more stable structure.

In order to verify this hypothesis we employ ab initio
QMC calculations using the scheme discussed in Sec. II.
The structural parameters of CU and PO have been obtained
through a supercell approach and extrapolating to the ther-
modynamic limit (NC → ∞). Moreover for each supercell we
have optimized the wave function and the atomic positions.
Our results are summarized in Table I. The value of the BLA
is around 0.1363(12) Å and compatible with those obtained
both experimentally and through DFT calculations [44–48]
as well as more recent diffusion Monte Carlo (DMC) cal-
culations [49]. Albeit, our extracted lattice constant of PO
[2.5649(4) Å] is slightly smaller than the value of 2.582 Å
reported in Ref. [49] probably due to the different pseu-
dopotentials used in our work. In fact, it has been shown in
other works [40] that the energy-consistent pseudopotentials
in Ref. [35] tend to shorten the carbon lengths with respect to
the norm-conserving ones.

TABLE I. Structural properties of the carbon chain per supercell.
NC is the number of carbon atoms, aPO and BLAPO are, respectively,
the lattice constant and the bond length alternation of polyyne, and
aCU is the lattice constant of cumulene.

NC aPO (Å) BLAPO (Å) aCU (Å)

8 2.5898(5) 0.1900(7) 2.5664(5)
12 2.5731(5) 0.1586(7) 2.5549(5)
16 2.5681(5) 0.1455(7) 2.5501(5)
24 2.5653(5) 0.1399(7) 2.5472(5)
32 2.5660(5) 0.1386(7) 2.5470(5)
40 2.5652(5) 0.1383(7)
∞ 2.5649(4) 0.1363(12) 2.5454(7)

TABLE II. Energies per pseudocarbon atom in Hartree (Ha) as a
function of the supercell. NC is the number of carbon atoms and EPO,
ECU and EEI CDW are, respectively, the energies of polyyne, cumulene,
and the EI CDW state.

NC EPO/NC (Ha) EEI CDW/NC (Ha) ECU/NC [Ha]

8 −5.64448(6) −5.63343(7) −5.62704(5)
12 −5.64698(4) −5.64024(5) −5.63605(3)
16 −5.64734(4) −5.64214(4) −5.63921(3)
24 −5.64757(3) −5.64321(4) −5.64129(3)
32 −5.64741(3) −5.64336(2) −5.64192(2)
40 −5.64750(2) −5.64358(3) −5.64211(2)
∞ −5.64750(4) −5.64363(5) −5.64266(8)

For each optimized structure we report the variational en-
ergies per pseudocarbon atom in Table II for the PO and CU
phases extrapolated to the thermodynamic limit (NC → ∞).

The ground state energies, derived by extrapolation to the
thermodynamic limit, clearly show that PO is the most sta-
ble phase [see Fig. 2(a)]. Interestingly, by removing all the
symmetries on the electronic wave function, but taking the

(a)

(b)

FIG. 2. QMC calculations for the carbon chain. (a) Extrapola-
tions of atomic energies as a function of the supercell’s length for
CU, EI CDW, and PO states. In the inset the energy differences are
reported in eV with respect to the two atom PO cell. (b) Residual
forces in the EI CDW state per atom. In the inset the residual forces
for a 40 carbon atom supercell.
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carbon atoms fixed at the ideal positions of the CU structure,
the system spontaneously evolves into a new electronic con-
figuration with an energy gain of about 0.026(3) eV per carbon
atom with respect to the ideal CU configuration [see red curve
in Fig. 2(a)].

This state can be characterized by evaluating the absolute
values of the forces acting on the single carbon atoms along
the molecular axis [Fig. 2(b)]. These values extrapolate to a
positive quantity in the thermodynamic limit. In the inset of
Fig. 2(b), for a 40 carbon atom supercell we recognize how
the atomic forces have the same intensity but opposite sign on
adjacent atoms: a profile compatible with the PLD associated
to the PO structure. This behavior is a signature of an EI CDW
state that pushes the symmetric structure of CU towards the
PO minimum. The same behavior is found for the hydrogen
chain, suggesting that the excitonic instability is an intrinsic
property of quasi-1D semimetals (see Appendix A).

In the following, to gain further insight into the physical
mechanism governing the EI CDW instability observed in
QMC calculations, we address this problem in the DFT frame-
work using the hybrid long-range corrected CAM-B3LYP xc
functional [43], that has been shown to compare well with
QMC in conjugated carbon chains [32,50].

In the calculations we keep the amount of short-range non-
local HF exchange α0 fixed at the standard value of 0.16 and
optimize α ∈ [0, 1] (i.e., the amount of the long-range nonlo-
cal HF exchange) in order to match the QMC ground state.
Moreover we keep the length scale ω of the nonlocal correc-
tion fixed at the standard value of 0.33 for both short- and
long-range contributions. The traditional GGA approximation
is recovered for α = α0 = 0.0 while the best agreement with
the QMC results (i.e., the energy difference between PO and
CU phases and the values of the BLA and lattice constant) are
obtained for α ≈ 0.7 (see Appendix A). In order to investigate
the EI CDW phase observed in the QMC calculations, we
simulated the CU carbon chain using a supercell consisting
of two equivalent atoms in the presence of an external per-
turbative field 
ext (r) characterized by the same symmetry
as that of the expected CDW order. The perturbation 
ext (r)
is introduced to break the symmetry and is afterwards put to
zero, simulating spontaneous symmetry breaking. For α = 0
(i.e., in standard GGA approximation for the long-range part
of the exchange interaction) the CDW is only observed in
the presence of a PLD [
ext (r) > 0] while for α > 0, a new
phase, with the ions fixed at the same positions of the ideal
CU structure, is stabilized with respect to the semimetallic
CU phase, in qualitative agreement with QMC. This phase,
characterized by a charge modulation with wave vector q = π

a
and an energy gap at the boundary of the BZ that increases
as a function of α [blue circles in Fig. 3(a)], is a clear ev-
idence of the EI CDW. Interestingly, when the spin degrees
of freedom are allowed to relax, the system spontaneously
evolves into a spin density wave (SDW) phase with the same
periodicity of the CDW order. The antiferromagnetic band gap
takes a finite value also for α → 0 and is always larger then
the EI CDW energy gap for all values of α [see Fig. 3(a)]
suggesting that the SDW is actually more stable than the EI
CDW phase. However, when ions are allowed to relax into the
new equilibrium configuration, the PO structure is obtained
(i.e., CDW/PLD phase) and the CDW ordering is stabilized

(a) (b)

FIG. 3. (a) Band gap Eg as a function of α for the EI CDW
(blue circles) and SDW (green circles) phases of the carbon chain.
The continuous line is the fit of the ab initio data through Eq. (7).
(b) Ground state energy of the CDW/PLD phase of the carbon chain
as a function of the BLA evaluated at α = 0.7. The red and green
lines refer to the energy of the CU and SDW phases, respectively. In
the plot the zero is fixed at the energy of the PO phase.

with respect to the SDW [see Fig. 3(b)]. The same behavior
is observed also for the hydrogen chain suggesting that in
these materials the destabilization of the semimetallic phase
is purely electronic and we do not need to invoke the electron-
phonon coupling, in contrast to the pure Peierls mechanism.
Nevertheless, the electron-phonon coupling is essential to sta-
bilize the CDW with respect to SDW. Again, this same effect
is also observed for the hydrogen chain (Appendix A).

In order to make a direct link between our ab initio results
and the EI picture, it is helpful to separate the Kohn-Sham
(KS) Hamiltonian corresponding to the broken symmetry
phase into two parts: the unperturbed one (h0[ρ0]) describing
the ideal monatomic chain with unperturbed charge density
ρ0 and a perturbative term 
h[ρ0,
ρ] describing the self-
consistent field associated to the induced charge density 
ρ

(see Appendix B for further details):

Ĥ =
∑
i jk

(
ε0

ikδi j + 
hik, jk
)
c†

ikc jk + 
hik, jk+qc†
ikc jk+q, (3)

where k runs over the first BZ, corresponding to the unper-
turbed configuration, i( j) are band indexes, q is the wave
vector of the CDW, and the ε0 are the eigenvalues of h0. In
the case of the hydrogen chain, when the coupling between
the band crossing the Fermi level and higher energy empty
bands is neglected, Eq. (3) can be diagonalized through a
Bogoliubov–de Gennes transformation. For small 
h, the KS
eigenvalues of Ĥ can be expressed in terms of ε0 through the
relation ε±

k = ξk ± Ek, where now k runs over the first BZ
associated to the supercell folding q at the 	 point, Ek =√

ξ 2
k + 
2

k and ξk = 1
2 (ε0

ck − ε0
vk ), v (c) labeling occupied

(empty) states of h0. The quantity 
k is directly related to the
KS gap (Eg) of the CDW phase through the relation Eg = 2


(
 being the value of 
k at the boundary of the BZ) and
satisfies the following BCS-like equation (see Appendix B):


k = −1

2

∑
k′

Kk,k′

k′

Ek′
. (4)
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Here the kernel K is obtained from the functional derivative
of the Hartree and xc potentials with respect to the electronic
density and can be formally written as the sum of a nonlocal
exchange kernel f NL

x entering as a direct e-h interaction and a
term entering as an exchange e-h interaction consisting of the
Coulomb potential v, the local xc kernel f L

xc, and its exchange
part f L

x [51] (here in order to simplify the discussion we drop
the short-range nonlocal correction proportional to α0):

Kk,k′ = 2vk,k′ + f L
xck,k′ − α f L

xk,k′ (ω) + α f NL
xk,k′ (ω). (5)

Moreover, taking into account only the linear terms in 
ρ,
we find that the energy gain associated to the CDW order
is given by the expression 
E = ∑

k(Ek − ξk ). This means
that the CDW phase is stable if Eq. (4) allows a nontrivial
solution and thus the quantity 
k can be interpreted as the
order parameter of the CDW phase transition.

This simplified picture is valid for the carbon chain as
well. Indeed, even if CU is a multiband system consisting
of two degenerate bands crossing the Fermi level, the sym-
metry of the CDW allows only for intraband coupling. As a
consequence the CDW is described through two equivalent
BCS-like equations involving πx and πy states, respectively.
This can be easily understood from the fact that the πx-πy

degeneration persists in the CDW phase.
At this point, following Ref. [6], we make the change of

variable ϕk = 
k
Ek

in Eq. (4) and, taking the limit 
k → 0, we
recover the Casida equation for the charge-charge response
function χ (q, ω) in the Tamm-Dancoff approximation [52]:[(

ε0
ck − ε0

vk

) + o(
2)
]
ϕk +

∑
k

Kk,k′ϕk′ = 0. (6)

A comparison of Eq. (6) with Eq. (4) clearly shows that
nontrivial solutions of Eq. (4) exist if χ presents poles at
negative energies (i.e., softening of exciton modes). In the
present case, since the KS as well as the quasiparticle gap of
the unperturbed system is zero by symmetry, the condition for
the stability of the CDW phase reduces to the existence of a
bound state (i.e., a pole below the Fermi level).

For α → 0 the long-range xc part of K reduces to f L
xc.

Under these conditions, in line with previous studies on 1D
systems [53], the CDW is always unstable. Indeed, it is well
known that local approximations for the xc kernel [such
as GGA or local density approximation (LDA)], being q
independent, cannot describe bound excitons in infinite semi-
conductors (or semimetals) [54,55]. This is a consequence of
the nonphysical behavior of their matrix elements between
electronic wave functions that vanish in the optical limit (q →
0). In other words, the formation of a bound state is prevented
by the presence of the dominant repulsive term v in Eq. (5).
This does not happen for triplet excitations due to the lack
of v. As a consequence, the SDW instability persists also for
α → 0. On the other hand, in the opposite limit (i.e., α → 1,
ω → ∞, and f L

xc = 0) we recover the time-dependent HF
approximation. In this case, bound excitons are allowed due to
the singularity of the direct e-h interaction ( f NL

xk,k′) for k = k′
that dominates on the v term. This is the physical origin of the
Overhauser instability of the three-dimensional homogeneous
electron gas [4] or the singlet state instability observed in 1D
systems in the HF approximation [56].

However, in metallic systems the singularity in the direct
e-h interaction is removed when long-range screening effects
are taken into account and the CDW instability is expected
to be suppressed. This is consistent with the common idea
that excitonic effects are negligible in standard metals. In-
terestingly, in the present case the inclusion of correlation
effects beyond the HF approximation does not remove the
CDW instability. This is strictly related to the suppression
of the long-range screening in low-dimensional systems that
ensures a strong e-h interaction even when screening effects
are properly taken into account.

To better understand the behavior of the KS gap as a func-
tion of α in Fig. 3(b), we now consider a simplified model
where the kernel of Eq. (4) is assumed to be k independent.
In particular, we take Kk,k′ = K̄ inside an energy window ξ0

around the Fermi level and Kk,k′ = 0 elsewhere. The quantity
K̄ is the average value of the kernel around the Fermi surface.
Moreover we take a linear dispersion for the eigenvalues of h0

so that ξk = vF (|k| − π
a ), vF being the Fermi velocity. This is

a good approximation as long as ξ0 is small with respect to
the band width. Under these conditions Eq. (4) has a simple
BCS-like solution of the form (see Appendix B)


 =
{− ξ0

sinh( γ

β−α
) for α > β, ξk � ξ0

0 for α � β, ξk > ξ0
, (7)

where the parameters ξ0, γ , and β can be estimated through
interpolation of the ab initio results. For the CDW gap we
find ξ0 = 2.14 eV, γ = 1.84, and β = 0.05. The last quantity
sets the critical value of α for the CDW transition highlighting
the fact that in these materials a pure electronic instability is
present also for a weak direct e-h interaction. The physical
origin of this behavior can be ascribed to the presence of a
perfect nesting in the Fermi surface of 1D metals, that allows
for the formation e-h pairs around the Fermi level with zero
kinetic energy cost. This enables the formation of bound states
even when the effect of the singularity in f NL

x (ω) is strongly
reduced (i.e., small values of α). Finally, for the SDW gap we
find ξ0 = 3.92 eV, γ = 1.84, and β = −0.28. This is consis-
tent with the fact that the SDW is stable for any positive α due
to the lack of the repulsive interaction v in the kernel of the
gap equation.

IV. CONCLUSIONS

In conclusion, performing a fully ab initio study of two
prototypical 1D systems, namely, the CU phase of the linear
carbon chain and the linear hydrogen chain, we have demon-
strated that the CDW/PLD phase transition in 1D monatomic
chains has a purely electronic origin. In particular, in analogy
with the Peierls mechanism, the physical origin of the insta-
bility is the perfect nesting of the 1D Fermi surface. However,
the driving force is the exchange Coulomb interaction in-
stead of the electron-phonon interaction invoked in the Peierls
mechanism. The latter comes in addition and stabilizes the
CDW/PLD with respect to the SDW. Our findings suggest
that the destabilization of the semimetallic phase of these
materials has an excitonic origin. It should be pointed out,
however, that although the driving force may be different, the
outcome of the Peierls and EI instabilities is qualitatively the
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TABLE III. Structural properties of the hydrogen chain per su-
percell. NH is the number of hydrogen atoms, aME is the optimized
lattice constant for the equally spaced hydrogen chain, and BLADI is
the relaxed bond length alternation after dimerizaion.

NH aME (Å) BLADI (Å)

8 2.0586(4) 0.6332(3)
12 2.0014(4) 0.5715(3)
16 1.9809(4) 0.5521(3)
24 1.9655(4) 0.5381(3)
32 1.9613(4) 0.5346(3)
48 1.9573(4) 0.5312(3)
∞ 1.9541(5) 0.5293(4)

same: a novel ground state with lower symmetry exhibiting
a CDW, a PLD, and a gap in the electronic band structure.
Moreover, the two scenarios are mathematically described in
a similar way.
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APPENDIX A: THE HYDROGEN CHAIN

The same information computed for the carbon chain has
also been obtained for the hydrogen one as summarized in
Table III. For this system we have first optimized the wave
functions and the lattice constant of the semimetallic chain
with equidistant hydrogens. Afterwards, we have optimized
the BLA keeping the lattice constant fixed. The extrapolation
of the geometrical parameters to the thermodynamic limit is
reported in the last line of Table III. We must point out that
the dimerized configuration is not in its equilibrium geometry,
since this would correspond to infinitely distant hydrogen
molecules distributed along the chain’s axis. On the structural
parameters we have computed the variational energies per
atom for each supercell, which are reported in Table IV for
the three phases: the metallic (ME) phase, the EI CDW phase,
and the dimerized (DI) phase. The extrapolated results are
listed in the last line of the table, and are obtained through

TABLE IV. Energies per hydrogen atom in Hartree (Ha) as a
function of the supercell. NH is the number of hydrogen atoms in
the supercell and EDI, EME, and EEI CDW are the energies per atom,
respectively, of the dimerized, the metallic, and the EI CDW phases.

NH EDI/NH (Ha) EEI CDW/NH (Ha) EME/NH (Ha)

8 −0.579532(14) −0.555744(11) −0.551108(16)
12 −0.578497(9) −0.560319(7) −0.558347(13)
16 −0.578062(8) −0.562296(7) −0.560842(11)
24 −0.577459(7) −0.563473(6) −0.562658(9)
32 −0.577396(7) −0.563974(5) −0.563132(7)
48 −0.577227(6) −0.564215(4) −0.563583(6)
∞ −0.57723(7) −0.56447(5) −0.56397(4)

(a)

(b)

FIG. 4. QMC calculations for the hydrogen chain. (a) Extrap-
olations of atomic energies as a function of the supercell’s length
for metallic, EI CDW, and dimerized states. In the inset the energy
differences are reported in eV with respect to the dimerized state.
(b) Residual forces in the EI CDW state per atom. In the inset the
residual forces for a 48 hydrogen atoms’ supercell.

the extrapolation displayed in Fig. 4, which is analogous to
Fig. 3 shown for the carbon atoms. In these extrapolations the
exponential c parameter is ≈2. The energies per hydrogen
atom of the metallic phase are lower than those obtained
from previous VMC calculations in Ref. [57] confirming the
accuracy of our basis set.

The EI CDW configuration is more stable than the ME one
by about 0.013(2) eV while the relaxed DI chain gains an
energy per atom of 0.347(2) eV. In the bottom panel of the
same figure the essentially linear extrapolation of the residual
forces per atom in the EI CDW phase, 0.0234(4) a.u., is
reported. In the inset of the same panel we can see how the
forces for the 48 hydrogen atom chain are equal in intensity
and opposite in sign, as expected for the EI CDW phase.

These results confirm that also the ground state of the
equidistant hydrogen chain is actually that of an insulator with
a CDW (i.e., EI CDW). As in the case of the carbon chain, the
forces will lead to a displacement of the atoms and thus to an
additional energy gain via periodic lattice deformation. How-
ever, already on the purely electronic level (without displacing
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(a) (b)

FIG. 5. Energy gain with respect to the metallic phase in the
case of the carbon chain (a) and the hydrogen chain (b), for the
CDW/PLD phase (blue triangles), referred to as PO in the case of
carbon and DI in the case of hydrogen, the EI CDW phase (red
circles), and the SDW phase (green circles). QMC references are
represented through horizontal lines.

the atoms from their position in the monatomic linear chain)
both carbon and hydrogen chains display a CDW regime.

We investigate the stability of the CDW/PLD, SDW, and
EI CDW solutions with respect to the semimetallic phase as a
function of α ∈ [0 : 1] keeping α0 and ω fixed at the standard
values of 0.16 and 0.33, respectively. The ground state energy
of the different phases has been evaluated for each value of
α always relaxing the lattice parameter and the BLA except
for the EI CDW and SDW phases where the BLA was fixed
at zero. We note that the EI CDW phase is not automatically
obtained with the CRYSTAL17 code, because the self-consistent
calculation starts with a symmetric charge distribution which
remains symmetric in the course of the calculation even if the
calculation is performed in a two-atom supercell. However,
displacing one of the atoms by a very small amount for the
first cycle and then placing it back into the symmetric position
leads to a breaking of the symmetry of the electron density
which is consequently preserved in the calculation since it
leads to a lower energy state.

Our results are summarized in Fig. 5(b), where we show the
behavior of the energy gain with respect to the semimetallic
phase for the three configurations as a function of α. As seen
for the carbon chain [Fig. 5(a)], also in this case the agreement
with the QMC results can be found for large values of the
α parameter (i.e., α = 0.8), for which we obtain a lattice
constant of 1.985 Å and a BLA of 0.512 Å.

This large value of α is consistent with the fact that in low-
dimensional systems the screening of the long-range part of
the Coulomb potential is strongly reduced. As a consequence
the exchange interaction is strong enough to destabilize the
semimetallic electronic structure with respect to the EI CDW
and SDW phases [see Fig. 6(a)]. This latter, which can also be
interpreted as an EI in the triplet channel, is more stable than
the EI CDW. However, the charge ordering is stabilized with
respect to the SDW when the ions are allowed to relax [see
Fig. 6(b)].

(a) (b)

FIG. 6. Hydrogen chain. (a) Band gap Eg as a function of α for
the EI CDW (blue circles) and SDW (green circles) phases. The con-
tinuous line is the fit of the ab initio data through Eq. (7) in the main
text; the parameters of the interpolation are equal to ξ0 = 1.90 eV,
γ = 1.63, and β = 0.1 for the EI CDW data and to ξ0 = 2.96 eV,
γ = 1.63, and β = −0.17 for the SDW. (b) Ground state energy of
the CDW/PLD phase as a function of the BLA evaluated at α = 0.8.
The red and green lines refer to the energy of the ME and SDW
phases, respectively. In the plot the zero is fixed at the energy of the
dimerized phase.

APPENDIX B: GAP EQUATION FROM THE KOHN-SHAM
HAMILTONIAN

In the following we will provide a direct link between
our DFT calculation and the EI picture of the CDW phase
transition. We start from a nonlocal KS Hamiltonian in the
presence of an external perturbation 
ext (r) that breaks down
the symmetry inducing a lower periodicity characterized by
a wave vector q: Ĥ = ∫

dr dr′�†(r)h(r, r′)�(r′), with the
following definition of h:

h(r, r′) = −∇2

2
+ v(r) + 
ext (r) + vH (r) + vxc(r, r′),

(B1)
where v, vH , and vxc denote the ion, Hartree, and the nonlocal
exchange-correlation potentials, respectively. The latter, in the
case of hybrid functionals, can be formally written as the sum
of a nonlocal exchange term vNL

x which is a functional of the
KS density matrix ρ(r, r′), a local exchange-correlation term
vL

xc (evaluated in GGA or LDA) and its exchange part, both
related to the charge density ρ(r) = ρ(r, r):

vxc(r, r′) = vL
xc(r) + α0

[
vNL

x;SR(r, r′; ω) − vL
x;SR(r; ω)

]
+ α

[
vNL

x;LR(r, r′; ω) − vL
x;LR(r; ω)

]
, (B2)

where, according to Eq. (1), both vNL
x and vL

x have been
separated in a short-range (SR) and a long-range (LR) con-
tribution. Now we indicate with ρ0 the density (or density
matrix) of the unperturbed system and we introduce the in-
duced density 
ρ = ρ − ρ0. According to this definition, h
can be separated into an unperturbed part h0 (evaluated at

ext = 0) and a term 
h:

h0(r, r′) = −∇2

2
+ v(r) + v0

H (r) + v0
xc(r, r′), (B3)


h(r, r′) = 
ext (r) + 
vH (r) + 
vxc(r, r′), (B4)
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where v0
H and v0

xc are the Hartree and xc potentials evaluated
at ρ0 while 
vH (r) and 
vxc(r, r′) are given by the following
expressions:


vH (r) =
∫

dr′ 
ρ(r′)
|r − r′| , (B5)


vxc(r, r′) =
∫

dr′′[ f L
xc(r, r′′) − α0 f L

x;SR(r, r′′; ω)

− α f L
x;LR(r, r′′; ω)

]

ρ(r′′)δ(r−r′)

+[
α0 f NL

x;SR(r, r′; ω)+α f NL
x;LR(r, r′; ω)

]

ρ(r, r′);

(B6)

here we take the linear approximation for 
vxc. Expanding in
the KS eigenfunctions of h0 [φik(r)] we obtain

Ĥ =
∑
i jk

[
ε0

ikδi j + 
hik, jk
]
c†

ikc jk

+
∑
i jk


hik, jk+qc†
ikc jk+q (B7)

with the obvious definition of the matrix elements:


hik, jk′ =
∫

dr dr′φ∗
ik(r)
h(r, r′)φ jk′ (r′).

In particular, in the simple case of a system consisting of a
single half-filled band, Eq. (B7) becomes

Ĥ =
∑

k

ε̃kc†
kck +

∑
k

ε̃k+qc†
k+qck+q

−
[∑

k


kc†
kck+q + c.c.

]
. (B8)

Here the sum over k is restricted to the occupied states.
Moreover we have introduced the quantities ε̃k = ε0

k + 
hk,k

and the effective field 
k = −
hk,k+q. The Hamiltonian in
Eq. (B8) has a simple bilinear form that can be trivially
diagonalized using the following Bogoliubov–de Gennes-like
transformation:

αk = vkck+q + u∗
kck,

βk = ukck+q − v∗
kck, (B9)

where vk and uk are the KS electron and hole amplitude

and are given by the following relations: uk =
√

1
2 (1 + ξk

Ek
)

and vk =
√

1
2 (1 − ξk

Ek
), with ξk = 1

2 (ε̃ck − ε̃vk ) and Ek =√
ξ 2

k + 
2
k. The eigenvalues of Ĥ become εk = 1

2 (ε̃ck +
ε̃vk ) ± Ek and are characterized by a gap opening at k =
π
2a with the value 2
k= π

2a
while 
ρ takes the following

expression:


ρ(r, r′) =
∑

k

|vk|2[φ∗
k+q(r′)φk+q(r) − φ∗

k (r′)φk(r)]

+
∑

k

[u∗
kv

∗
kφ

∗
k (r′)φk+q(r)+ukvkφ

∗
k+q(r′)φk(r)].

(B10)

Inserting Eq. (B10) in the expression of 
h we find that 
hk,k
is proportional to |vk|2 and thus is negligible when 
k is small
enough so that ε̃k ≈ ε0

k. Moreover from the expression of

hk,k+q with 
ext → 0 we obtain the following equation for

k:


k = −1

2

∑
k′

Kk,k′

k′

Ek′
(B11)

with

Kk,k′ = 2vk,k′ + f L
xck,k′ + α0

[
f NL
x;SRk,k′ (ω) − f L

x;SRk,k′ (ω)
] + α

[
f NL
x;LRk,k′ (ω) − f L

x;LRk,k′ (ω)
]

(B12)

and with the following definition of the kernel matrix elements:

vk,k′ =
∫

dr dr′φ∗
k (r)φk+q(r)

1

|r − r′|φ
∗
k′+q(r′)φk′ (r′),

f L
xck,k′ =

∫
dr dr′φ∗

k (r)φk+q(r) f L
xc(r, r′)φ∗

k′+q(r′)φk′ (r′),

f L
x;SRk,k′ (ω) =

∫
dr dr′φ∗

k (r)φk+q(r) f L
x;SR(r, r′; ω)φ∗

k′+q(r′)φk′ (r′),

f L
x;LRk,k′ (ω) =

∫
dr dr′φ∗

k (r)φk+q(r) f L
x;LR(r, r′; ω)φ∗

k′+q(r′)φk′ (r′),

f NL
x;SRk,k′ (ω) =

∫
dr dr′φ∗

k (r)φk+q(r′) f NL
x;SR(r, r′; ω)φ∗

k′+q(r′)φk′ (r),

f NL
x;LRk,k′ (ω) =

∫
dr dr′φ∗

k (r)φk+q(r′) f NL
x;LR(r, r′; ω)φ∗

k′+q(r′)φk′ (r).

Finally remembering that the expression for total energy in terms of the density (or density matrix) is

E [ρ] = 2
∑

i

εi − 1

2

∫
dr

∫
dr′ ρ(r)ρ(r′)

|r − r′| + Exc[ρ] −
∫

dr dr′vxc[ρ](r, r′)ρ(r, r′) (B13)

we find that the energy variation at the first order in 
ρ is given by 
E = 2
∑

k(ξk −
√

ξ 2
k + 
2

k ).
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Now we consider a simple model where the kernel of
Eq. (B11) is just a constant K̄ (i.e., its average value on the
Fermi surface) in an energy window ξ0 around the Fermi
level and zero elsewhere. Moreover, we assume that the band
dispersion is linear around the Fermi surface so that ξk =
vF (|k| − π

2a ), vF being the Fermi velocity. Under these condi-
tions the gap is just a constant 
 for ξ < ξ0 and zero elsewhere
and is given by

−4πvF

K̄
=

∫ ξ0

0
dξ

1√
ξ 2 + 
2

(B14)

so that


 = − ξ0

sinh
( 4πvF

K̄
) (B15)

or in terms of α:


 = − ξ0

sinh
(

γ

β−α

) , (B16)

where

β = 2v̄ + f̄ L
xc + α0

[
f̄ NL
x;SR(ω) − f̄ L

x;SR(ω)
]

f̄ L
x;LR(ω) − f̄ NL

x;LR(ω)
(B17)

and

γ = 4πvF

f̄ L
x;LR(ω) − f̄ NL

x;LR(ω)
. (B18)

Moreover v̄, f̄ L
xc, f̄ L

x , and f̄ NL
x are defined according to K̄.

Since γ is a positive quantity, Eq. (B16) allows for nontrivial
solutions only if α > β.
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