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The quantum approximate optimization algorithm (QAOA) has proved to be an effective classical-quantum
algorithm serving multiple purposes, from solving combinatorial optimization problems to finding the ground
state of many-body quantum systems. Since QAOA is an ansatz-dependent algorithm, there is always a need to
design ansatz for better optimization. To this end, we propose a digitized version of QAOA enhanced via the use
of shortcuts to adiabaticity. Specifically, we use a counterdiabatic (CD) driving term to design a better ansatz,
along with the Hamiltonian and mixing terms, enhancing the global performance. We apply our digitized-
counterdiabatic QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating

that it outperforms standard QAOA in all cases we study.

I. INTRODUCTION

Hybrid classical-quantum algorithms have the potential to
unleash a broad set of applications in the quantum com-
puting realm. The challenges involved in realizing fault-
tolerant quantum computer has promoted the study of such hy-
brid algorithms which proved to be relevant to modern noisy
intermediate-scale quantum (NISQ) devices [1, 2] with few
hundred qubits and limited coherence time. One notable ex-
ample is that of variational quantum algorithms (VQA), which
is implemented by designing variational quantum circuits to
minimize the expectation value for a given problem Hamilto-
nian. VQA is advantageous given the fact that preparing a tun-
able circuit ansatz is found to be difficult on a classical com-
puter. It has already been widely applied in quantum chem-
istry [3-8], condensed matter physics [9-12], solving linear
system of equations [13], combinatorial optimization prob-
lems [14, 15], and several others [16, 17]. Remarkably, one of
the early implementations of the VQA was performed using
photonic quantum processors [18], which prompted further
theoretical progress [19-24]. VQA has been demonstrated in
superconducting qubits [3, 6, 19] and trapped ions [8, 25].

One compelling outcome of VQA is the development of the
quantum approximate optimization algorithm (QAOA) [26],
which provides an alternative for solving combinatorial opti-
mization problems using shallow quantum circuits with clas-
sically optimized parameters. In the past few years, there
has been a rapid development in QAOA-based techniques that
have been applied not only for solving conventional optimiza-
tion problems like MaxCut but also for solving ground state
problems in different physical systems [27-29]. Improved
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versions of QAOA, like ADAPT-QAOA [30] and Digital-
Analog QAOA [31] have also been reported recently. Like any
combinatorial optimization problem, QAOA depends on opti-
mizing a cost function to obtain the desired optimal state cor-
responding to a p-level parametrized quantum circuit. In ad-
dition, the choice of the approximate target state, from which
the cost function is obtained, is crucial to the success of the
QAOA algorithm. Generally, this is done by using quantum
adiabatic algorithms (QAA) which produce near-optimal re-
sults for large p which is not suitable for current NISQ de-
vices. Moreover, due to the requirement of large p, the cost
of classical optimization increases and the algorithms suf-
fer from the problem of vanishing gradients and local min-
ima [10, 32, 33].

Several studies have been reported in past few years show-
ing that high fidelity quantum states can be prepared by as-
sisting QAA with additional driving interaction [34]. These
studies establish that for certain problems, the inclusion of ad-
ditional driving terms can reduce the computational complex-
ity, and with it the circuit depth. These driving terms are usu-
ally calculated using methods developed under the umbrella of
so-called shortcuts to adiabaticity [35, 36], which have been
introduced to improve the traditional quantum adiabatic pro-
cesses, removing the requirement for slow driving [37]. In-
stances of these methods include counterdiabatic (CD) driv-
ing [38-40], fast-forward approach [41, 42], and invariant-
based inverse engineering [43, 44]. Among them, CD driving
is interesting and has been used to study fast dynamics [45—
49], preparation of entangled states [50-53], adiabatic quan-
tum computing [34, 54] and quantum annealing [55-57].

In the context of QAOA, the advantage of the introduction
of CD driving is twofold. The CD driving decreases the circuit
depth, while reducing the number of optimization parameters.
On the other hand, it provides a better approximate trial state
which is beneficial for finding the optimal target state. In this
work, we propose a novel algorithm, digitized-counterdiabatic
quantum approximate optimization algorithm (DC-QAOA),
which improves the performance of the conventional QAOA
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FIG. 1. Schematic diagram with circuit used for DC-QAOA having
additional CD term along with the Hamiltonian and mixing terms.

using CD driving. In this context, it is worthwhile to mention
the work of Ref. [58], also inspired by CD driving techniques.

In the following sections, to compare their respective per-
formances, we show the application of DC-QAOA and QAOA
to different problems like Ising spin models, Classical opti-
mization problems that include Maxcut and SK model, and
the P-spin model. The purpose behind studying these prob-
lems is to show the competitive performance of this algorithm.
We measure the performance of our algorithm by comparing
the approximation ratios.

II. DIGITIZED COUNTER-DIABATIC QUANTUM
APPROXIMATE OPTIMIZATION ALGORITHM
(DC-QAOA)

CD driving provides a universal scheme to design shortcuts
to adiabaticity and, in theory, it can speed up almost any adia-
batic evolution and improve the fidelity of the target state. As
such, it is important to prepare a variational trial state which
is as close as possible to the actual target state. In general, the
QAOA method can be viewed as a combination of two dis-
tinct parts: the quantum part consists of a parameterized cir-
cuit ansatz, which is in turn complemented by a classical opti-
mization algorithm to determine the parameters that minimize
(maximize) a predefined cost function. The circuit ansatz for
the quantum part is governed by an annealing Hamiltonian,

Ha(t) = (1 - /l(t))Hmixer + }-(t)Hprobv (1)

where A(?) is the annealing schedule for ¢ € {0, T} and H),,,,
is the system Hamiltonian. This corresponds to the trial state
that we try to optimize. The adiabatic circuit ansatz can be
designed using the trotterized time evolution operator [59, 60]

4
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Note that the U(0, T) is a product of p sub-unitaries, each cor-
responding to an infinitesimal propagation step Az. An adi-
abatic evolution using U(0, T) can always produce an exact
target state at the cost of resorting to a large value of p. This
can be translated to the language of QAOA if one parameter-

izes U(0,T) as

U(ﬂ’ 7) = Um(ﬂp)Up('yp)Um(ﬂpfl)Up(’)’pfl) o Um(IBI)Up('YI;,

3)
where the evolution operators are U,,(8,) = exp (=i8,Hpixer)
and U,(y,) = exp(=iy,Hp,). Here, the annealing
schedule is characterized by the discrete set of parameters
Bp:Bp-1,-.-.B1} and {yp, ¥p-1,...,¥1}. (B,y) defines a 2p
parameter space that corresponds to the depth of the circuit
ansatz and the cost function F(y, ) is optimized classically
to obtain an optimal parameter set (y*, 87).

As the case of adiabatic evolution, QAOA requires large p
to obtain a near-optimal trial state, even with the assistance of
the classical optimizer. In addition, the realization of U(B,y)
for an interacting many-body system for large p becomes inef-
ficient due to the large number of gates involved. Instead, we
opt for the CD approach to obtain a better trial state. In DC-
QAOA, we focus on improving the quantum part of QAOA,
by adding a variational parameter in each step , i.e.,

Uy.B) = Uy.B.a), F(y.p)—= F(y.B.a), (4

The resulting circuit ansatz is shown in Fig. 1. The appli-
cation of another parameter decreases the size of p drasti-
cally. In general, CD driving amounts to using an additional
control Hamiltonian in Eq. (1), required for suppressing non-
adiabatic transitions [38—40, 61]. This is especially effec-
tive for many-body systems with tightly spaced eigenstates.
CD driving comes at a cost as it generally involves nonlocal
many-body interactions, and their exact specification of the
CD Hamiltonian term requires access to the spectral proper-
ties of the driven system [38, 40, 45]. As a way out, variational
approximations have been proposed to obtain the CD terms
[50, 62, 63]. In this context, one can use the adiabatic gauge
potential for finding an approximate CD driving without spec-
tral information of the system [63, 64]. As a further advance,
DC-QAOA only requires the operator form of the CD driving
combined with the additional set of parameters @. DC-QAOA
is also more flexible in regards to the boundary conditions
compared to the CD evolution which permits the application
of the driving term even for one step only. Moreover, the oper-
ators can be chosen heuristically and according to the require-
ment of the system which is being studied. In the following
sections, a pool of operators is defined using a second-order
expansion of the nested commutator ansatz [65], from which
we chose based on the success probability of our algorithm.
We transform each term in the expansion into separate opera-
tors and put them into the operator pool A = {e~@4 }tT:l , where
Ay, Aj,... shows each of the constituent terms up to Ay, with T
being the maximum number of components in the expansion.
The addition of a new free parameter through an operator will
increase the degrees of freedom, making it possible to reach
broader parts of the Hilbert space of the Hamiltonian with a
lower circuit depth than in QAOA.

Although there are several ways to define the cost function,
we opt for the most convenient one which is the energy ex-
pectation value of the problem Hamiltonian calculated for the
trial wave function,

F(Y?ﬁs a) = <'p(7vﬂ’ a)| Hprob |(r//(y’ﬂ’ ), &)
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FIG. 2. Comparison of approximation ratios (R) as a function of number of layers (p) for three representative cases of Ising spin model. Green
lines show results of QAOA whereas red lines show results of DC-QAOA. (a) shows R variation of LFIM where J;; = 1, h; = 1, and k; = 0.
(b) depicts TFIM where J;; = 1, h; = 0, and k; = 1, and (c) shows preparation of GHZ state where J;; = 1, h; = 0, and k; = 0. System size for

all the cases was kept to L = 12 qubits.

where y(y, B, @) represents the approximate trial state pro-
duced by the digitized CD circuit ansatz. The efficiency of
our algorithm can be measured in terms of the approximation
ratio, given by

F(y,B. @)

=02 6
[F(%li a)]min ( )

Classical optimization techniques are an integral part of
variational algorithms, which helps to find the optimal param-
eters that minimize the cost function. Our work mainly con-
siders two optimization techniques, namely Momentum Op-
timizer and Adagrad Optimizer, which are specific examples
of stochastic gradient descent (SGD) algorithms. Momentum
Optimizer is a variant of SGD in which a momentum term
is added along with the gradient descent. The prime purpose
of the momentum term is to increase the parameter update
rate when gradients are in the same direction and decrease
the update rate when gradients point in a different direction.
On the other hand, Adagrad Optimizer’s main purpose is to
change the update rate based on the past descent results. These
two classical optimization techniques work pretty well for the
cases we consider. This is because these optimization rou-
tines have proven faster convergence than gradient descent.
Moreover, some of the cases we study involve a large Hilbert
space, which may lead to local minima in the energy land-
scape. In the presence of steep gradients, the use of these
techniques proves beneficial. This problem dependence of the
performance is shared with other optimization routines such
as Nesterov Momentum, Adam, and AdaMax. An overview
and comparison about challenges faced by the different types
of gradient descent optimization, can be found in Ref. [66].

III. ISING SPIN MODELS

1D quantum Ising spin chains are the manifestation of the
simplest many-body systems that are widely studied in exist-
ing quantum processors. Numerous computational problems
can be mapped to finding the ground state of the Ising-like
Hamiltonians, which makes it suitable for benchmarking vari-

ous quantum algorithms. The general form of the Hamiltonian
of 1D Ising spin model is given by

Hpmh(o') =- Z JijO'lz»O'j - Z /’liO'f - Z kl-o';c, @)

<i,j> i

where o{ denotes the Pauli matrices at the ith site, and < i, j >
corresponds to the nearest-neighbor interaction with strength
Jij. The on-site interaction terms /; and k; represent the lon-
gitudinal and transverse fields, respectively. We consider the
periodic boundary conditions so that our model describes a
ring of interacting spins [67—-69]. Note that three special cases
can be retrieved from Eq. (7): i) longitudinal field Ising model
(LFIM) when k; = 0, ii) transverse field Ising model (TFIM)
when h; = 0, and iii) a special case when both k; = 0 and &; =
0, for which the resulting ground state of H,,. is the highly
entangled Greenberger-Horne-Zeilinger (GHZ) state [70-73].
For simplicity, we choose the system to be homogeneous i.e.,
Jij = J as well as h; = h; and k; = h,. To prepare an equal
superposition of the qubits, as a input of the circuit ansatz,
the mixing Hamiltonian is chosen as Hyjxer = 2;077. To im-
plement DC-QAOA, as mentioned in Sec. II, along with the
problem and mixer Hamiltonian, we include the CD term to
define the circuit ansatz. This is done by defining a pool of CD
operators, A = {0”,0%0”,070%, 0*0”, 0”0} from which we
heuristically choose one. For instance, in the case of LFIM,
the ground state is ferromagnetic and constitutes a large en-
ergy gap with the first excited state for the chosen interaction
strengths. In such cases, the local driving term o, can pro-
duce the ground state. On the other hand, the ground state of
TFIM is closely spaced with the nearby excited states, which
makes the local driving term insufficient. Similarly, the local
driving term is also not suitable for GHZ state [61]. Instead,
the second-order term 0,07, is more likely to produce a better
result. The unitary operator that represents the CD part of the
circuit ansatz is given by

L

Ucp(a) = | Je ™, ®)

j=1

where A, represents the respective CD operator. The circuit is
designed using the gate model of quantum computing whereas



the classical optimization is the stochastic gradient descent
method. Fig. 2 depicts the improvement obtained by DC-
QAOA over traditional QAOA. In the simulation, we study a
12-qubit system, for which we compute R for different p val-
ues. For LFIM, as shown in Fig. 2a, R = 1 even for p = 1 with
DC-QAOA which constitutes considerable improvement over
QAOA, that requires p = 3 to achieve unit R. The number of
variational parameters required to achieve unit R = 1 for DC-
QAOA is 3p = 3 whereas for QAOA itis 2p = 6. We also see
that, for a lower number of layers i.e., p = 1,2, 3, DC-QAOA
converges faster to the unit R compared to QAOA. Further-
more, while DC-QAOA shows better convergence at lower
depths, for the TFIM and the GHZ states, the exact ground
state can only be achieved at p > L/2 layers (see Fig. 2b and
2c¢). This is due to the configuration of the ground state energy
and degeneracies associated with it.

To compare the resource requirements, both classical and
quantum, one can inspect two crucial elements of these meth-
ods. In gate-based quantum systems, the depth of the actual
quantum circuit will depend on the driving term chosen. For
LFIM, the depth increases linearly with p only, regardless of
the system size, whereas for TFIM, the depth depends on the
system size. Therefore, DC-QAOA is advantageous specifi-
cally for low p values. Additionally, for large p, the param-
eter space becomes even larger for DC-QAOA compared to
QAOA, which is not suitable from a computational standpoint.

IV. CLASSICAL OPTIMIZATION PROBLEMS

Thus far, we have discussed the applications of DC-QAOA
for finding the ground state of the Ising model and prepar-
ing entangled states. Combinatorial optimization problems
are another set of problems that can be encoded in the ground
state of a quantum Hamiltonian, diagonal in the computational
basis. Here we discuss the application of DC-QAOA for solv-
ing combinatorial optimization problems, where the main ob-
jective is to find the optimal solution for a given classical cost
function. MaxCut is one fundamental combinatorial optimiza-
tion problem that has been solved using QAOA.

For the MaxCut problem, let us consider a graph G =
(V,E), where V and E being the vertex set and edge set re-
spectively. We consider a classical cost function C(z) defined
on binary strings z = (1, 22, . . . , Zn), and aim at separating the
vertices into two sets so that the number of edges cut by C(z)
is maximized. This maximizes the classical cost function

1
C() = 3 Z wii(1 = ziz)), )

(. ))EE

where w;; represents the edge weight between vertices i and j.
Depending on the sets that the vertices of each edge are in after
the cut, binary values (either 0 or 1) are assigned to variables z;
and z; corresponding to respective vertices. This situation can
be encoded in the ground state of the problem Hamiltonian by
mapping the binary variables to Pauli operators

Ho)== ) Jjoio. (10)
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FIG. 3. Comparison of obtained approximation ratios for different
graph size using DC-QAOA and QAOA. (a) Unweighted 3-regular
MaxCut for a randomly chosen 10 instances. (b) Approximation ra-
tio vs number of layers (p) for SK model with 6-qubits (vertices) is
depicted. Green line and Red line show the values of QAOA and
DC-QAOA respectively. On the right-bottom, a graph of 6 qubits
with all-to-all connectivity is also shown. The results were obtained
by considering 10 different randomly chosen instances of J;; values.
Error bars represents the standard error.

Note that Eq. (10) also belongs to the Ising class and is equiv-
alent to Eq. (7) for GHZ states if only nearest neighbor inter-
action is considered, which is teh case of the 2-regular Max-
Cut. Here, to verify the performance of our algorithm, we
consider unweighted (w;; = J;; = 1) 3-regular MaxCut prob-
lem, with each vertex connected to three other vertices. The
CD operator can be obtained from the NC expansion. By re-
stricting to only two-qubit interaction terms, we chose it to be
A; = {o%0”,070%}. In Fig. 3 (a), the approximation ratio R for
different graph sizes with up to 14 vertices (qubits) are shown
for a single layer (p = 1). We notice that for small graph
sizes, say 4 qubits), DC-QAOA is superior as it reaches unit
R. However, for a bigger graph R decreases gradually, while
exceeding the performance of QAOA. This decrease in R is
mainly associated with the choice of the CD operator A, as the
implementation of A, increases the circuit depth linearly. Al-
though this can be improved for p > 1 but for large depth DC-
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FIG. 4. Comparison of approximation ratio (R) with respect to number of layers(p) for specific cases of P-spin model. Green lines show
QAOA performance and red lines show DC-QAOA performance. (a) shows P = 3, h = 0 case, (b) shows P = 4, h = 0 case and (c) shows

P =4,h=1case. L =6 system was chosen for this model.

QAOA, the number of parameters for each step scales as 3p,
so the landscape of the cost function most likely has a com-
plicated form, and we expect to see the problem of vanishing
gradients (Barren plateau). A detailed analysis is needed for
p > 1 DC-QAOA, which we leave for future work.

Interestingly, if J;; is chosen as random all-to-all two-body
interactions, Eq. (10) represents the so-called Sherrington-
Kirkpatrick (SK) model. SK model is a classical spin model
proposed by Sherrington and Kirkpatrick [74, 75] where J;;
are interaction terms such that J = {VJ;;} has zero mean and
unit variance. For instance, they can be randomly chosen from
the set J = {—1, 1} with probability 1/2. The SK model is in-
teresting for DC-QAOA as it can be studied as a combinatorial
search problem on a complete graph. QAOA on the SK model
has been extensively studied recently [76, 77]. Here, ten dif-
ferent instances of J;; values are considered in a system of
L = 6 spins. As this model has similar interaction as MaxCut,
we chose the CD operator as A; = {o°0”, 07 0%} in Eq. (8).

In Fig. 3b, the approximation ratio (R) is shown with re-
spect to varying number of layers (p)e.g., p = 1,2,3,4,5. We
observe that R is higher for DC-QAOA as compared to QAOA
and that as the number of layers increases DC-QAOA and
QAOA start to converge to the same value. This shows that
DC-QAOA is efficient for instances where the circuit ansatz
is low-layered. In fact, for low layers, although not giving the
exact ground state DC-QAOA gives significantly enhanced R.
This could be advantageous to find optimal parameters which
could be used as initial parameters for high-layered QAOA.

V. P-SPIN MODEL

As a final benchmark, we consider the P-spin model, which
is a long-range exactly-solvable fully-connected model [78—
81]. The system Hamiltonian reads

P L

H:—(ZL:af] —hZo-j‘. (11)

i=1

While the ground-state of Hamiltonian (11) is trivial, the
presence of a quantum phase transition makes its prepara-

tion challenging by quantum annealing [78]. For P = 2 this
Hamiltonian exhibits a second-order phase transition whereas
a first-order phase transition occurs for P > 3, closing the
energy gap exponentially with increasing system size. This
has motivated proposals to change the first-order phase into
second-order phase transition by making the Hamiltonian
non-stoquastic [82, 83]. The nature of the ground state also
depends on P. For odd P the ground state is non-degenerate,
while for even P it has a two-fold degeneracy with Z, symme-
try, which makes the choice of the CD operator difficult [57].
We study DC-QAOA in a 6 qubit P-spin model for the non-
trivial case of 2 # 0 using local CD operator oy. QAOA and
DC-QAOA are compared for three different cases: P = 3,
h=1and P =4, h = {0, 1} respectively. Fig. 4 shows the
advantage obtained by DC-QAOA as for all three cases unit R
can be obtained for p = 1. However, this is not surprising for
P = 3 as the ground state is a product state making it favor-
able for the local CD operator. The more intriguing case is in
Fig. 4c, where the approximation ratio reaches unity for p = 1
even if the ground state is degenerate. This occurs simply be-
cause the trial state converges to a particular one of the two
due to the local CD driving. This is in contrast with QAOA,
which does not achieve the target state for p = 1 in any case.

VI. DISCUSSION AND CONCLUSION

We have introduced a quantum algorithm leveraging the
strengths of shortcuts to adiabaticity for quantum approximate
optimization algorithms. Specifically, we have formulated a
variant of QAOA using CD driving, called DC-QAOA, and
established its enhanced performance over QAOA in finding
ground states of different models. We benchmark our algo-
rithm by considering various examples, starting with Ising
spin models, preparing entangled states, classical optimiza-
tion problems like MaxCut and SK model, and the P-spin
model. Including the CD term to the circuit ansatz, the per-
formance of the QAOA algorithm is enhanced. Results re-
veal that for low-layered circuits, DC-QAOA converges to the
ground state faster than state-of-the-art QAOA. Thus, adding
a new free parameter in the form of a gate chosen from a pre-



defined set (CD term) increases the performance of the algo-
rithm for shorter circuit depths. Thus, DC-QAOA turns out to
be a preferable algorithm for shorter depth circuits.

In conclusion, DC-QAOA gives better performance than
QAOA for all the models we have studied. For high-depth cir-
cuits, DC-QAOA can be applied for initial layers, using the re-
sulting optimal parameters as seeds in QAOA for higher layers
to determine the minima of the cost function. Our work shows
that implementing shortcuts-to-adiabaticity principles to en-
hance quantum algorithms has both fundamental and practical
importance. The experimental realization of DC-QAOA on
real hardware offers an exciting prospect for further progress.

Note: As we finished this work, we learned about the recent

preprint devoted to QAOA assisted by CD [84].
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