
PhD-FSTC-2022-013
The Faculty of Science, Technology and Communication

DISSERTATION

Defence held on 25/02/2022 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Tong CAO
Born on 16 July 1990 in Shaanxi, China

ANALYZING THE PRIVACY AND SECURITY OF
PROOF-OF-WORK CRYPTOCURRENCIES

Dissertation defence committee
Dr. Marcus VÖLP, dissertation supervisor
Professor, University of Luxembourg

Dr. Maria POTOP-BUTUCARU
Professor, Sorbonne Université

Dr. Gilbert FRIDGEN, Chairman
Professor, University of Luxembourg

Dr. Jérémie DECOUCHANT
Assistant Professor, Technische Universiteit Delft

Dr. Peter Y. A. RYAN, Vice Chairman
Professor, University of Luxembourg

Acknowledgements

I would like to thank my advisors: Paulo Esteves-Veríssimo, Jiangshan Yu, Jérémie
Decouchant, and Marcus Völp. I am fortunate to work with you. Thanks for your
guidance and support. I would like to thank my wife, Ting Wang, for her love and
patience during my PhD study.

ii

Declaration

I, Tong Cao, declare that this thesis titled, Analyzing the Security and Privacy of
Proof-of-Work Cryptocurrencies and the work presented therein are my own. I
con�rm that:

• this work was done wholly or mainly while in candidature for the degree ;

• where any part of this thesis has previously been submitted for a degree or
any other quali�cation at this university or any other institution, this has
been clearly stated;

• where I have consulted the published works of others, these are clearly at-
tributed;

• where I have quoted from the works of others, the sources are always given;

• where the work presented in this thesis is based on work done by myself
jointly with others, I have clearly outlined what was done by others and
what I contributed;

• with the exception of such quotations, this is entively my own work; and

• I have acknowledged all main sources of help.

Signed:

Date:

iii

Abstract

In the past decade, we have witnessed the growth of cryptocurrencies. Nowadays,
these currencies have generated signi�cant impact in economy and society. Their
main innovation relies on the fact that they combine many techniques (e.g., cryp-
tographic primitives and fault tolerance methods) to decentralize online payment
system. While cryptocurrencies have been developed since 2009, evaluating their
privacy and security still remains challenging due to the complexity of the sys-
tems and the interplays between their di�erent layers. In this thesis, we focus on
proof-of-work (PoW) based cryptocurrencies (e.g., Bitcoin, Ethereum, Monero).
We contribute three novel studies to improve the understanding of the privacy
and security of PoW cryptocurrencies. Our �rst two studies focus on the impact
of the network layer. First, we show that network properties are important to the
system's privacy and security. We analyze PoW cryptocurrency peer to peer net-
works and characterize the impact of network properties on privacy and security.
Precisely, we design tools to measure the Monero peer to peer network, and con-
duct experiments to reveal that this network was vulnerable to some network level
attacks despite its strong use of cryptographic primitives in the consensus layer.
Second, we de�ne new metrics to link the network layer and consensus layer, which
allow us to evaluate the system's security by considering network delays. We de-
sign a tool to measure the Bitcoin peer to peer network, and provide an empirical
analysis. We conduct experiments to evaluate the impact of network delays on
the consensus layer. As a consequence, we show that network delays have a signif-
icant impact on the system's security. For instance, introducing relatively small
network delays already simpli�es double spending and sel�sh mining attacks, al-
lowing adversaries to receive signi�cant gains. We propose an abstraction, which
we call dual private chain (DPC), in our third study that further challenges Bit-
coin's security and its consensus layer in the presence of Byzantine, Altruistic, and
Rational nodes that are practical. We design a Markov Decision Process model for
dual private chain attacks, and conduct Monte Carlo based simulations to evaluate
the adversary's success rate and revenue. Our results indicate that dual private
chain attacks are more threatening to Bitcoin's security compared to traditional
temporary block withholding attacks. We suggest countermeasures to mitigate the
e�ects of such attacks.

iv

Contents

Abstract iv

1 Introduction 1
1.1 Thesis Outline . 2
1.2 Contributions and Publications . 3

2 Background and Related Work 7
2.1 PoW Mining . 7

2.1.1 Block Structure . 7
2.1.2 Block Hashing Algorithm . 8
2.1.3 Mining as a Negative Hypergeometric Process 8
2.1.4 Mining as a Poisson Process 9

2.2 PoW Cryptocurrency Network . 9
2.2.1 Network Overview . 11
2.2.2 P2P Overlay Network . 12
2.2.3 Intra Network of Mining Pools 14
2.2.4 Block Propagation . 15

2.3 Nakamoto Consensus . 15
2.3.1 Incentive Mechanisms . 16
2.3.2 The Longest Chain Principle 17
2.3.3 Di�culty Adjustment Algorithm 17
2.3.4 Revenue Fairness . 18
2.3.5 Asynchrony . 18
2.3.6 Consistency . 18

2.4 Proof of Work vs Proof of Stake . 19
2.5 Related Work . 20

2.5.1 Measuring Cryptocurrency Network 20
2.5.2 Network Level Attacks . 21

2.5.2.1 Routing attacks . 22
2.5.2.2 Deanonymisation attacks 22

2.5.3 Fast Relay Network . 22

v

2.5.4 Game Theoretical Analysis in Cryptocurrency 23
2.5.5 Petty-Compliant Behaviors 23
2.5.6 Double Spending and Sel�sh Mining 24
2.5.7 Combining Sel�sh Mining and Double Spending 24
2.5.8 Blockchain denial of service (BDOS) attacks. 25

3 PoW Cryptocurrency P2P Network 27
3.1 Network Security . 27

3.1.1 Network Attacks in P2P Overlay 28
3.1.2 Network Security of Mining Pools 29

3.2 Network Privacy . 29
3.2.1 IP Address Exposure . 29
3.2.2 Network Topology Exposure 30
3.2.3 E�ects and Implications . 30

3.3 Measuring the Monero P2P Network 30
3.3.1 Monero's P2P membership protocol 31

3.3.1.1 Initialization . 31
3.3.1.2 Peer list . 32
3.3.1.3 Information propagation 33
3.3.1.4 Monero node . 34

3.3.2 Analysis pipeline overview 35
3.3.2.1 Construction . 35
3.3.2.2 Neighbor inference based on membership messages 36
3.3.2.3 Nodes discovery and connections inference 36

3.3.3 Experiments . 38
3.3.3.1 Settings . 38
3.3.3.2 Validation . 39
3.3.3.3 Measuring the network coverage 40
3.3.3.4 Node distribution 42
3.3.3.5 Potential threats 46

3.3.4 Implications and Insights . 47

4 Characterizing the Impact of Network Delay on Bitcoin Mining 49
4.1 Bitcoin Mining Process and Network 50

4.1.1 Mining Process . 50
4.1.2 PoW Cryptocurrency Network 50

4.2 Quantifying the Impact of Network Delay on Mining 51
4.2.1 Mining and latencies . 51
4.2.2 Block reception latency and e�ective hash rate 52
4.2.3 Impact of heterogeneous network delays on revenue 54

4.3 Measurement and Evaluation . 54

vi

4.3.1 Leveraging the API of mining pools 54
4.3.2 Discussion . 57
4.3.3 Block reception latency and block interval 57
4.3.4 E�ectiveness ratio . 58
4.3.5 Impact of block intervals on e�ectiveness ratios 59
4.3.6 Inferring the revenue bounds 60

4.4 The Impact of Large Scale Deviations 61
4.4.1 Nash equilibrium among the biggest mining pools 61
4.4.2 Decreased revenue of the smaller mining pools 63
4.4.3 Simulation . 64

4.5 The Impact of Network Delay on The Temporary Block Withhold-
ing Attacks . 66
4.5.1 Nakamoto's Evaluation . 67
4.5.2 Reconstructing the Double Spending Model 68
4.5.3 Rebuilding the Sel�sh Mining Model 71
4.5.4 The Accumulated Advantages for the Adversary 74

4.6 Discussion and Future Work . 75

5 Dual Private Chain Attacks 76
5.1 System Model . 78

5.1.1 Bitcoin mining . 78
5.1.2 Miner Categories . 80

5.2 Attack Overview . 80
5.2.1 Intuition . 81
5.2.2 Interplay Between the Two Chains 82

5.3 The Dual Private Chains Attack . 83
5.3.1 Perishing mining . 83
5.3.2 Combining Perishing Mining and Double Spending 86
5.3.3 Markov Decision Process of the DPC Attack 88

5.4 Analysis using Monte Carlo Simulations 88
5.4.1 Methodology and Settings 88
5.4.2 Impact of Perishing Mining on Chain Growth 89
5.4.3 Double Spending Success Rate 90
5.4.4 The E�ect of The DPC Attack on Bitcoin's Sustainability . 90
5.4.5 Adversary's Revenue . 91

5.5 Discussion . 92
5.5.1 Attack Variants . 92
5.5.2 Estimating µ and Selecting β 92
5.5.3 Reinitializing the Double Spending Chain 92
5.5.4 Attack Detection and Prevention 93

5.6 Implications and Insights . 93

vii

6 Conclusion 101

viii

List of Figures

2.1 The block structure of Bitcoin. 8

2.2 A general structure of PoW cryptocurrency network. 10

2.3 The model of blockchain system. 17

3.1 Message exchange in Monero's P2P network 32

3.2 Analysis pipeline overview . 35

3.3 Analysis of the collected IP addresses during the data collection
process. 41

3.4 Active nodes discovered daily by NeighborFinder and MoneroHash. 42

3.5 Snapshot of the Monero network obtained after one hour. Each dot
represents a Monero node, whose darkness is proportional to the
number of connections it maintains. The lightness of lines denotes
their uptimes. 43

3.6 Nodes location distribution . 45

3.7 Number of outgoing neighbors of heavy, medium, and light nodes. . 46

3.8 Dynamic neighbor tracking of a light node in 9 hours. 47

4.1 Network in�uence on the mining process in PoW-based cryptocur-
rencies. dBR represents the block reception latency, and dBI denotes
the block interval. 52

4.2 Illustration of the miner entanglement design. Pool D registers three
sub-miners M1,M2, and M3 in Pool A, Pool B, and Pool C respec-
tively. This allows Pool D to receive the information from other
pools directly, thus, avoiding the delay of the P2P overlay. 55

4.3 Results of measurement in Bitcoin. The top �gure shows the block
interval dBI , and the maximum Max, median Med, and minimum
Min block reception latency among 10 pools from block 641,767 to
642,882. The middle �gure indicates the changes of (G,D) between
10 pools during a week. The bottom �gure shows that the block
interval follows the exponential distribution during a week. 56

ix

4.4 CDF of the observed e�ectiveness ratio of several Bitcoin mining
pools during one week. The legend denotes the name of the mining
pools, except for �full node", which represents the Bitcoin full node
we maintained, and �ME channel" represents the results obtained
with ME. 58

4.5 E�ectiveness ratio of mining pools with three ranges of block inter-
vals. 60

4.6 The bounds of mining fairness in Bitcoin. The drift rate of revenue
is calculated by using EHR Share minus HR Share, and validated
through the revenue share. The x-axis represents di�erent min-
ing pools. From left to right: Poolin, F2Pool, BTCcom, 1THash,
Huobi, Novapool, OKpool, ViaBTC and the last one represents the
remaining mining power. 62

4.7 Impact of sel�sh behaviors on miners' e�ectiveness ratio and fair-
ness. The x-axis represents miner's ID 64

4.8 Illustration of all possible random walk outcomes of double spending
attacker. The attacker maintains a private chain, and competes with
the public chain. All possible random walk outcomes are illustrated
by a binary tree, where the left child node denotes that a block is
found by the honest miners, and the right child node denotes that
a block is found by the attacker. 68

4.9 The success rate of DS for the transactions with 6 con�rmations. . . 71
4.10 The random walk of sel�sh mining attacker. 72
4.11 Revenue of sel�sh mining attacker in the general case (γ = 0.5)

when fh = 1. The x axis represents the hash power of attacker.
The y axis represents the corresponding revenue share. 73

5.1 Illustration of the DPC attack on SPV miners. Whenever the dis-
traction chain discovers a block before the public chain, the ad-
versary releases the block header so that SPV miners mine on a
di�erent block than altruistic miners. 82

5.2 The Markov chain model of perishing mining. 85
5.3 Relative growth rate of the public chain (compared to the attack-

free case) when the adversary uses sel�sh mining (SM) or perishing
mining (PM) and when SPV miners own a fraction µ of the global
power. 97

5.4 DPC attack's success rate for several fractions µ of SPV miners with
the best choice of parameter β and for β = 0 (i.e., a single chain
variant of the DPC attack). 98

5.5 Minimum value for vt
vb

to make the DPC attacks more pro�table
than honest mining depending on the global power µ of SPV miners. 99

x

5.6 Revenue of the adversary when it repetitively attempts to double
spend a block with transactions of value vt = 10vb with the DPC
attack, or with a previous mining strategy or attack, over a period
of 2, 016 discovered blocks. 100

xi

List of Tables

2.1 Comparison of the Bitcoin, Ethereum and Monero P2P protocols . 13
2.2 URL of Bitcoin mining pools. We use a machine to build connec-

tions with these pools, this allows us to deploy the sub-miners in
the pools to receive the messages directly. 15

3.1 Data collected from Tokyo (T), Luxembourg (L), California (C),
and Virginia (V) . 39

3.2 Number of active nodes in the ConnectionPool. 44

4.1 Distribution of blocks during one week. 60
4.2 Rationality against fairness. 63
4.3 The actions between di�erent states. W, R, and A represent the

�Withhold", �Release", and �Adopt" actions respectively. 72

5.1 Notations. 79
5.2 State transition of DPC attack that targets SPV miners. We use

(ra, rh) to denote the revenue of the adversary and other miners,
vb to denote the value of a single block, and vt to denote the value
of the double-spent transactions. Because the SPV miners could
help to extend the double spending chain, we use nspv to denote the
number of blocks that were discovered by the SPV miners on the
2nd private chain. 96

xii

Chapter 1

Introduction

In the age of Internet, many attempts [1, 2, 3] have been made to decentralize
the online payment system before 2008. The main objective is to avoid the single
point of failures that have happened in traditional �nancial systems [4, 5, 6].
However, they failed because the Byzantine faults could not be tolerated in the
asynchronous and permissionless network environment, which could lead to double-
spending attacks [7]. In 2008, Satoshi Nakamoto proposed a peer-to-peer electronic
digital cash system: Bitcoin [8] (the market capitalization of Bitcoin has grown
rapidly and reached $1.15T at the time of writing1), which can tolerate Byzantine
faults in the asynchronous networks where everyone can join or leave under the
assumption of that the majority of computing power (>50%) are honest. In terms
of fault tolerance, the main innovation of Bitcoin is its consensus protocol, named
Nakamoto Consensus (NC) that is a combination of many rules (e.g., proof-of-
work, incentive mechanism, the longest chain principle, and di�culty adjustment
algorithm).

Despite Bitcoin's success, not only in its market capitalization, but also in the
fact that the system has not met any collapse since 2009 (v.s., the well-established
centralized system, Google was inaccessible due to some severs were collapsed2),
many vulnerabilities have been reported, mainly referring to privacy and security.
At network layer, it has been clearly shown that Bitcoin is not privacy-preserving
because the transactions are linkable and traceable [9, 10]. Moreover, Bitcoin is
vulnerable to Border Gateway Protocol (BGP) hijacking attacks [11], eclipse at-
tacks [12, 13], and Man-In-The-Middle (MITM) attacks [14], which could partition
the network. Previous works [15, 16] have shown that such network vulnerabilities
could be used by adversaries to compromise system's security. At consensus layer,
the temporary block withholding attacks [17, 15, 18, 19] have been proposed as

1https://coinmarketcap.com/, accessed: 2021-10-17.
2https://hourstv.com/google-server-crash/

1

the main treats to Bitcoin's security.
Although many solutions have been proposed to mitigate existing vulnera-

bilities, guaranteeing a high level privacy and security in Bitcoin or Bitcoin-like
cryptocurrencies remains challenging. In particular, it is hard to have a perfect
solution in both network and consensus layer. For instance, inspired by Bitcoin,
Monero [20] was built to preserve user's on-chain privacy (i.e., the ability to pre-
vent the transactions from being linked and traced) by leveraging the cryptographic
primitives.

In [21], our results indicated that Monero had serious privacy issues despite
of strong on-chain unlinkability and untraceability. Furthermore, while previous
works have discussed the network delay upper bound that guarantees the consis-
tency of Nakamoto consensus, measuring the actual network latencies and evaluat-
ing their impact on miners or pools in Bitcoin remain open questions. Additionally,
it is unclear how the network delay can a�ect existing temporary block withholding
attacks.

The goal of this thesis is to provide a theoretical and empirical analysis on PoW
cryptocurrencies' privacy and security by considering both network and consensus
layers. In particular, we focus on the impacts of network properties (e.g., network
topology, information propagation delay, and connectivity) on the consensus layer.

1.1 Thesis Outline

This thesis is organized as follows:

• Chapter 2 presents the background knowledge and related work. We �rst
introduce the basic data structures of Bitcoin, the infrastructures of peer-
to-peer network, and main mechanisms of Nakamoto consensus. We then
discuss the related literature, such as, network measurements, network level
attacks, temporary block withholding attacks, and so on.

• Chapter 3 demonstrates the existing network level privacy and security is-
sues in cryptocurrencies. We discuss the existing solutions and highlight
the remaining problems. We provide the �rst empirical study on the �rst
privacy-preserving cryptocurrency's (i.e., Monero) P2P network. We design
the novel tools to measure Monero's P2P network, and indicate the network
topology exposure issue, which can further facilitate some network level at-
tacks, and lay down its privacy and security.

• Chapter 4 provides the �rst theoretical and empirical analysis about the im-
pact of network delay on Bitcoin mining. We �rst de�ne some novel metrics
to quantify the impact of network delay on the mining process. We then

2

design a novel tool, namely Miner Entanglement (ME), to measure Bitcoin's
P2P network. Our results reveal the relationship between the block reception
latency, block interval, and hash power. We conduct the Monte Carlo simu-
lation to validate our results. Lastly, we analyze the impact of network delay
on existing temporary block withholding attacks using an updated Markov
decision process model.

• Chapter 5 proposes a novel attack, namely dual private chain (DPC) attack,
to further lay down the system's security. We transform the traditional
Markov decision process model to Markov chain tree model, which allow us
to use the random walk method to evaluate the adversary's revenue based on
earned blocks and double spent transactions. We highlight that DPC attack
is more threatening compared to traditional temporary block withholding
attacks.

• Chapter 6 concludes the thesis. We present some mitigation strategies and
insights as the future work.

1.2 Contributions and Publications

This thesis �rst looks into the performance of cryptocurrency networks in the
real world, and points out that IP address leakage is an open privacy issue. The
contributions are as follows:

• To further understand the cryptocurrency network, we designed a tool set
to measure and analyze the Monero network. The results indicate that even
though Monero is a privacy-preserving cryptocurrency, it is still possible to
accurately discover nodes in the network and their interconnections.

• Our analysis provides insights about Monero's degree of centralization, and
about the privacy and security issues potentially caused by a network topol-
ogy exposure.

We then explores the impact of network delay on the mining process. The
contributions are as follows:

• We establish several metrics to characterize the impact of heterogeneous
network latencies on the mining process.

• We design ME, a tool that leverages Bitcoin mining pools' API to estimate
their block reception latency. We use ME to monitor the Bitcoin network for
an entire week, and quantify the impact of network latency on the revenue
distribution using our metrics.

3

• We discuss the situation where miners would decide to deviate from the
o�cial peer-to-peer protocol and try to optimize their connections and their
revenue by connecting directly to other mining pools. We show that it would
lead to a Nash equilibrium among the largest miners, while other miners will
have a decreased revenue.

Lastly, we analyze the impact of network delay on existing temporary block
withholding attacks, and propose a novel attack. The contributions are as follows:

• The relatively low network delay can facilitate the existing block withholding
attacks. The adversary's advantages would be further increased if the mining
di�culty decreases.

• Dual Private Chain attacks. We present two mining strategies to enable dual
private chain (DPC) attacks. DPC attacks enable an attacker to launch dou-
ble spending attacks with less mining power (e.g., 17.5%) and with improved
revenue. Unlike existing sel�sh mining style attacks, DPC attacks can be
successfuly launched even when the mining di�culty remains the same.

• Modelling attacking strategies with multiple private chains. We present the
Markov chain tree (MCT) model to simulate attacks with (1) multiple private
chains and (2) a time parameter, that cannot be analysed with the existing
models. We further analyse our proposed strategies and attacks by using
random walk model to show their e�ectiveness.

• Impact on Bitcoin's security. Bitcoin's security is measured as a proportion
of the mining power that is controlled by correct miners that are expected
to altruistically follow the default protocol. However, assuming altruism
is not realistic in decentralized settings. It is di�cult to prevent miners'
rational behaviors. Some studies [22, 23, 24] have noticed and reported the
presence of petty compliant miners, also called benign dishonest miners, in
Bitcoin. These miners slightly deviate from the default Bitcoin protocol,
for example by doing SPV mining [25]. We show, for the �rst time, that
these SPV miners, despite having no intentional will not only be halted by
the Blockchain denial-of-service (BDOS) attacks [24], but also to harm the
system or other miners (when DPC attack is taken into account), do lay
down Bitcoin's security.

A list of publications and ongoing submission with co-authors and acknowl-
edgements is presented as follows:

• Tong Cao, Jiangshan Yu, Jérémie Decouchant, Paulo Esteves-Verissimo, �Re-
visiting Network-Level Attacks on Blockchain Network�, In the 48th An-

4

nual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN) Workshop on Byzantine Consensus and Resilient Blockchains
(BCRB), 2018

• Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, Paulo Esteves-
Verissimo, �Exploring the Monero Peer-to-Peer Network�, In Proceedings
of the 24th International Conference on Financial Cryptography and Data
Security (FC), 2020

• Tong Cao, Jérémie Decouchant, Jiangshan Yu, Paulo Esteves-Verissimo,
�Characterizing the Impact of Network Delay on Bitcoin Mining�, In Pro-
ceedings of the 40th International Symposium on Reliable Distributed Sys-
tems (SRDS), 2021

• Tong Cao, Jérémie Decouchant, Jiangshan Yu, �Distracting SPV Miners to
Double Spend in Bitcoin�, submitted to the 52nd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN) under
peer review, 2022

5

6

Chapter 2

Background and Related Work

This chapter �rst introduces the basic concepts and algorithms of PoW mining.
We then illustrate the structure of cryptocurrency's P2P network. Moreover, we
introduce the main mechanisms of Nakamoto consensus. We discuss the related
work at the end.

2.1 PoW Mining

PoW mining is a trial and error process of solving the crypto-puzzle. Miners �rst
select a number of pending transactions from the network, and then bind them
into the block as a section of the input of the hashing function 2.1. As long as a
valid hash value is discovered (i.e., a block is found), it will be disseminated in the
P2P network. We introduce the PoW mining process as follows.

2.1.1 Block Structure

Blocks are chained by the hash algorithms. As shown in Fig. 2.1, each block
includes a header, a block hash, and a number of transactions. Transactions
are hashed and included into the root of Merkle tree as a part of the header.
Miners create a Coinbase [26] transaction to receive the block reward, which is
often used to identify the ownership of blocks [27, 28, 29]. The block header is
the input of mining algorithms, which consists of software's version, the hash of
previous block, Bits (i.e., mining di�culty), the root of Merkle tree of all included
transactions, Nonce (i.e., a rolling number for trial and error), and an Unix time
stamp (see Bitcoin.wiki [30] for the details about block header). The output of
mining algorithms is the block hash.

7

B1 B2 B3 ...

Version (4 Bytes)hashPrevBlock (32 Bytes)

hashMerkleRoot (32 Bytes) Nonce (4 Bytes) Time (4 Bytes)

Bits (4 Bytes)

hashBlockB2 (32 Bytes)Coinbase TX1 TX2 TXn...

Figure 2.1: The block structure of Bitcoin.

2.1.2 Block Hashing Algorithm

Mining is a process of trial and error. Miners use their processors to execute
di�erent cryptographic hash functions to make guesses. In Bitcoin, each action of
guessing is an execution of the double SHA256 algorithm 2.1, which creates a 256
bits hash value. A block is discovered when the obtained hash value is smaller
than the target hash value. If not, the nonce is changed (nonce = nonce + 1,
the range of nonce is from 0 to 2n, e.g., n = 32 in Bitcoin) so that the execution
of the double SHA256 algorithm can make a di�erent guess. The block hashing
algorithm can be described as below:

SHA256(SHA256(V ersion||hashPrevBlock||
hashMerkleRoot||Time||Bits||Nonce)) ≤ target

(2.1)

Here, we point out that, section hashMerkleRoot, Time, and Nonce of the block
header are changeable. When the 32 bits Nonce runs dry and the puzzle has not
been solved, miners can change Time or hashMerkleRoot to start another 32 bits
round. In this case, miners can avoid to produce the hashes that they have tried.
This derives the mining to a negative hypergeometric process.

2.1.3 Mining as a Negative Hypergeometric Process

Parra-Moyano J. et al. [31] were the �rst to describe Bitcoin mining as a NHP
(negative hypergeometric process). The NHP (N,M, r) is used to model the num-
ber of trials that are needed to have r successes when choosing items without

8

replacement from a population that totally has N items of which M items are
the successes [32]. PoW mining process is a special case of NHP (N,M, r) when
r = 1. For instance, in Bitcoin, the population size N is equal to 2256, and the
number of successes M is equal to 2224

D
, where D denotes Difficulty. Therefore,

the probability of solving the puzzle at the kth guess Pk can be de�ned as:

Pk =
k

232 ×D
(2.2)

where, Pk ∈ [1
232×D , 1]. The puzzle must be solved when the network has produced

232 ×D hashes.

2.1.4 Mining as a Poisson Process

Most of works assume that PoW mining is a Poisson process [8, 33, 34, 35], where
the success rate λ is approximately equal to 1 block per 10 minutes. By using the
Poisson probability density P (X = x) = λx×e−λ

x!
, the core properties of Bitcoin can

be evaluated. For instance, Nakamoto S. used the Poisson probability density to
estimate the number of con�rmations needed to prevent double spending attacks
in Bitcoin [8]. Decker C. and Wattenhofer R. analyzed more than 10k blocks,
and revealed that the block interval distribution is approximately an exponential
distribution, which re�ected that the mining is a Poisson process [34]. However,
strictly speaking, PoW mining is not a Poisson process because: �rst, the events
do not occur independently; second, the probability of solving the puzzle of each
hashing is di�erent. For instance, if a block was not found in 10 minutes, it
will have a higher chance to be found in the next 10 minutes. Bowden R. et al.
challenged the assumption of Bitcoin mining being a Poisson process, and proved
that mining is an non homogeneous Poisson process, rather than standard Poisson
process [36]. In this thesis, we follow the assumption that mining is a Poisson
process because the NHP can be approximated to the Binomial distribution when
M and N are big enough so that the replacement can not signi�cantly a�ect
the probability of success in each round (M

N
≈ M

N−1
≈ M

N−2
≈ ... ≈ M

N−y), y

is the threshold that NHP can be approximated to Binomial distribution). The
Binomial distribution X B(n, p) can be approximated to Poisson distribution with
the success rate λ ≈ n × p when n is big enough and p is closed to 0 [37]. Recall
that N = 2256,M = 2244

2.18×1013
, which are big enough to approximate the NHP to

Binomial distribution, and then to the Poisson distribution.

2.2 PoW Cryptocurrency Network

Inspired by Bitcoin [8], various proof-of-work (PoW) cryptocurrencies have been
designed, such as Ethereum [38], and CryptoNote-style cryptocurrencis [39]. A

9

modern PoW cryptocurrency network consists of a P2P overlay and a set of mining
pools. The former is designed to disseminate messages between di�erent partici-
pants in a P2P fashion. The latter allows miners to obtain a regular revenue for
their mining participation by sharing the block �nding reward, and usually works
as a client-server infrastructure.

Pool A

Pool B

Pool C

Miner Pool
Server Front End Full Node Wallet

Node ATM

Mobile
Payment Shop Incoming

Connection
Incoming/Outgoing

Connection

Figure 2.2: A general structure of PoW cryptocurrency network.

10

2.2.1 Network Overview

The network of PoW cryptocurrencies is permission less. Any computing device
is able to join the network by establishing the TCP/IP connections. Initially,
Nakamoto S. proposed that the network consists of nodes who play the same roles
including peer discovery, transactions relay, and mining. In this case, it is very
close to �one CPU, one vote�, which assures a high degree of decentralization.
However, the network has evolved over the past decade. The most signi�cant
change is the pooled mining, which was created to gather the miners to work on
the same target, and share the revenue. By doing so, miners can get the stable
revenue from the pool depending on their contributions. Nowadays, mining pools
control the majority of computing power, for instance, the top 15 mining pools
control more than 85% computing power in both Bitcoin and Ethereum, for the
rest of computing power, they are likely the anonymous pools. The solo mining
is now almost impossible. Therefore, the roles of nodes have been reassigned. As
shown in Fig. 2.2. The network consists of a P2P overlay and some intra networks
of pools. In the P2P overlay, full nodes are randomly distributed, which are open
for being connected by any participant. The intra network of mining pools is a
typical client-server network, where the centralized pool server manages the sub-
miners. The front end node is deployed by mining pools to exchange messages
with other participants in the P2P overlay. Wallet node is normally the user that
only make transactions. Other clients nodes, such as, ATM, mobile devices, and
payment system of the shops, are connected to some full nodes in the network in
order to relay the transactions to miners. We conclude the roles of di�erent nodes
as follows:

• Pools. The mining tasks are carried by pools (and a tiny percentage of solo
miners). In the intra network of mining pools, Pool Sever is used to manage
the sub-miners, which builds a client-server infrastructure. In general, the
URL of pools is public, miners can join the pool by establishing the TCP/IP
connections with the pools. However, miners are not reachable from the
outside of corresponding pools. This client-server infrastructure guarantees
security for mining pools;

• Full nodes. The full nodes are responsible for exchanging messages, they
are connected via P2P protocols (which we will introduce in Section. 2.2.2).
These nodes are open to accept the incoming connections. Any partici-
pant can connect with them to receive the information of peer memberships,
blocks, and transactions. The new joiners can use them to synchronize the
state of the blockchain. The anarchy of P2P overlay is the core of decen-
tralization of the system, which is mainly maintained by the full nodes. We
explore the properties of P2P overlay network, and discuss the implications

11

and impacts in Section 3 and 3.3;

• Wallet nodes and client nodes. The wallet nodes and client nodes (ATM,
Mobile Payments, and Shop) are mainly used to generate transactions;

• Front end nodes. As long as the block is found, it has to be sent to others
in order to achieve consistency (we discuss this property in Section 2.3).
The block propagation time is important here. The pools are willing to
broadcast their blocks as fast as possible. Therefore, pools deploy a number
of full nodes as their front end nodes in the P2P overly to speed up the block
propagation. To di�er with the Pool Server, the front end node is only used
to exchange the messages between pool and P2P overlay, it does not manage
the sub-miners. To prevent network attacks, such as, DDOS attacks, eclipse
attacks [12], and BGP hijacking attacks [11], the IP addresses of front end
nodes are normally anonymous. Moreover, pools can have a lot of front end
nodes in the network.

.

2.2.2 P2P Overlay Network

A cryptocurrency network relies on the P2P scheme to have peers exchange mes-
sages without a centralized authority. Each node maintains a peer list, and peri-
odically exchanges peer information with others to keep it up-to-date.

Peer-to-peer (P2P) networks have been designed and extensively studied to
allow decentralized message exchanges. They have been getting a renewed atten-
tion since Satoshi Nakamoto described Bitcoin in 2008. Indeed, inspired by Bit-
coin, thousands of cryptocurrencies serving di�erent purposes have been created.
However, no standard P2P protocol has been proposed for blockchains. Instead,
di�erent P2P protocols have been designed and adapted by di�erent cryptocur-
rencies [8, 38, 39].

Here we highlight the main characteristis of the P2P protocols deployed by
the most popular cryptocurrencies, namely Bitcoin, Ethereum, and Monero, to
discuss their design di�erences. More precisely, Bitcoin's P2P protocol represents
Bitcoin-like cryptocurrencies, Ethereum's P2P protocol represents Ethereum-like
cryptocurrencies, and Monero's peer-to-peer protocol represents CryptoNote-based
cryptocurrencies. Our analysis is summarized in Table 2.1.

Bitcoin [8] nodes can each maintain up to 8 outgoing and 117 incoming bidi-
rectional connections with other nodes. A node can join the network by requesting
a set of IP addresses of peers to a list of DNS nodes. After the initialization phase,
nodes use a �getaddr� message to request �addr� answers containing up to 2,500

12

Table 2.1: Comparison of the Bitcoin, Ethereum and Monero P2P protocols

Network

Discovery

Mechanism

Connection

Maintenance

Node Connectivity

Bitcoin Exchange up
to 2,500 peer
IP addresses.

Using tried table
and new table to
maintain peer
information.

Limited to 125 connection
including 8 outgoing and
117 incoming connections.

Ethereum RLPX,
Kademlia
Peer Selection
Protocol.

Using a peer table
to maintain peer
information.

Limited to 25 connections
for Geth. Limited to 50
connections for Parity.

Monero Exchange 250
peer IP
addresses.

Using peer list to
maintain peer
information.

Changeable limit on the
number of connections.
By default, 1 incoming
and 8 outgoing
connections.

peer information from their neighbors, and then save the received peers informa-
tion into their local database, which is formed by a tried table and a new table.
The tried table keeps the information of all connected nodes, and the new table
records the information of the unconnected nodes. If a node does not have 8 out-
going connections, it will randomly select new peers from the local database. New
connections can be established if a node allows extra incoming connections. Bit-
coin's peer-to-peer network is an overlay network based on the Internet, broadly
speaking, it utilizes TCP port 8333 to provide the speci�c channels for its partic-
ipants.

Ethereum [38] uses a Kademlia-style peer discovery protocol [40] to build the
network. It implements another protocol named RLPx1, which can encrypt mes-
sages, to transfer data. Each node can maintain 25/50 (25 for Geth users, 50 for
Parity users) connections in total. Multiple Ethereum nodes can be implemented
in one machine to share the same IP address. Ethereum's network is far more com-
plex than Bitcoin's due to its multiple protocols. On the other hand, Ethereum's
overlay network topology is not directly relevant to the network-level properties
since the nodes' IDs do not respectively correspond to IP addresses. A previous
work [41] provided a comprehensive study about measuring Ethereum's clients, but
the network-level properties, such as connectivity, topology, and network dynamics

1https://github.com/ethereum/devp2p/blob/master/rlpx.md.

13

were not studied in detail.

Monero [39] uses a dedicated TCP port 18080 for its participants' communi-
cations. Each node can join the network by connecting to a list of seed nodes and
DNS nodes. After the successful connection establishment, the node will receive up
to 250 IP addresses from the seed/DNS node. By default, each node can maintain
1 incoming connection and 8 outgoing connections. To enrich the network connec-
tivity, Monero allows users to modify the number of their connections. Based on
the connections, each node frequently sends the top 250 IP addresses from its white
list to its neighbors. The most unique design of Monero's peer-to-peer protocol is
the database of recorded peer information, named peer list, which we will detail in
the next section. The goal of the peer list is to help each participant to establish
su�ciently enough reliable connections to prevent network level attacks. In Mon-
ero, the network dynamics are mainly due to the unlimited node connectivity and
unique design of the peer list.

Because the cryptocurrency P2P network is decentralized, previous works have
pointed out that the cryptocurrency P2P network is vulnerable in terms of pri-
vacy [42, 9, 43, 44, 45, 21], security [12, 11] and scalability [46, 16]. However, none
has analyzed the mining fairness in the network.

2.2.3 Intra Network of Mining Pools

To adapt to their growth, PoW cryptocurrencies regularly increase the mining
di�culty. This increased di�culty directly translates into a more irregular revenue
for single miners. To compensate this e�ect, miners can join mining pools. Mining
pools allow single miners to put their reward in common, which is then shared
according to a miner's participation. A mining pool uses some servers to manage
the miners in the pool. The miners are only connected with the servers, and receive
its assigned jobs from the servers. When a miner has �nished a job, it sends its
result to the server. The mining pools also maintain the front-end nodes in the P2P
network to exchange messages with other miners and pools. At regular intervals,
the pool sends the payout to the miner depending on the jobs it has processed.
The most popular protocol used by mining pools is Stratum [47]. In our real world
experiment, we found that most of Bitcoin mining pools are using Stratum. The
purpose of a mining pool is to attract miners to join to increase its hash power, so
the mining pool has to be permission-less to the miners for being connected. The
connections between mining pool and the miner can be easily established as long
as the miner knows the URL of mining pool server. We summarize the URL of
the measured 10 Bitcoin mining pools in Table 2.2.

14

Table 2.2: URL of Bitcoin mining pools. We use a machine to build connections
with these pools, this allows us to deploy the sub-miners in the pools to receive
the messages directly.

Kano pool stratum+tcp://sg.kano.is:3333
f2pool stratum+tcp://btc.f2pool.com:3333
BTC.com stratum+tcp://cn.ss.btc.com:1800
ANTpool stratum+tcp://ss.antpool.com:3333
Poolin stratum+tcp://btc.ss.poolin.com:1883
Huobi pool stratum+tcp://hk.huobipool.com:8888
Okex pool stratum.okpool.me:3333
1thash pool stratum.1thash.btc.top:8888
viabtc pool btc.viabtc.com:3333
btctop pool stratum.btc.top:8888
Novablock pool stratum+tcp://btc.s.novablock.com:443

2.2.4 Block Propagation

In a PoW cryptocurrency, the consensus relies on the quick propagation of a block
in the P2P overlay. The miner, or a pool, updates its mining process when it dis-
covers a new block or receives it from others. Given that the expected time interval
between two blocks is equal to 10 minutes in Bitcoin, the Nakamoto consensus can
be achieved if more than 50% hash power can reach agreement within 10 minutes.
Previous works [34, 46, 48] have proposed that the 50% block propagation time
was around 8.7 seconds before 2017, which therefore secures the Bitcoin system.
According to the Bitcoin network monitor [49], the 50% block propagation time
has been improved to less than 2 seconds today. However, no mechanism has been
implemented to make sure that all nodes receive the new block within close times,
in particular because of the presence of some unreachable nodes, and network
churn.

In this thesis, we focus on the block propagation rather than the transaction
propagation. We measure the deviation between pools by using a novel tool ME,
and report the results in Section 4.

2.3 Nakamoto Consensus

This section introduces the main mechanisms and properties of Nakamoto consen-
sus.

15

2.3.1 Incentive Mechanisms

Miners are incentivized to validate transactions and �nd blocks in exchange for
monetary rewards. The rewards include block reward and transaction fees. The
block reward is made by the miner via a Coinbase transaction, which generates
a number of coins for being sent to the miner. The number of coins in Coinbase
transaction is controlled by a block reward scheme, which is halved every four
years. At the beginning, each block generates 50 Bitcoin, at the time of writing,
each block generates 6.25 Bitcoin. According to this scheme, approximately, there
will be no block reward after 2140, which means, no new coin will be generated.
Transaction fee is an alternative reward that miner can earn from the traders. To
discourage the tiny transactions, Bitcoin allows the generator of transaction to
pay a number of coins (< 2% of mining revenue) to the miner. As a consequence,
the transactions with higher fees have the priority to be validated. There are a
number of traders who are willing to pay higher fees to let their transactions to be
validated more faster [50].

In fact, every miner creates the Coinbase transaction and selects other transac-
tions, and then bind them into the root of Merkle tree for solving the puzzle. Only
the winner can receive the rewards. Under the assumption of honest majority,
only the valid blocks will be eventually appeared in the main chain, this incen-
tivize the miners to select correct transactions. The invalid transactions or blocks
will eventually rejected by the network. This is so called incentive compatibility of
NC, which preserves an equilibrium in the mining game. Any miner who deviates
from the default setting will su�er a loss.

However, the incentive compatibility of NC has not yet been formally proven [22].
Miner who deviates from NC could use smaller than 50% of global computing power
to manipulate the main chain with a high success rate [17, 51, 15, 18, 52]. In the
past few years, a number of Non-NC PoW protocols [53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68] have been proposed to improve the weaknesses that
have been revealed in Bitcoin. However, no one is perfect to solve all problems
that NC has. Zhang R. and Preneel B. [69] made a quantitatively analysis of
these PoW protocols, and concluded that existing PoW protocols can not guaran-
tee the perfect properties at same time, such as, attacks resistance, fairness, and
scalability.

In this thesis, we focus on the network properties, which are typically in layer
0 (as shown in Fig. 2.3), and could a�ect the consensus protocols in layer 1.
In a nutshell, we design tools to explore the network, characterize the network
properties, and analyze the impact on layer 1. We report our results based on NC,
which might a�ect other PoW protocols as well.

16

Layer 0 (network)

Layer 1 (consensus)

Layer 2 (applications) : Payment Channel

: PoW/PoS Protocols

: Communication
Protocols

Figure 2.3: The model of blockchain system.

2.3.2 The Longest Chain Principle

In an asynchronous network, the traditional Byzantine Agreement is hard to be
achieved in the permission less setting. NC solved this problem by incentivizing
the miners to work on the longest chain. In this case, there is no need for the
temporary agreement among all participants, which means, forks are acceptable
under a threshold. Under the assumption of honest majority, all participants will
eventually agree on the same chain, which is the longest. Nakamoto S. made a
simple calculation in Bitcoin white paper [8], which shows that the attacker with
q ∈ [0, 0.5) of global computing power will eventually lose the race if the attacker
keeps her chain private. Later on, Eyal [17] pointed out that the attacker is able
to use < 50% of global computing power to manipulate the main chain by using
a temporary withholding strategy. In this thesis, we point out that the threshold
could be further decreased by considering the network properties.

2.3.3 Di�culty Adjustment Algorithm

To stabilize the block generation time, DAA (Di�culty Adjustment Algorithm) is
used to adjust the di�culty of solving the crypto-puzzle. The adjustment occurs
periodically according to the time of the period (2016 blocks in Bitcoin, 1 block in
Ethereum). The maximum block generation time can be estimated as:

Max(dBI) =
D × 2n

H
(2.3)

where D notes the di�culty, H represents the total hash rate of the network, and
n is a coe�cient (e.g., it is equal to 32 in Bitcoin). When H is changed because of
churn, DAA will adjust D to guarantee the stability in terms of block generation.

17

The DAA function of Bitcoin is described as follows:

Dn+1 = Dn ×max(min(
2016× 600

T2016×n − T2016×(n−1)

, 4),
1

4
) (2.4)

The DAA function of Ethereum is:

Dn+1 = Dn +
Dn

2048
×max(1− Tn − Tn−1

10
,−99) + int(2

n
100000

−2) (2.5)

2.3.4 Revenue Fairness

Previous works [22, 46] considered the mining network to be fair when a miner
having x% of the global mining power earns x% of blocks. This property is also
de�ned as chain quality [51, 70, 69, 71]. Eyal was the �rst to point out that the
revenue fairness is not hold if the attacker uses a temporary withholding strategy
to mine [17], namely sel�sh mining attacks, which we discuss in Section 2.5. In
this thesis, we analyze this property by considering:

• Temporary withholding strategy is not the only factor that can a�ect the
revenue fairness. Existing mechanisms aiming to provide this property do
not consider the impact of the P2P network. We characterize mining network
fairness in Section 4, and prove that the deviation of block reception latency
could a�ect revenue as well.

• The network advantage (e.g., fast send and receive the blocks) can further
facilitate the sel�sh mining attacks.

2.3.5 Asynchrony

The network of PoW cryptocurrencies is permission less, which means, the num-
ber of participants is changeable. Thus, it is impossible to make sure that all
participants can be synchronized within a bounded delay. Even though the sys-
tem is asynchronous, it can achieve the eventual consistency, and tolerate up to
50% faulty computing power (33% for sel�sh mining attacks). This is the beauty
of the PoW consensus. In this thesis, we point out that, the asynchrony of the
network could lead to network unfairness, which could a�ect the block revenue.

2.3.6 Consistency

This property is the base of the distributed system, which is ability that the agree-
ment can be made between all or partial participants periodically. The period here
means the time interval between two events that need to be voted by all partici-
pants, which is bounded by the maximum network delay. In general, consistency
can be strong or weak depending on the requirements of the system:

18

• Strong consistency. It requires all participants to agree on every event in
a bounded time window. For instance, any message m has to be sent to
all participants within t. It requests the strong fault tolerant protocols that
can make the agreement despite of a number of faulty nodes. Moreover, it is
sensitive to the network delay. Therefore, the network is normally a complete
graph or a star graph.

• Weak consistency. It does not require all participants to always maintain the
same data at the same time. Instead, di�erent participants are allowed to
have the deviations at some moments, and they will agree on the same data
eventually. The strong consistency normally comes with low performance
and availability. Therefore, weak consistency is commonly applied in the
distributed systems.

In PoW cryptocurrencies, consistency is formally de�ned as the ability that can
enable the participants to agree on a chain of blocks. The strong consistency is
di�culty to be achieved here due to the network is being permission less. It is hard
to con�rm the exact number of participants in the network, and the maximum
delay between all participants. Therefore, PoW cryptocurrencies provide weak
forms of consistency, such as, eventual consistency across nodes. Pass R. et al. [70]
proposed T−consistency to describe the consistency property in Bitcoin. A system
achieves T −consistency when all participants can always have the common pre�x
(n blocks) of the chain at the (n+1)th round despite of folks. They were the �rst to
use the partially ordered set to describe the chain of block. This method has been
widely used to de�ne the eventual consistency in PoW cryptocurrencies [72, 71].

2.4 Proof of Work vs Proof of Stake

PoW consensus is energy intensive, it requires miners to use computing power to
solve the cryptographic puzzles, which consume electricity. For instance, Bitcoin
approximately consumes 61.76 terawatt-hours (TWh) of electricty per year (0.28%
worldwide electricity consumption per year), which has exceeded many countries,
such as Switzerland (58.46 TWh). PoS based consensus [73] was proposed to
mitigate this issue. The idea is to generate blocks by using voting power, which
relies on the deposits of participants, namely stake. Here, the participants do
not need to consume computing power to discover blocks, the leading block is
automatically generated by a participant who is pseudonym-randomly selected
depending on her stake per round. Indeed, PoS based consensus can signi�cantly
reduce energy consumption, but it comes with some issues, such as, nothing-at-
stake attacks [74], temporary block withholding attacks [75, 76]. In this thesis, we
focus on PoW cryptocurrencies.

19

2.5 Related Work

This section discusses the related researches that have been done in this �eld.

2.5.1 Measuring Cryptocurrency Network

Measuring cryptocurrency P2P network is an important technique to evaluate the
performance of cryptocurrency in the real implementation. In general, the metrics
are network size, connectivity, and node distribution, which can be inferred by
collecting the peer information. In P2P level, each participant exchanges the peer
information with her/his neighbors. In principle, each participant is able to �nd all
participants sooner or later depending on the size of exchanged peer information
and number of neighbors. Coinscope [43] was proposed in 2015 to measure Bitcoin
network by leveraging the peer's API. The main idea is to frequently send the �get
addr� messages to all known peers to �nd more unknown peers, and then establish
the connections with new peers and repeat the former approach. As a result,
the change of newly discovered peers will converged, and the network size can be
inferred. Kim S.K. et al. [41] used the same method to measure the Ethereum P2P
network. These works provided the crucial study and tell people how the Bitcoin
and Ethereum network look like, in particular, they discussed the implications of
discovered network properties and provided their insights, which inspired a lot of
researches to analyze the security and privacy properties in network level.

Based on the global view of the network, more metrics can be measured, such
as, transaction propagation time, and block propagation time. The idea is to ob-
serve the di�erence of receiving time of each transaction/block message between all
participants. It is therefore that the message propagation time can be estimated.
Decker C. and Roger W. [34] were the �rst to measure the information propaga-
tion in Bitcoin in 2013. They deployed the nodes to establish connections with all
reachable nodes in Bitcoin network, and then recorded the receiving time of each
messages from each peer. By removing the delay between the collectors and their
peers, they can estimated the transaction and block propagation time. Today, this
method is still the main technique to measure the transaction and block propaga-
tion delay in cryptocurrency. Till N. et al. [48] have monitored Bitcoin network
for years based on this method.

Miller A. [43] was the �rst to infer bitcoin's network topology based on the up-
dating scheme of time stamp in the �addr table� (is database to store IP addresses
of peers). This method was then prevented by Bitcoin's update. Later on, Till
N. [48] provide a new method to infer Bitcoin's network topology. To infer whether
two reached nodes are connected in Bitcoin, Grundmann et al. [44] suggested to
use double spent transactions as probing messages, and S. D. Segura et al. [45]
suggested to use orphan transactions. In this thesis, we propose a novel tool set

20

in Monero, which can accurately infer the network topology, and implicate more
security and privacy issues.

Previous works studied the network information of leading cryptocurrencies,
e.g., Bitcoin and Ethereum. Decker and Wattenhofer [34, 46] measured the rate of
information propagation between reached nodes in Bitcoin. Relying on the received
messages from reached nodes, interconnections of reached nodes were inferred in
Bitcoin [43, 48] to evaluate network properties. To infer whether two reached
nodes are connected in Bitcoin, Grundmann et al. [44] suggested to use double
spent transactions as probing messages, and S. D. Segura et al. [45] suggested
to use orphan transactions. Kim et al. [41] deployed 30 nodes on one machine
to collect network messages and measure the Ethereum network. However, node
interconnections are di�cult to infer in Ethereum, and unreachable nodes cannot
be observed.

Previous works [43, 48] deployed machines into P2P overlay networks to collect
information regarding block propagation, transaction propagation, and network
coverage. The results have been adopted widely to analyze the performance of
cryptocurrencies. For example, block propagation delay can be used to evaluate
the transaction throughput [46]. However, there is a lack of direct information of
mining pools. Such results can be improved by monitoring mining pools. By doing
so, the discovery time of a block can be accurately inferred, which is more reliable
than the time stamp2 of block, which could be earlier than the discovery time.
Recently, a tool is designed by a research team at MIT [77] to monitor 32 pools
across 17 cryptocurrencies. However, they do not consider the network fairness.
In this thesis, we design a tool to measure and analyze network fairness.

2.5.2 Network Level Attacks

Network level attacks have been studied in Bitcoin and Ethereum. Routing at-
tacks [11, 78] are facilitated by the fact that Bitcoin's protocol makes nodes ex-
change messages in plain text during the peer-to-peer communications. This allows
an adversary to partition the network, and delay the dissemination of messages
among nodes. Eclipse attacks, in Bitcoin [12, 15] and in Ethereum [13], pointed
out that unsolicited incoming connections can be leveraged by an adversary to
continuously send large amounts of fake packets to a given node to �ll the table of
its stored IP addresses and force it to restart. These attacks demonstrated that an
attacker can monopolize all connections of a targeted node with high probability.
Deanonymization attacks [9, 79] have been introduced to track transactions and
discover the generator's IP address. These attacks aim at linking the IP address
of a node with the transactions it creates, with the intention of monitoring inter-

2https://en.bitcoin.it/wiki/Block_timestamp

21

connections. Such attacks require, or are facilitated, by an understanding of the
peer-to-peer overlay and its topology.

2.5.2.1 Routing attacks

Due to the highly centralized autonomous systems in the Bitcoin network, mali-
cious messages can be injected into one autonomous system to announce incorrect
IP pre�xes, which leads to the network tra�cs going into wrong locations. It makes
the Border Gateway Protocol (BGP) hijacking attack [11] possible in the Bitcoin
network, where an attacker can delay the information propagation and partition
the Bitcoin network in order to waste mining power, or spend one coin more than
once. The eclipse attack was described in 2015 [12], where unsolicited incoming
connections are used by an attacker to send bogus information to a victim to force
it to restart. After that, the attacker can monopolize all 125 connections of victim
and, with a high probability, control the end host.

2.5.2.2 Deanonymisation attacks

Fanti and Viswanath [9] and Biryukov A. [79] described Deanonymisation attacks,
which aim at disclosing the IP address of nodes that generate transactions, even
those located behind a Network Address Translation (NAT). Since each client
node has 8 entry nodes, and the generated transactions of the client are always
�rst forwarded to its 8 entry nodes, it is possible to identify the entry nodes of a
client node. In addition, some approaches rely on the Bitcoin relay pattern, which
can be used to identify the IP address of a transaction creator, i.e., the payer,
based on the following observations. First, a node that was the �rst forwarding
a transaction is likely to be the payer. Second, a node is likely to be a payer if
it re-transmits the transaction. Moreover, a node is likely to be a mining pool if
the generated blocks from the pool were relayed frequently and �rstly via that IP
address during 10 days period.

2.5.3 Fast Relay Network

The purpose of the fast relay network [80] is to maintain full Bitcoin nodes to
connect with miners and pools to speed up the message propagation. These nodes
use unsolicited relay patterns to broadcast a new block. In this way, miners are
able to speed up the blocks propagation in the network. However, this method
leads to a potential centralization issue. So far, not all mining pools have adopted
this technology, maybe because their access is controlled. Our work provides a
motivation for mining pools to improve their connectivity, and explains the growing
success of more e�cient relay networks. The P2P strategy we evaluate in this thesis

22

(Miner Entanglement) improves a miner's network access without relying on fast
relay networks using mining pools' APIs. In other words, our measurement tool
does not need a trusted node in the middle between two pools.

2.5.4 Game Theoretical Analysis in Cryptocurrency

Game theoretical analysis has been used to evaluate cryptocurrency' network per-
formance and other properties. For example, it has been shown that a Nash
equilibrium can be achieved when two pools, or any number of pools use the block
withholding attack [81]. In this case, pools aim to attack each other like the pris-
oner's dilemma, and degrade system performance. Previous works [82, 83] provide
the game-theoretic models to analyze the impacts of network attacks (such as
DDoS) in mining pools. Another example concerns the network creation game,
which has been introduced in the lightning payment channel [84], where it was
shown that the Bitcoin payment network can be more stable and e�cient in a
centralized network structure. In our thesis, we are interested in how nodes select
their neighbors to optimize its e�ective hash rate, and consequently their expected
mining revenue.

2.5.5 Petty-Compliant Behaviors

In decentralized system, miners are rational rather than altruistic, i.e., they will
deviate from the default protocol if they can increase their bene�ts. In fact, it
has been observed that there are many miners that do not completely follow the
default protocol. These miners have been called petty-compliant [23, 24]. In this
thesis, we consider two types of petty-compliant miners, which we introduce in the
following.

Hash power jumping miners. These miners [85, 86] aim at optimizing their
pro�ts. In general, they are not limited to mining a single cryptocurrency, and
instead maintain a computing power portfolio that spans several cryptocurrencies
to against the risks. They are monitoring the price of di�erent coins, and estimat-
ing the revenue shares that they can obtain from di�erent chains. The hash power
of a rational miner would be shifted from CA to CB if mining the latter is more
pro�table.

Simplified Payment Verification (SPV) miners. SPV miners leverage the
Simpli�ed Payment Veri�cation (SPV) protocol, which was initially introduced to
allow Bitcoin nodes to accept a block based on its header without verifying its
transactions. Upon receiving a block header, SPV miners start mining the next
block, a process known as SPV mining. In doing so, SPV miners assume that the
transactions of a block will soon be received and that they are correct. Under
normal circumstances, SPV miners can start mining on a block earlier, because

23

block headers are smaller than full blocks and are therefore received sooner, which
helps them to increase their mining e�ectiveness [87]. SPV miners might deploy
spy sub-miners in the mining pools to receive block headers directly from them,
which is arguably faster than the block propagation in the peer-to-peer overlay
network [88]. Observing blank blocks (i.e., blocks that only include one coinbase
transaction) is often proposed as a way to detect SPV miners [25]. However,
SPV miners could also include their own transactions into a block, which would
not con�ict with any previous transaction and complicate their detection. In this
work we present the DPC attack that targets SPV miners to facilitate double
spending.

2.5.6 Double Spending and Sel�sh Mining

The double spending attack on Bitcoin has been described in Nakamoto's initial
whitepaper [8], and has been further analyzed since [7, 19]. An adversary with
at least 51% of the global mining power is able to use a coin in a transaction
that is accepted by the network and have a con�icting transaction later accepted
by the network. Nowadays, z = 6 blocks need to be appended after a block
for its transactions to be considered permanent by all Bitcoin users. Nakamoto
characterized the race between the attacker and the honest miners as a random
walk, and calculated the probability for an attacker to catch up with the public
chain after z blocks have been appended after its initial transaction.

Sel�sh mining was the �rst mining strategy to be shown to increase the revenue
of a rational miner [17]. Sel�sh mining was later shown to harm the mining
fairness [22, 46]. It has been shown that the sel�sh mining strategy is not more
pro�table than honest mining when the mining di�culty remains constant, despite
the fact that the adversary is able to increase its revenue share [89, 16]. Nayak et
al. proposed plausible values for the sel�sh miner's propagation factor by utilizing
the public overlay network data [15]. They pointed out that the attacker could
optimize its revenue, and win more blocks by eclipsing the honest miners when the
propagation factor increases. Gervais et al. [16] analyzed the impact of stale rate
on sel�sh mining attack, and described the eclipse attack [12]. Negy et al. pointed
out that applying the sel�sh mining strategy in Bitcoin is pro�table after at least
one di�culty adjustment period (i.e., after approximately two weeks at least) [90].

2.5.7 Combining Sel�sh Mining and Double Spending

Previous works [16, 91] have shown that it is feasible to combine the double spend-
ing attack with sel�sh mining. To do so, the adversary uses the sel�sh mining strat-
egy to maintain the private chain, and generates con�icting transactions whenever
the private chain is longer than the public chain. The double spending attempts

24

would succeed if the adversary has enough private blocks in the lead of the public
chain. Since generating the con�icting blocks would not cause any additional cost
for the adversary, the adversary's revenue would be increased. However, based
on a single private chain, the sel�sh mining actions (e.g.,�adopt�, �match�, and
�override�) actually decrease the success rate of the double spending attacks. For
instance, when the adversary has 2 private blocks in the lead of the public chain
and the next block is generated by the honest miners, the adversary would release
her private blocks, and the double spending attempt has to be terminated. Con-
sidering that 6 con�rmations are required commonly, the success rate of double
spending attacks on the sel�sh mining's private chain is actually lower than the
pure double spending attacks based on a single private chain. We propose the �rst
mining attack that simultaneously manages two private chains to launch double
spending attacks.

2.5.8 Blockchain denial of service (BDOS) attacks.

The BDOS attack proposed strategies to completely/partially shut down the min-
ing network [24]. To do so, the adversary only sends the block header to the
network whenever she discovers a block that is in the lead of the public chain and
there is no fork, and publishes the block body if the next block is generated by
the honest miners. By doing so, the pro�tability and utility of the rational miners
and SPV miners would be decreased, thus, they will eventually leave the mining
network. However, the objective of BDOS attacks is to halt the system, which
does not bring a direct bene�t to the adversary. For instance, an adversary would
need to spend approximately 1 million USD per day to shut down the system.
Moreover, it is di�cult to achieve a complete shut down if there are stubborn hon-
est miners. In this chapter, our DPC attack frequently separates the SPV miners'
hash power from the one of altruistic miners, which has some similarities with the
BDOS attack's partial shut down case. However, the DPC attack is pro�table for
the adversary when its second private chain manages to double spend.

25

26

Chapter 3

PoW Cryptocurrency P2P Network

This chapter �rst provides a comprehensive study on the security and privacy of
PoW cryptocurrencies. Precisely, we �rst introduce the basic concepts of security
and privacy of layer 0 alongside with the open challenges. Secondly, we analyze
the existing schemes on enhancing the security and privacy in network level, and
discuss their performances (for those schemes that have not been implemented,
we discuss the feasibility and give our insights). Lastly, we provide an empirical
measurement study on the �rst privacy-preserving cryptocurrency (i.e., Monero) to
reveal some network vulnerabilities that could facilitate the network level attacks.

3.1 Network Security

The network of PoW cryptocurrencies consists of P2P overlay and intra networks
of mining pool, as we have introduced in Section 2.2. Both of them are based
on Internet, and supported by TCP/IP. Therefore, the traditional Internet based
network attacks are all feasible to the network of PoW cryptocurrencies, such
as, DDOS attacks, MITM attacks, and BGP hijacking attacks. In principle, any
PoW cryptocurrency's network can be attacked. For instance, the network can be
partitioned if one can control a number of ASs (Autonomous Systems) [11]. The
network can be dominated if one can deploy a su�cient number of nodes (Sybil
nodes [92]) in the network, in this case, the adversary is able to control the speed
of information propagation by dropping the messages.

The essential motivation of attackers is to gain the monetary bene�ts. In
general, the attacks are restricted by the imbalance between the cost of attacks
and the revenue of attacks. Let Ca be the cost of the attack (e.g., the resources
that the adversary needs to launch the attack), Ra be the revenue of the attacker
(e.g., the attacker earns a number of coins because of an attack). The frequency of
that the attack happens is related to Ra

Ca
. When Ra

Ca
> 1, the attacker is incentivized

27

to launch the attack. For instance, a DDOS attack would happen in the mining
pool if it satis�es Ra

Ca
> 1. It does not mean that the attack can not happen

when Ra
Ca
≤ 1. The existing defense mechanisms of PoW cryptocurrencies make

an extremely expensive cost for a successful attack, which restricts the attacks.
For instance, Heilman E. et al. [12] proposed several schemes to defend eclipse
attacks in Bitcoin, which request the attacker to have a vast number of active IP
addresses, which is not pro�table.

3.1.1 Network Attacks in P2P Overlay

Network attacks and defenses have been studied in P2P network for a long time.
Compared to the client-server network, P2P network lacks censorship and gover-
nance. There are BAR nodes [93, 94] that aim at optimizing their bene�ts. They
do not follow the default settings, and intend to change the original protocols if
they can get bene�ts. It is hard to prevent BAR nodes in P2P network. Since
the main network structure of PoW cryptocurrencies is P2P network, it is not
surprising that BAR nodes are detected. For instance, the block hole nodes were
detected in Bitcoin to drop the block and transaction messages [95], super nodes
were detected in Bitcoin to maintain more than 1000 outgoing connections [43].
The adversary could deploy some BAR nodes in PoW cryptocurrencies to facili-
tate the attacks. For instance, the succcess probability of eclipse attacks increases
when the attacker deploy a number of controlled nodes to continuously ping the
victim node. In order to guarantee the network security, it is important to prevent
BAR nodes or tolerate the faults because of BAR nodes.

One di�erence between the traditional P2P network and cryptocurrency P2P
overlay is the weight of messages, in precise, the size of packets. The traditional
P2P network is able to exchange heavy messages. The communication protocols
of PoW cryptocurrencies must be lightweight in order to minimize the impact of
network latency on consensus. Thus, some encryption schemes are not applied,
such as, SSH [96], TLS of TCP/IP [97], and IPsec [98]. Nowadays, it takes approx-
imately 5 seconds to propagate a 1 Mb block to 90% nodes in Bitcoin network [49],
which has already a�ected the security and performance of Bitcoin [17, 34, 46].
Any heavy communication protocol will increase the network latency that can
further decrease the performance of system, and facilitate the attacks. Thus, the
messages are not encrypted in the network of PoW cryptocurrencies. The visi-
ble network information not only engages the privacy issues (which we show in
Section. 3.2), but also facilitates the network attacks (attacker could gather the
information to do the statistical analysis before the attack).

We have introduced the typical attacks on the P2P overlay of PoW cryptocur-
rencies in Section. 2.5, such as, eclipse attacks, BGP hijacking attacks, and MITM

28

attacks. Here, we point out that, these attacks are not completely forbid. They
are still the threats. The adversary will launch these attacks as long as s/he is
able to gain a positive revenue. Considering the value of crypto coins is growing
rapidly, these network attacks should be further analyzed.

3.1.2 Network Security of Mining Pools

The intra network of mining pools is a typical client-server network (which we
introduce in Section. 2.2), where the server node controls the sub-miners of the
pool. There are less threats compared to the P2P overlay, because sub-miners
could not communicate with each other. The main threats here are:

• DOS attacks on the server nodes. The IP addresses of server nodes are
public, which encourage the miners to join. The adversary is able to launch
DOS attacks to the server nodes of mining pools. This requires that the
server nodes must have the su�cient ability to defend the DOS attacks.

• Packet injection attacks. The communications of intra network of mining
pools are based on Internet. Recabarren R. and Carbunar B. [99] pointed out
that the adversary is able to modify, inject, and replay the packets between
di�erent sub-miners and the server node.

3.2 Network Privacy

The network privacy here means the ability to hide the user's IP address and
network topology.

3.2.1 IP Address Exposure

To avoid network partitions and bootstrap the new participants, peer discovery
mechanisms are used in the network. Each node maintains a data structure (it is
called IP table in Bitcoin, peer list in Monero) to store a number of IP addresses
of peers. Each node periodically select a part of IP addresses (1000 in Bitcoin, 250
in Monero) from the data base, and send to its neighbors. When the node does
not have enough connections, it can establish connections via the data base. The
timestamp based updating scheme is used to evict the inactive IP addresses, and
promote the fresh IP addresses.

The IP addresses are exposed during the whole peer discovery process. Anyone
is able to deploy a node in the network to collect the IP addresses of others. In
the decentralized network, nodes have to use the peer discovery protocols to �nd
each others. The IP address exposure is hard to be prevented.

29

3.2.2 Network Topology Exposure

The links between nodes can be inferred by di�erent methods. Neudecker T. [100]
concluded four approaches to infer the links in Bitcoin. In Section 2.5, we have
discussed these approached regarding to their dis/advantages. Here, we emphasize
that attacker with su�cient resources (e.g., a large number of nodes in the net-
work) is able to infer the network topology of PoW cryptocurrencies in the current
settings. The core question is: will the attacker get enough revenue that can cover
her/his cost?

3.2.3 E�ects and Implications

With the knowledge of IP addresses and network topology, an attacker can poten-
tially launch di�erent types of attacks. For example, an attacker could launch a
targeted attack by monopolizing all connections of a victim node [12], selectively
partition the network [11], or even deanonymize transactions by identifying the
�rst node relaying a transaction [79, 101].

3.3 Measuring the Monero P2P Network

As blockchains aim at implementing decentralized and trustworthy systems, they
often rely on peer-to-peer (P2P) protocols for membership management and infor-
mation dissemination. This makes the P2P network a critical element of blockchains,
as the security of the underlying consensus protocols and the privacy of transac-
tions are all tightly related to its implementation [12, 13, 11, 22, 79, 101, 102].

Monero is a privacy-centric cryptocurrency, and is currently ranked the �rst
among privacy-preserving cryptocurrencies with a market capitalization of 1.248
Billion USD, and the 10th among all cryptocurrencies1. Much research has been
done on analysing the privacy of Monero [103, 104, 105, 106, 107], with a focus on
on-chain data analysis, i.e., how the mixins (a.k.a. decoy inputs) are selected in
each transaction and how they provide privacy guarantees. However, little research
has been done to investigate Monero's P2P network, even though network level
attacks have been studied on the speci�c networks of Bitcoin and Ethereum [12,
13, 11, 15, 108, 109].

Analysing the resilience of a blockchain to network level attacks is challenging,
as it requires a deep understanding on the underlying network. In this thesis,
we present a �rst step of work towards analysing Monero's security and privacy
against network level attacks. In particular, we provide an analysis of Monero's
network protocol, and identify possible ways to infer the network topology. We

1https://coinmarketcap.com. Data fetched on Sept. 12, 2019.

30

develop a toolset to implement our �ndings. Our tool set includes NodeScanner
and NeighborFinder. NodeScanner automatically discovers peers in the Monero
network, no matter whether they are currently online or not. We classify the
discovered peers in three categories, namely active and reachable nodes, active and
unreachable nodes, and inactive nodes. A node is active if it is currently online, and
is reachable if NodeScanner can successfully connect to it. Compared to previous
works [34, 10, 48, 101], NeighborFinder is able to identify the unreachable active
nodes in the network, which are the active direct neighbors of nodes that could be
reached, for the network topology inference.

Our experimental results show that Monero's network is highly centralized
� 0.7% of the active nodes maintain more than 250 outgoing connections, and
86.8% of the nodes do not maintain more than 8 outgoing connections. These
86.8% nodes collectively maintain only 17.14% of the overall connections in the
network. Our toolset is also very e�ective in observing the network � after a
single week of data collection, our toolset already discovered 68.7% more active
peers than Monerohash [110] � a Monero mining pool that is the only known pool
providing data on the Monero node distribution. In average, our toolset identi�ed
approximately 2,758 active nodes per day, while Monerohash only showed about
1,635 active nodes. Furthermore, we report our analysis of the collected data
regarding an estimation of our network coverage, the network connectivity, and
the node distribution in the Monero P2P network.

Disclosure. We have disclosed our research �ndings to the Monero team,
which has been working on patching the peer-to-peer protocol, and publicly ac-
knowledged our �ndings in their git commit2.

3.3.1 Monero's P2P membership protocol

Monero relies on its peer-to-peer network to disseminate transactions and blocks.
Unfortunately, a proper presentation of Monero's peer-to-peer protocol has been
missing from the literature. This section describes Monero's peer-to-peer member-
ship protocol based on its source code, which is available from Monero's o�cial
working repository3.

3.3.1.1 Initialization

Monero hardcodes a set of hostnames, which can be translated to IP addresses
through the DNS service, and IP addresses of seed nodes that new participants

2https://github.com/monero-project/monero/blob/960c2158010d30a375207310a36a7a942b92
85d2/src/p2p/net_peerlist.h

3Commit hash 14a5c2068f53cfe1af3056375fed2587bc07d320, https://github.com/monero-
project/monero

31

Node A Node B

SYN
SYN+ACK

ACK

250 payload IP addresses

ACK

TX
ACK

Block

ACK

TCP connection
Establish

Sending
IP addresses

Sending
Transaction

Sending
Block

TX

Block

Figure 3.1: Message exchange in Monero's P2P network

can contact to be bootstrapped into the peer-to-peer network. Those seed nodes
are operated by the Monero core team.

New joiners can obtain a limited number of active peers' IP addresses from the
seed nodes to initialize their peer lists. They can then start initiating connections
with peers, exchange membership lists and discover other peers, until they have
established their desired number of connections.

3.3.1.2 Peer list

In Monero, each node maintains a peer list consisting of two parts, i.e., a white_list,
and a gray_list. In the peer list of a peer A, the information of each recorded
peer not only contains its identity, its IP address, and the TCP port number it
uses, but also a special last_seen data �eld, which is the time at which the peer
has interacted with peer A for the last time. All the peers in the lists are ordered
chronologically according to their last_seen data, i.e., the most recently seen peers
are at the top of the list.

Each time a node receives information about a set of peers, this information is
inserted into its gray_list. Nodes update their white_list and gray_list through
a mechanism called �graylist housekeeping�, which periodically pings randomly se-
lected peers in the gray_list. If a peer from the gray_list is responsive, then its
information will be promoted to the white_list with an updated last_seen �eld,
otherwise it will be removed from the gray_list. To handle idle connections, nodes
check their connections through the IDLE_HANDSHAKE protocol, and update
the last_seen �elds if they successfully connected to the corresponding neighbors,
otherwise they drop the associated connection. Nodes also periodically handshake

32

their current connections, and update the last_seen �eld of the associated re-
sponsive peers. If a peer does not respond to the handshake request, then the
requesting node will disconnect from this neighbor, and connect to a new neighbor
chosen from the white_list. The disconnected peers will stay in the white_list.
The maximum sizes of the white_list, and of the gray_list, are equal to 1,000 and
5,000, respectively. If the number of peers in these lists grow over the maximum
allowed size, then the peers with the oldest last_seen �elds will be removed from
the list.

Nodes broadcast messages (e.g., transactions and blocks) to their neighbors
through TCP connections. Nodes choose their neighbors from the white_list.
If not enough peers from the white_list are currently online, then a node will
choose its neighbors from the gray_list. Nodes to which previous connections were
established are classi�ed as anchor nodes, and stored in the white_list. Monero
ensures that every node is connected to at least two anchor nodes to prevent a node
from being isolated by an attacker. To discover other participants, nodes exchange
membership messages by sending a TCP SYN message to their neighbors. Upon
receiving a SYN message, the neighbors create a message whose payload contains
detailed information of its top 250 peers in the white_list, and send it back to
the requester. The requester inserts the received peer data into its gray_list, and
runs the graylist housekeeping protocol to update the lists. More details about
the TCP connection and data transmission will be presented in Section 3.3.1.3.

3.3.1.3 Information propagation

By default, each peer maintains 8 outgoing connections and accepts 1 incoming
connection. A peer residing behind a �rewall or a NAT does not accept incoming
connections, and only maintains 8 outgoing connections. Peers are allowed to
de�ne their maximum number of outgoing and incoming connections. Monero
recommends peers to increase the number of their connections according to their
capacity, for an improved network connectivity.

To enrich the network connectivity, Monero allows the node to modify the
maximum number for both incoming and outgoing connection. And they encour-
age users to increase their connections limit in order to help to help other nodes
to relay messages. For instance, some nodes that operated by mining pools are
always maintaining large connections rather than normal client users. In this case,
the actual maximum number of connections depends on the capability of the host.
Probably, some mining pools implement a Monero node on a well equipped host
to reach others nodes as much as possible, then they will gain the messages broad-
cast advantages to win coins. By learning the source code of Monero peer-to-peer
protocol, we found that each node allows 8 outgoing connections and 1 incoming
connection by default. For users those behind the �rewall or NAT that do not

33

accept incoming connections, their just allow 8 outgoing connections. Generally,
for normal client users, they just want to use the node to transfer the coins or
check their balance, they are not willing to reach more other nodes because they
do not concern about mining. Therefore, those client users, they are likely to use
the system rather than serve it. We believe, such di�erent user's behaviors (min-
ing would like to serve network while client users would like to consume it) cause
the inequality of connectivity of nodes in Monero peer-to-peer network, and might
lead to its network vulnerability.

Three types of messages are propagated in Monero, respectively containing
peers information, transactions, and blocks. As we have mentioned above, each
node broadcast the top 250 IP addresses from its peer list to its neighbors, this
is called IP addresses propagation. Moreover, each node plays a role to verify the
incoming transactions and blocks according to its saved ledger replica, and then
relay veri�ed transactions and blocks, this is called transactions and blocks prop-
agation. Whenever a transaction or block is generated, it is �nally disseminated
among all nodes if it can be veri�ed. A node establishes connections with others
through a TCP handshake (SYN-SYN-ACK) as illustrated in Figure 3.1, and can
subsequently exchange peer information through the established connection. In
this �gure, after establishing a connection, node A sends a TCP message to node
B whose payload contains the information of the top 250 peers of its white_list.
where a node A establishes a connection with a node B. Node A initializes the
communication by sending a synchronize message SYN to B, and expecting from
B an acknowledge message SYN+ACK where the SYN and the ACK bits are both
turned on (set to 1) in the TCP header. Upon receiving SYN+ACK, A completes
the handshake by sending an acknowledge message ACK to B. SYN messages and
ACK messages are indicated by the turned on SYN bit and the ACK bit inside
the TCP header, respectively. Periodically, each node inserts the most recent 250
IP addresses of its white_list into a TCP message that it sends to its neighbors.
In this way, nodes disseminate and update their peer lists. Nodes disseminate the
transactions and blocks they received and veri�ed to their neighbors through the
TCP connections they established.

3.3.1.4 Monero node

i. Wallet node, it does not need to synchronize the blocks, it relies the remote
node to exchange message with other nodes, and it is convenient but less
secure than other nodes.

ii. Client node, it just maintains enough outgoing connections and does not accept
any incoming connections, this can help the node to avoid malicious incoming
connection. The client node always establish outgoing connections to open

34

Data Collection Data Analysis

TCP
Packets

Storage

Node Pool

Connection
Pool

Active Nodes

Nodes Degree
Distribution

statistics

nmap

Monero P2P
Network

US.West US.East

EUROPE ASIA

Node
Scanner

Neighbor
Finder

Our toolset

Figure 3.2: Analysis pipeline overview

node.

iii. Open node, in contrast to client node, the open node allows both incoming
and outgoing connections, it aims to relay messages in order to increase the
network's connectivity, it acts as bridge between client nodes. The open nodes
always accepts incoming connections from client nodes and other open nodes,
and establish outgoing connection to other open nodes.

iv. Remote node, it is a kind of open node that allows wallet node to use it.

v. Full node, it is actually de�ned as the node that supports solo-mining.

In this thesis, we classify Monero nodes into heavy node, medium node, and light
node depending on the number of their neighbors. Our classi�cations cover all
o�cial types of Monero nodes, for instance, light nodes are likely wallet node and
client node, medium and heavy nodes are likely remote nodes, open node, and full
nodes. We show details in Section 3.3.3.4.

3.3.2 Analysis pipeline overview

In this section, we introduce the di�erent data structures and the processes we
implemented, along with the associated network tools they rely on. We also detail
our algorithmic approaches to monitor the active Monero nodes and to infer their
neighbors. The analysis pipeline is illustrated in Figure 3.2.

3.3.2.1 Construction

We deploy full Monero nodes to collect data in the Monero network. These nodes
establish connections with peers in the network, and store packets into their local

35

storage. We adapt two network measurement tools, i.e., tcp�ow4 and nmap5, to
collect data and analyze the Monero network. As mentioned in Section 3.3.1, each
received TCP packet contains the most recent 250 IP addresses of the sender's
white_list. Thus, all received IP addresses are recent out-bound peers of the
sender. We then use our �rst tool, NodeScanner, to collect the IP addresses of
discovered Monero nodes and store them in the NodePool. We use our second tool
NeighborFinder to infer the neighbors of reached nodes that sent the TCP packets
to collectors, and store them in the ConnectionPool. Each connection consists of
a node we reached and of its neighbor, which are both active. We introduce in
greater details our developed tools in Section 3.3.2.3.

3.3.2.2 Neighbor inference based on membership messages

We used two complementary approaches to investigate how to identify a node's
neighbors. First, we found that as introduced in Section 3.3.1.2, Monero clients
execute a gray list housekeeping protocol and an idle connections prevention pro-
tocol to evict inactive nodes from their peer list. As a consequence, the out-
bound neighbors of a node are often associated with the freshest last_seen in its
peer list, which enables the identi�cation of a node's neighbors from the mem-
bership messages it sends. Therefore, we conclude that the IP addresses of the
out-bound neighbors of the packet sender are included in the TCP packet that are
sent to its peers. The function peerlist_manager::set_peer_just_seen updates
the IP addresses in the peer list by updating the last_seen, using the instruction
ple.last_seen = time(NULL) by analyzing the Monero source code. This function
is triggered when an IP address is promoted from the gray_list to the white_list,
or when a node is connecting with the host.

3.3.2.3 Nodes discovery and connections inference

Our deployed nodes accept incoming connections and initiate outgoing connections
to receive TCP packets from other nodes. Let P = {P1, P2, P3, ..., Pj} be the set
of j TCP packets a collector receives from a reached node, such that each packet
Pk (k ∈ [1, j]) contains a set Ak = {Ak,1, Ak,2, Ak,3, ..., Ak,250} of IP addresses and
a set Tk = {Tk,1, Tk,2, Tk,3, ..., Tk,250} of last_seen timestamps.

NodeScanner. After having received a set P of packets from node N , NodeS-
canner identi�es the set A = {A1, A2, A3, ..., Aj} of included IP addresses, extracts
the set U = A1 ∪A2 ∪A3 ∪ ... ∪Aj of unique IP addresses from A, and inserts all

4https://www.tecmint.com/tcpflow-analyze-debug-network-traffic-in-linux/.
5https://nmap.org/.

36

unique IP addresses into the NodePool.

NeighborFinder. Our second tool aims at identifying a set Nk of neighbors
from each Pk (k ∈ [1, j]). Over the various packets P1 to Pj, it identi�es the overall
set of neighbors N = N1∪N2∪N3∪ ...∪Nj. In the following, we �rst indicate our
neighbors inference approach based on the time di�erence of the nodes' last_seen
timestamps in a single packet, and then re�ne this approach by relying on several
received packets.

Neighbors inference based on a single packet. For any received packet
Pk from a node N , we assume that it contains r < 250 neighbors. Because all
neighbors of N are updated at the same time, the neighbors of N tend to be the
�rst r adjacent IP addresses of Ak, and the di�erence between any two neigh-
bors' timestamps tends to be small. If we assume that there is a maximum time
di�erence µ6 between the timestamps of any two neighbors, then we can extract
a set N ′k = {Ak,i, Ak,i+1, Ak,i+2, ..., Ak,i+r−1| r ∈ [1, 250], i ∈ [1, 251 − r], ∀x ∈
[i, i+ r − 1], Tk,x − Tk,x+1 ≤ µ} of neighbors from Pk as shown in Algorithm 1.

Algorithm 1: Neighbors inference based on a single received packet

Input : Pk: Packets;
µ: The maximum time di�erence between the last_seen

timestamps of a node's neighbors;
Ak: the IP addresses of Pk;
Tk: the last_seen timestamps of Pk

Output: Neighbors set N ′k;
1 for (y = 1, y < 250, y++) do
2 if Tk,y - Tk,(y+1) ≤ µ then
3 N ′k ←− Ak,y
4 end

5 if Tk,(y+1) - Tk,(y+2) > µ then
6 N ′k ←− Ak,(y+1); break
7 end

8 end

Each node iteratively checks its connections through the IDLE_HANDSHAKE
procedure, which makes a node send SYN packets to all of its neighbors. Following
this procedure, the last_seen timestamps of handshaked neighbors are updated
with the current time if nodes can be contacted, otherwise connections are dropped.
This mechanism prevents idle connections to be maintained. However, the answers

6We set µ to the value of the IDLE_HANDSHAKE interval, i.e., 60 seconds.

37

Algorithm 2: Neighbors inference based on two received packets

Input : Packets Pk and P(k+1);
Ak, A(k+1): the IP addresses in Pk, resp. Pk+1;
Tk, T(k+1): the last_seen timestamps in Pk, resp. Pk+1;

Output: Neighbors set N ′′k ;
1 foreach Ak,y = A(k+1),z do

2 if Tk,y 6= T(k+1),z then

3 N ′′k ←− Ak,y
4 end

5 end

to the SYN packet can be received at a di�erent time, which leads to di�erent an-
swer delays. It is therefore necessary to set µ to a value that is large enough to
discover all neighbors, but small enough to limit false positives. This problem only
exists when we rely on a single packet to infer the neighbors of a target node, and
disappears when multiple packets are used.

Improved neighbors inference based on multiple packets. We have dis-
cussed how to infer a node's neighbors using a single packet. Now, we indicate
how to improve it by using multiple packets. We have received a set P of packets
from node N . During a connection with a node, it frequently happens that our
monitoring nodes successively receive multiple packets from a node. If an IP ad-
dress appears in successive packets, and its last_seen has been updated, then we
can conclude that the node corresponding to this IP address is a neighbor of the
sender. We use the set N ′′ = {Ak,y | ∃ y ∈ [1, 250], ∃ z ∈ [1, 250], Ak,y = A(k+1),z,
Tk,y 6= T(k+1),z, Ak,y ∈ Pk, Tk,y ∈ Pk, A(k+1),z ∈ P(k+1), T(k+1),z ∈ P(k+1)} to denote
the IP addresses that have been updated between packets Pk and P(k+1). We then
extract the neighbors of node N following Algorithm 2.

3.3.3 Experiments

This section describes our experimental settings, validation approach, data analysis
methods and results. We also discuss the potential threats of a network topology
exposure.

3.3.3.1 Settings

We deployed four full nodes in the Monero network: two in the U.S. (California and
Virginia), one in Europe (Luxembourg), and one in Asia (Japan). Each node ran
on an Ubuntu 16.04 machine with an Intel Xeon Platinum 8000 series processor.

38

We make use of the four nodes not only to collect data, but also to have access to
a ground truth and verify our neighbor inference algorithms.

We manually modi�ed the settings on our Monero nodes so that they could
establish the largest number of connections with other nodes. First, we set the
maximum number of incoming and outgoing connections to 99,999 to force our
nodes to actively search for new neighbors. Second, we modi�ed the number of
opened �les, socket receive bu�er, and socket send bu�er of used machines to
the maximum number (1,048,576, 33,554,432, 33,554,432 respectively) in order to
simultaneously maintain a large amount of TCP connections7.

We collected 510 GB of raw data containing 12,563,962 peer list messages (as
shown in Table 3.1). We extracted 21,678 IP addresses, which belong to 970 ASs8.
Out of these collected IP addresses, our nodes established connections with 3,626
peers, and identi�ed 703 peers to which no connection could not be established,
but that were active and connected to reached nodes. We say that peers are active
and reachable if our nodes can establish connections with them. We say peers are
active but unreachable if they are connected to nodes we connected to and if a
connection could not be established with them. We say a peer is inactive if it is
neither connected to our nodes, nor connected to responsive peers. If our nodes
were not able to connect to a peer, then it either meant that the peer was already
fully connected during the data collection, or that it was o�ine. To reduce the
number of possible false negatives, we consider that a peer is o�ine if the peer is
not connected to our nodes or to the neighbors of our nodes, and if their last_seen
has not been updated during the data collection process.

Table 3.1: Data collected from Tokyo (T), Luxembourg (L), California (C), and
Virginia (V)

#Received Peer List Messages Node Connection

T: 1,971,514; L: 2,308,968
C: 3,892,225; V: 4,391,255

IP Addresses ASN Host Level AS Level

21,678 970 338,023 87,013

3.3.3.2 Validation

We used the node in Luxembourg to establish three connections with the nodes
in California, Virgina, and Tokyo respectively. We compared the identities of the
nodes identi�ed by NeighborFinder as neighbors with the ground truth of our
deployed nodes. Since the payload data of membership messages can contain at
most 250 IP addresses, a part of a node's neighbors could not be observed in a single

7We use tcp�ow (a linux network monitoring tool) to capture the TCP packets
8We use the whois (https://www.ultratools.com/tools/ipWhoisLookup) database to �nd the

ASN for each IP address.

39

message when it maintained more than 250 outgoing connections. Therefore, we
speci�cally set up a node maintaining more than 250 outgoing neighbors in Tokyo
to verify our algorithms. The validation reported a precision of 100% with 97.98%
recall (i.e., all inferred neighbors were real neighbors, and 2.12% of the nodes
identi�ed as Non-neighbors were false negatives) when the number of neighbors
is smaller than 250, and a precision of 100% with 93.79% recall for the node in
Tokyo.

3.3.3.3 Measuring the network coverage

Previous tools [111, 112, 49, 41] relied on the number of reached nodes to es-
timate their network coverage in Bitcoin and Ethereum. However, unreachable
active nodes, which are also a part of the nework, have been overlooked by these
tools. In this section, we introduce our method, which takes unreachable nodes
into account, to estimate the network coverage. We show the e�ectiveness of our
tools by comparing our results with the data provided by the MoneroHash mining
pool [110].

NeighborFinder determined the neighbors of reached nodes even when it was
not possible to contact them. This allowed us to:

• identify the fully connected nodes. When a node has reached its maxi-
mum number of incoming connections, it does not accept any new inbound
neighbor. In this case, previous approaches cannot identify these fully con-
nected active nodes. However, NeighborFinder can discover them through
the connections they have established with reached nodes.

• estimate the network size by observing the proportion of unreached
active nodes. Unfortunately, there is no ground truth to validate the net-
work size in permissionless blockchains. We use num. unreached active nodes

num. collected nodes
∈

[0, 1] as a metric to estimate the proportion of the Monero network that has
been reached. In practice, our tools have discovered almost all long-term
running nodes in the network when the new reached nodes cannot present
information about any new nodes. The overall proportion of unreached ac-
tive nodes is illustrated in Figure 3.3(d). When the new reached nodes
could not bring the unknown nodes, which means, most of long-term run-
ning nodes have been connected, the proportion of unreached active nodes
num. unreached active nodes

num. collected nodes
stabilizes. On the other hand, new participants might

a�ect the proportion of unreached nodes mainly due to the unmeasured net-
work churn. For instance, the new joiners obeying the default number of
connections could be connected with: our collectors or the reached nodes,
which can increase the number of collected nodes or the number of unreached

40

nodes. However, the new joiners can only present themselves to our collec-
tors as long as most of long-term running nodes have been connected. Thus,
this can not decrease/increase the proportion of unreached active nodes too
much. In this thesis, the measured network size of Monero is based on the
active long-term running nodes and the observed new participants, which
could be reachable or unreachable.

0 20 40 60 80 100 120 140 160 180

Data collection (hours)

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

co
lle

ct
e
d
 n

o
d
e
s

California

Tokyo

Luxembourg

Virginia

Total

(a) Collected nodes.

0 20 40 60 80 100 120 140 160 180

Data collection (hours)

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

re
a
ch

e
d
 a

ct
iv

e
 n

o
d
e
s

California

Tokyo

Luxembourg

Virginia

Total

(b) Reached active nodes.

0 20 40 60 80 100 120 140 160 180

Data collection (hours)

600

700

800

900

1000

1100

1200

N
u
m

b
e
r

o
f

u
n
re

a
ch

e
d
 a

ct
iv

e
 n

o
d
e
s

California

Tokyo

Luxembourg

Virginia

Total

(c) Unreached active nodes.

0 20 40 60 80 100 120 140 160 180

Data collection (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

p
o
rt

io
n
 o

f
u
n
re

a
ch

e
d
 a

ct
iv

e
 n

o
d
e
s

California

Tokyo

Luxembourg

Virginia

Union

(d) Proportion of unreached active nodes.

Figure 3.3: Analysis of the collected IP addresses during the data collection pro-
cess.

We present the data collection statistics in Figure 4.7, where we respectively
show the data collected by the node in California in red, Virginia in black, Japan
in yellow, and Luxembourg in green. The total number of reached nodes is repre-
sented in blue. Figure 3.3(a) shows the number of discovered peers. Figure 3.3(b)
shows the number of active nodes connected to our servers. Figure 3.3(c) shows
the number of active but unreachable peers. Figure 3.3(d) shows the evolution of

41

proportion of unreached active peers. After the �rst 80 hours, the proportion of
unreached active nodes are stabilizing, which means that our toolset has detected
almost all the long-term running active nodes. Thus, it is likely that the Monero
network contains around 2,758 active nodes per day as shown in Figure 3.4. Com-
pared with Monerohash [110], which discovered 1,635 active nodes in average per
day, the number of active nodes we discovered is 68.7% higher than the number
reported by the MoneroHash mining pool. To the best of our knowledge, Monero-
hash is the only Monero mining pool providing information related to the number
of active nodes in the network. Moreover, the number of daily active nodes in
Bitcoin [111] and Ethereum [112] is estimated to be close to 10,000. It is not a
surprise to see that Monero has far less daily active nodes than those two more
largely used cryptocurrencies.

12/24 12/25 12/26 12/27 12/28 12/29 12/30

Date

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

n
o
d
e
s

Discovered active nodes by NeighborFinder

Discovered active nodes by MoneroHash

Figure 3.4: Active nodes discovered daily by NeighborFinder and MoneroHash.

3.3.3.4 Node distribution

In a cryptocurrency P2P overlay, di�erent nodes play di�erent roles and exhibit
various connectivities in a real world implementation. It is essential to analyze
how nodes are connected and located in the network to measure the resilience of
the blockchain systems to network level attacks, which are surveyed in Section 2.2.
In this section, we present the experiment results regarding to peer freshness,
connectivity, and node distributions alongside with their implications.

Peer freshness. Our approach shows that only about 20% (i.e., 4,329) of the
discovered nodes were active, and the remaining nodes were o�ine during the data
collection period. This indicates that a majority of the exchanged IP addresses

42

Figure 3.5: Snapshot of the Monero network obtained after one hour. Each dot
represents a Monero node, whose darkness is proportional to the number of con-
nections it maintains. The lightness of lines denotes their uptimes.

are inactive in Monero's network, and might decrease the network connectivity.

Connectivity. We say that a node is of degree N if it maintains at most
N outgoing connections. We classify active nodes into three categories based on
their degree: light node (degree≤8), medium node (8<degree≤ 250), and heavy
node (degree>250). As shown in Table 3.2, most of the nodes (86.8%) collectively
maintain only 17.14% of the connections, while the remaining 13.2% of the nodes
maintain 82.86% of the connections. Here, we point out that a node's degree is
in�uenced by two factors:

• Active factor. A node's degree is mostly controlled by the end user who
is allowed to modify the maximum number of established connections. We
found that most of the nodes kept the default 8 outgoing connections during
one week. Interestingly, a number of nodes started from 8 outgoing con-
nections, and then increased up to 250, which means that they joined the
network during our data collection period, and then the users modi�ed their
maximum number of connections.

• Passive factor. The capacity of the host machine may limit the maximum
concurrent connections a node can maintain. For instance, without the active
limit, the front-end node of a mining pool may be able to maintain more than

43

1,000 concurrent connections.

On the other hand, Monero has hardcoded 8 seed nodes in the system, and we ini-
tially suspected that all of them would be heavy nodes. Our experiments showed
that only 3 of the seed nodes were active, and that two of them were heavy nodes,
while another one was a medium node. Later on, we contacted the Monero team
for clari�cation, and they con�rmed that 5 seed nodes were not available9.By com-
paring the discovered heavy nodes with public Monero mining pools10 and seed
nodes11, we found that 9 heavy nodes are maintained by mining pools, and that
2 heavy nodes are Monero seed nodes. Due to the lack of public information, we
could not identify the other 17 heavy nodes. However, we assume that the remain-
ing unidenti�ed heavy nodes are likely to be the front-end nodes of private mining
pools.

Table 3.2: Number of active nodes in the ConnectionPool.

Light nodes Medium nodes Heavy nodes Total

Reached 3146 (86.8%) 452 (12.5%) 28 (0.7%) 3626
Unreached - - - 703
Total 3146 452 28 4329

Snapshot of the Monero network topology. We collected snapshots of the
network topology thanks to the ConnectionPool, which continuously records the
connections' updates. Those snapshots provide useful information concerning the
network structure. We represent a one hour snapshot of the Monero network
topology observed on 12/24/2018 in Figure 3.5. It is obvious that an user's IP
address is exposed along with its connections. This leaves a chance for the ad-
versary to identify di�erent roles (miner or client) in the network depending on
their connectivity. On the other hand, we hypothesize that the vast inequality
of node connectivity (In our experiment, the heaviest node could maintain more
than 1000 connections, the lightest node just maintain 8 connections) might lead
to network vulnerabilities [113], where the high degree node could signi�cantly
a�ect low degree node to select neighbors.

Geographic distribution. We present in Figure 3.6 the location of the Monero
nodes depending on their classi�cation. Approximately 50% of the heavy nodes,
which are likely the mining pools, are located in the US, while the light nodes,
which are likely clients, are more evenly distributed around the world.

9https://github.com/monero-project/monero/issues/5314.
10http://moneropools.com/.
11https://github.com/monero-project/monero/blob/577a8f5c8431d385bf9d11c30b5e3e8855c16cca/

src/p2p/net_node.inl.

44

USA
33.32 %

Germany
7.68 %

Russia
6.54 %

China
5.87 %

Canada
4.70 %

France
3.49 %

Netherlands
2.38 %

Australia
1.84 %

Others
34.18 %

(a) Light nodes.

USA
37.39 %

Germany
10.40 %

France
10.18 %

Canada
5.97 %

Russia
4.65 %

Netherlands
4.20 %

China
2.88 %

Ukraine
2.65 %

Others
21.68 %

(b) Medium nodes.

USA
50.00 %

France
17.87 %

Germany
10.71 %

Ukraine
3.57 %

Slovakia
3.57 %

Portugal
3.57 %

Japan
3.57 %

Finland
3.57 %

China
3.57 %

(c) Heavy nodes.

Figure 3.6: Nodes location distribution

45

Degree distribution. Monero's peer-to-peer network is unstructured, permis-
sionless and very dynamic. In particular, a node is allowed to change its neighbors
as we analyzed in Section 3.3.1. To further analyze how nodes are connected over
time, we counted the numbers of neighbors of active nodes during one week, and
plot their distribution in Figure 3.7. The blue dots represent the distribution of
outgoing neighbors of the nodes. The results indicate that a small fraction of the
nodes have more than 1000 outgoing neighbors, while a large fraction of nodes
have less than 100 outgoing neighbors. The red dots represent the distributions of
both incoming and outgoing neighbors. Comparing with the blue dots, one can see
that the node with a large number of outgoing neighbors are likely to maintain a
large number of incoming neighbors as well. More importantly, the small jumps in
both blue and red dots indicate that a number of nodes have not kept the number
of connections �xed by default in order to gain a better connectivity. We point out
that this is an unique feature of Monero, which implies a high network dynamism.

100 101 102 103 104

of neighbors

10-4

10-3

10-2

10-1

100

Fr
a
ct

io
n
 o

f
n
o
d
e
s

Outgoing Neighbors

Outgoing Neighbors and Incoming Neighbors

Figure 3.7: Number of outgoing neighbors of heavy, medium, and light nodes.

3.3.3.5 Potential threats

Using our tools, one can identify Monero's network topology and the connectivity
of nodes. An example is shown in Figure 3.8, which illustrates the neighbors
of a light node (5.X.X.X)12 during the 9-hour monitoring process. Each color
represents a neighbor of the node. It shows that neighbor 1-6 stayed connected
with the node for the entire 9 hours, whereas the connection with neighbor 7 is
dropped around the 8th hour, and a connection with neighbor 11 was established
to replace neighbor 7. Similarly, a connection with neighbor 9 was established to
replace neighbor 8 after 3 hours.

12Hidden IP address to protect the privacy of this light node.

46

100 200 300 400 500 600
Life time (minutes)

neighbor 1

neighbor 2

neighbor 3

neighbor 4

neighbor 5

neighbor 6

neighbor 7

neighbor 8

neighbor 9

neighbor 10

neighbor 11

Figure 3.8: Dynamic neighbor tracking of a light node in 9 hours.

With such knowledge, an attacker can potentially launch di�erent types of
attacks. For example, an attacker could launch a targeted attack by monopolizing
all connections of a victim node [12], selectively partition the network [11], or even
deanonymize transactions by identifying the �rst node relaying a transaction [79,
101].

3.3.4 Implications and Insights

In this section, we presented methods that we developed to observe Monero's peer-
to-peer network, and infer its topology. We described how one can deploy Monero
nodes to discover all the nodes participating in the protocol, and their interconnec-
tions, using the last_seen timestamps in the peer lists that nodes exchange. For
accuracy, we compared our methods' results with the ground truth of our deployed
nodes. Our experiments show that even though Monero is a privacy-preserving
cryptocurrency, it is still possible to accurately discover the nodes in the network
and their interconnections. Our analysis provides insights about Monero's degree
of centralization, and about the privacy and security issues potentially caused by
a network topology exposure.

47

48

Chapter 4

Characterizing the Impact of

Network Delay on Bitcoin Mining

While previous works have discussed the network delay upper bound that guar-
antees the consistency of Nakamoto consensus, measuring the actual network la-
tencies and evaluating their impact on miners/pools in Bitcoin remain open ques-
tions. This chapter �lls this gap by: (1) de�ning metrics that quantify the impact
of network latency on the mining network; (2) developing a tool, named miner
entanglement (ME), to experimentally evaluate these metrics with a focus on the
network latency of the top mining pools; and (3) quantifying the impact of the
current network delays on Bitcoin's mining network. For example, we evaluated
that Poolin, a Bitcoin mining pool, was able to gain between 0.5% and 1.9% of
blocks in addition (i.e., from 36.27 BTC to 137.83 BTC) per week thanks to its low
network latency. Moreover, as pools are rational in Bitcoin, we model the strategy
a pool would follow to improve its network latency (e.g., by leveraging our ME
tool) as a two party game. We show that a Bitcoin mining pool could improve its
e�ective hash rate by up to 4.5%. For a multi-party game, we use a state-of-the-art
Bitcoin mining simulator to study the situation where all pools attempt to improve
their network latency and show that the largest mining pools would improve their
revenue and reach a Nash equilibrium while the smaller mining pools would su�er
from a decreased access to the network, and therefore a decreased revenue. These
conclusions further incentivize the centralisation of the mining network in Bitcoin,
and provide an empirical explanation for the observed tendency of pools to design
and rely on low latency private networks.

49

4.1 Bitcoin Mining Process and Network

In this section, we recall the basic concepts of Bitcoin mining, which explain why
the generation times of blocks �uctuates. We then introduce the core concepts
behind PoW cryptocurrency networks, which disseminate blocks to all miners with
variable delays.

4.1.1 Mining Process

Mining is a trial-and-error process. From a candidate set of transactions, miners
assemble a block and use their processors to identify a hash that is smaller than a
target value1. Upon �nding such a hash, a miner has successfully created a block.

Mining as a Poisson process. In practice, the discovery rate of blocks is not
constant. Many works have captured this variation by modeling the PoW mining
process as a Poisson process [8, 33, 34, 35], where the success rate λ corresponds
to a block being generated every 10 minutes in average. The probability density
function of a Poisson process is P (X = x) = λxe−λ

x!
.

Block interval distribution. By modeling Bitcoin mining as a Poisson pro-
cess, the block generation interval follows an exponential distribution [8, 34], whose
probability density function is G(t) = λe−λt, where t denotes the block interval
between two adjacent blocks and λ is the average success rate. We present in
Section 4.3 the empirical distribution of the Block receptions we observed during
our experiments.

4.1.2 PoW Cryptocurrency Network

A PoW cryptocurrency network consists of a P2P overlay that interconnects solo
miners and mining pools. This network disseminates the newly found blocks to all
miners. To clarify the di�erence between the P2P overlay and the intra network
of mining pools, we use mining pools and miners to denote the nodes of the P2P
overlay, and sub-miners to denote the miners located within the mining pools.

P2P overlay network. The P2P overlay network mainly consists of full nodes2

and client nodes. Each node maintains a peer list and periodically exchanges
information with other peers to keep it up-to-date and to disseminate blocks and
transactions. The solo miners could also be full nodes. The mining pools normally
maintain some full nodes in the P2P overlay as the front end to exchange messages
with other pools/miners. The main properties of cryptocurrency P2P networks
have been widely studied [34, 43, 48, 21], such as their network size, node degree
distribution, and connectivity. Existing measurements (as we have introduced in

1https://en.bitcoin.it/wiki/Block_hashing_algorithm
2https://bitnodes.io/

50

Chapter 2.5) rely on the P2P overlay network to evaluate the block propagation
delay, which cannot re�ect the delays of pools, mainly because of the unknown IP
addresses of pools' front-end nodes and network churn.

Intra network of mining pools. As the mining di�culty increases, the rev-
enue of miners that have a small hash power becomes more irregular. To com-
pensate this e�ect, miners can join mining pools. The block rewards that are
collectively earned by the members of a mining pool are shared among them ac-
cording to their participation. The internal networks of mining pool usually work
as client-server infrastructures. A mining pool uses some dedicated servers to
manage its sub-miners. The sub-miners are only connected with those servers
who assign them jobs and inform them of the new blocks. When a sub-miner has
�nished a job, it sends its result to the servers. The mining pools also maintain
front-end nodes in the P2P network to exchange messages with other miners and
pools. The most popular protocol used by mining pools is Stratum [47].

4.2 Quantifying the Impact of Network Delay on

Mining

This section de�nes metrics to evaluate the impact of network latency on mining.

4.2.1 Mining and latencies

The mining process of a miner can be decomposed in three successive phases,
among which the �rst and the last are a�ected by the miner's access to the network.
We illustrate those phases in Fig. 4.1.

1. New block reception. Once a block has been discovered by a miner in the
network, it is transmitted to the whole network. The delay between the
discovery of a block and its reception by a miner is the block reception latency
of this miner on this block. In Fig. 4.1, dBR(3, 1) is the block reception latency
of miner 3 on block 0, whose reception allows it to work on block 1. The
sooner a miner receives a block the sooner it can start attempting to solve
the cryptographic puzzle.

2. Cryptographic puzzle solving. Based on the new block, miners compute
hashes to try to discover the next block, by attempting to solve the mining
cryptographic puzzle. During this phase, which lasts until the next block
is found in the network, miners are doing e�ective work. The number of
hashes they can generate is the product of their computing power, expressed
in hashes per second, and the time they dedicate to mining the current block.

51

m1

m2

m3

m4

m5

B0

B1 B2

B2'

Figure 4.1: Network in�uence on the mining process in PoW-based cryptocur-
rencies. dBR represents the block reception latency, and dBI denotes the block
interval.

In Fig. 4.1, dBI(1)−dBR(3, 1) is the time of e�ective work of miner 3 on block
1, and dBI(1)− dBR(5, 1) is the time of e�ective work of miner 5 on block 1.
In this example dBR(3, 1) < dBR(5, 1), which means that miner 3 has worked
more e�ectively than miner 5 on block 1.

3. Next block dissemination. After a new block has been discovered, it has to
be disseminated to the nodes who collectively account for more than 50% of
the global hash power to be validated. The position of a node in the network
in�uences the probability with which a new block is validated when several
blocks are simultaneously discovered.

4.2.2 Block reception latency and e�ective hash rate

Miners might receive a newly found block at di�erent times, which might lead
those that receive a block after the others to waste hashing power on an already
solved cryptographic puzzle. Because of this e�ect, two miners with equal hash
power might consistently earn di�erent revenue. The e�ect of the network latency
on mining is particularly acute when a block is discovered in a short time, which
happens in practice as captured by the Poisson distribution of mining process.

Obtaining the hash rate distribution in the network is di�cult, as miners and
pools do not reveal their real-time hash power and because the network is under
constant evolution. It is therefore challenging to evaluate the impact of the mining

52

network on miners based on the hash rate distribution and on statistics about
block discoveries. We instead de�ne the e�ectiveness ratio metric to evaluate
the e�ectiveness of an individual miner independently of the global hash rate
distribution as follows.

We consider a (snapshot of a) mining network of N miners. Let Hi be the
hash rate of miner i ∈ [1, N], dBI(j) be the block generation interval between the
(j − 1)th block and the jth block (i.e., the length of time between the generation
of the (j − 1)th and jth block), and dBR(i, j) be the block latency of receiving the
(j − 1)th block at miner i.

Effectiveness ratio. The e�ectiveness ratio fi,j of miner i on the jth block is(
1− dBR(i,j)

dBI(j)

)
∈ [0, 1].

The e�ectiveness ratio of a miner on a block is the proportion of time it can
compute hashes during the associated block interval. An e�ectiveness ratio close
to 1 indicates that miner i is well positioned in the network. This formula cap-
tures the fact that a mining pool that quickly receives a block and starts early to
mine the next block has an advantage over the other pools, which receive the same
block later. Moreover, since dBI follows an exponential distribution (the proba-
bility density function G0(t) = λ × e−λ×t, where λ ≈ 1

600
in Bitcoin) [8, 34], the

e�ectiveness ratio of a miner di�ers depending on the blocks. For instance, even
though the expected dBI in Bitcoin is 600 seconds, 1.65% (G0(10)) of the blocks
are such that dBI < 10 seconds, 8.0% (G0(50)) are such that dBI < 50 seconds,
and 15.3% (G0(100)) are such that dBI < 100 seconds. A few seconds delay in
the reception of a block can signi�cantly a�ect the e�ective hash rate of miners in
some block rounds, and drift their revenue share.

We capture the impact of heterogeneous delays on the whole network over
the jth block using a 2-tuple (Gj, Dj), where Gj ∈ [0, 1] is the Gini coe�cient
gini(f1,j, f2,j, ..., fn,j) [114] and Dj ∈ [0, 1] is the di�erence between the highest
and the lowest e�ectiveness ratio observed among miners on block j. A small
Gj indicates that the miners have in average similar e�ectiveness ratios over the
jth block, while a larger Gj shows unfairness. D indicates the amplitude of the
distribution of e�ectiveness ratios. Note that the Gini coe�cient alone describes
the degree of inequality of a distribution, and that we use D to provide additional
information.

We de�ne the e�ective hash rate (EHR) using the e�ectiveness ratio, as follows.

EHR. The e�ective hash rate EHR(i, j) of miner i on the jth block is equal to

Hi

(
1− dBR(i,j)

dBI(j)

)
∈ [0, Hi].

53

The e�ective hash rate EHR(i, j) of a miner i corresponds to the number of
hashes it is able to compute after having received block j − 1 and before block j
is discovered.

4.2.3 Impact of heterogeneous network delays on revenue

The competitiveness of a miner or a pool in the mining race not only depends on
its hash rate, but also on its network delay. In the following, we detail how the
block revenue of a miner is in�uenced by the heterogeneous delays.

HR Share. The hash rate share HR Sharei of miner i is
Hi∑N
k=1Hk

∈ [0, 1].

The HR Share of miner depends on its real hash rate and on the global hash
rate. Without considering the impact of network delay, the mining success rate of
a miner is equal to its HR Share. However, we take the impact of network delay
into account to evaluate a miner's success rate and de�ne the EHR Share as follows.

EHR Share. The e�ective hash rate share EHR Sharei of miner i is
Hi×fi∑N

k=1(Hk×fk)
∈

[0, 1].

The revenue of a miner is determined by its EHR share, which in turn depends
on its hash rate and on the network delays. We use this metric to further evaluate
the impact of network delays on the revenue distribution.

4.3 Measurement and Evaluation

To evaluate the impact of network latency on mining, we develop a tool called
Miner Entanglement (ME) to monitor the block reception latency of mining pools.
ME leverages the mining pools' API to measure the time it takes for the mining
pools to learn about newly discovered blocks. We deploy Bitcoin nodes running
ME and quantify the impact of network delays with the metrics that we de�ned
in Section 4.2.

4.3.1 Leveraging the API of mining pools

Miner Entanglement (ME) uses BFGminer [115] to build direct TCP connections
between a local machine and mining pools. More speci�cally, we deploy ME in
our local machine, which is registered as sub-miners in several mining pools. Since
the pools recognize a ME-empowered node as a sub-miner, they directly inform

54

the ME-empowered node with the information about new blocks. This enables
us to estimate the block reception delays of the mining pools. We connected to
10 Bitcoin mining pools, which we list in Table 2.2. Collectively, these pools
own approximately 69.88% of the global computing power. We could not establish
connections with the pools that own the remaining 30.12% of the global computing
power because they either do not accept non-ASIC devices, or because they could
not be identi�ed.

Pool A

Pool B

Pool C
M1

Pool D

P2P overlay network

P2P Channel
ME Channel

M2

M3

Figure 4.2: Illustration of the miner entanglement design. Pool D registers three
sub-miners M1,M2, and M3 in Pool A, Pool B, and Pool C respectively. This
allows Pool D to receive the information from other pools directly, thus, avoiding
the delay of the P2P overlay.

We illustrate the design of ME in Figure 4.2 where Pool D represents our
local machine, and where we deploy sub-miners in pools A, B, and C to receive
block discovery information directly via the ME channels (which are established
directly between our machine and the pools). We also run a full Bitcoin node on
our machine using the default P2P protocol to evaluate the latency of a normal
Bitcoin full node via the P2P channel (which is randomly built between peers)
as a comparison. We use an Ubuntu 16.04 desktop with an Intel Core i7-7700
processor.

We run ME for an entire week and have collected discovery noti�cations related
to 1,116 blocks (from block 641,767 to 642,882), which represented 68.1 MB of data
overall. From this dataset, we report raw data such as the block intervals and the
block reception delays. We then evaluate the impact of network delays on Bitcoin

55

0 200 400 600 800 1000 1200

Block height

0

100

101

102

103

104

T
im

e
 (

s)

d_BI

Max
Med
Min

0 200 400 600 800 1000 1200

Block height

0.2

0.4

0.6

0.8

1.0 D
1-G

0 1000 2000 3000 4000 5000

Block interval (s)

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

b
lo

ck
s

Figure 4.3: Results of measurement in Bitcoin. The top �gure shows the block
interval dBI , and the maximum Max, median Med, and minimum Min block
reception latency among 10 pools from block 641,767 to 642,882. The middle �gure
indicates the changes of (G,D) between 10 pools during a week. The bottom �gure
shows that the block interval follows the exponential distribution during a week.

56

mining by using our metrics.

4.3.2 Discussion

We estimate the mining power by using the number of blocks created by each
miner, evaluate the e�ect of e�ectiveness ratio on mining, and infer the revenue
bounds of di�erent pools via Monte Carlo simulation.

For each pool we managed to use ME with, we use half of the round trip time
(as which has been used in other works [48, 44]) between our machine and the
mining pool, i.e., RTT

2
, to estimate the time needed for a mining pool to receive a

block and start sending it to its sub-miners. We obtain the round trip time with
the ping command, which uses ICMP packets. We calculate the block sending
time of the target pool using the block reception time of our sub-miner minus the
block propagation delay. We therefore assume that the pools relay new blocks to
their sub-miners as soon as they learn about them. This assumption is reasonable
as mining pools are rational and aim to increase their revenue.

The mining pools with which we were able to establish a ME channel with col-
lectively own approximately 69.88% of the network hash power. We evaluate the
e�ectiveness ratio of the miners that own the remaining 30.12% considering three
scenarios depending on whether: i) they use a Bitcoin full node; ii) their connec-
tivity is close to the average connectivity of the pools we established connections
with; and iii) they use ME. This allows us to present an interval of realistic values.

The e�ectiveness ratio of the pools would be a�ected when concurrent blocks
are discovered simultaneously. In this case, the pools that had worked on the
stale block wasted their hash power, and decreased the e�ectiveness ratio. The
probability for this to happen in Bitcoin is low (0.41% in 2016) [16]. During our
one week measurement in August 2020, we did not �nd any stale block. Therefore,
we do not consider the impact of stale blocks in this thesis.

4.3.3 Block reception latency and block interval

At the top of Fig. 4.3, we report the minimum, median and maximum latencies that
we observed for each block. We also report the block intervals (with stars in blue),
which in average were equal to 600s, as expected. In a week of measurement, each
block was received by half of the pools in less than 1 second (as indicated by the red
line that indicates the median). However, some pools su�ered more than 10 seconds
of delay in some mining rounds (as the line that represents the maximum value
indicates). The 1s median block reception latency that we measured through ME
is similar to the block propagation delay to 50% reachable nodes in Bitcoin network
that is reported by KIT [49]. However, we observed a maximum block reception
latency of 13.76 seconds, which is higher than their reported block propagation

57

delay of 90% reachable nodes (less than 5s). This di�erence of block reception
latency between pools leads to di�erent e�ective hash rates, and its impact on the
e�ective hash rate is ampli�ed in the mining rounds with short block intervals.
For instance, in some cases mining pools have completely missed the chance to
mine a block as the block reception latency was greater than the block interval
(as indicated by the crossing points between dBI and Max). That is, before they
have received a block, the next block had already been produced. The bottom of
Fig. 4.3 reports the distribution of block intervals during one week, which seems
coherent with the expected exponential distribution.

4.3.4 E�ectiveness ratio

10-2 10-1 100

Effectiveness ratio (f)

10-4

10-3

10-2

10-1

100

C
D

F

Poolin

f2pool

BTCcom

1thash

bitcoin.com

huobipool

novablock

okpool

kanopool

viabtc

full node

ME channel

Figure 4.4: CDF of the observed e�ectiveness ratio of several Bitcoin mining pools
during one week. The legend denotes the name of the mining pools, except for �full
node", which represents the Bitcoin full node we maintained, and �ME channel"
represents the results obtained with ME.

We calculate the e�ectiveness ratio of each pool on each of the blocks to analyze
the impact of heterogeneous block reception delays in detail. First, Fig. 4.4 shows
the CDF of the e�ectiveness ratios for each of the 10 pools. Each distribution
shows how the e�ectiveness ratio of the pools varies during a week. For instance,
the e�ectiveness ratio of �BTC.com� was smaller than 90% on 34 blocks during

58

a week, which decreased its competitiveness in the mining competition. As a
comparison, the default Bitcoin full node had the worst e�ectiveness ratio (95.2%
in average), and our node had the highest e�ectiveness ratio (99.7% in average)
thanks to the ME channels. The average e�ectiveness ratio of connected pools
is distributed between 96.2% to 99.2%. We evaluate the consequences on the
revenue of mining pools in the next section. Second, for each block, we plot the
Gini coe�cient G and the maximum di�erence D between the pools' e�ectiveness
ratios to illustrate the di�erence in the e�ective hash rate in the middle �gure of
Fig. 4.3. Notice that for better readability we plot 1−G instead of G. The average
Gini coe�cient was approximately equal to 0.011, which indicates a small average
deviation between the 10 pools. However, we also observed that D > 0.2 for 9.3%
of blocks, which means that some pools could work more e�ectively than others
on the corresponding blocks, which in turn in�uenced their revenue.

4.3.5 Impact of block intervals on e�ectiveness ratios

As we have shown in Fig. 4.3, the block reception latency has an impact over the
duration of a block interval and modi�es the e�ectiveness ratio. Here, we study the
pools' e�ectiveness ratio on blocks with di�erent interval delays. We calculate the
average e�ectiveness ratio of pools for di�erent ranges of block interval, and illus-
trate the result in Fig. 4.5. The main observation one can make is that pools have
smaller e�ectiveness ratio on the blocks with short generation times. For instance,
the average e�ectiveness ratio of �BTC.com� is 97.39%, 96.12%, and 92.61% on the
blocks with generation time ≤ 4717 seconds (the maximum block interval), < 600
seconds, and < 200 seconds respectively. We then use the actual blocks to evaluate
the e�ect of e�ectiveness ratio. As shown in Tab. 4.1, we collected 1,116 blocks
during one week. The revenue distribution was the following: �Poolin� earned
14.53% of blocks, �F2Pool� earned 14.26%, �BTC.com� earned 12.20%, �Huobi�
earned 8.97%, �1THash� earned 7.00%, �OKpool� earned 6.64%, �ViaBTC� earned
5.47%, and �Novapool� earned 0.81%. �bitcoin.com� and �kanopool� did not get
any block during one week. The pool's revenue share was a�ected by the block
interval. When dBI < 200, the actual revenue share of �BTC.com� was 10.8%,
which represents a 13.11% decrease from 12.20%. This decrease is explained by
the observations in Fig 4.4 and Fig 4.5, where �BTC.com� had the worst average
e�ectiveness ratio during one week, in particular on the blocks with block intervals
lower than 200 seconds. To evaluate the revenue losses or gains associated to the
e�ectiveness ratio changes, we use the EHR Share metric to infer the bounds on
revenue share of pools in Section 4.3.6.

59

Poolin F2Pool BTC.com Huobi 1THash OKpool ViaBTC

Pools

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

f

dBI < 200

dBI < 600

dBI ≤ 4717

Figure 4.5: E�ectiveness ratio of mining pools with three ranges of block intervals.

4.3.6 Inferring the revenue bounds

To exactly evaluate the impact of network delays on the revenue distribution, one
would need to know the real hash rate distribution, and evaluate the EHR Share. It
is however challenging to obtain the actual hash rate distribution. Our approach to
evaluate the impact of network delays on miners revenue follows the one developed
in previous works [15, 16]: (1) we calculate the hash rate distribution based on
the discovered blocks; (2) we consider the impact of network delay on the mining
process; (3) we use a Monte Carlo method to simulate 10K blocks to evaluate the

Table 4.1: Distribution of blocks during one week.

Poolin F2Pool BTCcom Huobi 1THash
dBI<200 47 45 35 39 18
dBI<600 111 107 77 63 42
In total 163 159 136 101 78

OKpool ViaBTC Nova
dBI<200 20 17 1
dBI<600 43 33 8
In total 74 61 9

60

revenue distribution. We calculate the revenue drift rate as EHR Share−HR Share
HR Share

.
A positive value indicates extra earnings, while a negative value shows a loss.
Figure 4.6 shows the revenue drift rate per mining pool depending on the assump-
tions one could make regarding the proportion of the global hash rate we could
not connect establish ME channels with.

Most of the top mining pools could earn more than 1% of extra blocks if we
assume that the remaining 30.12% computing power only use a Bitcoin full node
(funknown = 0.952), except for the 3th pool (BTCcom) whose revenue drift rate
is smaller than 0 due to the deviation of f as we have indicated in Fig. 4.4. It
is interesting to note that when the remaining 30.12% computing power have a
connectivity that is equal to the mean of the pools we connected to (funknown =
0.989), the 3rd pool �nds 1.7% less blocks, and the 6th pool �nds 0.3% less blocks,
while the other pools' drift rate is still positive (between 0 and 1%). When the
unknown 30.12% computing power uses ME (funknown = 0.997), the revenue of the
8 connected pools decreases, as one could assume. However, even in that scenario
some mining pools have an increased revenue, which con�rms that some mining
pools have exceptionally good network connectivity. The fact that some mining
pools use di�erent methods to optimize their connectivity [43, 116] could explain
this observation.

4.4 The Impact of Large Scale Deviations

We have shown in the previous section that the miners that do not optimize their
connections have a disadvantage in the mining network. In this context, a rational
miner would try to improve its network access. This section discusses the situation
where miners would massively decide to deviate from the o�cial P2P protocol to
try to improve their revenue. Assuming such a scenario, we �rst show that the top
miners would reach a Nash equilibrium as they would connect to each other, while
the rest of the network would not be able to do so. We conduct a simulation using
1,000 miners on a state-of-the-art mining simulator [16] to evaluate the resulting
metrics.

4.4.1 Nash equilibrium among the biggest mining pools

We consider a network with N nodes V = {0, · · · , N − 1} that includes mining
nodes and non-mining nodes. If node i uses a strategy si to select a subset of V
as its neighbors, then its strategy space, i.e., the universe of possible neighbors
sets, can be denoted as Si = 2V \{i}. For i ∈ V , it may use di�erent strategies
s0, · · · , sx, · · · , sn−1 to select its neighbors. Therefore, we would obtain graph

61

1 2 3 4 5 6 7 8 9

Pool ID

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

D
ri

ft
 r

a
te

 o
f

re
v
e
n
u
e

funkown = 0. 952(sim)

funkown = 0. 989(sim)

funkown = 0. 997(sim)

Figure 4.6: The bounds of mining fairness in Bitcoin. The drift rate of revenue
is calculated by using EHR Share minus HR Share, and validated through the
revenue share. The x-axis represents di�erent mining pools. From left to right:
Poolin, F2Pool, BTCcom, 1THash, Huobi, Novapool, OKpool, ViaBTC and the
last one represents the remaining mining power.

G[s] = (V,
n−1⋃
i=0

({i} × si), where (s0, s1, ..., sx, ..., sn−1) ∈ S0 × S1 × ...× S(n−1).

When node i uses strategy si to select p neighbors, we can use the set Ni =
{Ni,1, Ni,2, ..., Ni,p} to denote the set of neighbors it selects, where Ni ∈ V and
p ≤ n. The set of edges between miner i and its neighbors can be denoted as
Ei = {{i, Ni,1}, {i, Ni,2}, ..., {i, Ni,p}}.

According to the cost function that was described in [117], we have ci(s) = α×
|Ei|+

∑
i 6=j stretchG[s](i, j), where stretchG(i, j) de�nes the distance cost between

pool i and j, which is equal to the shortest distance between i and j using links
of the graph divided by the direct distance. For instance, in a complete graph,
stretchG(i, j) = 1. α de�nes the cost of maintaining the connections, which is
equal to the cost of the connections divided by the cost of stretch. Assuming
there is a set of mining nodes M ∈ V , for any mining node i, the cost function
can be expressed as ci(s) = α× |Ei|+

∑q=k
q=0 stretchG[s](i, j), where i, j ∈M .

The mining node can maintain direct connections with other mining nodes,
so that the minimum stretch has a cost equal to 1. Therefore, if the number

62

of mining nodes is k, the cost of mining node i that uses ME strategy sme is
ci(sme) = α × |Ei| + (k − 1). We de�ne that a Nash equilibrium can be achieved
by using ME as follows.

Lemma 1. In a cryptocurrency network with k mining nodes and n−k non-mining
nodes (k≤n), if each node can maintain l connections (l>k), then ME is a strategy
that allows a Nash equilibrium to be reached.

Proof. The ME strategy sme does not increase the number of direct links for the
mining node since l > k. The ME channel is a TCP/IP connection on the Internet,
similar to standard P2P connections, so that for l connections, sme and si have
the same link cost, i.e., α× l. Considering that the minimum stretch cost can be
achieved if two mining nodes are directly connected, for any two mining nodes i
and j, we have stretchG[si](i, j) ≥ stretchG[sme](i, j), where i 6= j, and therefore,
ci(si) ≥ ci(sme).

In practice, l is signi�cantly greater than k. For instance, the Bitcoin network
contains around 20 to 30 mining pools, and the default connectivity of a node is
125. Moreover, the connectivity of a node can easily be extended to up to 1,000.

4.4.2 Decreased revenue of the smaller mining pools

Table 4.2: Rationality against fairness.

non-sel�sh (mb) sel�sh (mb)
non-sel�sh (ma) fa = A, fb = B fa = A, fb > B
sel�sh (ma) fa>A, fb = B fa>A, fb < B

The PoW cryptocurrency network is permissionless and the participants are
allowed to behave sel�shly. Here, we point out that rationality would push the
miners to select their neighbors sel�shly, and thereby causes unfairness. Let us
assume a network of n miners {m1, · · · ,mn} with hash rates {H1 > H2 > · · · >
Hn}. We consider two miners ma and mb such that a < b. Each miner can
maintain l connections, and l < a − b. We prove the game of rationality against
fairness as follows, and summarize our �ndings in Table 4.2.

• If ma and mb follow the default P2P protocol, their e�ectiveness ratio would
be respectively equal to fa = A and fb = B.

• A miner can improve its e�ectiveness ratio if it selects its neighbors sel�shly.
For instance, miner mb could establish connections with the top miners to
reduce its average block reception latency dBR and improve its e�ectiveness
ratio, which would then be greater than B.

63

0 200 400 600 800 1000
0.990

0.992

0.994

0.996

0.998

1.000

1.002
E
ff

e
ct

iv
e
n
e
ss

 r
a
ti

o
 (

f) G= 0. 0003, D= 0. 0032

Default

0 200 400 600 800 1000
0.006

0.004

0.002

0.000

0.002

0.004

0.006

D
ri

ft
 r

a
te

 o
f

re
v
e
n
u
e

Default

0 200 400 600 800 1000
0.80

0.85

0.90

0.95

1.00

1.05

E
ff

e
ct

iv
e
n
e
ss

 r
a
ti

o
 (

f)

G= 0. 03, D= 0. 143

All selfish

0 200 400 600 800 1000
0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.02

D
ri

ft
 r

a
te

 o
f

re
v
e
n
u
e

All selfish

Figure 4.7: Impact of sel�sh behaviors on miners' e�ectiveness ratio and fairness.
The x-axis represents miner's ID

• The e�ectiveness ratio of a miner is greatly in�uenced by its hash power
when all miners are sel�sh. In this case, the miner with high hash power
will connect with the miners whose hash power are closest to hers, eventu-
ally, leading to a chain-like network. The miners with higher hash powers
then have relatively small block reception latency, thus, fa increases, and fb
decreases. We use simulation to validate this evolution.

A miner could use the sel�sh neighbor selection strategy to improve its e�ec-
tiveness ratio f . If all miners were to select their neighbors sel�shly, a miner with a
larger hash power would gain a larger advantage, and the network's fairness would
decrease.

4.4.3 Simulation

We modi�ed Gervais et al.'s mining simulator [16] and simulated a network of
1,000 miners. The hash power distribution partially follows the one of Bitcoin: we
assign the hash rates of the top 15 miners based on publicly accessible data 3, and
the remaining miners equally share the remaining hash rate.

3https://btc.com/; https://www.blockchain.com/explorer

64

Modifications of the simulator. We i) enable 1,000 miners instead of the
original 16 miners used by default; ii) remove the accumulating delay; iii) create
an interface to connect with the network topology generator. This interface allows
us to examine a dynamic network and observe how the miners' network latencies
would evolve depending on di�erent strategies.

Network topology generator. Our network topology generator mimics the
existing cryptocurrency P2P protocol, it includes the following main functions:

Peer list. A table to maintain a node's peers information.

Peer information exchanging. To keep the network connectivity, each node
exchanges a partial information of its peer list with others.

Neighbor selection. By default, each node has to periodically select a random
peer from its peer list to try to establish the new connection. However, a ratio-
nal node can select its neighbors sel�shly. We simulate both a random neighbor
selection and a sel�sh neighbor selection.

Selfish behaviors. We assume that miners know each other's hash power. A
sel�sh miner tries to connect to the peer with the largest hash power in its peer list.
We compare two scenarios: i) default: every miner selects its neighbors randomly
according to the default protocol; and ii) all selfish: all miners select the neighbors
sel�shly.

We show in Fig. 4.7 the results of these simulations, where the mining power
of a miner decreases when its ID increases. Our goal is to simulate a large scale
mining network.

As shown at the top of Fig. 4.7, with the default P2P protocol, all miners
select their neighbors randomly, which results in a fair network. By using the
metrics we de�ned in Section 4.2, we have (G,D) = (0.0003, 0.0032). Under this
network topology, the revenue rate of miners is modi�ed from -0.2% to 0.1%,
independently of the computing power. However, the default setting does not
show rational miners, and in practice miners are able to select their neighbors.
At the bottom of Fig. 4.7, we assume that every miner is rational, and wants to
have powerful neighbors. By using our network topology generator, we show that
after 1,000 rounds of sel�sh neighbor selections, a miner is connected with other
miners with similar hash power (i.e., network assortativity [118]). The miners'
e�ectiveness ratio is then correlated with their ID: the more powerful miners have
a shorter block reception latency and a higher e�ectiveness ratio. Thus, the top
miners increase their revenue, and the smaller miners are losing revenue. The
network fairness is evaluated to (0.03, 0.143), which indicates that the revenue
distribution is unfair.

65

4.5 The Impact of Network Delay on The Tempo-

rary Block Withholding Attacks

Temporary block withholding (TBW) strategies (i.e., double spending attack and
sel�sh mining attack) have been proposed as the security threats to Bitcoin. In
this chapter, we �rst analyze the success rate and pro�tability of the existing TBW
strategies theoretically, in particular, we consider the race between attacker and
honest miners as a random walk game. We then propose a novel TBW strategy
based on two independent private chain: double private chain strategy (DPC),
which improves the issues of existing TBW strategies, and optimizes the pro�ts of
the adversary. We conduct the Monte Carlo simulation to validate our theoretical
analysis, and show that DPC is optimal, and more practical compared to the
existing TBW strategies.

In the default setting, the miner sends/adopts the blocks immediately when
it �nds/receives them. However, this setting could be easily undermined by the
adversary to withhold some blocks temporarily in order to increase her pro�t.
There are mainly two types of TBW, DS and SM, the former aims at break the
integrity of exchange between BTC and other goods, and the latter targets the
extra blocks except for the expected revenue share. We introduce DS starting
from Bitcoin's white paper, and then we discuss the success rate and pro�tability
of DS. After that, we present the background knowledge of SM.

Nakamoto’s calculation. In Bitcoin, the input and output of di�erent trans-
actions are linked through the digital signature, which ensures that each coin can
be veri�ed. Transactions are then validated and recorded into the blocks by min-
ers. Despite that the correctness of on-chain transactions is guaranteed by the
honest majority, the adversary with smaller than half of the global computing
power is able to get her coins back after she spent the coins meanwhile the goods
were dispatched. The adversary �rst generates transaction TX1 to use some coins
buy the some goods from the receiver, and then generates the transaction TX2 to
send the same coins back to her another account. In order to use TX2 to replace
TX1, the attacker uses her computing power to maintain a private chain. She
can succeed when her private chain is longer than the public chain because of the
longest chain principle. Nakamoto S. characterized the race between the attacker
and the honest miners as a random walk, and calculated the probability of the
attacker catching up with z con�rmations. Depending on di�erent possible hash
power of the adversary, Nakamoto S. suggested di�erent number of con�rmations
to limit the success rate of the attacker below 0.1%.

Selfish Mining Attacks. Eyal and Gün Sirer presented the sel�sh mining
strategy, and discussed how the sel�sh miner's propagation factor, i.e., the pro-
portion of honest miners it can convince to adopt and relay its block, determines

66

its revenue [17]. They pointed out that NC is vulnerable to sel�sh mining attacks,
which could lead to an unfair revenue (revenue share > hash rate share). In the
general case, attacker with > 25% of the global hash power is able to succeed.
Previous works [15, 16] have described network-level attacks that are more practi-
cal than corrupting a majority of the network, which could optimize sel�sh mining
attacks. Nayak et al. proposed plausible values for the sel�sh miner's propagation
factor by utilizing the public overlay network data [15]. They pointed out that the
attacker could optimize her revenue, and win more blocks by eclipsing the honest
miners when the propagation factor increases. Gervais et al. [16] analyzed the
impact of stale rate on sel�sh mining attack, and described eclipse attack [12].

4.5.1 Nakamoto's Evaluation

Nakamoto characterized the race between the double spending attacker and the
honest miners as a random walk, the probability of the DS attacker catching up
with z con�rmations was estimated in the Gambler's Ruin model. The attacker
with α of the global computing power would catch up with z con�rmations with
the probability qz:

qz =

{
1 if α ≥ 0.5

(α
1−α)z if α < 0.5

(4.1)

In reality, z = 0 when the adversary initializes the DS attack, and then it is going
to be a different heights mining race. When z (z > 0) con�rmations are attached
in the public chain, the adversary's progress can be various. For instance, the
adversary could be down by 1 block, or 2 blocks, ..., or z blocks. It is necessary
to evaluate the adversary's progress in order to estimate the success probability of
the adversary. Nakamoto considered the adversary's progress as a Poisson process,
and calculated the probability of di�erent states of the adversary by using the
Poisson density function. Let k be the number of blocks that are found by the
adversary when z con�rmations are attached in the public chain, λ1 be the Poisson
success rate of the public chain, λ2 be the Poisson success rate of the private
chain, assuming that λ1 = 1 during z con�rmations, then λ2 = z α

1−α , therefore,
the success probability of the adversary P can be calculated as follows:

P = 1−
z∑

k=0

(Pr(X = k) ∗ (1− (
α

1− α
)z−k)) (4.2)

where, Pr(X = k) is the Poisson density function, and α denotes that the attacker
owns α of the global computing power.

Nakamoto's approach mainly focuses on estimating how many con�rmations a
transaction needs to prevent the DS attacker with the probability that is greater

67

than 99.9%. The adversary here is deemed to be stubborn, which means, she
persists in catching up with the public chain no matter how many blocks she is
down by until she succeeds. In reality, the rational adversary can restart the attack
when z con�rmations are attached in the public chain and her success probability
is lower than the expected value, since rebooting a double spending attack would
not cause an extra loss to the adversary (the adversary would receive the goods
from the merchant even though the double spending attack fails). The crux here
is how to evaluate the adversary's success rate at di�erent time. Assuming that
a DS attack starts at T0, what would the adversary's success rate be at Tn (Tn
means the time when n blocks have been found since T0)?

0

h a

h,h h,a a,h a,a

h,h,h h,h,a h,a,h h,a,a a,h,h a,h,a a,a,h a,a,a

...

tim
e

Figure 4.8: Illustration of all possible random walk outcomes of double spending
attacker. The attacker maintains a private chain, and competes with the public
chain. All possible random walk outcomes are illustrated by a binary tree, where
the left child node denotes that a block is found by the honest miners, and the
right child node denotes that a block is found by the attacker.

4.5.2 Reconstructing the Double Spending Model

We reconstruct Nakamoto's random walk model in the time domain, which allows
us not only to evaluate the double spending attacker's success rate at di�erent
time, but also to take the impact of network delay into account. As shown in
Fig. 4.8, we use a binary tree to illustrate all possible random walk outcomes of
the adversary, and the model is described as follows:

States of the random walk. Let n be the number of blocks that have been
found in the whole network since T0, and T1, T2, ..., Tn be the time when the
1th, 2th, ..., nth block is found respectively, the number of all possible random walk
states at Tn is 2n, all possible random walk states at Tn can be denoted by set
S(Tn) : {s(Tn, 1), s(Tn, 2), ..., s(Tn, 2

n)}. Each random walk state s is represented

68

by the corresponding path (ω1,ω2,...,ωn), where ω1, ω2, .., ωn ∈ {h, a}, and n repre-
sents the length of the path at Tn. h denotes that the block is found by the honest
miners, and a denotes that the block is found by the adversary. For instance, if
the �rst block on a path is discovered by the honest miners, we have ω1 = h.

State transitions. Each state s has two possible transitions during the random
walk process, one is triggered when a block is found by the honest miners (we use
s′ to denote the state of the outcome), and another one is triggered when a block
is found by the adversary (we use s′′ to denote the state of the outcome). Let
α be the hash power of the adversary, without considering the network delay, we
have P (s, s′) = 1 − α, and P (s, s′′) = α, where P (s, s′) and P (s, s′′) represent
the probability of transition from s to s′ and s to s′′ respectively. In reality,
the transition probability can be a�ected by the network delay. Let d be the
average block reception latency of the honest miners, when an honest miner �nds
a block, other honest miners have to wait d seconds to receive the block, but the
adversary does not su�er the delay. In this case, we have P (s, s′) = (1−α)∗µ

α+(1−α)∗µ ,

and P (s, s′′) = α
α+(1−α)∗µ , where µ = 1 − d

∆T
, ∆T is the block's generation time

between s and s′ or s and s′′. Let d′ be the average block reception latency of the
adversary, when the attack starts, the adversary takes d′ seconds to receive the
block if the last block is discovered by the honest miners, in this case, we have
µ′ = 1− d′

∆T
, otherwise, d′ = 0 and µ′ = 1. Therefore, by considering the network

delay, the transition probability is calculated as follows:

P (s, s′) =



1− α if the last block at s was found
by the adversary

(1−α)∗µ
α∗µ′+(1−α)∗µ if the last block at s was found

by the honest miners and
s = s(T0, 1)

(1−α)∗µ
α+(1−α)∗µ if the last block at s was found

by the honest miners
(4.3)

P (s, s′′) =



α if the last block at s was found
by the adversary

α∗µ′
α∗µ′+(1−α)∗µ if the last block at s was found

by the honest miners and
s = s(T0, 1)

α
α+(1−α)∗µ if the last block at s was found

by the honest miners
(4.4)

Here, we assume that the adversary has a strong connectivity, which leads to

69

µ′ ≈ 1. Let α1 = α and α2 = α
α+(1−α)∗µ , we show the transition probability

between di�erent states in Fig. 4.8.

State probability. Let pr(Tn, x) be the state probability of s(Tn, x) (x ∈
[1, 2n]), and pω1 , pω2 , ..., pωn be the probability of transitions that happened on the
path of s(Tn, x), we have:

pr(Tn, x) =
i=n∏
i=1

pωi (4.5)

where, pωi ∈ {α1, α2}. Thus, for all possible states at Tn, we have the space of
state probability PR(Tn) : {pr(Tn, 1), pr(Tn, 2), ..., pr(Tn, 2

n)}.
The adversary’s success rate. The goal of the adversary here is to under-

mine the transaction with z con�rmations. Let H,A be the number of blocks
that were discovered by the honest miners and the adversary respectively on
the path of state s. The DS attack is successful when: (1) the adversary �nds
z blocks before the honest miners (A ≥ z, and H < z); or (2) the adver-
sary withholds at least z blocks when the honest miners �nd z blocks (A ≥ z,
and H = z); or (3) the adversary withholds at least z+j blocks when the hon-
est miners �nd z+j blocks (A ≥ H > z). The precondition of the success of
the adversary is that at least z blocks are found in the whole network, which
means, the minimum time that the adversary needs is Tz − T0. Let n ≥ z,
recall that all possible states at Tn are s(Tn, 1), s(Tn, 2), ..., s(Tn, 2

n) with the
state probability pr(Tn, 1), pr(Tn, 2), , ..., pr(Tn, 2

n) respectively, we use set S ′(Tn) :
{s(Tn, x1), s(Tn, x2), ..., s(Tn, xn)} to denote the set of the states that the adversary
wins, where S ′(Tn) ∈ S(Tn), and ∀s ∈ S ′(Tn) : (A ≥ z ∧H < z) ∨ (A ≥ z ∧H =
z) ∨ (A ∧ H > z). The success rate of the adversary at Tn can be calculated as
follows:

PTn =
i=xn∑
i=1

pr(Tn, xi) (4.6)

Evaluating the success rate of DS. We use the Monte Carlo method to sim-
ulate the random walk of DS attacker following the time. As shown in Fig. 4.9, we
show the success rate of DS attack for the transactions that request 6 con�rma-
tion at di�erent time, the attack is feasible only after 12 time steps (i.e., 12 blocks
have been created in the network), after that, the success rate of DS increases as
time goes by. It reaches the upper bound after 100 time steps. To validate the
correctness of our model, we compare the upper bound of our evaluation with S.
Nakamoto and R. Mani's evaluations, as a result, the upper bound of our evalu-
ation matches R. Mani's, and higher than S. Nakamoto's. This is because that
S. Nakamoto assumes that the arrive rate of honest miners' blocks is equal to 1,
which is not realistic[refs].

70

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

α

10-6

10-5

10-4

10-3

10-2

10-1

100

S
u
cc

e
ss

 r
a
te

Nakamoto S.
Mani R.
T13

T15

T20

T100

Figure 4.9: The success rate of DS for the transactions with 6 con�rmations.

4.5.3 Rebuilding the Sel�sh Mining Model

Eyal et al. analyzed the sel�sh mining strategy by using a Markov model [17],
which considered 4 types of transition probability during the whole process: α,
1 − α, (1 − γ)(1 − α), and γ(1 − α), where α represents the adversary's hash
rate share, and γ represents the percentage of the honest miners would work on
the adversary's block in case of con�icts. The impact of network delay in their
model is represented by γ, which mainly focuses on the ability of block propagation
under the scenarios when there are con�icting blocks. However, the block reception
latencies of miners that could a�ect the transition probability was not considered.
We build the random walk model for the sel�sh mining attacker, which allows us
to take the block reception latencies of miners into account and generalizes the
analysis of sel�sh mining strategy.

States of the random walk. As shown in Figure 4.10, each state is denoted
by a 3-tuple (BL,LD,R). BL represents the number of block lead of the attacker,
so that BL ∈ {0, 0′, 1, 2, ...} (0' represents the con�icting case [17]). LD is the
miner that discovered the last block, and LD ∈ {h, a}, where h denotes the set of
honest miners and a denotes the attacker. R denotes the accumulated rewards (in
number of blocks) of the honest miners and the adversary respectively at the state
since T0. For instance, state s(2, a, (2, 0)) is the state where the attacker has a lead
of 2 blocks, the last block was discovered by attacker. If the adversary terminates
the sel�sh mining attack at this state, she wins 2 blocks, and the honest miners
do not win any.

71

1,a,(1,0)0,h,(0,1)

2,a,(2,0)0',h,(1,0)/(0,1)

3,a,(3,0)0,a,(2,0) 0,h,(2,0)0,h,(1,1)/(0,2)

0,h,(0,0)

1,a,(1,1)0,h,(0,2)

2,a,(2,1)0',h,(1,1)/(0,2)1,a,(1,2)0,h,(0,3)

tim
e

Figure 4.10: The random walk of sel�sh mining attacker.

Table 4.3: The actions between di�erent states. W, R, and A represent the �With-
hold", �Release", and �Adopt" actions respectively.

BL=0 BL=0' BL=1 BL=2 BL=3 BL>3
LD=a W R W W W W
LD=h A A R R W W

Selfish mining actions. A sel�sh mining attacker can execute the following
actions to try to optimize its revenue.

• Withhold. The attacker keeps on working on her private chain.

• Release. The attacker publishes her private chain.

• Adopt. The attacker stops working on her private chain, and accepts the
block that is discovered by the honest miners.

We summarize attacker's actions between di�erent states in Table 4.3. From
state s to s′, the decision of action is determined by BL of s and LD of s′. For
instance, BL = 0, LD = a means that the attacker will withhold a block when she
discovers one and has no block lead. BL = 2, LD = h means that the attacker
will publish her private chain when the honest miners discover a block, in this
case, attacker can override the main chain, that causes an unfair revenue (2,0).
Apparently, when BL ≥ 2, the honest miners have no chance to earn blocks.

State transitions. A transition between states is triggered by a block discovery
in the network. Following each transition, the attacker can take the decision to

72

withhold, release, or adopt a block. Thus, the probability of transition is actually
the probability of a block to be discovered by the attacker or by honest miners.
Let α be the hash rate share of the adversary. In [17, 15, 16], the transition
probability between any two states s and s′ is calculated in 4 cases: (1) it is
equal to α when a block is discovered by the adversary; (2) it is equal to 1 − α
when a block is discovered by the honest miners and the BL 6= 0′ at state s;
(3) it is equal to (1 − γ)(1 − α) when BL = 0′ and a block is discovered by the
honest miners that work on the adversary's branch; and (4) it is equal to γ(1−α)
when BL = 0′ and a block is discovered by the honest miners that work on the
honest miners' branch. As we have analyzed in the previous section, the transition
probability can be a�ected by the block reception latencies of miners during the
random walk process. Therefore, we have two additional cases to calculate the
transition probability: (5) it is equal to α

α+(1−α)∗µ when LD = h and a block is

discovered by the adversary; and (6) it is equal to (1−α)∗µ
α+(1−α)∗µ when LD = h and a

block is discovered by the honest miners. The transition probability between any
two states during the random walk process can be calculated in these 6 cases.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

α

0.0

0.2

0.4

0.6

0.8

1.0

re
v
e
n
u
e
 s

h
a
re

Eyal's model
T5

T10

T20

T1000

T2000

T500000

Figure 4.11: Revenue of sel�sh mining attacker in the general case (γ = 0.5) when
fh = 1. The x axis represents the hash power of attacker. The y axis represents
the corresponding revenue share.

State probability. Let pr(Tn, x) be the state probability of s(Tn, x) (x ∈
[1, 2n]), and pω1 , pω2 , ..., pωn be the probability of transitions that happened on the

73

path of s(Tn, x) (as we have de�ned in the previous section), we have:

pr(Tn, x) =
i=n∏
i=1

pωi (4.7)

where, pωi ∈ {α1, α2}. Thus, for all possible states at Tn, we have the space of
state probability PR(Tn) : {pr(Tn, 1), pr(Tn, 2), ..., pr(Tn, 2

n)}.
The expected revenue share of the selfish mining attack. Let Ra and Rh

be the rewards (in number of blocks) of the adversary and the honest miners at
state s respectively, the expected revenue share of the sel�sh mining attack E(R)
at Tn can be calculated as follows:

E(R)Tn =

∑i=n
i=1 (pr(Tn, i) ∗Ra(Tn, i))∑i=n

i=1 (pr(Tn, i) ∗Ra(Tn, i)) +
∑i=n

i=1 (pr(Tn, i) ∗Rh(Tn, i))
(4.8)

Security bounds at different time. The sel�sh mining attack succeeds at Tn
when E(R)Tn > α [17]. The security bound (i.e., the minimum hash rate share
that the adversary needs to succeed) can be inferred by solving this inequality.
We can calculate E(R)Tn at di�erent time, and show the result in Fig. 4.11, where
the cyan area denotes the adversary's failure (E(R) < α), and the light cyan area
represents DS's success (E(R) > α). The revenue share of DS attacker increases as
the time steps increases, and reaches the upper bound as same as Eyal's evaluation.
Remarkably, the adversary with di�erent hash power needs di�erent time steps to
succeed, for instance, with 30% of the global hash power, the adversary would need
to wait for 20 blocks in order to gain more than 30% of revenue, which means,
s/he must su�er a loss of revenue share within the time period of 20 blocks.

4.5.4 The Accumulated Advantages for the Adversary

When the global computing power is separated into two parts that maintain two
independent chains, the competition between the adversary and the honest miners
would be the different heights mining race as we have introduced in Section 4.1.
In this case, whenever a honest miner/pool �nds a block, other honest miners
would need some time to be synchronized. In general, honest miners/pools are
randomly distributed in the network, the block reception latencies between them
can be a�ected by the network properties, such as, network connectivity, network
size. The maximum block reception latency between top mining pools of Bitcoin
was measured as 10 seconds in 2020. In contrary to the honest miners/pools, the
adversary is barely a�ected by the block reception latency. When BL ≥ 1, the
adversary would not need to receive the block that is discovered by the honest
miners, thus, no block reception latency for the adversary. When BL < 1 and a

74

block is discovered by the honest miners, the adversary would take an relatively
smaller time (i.e., the single-hop delay of Internet) to receive the block from the
honest miners, compared to a few seconds delay of the honest miners, the adversary
has an advantage. This results in that the probability of that the adversary �nds
the blocks increases during the random walk process, which gives the advantages
to the adversary. These advantages can be added up to make more bene�ts for
the adversary.

4.6 Discussion and Future Work

Cryptcurrencies rely on a loosely connected and asynchronous P2P network to
exchange messages. In this thesis, we explored the e�ect of block reception delays
on the mining process of PoW cryptocurrencies. We proposed several metrics to
quantify the network fairness, and evaluated its e�ect on the majority and sel�sh
mining attacks. We showed that the security bounds can be decreased because
of network latencies in both attacks. By leveraging the API of mining pools, we
measured that Bitcoin's default settings do not preserve network fairness, which
could facilitate attacks. For instance, we evaluated that an attacker with 48.72%
of the global hash power can launch a majority attack, respectively 24.02% for the
sel�sh mining attack. If large scale deviations were to occur, we proved that a
Nash equilibrium would be achieved among the larger miners (i.e., mining pools).
However, this would also lead to an increased unfairness of the network, and in
particular for smaller miners. It is an open problem to design fair and e�cient
P2P networks for PoW Blockchains, which we plan to tackle in future work.

75

Chapter 5

Dual Private Chain Attacks

The Bitcoin consensus algorithm relies on miners that repetitively attempt to solve
cryptopuzzles, and upon success create a new block using pending transactions and
append it to the public chain [8]. Bitcoin miners use a double SHA256 function
with di�erent inputs to mine [119]. A block is mined when a hash output lower
than a given threshold is produced. Miners gain coins and transaction fees from
the blocks they mine as a compensation for their contributed computing power
when the blocks they mined have been accepted by the majority of the global
hash power. In case of visible forks, each correct participant eventually accepts
the longest chain of blocks.

Bitcoin's security level is traditionally measured as the proportion of the min-
ing power that an adversary must control to successfully attack it. S. Nakamoto
assumed that an adversary would not control the majority of the mining power [8].
If this assumption does not hold, an attacker is able to spend a coin twice, which
is known as a double spending attack or 51% attack. The soundness of the honest
majority assumption has been discussed in the literature and mechanisms have
been proposed to harden the mining process against the 51% attack without man-
aging to completely eliminate it [120, 68, 121, 122]. Some of these works also
argued that it is not realistic to assume that, apart from the adversary, all miners
are altruistic.

First, despite o�ering rewards such as newly minted coins and transaction fees
to miners, the Bitcoin mining process has been shown to be vulnerable to sel�sh
behaviors. Using sel�sh mining, a miner withholds mined blocks and releases them
only after the honest miners have wasted computing resources mining alternative
blocks. Sel�sh mining increases a miner's revenue beyond the fair share it would
obtain by following the default Bitcoin mining protocol [17]. In practice, sel�sh
mining has been shown to be pro�table after a di�culty adjustment period in
Bitcoin for any miner with more than 33% of the global hash power [16, 90], and
variants of sel�sh mining further optimize a miner's expected revenue [18].

76

Second, the presence of petty compliant miners, which are also called benign
dishonest miners, have been noticed and reported in Bitcoin [22, 23, 24]. These
miners slightly deviate from the default Bitcoin protocol, for example by doing
SPV mining [25]. In particular, Mirkin et al. showed that SPV miners, despite
having no intentional will to harm the system, can lead the blockchain to an halt
following a Blockchain denial-of-service attack [24]. It was estimated that more
than 50% of Bitcoin's global hash power were following SPV mining in 2015 [123].
Nowadays, some important mining pools, which collectively account for 40% of
the global hash power, are suspected to continue SPV mining [29, 124, 28].

In this chapter, we present the Dual Private Chain (DPC) attack on Bitcoin.
This attack is, to the best of our knowledge, the �rst attack where an adversary
temporarily sacri�ces part of its hash power to favor its double spending attack.
Incidentally, the DPC attack is also, to the best of our knowledge, the �rst attack
where an adversary simultaneously manages two private chains. The �rst chain
inhibits the public chain's growth, so that the second chain has more favorable
conditions for a double spending attack. The DPC attack manages these two
chains in a non trivial manner to dedicate a larger hash power to the double
spending chain whenever possible.

The DPC attack lures SPV miners away from extending the public chain by
releasing the block headers of created blocks that the adversary �nds and keeping
their transactions private, therefore creating branches on which SPV miners mine
that are never accepted into the public chain. An important building block of
the DPC attack is therefore a novel mining strategy that distracts SPV miners
from extending the public chain. We call this strategy perishing mining since
the adversary does not perceive mining revenue when it applies it to maintain
its �rst private chain. However, the adversary perceives a net bene�t when its
double spending attempts succeed. Perishing mining leverages the sel�shness of
SPV miners to waste their hash power.

To evaluate the impact of the distraction chain on the public chain we �rst
establish the Markov decision process (MDP) of perishing mining. From this
MDP, we obtain the probability for the system to be in each state, and quantify the
impact of perishing mining on the public chain, i.e., its growth rate decrease. We
further describe the DPC attack and its associated MDP, and evaluate its expected
success rate and minimum revenue for the attack to be the most pro�table strategy
based on Monte Carlo simulations. Counterintuitively, our results show that the
adversary increases its double spending success rate by dedicating a fraction of its
hash power to slow the public chain down, instead of attacking it frontally with
all its hash power.

Overall, this work makes the following contributions.

•We present perishing mining, a mining strategy that is tailored to slow down

77

the progress of the public chain in presence of SPV miners. Using perishing mining
an adversary releases the headers of blocks that extend the public chain so that
SPV miners mine on them while honest non-SPV miners keep mining on the public
chain, which e�ectively divides the honest miners hash power. The adversary also
wastes the SPV miners' hash power whenever they mine on one of its blocks' header
since it never releases the full block. We present the pseudocode of the perishing
mining strategy, establish its Markov chain model and quantify its impact on the
public chain growth.
• Building on perishing mining, we describe the DPC attack that an adversary

can employ to double spend by maintaining up to two private chains. The �rst
chain leverages the perishing mining strategy to slow down the public chain's
growth and ease the task of the second chain, which aims at double spending. We
provide the pseudocode of the attack, and characterize the states and transitions
of its Markov chain model.
• We evaluate the perishing mining strategy and the DPC attack based on

extensive Monte Carlo simulations. Our results indicate that perishing mining
slows down the public chain progress down by 69% when the adversary owns 20%
of the global power. In comparison, sel�sh mining, which aims at optimizing a
miner's revenue share, would only decrease it down by 15%.

In presence of SPV miners, the DPC attack enables an attacker with a minority
of the hash power to double spend. Our evaluation actually shows that owning
30% of the global hash power is su�cient to double spend with 100% success rate
when 50% of the hash power belongs to SPV miners. With 20% of the global
mining power, an attacker is able to improve its double spending success rate from
2.3% to 39% when 50% of the hash power belongs to SPV miners. In addition, the
DPC attack allows an adversary to increase its revenue past the revenue it would
obtain by mining honestly or running the classical double spending attack if the
transaction value that it attempts to double spend is high enough.

5.1 System Model

This section introduces the categories of miners we consider, and the adversary that
launches a DPC attack. Table 5.1 summarizes the notations we use throughout
this chapter.

5.1.1 Bitcoin mining

Bitcoin mining is a trial-and-error process1. From a candidate set of transactions,
miners assemble a block and use their processors to identify a hash that is smaller

1https://en.bitcoin.it/wiki/Block_hashing_algorithm

78

Table 5.1: Notations.

Symbol Interpretation
α ∈ [0, 0.5] Mining power of the adver-

sary.
β ∈ [0, 1] Fraction of its mining power

that the adversary dedicates
to its �rst private chain.

µ ∈ [0, 0.5] Mining power of SPV min-
ers.

vt Value of the transaction the
adversary inserts in a block
when starting the DPC at-
tack and attempts to double
spend.

vb Mining reward per block.

than a target value. Upon �nding such a hash, a miner has successfully created
a block and gains newly minted coins and transaction fees as a reward for its
contributed computing power, after the mined block has been accepted by the ma-
jority of hash power. The public blockchain (or chain) is visible to all participants,
and is maintained in normal conditions by honest miners. To distinct the public
blockchain branch maintained by honest miners from the adversary maintained
private blockchain branches, we use �public chain� to refer to the public branch
and �private chain� to refer to a private branch.

To achieve consistency, participants accept the longest chain in case of visible
forks [70, 72, 125]. However, temporary block withholding attacks have been
shown to threaten Bitcoin's security [7, 19, 17, 18]. Full Bitcoin nodes monitor
the network to verify block headers and verify transactions. Miners compete to
identify block headers using proof-of-work.

We assume that miners follow the traditional block exchange pattern [34, 24]
using the overlay network. Block dissemination over the overlay network takes
seconds, whereas the average mining interval is 10 minutes. We therefore neglect
accidental forks among honest miners, which occur in average about every 60
blocks [34], and evaluate mining and double spending strategies using event-based
simulations where an event is the discovery of a block by a category of miner.
Upon receiving a block, all miners except SPV miners verify its transactions, and
then immediately relay it if they are all valid. We note vb the mining reward that
miners obtain whenever a block they have discovered is permanently included in
the blockchain.

79

5.1.2 Miner Categories

We consider two types of honest Bitcoin miners: altruistic miners and SPV miners.
Altruistic miners follow the default mining protocol and never leave the mining

network. In particular, altruistic miners are mining on the longest chain of full
blocks and do not apply SPV mining. A block header that extends a concurrent
chain is not su�cient to make these miners mine on it.

SPV miners [87, 123, 29, 124] are pro�t-driven miners. As Bitcoin leaves open
the possibility for miners to accept and generate new blocks without verifying their
transactions, SPV miners start mining on a new block that would belong on the
longest chain as soon as they can without verifying the transactions they contain.
As they do not (require to) know the transactions contained in the received blocks,
they mine blocks containing no transactions (except for the coinbase transaction2),
to avoid including a con�icting transaction in the blocks they create. We use µ
to denote the share of the public mining power controlled by SPV miners. In
2015, it was estimated that more than half of computing power were doing SPV
mining [123] in Bitcoin. Nowadays, some large mining pools that collectively
account for more than 17% of the global hash power continue to do SPV mining
on Bitcoin [29, 124] and Ethereum [25]. We analysed the Bitcoin blockchain and
found that Antpool, Binance, F2pool, Huobi, Poolin, ViaBTC published empty
blocks from January 2021 to February 2022 and collectively represent more than
60% of the global power. We obtained 70% with a similar analysis on Ethereum's
blockchain.

The adversary owns a fraction α of the global hash power and its aim is
to double spend. We consider α ∈ [0, 0.5] since with α > 0.5 the classical double
spending attack always eventually succeed. In particular, obtaining an unfair share
of the mining revenue is not the adversary's main goal. When launching its attack
the adversary introduces a transaction of value vt in a block that is included in
the public chain and that it attempts to double spend. We also assume that the
adversary cannot break cryptographic primitives. Contrary to the sel�sh mining's
adversary model, our model does not assume that the adversary has a privileged
network access, which is required in sel�sh mining when the adversary releases a
con�icting block it had premined in reaction to the extension of the public chain
by an honest miner.

5.2 Attack Overview

This section provides a high-level description of Dual Private Chain (DPC) at-
tacks, where an adversary maintains two private chains. It then summarizes the

2https://en.bitcoin.it/wiki/Coinbase

80

respective roles of these two private chains and their interactions.

5.2.1 Intuition

In a DPC attack, the adversary maintains two private chains from which it might
release block headers or full blocks with the ultimate goal of double spending.
During the attack, both of the adversary's private chains compete with the public
chain and may diverge from it starting from di�erent blocks. At a given point in
time, the adversary might dedicate its full hash power to focus on one of its private
chains, or divide its hash power to simultaneously extend its two private chains.

The DPC attack starts when the adversary creates a transaction of value vt
that is the basis for its double spending attempt. Once the adversary receives the
block that contains its transaction it initializes both its private chains with it and
start mining on it. Initially the two chains are therefore equal, but they might
diverge or converge again later on depending on the created blocks. The double
spending attack succeeds if the double spending chain becomes longer than the
public chain and if more than z = 6 blocks have been included in the public chain
since the block that contains the initial transaction.

Role of the Distraction Chain. The �rst private chain that the adversary
maintains is called the distraction chain. We present a strategy, namely perishing
mining, that the adversary mainly employs to maintain its �rst private chain to
waste the hash power of SPV miners and slow down the progress of the public
chain. Whenever the adversary divides its hash power to simultaneously mine on
its two private chains it dedicates αβ of its hash power to mine on its �rst private
chain. This chain is private in the sense that the adversary never releases the full
blocks, but only the corresponding block headers. The strategy that the adversary
applies on its distraction chain divides the honest miners so that they mine on
di�erent blocks, and wastes the hash power of SPV miners, which collectively
account for hash power µ. The adversary leverages a BDOS-like attack to only
share the header of blocks it discovers on the distraction chain (see §5.3). As the
body of those blocks contain adversary-created transactions that are never publicly
released, only SPV miners mine on them. In this way, the adversary distracts the
SPV miners from mining on the public chain.

Role of the Double Spending Chain. The adversary maintains a second private
chain to attempt to double spend, and we therefore call this chain the double
spending chain. Whenever the adversary is simultaneously mining on its two
private chains it dedicates α(1−β) of the global hash power to its second private
chain. This chain is private in the sense that, even though block headers might be
released, the actual blocks it contains are only published if the double spending
attack is successful. Following previous analyses [8, 19], we consider that a double
spending attempt is successful when: (i) the double spending chain's length is

81

larger than or equal to the public chain's length; and (ii) z-1 blocks have been
appended after the block that contains the adversary's initial transaction (z = 6
in Bitcoin).

...

Figure 5.1: Illustration of the DPC attack on SPV miners. Whenever the dis-
traction chain discovers a block before the public chain, the adversary releases the
block header so that SPV miners mine on a di�erent block than altruistic miners.

5.2.2 Interplay Between the Two Chains

Whenever the two categories of honest miners, i.e., altruistic and SPV miners, are
mining on the same block the adversary divides its hash power to concurrently mine
with hash power αβ on the last block of its distraction chain, which is then equal
to the public chain, and mine with mining power α(1− β) on its double spending
chain. The adversary's goal is then to create a fork so that altruistic and SPV
miners mine on di�erent blocks. Whenever the honest miners mine on di�erent
blocks, the adversary focuses its whole hash power α on its double spending chain.
The two chain abstractions never disappears since the two chains become di�erent
again if the public chain becomes longer than the double spending chain.

We use Fig. 5.1 to illustrate a state of a DPC attack. In this �gure, time �ows
from left to right. This Figure shows multiple blocks that were found by miners in
the network, the heads of the adversary's private chains, and indicates the overall
mining power that was or is dedicated on a block whenever the block was part of
the longest chain for a category of miners (using vertical arrows).

The attack is initialized based on block Bn. A pair of con�icting transactions
that are then generated by the adversary, one is for paying to the merchant that

82

is public and included into Bn+1, another one is to transfer the same coins to the
adversary that is hidden until the double spending succeeds. The adversary's �nal
double spending chain is made of blocks Bn, B”n+1, B”n+2 and B”n+3. At some
point in time the adversary's distraction chain was equal to Bn, Bn+1 and B′n+2,
but it is equal to Bn, Bn+1, Bn+2, Bn+3, B

′
n+4, B

′
n+5 in this state. The non-SPV

miners are mining on block Bn+4 with power 1 − α − µ, while SPV miners are
mining on block B′n+5 with power µ and the adversary is mining on block B”n+3

with its whole hash power α (because the altruistic and the SPV miners are mining
on di�erent blocks).

Whenever the adversary discovered a block on its private chain, it released the
header of the block so that SPV miners (of power µ) mined on it, which happened
with block B′n+2, while altruistic miners (of power 1− α− µ) kept mining on the
latest full block of the public chain. However, the adversary did not release the
corresponding block body, which led all blocks of the distraction chain to eventually
become invalid.

5.3 The Dual Private Chains Attack

This section presents the details of the DPC attack, which attempts to lure SPV
miners away from extending the public chain and facilitate a double spending
attack. We �rst describe perishing mining, a strategy that a miner can use to slow
down the progress of the public chain by making the altruistic and SPV miners
mine on di�erent blocks. We then describe the full DPC attack that builds on
perishing mining to maintain the adversary's �rst private chain.

5.3.1 Perishing mining

We call perishing mining the strategy that the adversary uses on the distraction
chain (whenever it is mining on it). With perishing mining, the adversary uses
αβ of the global hash power to inhibit the public chain's growth. To do so, upon
discovering a block that extends the public chain, the adversary only relays the
block header and never releases the block body. Upon reception of this block
header, SPV miners accept it and mine on it. This reduces the speed at which
the public chain is extended, because SPV miners work on a chain that cannot be
validated, and facilitates the double spending attack the adversary is working on
with computing power α(1− β).

After the initialization of the perishing mining strategy, the distraction chain
and the public chain mine on the same block. The adversary's action then depends
on whether the next block is discovered by the public miners or by itself, as shown
in Algorithm 3. First, when the adversary discovers a block Bn+1 that makes

83

Algorithm 3: The perishing mining strategy.
1: function Init()

2: chainpub ← publicly known blocks
3: chain1 ← publicly known blocks
4: lpub = l1 = 0
5: mine on chain1's head
6:
7: upon event Adv. finds block B on chain1 do
8: Adv. appends B to chain1
9: l1++
10: release Header(B)
11: mine on B
12:
13: upon event Non-SPV miners find block B on chainpub do
14: Non-SPV miners append B to chainpub
15: lpub++
16: if lpub > l1 then
17: Init()

18:
19: upon event SPV miners find block B do

20: if l1==0 then
21: Init()

22: else

23: SPV miners append B to chain1
24: l1++
25: mine on B

its distraction chain longer than the public chain, it releases the corresponding
block header to the network (Alg. 3, line 10). Upon receiving this header, the
SPV miners start mining based on it, while the honest non-SPV miners continue
working on block Bn. Second, when the altruistic miners discover a block, the
public chain is extended (Alg. 3, line 15). Third, when the SPV miners �nd a
block, the public chain is extended when the public chain is equal to the private
chain (Alg. 3, line 21), and the private chain is extended when the public chain is
not equal to the private chain (Alg. 3, line 24).

Fig. 5.2 illustrates the MDP model of the perishing mining strategy. In this
Markov chain, α, µ and 1−α−µ, are respectively the probabilities for the adversary,
the SPV miners and non-SPV miners to discover a block. In the context of the
DPC attack, the adversary does not always follow the perishing mining strategy,
and when it does only dedicates a part of its hash power to it. In this Figure, we
assume that the adversary is dedicating a power α to perishing mining.

State 0 represents the situation where the public chain and the distraction
chain are synchronized. State 0′ represents the situation where the public chain
and the distraction chain have the same length but are not synchronized. The

84

0'

0 1 2 3 ...

Figure 5.2: The Markov chain model of perishing mining.

other states are denoted by the length di�erence between the distraction chain
and the public chain, i.e., l1 − lpub. Note that this di�erence is always positive
since the distraction chain is reinitialized when the public chain becomes longer
than the distraction chain.

We note pi the probability for the system to be in state i. From the MDP
model, one can obtain the following equations.



αp0 = (1− α− µ)p0′

(α + µ)p0′ = (1− α− µ)p1

(α + µ)p1 = (1− α− µ)p2

∀k ≥ 2 : (α+µ)pk = (1−α−µ)pk+1

∞∑
k=0

pk + p0′ = 1

(5.1)

These equations can be manipulated to obtain the probability for the system to
be in each state. Excluding the possibility for α+µ to be equal to 1, which would
mean that there are no altruistic miners in the system, we have to distinguish two
cases, depending on whether α+µ

1−α−µ is smaller or larger than 1, because pk depends

on the sum of a geometric series where the k-th value is equal to
(

α+µ
1−α−µ

)k
. When

α+µ
1−α−µ < 1, the system contains a majority of altruistic miners, and the state

85

probabilities are:

p0′ =
α− 2α2 − 2µα

α2 + 3µα− 2α− 3µ+ 2µ2 + 1

p0 =
1− α− µ

α
p0′

p1 =
α + µ

1− α− µ
p0′

∀k ≥ 2 : pk =
α + µ

1− α− µ
pk−1

(5.2)

When α+µ
1−α−µ > 1, the system contains a minority of altruistic miners and the

geometric series does not converge, but we express the probability for a system
to be in a given state after T transitions. We can express the state probabilities

depending on GS(T) =
1−(α+µ

1−α−µ)T

1− α+µ
1−α−µ

, which is the sum of the T �rst values of the

geometric series, as follows:

p0′ =
1

1−α−µ
α

+ GS(T)

p0 =
1− α− µ

α
p0′

p1 =
α + µ

1− α− µ
p0′

∀k ≥ 2 : pk =
α + µ

1− α− µ
pk−1

(5.3)

One can notice that with perishing mining, the public chain is only extended
when: (i) the honest miners or the SPV miners discover a block in state 0; or (ii)
the honest miners discover a block in one of the remaining states. Thus, the chain
growth rate, which is de�ned as the probability for the public chain to be extended
with a full block when a block is discovered, is equal to p0(1− α) +

∑∞
k=1(pk(1−

α− µ)) + p0′(1−α− µ). We discuss in Section 5.5 how an adversary can leverage
this formula to evaluate the proportion µ of SPV miners in a real system.

5.3.2 Combining Perishing Mining and Double Spending

The DPC attack leverages the perishing mining strategy to distract SPV miners
and facilitate double spending.

Algorithm 4 details the attack's pseudocode, where l1, l2, and lpub represent the
length of the �rst private chain chain1, the second private chain chain2, and the
public chain chainpub respectively. During the DPC attack, we always have the two
following invariants: l2 ≤ l1 and lpub ≤ l1. The distraction chain is therefore always

86

the longest chain among the three chains, and can adopt the public chain and the
double spending chain when it is not the longest chain. For example, if it happens
that the double spending becomes the longest chain then the distraction chain is
set to be equal to the double spending chain. As a consequence, the SPV miners
would mine on the headers of the double spending chain, which would facilitate
the double spending attack.

When the DPC attack starts, all three chains are equal and all miners mine on
the same block (Alg. 4, line 1). The adversary's actions are de�ned in reaction to
block discoveries.

When the adversary �nds a block on the distraction chain (Alg. 4, line 9), it
releases the corresponding block header so that SPV miners mine on it, because
the distraction chain is the longest chain. If the two private chains are equal
the newly found block also extends the double spending chain. As a consequence
of the adversary extending the distraction chain the honest miners are mining on
di�erent blocks, the altruistic miners mine on the last full block of the public chain
while the SPV miners mine on the last block header of the distraction chain. The
adversary then allocates all its hash power (α) to mining on the double spending
chain.

When the adversary �nds a block on its double spending chain (Alg. 4, line 22),
it releases the block header if the second private chain becomes the longest chain.
In this case, the SPV miners then mine on the double spending chain. The �rst
private chain also adopts the second private chain so that the total hash power
on extending double spending chain is α + µ. When the second private chain is
shorter than the public chain, the adversary keeps mining on it with 1 − β of its
hash power. As soon as the double spending chain becomes longer than the public
chain and that at least 6 blocks have been appended to the public chain since the
beginning of the attack, the adversary uses the double spending chain to override
the public chain, and the DPC attack succeeds.

When the altruistic miners �nd a block (Alg. 4, line 34), they extend the public
chain. If the public chain becomes the longest chain, then all honest miners will
mine on the public chain and the adversary modi�es its �rst private chain so that
it adopts the public chain. The adversary then allocates αβ of hash power to its
distraction chain so that it tries to generate a block that will divide again the
honest miners.

When the SPV miners �nd a block (Alg. 4, line 45), three cases are possible.
First, the double spending chain and the distraction chain are extended if the two
private chains were equal. Second, the public chain and the �rst private chain
are extended if the public chain and the �rst private chain were equal. Finally,
in the other cases, the �rst private chain is extended and the SPV miners have
wasted their hash power because this private chain never become accepted by the

87

non-SPV miners, since the adversary does not release the block bodies.

5.3.3 Markov Decision Process of the DPC Attack

We establish the Markov decision process (MDP) of the DPC attack by simultane-
ously considering the two private chains and observing that each state is a 5-tuple
(lpub, l1, l2, s(pub,1), s(1,2)). lpub, l1, and l2 are respectively the lengths of the public
chain chainpub, the �rst private chain chain1, and the second private chain chain2.
s(pub,1), s(1,2) ∈ {t(rue), f(alse)} respectively indicate whether chainpub is equal
to chain1, and whether chain1 is equal to chain2.

We identi�ed 10 types of states, and we determined for each state its possible
transitions, the transition probabilities, and the distribution of mining rewards.
Because the number of states of this MDP is in�nite we summarize this information
in Table 5.2. In particular, case 0 is the initial state of the attack. Case 4 captures
the success of the DPC attack. Cases 1.x, 2.x, 3.x are all possible intermediary
states and consider scenarios that di�er based on the lengths of the chains, and
whether or not they are equal. Our Monte Carlo simulations are based on this
MDP.

We emphasize that an adversary that executes the DPC attack earns a mining
reward only when the double spending chain succeeds. In this case, the adversary
earns the block mining reward that corresponds to the private blocks it mined that
end up in the public chain and the value of the transaction it managed to double
spend. We note value of blocks vb, but also the value of double spent transactions
vt. We evaluate the DPC attack's success rate and revenue in Section 5.4.

5.4 Analysis using Monte Carlo Simulations

This section evaluates the perishing mining strategy and the DPC attack using
Monte Carlo simulations that react based on the even of block discovery.

5.4.1 Methodology and Settings

We evaluate perishing mining and the DPC attack using random walks in their
respective Markov decision processes. Our evaluations are based on Python scripts.
In each scenario we consider, we simulate the creation of 2,016 blocks, repeat
each con�guration 10,000 times and report the average of the metrics of interest.
Simulating the creation of 2,016 blocks maintains the mining di�culty constant
during the experiment since Bitcoin's mining di�culty is adjusted every 2,016
blocks. We quantify the impact of perishing mining on the public chain's growth
rate, evaluate the double spending success rate of the DPC attack, and analyze

88

the adversary's expected revenue. We compare the success rate of the DPC attack
to the success rate of the classical double spending attack using the success rate
formulas that were obtained by Nakamoto [8] and Rosenfeld [33]. We study the
various strategies with α, µ ∈ [0, 0.1, 0.2, 0.3, 0.4, 0.5] and β ∈ [0, 1] (by 0.01 steps).

To evaluate the adversary's revenue when it executes the DPC attack we con-
sider the mining reward vb per block to be equal to 6.25 BTC (which is the case
since May 2021). We do not consider the transaction fees as their impact is negli-
gible on the adversary's revenue. We evaluate the adversary's revenue depending
on the value vt of the transaction it attempts to double spend compared to the
mining reward per block, since it relates to the revenue it would obtain by mining
honestly. The adversary might distribute the value of vt over the transactions of
the attack initialization block since each Bitcoin block (1MB) normally includes
from 1,500 to 2,500 transactions.

5.4.2 Impact of Perishing Mining on Chain Growth

In a DPC attack, the adversary dedicates at most a fraction β of its hash power α
at a given time to follow the perishing mining strategy. Perishing mining facilitates
the double spending attack the adversary works on with its remaining hash power.
For this experiment, we consider a scenario where the adversary would dedicate a
fraction of its full hash power to follow the perishing mining strategy to quantify
its e�ect on the growth rate of the public chain.

Fig. 5.3 represents the relative public chain growth rate of a system under
attack, which is expressed as a fraction (in %) of the public chain growth rate in
the attack-free case. We compare perishing mining to sel�sh mining and vary the
global hash power µ of SPV miners 0 to 0.5 (i.e., ranging from 0% to 50% of the
global hash power). One can see that the public chain is extended at a lower rate
when the adversary's power increases and when the global power of SPV miners
increases. Compared to sel�sh mining, which was designed for another purpose
namely to increase a miner's revenue, perishing mining has a greater e�ect on the
public chain growth rate, i.e., even when µ = 0. When µ = 0.5 and α = 0.5
the public chain growth is almost equal to 0 because there are no honest non-
SPV miners in the system and because as soon as the adversary �nds a block and
releases its header SPV miners would mine on it and therefore never create a chain
of full blocks.

Note that an adversary that follows the perishing mining strategy does not
perceive any mining revenue because it never releases the transactions of the blocks
it discovers. Indeed, the distraction chain, the private chain that is maintained
using the perishing mining strategy, never leads the honest non-SPV miners to
mine on it because the full blocks are never released, which prevents the adversary
from obtaining a mining revenue.

89

5.4.3 Double Spending Success Rate

Fig. 5.4 illustrates the success rates of the DPC attack for di�erent µ and with the
best β value that we obtained experimentally, and for β = 0. It is interesting to
observe the di�erences between the lines corresponding to a given µ with the best
β value and β = 0 to see that maintaining two chains makes a real di�erence. An
adversary would be able to determine the best β after estimating µ, as we discuss
in Section 5.5.

In the presence of SPV mining (i.e., when µ > 0), the DPC attack's success
rate is higher than the one of the traditional double spending attack. For example,
if µ = 0.1 and α = 0.3, the DPC attack's success rate is equal to 31.0% while it is
equal to 16% for the classical double spending attack.

The DPC attack lowers Bitcoin's safety bound (i.e., the minimum hash power
that the adversary needs to double spend). For instance, when µ = 0.4, a DPC
adversary with 35% of the global hash power could completely manipulate the
blockchain, which is more threatening than the existing block withholding attacks.
Assuming µ = 0.5 is realistic since in 2015 more than 50% of Bitcoin's hash power
were doing SPV mining [123]. The success rate of the double spending attack (with
6 con�rmations) with α = 0.2 (the power of the biggest mining pool) also increases
from 2.3% to 39% depending on µ by replacing the classical double spending attack
by the DPC attack.

5.4.4 The E�ect of The DPC Attack on Bitcoin's Sustain-
ability

Fig. 5.5 plots the minimum value for vt
vb
that the adversary would need to launch a

pro�table DPC attack (i.e., the adversary would earn more than performing mining
honestly). When µ = 0.4 and α = 0.2, if the value of the transactions embedded
in the initial block is larger than 10 times the block mining reward then the DPC
attack becomes pro�table. Currently, Bitcoin's block reward is 6.25BTC, and each
block can contain approximately 2500 transactions. In this case, the suggested
average safe transaction value to prevent DPC attack is 0.025BTC. In the future,
vb would be decreased due to Bitcoin's block reward halving countdown, which
would decrease both the threshold to launch pro�table DPC attacks and the safe
transaction value. We are therefore reaching the same conclusion that Carlsten et
al.'s work [23], we observe that the DPC attack has a negative impact on Bitcoin's
sustainability.

90

5.4.5 Adversary's Revenue

Upon successfully executing a double spending attack, the on-chain revenue of the
adversary consists of the value of the double spent transaction added to the mining
rewards associated to the blocks that it mined and that are part of the longest
chain. We calculate the expected revenue Vdpc of the DPC attacker as follows:

Vdpc = vtk +
k∑
i=1

vb(i) (5.4)

where k represents the number of successful double spending attacks during the
simulation, vt notes the value of the double spent transactions, and the set {vb(1),
vb(2), ..., vb(k)} denotes the adversary's block revenue for each double spending.

We now plot in more details the adversary's revenue when vt = 10vb to com-
pare the di�erent strategies the adversary might follow, and to provide additional
information that the logarithmic scale of Fig. 5.5 is not showing. Larger vt val-
ues become more realistic as time passes since the block mining reward is reg-
ularly halved. Fig. 5.6 compares the expected adversary's revenue for the DPC
attack with the revenue it would perceive using honest mining (Honest), sel�sh
mining (SM) [17], the double spending attack (DS) [19], and the combination of
double spending attack and sel�sh mining attack based on a single private chain
(SM+DS) [16]. In this experiment, the adversary generates a block with transac-
tions that it attempts to double spend and continues in its attack until it succeeds
or until the end of the simulation. Each time its attack succeeds, the adversary
double spends and immediately generates another block of transactions that it
attempts to double spend. In particular, the adversary keeps extending its double
spending chain if it is longer than 6 blocks and longer than the public chain until
it can double spend, i.e., until the public chain contains at least 6 blocks.

Sel�sh mining is less pro�table than honest mining, which is expected because
the mining di�culty is constant in our experiments [17, 16]. When vt = 10vb and
α ∈ [0, 0.5], the DPC attack is the only strategy for which the adversary's expected
revenue can be higher than with honest mining if µ > 0 and if α is large enough.
For example, when µ > 0.4, an adversary with at least 20% of the global hash
power (i.e., α = 0.2) bene�ts more from the DPC attack than from honest mining.
Using larger vt values would also make the DPC attack more pro�table than other
strategies for given µ and α values.

When vt = 10 ∗ vb and µ = 0.2, an adversary with 34% of the global hash
power can earn more with the DPC attack than by performing honest mining.
Such bound also decreases when vt increases (e.g., the minimum α would be 27%
when vt = 100 ∗ vb and µ = 0.2).

One can notice the in�exion points of the DPC attack lines. For example, the
DPC attack's revenue when µ = 0.5 and α = 0.4 is lower than with µ = 0.4

91

and α = 0.4. In those cases, the adversary's second private chain is much longer
than the public chain and the adversary has to wait to for the public chain to
be long enough since a double spending can happen only when the public chain
contains at least 6 blocks. For example, the adversary would have to wait if its
private chain contains 20 blocks while the public chain only has 3 blocks. The
adversary could update its strategy to further increase its revenue by detecting
that its double spending attack will eventually succeeed and immediately starting
the next attack.

5.5 Discussion

5.5.1 Attack Variants

We have presented the DPC attack we found to be the most e�ective under the
constraint that the adversary might split its hash power in two constant parts αβ
and α(1− β). Similarly to what happened with sel�sh mining and its variants [7,
19, 17, 18], we foresee that one could devise variants of the DPC attack we present.
In these variants the adversary would mine on di�erent blocks depending on the
system's state, or dedicate a di�erent fraction of its hash power to extend each of
its two private chains. We leave the study of these variants to future work.

5.5.2 Estimating µ and Selecting β

It is su�cient for the adversary to know an approximate value of parameter µ,
which is the proportion of the global hash power that belongs to SPV miners, for
a DPC attack to be successful, as our experimental results demonstrate. However,
in practice, an adversary would be able to optimize its DPC attack by precisely
determining µ. The adversary can estimate µ based on some public websites [29],
or establish direct connections with the public mining pools to perform a statistical
analysis. Moreover, the perishing mining strategy that we present in this chapter
can be used as a probing technique to measure µ, since the adversary can directly
monitor its impact on the public chain growth and compute µ based on it. Once
the exact value of µ is known, an adversary can �nd the best β for the DPC attack
by replicating our experiments.

5.5.3 Reinitializing the Double Spending Chain

Given a time period, a clever adversary would restart the double spending attack
whenever its estimated success rate would become lower than the initial success
rate of the attack. For example, the adversary should restart the double spending

92

attack whenever it does not discover any block and 6 blocks have been appended
to the public chain. Such a reinitialization strategy would further optimize the
adversary's revenue but would not change the attack's success rate. Establishing
exact reinitialization conditions for the DPC attack is more complicated than
with the classical double spending attack because the adversary does not dedicate
a constant hash power to its double spending chain and is therefore future work.
However, approximate conditions could be obtained through simulations.

5.5.4 Attack Detection and Prevention

The DPC attack leverages the fact that SPV miners accept block headers without
waiting for and verifying the corresponding block bodies (i.e., the transactions).
By doing so, they can start working on the next block earlier than the altruistic
miners. Therefore, it is not safe to assume that all miners would deliberately
choose to stop SPV mining. To prevent the DPC attack, we suggest that the SPV
miners setup a bound between the block header arrival time and the block body
arrival time. The SPV miners would stop mining if the time bound is reached.
This would mitigate the impact of the DPC attack. However, the adversary could
also update its strategy to regularly send the unmatched block bodies so that SPV
miners do not stop mining on its blocks. In this case, the SPV miners would not
help to extend the double spending chain, but the DPC attack would still remain
more harmful than the classical double spending attack. For instance, based on
our experiments, with α = 0.2 and µ = 0.5 the DPC attack's success rate would
still be equal to 28% instead of 2.3% with the classical double spending attack and
39% with the DPC attack presented in this chapter.

5.6 Implications and Insights

In this chapter, we proposed perishing mining, a novel mining strategy that divides
honest miners by leading SPV miners to waste their hash power on a block header
generated by the adversary while non-SPV miners keep mining on the latest full
block. Building on perishing mining, we described the dual private chain (DPC)
attack where an adversary sacri�ces a part of its hash power to run the perishing
mining strategy and launch a double spending attack, which bene�ts from the
fact that honest miners are divided. We established the Markov decision process
(MDPs) of perishing mining and of the DPC attack, and used Monte Carlo sim-
ulations to quantify the impact of perishing mining on the public chain growth,
evaluate the success rate and the expected revenue of the DPC attack. Our perfor-
mance evaluation showed that the DPC attack is more powerful than the classical
double spending attack as soon as a fraction of the miners are SPV miners. For

93

instance, an adversary with 30% of the global hash power can always double spend
if 50% of the network is SPV mining. For an adversary with su�cient funds or
with su�cient hash power, the DPC attack is more pro�table than all currently
known mining strategies, such as honest mining, sel�sh mining, and the classical
double spending attack.

94

Algorithm 4: The DPC attack.
1: function Init do

2: chainpub ← publicly known blocks
3: chain1 ← publicly known blocks
4: chain2 ← publicly known blocks
5: mine on chain1's head with power αβ
6: mine on chain2's head with power α(1− β)
7: lpub = l1 = l2 = 0
8:
9: upon event Adv. finds a block B on chain1 do
10: if chain1 6=chain2 then
11: Adv. appends B to chain1
12: l1++
13: release Header(B)
14: mine on chain2's head with power α
15: else if chain1==chain2 then
16: Adv. appends B to chain1 (and chain2)
17: l1++
18: l2++
19: release Header(B)
20: mine on B with power α
21:
22: upon event Adv. finds a block B on chain2 do
23: if chain1 6=chain2 then
24: Adv. appends B to chain2
25: l2++
26: release Header(B)
27: mine on B with α(1− β)
28: else if chain1==chain2 then
29: Adv. appends B to chain1 (and chain2)
30: Execute lines 17 to 20
31: if l2 ≥ lpub ≥ 6 then
32: override chainpub with chain2
33:
34: upon event Non-SPV miners find block B on chainpub do
35: if l1==lpub then
36: Non-SPV miners append B to chainpub
37: chain1 = chainpub
38: lpub++
39: l1++
40: mine on B with power αβ
41: else if l1>lpub then
42: Non-SPV miners append B to chainpub
43: lpub++
44:
45: upon event SPV miners find block B do

46: if chain1==chain2 6=chainpub then
47: SPV miners append B to chain2 (and chain1)
48: Execute lines 17 to 20
49: else if chain1==chainpub then
50: SPV miners append B to chain1 (and chainpub)
51: Execute lines 37 to 40
52: else

53: SPV miners append B to chain1
54: l1++
55: mine on chain2 with power α

95

Table 5.2: State transition of DPC attack that targets SPV miners. We use (ra, rh)
to denote the revenue of the adversary and other miners, vb to denote the value of a
single block, and vt to denote the value of the double-spent transactions. Because
the SPV miners could help to extend the double spending chain, we use nspv to
denote the number of blocks that were discovered by the SPV miners on the 2nd
private chain.

S
t
a
t
e
S

(l
p
u
b
,l

1
,l

2
,s

(p
u
b
,1
)
,s

(1
,2
)
)

E
v
e
n
t

P
r
o
b
.

D
e
s
t
in
a
t
io
n
s
t
a
t
e

R
e
v
e
n
u
e

(r
a
,r
h

)

C
a
se

0
(C

o
n
ta
in
s
In
it
st
a
te
)

A
d
v
.
ex
te
n
d
s
ch
a
in

1
=
ch
a
in

2
α

(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

(l
p
u
b
,l

1
,l

2
,t
,t

)
S
P
V

o
r
n
o
n
-S
P
V

ex
te
n
d
ch
a
in
p
u
b

1
−
α

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

))
(r
a
,r
h

+
v
b
)

C
a
se

1
.1

A
d
v
.

o
r

S
P
V

ex
te
n
d

ch
a
in

1
=
ch
a
in

2

α
+
µ

(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

(l
p
u
b
,l

1
>
l p
u
b
,l

2
,f
,t

)
N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
,l

2
,f
,t

)
(r
a
,r
h

+
v
b
)

C
a
se

1
.2

A
d
v
.
o
r
S
P
V

ex
te
n
d
ch
a
in

1
α

+
µ

(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

(l
p
u
b
,l

1
=
l p
u
b
,l

2
,f
,t

)
N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

2
.1

A
d
v
.
ex
te
n
d
s
ch
a
in

1
α
β

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
=
l p
u
b
,l

2
<
l p
u
b
,t
,f

)
A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(1
−
β

)
(l
p
u
b
,l

1
,l

2
+

1
,t
,f

)
(r
a
,r
h

)

S
P
V

o
r
n
o
n
-S
P
V

ex
te
n
d
ch
a
in
p
u
b

1
−
α

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

2
.2

A
d
v
.
ex
te
n
d
s
ch
a
in

1
α
β

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
=
l p
u
b
,l

2
=
l p
u
b
,t
,f

)
A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(1
−
β

)
(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

S
P
V

o
r
n
o
n
-S
P
V

ex
te
n
d
ch
a
in
p
u
b

1
−
α

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

3
.1

A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
>
l p
u
b
,l

2
<
l 1
,f
,f

)
S
P
V

ex
te
n
d
ch
a
in

1
µ

(l
p
u
b
,l

1
,l

2
+

1
,f
,f

)
(r
a
,r
h

)

N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
,l

2
,f
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

3
.2

A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
>
l p
u
b
,l

2
=
l 1
,f
,f

)
S
P
V

ex
te
n
d
ch
a
in

1
µ

(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
,l

2
,f
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

3
.3

A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
=
l p
u
b
,l

2
<
l 1
,f
,f

)
S
P
V

ex
te
n
d
ch
a
in

1
µ

(l
p
u
b
,l

1
,l

2
+

1
,f
,f

)
(r
a
,r
h

)

N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

3
.4

A
d
v
.
ex
te
n
d
s
ch
a
in

2
α

(l
p
u
b
,l

1
+

1
,l

2
,f
,f

)
(r
a
,r
h

)

(l
p
u
b
,l

1
=
l p
u
b
,l

2
=
l 1
,f
,f

)
S
P
V

ex
te
n
d
ch
a
in

1
µ

(l
p
u
b
,l

1
+

1
,l

2
+

1
,f
,t

)
(r
a
,r
h

)

N
o
n
-S
P
V

ex
te
n
d
s
ch
a
in
p
u
b

1
−
α
−
µ

(l
p
u
b

+
1
,l

1
+

1
,l

2
,t
,f

)
(r
a
,r
h

+
v
b
)

C
a
se

4
(D

o
u
b
le

sp
en
d
in
g
)

(i
n
st
a
n
ta
n
eo
u
s
tr
a
n
si
ti
o
n
)

1
(l
p
u
b

=
0
,l

1
=
l 1
−
l p
u
b
,

(r
a
+

(l
2
−
n
s
p
v
)v
b
+
v
t
,

S
s.
t.
l 2
≥
l p
u
b
≥

6
ch
a
in
p
u
b

=
ch
a
in

2
l 2

=
0
,s

(p
u
b
,1
)
,t

)
r h
−

(l
p
u
b
−
n
s
p
v
)v
b
)

96

0.0 0.1 0.2 0.3 0.4 0.5

Power that the adversary dedicates to perishing mining

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e
 c

h
a
in

 g
ro

w
th

 r
a
te

 (
%

)

SM

PM - µ=0

PM - µ=0.1

PM - µ=0.2

PM - µ=0.3

PM - µ=0.4

PM - µ= 0. 5

Figure 5.3: Relative growth rate of the public chain (compared to the attack-free
case) when the adversary uses sel�sh mining (SM) or perishing mining (PM) and
when SPV miners own a fraction µ of the global power.

97

0.0 0.1 0.2 0.3 0.4 0.5

Adversary's power (α)

0.0

0.2

0.4

0.6

0.8

1.0

D
S
 s

u
cc

e
ss

 r
a
te

DPC (µ= 0. 5, best)

DPC (µ= 0. 5, β= 0)

DPC (µ= 0. 4, best)

DPC (µ= 0. 4, β= 0)

DPC (µ= 0. 3, best)

DPC (µ= 0. 3, β= 0)

DPC (µ= 0. 2, best)

DPC (µ= 0. 2, β= 0)

DPC (µ= 0. 1, best)

DPC (µ= 0. 1, β= 0)

DPC (µ= 0, best)

DPC (µ= 0, β= 0)

Nakamoto S.

Rosenfeld M.

Figure 5.4: DPC attack's success rate for several fractions µ of SPV miners with
the best choice of parameter β and for β = 0 (i.e., a single chain variant of the
DPC attack).

98

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Adversary's power (α)

100

101

102

103

104

105

106

v t
/
v b

DPC (µ= 0. 5)

DPC (µ= 0. 4)

DPC (µ= 0. 3)

DPC (µ= 0. 2)

DPC (µ= 0. 1)

DPC (µ= 0)

Figure 5.5: Minimum value for vt
vb
to make the DPC attacks more pro�table than

honest mining depending on the global power µ of SPV miners.

99

0.0 0.1 0.2 0.3 0.4 0.5

Adversary's power (α)

0

500

1000

1500

2000

2500

R
e
v
e
n
u
e
 (

b
lo

ck
s)

DPC (µ= 0. 5, best)

DPC (µ= 0. 4, best)

DPC (µ= 0. 3, best)

DPC (µ= 0. 2, best)

DPC (µ= 0. 1, best)

DPC (µ= 0, best)

Honest
SM
DS
SM+DS

Figure 5.6: Revenue of the adversary when it repetitively attempts to double
spend a block with transactions of value vt = 10vb with the DPC attack, or with
a previous mining strategy or attack, over a period of 2, 016 discovered blocks.

100

Chapter 6

Conclusion

In this thesis, we provided the empirical and theoretical studies to improve the
understanding of PoW cryptocurrencies' privacy and security. In Chapter 3, we
analyzed PoW cryptocurrency's network properties, and discussed their impacts
on user's privacy and system's security. We designed tools and conducted ex-
periments to examine the Monero's peer to peer network. Our results indicated
that even though Monero is a privacy-preserving cryptocurrency, it is still possible
to accurately discover the nodes in the network and their interconnections. Our
analysis provided insights about Monero's degree of centralization, and about the
privacy and security issues potentially caused by a network topology exposure.

In Chapter 4, we de�ned some novel metrics to link the network layer and
consensus layer, which allowed us to evaluate the impact of network delay on the
miners' revenue. We showed that the security bounds can be decreased because
of network latencies in both attacks. By leveraging the API of mining pools, we
measured that Bitcoin's default settings do not preserve network fairness, which
could facilitate attacks. For instance, we evaluated that an attacker with 48.72%
of the global hash power can launch a majority attack, respectively 24.02% for the
sel�sh mining attack. If large scale deviations were to occur, we proved that a
Nash equilibrium would be achieved among the larger miners (i.e., mining pools).
However, this would also lead to an increased unfairness of the network, and in
particular for smaller miners.

In Chapter 5, we proposed an abstraction �dual private chain� to upgrade the
temporary block withholding attacks and examine Bitcoin's security. We built the
Markov Decision Process model to analyze the success rate and revenue of DPC
attacks targeting SPV miners. Our results indicated that the DPC attacks were
more pro�table than the honest mining, sel�sh mining, and double spending based
on a single private chain during a short time period by considering the value of
double spent transactions. We reported that the threshold to launch the DPC
attacks is from 16% to 17.5% depending on the SPV miners' hash power. We

101

pointed that this threshold is feasible to be reached in the existing mining network
of Bitcoin. Future work will evaluate whether the DPC attack is also applicable
to other blockchains, such as Ethereum and its proof-of-work chain [126, 29], or
could be extended to target other categories of rational miners, such as hash power
jumping miners [127, 128].

102

Bibliography

[1] D. Chaum, �Blind signatures for untraceable payments,� in Advances in
Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman, Eds., 1983.

[2] W. Dai, �B-money-an anonymous, distributed electronic cash system,� 1998.

[3] N. Szabo, �Bit gold,� Website/Blog, 2008.

[4] G. Morgenson, �Secrets of the bailout,� http://www.nytimes.com/2011/12/
04/business/secrets-of-the-bailout-now-revealed.html.

[5] H. Stewart, �Eurozone bailouts: which countries re-
main?� https://www.theguardian.com/business/2013/dec/13/
eurozone-bailouts-greece-portugal-cyprus-spain.

[6] J. Treanor, �Rbs sale: Fred goodwin, the ¿45bn bailout and
years of losses,� https://www.theguardian.com/business/2015/aug/03/
rbs-sale-fred-goodwin-bailout-years-of-losses.

[7] G. O. Karame, E. Androulaki, and S. Capkun, �Double-spending fast pay-
ments in bitcoin,� in Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, ser. CCS '12.

[8] S. Nakamoto, �Bitcoin: A peer-to-peer electronic cash system,� 2008.

[9] G. Fanti and P. Viswanath, �Deanonymization in the bitcoin p2p network,�
in NIPS, 2017.

[10] D. Koshy, An Analysis of Anonymity in Bitcoin Using P2P Network Traffic.
Pennsylvania State University, 2013.

[11] M. Apostolaki, A. Zohar, and L. Vanbever, �Hijacking bitcoin: Routing at-
tacks on cryptocurrencies,� in SP, 2017.

[12] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, �Eclipse attacks on
bitcoin's peer-to-peer network.� in USENIX Security, 2015.

103

[13] Y. Marcus, E. Heilman, and S. Goldberg, �Low-resource eclipse attacks on
ethereum's peer-to-peer network,� IACR Cryptology ePrint Archive, vol.
2018, p. 236, 2018.

[14] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen, �Partitioning
attacks on bitcoin: Colliding space, time, and logic,� in ICDCS 2019.

[15] K. Nayak, S. Kumar, A. Miller, and E. Shi, �Stubborn mining: Generalizing
sel�sh mining and combining with an eclipse attack,� in EuroS&P 2016.

[16] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Cap-
kun, �On the security and performance of proof of work blockchains,� in CCS,
2016.

[17] I. Eyal and E. G. Sirer, �Majority is not enough: Bitcoin mining is vulnera-
ble,� in FC, 2014.

[18] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, �Optimal sel�sh mining
strategies in Bitcoin,� in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2016, pp. 515�532.

[19] M. Rosenfeld, �Analysis of hashrate-based double spending,� arXiv preprint
arXiv:1402.2009, 2014.

[20] N. van Saberhagen, �Cryptonote v 2.0,� 2013. [Online].
Available: https://github.com/monero-project/research-lab/blob/master/
whitepaper/whitepaper.pdf

[21] T. Cao, J. Yu, J. Decouchant, X. Luo, and P. Veríssimo, �Exploring the
monero peer-to-peer network,� in FC 2020.

[22] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten,
�Sok: Research perspectives and challenges for bitcoin and cryptocurrencies,�
in SP, 2015.

[23] M. Carlsten, H. Kalodner, S. M. Weinberg, and A. Narayanan, �On the
instability of bitcoin without the block reward,� in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
2016.

[24] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, and A. Juels, �Bdos:
Blockchain denial-of-service,� in Proceedings of the 2020 ACM SIGSAC
conference on Computer and Communications Security, 2020, pp. 601�
619.

104

[25] �Empty blocks,� https://medium.com/@ASvanevik/
why-all-these-empty-ethereum-blocks-666acbbf002.

[26] �Coinbase transaction,� https://en.bitcoin.it/wiki/Coinbase, accessed: 2021-
03-31.

[27] �Blockchain.com,� https://blockchain.com/, accessed: 2020-09-24.

[28] �Btc.com,� https://btc.com/, accessed: 2020-09-24.

[29] �f2pool is doing spv mining,� https://bitcointalk.org/index.php?topic=
700411.msg11790734#msg11790734.

[30] �Block header,� https://en.bitcoin.it/wiki/Block_hashing_algorithm, ac-
cessed: 2021-03-31.

[31] J. Parra-Moyano, G. Reich, and K. Schmedders, �A note on the non-
proportionality of winning probabilities in bitcoin,� SSRN, 2020.

[32] E. F. S. . W. R. Sype, �On the negative hypergeometric distribution,� Inter-
national Journal of Mathematical Education in Science and Technology,
1987.

[33] M. Rosenfeld, �Analysis of bitcoin pooled mining reward systems,� CoRR,
2011.

[34] C. Decker and R. Wattenhofer, �Information propagation in the bitcoin net-
work,� in IEEE P2P, 2013.

[35] A. Miller and J. J. LaViola Jr, �Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin,� University of Central Florida
Tech. Report, 2014.

[36] R. Bowden, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, �Block arrivals
in the bitcoin blockchain,� CoRR, 2018.

[37] J. L. Hodges and L. Le Cam, �The poisson approximation to the poisson
binomial distribution,� The Annals of Mathematical Statistics, 1960.

[38] G. Wood, �Ethereum: A secure decentralised generalised transaction ledger,�
Ethereum project yellow paper, vol. 151, pp. 1�32, 2014.

[39] N. Van Saberhagen, �Cryptonote v 2.0,� 2013.

105

[40] P. Maymounkov and D. Mazières, �Kademlia: A peer-to-peer information
system based on the XOR metric,� in IPTPS, ser. Lecture Notes in Computer
Science, 2002.

[41] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey, �Measuring
ethereum network peers,� in ACM IMC, 2018.

[42] G. C. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava,
A. Miller, and P. Viswanath, �Dandelion++: Lightweight cryptocurrency
networking with formal anonymity guarantees,� POMACS, 2018.

[43] A. Miller, J. Litton, A. Pachulski, N. S. Gupta, D. Levin, N. Spring,
and B. Bhattacharjee, �Discovering bitcoin's public topology and in�uential
nodes,� in eprint, 2015.

[44] M. Grundmann, T. Neudecker, and H. Hartenstein, �Exploiting transaction
accumulation and double spends for topology inference in bitcoin,� in FC
2018 International Workshops.

[45] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, �Txprobe: Discovering bitcoin's network
topology using orphan transactions,� CoRR, 2018.

[46] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
�On scaling decentralized blockchains,� in FC 2016.

[47] �Stratum mining protocol,� en.bitcoinwiki.org/wiki/Stratum_mining\
_protocol, accessed: 2020-09-24.

[48] T. Neudecker, P. Andel�nger, and H. Hartenstein, �Timing analysis for in-
ferring the topology of the bitcoin peer-to-peer network,� in IEEE UIC, 2016.

[49] �Bitcoin monitor,� https://dsn.tm.kit.edu/bitcoin/index.html, accessed:
2020-09-24.

[50] M. Möser and R. Böhme, �Trends, tips, tolls: A longitudinal study of bitcoin
transaction fees,� in International Conference on Financial Cryptography
and Data Security, 2015.

[51] J. Garay, A. Kiayias, and N. Leonardos, �The bitcoin backbone protocol:
Analysis and applications,� in Advances in Cryptology - EUROCRYPT
2015.

106

[52] L. Bahack, �Theoretical bitcoin attacks with less than half of the computa-
tional power (draft),� arXiv preprint arXiv:1312.7013, 2013.

[53] E. Group, �Ethereum white paper: Modi�ed ghost implementation,�
Ethereum wiki.

[54] E. Heilman, �One weird trick to stop sel�sh miners: Fresh bitcoins, a solution
for the honest miner,� in International Conference on Financial Cryptogra-
phy and Data Security, 2014.

[55] Y. Lewenberg, Y. Sompolinsky, and A. Zohar, �Inclusive block chain pro-
tocols,� in International Conference on Financial Cryptography and Data
Security, 2015.

[56] P. R. Rizun, �Subchains: A technique to scale bitcoin and improve the user
experience,� Ledger, 2016.

[57] S. D. Lerner, �Decor+ hop: A scalable blockchain protocol,� Semantic
Scholar, 2015.

[58] R. Zhang and B. Preneel, �Publish or perish: A backward-compatible de-
fense against sel�sh mining in bitcoin,� in Cryptographers’ Track at the
RSA Conference. Springer, 2017, pp. 277�292.

[59] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, �Spectre: Serialization of
proof-of-work events: con�rming transactions via recursive elections,� Cryp-
tology ePrint Archive, IACR, no. 1159, 2016.

[60] I. Bentov, P. Hubácek, T. Moran, and A. Nadler, �Tortoise and hares consen-
sus: the meshcash framework for incentive-compatible, scalable cryptocur-
rencies.� IACR Cryptol. ePrint Arch., vol. 2017, p. 300, 2017.

[61] Y. Sompolinsky and A. Zohar, �Phantom,� IACR Cryptology ePrint Archive,
Report 2018/104, 2018.

[62] S. D. Lerner, �Rsk,� 2015.

[63] E. K. Kogias, P. Jovanovic, N. Gailly, I. Kho�, L. Gasser, and B. Ford,
�Enhancing bitcoin security and performance with strong consistency via
collective signing,� in 25th {usenix} security symposium ({usenix} security
16), 2016, pp. 279�296.

[64] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
�Omniledger: A secure, scale-out, decentralized ledger via sharding,� in 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 583�598.

107

[65] R. Pass and E. Shi, �Fruitchains: A fair blockchain,� in Proceedings of the
ACM Symposium on Principles of Distributed Computing, 2017, pp. 315�
324.

[66] G. Bissias and B. N. Levine, �Bobtail: A proof-of-work target that minimizes
blockchain mining variance (draft),� arXiv preprint arXiv:1709.08750, 2017.

[67] W. Martino, M. Quaintance, and S. Popejoy, �Chainweb: A proof-of-work
parallel-chain architecture for massive throughput,� Chainweb Whitepaper,
vol. 19, 2018.

[68] J. Yu, D. Kozhaya, J. Decouchant, and P. Esteves-Verissimo, �Repucoin:
Your reputation is your power,� IEEE Transactions on Computers, vol. 68,
no. 8, pp. 1225�1237, 2019.

[69] R. Zhang and B. Preneel, �Lay down the common metrics: Evaluating proof-
of-work consensus protocols' security,� in 2019 IEEE Symposium on Secu-
rity and Privacy (SP), 2019, pp. 175�192.

[70] R. Pass, L. Seeman, and A. Shelat, �Analysis of the blockchain protocol in
asynchronous networks,� in Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 2017, pp. 643�
673.

[71] E. Shi, �Foundations of distributed consensus and blockchains,� Book
manuscript, 2020.

[72] P. Gaºi, A. Kiayias, and A. Russell, �Tight consistency bounds for bitcoin,�
in Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 819�838.

[73] J. Siim, �Proof-of-stake,� in Research Seminar in Cryptography, 2017.

[74] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, �Securing proof-of-stake
blockchain protocols,� in Data Privacy Management, Cryptocurrencies and
Blockchain Technology. Springer, 2017, pp. 297�315.

[75] M. Neuder, D. J. Moroz, R. Rao, and D. C. Parkes, �Low-cost attacks on
ethereum 2.0 by sub-1/3 stakeholders,� arXiv preprint arXiv:2102.02247,
2021.

[76] C. Schwarz-Schilling, J. Neu, B. Monnot, A. Asgaonkar, E. N. Tas,
and D. Tse, �Three attacks on proof-of-stake ethereum,� arXiv preprint
arXiv:2110.10086, 2021.

108

[77] �Pool detective,� https://dci.mit.edu/research/tag/pool+detective, ac-
cessed: 2020-09-24.

[78] P. Ekparinya, V. Gramoli, and G. Jourjon, �Impact of man-in-the-middle at-
tacks on ethereum,� in 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2018, pp. 11�20.

[79] A. Biryukov, D. Khovratovich, and I. Pustogarov, �Deanonymisation of
clients in bitcoin p2p network,� in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014, pp. 15�29.

[80] M. Corallo, �Bip 152: Compact block relay,� https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki, 2016.

[81] I. Eyal, �The miner's dilemma,� in SP, 2015.

[82] B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore, �Game-
theoretic analysis of ddos attacks against bitcoin mining pools,� in FC 2014
Workshops.

[83] A. Laszka, B. Johnson, and J. Grossklags, �When bitcoin mining pools run
dry - a game-theoretic analysis of the long-term impact of attacks between
mining pools,� in FC 2015 International Workshops.

[84] Z. Avarikioti, L. Heimbach, Y. Wang, and R. Wattenhofer, �Ride the light-
ning: The game theory of payment channels,� in FC 2020.

[85] �ahashpool,� https://www.ahashpool.com/.

[86] �coindance,� https://cash.coin.dance/blocks/pro�tability.

[87] �Spvmining,� https://bitcoin.stackexchange.com/questions/38437.

[88] T. Cao, J. Decouchant, J. Yu, and P. Esteves-Veríssimo, �Characterizing the
impact of network delay on bitcoin mining,� in International Symposium on
Reliable Distributed Systems, 2021.

[89] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, �Bitcoin blockchain
dynamics: The sel�sh-mine strategy in the presence of propagation delay,�
Performance Evaluation, 2016.

[90] K. A. Negy, P. R. Rizun, and E. G. Sirer, �Sel�sh mining re-examined,�
in International Conference on Financial Cryptography and Data Security.
Springer, 2020, pp. 61�78.

109

[91] Y. Sompolinsky and A. Zohar, �Bitcoin's security model revisited,� arXiv
preprint arXiv:1605.09193, 2016.

[92] J. R. Douceur, �The sybil attack,� in International workshop on peer-to-
peer systems. Springer, 2002, pp. 251�260.

[93] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and C. Porth,
�Bar fault tolerance for cooperative services,� in Proceedings of the twenti-
eth ACM symposium on Operating systems principles, 2005, pp. 45�58.

[94] J. Decouchant, �Collusions and privacy in rational-resilient gossip,� 2015.

[95] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
�Erlay: E�cient transaction relay for bitcoin,� in CCS 2019, 2019, pp. 817�
831.

[96] T. Ylonen, C. Lonvick et al., �The secure shell (ssh) protocol architecture,�
2006.

[97] E. Rescorla, N. Modadugu et al., �Datagram transport layer security,� 2006.

[98] N. Ferguson and B. Schneier, �A cryptographic evaluation of ipsec,� 1999.

[99] R. Recabarren and B. Carbunar, �Hardening stratum, the bitcoin pool min-
ing protocol,� arXiv preprint arXiv:1703.06545, 2017.

[100] T. Neudecker, �Security and anonymity aspects of the network layer of per-
missionless blockchains,� Ph.D. dissertation, 2019.

[101] A. Biryukov and S. Tikhomirov, �Deanonymization and linkability of cryp-
tocurrency transactions based on network analysis,� in EuroS&P, 2019.

[102] C. Natoli, J. Yu, V. Gramoli, and P. J. E. Veríssimo, �Deconstructing
blockchains: A comprehensive survey on consensus, membership and struc-
ture,� CoRR, 2019.

[103] M. Möser, K. Soska, E. Heilman, K. Lee, H. He�an, S. Srivastava, K. Hogan,
J. Hennessey, A. Miller, A. Narayanan, and N. Christin, �An empirical anal-
ysis of traceability in the monero blockchain,� PoPETs, vol. 2018, no. 3, pp.
143�163, 2018.

[104] A. Kumar, C. Fischer, S. Tople, and P. Saxena, �A traceability analysis of
monero's blockchain,� in ESORICS, 2017, pp. 153�173.

[105] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, , and W. F. Lau, �New empirical
traceability analysis of cryptonote-style blockchains,� in FC, 2019.

110

[106] J. Yu, M. H. A. Au, and P. Veríssimo, �Re-thinking untraceability in
the cryptonote-style blockchain,� in IEEE Computer Security Foundations
Symposium (CSF), 2019.

[107] D. A. Wijaya, J. Liu, R. Steinfeld, D. Liu, and J. Yu, �On the unforkabil-
ity of monero,� in ACM Asia Conference on Information, Computer and
Communications Security (ASIACCS), 2019.

[108] C. Natoli and V. Gramoli, �The balance attack or why forkable blockchains
are ill-suited for consortium,� in DSN, 2017.

[109] P. Ekparinya, V. Gramoli, and G. Jourjon, �Impact of man-in-the-middle
attacks on ethereum,� in SRDS, 2018.

[110] �Monerohash - monero mining pool,� https://monerohash.com/
nodes-distribution.html, accessed: 2019-01-12.

[111] �Bitnodes,� https://bitnodes.earn.com/nodes/, accessed: 2019-01-12.

[112] �Ethernodes,� https://www.ethernodes.org/network/1, accessed: 2019-01-
12.

[113] A. Singh, M. Castro, P. Druschel, and A. Rowstron, �Defending against
eclipse attacks on overlay networks,� in Proceedings of the 11th Workshop
on ACM SIGOPS European Workshop, ser. EW 11. ACM, 2004.

[114] R. Dorfman, �A formula for the gini coe�cient,� The review of economics
and statistics, 1979.

[115] �Bfgminer,� http://bfgminer.org/, accessed: 2020-09-24.

[116] �Mining cartel attack,� https://bitcointalk.org/index.php?topic=2227, 2010.

[117] T. Moscibroda, S. Schmid, and R. Wattenhofer, �Topological implications of
sel�sh neighbor selection in unstructured peer-to-peer networks,� Algorith-
mica, 2011.

[118] M. E. Newman, �Assortative mixing in networks,� Physical review letters,
2002.

[119] �Bitcoin-wiki,� https://en.bitcoin.it/wiki/Block_hashing_algorithm.

[120] J. Bonneau, �Why buy when you can rent? - bribery attacks on bitcoin-
style consensus,� in Financial Cryptography and Data Security - FC 2016
International Workshops, BITCOIN, VOTING, and WAHC, 2016, pp. 19�26.

111

[121] R. Han, Z. Sui, J. Yu, J. K. Liu, and S. Chen, �Fact and �ction: Challenging
the honest majority assumption of permissionless blockchains,� in ASIA CCS
’21: ACM Asia Conference on Computer and Communications Security,
Virtual Event, Hong Kong, June 7-11, 2021, J. Cao, M. H. Au, Z. Lin, and
M. Yung, Eds. ACM, 2021, pp. 817�831.

[122] C. Badertscher, Y. Lu, and V. Zikas, �A rational protocol treatment of 51%
attacks,� in Advances in Cryptology - CRYPTO 2021 - 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part III, ser. Lecture Notes in Computer Science,
T. Malkin and C. Peikert, Eds., vol. 12827. Springer, 2021, pp. 3�32.

[123] �Half mining power were doing spv mining,� https://bitcoin.org/en/alert/
2015-07-04-spv-mining#cause.

[124] �spv mining pools,� https://en.bitcoin.it/wiki/Comparison_of_mining_
pools.

[125] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and
O. Zeitouni, �Everything is a race and nakamoto always wins,� in CCS,
2020.

[126] M. Dotan, Y.-A. Pignolet, S. Schmid, S. Tochner, and A. Zohar, �Survey on
blockchain networking: Context, state-of-the-art, challenges,� ACM Com-
puting Surveys (CSUR), 2021.

[127] Y. Kwon, H. Kim, J. Shin, and Y. Kim, �Bitcoin vs. bitcoin cash: Coexistence
or downfall of bitcoin cash?� in IEEE (SP), 2019.

[128] A. Spiegelman, I. Keidar, and M. Tennenholtz, �Game of coins,� arXiv
preprint arXiv:1805.08979, 2018.

112

