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Abstract: Arrays of Cholesteric Spherical Reflectors (CSRs), microscopic cholesteric liquid crystals in
a spherical shape, have been argued to become a game-changing technology in anti-counterfeiting.
Used to build identifiable tags or coating, called CSR IDs, they can supply objects with unclonable
fingerprint-like characteristics, making it possible to authenticate objects. In a previous study, we
have shown how to extract minutiæ from CSR IDs. In this journal version, we build on that previous
research, consolidate the methodology, and test it over CSR IDs obtained by different production
processes. We measure the robustness and reliability of our procedure on large and variegate sets of
CSR IDs’ images taken with a professional microscope (Laboratory Data set) and with a microscope
that could be used in a realistic scenario (Realistic Data set). We measure intra-distance and inter-
distance, proving that we can distinguish images coming from the same CSR ID from images of
different CSR IDs. However, without surprise, images in Laboratory Data set have an intra-distance
that on average is less, and with less variance, than the intra-distance between responses from
Realistic Data set. With this evidence, we discuss a few requirements for an anti-counterfeiting
technology based on CSRs.

Keywords: object verification; similarity scores; data analysis; Cholesteric Spherical Reflectors

1. Introduction

From a broader perspective, this paper is about how to verify that an object is authentic.
In certain sectors, this problem is well known, for instance in biometrics and fingerprint
authentication. It calls for taking afresh a fingerprint and comparing it to the real person’s
print previously taken, registered, and stored by a trusted party. For comparison, object
verification, a problem relevant in anti-counterfeiting, is the process of confirming that an
object identified by reference number is the same object that was originally produced and
labeled that way, and not a fake imitation.

The main challenge in anti-counterfeiting, and object verification is that only a few
objects have unclonable identifiable characteristics, so it is unfeasible, impractical, or too
expensive, to produce fakes. One has to resort to external guarantees of authenticity. A
common solution is watermarking: special marks hard to reproduce without sophisticated
technology are added to the object, often stealthily. In banknotes, for instance, signs
detectable in ultra-violet, raised printing, holograms, and glossy stripes are used to increase
confidence about a banknote’s authenticity if one knows where and what to look for.
Watermarking is object-specific, applicable only to certain materials, and it is not identifying:
banknotes use serial numbers for that purpose. Other techniques are digital. They employ
deep learning to recognize what features an object, or better several thousands of pictures
of an object, have in common. Machine learning can give excellent results, but the training
process can be time-consuming, needs large training data set, and the criteria learned for a
reliable classification may not be explainable. Instead of a whole picture of an object, one
can look only at certain minutiæ (i.e., details). This helps to speed up the process because
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those minutiæ have been proven capable to distinguish one “instance” object from another.
In fingerprint analysis, to return to our example, minutiæ are certain specific points in the
ridges in a grayscale skeleton image of a fingerprint. Today, fingerprint analysis algorithms
that look for minutiæ are available and are fast, but the basic idea was conceived decades
ago. Once more, not all objects possess detectable minutiæ or have been the subject of years
of research to obtain fast and efficient verification algorithms.

What would be ideal in anti-counterfeiting would be a material that can be paired with
a large family of objects, providing them with fingerprint-like features. The material should
be also tamper-evident (i.e., irremovable without damage) and physically unclonable. Its
identifiable features should be non-reproducible using similar technologies so that it is
impossible or costly to produce counterfeits. In this paper, we study one of such a material
which is the result of years of research in soft matter physics. The material is known as
Cholesteric Liquid Crystals (ChLCs).

Liquid crystals have been used extensively in the production of screens of several
digital devices, but when molded into a spherical shape they become reflectors: they reflect
lights and create colorful patterns (see Figure 1). ChLCs in spherical shape are called
Cholesteric Spherical Reflectors (CSRs). The selective reflection coming from CSRs can be
controlled by adjusting the chemical composition of the liquid crystals, and so can be
the size of the droplets during the production process; as well the positions of CSRs and
the distribution of different CSR types [1,2]. Specific features of the light source, such as
the angle of incidence and polarization, provide an advantage for unpredictability [1–3]
and these unpredictable and unique optical reflection patterns can be captured with a
mobile camera [4,5]. Lenzini et al. [4] suggested that ChLC-shells have intrinsic unclonable
properties and therefore may be used as Physical Unclonable Function (PUF) for security
applications.

(a) (b)

Figure 1. CSR images taken with a non-professional optical microscope at different angles of illumi-
nation: (a) perpendicular with respect to the sample, (b) 45◦ with respect to the sample, the response
changes considerably.

Contribution

We address the problem of understanding how to process images of CSRs, extract
information from them, and design a verification procedure for CSRs. We work on CSRs
contained in physical supports or tags, which we call CSR Identifiers (CSR IDs). We aim to
test the following hypothesis:

Hypothesis 1. CSR can be a material of choice for object “fingerprint” verification, because we
can extract identifying information from their responses and clearly distinguish images taken from
a specific CSR ID from images taken from other CSR IDs, as well as from fake images made up to
simulate a CSR’s responses.

We investigate Hypothesis 1 in the most general way possible. In fact, CSRs are not a
single, well-established physical entity as human fingerprints are. They can be produced
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in the form of shells or droplets (a droplet is filled with ChLCs, a shell is hollow inside
and contains ChLCs only in the external surface.), and as such, they have different sizes
(their diameter ranges from 10 µm to 100 µm). They are produced following different
protocols, by using different chemicals, different pipelines, and polymerization phases
and as such CSRs can be tuned to reflect different “colors” e.g., in the visible and in the
invisible spectrum; they can be hosted by different media (e.g., plastic tags, transparent
films, drying-up coatings), and the hosting material interferes on how light is reflected.

In addition, raw images of CSRs also differ if taken with a professional microscope,
such as the images in Figure 2, or with more affordable microscopes, for instance, a
microscope built in a smartphone or connect to it wirelessly or with a USB port as the one in
Figure 3. To address such diversity of challenges makes testing Hypothesis 1 difficult. We
look for a single strategy that works across the whole range of images that we can obtain
from the families of CSRs currently available to us.

Figure 2. We observe great variability in both CSRs and backgrounds of the Laboratory Data set [6].
It is observed a circular reflection spot at the center of every CSR, these colored elements are present
across all different responses. There are also other colored features in the patterns, with certain radial
and azimuthal distributions with respect to the centers of each CSR, e.g., the image in column 4 row 3.

Processing CSR images and extracting features from CSR IDs have been pioneered in
Lenzini et al. [4] and Arenas et al. [6]. The first work compares histograms of images, a
very basic strategy, to see whether the information hidden in the colored patterns is enough
to discern among different arrays of CSRs. Results were preliminary with plenty of room
for improvement.
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Figure 3. CSR ID: physical object composed by CSRs hardened into a matrix—that can be a polymeric
or a glass. CSR response: image acquired from the physical object by using a Dino-Lite microscope.

The second work delves into more sophisticated image processing strategies and more
tailored similarity measures. One measure was defined in terms of the number of zero
pixels after image subtraction; the other was defined by comparing colored circles, (herein,
blobs) that correspond to spots of reflected light (see Figure 2). A blob is a 4−tuple of
integers, respectively the coordinate of its center, radius, and dominant color. The authors
suggested that these blobs are the minutiæ of CSRs, and discussed a measure of similarity
over the blob space, which we also report here. In fact, this article is the journal version of
Arenas et al. [6], a conference paper. As such, it includes the original methods but extends
the research considerably. In addition to a new introduction that better frames the work,
a revised methodology, and an improved implementation, it has a novel experimental
part with more and different data sets. The images considered in Arenas et al. [6] were
“perfect and neat” images of CSR IDs’ responses taken with a professional microscope, the
ones used in a Physics Laboratory. The scenario of reference was inevitably artificial. To
simulate a real situation with noise due to imperfect read-out, Arenas et al. [6] created a
large number of synthetic images by shifting, rotating, cropping, and blurring the original
images. A large number of artificial and fake images, only apparently looking as images of
CSRs, were also included in the data set.

In this work, we extend Arenas et al.’s data sets as follows: we added Gaussian noise
to the images, the one introduced by electronic circuit noise in digital cameras [7]. This is
considered a must-have in image processing. In addition to the old data set, we collected
hundreds of new images in a completely different setting. All images are taken from an
updated collection of CSR IDs produced using a newer production process that generates
smaller CSRs with a nonprofessional microscope. This new data set includes images that
are much closer to what a user would obtain in a real object verification scenario. The data
analysis has been completely updated. Thanks to the new data set, we were able to renew
a within-sample analysis, measuring intra- and inter-distance between different tags made
with the same production technology, and with pictures taken using the same read-out
device, but also to run a completely new cross-sample analysis. We report on statistics
over the intra- and inter-distances calculated over CSRs samples produced with different
technologies, hosted on different media, and taken with different read-out hardware and
conditions.

We believe that the findings of this work give more quality evidence to not reject
Hypothesis 1. It gives ground to discuss a few engineering requirements for using CSRs in
anti-counterfeiting.

2. Previous Research on CSRs in Object Verification

Counterfeiting and piracy of goods are big challenges for companies to develop
innovative products. Studies from the Organisation for Economic Cooperation and De-
velopment (OECD) and the EU Intellectual Property Office (EUIPO) show an increase of
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illicit trades in the global markets [8,9]. From this point of view, one of the challenges for
the product’s authentication is to guarantee that the claimed element is genuine. Each
authentication system has different drawbacks caused by security vulnerabilities and au-
thorization attacks. Authentication systems are nontrivial to implement, mainly when
dealing with random variables that are not perfectly reproducible when measured multiple
times, as is the case of CSRs. The state of the art of PUF technologies is wide, as reported by
McGrath et al. [10], there exist silicon-, optical-, magnetic-based technologies, among others.
However, due to the scope of the current study, we focus exclusively on optical PUFs.
Pappu et al. [11] introduced the concept of optical PUFs as physical one-way functions, they
proposed tokens in which particles are distributed randomly over a transparent surface
and when challenged with a laser, unique and unclonable identifiers are observed. Any
variation in the incidence angle of the laser corresponds to a different pattern, being the
laser’s position the challenge, and the resulting pattern the response. This complex interaction
has attracted the attention of different industries and researchers leading to the advent of a
plethora of optical PUFs for authentication applications [12–14].

Dachowicz et al. [15] developed an optical PUF anti-counterfeiting system of manufac-
tured metallic goods. The authors implemented their solution for 50 pieces of special steel
parts with an estimated classification error rate of less than 1%. Arppe-Tabbara et al. [16]
proposed a PUF-based optical authentication system based on tags in which a handful of
particles is thrown on a surface (e.g., QR-codes). Each thrown generates a unique pattern,
and the number of particles makes the chance of two identical patterns occurring zero.
Wang et al. [17] have studied the use of polymer substrate fingerprinting to construct an
anti-counterfeiting tool for polymer banknotes. They extract fingerprints of each banknote
using the inherent uneven thickness in the coating layer and the random dispersion of
impurities from the ink to extract unique fingerprints for each banknote. The authors have
used 340 distinct banknotes to produce 6 200 images. They obtain a fingerprint of 2 048-bits
of information with 900-bit of entropy. Then, they computed the intra- and inter-distance
approach, very similar to our study, and authenticated banknotes with high accuracy.

The first work suggesting that ChLC-shells have intrinsic unclonable properties for
security applications is [2]. The argument has been backed with some evidence in [4], where
the authors hypothesized that CSRs are optical PUFs [11] because of two arguments: the
large variations of patterns obtainable by changing the angle of incidence of the light and
the tags’ production process (one cannot control nor predict where the CSRs will eventually
be displaced, which makes aggregation of CSRs arguably physically unclonable). For
reference, let us call a tag containing CSRs as CSR ID. Because of their optical patterns
and their physical unclonability, CSR IDs are being presented as a potential technology for
object authentication and anti-counterfeiting [3]. However, and the following statement
holds also for other optical PUFs, CSR IDs cannot unleash their potential to give objects
their fingerprint unless one proves that is feasible to extract the identifying information
contained in their responses and to use it for verification. Even better would be to extract
reliable and robust bitstrings from a CSR ID, enabling the design of cryptographically strong
authentication protocols.

Table 1 shows a comparison of these 4 studies, 2 of them benefit from the internal
structure of the material (banknote and steel) whereas the others rely on the specially pro-
duced tags. These techniques seem to encode enough information for uniquely identifying,
but more work is required for better estimation of the information encoding capacity of our
development.
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Table 1. Comparison between different authentication technologies.

Dachowicz et al. [15] Arppe-Tabbara et al. [16] Wang et al. [17] This Work

Application Steel tracking Authentication Banknote authenticity Authentication
Number of tags/items 50 9720 340 64
Number of Images NA NA 6200 5560
Information
encoding capacity NA 2.5× 10120 900 bits NA

Information source Steel micrographias
Special nano material
printed tags

Internal randomness
in banknote ink CSR tags

Measuring Device
AmScope MU500
5.1MP digital
microscope

Smart phone camera
Epson V850 and Panasonic
DMC-FZ72 Camera

DinoLite
USB-microscope

False Positive Rate <0.01 Around 0 Around 0 Around 0

3. Definitions and Requirements

The problem of object verification using CSRs is, in theory, a simple authentication
problem. Let us call wi an object i tagged with a CSR ID w. Verifying that an object that
carries a tag w and claiming to be i is original means testing whether w == wi, where
‘==’ denotes physical identity. In practice, the test implies reading out some piece t of
identifying information from w, a process that we write as t = ReadOut[w]. Since w is a
CSR ID, t will be a picture of the tag’s optical response as one of those reported in Figure 2.
This is not enough, however. To verify w’s originality, we need to extract some unique
identifiable feature from t, say z. Let us write this process as z = Extract[t]. For instance,
z can be obtained by applying Gabor filters [17] or some feature extraction methods (e.g.,
see [18]). Verifying w means retrieving the safely stored zi = Extract[ReadOut[wi]] of the
original object, and compare it against z = Extract[ReadOut[w]]. Figure 4, adapted from [4]
and from [19], visualizes the workflow and its steps, where IsMatching[z, zi] is the last
verification test, according to a measure of similarity, likelihood, or distance defined over
the space of features. The figure shows also the process for the production of CSRs: α
represents factors at production that contribute to the entropy carried by w.

Creation
Parameters, α

Production
variability

Challenges, x

t
Noise

Produce

Production
Phase

ReadOut

w

Extract

Extraction
Parameters, β

IsMatching

Matching
Phase

Read-out
Phase

z

zi

Accept
Reject

Extraction
Phase

Figure 4. A generic framework for physical functions. Readout, Extraction, and Matching: three
phases for object verification. Adapted from [4,19].

A full authentication protocol will be more elaborated than just matching z and zi, but
disregarding this aspect at the moment, what matters is that robustness and reliability of
the authentication procedure depends on w, on the readout/extraction procedures, and on
the algorithm used for the matching. These procedures should be designed, implemented,
and combined to satisfy the following property:

IsMatching[z, zi] ⇐⇒ (w == wi) (1)

If w were a PUF, a read-out would not be unique. It would change in response to a
challenge c ∈ C, that is t(c) = ReadOut[w(c)]. That is:

∀c ∈ C : IsMatching[z(c), zi(c)] ⇐⇒ (w == wi) (2)
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We do not consider such a challenge-response behavior of CSRs in this paper. A
challenge-response for CSRs would be possible if we were able to set the angle of illumina-
tion. We are not yet technologically capable to control this variable with precision.

3.1. Robustness and Reliability

In practice, assessing whether requirement (1) holds true must be quantified experi-
mentally. It requires the availability of a large data set of different images from different
readouts. This is necessary even if there is a vast literature on image processing and infor-
mation extraction (e.g., see [20]), because any material is different and has its own physical
features, different responses, and ways to be analyzed.

3.1.1. Robustness

A robust authentication process should, for a specific CSR ID, accept any image of
optical responses of that tag despite the inevitable presence of noise during the readout. In fact,
any retake (i.e., any optical response taken from the same tag at another moment in time)
contains noise of different sources e.g., due to the use of different devices, different ambient
light, and position of the physical tag under the camera. If zi = Extract[ReadOut[wi]] are
the extracted features of the reference image wi, and z′ = Extract[ReadOut′[w]] the corre-
sponding identifying information extracted from any retake image of w, then robustness is
formalized as follows:

Definition 1. [Robustness]

(w == wi)⇒ ∀z′ : IsMatching[z′, zi] (3)

Informally, whenever the CSR ID is original, our matching procedure comparing
extracting features should not be rejected even in the presence of noise. As we will see in
the next section, robustness is assessed in terms of false-negative ratio and intra-distance
between a reference readout and all its retakes. Definition 1 does not suggest how to
implement Extract or IsMatching: it defines a property they are required to satisfy.

It also suggests that the chosen implementation should work for all different images
coming from CSR IDs. This is advisable: we do not wish to have a family of Extract and
IsMatching each for each CSR IDs. We seek for an implementation that is as much as
possible independent from the different images we can encounter with CSR IDs.

3.1.2. Reliability

A verification procedure for CSRs should also be reliable. This means that it should
reject any image of any other CSR ID. Noisy images, with natural noise (here we do not
consider an adversary forging images, but images with noise due to retakes), should not be
such that to make the verification procedure accepting.

Definition 2. [Reliability]

¬(w == wi)⇒ ∀z′ : ¬(IsMatching[z′, zi]) (4)

We will measure the reliability in terms of false-positive ratio and inter-distance
between readout from a CSR ID and the set of retakes from other CSR IDs.

3.2. Algorithms Design

From Arenas et al. [6], we discuss one specific design for Extract and IsMatching. Our
strategy takes inspiration from feature extraction and minutiæ detection, two techniques used
in the biometric analysis (e.g., [21]). They consist in extracting from an image a few specific
features that are argued to be identifying.
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What can be minutiæ in a CSR ID’s response? CSRs are spherical objects. When
photographed, they appear like circles; thus circles and their centers are well-defined
concepts derived from “physical” properties of CSRs. In addition, in a CSR ID’s response,
at least when the illumination is perpendicular to the sample (as in Figure 1a and in
all images in Figure 2), there are other spots of reflected light. Along the perpendicular
illumination, one can observe reflection spots from every center of CSRs. These colored
elements are observable across all responses. Other colored spots are present, due to radial
and azimuthal distributions with respect to the centers of each CSR.

These observations suggest that we can consider as minutiæ the colored circles of different
sizes and positions (i.e., the blobs) that can be recognized in an image of a CSR ID when
illuminated perpendicularly. Primary minutiæ emerge because CSRs have a physical center
and secondary minutiæ are aligned with “cross-communication” between CSRs. Blobs can
be recognized and extracted from a picture using refined image processing procedures.

Our current implementation works with such minutiæ, visible when the illumination
is perpendicular to the surface of a CSR ID. If we change the angle of illumination, as
in Figure 1b, other colored patterns emerge that have a circular shape. They cannot be
considered blobs anymore. In that case, our approach is not valid. But, we commented
already that changing the angle illumination is not a controllable variable at the moment.
Perpendicular light is what naturally comes from microscopes, even those embedded
in phones. Setting a different angle of illumination, e.g., at 45◦, requires a considerable
effort. Setting the illumination at any other angle, e.g., at 30◦, is currently not even feasible.
This means to suspend using the full challenge-response behavior that CSRs can offer.
Analyzing nonstandard images such as the one in Figure 1b is left for future work.

We stress that here we analyze the minutiæ/blobs in images obtained from a single
challenge-response combination. We could repeat the procedure for images corresponding
to different challenges to exploit the PUF-characteristics of CSR-based authentication. While
we thus do not fully probe the PUF aspects of the tags in this paper, the procedures that we
develop here will form the basic algorithmic building blocks for the full implementation of
CSRs authentication.

We describe an implementation in Python of Extract and ReadOut of this design idea
in the next section. We give here the main features of how we calculate a similarity score,
SimilarityScore and the predicate IsMatching. Let Blobs[z] = {b1, · · · , bk} be a list of blobs
extracted from a read-out z, and b.circle and b.color be, respectively, the circle (i.e., centre
position and radius) of b and its colour e.g., in RGB. We call z(c) the processed version
of t which has been aligned with zi. Our implementation of similarity score depends on
an equivalence relation that defines when two blobs do match according to the relative
positions of their circles and their colours. A possible algorithm for IsMatching is as follows:

IsMatching[b, b′] = EuclideanDistance[b.circle.center, b′.circle.center] < δ ∧ (5)

ColorDistance[b.color, b′.color] < δ′

δ and δ′ are thresholds, and ColorDistance is a distance over RGB color space. We
can construct local matching structures [22,23], MatchingBlobs[z, zi] as the set of minutiæ in
Blobs[z] and Blobs[zi] in relation to one another according to (5). After the image alignment,
given a local structure, we can calculate a global matching score as follows:

SimilarityScore[z, zi] =
2× |MatchingBlobs[z; zi]|
|Blobs[z]|+ |Blobs[zi]|

(6)

Equation (6) is a linear function that ranges in [0, 1]. It returns 0 if the blob structures
have no matching blobs; the value increases linearly with the number of matching blobs.
It returns 1 when two blob structures match entirely. Equation (6) is a simple measure of
similarity, but serves the scope of this paper: testing Hypothesis 1. Other measures are
possible. For instance, instead of a linear function, we can use a sigmoid function if we prefer
a similarity score that increases significantly only after a certain threshold of matching.
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4. Materials and Methods
4.1. CSR IDs and Response Data Sets

The CSR IDs were produced by the Experimental Soft Matter Physics (ESMP) group
of the Department of Physics and Materials Science at the University of Luxembourg. The
group is constantly working on improving CSR physical and optical properties [3,5,24]. For
this work, they produced two batches of tags, using different production processes: Process
One and Process Two. The names are fictional, but what counts is that different processes
give slightly different CSRs. We were in the position to verify Hypothesis 1 reducing the
dependency of our results on one particular production process.

Batch Process One consists of 12 CSR IDs physically resembling plastic supports of the
size of a small Lego piece (see Figure 3). Tags contain droplets of diameter ranging from
50 µm to 100 µm. Batch Process Two included 52 CSR IDs, also containing droplets but
with a smaller diameter, varying, across tags, from 20 µm to 50 µm. These tags look-alike
small rigid plastic films, less thick than the tags in the previous batch. We comment on
the thickness because it affects the noise due to the reflection of light in the support. The
batches were used to generate two different data sets of responses which we call Laboratory
Data set, and Realistic Data set.

4.1.1. Process One and Laboratory Data set

The CSR responses coming from Process One were acquired with an Olympus profes-
sional polarized microscope equipped with a digital camera and illumination perpendicular
to the sample. This microscope is an expensive piece of equipment. We used it to start
studying CSRs for verification in optimal laboratory conditions. Figure 5a shows a CSR
response acquired with the Olympus microscope and we observe that each CSR presents
well-defined and colored patterns.

Figure 5. (a) CSR response of a Process One tag acquired with the Olympus microscope; (b) CSR
response of a Process Two tag acquired with the Dino-Lite microscope.

Laboratory Data set consists of 540 images. It contains 12 original images from the
laboratory, and the others obtained by artificially injecting noise into the original 12. The
noise is supposed to simulate user and ambient noise (i.e., similarity noise) and noise due
to the use of digital technology (i.e., Gaussian noise). The similarity noise considers the
external conditions, such as rotation and the presence of regions out of focus, as described
in [6]. The Gaussian noise simulates the photonic and electronic noise inherent in a device,
it occurs during the image acquisition under low-light conditions, which makes it difficult
for the visible light sensors to efficiently capture details of the object [7].

We generated a set of CSR responses by applying to the reference images the operations
listed in Table 2. The ranges have been determined to noise within realistic external
conditions. For the rotation operation, we considered anticlockwise steps of 1 degree up
to 5 degrees. The blurring operation ranges from (2× 2) and is limited up to a (4× 4)
pixel window. The blurring effect averages out changes in pixel intensity. Larger kernels
(window of pixels) have more values factored into the average, implying that a larger
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kernel will blur the image more than a smaller kernel [25,26]. We also added Gaussian
noise with a maximum standard deviation of 0.4.

Table 2. Operations applied to each reference CSR response (from Process One) for obtaining the set
of retaken images.

Sequence Operation Range

1 Rotation 1–5◦ (anticlockwise)

2 Blurring (2 × 2)–(4 × 4)

3 Gaussian noise 0.2–0.4

4.1.2. Process Two and Realistic Data set

The CSR responses coming from Process Two were acquired with a USB Dino-Lite
digital microscope at a perpendicular illumination to the sample and flexible LED control.
Unlike the professional microscope, which uses a reflection cube to split the light, the Dino-
Lite microscope uses LEDs located at the outer part of the optical tube. This microscope is
an affordable piece of equipment and can be easily used by a layman. It has a black surface
to hold the sample, without retro illumination. This is not optimal: images are much darker,
as we will see in the next section.

Figure 5b shows a CSR response acquired with this microscope. The CSRs are still
visible but are smaller with a significant loss in detail. Still, circles and spots of colors are
recognizable. These images may be closer to the images acquired by an end-user with
no experience and/or professional microscopes. In addition, the Dino-Lite is the closest
device we had in use to simulate a user taking pictures with a mobile device. A wireless
version of a microscope can in fact be used with phones. In the future, we plan to create
further data sets taken with the last generation of smartphones, such as the OPPO Find X3,
which have a microscope built-in.

We could operate the Dino-Lite microscope from a laptop and easily acquire 100 images
at intervals of time between each acquired image of 2 s. At least for the experiment
considered in this work, we did not introduce artificial noise. The images we took were
affected by some real noise already. A student positioned the CSR IDs under the microscope;
by hand, she put the image in focus, choosing the magnification; the artificial and the natural
ambient light coming from the outside was changing (e.g., daylight from the morning to
evening, the tables holding the microscope were one under the artificial light, the other far
from it).

The position of the tags is not too critical as they were taken more or less at the same
position. We deal with the lighting conditions as they may vary due to the nature of the
sensor/camera, meaning that they have inherent Gaussian noise. The illumination was
perpendicular to the sample, as shown in Figure 1, but the pictures were taken in an office
room with light pollution, mainly ambient light, and light coming from outside through a
large window This noise due to external conditions, such as some regions out of focus is
clearly visible in some pictures. The total generated data set is shown in Table 3.

Table 3. Generated dataset for CSR responses acquired from different microscopes.

Number of CSR IDs Number of Images Number of Images
with Noise

Laboratory Data set 12 12 540
Realistic Data set 52 5024 5024

4.2. Image Processing and Alignment

Implementing all steps of the process in Figure 4 requires the implementation of image
processing procedures to align images and extract minutiæ i.e., the positions, radii, and
colors of blobs.
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We performed the alignment between w and w′ based on the algorithm described
in [6]. The alignment relies on the Scale-Invariant Feature Transform (SIFT) [27] and the
Random Sample Consensus (RANSAC) [28] methods to extract the key points representing
the features of images; we resort to the homography method to calculate the alignment of
two images, as observed in Figure 6. We converted both images, reference and aligned,
into gray-scale, then we computed the histogram matching. This transformation adjusts the
pixel intensity of the aligned images according to the illumination and contrast of the
reference image.

Figure 6. Keypoint matching between a reference and a retake CSR response. Keypoints in both
images are represented as circles. Green lines represent correct matches.

4.3. Matching and Similarity Score

After alignment, we extracted the positions and radii of blobs of the reference image
(gray-scale) and of the aligned image (after histogram matching) using a blob detection
algorithm. The position and the radius are extracted by using a blob detection algorithm
from the Scikit-image library, producing a matrix of size n× 3, where n is the number of
extracted blobs. We compared the position of each blob of the reference image with each
blob in the aligned image for obtaining the matched blobs. Figure 7 shows this process in
images, in which blobs’ features and colors are encoded as lists.

We calculated the similarity score as in Equations (5) and (6). If the distance between
two blobs is smaller than the threshold distance (σ), they match.

Figure 7. Detected blobs’ in a CSR response: (a) reference image, (b) aligned image, (c) matched blobs
between the reference and the aligned images.

4.4. Implementation

The implementation was conducted in Python 3.8.7 on Ubuntu 20.04 LTS Operating
System (CPU Intel® CoreTM i3-10100 at 3.60 GHz—8 Cores, 32 GB RAM with 64-bits).

To evaluate reliability and robustness, we set the experiment depicted in Table 4. The
alignment was obtained in approximately 0.295 ± 0.091 s whereas the blobs detection took
around 20.777 ± 4.637 s. The processing time for the blob detection has a large variance
since the complexity of extracting the blobs depends on the structure of the images (i.e.,
blob density). We improved this performance by implementing a parallelized process by
using six cores.
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Table 4. Dataset for Process One and Process Two.

Type Production Number of
Comparisons Execution Time (h)

Intra-distance Laboratory Data set 540 0.66
Realistic Data set 5024 2.32

Inter-distance Laboratory Data set 7649 4.60Realistic Data set 16,314

Our code and the data sets are available on git at https://gitlab.uni.lu/irisc-open-
data/2021-nofakes (accessed on 22 January 2022).

5. Results

As explained in Section 4.2, a proper alignment is required. When two images do not
align is because there are no common features between them and therefore no matching
blobs. We expected and confirmed that if alignment fails, the similarity score is zero or very
close to zero.

For each comparison, we calculated the SimilarityScore. From the score distribution of
each reference image compared with the set of references and retakes from other images,
we estimated the reliability, in terms of false-positive ratio and inter-distance. Figure 8
depicts that there is a trade-off between the acceptance rate and false positives according
to the choice of the threshold. The expected authentication rate for correctly identifying
a retake image is 0.99 when choosing a threshold value up to 50%. The corresponding
acceptance rate for incorrectly flagging an unrelated response is 0.0, i.e., the false-positive
ratio is also zero. We can guarantee an authentication greater than 0.9 when choosing a
threshold up to 74%.

Figure 8. True/False-positive acceptance rate at changing of the similarity score used as a threshold.
Setting the threshold at 74% gives a true acceptance rate of about 90%.

The total execution time for the inter-distance for a total of 23,960 comparisons was
about four hours and a half. When the alignment fails, the blob detection algorithm, which is
the most computational-intensive process, is not triggered. For the intra-distance compar-
isons, we observed a difference between Laboratory Data set and Realistic Data set. For the
first one, the execution time per CSR response was on average 4.43 s, i.e., ≈40 min for the
complete data set. In contrast, for the Realistic Data set, the execution time per comparison
was on average 15.14 s. The execution time differs because the responses from Realistic
Data set are darker (background and CSRs) and, the alignment and blob detection algorithms
take more time in executing these tasks.

Figure 9 shows the similarity score as a function of the number of detected blobs. A
separation between the intra- and inter-distance clusters can be observed. Some values of

https://gitlab.uni.lu/irisc-open-data/2021-nofakes
https://gitlab.uni.lu/irisc-open-data/2021-nofakes
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intra-distance, mostly related to the Realistic Data set, are lower than expected because
of two main reasons: a low number of CSRs is detected and, low contrast between the
background and the CSRs is observed, making difficult the detection of the CSRs. What
does our analysis mean with respect to Hypothesis 1? A criterion to assess whether the
hypothesis is confirmed or falsified is that the intra-distance scores must be neatly separated
from the inter-distance score. In addition, at least, the minimal intra-distance must be bigger
than the maximal inter-distance for all the samples compared and for both Laboratory Data
set and Realistic Data set. This condition is fulfilled, as clearly observed in Figure 9.

Figure 9. Clustering, and intra-distance and the inter-distance results while comparing images in
Laboratory (Process 1) and Realistic data sets (Process 2).

6. Discussion

Interdisciplinary research on CSRs, beyond the interest they spurred in physics and
chemistry for their optical properties, is on the rise due to the variety of potential ap-
plications of the material. For instance, since CSRs can be made left- and right- circular
polarized, we can use them to encode binary information. Schwartz et al. [5] have envi-
sioned using this feature to make fiducial markers, which are black and white codes that
help robots navigate in an environment. In this idea, CSRs work at macroscopic level: by
using polarized lenses (such as the 3D glasses we enjoy at movie theaters) the left and
right polarized presence can be revealed and separated. The CSR fiducial can be “read” as
if it were a normal binary code. From fiducial markers to QR codes the step is a matter
of engineering and the properties we have studied in this work about security, and con-
cerning the microscopic characteristics emerging because of light being reflected by and
across single CSRs, suggest an important potential scenario for information security: the
possibility to combine macro- and micro- properties of CSRs in future QR-codes made of
CSRs, then bringing into the same physical element (e.g., the printed code) both numerical
identifiers and unpredictable unique unclonable information that can be used to prove the
authenticity of the code. In short, with CSRs, it is conceivable to produce unclonable QR
codes. We believe this be the real game-changer in fighting against substandard, spurious,
falsely labeled, falsified, and counterfeit (SFFC) products.
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There is still a lot of research to be done before this vision becomes reality. If CSR IDs
are indeed unclonable, and if the patterns they produce are unique and usable in authenti-
cation, we have to prove that such information can be reliably and robustly extracted and
used for the purpose. We need evidence that images of CSR ID’s optical patterns taken with
a camera can work as a substitute of fingerprint for objects, functional to verify an object’s
authenticity. Despite any speculative arguments, there has been so far not enough evidence
that CSRs’ patterns contain identifiable information to reliably and robustly distinguish one
CSR ID from another. In addition, using CSR IDs for real means to verify that such pieces
of identifiable information can be extracted not only from ideal images of CSRs taken out of
the laboratory but from everyday noisy images taken with everyday devices, for instance,
a USB microscope or a phone. To shed light on such problems is what is motivating our
recent research and this research we report here in particular.

In a previous conference paper [6], we suggested looking for minutiæ in CSRs images,
blobs of colors that find their justification because CSRs are spheres that reflect spots of
colors. We have designed a method to extract such blobs, to compare them, and to calculate
the ratio of similarity between two CSRs’ images on the basis of the number and the quality
of blobs that match between a taken and a reference image. In this work, we have improved
those algorithms and carried out a set of experiments to calculate intra- and inter-distance
over two large data sets: the first containing tens of CSRs images taken in the lab to which
we have added transformations and Gaussian noise; the second data set consists of a
hundred of raw images (i.e., .tif) taken with a USB microscope, which a person could use
in a real scenario, and under everyday conditions of noise such as ambient light.

Our results show that intra- and inter-distance for both categories are neatly separated,
Figure 9, giving arguments in favor of the hypothesis we opened. The absolute score of
the intra- distance is, in certain cases that we are going to discuss, lower for images taken
under realistic conditions than for those taken in the more controlled taken in the laboratory.
Figure 10 shows that, on average, our similarity score remains high and with an acceptable
variance, but when the number of detected blobs is small, several out-liners appear. This
suggests the presence of noise in our processing, noise that we were not yet able to tame.
We comment on the source of such noise in the next paragraph but yet Figures 9 and 10
confirm that blobs do represent meaningful minutiæ and that they are key elements in
distinguishing one CSR ID from another. We have evidence for our hypothesis.

Figure 10. Similarity score as a function of the number of detected blobs.

Looking at Figure 10, we notice that the number of outliers is high when the number
of detected blobs is small. The amount of information from the blobs is just not enough
to distinguish reliably two tags, and the nature of our similarity score functions (see
Equation (5)) does the rest: when the number of detected blobs is small, small variations in
the number of matching blobs causes large variations in the output score.
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However, when and why do we detect not enough blobs? We have identified three
reasons. The first is that there are few CSRs in a tag. Controlling this variable is out of our
control, but we can make it a requirement that CSR IDs should have enough CSRs. Our
methods need minutiæ to work reliably. Our SimilarityScore does not work well with a low
number of blobs. A small mismatch causes a large variance in the score, as Figure 10 shows.

A second reason is that our algorithm for blob extraction, in certain cases, fails to
recognize but a few CSRs in a tag. We observed this happening for a few images in the
Realistic Data set, but not in general. Our algorithm seems to works well, but it performs
badly with certain images. We have run the algorithm several times to understand what
could cause such an effect. One fact that we noticed is that the blobs’ detection algorithm
depends on the intrinsic parameters of the skimage.feature.blob_log module that we
used in our implementation, i.e., the parameters to detect smaller and larger blobs. This
parameter must be optimized and tuned depending on the nature of the images. Our two
data sets, for instance, understandably requires different parameter settings.

However, even when the parameters have been optimized, an analysis by the eye of
the images where we obtain a particularly low score confirms previous observations we
had, but never articulated explicitly: that reflections that have a bluish color seem to be
harder to be detected as blobs than a reflection of other colors (e.g., see Figure 7). Perhaps
there is not enough contrast between the black background and the bluish reflection, as
in the image in Figure 11b. This is an image that caused some of the low scores in the
diagram. The image may look all black in print, but blueish spots can be seen with some
effort. We need to investigate this question more deeply, but that problem with bluish spots
was observed before in images in Laboratory Data set; there the spots were there due to
secondary, cross-CSRs, reflections. Their effect was mild, not enough to increase the noise
of the output to observable levels as instead happens in Figure 9.

(a) (b)

Figure 11. Images with low intra-distance: (a) one with not enough CSRs and, (b) one at low contrast
and where our image processing fails to detect most of the CSRs.

One last reason for having a small number of blobs can be that the images have, simply
put, a “bad quality”. This problem can be addressed and solved by working on improving
the read-out process. To compare to the state of the art in related technology, fingerprint
sensors, the read-out has a retro illumination and more images are taken one after the
other so that the minutiæ detection depends on images of the best quality, rather than
on just a single one. Improvements can also come from the technology used to produce
CSRs; “tuned” to reflect light at different frequencies, the central spots color should have
more contrast against the background of the object that will carry the CSR ID. In our case,
the central spots are blue and the background of the microscope’s holder is black: not an
optimal combination of colors.
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7. Conclusions and Future Work

The goal of this work was to look for evidence for or against the hypothesis that
CSRs can be a material with potential in the quest for a reliable technology for object
authentication. We aimed to analyze as much as images as possible from different batches
of production for tags that contain CSRs. These were images that were given to us and
taken from a professional microscope, and images we could generate ourselves with cheap
technology once we had the possibility to operate on existing tags. We also looked for
objective measurements in order to quantify the truth of our intuition, as stated in previous
works [3], that CSR IDs contains enough entropy to be used as identifiers.

Despite a few drawbacks, it is fair to conclude that, because of our choice of using
a large number of different types of CSR IDs, our investigation brings evidence for the
acceptance of the hypothesis: CSRs have the potential to provide objects with unique
fingerprint-like features. However, our proof-of-concept technology and methodology are
still at an early stage; they can be improved and tweaked to work better. For that, we
foresee a common effort both from the side of engineering (e.g., to acquire better images,
controlling the position of a tag below a read-out device, or to put images on focus) and
computer image processing (e.g., to extract blobs) before we can improve the performances
we obtained here. We have identified a few requirements for improving a future CSR-based
object verification technology.

For our future work, we intend to explore what happens when we take pictures with
new generation phones such as the OPPO Find X3 that mounts an embedded microscope.
We are also working on different solutions for authentication. The first consists of using
Siamese Neural Networks for the verification. Despite the drawback of requiring more
images and a longer time for the training, we do not know whether machine learning will
be a competitive approach to ours. An evidence-based discussion would help highlight the
pros and cons of our solution with respect to a solution built entirely on machine learning.
We are also working on designing security protocols for a possible remote verification
process. Here, the verifier holds the object and takes pictures of it, but the reference images
are on an authentication server. In this scenario, we need to protect the messages flow
and the information from curious parties, including the verifier(s). We are devising a
solution based on secure sketches and fuzzy extractors applied on the blob space, so derive
a consistent identifying bit string from noisy CSR images and on a verification protocol
that uses Homomorphic Encryption to protect the data exchanged for the verification.
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Abbreviations
The following abbreviations are used in this manuscript:

ChLC Cholesteric Liquid Crystal
CRP Challenge-Response Pair
CSR Cholesteric Spherical Reflector
CSR ID CSR Identifier
PUF Physical Unclonable Function
SFFC Substandard, spurious, falsely labeled, falsified, and counterfeit products
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