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Abstract
Ensemble Kalman filters are widely used for data assimilation applications in
the geosciences. While they are remarkably stable even with nonlinear systems,
it is known that they are not optimal in this case. The alternative particle fil-
ters are fully nonlinear, but difficult to apply with high-dimensional models.
To combine the strengths of both filter types, a hybrid filter is introduced that
combines the local ensemble transform Kalman filter (LETKF) with the non-
linear ensemble transform filter (NETF). Three variants of the hybrid filter are
formulated. The hybridization is controlled by a hybrid weight. Different hybrid
weights are examined and a new adaptive approach based on the ensemble skew-
ness and kurtosis is introduced. The different hybrid filters and the schemes
to compute the hybrid weight are assessed in numerical experiments with the
nonlinear Lorenz-63 and Lorenz-96 models at different degrees of nonlinear-
ity. A hybrid variant that first applies the NETF followed by the LETKF yields
the best results. For the Lorenz-96 model, error reductions by up to 21.5% com-
pared with the LETKF are obtained for the same ensemble size. Computing the
hybrid weight based on skewness and kurtosis combined with the effective sam-
ple size yields the lowest estimation errors and the overall highest stability of the
hybrid filter. The new hybrid filter applies localization and inflation and is hence
also usable with high-dimensional models and can potentially provide a robust
way to account for leading nonlinearity with small ensembles in nonlinear data
assimilation applications.
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1 INTRODUCTION

Ensemble data assimilation is widely applied in geoscien-
tific applications, for example, to initialize weather, ocean,
or sea-ice forecasts (e.g., Sakov et al., 2012; Houtekamer

et al., 2014; Martin et al., 2015; Liang et al., 2017), to esti-
mate the ocean biogeochemical state or parameters (e.g.,
Nerger and Gregg, 2008; Ciavatta et al., 2011; Mattern
et al., 2014; Pradhan et al., 2019), to generate re-analyses
(e.g., Oke et al., 2015; Ciavatta et al., 2016), to estimate
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hydrological parameters (e.g., Baatz et al., 2017), or to sim-
ulate the dynamics of the Earth’s mantle (Bocher et al.,
2018). Most commonly, different variants of ensemble
Kalman filters (EnKFs) are used in these applications.
While EnKFs assume Gaussian error distributions and
hence imply linear models (because a nonlinear model will
transform a Gaussian distribution into a non-Gaussian
one), the different applications demonstrate that the
EnKFs are stable and successful with nonlinear models.
Nonetheless, it is known that the EnKFs are suboptimal for
nonlinear systems. Different approaches have been devel-
oped to improve the performance of EnKFs in the case
of nonlinearity. For example, the application of so-called
Gaussian anamorphosis, in which the forecast ensemble
is transformed into a Gaussian distribution, has improved
state estimates in biogeochemical models (Simon and
Bertino, 2009; Doron et al., 2011). Further, rank histogram
and regression filters (Anderson, 2010; 2019; Metref et al.,
2014) have been introduced, which aim to improve the per-
formance of the Kalman filter analysis step by accounting
for a non-Gaussian ensemble distribution.

A fully nonlinear alternative to EnKFs are particle fil-
ters (PFs: see, e.g., van Leeuwen, 2009). However, these
filters cannot be applied to high-dimensional models with-
out particular adaptions, due to the so-called “curse of
dimensionality” (see Snyder et al., 2015). Basically, ensem-
bles collapse to a single member if the ensemble size does
not increase exponentially with the system dimension.
Several variants of PFs (e.g., Ades and van Leeuwen, 2013;
Zhu et al., 2016) have been developed that, by construction,
avoid negligible particle weights. However, these meth-
ods cannot fully avoid the “curse of dimensionality” (see
Snyder et al., 2015). In addition, they depend crucially
on the application of stochastic model errors for the full
model state, which has to be very carefully tuned. These
filters also do not converge to the full posterior proba-
bility distribution for the large ensemble limit. Alterna-
tively, a localized analysis can reduce the effective system
size and hence improve the performance of PFs. While
this does not completely avoid the curse of dimension-
ality, different schemes have been introduced and tested
with high-dimensional applications (Poterjoy, 2016; Poter-
joy et al., 2019; Potthast et al., 2019). The PFs usually need
a very careful tuning, with higher complexity than the
localization and inflation approaches used by EnKFs. Fur-
ther, transportation PFs (e.g., Reich, 2013) transform the
ensemble according to some optimal transportation rule,
so that no explicit resampling of the analysis ensemble,
which would introduce further randomness and sampling
errors, is required. However, these filters require quite
costly computations and have not yet been implemented
in high-dimensional systems. Overall, none of these filter
methods is yet fully usable for realistic data assimilation

problems, as also discussed in the recent review on
PFs for high-dimensional applications (van Leeuwen
et al., 2019).

Related to transport filters are second-order exact
transformation PFs like the nonlinear ensemble adjust-
ment filter (Lei and Bickel, 2011) and the nonlinear ensem-
ble transform filter (Tödter and Ahrens, 2015). These
filters use the weights computed for the PF to update
the ensemble mean, but then transform the ensemble
perturbations analogous to EnKFs to fulfill the analysis
covariance matrix. While these filters rely on the covari-
ance matrix, they do not imply Gaussian distributions,
but only that the covariance matrix still contains repre-
sentative information. The nonlinear ensemble transform
filter (NETF), which is applied here, uses a transforma-
tion in ensemble space like the local ensemble trans-
form Kalman filter (LETKF) or local error-subspace trans-
form Kalman filter (LESTKF) methods (Nerger et al.,
2012), which is computationally very efficient. The NETF
can be applied with the same localization and inflation
approaches as these EnKFs, so that the tuning is also anal-
ogous. This makes the NETF rather easily usable with
high-dimensional models (Tödter et al., 2016; Kirchgess-
ner et al., 2017). For sufficiently large ensembles, the NETF
has been shown to yield errors comparable with and some-
times lower than the LETKF or LESTKF.

To benefit from the stability of the EnKFs and the abil-
ity of the PF to handle nonlinear systems, hybrid filters
have been proposed (Frei and Künsch, 2013; Chustagul-
prom et al., 2016; Robert et al., 2018). These filters com-
bine the analysis steps of an EnKF with those of a PF
and use a hybrid weight to shift the analysis in between
these extremes. Robert et al. (2018) discussed the success-
ful application of a hybrid filter to a high-dimensional
weather forecast model. Some filter variants are proposed
to apply the ensemble Kalman filter before the PF (Frei
and Künsch, 2013; Robert et al., 2018). Chustagulprom
et al. (2016) also used this order, but in addition the variant
where the PF is applied before the ensemble Kalman filter.
They found smaller root-mean-square (RMS) errors when
applying the PF first and mention that this might be due
to the fact that the prior distribution is more non-Gaussian
than the posterior. The algorithmic formulations of these
filters differ from pure EnKFs or PFs by requiring either
iterative solvers or the solution of a linear programming
problem.

Here, a new hybrid filter is introduced, which com-
bines the LETKF with the NETF. The NETF is an attractive
choice for this algorithm, because it was already demon-
strated that it can be applied to high-dimensional non-
linear models and can outcompete the LETKF for non-
linear cases. It also performs an ensemble transformation
so that no resampling step is required. Further, the
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same localization and inflation approaches as used in
the LETKF can be applied. In addition, one can imple-
ment the hybrid filter on the basis on existing imple-
mentations of both filters, for example, in the paral-
lel data assimilation framework (PDAF: Nerger et al.,
2005; Nerger and Hiller, 2013),1 without particular iter-
ative solvers or linear programming. Just as the pre-
vious hybrid filters were proposed in different vari-
ants (applying PF before EnKF or EnKF before PF),
here also different variants are introduced and exam-
ined with the widely used low-dimensional Lorenz-63 and
Lorenz-96 models (Lorenz, 1963; 1996). For the Lorenz-63
model, the dependence of the filter performance on the
nonlinearity is studied, while the Lorenz-96 model is
used in a strongly nonlinear assimilation configuration
to assess the additional effect of small ensembles and
localization.

The study is structured as follows. Section 2 reviews
the LETKF and NETF algorithms, which are combined
into the hybrid filter. The hybrid filter variants are intro-
duced in Section 3. The hybrid filter is assessed with the
Lorenz-96 model in Section 4 and the Lorenz-96 model in
Section 5. Finally, the results are discussed in Section 6 and
conclusions are drawn in Section 7.

2 ENSEMBLE FILTERS

To represent the state estimate and its uncertainty at some
time k, ensemble filter algorithms use an ensemble of
Ne state realizations x(i)

k , i = 1,…Ne of dimension Nx. We

write the ensemble as a matrix Xk =
[
x(1)

k ,… , x(Ne)
k

]
. Dur-

ing the forecast phase, all ensemble states are integrated
by the model , which provides the forecast ensemble
Xf

k = (Xa
k−1). The superscript “a” denotes the analysis

ensemble. At the initial time, the ensemble Xa
0 is initialized

using some estimate of the initial state along with an esti-
mate of the uncertainty, which is often prescribed by the
temporal variability of the model state.

2.1 General form of the analysis step

The analysis step, in which the observations for time k
are assimilated, transforms the forecast ensemble into the
analysis ensemble, which represents the updated state esti-
mate and its uncertainty. We can write the analysis step
in a general form as a right-sided product with a weight
matrix, which is valid for a wide family of filter methods
(see Vetra-Carvalho et al., 2018). We omit the time index

1http://pdaf.awi.de

k, as all operations occur at this time. In general, we can
write the update separately for the ensemble mean state
xf = 1∕Ne

∑Ne
𝛼=1xf(𝛼) and the ensemble perturbation matrix

X′f = Xf − xf1T, where 1 is a vector of length Ne with all
elements equal to 1:

xa = xf + X′fw̃, (1)

X′a = X′fW. (2)

Here, w̃ is a weight vector of length Ne and W is
a weight matrix of size Ne × Ne. To ensure an unbiased
ensemble transformation, the vector 1 must be an eigen-
vector of W. We can combine the update into a single
equation as

Xa = xf1T + XfT
(
w̃1T + W

)
. (3)

Here, we introduced the Ne × Ne matrix

Ti,𝑗 ∶=
⎧⎪⎨⎪⎩

1 − 1
Ne

for i = 𝑗,

− 1
Ne

for i ≠ 𝑗,
(4)

which subtracts the ensemble mean in the product XfT.
The ensemble transform Kalman filter (ETKF) and the

NETF both apply this generic form of the analysis step, but
they use distinct definitions of w̃ and W. The computation
of the weight vector and matrix utilizes the observation
vector y of size Ny. The observations are related to a state
vector through

y = Hxf + 𝜖, (5)

where 𝜖 is the observation error with covariance matrix R.
The observation operator H is here written as a linear oper-
ator, but a nonlinear operator is also possible as long as it
is applied directly to a state vector.

The analysis is computed in a localized form, fre-
quently denoted as domain localization combined with
observation localization (e.g., Janjić et al., 2011). With
domain localization, w̃ and W are computed for a series
of a local analysis domains. The local analysis domain
can be a single model grid point, but, for example, for
ocean models it is often a single vertical column. For the
update of a local analysis domain, only observations within
a prescribed distance (the localization radius rloc) around
it are taken into account. Further, observation localization
(Hunt et al., 2007) is applied, in which the observations
are weighted according to their distance from the local
analysis domain. Practically, the inverse observation-error
covariance matrix R is multiplied elementwise with a
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weight matrix, which is constructed using the fifth-order
polynomial of Gaspari and Cohn (1999). This weight
ranges between 1 for zero distance and 0 for the prescribed
radius rloc and mimics a Gaussian function.

2.2 Ensemble transform Kalman filter

The ETKF was introduced by Bishop et al. (2001) and
later formulated with localization, then denoted LETKF,
by Hunt et al. (2007). Here, we follow Nerger (2015).

The ETKF uses a transform matrix A of size Ne × Ne,
which is defined by its inverse as

A−1 = 𝜌(Ne − 1)I + (HX′f )TR−1HX′f . (6)

Here 𝜌, with 0 < 𝜌 ≤ 1, is the so-called “forgetting fac-
tor” (Pham et al., 1998), which is used to inflate the forecast
error estimate. Matrix A is inverted using a singular-value
decomposition USV = A−1 such that A = US−1V. Further,
we utilize the square root A1∕2 = US−1∕2UT. The weight
vector and weight matrix for the ensemble transformation
are now given by

w̃ETKF = A(HX′f )TR−1(y − Hxf) , (7)

WETKF =
√

Ne − 1A1∕2𝚲, (8)

where 𝚲 is the identity or a random matrix that pre-
serves the mean and covariance, which implies that 𝚲 is
orthogonal and has the eigenvector 1.

2.3 Nonlinear ensemble transform
filter

The NETF was introduced by Tödter and Ahrens (2015).
Like particle filters, it uses weights computed from the
statistical likelihood of each ensemble state. However,
the NETF does not resample the ensemble members, but
transforms them from the forecast to the analysis ensem-
ble such that the covariance matrix of the fully nonlinear
particle filter is obtained. To this end, it has been classified
as a second-order exact particle filter (see Acevedo et al.,
2016; van Leeuwen et al., 2019).

The NETF uses a transform matrix Â of size Ne × Ne,
which is defined by

Â = Ne
(
diag(w) − wwT) , (9)

where diag(w) denotes the diagonal matrix, the diagonal
of which holds the values of the vector w of size Ne. This

vector holds the likelihood weights of all ensemble states.
It is computed according to the assumed distribution of
the observation error. For Gaussian errors, the weight for
ensemble state i, i = 1,… ,Ne, is first computed as

ŵ(i) = exp
(
−0.5

(
y − Hxf(i))TR−1 (y − Hxf(i))) . (10)

The weights are then normalized so that their sum is
one:

w = ŵ∕
Ne∑
i=1

ŵ(i). (11)

The weight vector and matrix for the ensemble trans-
formation of the NETF are now

w̃NETF = w, (12)

WNETF = Â1∕2𝚲, (13)

with the symmetric square root Â1∕2 = ÛŜ1∕2ÛT computed
from the singular-value decomposition ÛŜV̂ = Â. 𝚲 is the
identity or a random matrix that preserves the mean and
covariance. Using the random variant stabilized the NETF
and reduced the risk of filter divergence in numerical
experiments (Tödter and Ahrens, 2015; Tödter et al., 2016).

Covariance inflation is applied in the NETF by inflating
the forecast ensemble spread directly with a factor 1∕

√
𝜌,

where 𝜌 is the forgetting factor; see Section 2.2. An alter-
native inflation was used by Feng et al. (2020) following
Poterjoy et al. (2019) based on the effective sample size:

Neff =

( Ne∑
i=1

(w(i))2

)−1

, (14)

where w(i) are the normalized weights (Equation 11). The
value of Neff range between Ne if all ensemble states have
the same weight and one if one ensemble state gets the
weight one, while all others get zero weight. A particle
filter will be efficient for values well in between these
extremes. For Neff = 1, the ensemble would collapse to
a single member, while for Neff = Ne the ensemble and
hence the state estimate in a particle filter would be
unchanged. Feng et al. (2020) apply an inflation factor 𝛽 as
𝛽R−1. 𝛽 is computed from the condition

Neff[𝛽]
Ne

≥ 𝛼, (15)

where Neff[𝛽] denotes the effective sample size that is
obtained with weights computed using 𝛽R−1 and 0 ≤ 𝛼 ≤

1 is a chosen threshold. The inflation ensures that Neff stays
above the prescribed 𝛼. This inflation method, denoted
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𝛼 - inflation below, is analogous to that proposed by Frei
and Künsch (2013) as an adaptive choice to regulate a
hybrid filter (see Section 3.2). Numerically, we found that
the lowest estimation errors are obtained if both the infla-
tions using 𝜌 and 𝛽 are combined.

3 HYBRID FILTERING

The theoretical basis for a filter that hybridizes between
an EnKF and a PF was described by Frei and Künsch
(2013). The weights in a PF with resampling and in the
NETF are computed from the likelihood p(y|x) of the state
x given the observation y. Equation 10 gives the likeli-
hood for Gaussian observation errors. The likelihood can
be factorized as

p(y|x) = p(y|x)𝛾p(y|x)(1−𝛾), (16)

with 0 ≤ 𝛾 ≤ 1. For Gaussian observation errors, the
potentiation with 𝛾 is equivalent to dividing the covariance
matrix R by 𝛾 (see Equation 10), that is, increasing the
observation error. For the hybrid filter, the ensemble anal-
ysis steps are computed from the left and the intermediate
result will be used as input for the second step, usually
denoted as tempering (see van Leeuwen et al., 2019). On
this basis, Frei and Künsch (2013) derived a hybrid filter
that combined the stochastic EnKF with a PF, while Robert
et al. (2018) introduced a variant using the LETKF. In both
variants, the Kalman filter is applied before the PF. Fur-
ther, Chustagulprom et al. (2016) introduced variants that
combine an ensemble Kalman filter with the ensemble
transform particle filter by Reich (2013).

An alternative to the tempering above is to combine the
analysis increments of two filters linearly in the form

Xa = xf1T + (1 − 𝛾)ΔXA + 𝛾ΔXB, (17)

where ΔXA is the analysis increment computed with filter
method A. In contrast to the tempering in Equation 16, 𝛾
will shift the increment between the two filters linearly,
but will not modify R.

The hybrid filter variants based on Equations 16 or 17
have in common that the limiting cases for 𝛾 = 1 and 𝛾 = 0
are the two original filters.

3.1 Hybrid Kalman–nonlinear
ensemble transform filter

Here, the LETKF is combined with the NETF to define
variants of a hybrid filter. To formulate the hybrid
Kalman–nonlinear ensemble transform filter (KNETF),

we use as basis the combined Equation 3 for the ensemble
update. There are three variants of the hybrid update.

The two-step update schemes motivated above com-
pute in the first step the analysis with one of the two
filters. The updated ensemble is then used as the input
to the update of the second filter, which yields the final
analysis ensemble. The two filter updates use a modi-
fied observation-error covariance matrix: the ETKF update
uses 𝛾R−1, while the NETF update uses (1 − 𝛾)R−1.

Let the notation Xa
A
(
Xf, 𝜙R−1, y

)
denote the analysis

ensemble computed with filter method A from the fore-
cast ensemble Xf using the inverse observation covariance
matrix 𝜙R−1. Now we can write the two-step update, in
which the NETF is applied first followed by the LETKF, as

X̃HNK = Xa
NETF

(
Xf, (1 − 𝛾)R−1, y

)
, (18)

XHNK = Xa
LETKF

(
X̃HNK, 𝛾R−1, y

)
. (19)

We denote this two-step update scheme as HNK.
The hybrid analysis scheme in which the LETKF is

applied before the NETF is denoted HKN. It is given by

X̃HKN = Xa
LETKF

(
Xf, 𝛾R−1, y

)
, (20)

XHKN = Xa
NETF

(
X̃HKN, (1 − 𝛾)R−1, y

)
. (21)

The third variant uses a one-step update scheme
(denoted HSync below). Let ΔX denote the assimilation
increment of a filter, that is, ΔX = Xa − Xf. Then the
hybrid update can be written as

Xa
HSync = X

f
+ (1 − 𝛾)ΔXNETF + 𝛾ΔXLETKF . (22)

The hybrid weight 𝛾 shifts the filter behavior between
the LETKF (for 𝛾 = 1) and the NETF (for 𝛾 = 0).

3.2 Choosing the hybrid weight

The choice of the hybrid weight 𝛾 shifts the filter behavior
between the LETKF and the NETF. Its value is expected
to be crucial for the performance of the hybrid filters.
However, it is not obvious according to which rule the
value should be set. Here different approaches will be
tested.

A simple approach is to set a constant value of 𝛾 . A
limitation of a constant 𝛾 is that this cannot adapt to the
dynamical changes in the ensemble distribution.
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3.2.1 Hybrid weights based on effective
sample size

As an alternative to a constant 𝛾 , Frei and Künsch (2013)
proposed to set 𝛾 based on the effective sample size,
Equation 14, analogous to the inflation that was later
introduced by Feng et al. (2020). Frei and Künsch (2013)
propose to choose 𝛾 so that

Neff[1 − 𝛾𝛼]
Ne

≥ 𝛼, (23)

where Neff[1 − 𝛾𝛼] denotes the effective sample size that is
obtained with weights computed using (1 − 𝛾𝛼)R−1, where
0 ≤ 𝛼 ≤ 1 is a chosen parameter. 𝛾𝛼 is determined itera-
tively by varying it from 0 with a pre-defined step size of
0.05 and computing the weight vector w and Neff for each
case. 𝛾𝛼 is found as soon as 𝛼 is exceeded. This 𝛼 - method
introduces a nonlinear function for 𝛾 that is controlled
by 𝛼.

The 𝛼 - method finds a value of 𝛾 according to Neff.
However, the method requires the tuning of 𝛼 for an opti-
mal performance of the hybrid filter. It would be desirable
to obtain an adaptive scheme that does not require tun-
ing. Here, an adaptive scheme based directly on the ratio
of Neff∕Ne is proposed and examined. Namely, we can
compute 𝛾 according to

𝛾lin = 1 − Neff∕Ne . (24)

Thus, 𝛾lin will be close to one if Neff is small, while for
Neff ≈ Ne one obtains 𝛾lin ≈ 0. Note that the maximum of
𝛾lin is (Ne − 1)∕Ne, so that there is always a small contribu-
tion of the NETF. In our numerical tests, this leads to better
results compared with using 1 − (Neff − 1)∕(Ne − 1), unless
one introduces a maximum limit. Obviously, the rule
for 𝛾lin could be augmented, for example, by multiplying
Neff∕Ne with a factor 𝜔 with 0 < 𝜔 ≤ 1, which would shift
the hybridization toward the LETKF and would ensure
𝛾lin ≥ 𝜔, but add a tunable parameter.

Note that 𝛾 acts on the NETF in the same way as the
𝛼 - inflation discussed in Section 2.3. Due to this, one can-
not apply both methods in combination. However, one
could interpret the hybridization as completing the NETF
with 𝛼 - inflation by applying the LETKF to the part of the
observational information that is omitted by the 𝛼 - inflated
NETF analysis.

3.2.2 Hybrid weights based
on non-Gaussianity

The motivation for adaptive schemes using Neff is based
on the fact that, for Neff ≈ 1, the ensemble of a PF, and

hence the NETF, will collapse. Increasing Neff will lead
to more similar weights and hence a more stable filter.
However, there is no guarantee that a nonlinear filter will
work well for larger Neff. For example, it is known that the
NETF suffers from higher sampling errors than the LETKF
(see Tödter et al., 2016; Kirchgessner et al., 2017). For this
reason, one expects that for small ensembles the LETKF
should perform better in situations where the ensemble
distribution is close to Gaussian (see also the theoretical
considerations by Morzfeld and Hodyss, 2019). Thus, it is
not obvious that Neff is the right quantity to base the hybrid
weight on.

As an alternative, we propose here to base the com-
putation of the hybrid weight on the nonlinearity of the
data assimilation problem, which is represented by the
non-Gaussianity of the ensemble distribution. To quantify
the non-Gaussianity, we use the skewness skew and excess
kurtosis kurt of the ensemble. For some values a(i), i =
1,… ,Ne, they are defined by

skew =
1

Ne

∑Ne
i=1

(
a(i) − a

)3

[
1

(Ne−1)
∑Ne

i=1

(
a(i) − a

)2
]3∕2 , (25)

kurt =
1

Ne

∑Ne
i=1

(
a(i) − a

)4

[
1

(Ne)
∑Ne

i=1

(
a(i) − a

)2
]2 − 3 . (26)

For infinite sample size, the skewness is zero for a sym-
metric distribution and deviates increasingly from zero if
the asymmetry grows. The kurtosis specifies the width of
the distribution. For a Gausssian distribution it is zero. A
narrow distribution with long tails has positive kurt, while
kurt is negative for a wide distribution with short tails. An
ensemble filter that accounts for skewness was introduced
by Hodyss (2012). This filter is based on the square of the
ensemble perturbation and does not involve a nonlinear
filter scheme.

To use skew and kurt as conditions for 𝛾 , we com-
pute these separately for each observation in the observed
ensemble. Thus, we use a(i) = [Hxf(i)]k, where k denotes
the vector element. This yields skewk and kurtk. The abso-
lute values are then averaged over all observations to
obtain the mean absolute skewness (mas) and kurtosis
(mak):

mas = 1
Ny

Ny∑
k=1

|skewk|, mak = 1
Ny

Ny∑
k=1

|kurtk|. (27)

Finally, we normalize mas and mak, since the max-
ima of the skewness and kurtosis depend on the ensemble
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size. As shown in the Appendix, mas ≤
√

Ne and mak ≤

Ne. However, normalizing directly by these limits would
decrease the effect of the skewness and kurtosis if Ne
is increased, while their values should be approximately
constant for a given assimilation case. To this end, we
normalize by a parameter 𝜅, which can be chosen so
that minimum errors are obtained. This leads to the nor-
malized mean absolute skewness (nmas) and kurtosis
(nmak):

nmas = 1√
𝜅

mas, nmak = 1
𝜅

mak. (28)

Note that these statistics do not measure the
non-Gaussianity of the joint distribution of Hxf(i),
but represent an average non-Gaussianity over the
observations.

Using nmas and nmak, we can define rules for the
hybrid weight 𝛾 as

𝛾sk,𝛼 = argmax
[
argmin (1 − |nmak|, 1 − |nmas|) , 𝛾𝛼] ,

(29)

𝛾sk,lin = argmax
[
argmin (1 − |nmak|, 1 − |nmas|) , 𝛾lin

]
,

(30)

where 𝛾𝛼 and 𝛾lin are defined in Equations 23 and 24,
respectively. These rules compute the hybrid weight by
taking the stronger effect of either the skewness or kurto-
sis and limiting this value by 𝛾𝛼 or 𝛾lin. We have to stress
that taking a linear dependence on nmas or nmak is not
necessarily optimal, but it is used here as a simple choice
to study whether these rules are effective in the numerical
tests.

4 FILTER PERFORMANCE WITH
THE LORENZ-63 MODEL

4.1 Configuration

The Lorenz-63 (L63) model (Lorenz, 1963) is defined by
a set of three coupled differential equations describing
three variables X ,Y ,Z. The model has been used in several
data assimilation studies on nonlinearity (recently, e.g., in
Metref et al., 2014; Morzfeld and Hodyss, 2019). Here, it
is used with the typical configuration using the parameter
values 𝜎 = 10, 𝜌 = 28, 𝛽 = 8∕3. The time integration is per-
formed with the fourth-order Runge–Kutta scheme using a
time-step size of 0.05. Following Bocquet (2011), if all three
variables are observed, one can classify the nonlinearity for
a forecast duration Δt = 0.1 as mild, Δt = 0.25 as medium,

and Δt = 0.5 as strong. Here, we assess the performance of
the hybrid filter for the range 0.1 ≤ Δt ≤ 0.7 to cover the
different regimes of nonlinearity.

The truth for the experiments is computed by a model
integration over 11,000 time steps. All three state vari-
ables are observed. The observations are generated from
the truth by adding Gaussian random noise with a vari-
ance of 4.0. Ensemble sizes between 15 and 100 are used.
The initial ensembles are generated by random draws from
the true trajectory. The assimilation experiments are per-
formed over 10,000 time steps, with varying Δt. There is
no localization applied. The ensemble inflation (forgetting
factor 𝜌 for the ETKF, combined inflation by 𝜌, and 𝛼 infla-
tion for the NETF) is varied and the minimum errors are
reported. The experiment is run with a random matrix Λ
in Equations 8 and 13. The filter performance is assessed
based on the time-averaged continuous-ranked probabil-
ity score (CRPS: Hersbach, 2000) with respect to the truth
over all three state variables. The CRPS evaluates the
whole ensemble distribution, while the root-mean-square
error (RMSE) would only assess the ensemble mean. This
makes the CRPS better suited to assess non-Gaussian dis-
tributions than the RMSE. For computing the CRPS, the
first 200 time steps are omitted to avoid the spin-up of the
data assimilation process. For each Δt and choice of infla-
tion, the experiment is repeated 10 times with different
random numbers to generate the initial ensemble and the
average CRPS is reported.

The L63 model and the filters are implemented using
the parallel data assimilation framework (PDAF: Nerger
et al., 2005; Nerger and Hiller, 2013). This provides high
computational efficiency and the possibility to perform
the assimilation with the different toy models, but also
realistic models using the same software.

4.2 Assimilation results

4.2.1 Dependence on ensemble size

Before comparing the effect of the different rules to com-
pute the hybrid weight, we assess the convergence behav-
ior of the filters with increasing ensemble size. Figure 1
shows the minimum CRPS that was obtained when vary-
ing the forgetting factor (for all filters) and the inflation
limit 𝛼 (for NETF). Shown are three cases of forecast
lengths Δt = {0.1, 0.4, 0.7}, which represent the different
regimes of nonlinearity. The CRPS of the ETKF shows only
very small changes when the ensemble size is increased.
The NETF shows a higher error than the ETKF for small
Ne, but a strong decrease of the CRPS when Ne is increased.
When Ne exceeds 30, the CRPS of the NETF is smaller
than that of the ETKF for Δt = 0.4 and 0.7. For the short



NERGER 627

10 20 30 40 50 60 70 80 90 100
Ne

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
C

R
P

S
Lorenz-63: CRPS as function of ensemble size

ETKF
NETF
HNK 

sk,

PF
t=0.1
t=0.4
t=0.7

F I G U R E 1 Minimum CRPS as a function of the ensemble
size Ne. Shown are the ETKF (blue), NETF (black), and hybrid filter
variant HNK, using the hybrid rule 𝛾sk,𝛼 that yielded the smallest
errors. The CRPS are shown for Δt = 0.1 (dash–dotted), Δt = 0.4
(dashed), Δt = 0.7 (solid). The effect of the hybrid filter grows with
increasing forecast length. The green asterisks show the CRPS of a
particle filter at Ne = 100 [Colour figure can be viewed at
wileyonlinelibrary.com]

forecast Δt = 0.1, the NETF reaches the same error as the
ETKF at Ne = 50 and yields significantly smaller CRPS
than the ETKF for larger ensembles. The reduction of the
CRPS by the NETF also increases with Δt. For Ne = 100,
the CRPS obtained with the NETF is nearly identical to
those obtained with a PF with resampling.

Next to the ETKF and NETF, the CRPS for the hybrid
filter variant HNK is shown for the rule 𝛾sk,𝛼 for 𝛼 = 0.25,
which resulted in the overall lowest CRPS for Ne = 25
(see Section 4.2.3). For Δt = 0.1, thus small nonlinearity,
the hybrid filter reduces the CRPS by up to 12.5% com-
pared with the ETKF. For the longer forecasts, which result
in larger nonlinearity, the CRPS of the HNK filter is up
to 38.0% smaller than that of the ETKF. The HNK filter
is particularly efficient in reducing the CRPS for small
ensembles. Only for Ne < 30 does the HNK filter show a
significant increase of the CRPS, but the error remains
below that of the ETKF. For increasing ensemble size, the
CRPS of the NETF approaches that of the HNK filter. The
HNK filter yields overall lower CRPS than the NETF except
for Ne = 100 for Δt = 0.1 and Δt = 0.4. For a very large
ensemble size of Ne = 500, the NETF and PF with resam-
pling still yield nearly the same CRPS. In addition, the
𝛾sk,𝛼 and 𝛾𝛼 cases can be tuned to yield comparable CRPS.
However, setting 𝛼 = 0.01 is required for this very large
ensemble so that Neff influences the hybridization only
minimally.

4.2.2 Comparison of hybrid filter variants
and weight rules

We now focus on the ensemble size Ne = 25 and vary the
forecast length Δt. Figure 2 shows the CRPS for the hybrid
filter variants and the ETKF and NETF. The columns
show the CRPS for the three hybrid variants HNK, HKN,
and HSync, while the panels of each row show the CRPS
obtained with different rules to compute the hybrid weight
𝛾 . The NETF exhibits a larger CRPS than the ETKF for this
ensemble size for all Δt.

Overall, the hybrid filter variant HNK (left column)
results in the smallest CRPS. The HKN filter (center col-
umn) is not able to reduce the error through hybridization,
but the different rules used to compute the hybrid weight
lead to a deterioration of different strength. Thus, com-
bining the ETKF with a subsequent NETF update does
not improve the result for the Lorenz-63 model. Lower
assimilation impact when an EnKF was applied first was
also found with the hybrid filter discussed by Chustagul-
prom et al. (2016). For the HSync filter (right column), the
different rules for the hybrid weight decrease the CRPS.
However, the effect is smaller than for the HNK filter.

Focusing first on the HNK filter in the left column,
Figure 2a shows that, for fixed values of 𝛾 , only choices
close to one lead to a stable filter behavior. Varying 𝛾 , 𝛾 =
0.9 resulted in the smallest CRPS, well below the CRPS of
the ETKF and NETF. For smaller 𝛾 , the HNK filter shows
low CRPS for shorter forecasts, but starts to diverge if the
forecast length increases. If 𝛾 is increased beyond 0.9, the
CRPS will approach that of the ETKF. For Δt > 0.3, the
CRPS of the optimal case varies significantly for the 10 rep-
etitions with different initial ensembles as is shown by the
shaded region in Figure 2a, which marks the range of one
standard deviation around the case with 𝛾 = 0.9.

Figure 2b shows the CRPS for cases computing 𝛾 using
Neff with either Equation 23 for 𝛾𝛼 or Equation 24 for 𝛾lin.
For 𝛾𝛼 , the hybrid weight is calculated, so that the ratio
Neff∕Ne does not fall below the threshold 𝛼. In this case,
high CRPS values close to those of the NETF are obtained
for small 𝛼, as shown for 𝛼 = 0.2. When increasing 𝛼,
the CRPS first decreases and finally increases again and
approaches that of the ETKF. A minimum CRPS below
that of the ETKF is obtained for 𝛼 = 0.4. For 𝛾lin, no tuning
is necessary. In this case, the CRPS lies below the min-
imum error obtained with 𝛾𝛼 for all Δt. Compared with
the ETKF, the CRPS is reduced by 8% for Δt = 0.1, and by
25–31% for Δt ≥ 0.3.

The CRPS for the cases that compute 𝛾 based on the
ensemble skewness and kurtosis is shown for the HNK fil-
ter in Figure 2c. Here, the results for the value of 𝜅 that
leads to the minimum CRPS are shown. The dependence
on 𝜅 is discussed in Section 4.2.3. For 𝛾sk,𝛼 (Equation 29),
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F I G U R E 2 Minimum CRPS as a function of the forecast length Δt. Shown are the ETKF (thin solid), NETF (thin dashed), and hybrid
filter (thick lines; different colors). The columns show the filter variants HNK (left), HKN (center), and HSync (right). The rows show (top)
fixed values of 𝛾 , (middle) 𝛾 computed using Neff, and (bottom) 𝛾 computed using the ensemble skewness and kurtosis. In the panels in the
left column, the shaded areas around the line for one of the hybrid rules show the range of one standard deviation over each ten experiments.
Only a selection of choices for the fixed 𝛾 or 𝛼 is shown to demonstrate the effect of the parameters [Colour figure can be viewed at
wileyonlinelibrary.com]

the hybrid weight varies with the choice of 𝛼. For 𝛼 = 0.0,
𝛾 is computed from the skewness and kurtosis without
accounting for Neff. In this case, the filter shows small
CRPS for Δt ≤ 0.2, but significantly larger errors occur for
longer forecasts. The smallest overall CRPS is obtained
for 𝛼 = 0.25, while for larger 𝛼 the CRPS increases and
approaches the CRPS of the ETKF. For 𝛾sk,lin (Equation 30),
the hybrid weight is computed with only 𝜅 as tuning
parameter. In this case, the CRPS is statistically not distin-
guishable from the smallest RMSE obtained for 𝛾sk,𝛼 . For
Δt ≥ 0.3, the reduction of the CRPS relative to the ETKF is
between 29 and 32%. The shaded areas in Figure 2b,c show
that the variation within the ten repetitions of each set of

parameters is slightly larger for 𝛾sk,lin compared with 𝛾lin.
Both show a smaller variation than the fixed 𝛾 in Figure 2a.
Thus, the hybridization stabilizes the filter process.

While the HSync filter variant in the right column
of Figure 2 yields larger CRPS than the HNK filter, the
hybridization is also able to reduce the CRPS. The adaptive
rules 𝛾lin and 𝛾sk,lin lead to similarly reduced CRPS. For 𝛾𝛼 ,
the filter is less sensitive to the choice of 𝛼 than in the HNK
filter. The smallest CRPS values are obtained for 𝛼 = 0.3.
For HSync, the CRPS values for 𝛾𝛼 are lower than for 𝛾lin
for 𝛼 between about 0.2 and 0.5. For a fixed choice of 𝛾 ,
values between 0.6 and 0.8 lead to the smallest CRPS. For
the rule 𝛾sk,𝛼 , the smallest CRPS is obtained for 𝛼 = 0.25.
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However, the CRPSs for 𝛼 = 0.0 is also smaller than that
of the ETKF. Thus, for HSync the hybrid weight can also
be computed just based on skewness and kurtosis, without
the additional constraint specified by 𝛼 > 0.

4.2.3 Effects of different hybridization rules

For a further assessment of the hybridization, we focus
on the HNK filter variant and the longest forecast time of
Δt = 0.7. To get more insight into the effect of accounting
for skewness and kurtosis, we first assess in Figure 3 how
the CRPS for the hybrid rules 𝛾𝛼 , 𝛾sk,lin, and 𝛾sk,𝛼 depends on
the parameters 𝛼 and 𝜅 . Only 𝛾sk,𝛼 depends on both param-
eters, while 𝛾𝛼 only depends on 𝛼 and 𝛾sk,lin only depends
on 𝜅. The central panel of Figure 3 shows the CRPS for
𝛾sk,𝛼 . Small CRPS is generally obtained for 𝜅 between 5
and 30 and 0.1 ≤ 𝛼 < 0.4. The smallest CRPS is obtained
for 𝛼 = 0.1 and 𝜅 = 10. This optimal 𝜅 is smaller than the
ensemble size Ne = 25. The CRPS varies more strongly
with 𝛼 than with 𝜅. If 𝛼 is reduced below 0.1, the CRPS
increases strongly. This increase is largest for 𝜅 ≤ 30, thus
when both 𝛼 and 𝜅 allow for a small value of 𝛾 . For 𝛼 = 0.0,
the smallest CRPS is obtained for 𝜅 = 95. With this large
value, the dependence rule using nmas and nmak coun-
ters the missing limitation by the effective sample size.
For 𝛼 > 0.5, the effect of varying 𝜅 diminishes and the
CRPS increases. Here, the limit according to 𝛼 = Neff∕Ne
dominates the hybrid rule and the possible effect of the
skewness and kurtosis is not taken into account.

The left column in Figure 3 shows the CRPS for 𝛾𝛼 . The
result is nearly identical to the case of 𝛾sk,𝛼 with 𝜅 = 1. In
this case, the criterion using nmas and nmak has very little
effect and the hybrid rule is dominated by the limit set by
𝛼. The rule 𝛾sk,lin also profits from small values of 𝜅, as is
visible in the bottom row of Figure 3. Here, the minimum
CRPS is obtained for 𝜅 = 5. The CRPS values obtained
with 𝛾sk,lin are comparable with those of 𝛾sk,𝛼 obtained with
𝛼 = 0.35.

To assess how the adaptive hybrid rules act differently
during the DA process, Table 1 summarizes different statis-
tics of selected cases for Δt = 0.7. The left four columns
show cases with small CRPS. Here, 𝛾sk,𝛼=0.1 results in the
smallest CRPS, followed by 𝛾sk,lin and 𝛾lin with nearly
identical CRPS, and finally 𝛾𝛼=0.4. This order also holds
for the root-mean-square error (RMSE). Comparable val-
ues of CRPS are obtained for significantly different mean
values 𝛾 . In particular, 𝛾lin and 𝛾sk,lin have nearly identical
CRPS, but the mean value 𝛾 of 0.628 for 𝛾lin is significantly
smaller than 𝛾 = 0.756 for 𝛾sk,lin. The case 𝛾𝛼=0.4 uses a
much smaller 𝛾 of 0.399. For 𝛾sk,𝛼=0.1, the mean value 𝛾 of
0.717 lies in between the cases 𝛾sk,lin and 𝛾lin. For 𝛾sk,𝛼=0.1,
the average Neff∕Ne is also larger than for the other cases,

F I G U R E 3 Minimum CRPS over all choices of 𝛼 and 𝜅 for
the HNK filter and Ne = 25. Shown are (center) the CRPS for 𝛾sk,𝛼 ,
(left) 𝛾𝛼 , and (bottom) 𝛾sk,lin [Colour figure can be viewed at
wileyonlinelibrary.com]

which might indicate a more stable DA process. In con-
trast, the statistics mas and mak show no obvious relation
to the CRPS. However, nmas and nmak are smaller for
𝛾sk,𝛼=0.1 than for 𝛾sk,lin. This is related to the different opti-
mal choices of 𝜅. The smaller values of nmas and nmak,
however, do not translate directly into smaller values of 𝛾 .

For the hybrid filter, it is overall relevant that during
the DA process a “suitable” value of 𝛾 is chosen, that is, one
that yields an analysis ensemble with low errors and suf-
ficiently large Neff. Thus, the mean value 𝛾 does not relate
directly to the CRPS. The different hybrid rules lead to dis-
tinct solutions, as is visible in Figure 4, which shows the
cumulative distribution of 𝛾 over all analysis steps. For the
case 𝛾𝛼=0.4, a value 𝛾 = 0 is used in about 40% of the anal-
ysis steps. In these cases, the limit of 𝛼 ≥ 0.4 is fulfilled
without inflating the observation errors by the hybridiza-
tion. For the remaining analysis steps, the distribution of 𝛾
is rather uniform in the range 0.4–1.0, with some increased
occurrence of values above 0.8. This distribution leads to
the overall low value of 𝛾 in Table 1. Adding the condition
on skewness and kurtosis in the case 𝛾sk,𝛼=0.1 changes the
distribution of 𝛾 drastically and leads to values of 𝛾 that
are mainly above 0.4. This is despite the lower threshold
of 𝛼 = 0.1. A change of the distribution of 𝛾 is also visi-
ble when comparing the cases 𝛾lin and 𝛾sk,lin. The case 𝛾lin
shows a rather uniform distribution of 𝛾 in the range 0.2–1,
but small probability of 𝛾 < 0.2. Accounting in addition
for skewness and kurtosis in 𝛾sk,lin leads to a similar dis-
tribution as for 𝛾sk,𝛼=0.1, with values of 𝛾 mainly above 0.4.
However, 𝛾sk,𝛼=0.1 shows about three times higher proba-
bility of 𝛾 < 0.4 than the case 𝛾sk,lin. If Neff is large enough,
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T A B L E 1 Mean errors and parameter values over experiments with L63 for Δt = 0.7

Filter: 𝜸lin 𝜸𝜶=0.4 𝜸sk,lin 𝜸sk,𝜶=0.1 𝜸𝜶=0.8 𝜸sk,𝜶=0.0

𝜅 – – 5 10 – 100

CRPS 0.673 0.707 0.671 0.639 0.826 0.873

RMSE 1.125 1.178 1.113 1.105 1.372 1.575

𝛾 0.628 0.400 0.756 0.717 0.863 0.862

Neff∕Ne 0.372 0.355 0.354 0.404 0.289 0.289

mas 0.935 0.934 0.948 0.906 0.964 0.964

mak 2.026 1.972 2.073 1.935 2.126 2.126

nmas – – 0.424 0.286 – 0.096

nmak – – 0.415 0.194 – 0.021
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F I G U R E 4 Cumulative distribution of 𝛾 for six cases of the
Lorenz-63 model over all analysis steps of an experiment. The cases
correspond to those for which mean statistics are shown in Table 1
[Colour figure can be viewed at wileyonlinelibrary.com]

a small value of 𝛾 can be used without causing an ensem-
ble collapse. However, the cases 𝛾sk,lin and 𝛾sk,𝛼 show that
such a low value is not necessary to obtain a low CRPS if
the skewness and kurtosis are small enough.

Two suboptimal cases of higher CRPS are shown in
the rightmost columns in Table 1. The higher errors are
caused by episodes of increased CRPS, in which the filter
diverges for a few analysis cycles during the DA process.
The case 𝛾𝛼=0.8 uses too large a limit compared with 𝛾𝛼=0.4.
With the condition 𝛼 = 0.8, 𝛾 more than doubles compared
with 𝛾𝛼=0.4. Figure 4 shows that a value of 𝛾 = 0 is almost
never reached for 𝛾𝛼=0.8, while in 40% of the analysis steps
the maximum value 𝛾 = 1.0 is used. The second subopti-
mal case is 𝛾sk,𝛼=0.0, for which a high value 𝜅 = 100 leads
to the lowest CRPS. In this case, the choice of 𝜅 counters
the missing limit regarding 𝛼. However, this alone is not

sufficient to obtain a low CRPS. The distribution of 𝛾 shows
increased values compared with 𝛾sk,𝛼=0.1. The two subopti-
mal cases use nearly identical mean values of 𝛾 , but these
are obtained by different distributions. However, both
methods have in common that particularly high values of
𝛾 are used, so that too much weight is given to the ETKF.

Table 1 also provides information on the
non-Gaussianity of the DA problem. The average mas
and mak are about 0.93 and 2.0, respectively. However,
in the different experiments, maximum values of about
mas = 4.0 and mak = 16.0 occur at single analysis steps.
Given the maximum limits of 5 for mas and 25 for mak (see
Appendix), these distributions are strongly non-Gaussian,
with both significant skewness and kurtosis.

Overall, the analysis shows that there is no unique
solution for 𝛾 . Small values can sometimes be used with-
out deteriorating the analysis. In fact, the hybridization is
sometimes insensitive within some range of 𝛾 . It is impor-
tant that the filter has a “suitable” value of 𝛾 at a given
analysis step. This aspect points to an obvious weakness
of using a constant hybrid weight. In this case, the hybrid
filter cannot adjust to the current ensemble distribution.
This leads to the higher CRPS visible in the upper row of
Figure 2.

5 HYBRID FILTERING WITH
THE LORENZ-96 MODEL

5.1 Configuration

While the L63 model is a chaotic model that poses signifi-
cant challenges to the ensemble DA methods, there is the
obvious limitation of a very small state dimension. Thus,
experiments with ensembles that are smaller than the state
dimension are not possible and applying localization is
not meaningful. For a higher-dimensional case including
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localization, we perform assimilation experiments with
the chaotic Lorenz-96 (L96) model (Lorenz, 1996), which
was used in many studies to assess data assimilation
methods, for example, by Tödter and Ahrens (2015) and
Kirchgessner et al. (2017) for studying the NETF filter and
smoother variants. The configuration uses a state dimen-
sion of 40 grid points, forcing parameter F = 8.0, and
time-stepping with the fourth-order Runge–Kutta scheme
using a dimensionless time-step size of Δt = 0.05. The true
state was generated by a model integration over 11,000
time steps. The observations are available at each second
grid point. They are generated by adding Gaussian random
noise of variance 1.0 to the true states.

The assimilation experiment starts at time step 2,000
of the true trajectory to avoid the model spin-up period.
The observations are assimilated at each eighth time
step (Δt = 4.0) over a period of 5,000 time steps. The
long interval between successive analysis steps leads to a
non-Gaussian forecast ensemble (Lei and Bickel, 2011).
Together with the incomplete observations, this config-
uration leads to significantly higher assimilation errors
than the frequently used case of full observations and an
analysis update at each time step.

Two cases with different ensemble sizes are used: Ne =
15 represents a particular small-ensemble case, while Ne =
40 has lower sampling errors. The initial ensembles are
generated by random draws from the true trajectory start-
ing at time-step 2001. The experiment is run with a random
matrix Λ in Equations 8 and 13.

In the experiments, the assimilation performance in
terms of the CRPS averaged over the last 3,000 time steps
of each experiment is analyzed varying the forgetting fac-
tor and the localization radius, as well as the parameters
controlling the hybridization. For each configuration, the
experiment is repeated ten times with different random
numbers for the ensemble initialization and the CRPS is
averaged over these experiments. As for the L63 model, the
L96 model is implemented using PDAF (Nerger et al., 2005;
Nerger and Hiller, 2013).

Following the discussion in Section 4.2.3, which clari-
fied that a fixed choice of 𝛾 cannot react in the time-varying
ensemble distribution and hence needs to be suboptimal,
we focus here on the adaptive rules to set 𝛾 .

5.2 Assimilation results

5.2.1 Influence of inflation and localization

To first assess the dependence of the filter results on the
inflation and the localization radius rloc, Figure 5 shows
the time-mean CRPS for the LETKF, LNETF, and hybrid
filter variants with rule 𝛾sk,lin. The white fields indicate

cases with CRPS above 1.2, which we consider here as
the convergence limit, because values above 1.2 are often
due to filter divergence in at least one of the 10 repeti-
tions. For the LNETF, two cases are shown. The NETF
that only applies inflation by 𝜌 (Figure 5b) is the limiting
case of the hybrid filters for 𝛾 = 0. In contrast, the LNETF
with combined inflation using 𝜌 and 𝛼 (Figure 5c) rep-
resents the optimal case when using the LNETF without
hybridization.

The LETKF (Figure 5a) converges for all tested combi-
nations of forgetting factor 𝜌 and radius rloc. The minimum
CRPS of 0.756 is obtained for rloc = 6 grid points. In con-
trast, the LNETF using only inflation by 𝜌 (Figure 5b)
converges only for rloc < 4. The minimum CRPS of 0.862 is
obtained here for 𝜌 = 0.85 and rloc = 2. When 𝛼 - inflation
is used in addition to 𝜌 (Figure 5c), the LNETF converges
for a wider range of localization radii. However, rloc still
needs to be much smaller than for the LETKF. The con-
vergence also depends on 𝜌. The figure shows the smallest
errors, obtained with 𝜌 = 0.85, as is the case when only
𝜌 is used. The CRPS is smallest for rloc = 2 and 𝛼 = 0.2
with a value of 0.848; compared with using only inflation
by 𝜌, the CRPS is reduced by only 1.6%. However, if the
ensemble is increased to 40 members, the effect of the
𝛼 - inflation grows to 7.0% and the minimum CRPS is
0.667, which is only 0.5% larger than the CRPS of the
LETKF. Further, the radius for the minimum CRPS in the
LNETF is larger with rloc = 5.

The lower row of Figure 5 shows the CRPS for the three
variants of the hybrid filter using 𝛾sk,lin. All hybrid filter
variants reduce the CRPS compared with the LETKF and
LNETF, albeit to a different extent. The filter variants show
an overall dependence of 𝜌 and rloc that is also typical for
the LETKF. In particular, the optimal rloc increases when
𝜌 is decreased. As for the LETKF, the minimum CRPS is
found for some intermediate value of 𝜌 and rloc. For high
values of rloc and 𝜌 (i.e., small inflation), all hybrid filter
variants show increased CRPS or divergence. This effect is
stronger in the HNK and HSync variants (Figure 5d,f) than
in the filter variant HKN (Figure 5e) and the LETKF. The
similar dependence of the hybrid filters on rloc and 𝜌 indi-
cates that the configuration of the LETKF should be usable
as a baseline for tuning the hybrid filter.

5.2.2 Comparison of hybrid filter variants
and weight rules

Here, the performance of the hybrid filter variants is com-
pared and the effect of the different hybrid rules based
either on the effective sample size using 𝛼 (Section 3.2.1)
or, in addition, on the ensemble skewness and kurtosis
(Section 3.2.2), is assessed.
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F I G U R E 5 CRPS for varying inflation (𝜌 and 𝛼) and localization radius rloc for Ne = 15. The upper row shows (a) the LETKF for varying
forgetting factor 𝜌, (b) the NETF applying only 𝜌, and (c) the NETF with combined use of 𝜌 and 𝛼-inflation for 𝜌 = 0.85 and varying limit 𝛼.
The lower row shows three hybrid filter variants for the hybrid rule 𝛾sk,lin. The white fields indicate CRPS values above 1.2. The number in the
bottom left corner of each panel shows the overall minimum CRPS for each filter [Colour figure can be viewed at wileyonlinelibrary.com]

Table 2 summarizes the reduction of the CPRS rela-
tive to the LETKF obtained for the different filter variants
and hybrid rules for the two ensemble sizes 15 (left) and
40 (right). As for the L63 model, the HNK filter yields the
largest reductions of the CRPS, with up to 11.2% for Ne =
15. With the larger ensemble size Ne = 40, the reduction
of the CRPS is almost twice as large, with 21.5%. The effect
of the HSync filter is only about half as large as that of the
HNK filter. The HKN filter is also able to reduce the CRPS
compared with the LETKF, but the reduction is the small-
est of the three hybrid filter variants and reaches only 4.9%
for Ne = 40. This is different from the L63 model, where
the HKN filter was not able to reduce the CRPS.

Among the different hybrid rules, 𝛾sk,lin has the largest
effect for Ne = 15 for the HNK filter, while the effect of 𝛾sk,𝛼
is slightly smaller. This changes for the larger ensemble,
where 𝛾sk,𝛼 shows the largest reduction of the CRPS. The
rule 𝛾lin, which does not require tuning, is also efficient in
reducing the CRPS. However, its effect is smaller than the
other rules (except for Ne = 15 for the HNK filter, where 𝛾𝛼
is less efficient). For the HKN and HSync filters, the rule
𝛾sk,𝛼 shows the largest effect, followed by 𝛾𝛼 .

To analyze the influence of the parameters 𝛼 and 𝜅 fur-
ther, we focus on the HNK filter. Figure 6 shows the CRPS

of the hybrid filter relative to the CRPS of the LETKF as a
function of 𝛼 and 𝜅 for the hybrid rules 𝛾𝛼 , 𝛾sk,𝛼 , and 𝛾sk,lin
for both ensemble sizes. Here, the white fields indicate that
the hybrid filter results in a higher CRPS than the LETKF.
For both ensemble sizes, the rule 𝛾𝛼 leads to values of the
CRPS very close to 𝛾sk,𝛼 with 𝜅 = 1. These values are larger
than the optimal CRPS obtained with 𝛾sk,lin or 𝛾sk,𝛼 . For
small values of 𝛼, the rule 𝛾𝛼 leads to increased CRPS. For
Ne = 15, this is the case for 𝛼 < 0.4, which corresponds to a
minimum Neff of 6 according to Equation 23. For Ne = 40,
the hybrid filters show lower CRPS than the LETKF down
to 𝛼 = 0.1. This corresponds to a minimum Neff of 4, thus
lower than for Ne = 15. Furthermore, the optimal value of
𝛼 shifts from 0.6 for Ne = 15 to 0.4 for Ne = 40. Keeping in
mind that 𝛼 is the limit for Neff∕Ne and Ne is increased by
a factor of 2.7, one sees that for Ne = 40 the optimal filter
results are obtained at larger Neff than for Ne = 15, despite
the decreased value of 𝛼. However, even for the same Neff
(𝛼 ≈ 0.2 for Ne = 40), smaller CRPSs are obtained.

For 𝛾sk,𝛼 , combinations of small values of 𝛼 and 𝜅 also
result in an increase of the CRPS relative to the LETKF.
For the larger ensemble Ne = 40, this only happens for
𝛼 = 0.0, 𝜅 = 1, while the range is larger for Ne = 15. For the
smaller ensemble, the minimum CRPS for 𝛾sk,𝛼 is obtained

http://wileyonlinelibrary.com
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T A B L E 2 Maximum reduction of the CRPS in per cent obtained for the different hybrid weight rules for the Lorenz-96 model
experiments

𝜸𝜶 𝜸lin 𝜸sk,𝜶 𝜸sk,lin 𝜸𝜶 𝜸lin 𝜸sk,𝜶 𝜸sk,lin

Filter Ne = 15 Ne = 40

HNK 8.6 9.3 10.9 11.2 19.6 17.6 21.5 17.6

HKN 2.7 2.0 3.2 2.7 4.7 2.0 4.9 1.4

HSync 6.5 4.9 6.6 6.0 8.4 6.0 10.6 6.4

Note: An italic font indicates the largest reduction of the CRPS over each 4 hybrid rules, while the bold italic number indicates the overall largest reduction.

F I G U R E 6 Minimum CRPS relative to the minimum CRPS of the LETKF over all choices of 𝛼 and 𝜅 for (left) Ne = 15 and (right)
Ne = 40. Shown are (center) the CRPS for 𝛾sk,𝛼 , (left vertical column) 𝛾𝛼 , and (bottom row) 𝛾sk,lin. White fields indicate relative CRPS values
above one. Note the different color scale of both panels [Colour figure can be viewed at wileyonlinelibrary.com]

for 𝜅 ≥ 30 and 𝛼 ≤ 0.4. There is no clear optimal choice
of 𝜅 and 𝛼, but a wider range of these parameters results
in low CRPS. For decreased 𝛼, there is a tendency for the
optimal choice of 𝜅 to increase. When the ensemble size is
increased to 40 members, a clear minimum of the CRPS is
obtained for 𝜅 = 10, 𝛼 = 0.3. As for Ne = 15, decreasing 𝛼

requires us to increase 𝜅. Thus, the lesser constraint by 𝛼

is to some extent compensated by 𝜅. The well-identifiable
minimum CRPS for Ne = 40 indicates that the sampling
errors are small enough that accounting for skewness and
kurtosis does not just stabilize the filter, but the hybrid
filter successfully utilizes Neff in 𝛼 and the skewness and
kurtosis to reduce its error. In contrast, the larger sampling
errors for Ne = 15 result in a wide range of parameters for
which a small CRPS is obtained. This further leads to the
fact that the minimum CRPS is obtained for larger val-
ues of 𝜅 compared with Ne = 40. The larger 𝜅 reduces the
influence of skewness and kurtosis and low 𝛾 is only used
for particularly high non-Gaussianity.

Increasing 𝛼 beyond 0.5 leads to growing CRPS. Fur-
ther, the dependence on 𝜅 diminishes, since the limitation

by 𝛼 dominates. While the CRPS increases for 𝛾sk,𝛼 when
𝛼 approaches zero, this increase is smaller than in the L63
model. This different behavior can be related to the local-
ization. In the case of the L63 model, the whole model state
is treated at once, while for the L96 model a sequence of
local analyses is computed. In this case, only single local
analysis updates might have Neff = 1, while Neff > 1 for the
others. Thus, only part of the model state is affected when
no constraint regarding Neff is active. This effect stabilizes
the analysis and leads to a smaller increase of the CRPS.
As for the L63 model, larger values of 𝜅 need to be applied
for 𝛼 = 0. In this case, the minimum CRPS is obtained for
Ne = 15 for 𝜅 = 100, while 𝜅 = 60 is optimal for Ne = 40.
Utilizing the skewness and kurtosis of the ensemble in
addition to Neff allows the filter to obtain small CRPS over
the full range of 𝛼. However, for very small 𝛼, the choice of
𝜅 compensates for the missing limitation of 𝛼.

The rule 𝛾sk,lin at the bottom of the panels in Figure 6
shows small CRPS over the full range of 𝜅 with a tendency
of increased CRPS for very small and large 𝜅. Thus, consis-
tent with Table 2, the hybridization is mainly determined

http://wileyonlinelibrary.com
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T A B L E 3 Mean errors and parameter values over experiments with L96 for Ne = 40

Filter 𝜸lin 𝜸𝜶=0.4 𝜸sk,lin 𝜸sk,𝜶=0.3 𝜸𝜶=0.1

𝜅 – – 2 10 –

rloc 14 12 12 14 5

CRPS 0.548 0.534 0.551 0.522 0.649

RMSE 1.092 1.063 1.090 1.034 1.348

𝛾 0.896 0.713 0.877 0.835 0.060

𝛾min 0.766 0.393 0.723 0.782 0.0

𝛾max 0.962 0.899 0.959 0.893 0.414

Neff∕Ne 0.104 0.121 0.125 0.102 0.303

mas 0.581 0.589 0.580 0.589 0.598

mak 0.913 0.937 0.917 0.932 0.960

nmas – – 0.410 0.186 –

nmak – – 0.459 0.093 –

by the linear dependence on Neff, with a smaller effect of
𝜅. For Ne = 15, the CRPS is comparable with the lowest
values obtained for 𝛾sk,𝛼 , while the CRPS for 𝛾sk,lin is larger
in the case of Ne = 40. Here, the CRPS is comparable with
that obtained for 𝜅 = 0.5.

5.2.3 Effect of different hybrid rules on 𝛾

Finally we assess how the different hybrid rules lead to dif-
ferent values of 𝛾 for the HNK filter. Table 3 shows several
statistics for four experiments with small CRPS and one
suboptimal case for Ne = 40. These are averages over space
and time. The table can be compared with Table 1, which
shows the statistics for the L63 model experiments. In con-
trast to the L63 model, the DA experiments with the L96
model apply localization and the values of 𝛾 vary for each
local analysis domain. To take this into account, Table 3
also shows, next to the mean value 𝛾 , the time mean of the
minimum (𝛾min) and maximum value (𝛾max) of 𝛾 for each
analysis step.

On average, the nonlinearity of the L96 experiments
is smaller than for L63, as is visible from the lower val-
ues of mas and mak. However, the values vary strongly
over the local analysis domains. The time average of the
minimum mas is 0.2, while the maximum mas is 1.42 for
the low-CRPS cases in the left columns of the table. For
mak, the range is between 0.24 and 4.0. Consistent with the
lower nonlinearity, the time-averaged values 𝛾 are larger
here compared with the L63 model.

Among the four low-CRPS cases in the left columns,
the case 𝛾𝛼 shows particular small values of both 𝛾 and
𝛾min. This smaller value is consistent with the results from
the L63 model. Thus, again this hybrid rule results in

similar CRPS to the other cases, by using the LNETF
more strongly. The other cases use rather similar average
values of 𝛾 . This is also the case for 𝛾sk,lin and 𝛾sk,𝛼=0.3,
where 𝛾sk,lin uses the smaller value 𝜅 = 2 compared with
𝜅 = 10 in 𝛾sk,𝛼=0.3. This leads to larger values of nmas and
nmak and hence a stronger potential influence of skewness
and kurtosis for 𝛾sk,lin. Overall, 𝛾sk,lin uses a larger spread
of 𝛾 compared with 𝛾sk,𝛼=0.3, as is visible from 𝛾min and
𝛾max.

The rightmost column of Table 3 shows the suboptimal
case 𝛾𝛼=0.1, which results in a CRPS comparable with that
of the LETKF. Here, the minimum CRPS is obtained for
the much smaller radius rloc = 5. This results in an overall
higher likelihood and hence a higher value of Neff∕Ne. The
lower limiting condition 𝛼 = 0.1 results in small values of
𝛾 . The mean value of 𝛾 = 0.060 indicates that the hybrid fil-
ter analysis is strongly shifted to the LNETF. However, the
mean maximum value 𝛾max = 0.414 shows that, for some
of the local analysis domains, the LNETF is still applied
with a non-negligible fraction. This appears to stabilize the
filter overall.

6 DISCUSSION

6.1 The hybrid filter algorithm

The hybrid filter schemes discussed in this study are based
on the factorization of the likelihood (for HNK and HKN)
or on linear interpolation (for HSync). To the author’s
knowledge, there is so far no analytical proof that such
types of hybrid filter should lead to a better assimila-
tion performance compared with applying the LETKF and
LNETF alone. The analysis update of the KF is linear in the
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observations. This implies that if one applies the analysis
update without localization and with a linear observa-
tion operator, for example, twice with doubled observation
errors, the final assimilation result, that is, the state esti-
mate and covariance matrix, is unchanged. This also holds
for the ETKF, which results in the same analysis ensem-
ble for single-step or multi-step updates if Λ in Equation 8
is the identity. This is true even if the ensemble distri-
bution is non-Gaussian, thus when a nonlinear model is
used. The latter is due to the fact that only the mean and
covariance of the ensemble are taken into account. Note
that these properties can be easily checked numerically,
but it is unclear whether all of them can be proofed ana-
lytically due to the matrix algebra involved. The properties
will likely change when localization is applied, as is, for
example, known for localized filters with serial observa-
tion processing (see Nerger, 2015). It is also known that
KFs and different PF schemes do not converge to the
correct estimate of the unbiased analysis probability dis-
tribution in the limit of infinite ensemble size (hence the
methods are denoted as “biased”). Further, nonlinear fil-
ters perform poorly with small ensembles, due to the curse
of dimensionality and sampling errors that are larger than
in EnKFs. In this study, we are particularly interested in
this case of small ensembles, since, for realistic data assim-
ilation applications with high-dimensional models, only
small ensembles—of (10) to (100) and hence much
smaller than the state dimension—are feasible. To this
end, it is not obvious that combining two schemes that
have different approximations and sampling errors should
lead to improved estimates.

Intuitively, we consider the two-step variants as iter-
ative solutions. Consider that the forecast probability
distribution is non-Gaussian, while the assimilation of
observations with Gaussian errors results in an analysis
distribution that is closer to Gaussian (see, e.g., the theo-
retical considerations by Morzfeld and Hodyss, 2019). We
now have three cases. In the first case (HNK), the non-
linear filter is applied first and acts on the non-Gaussian
distribution. The resulting intermediate analysis distribu-
tion is closer to Gaussian. It is then provided to the KF,
the equations of which assume Gaussianity. Increasing the
observation errors using 𝛾 should stabilize the nonlinear
filter due to less variance of the weights, while the KF com-
pletes the overall analysis so that the full observational
information is utilized. In the second case (HKN), the KF
is applied first. Thus, the KF acts on the non-Gaussian dis-
tribution. The analysis will be suboptimal for this case,
but usually very stable. The intermediate analysis ensem-
ble is closer to Gaussian and will, in general, deviate less
from the observations. Accordingly, in the following anal-
ysis with the nonlinear filter, the likelihoods of the dif-
ferent ensemble states will be higher and overall more

uniform. This should lead to a better analysis result. On
the other hand, the intermediate distribution will be less
non-Gaussian, so that the nonlinear filter can make less
use of its ability to handle non-Gaussian distributions. The
third case (HSync) uses the linear combination. Here, the
nonlinear filter likely gives most weight to a single ensem-
ble state. This can lead to a rather accurate state estimate,
perhaps even overfitting, but leads to a low effective sam-
ple size of the analysis ensemble. In contrast, the KF can
lead to too little correction, because it only uses the covari-
ance matrix. Combining both analyses could potentially
lead to a better state estimate and, with sufficient tun-
ing of, for example, the inflation, to better error estimates.
Using the hybrid weight 𝛾 in the different hybrid filter
variants ensures that the combined filter analysis is con-
sistent in the sense that, for Gaussian distributions and
without sampling error, all cases should yield the same
result independent of 𝛾 .

6.2 Accounting for skewness
and kurtosis

The hybrid rules 𝛾sk,lin and 𝛾sk,𝛼 utilize the mean absolute
skewness (mas) and kurtosis (mak) to determine 𝛾 . This
approach is motivated by the fact that the LETKF can only
be optimal for Gaussian distributions, while the LNETF
does not assume Gaussianity. Thus, the LNETF should
perform better in non-Gaussian cases, which are caused
by nonlinear models. On the other hand, the LNETF has
larger sampling errors, so that the LETKF should outper-
form it in the case of Gaussianity. Computing the hybrid
weight based on the skewness and kurtosis allows the
hybrid filter to stay close to the LETKF for nearly Gaus-
sian cases, but to shift closer to the LNETF for increasing
non-Gaussianity.

For small Ne, both mas and mak will have signifi-
cant sampling errors, so that even for Gaussian distri-
butions these quantities deviate from zero. Likewise, the
normalized quantities nmas and nmak will deviate from
zero. Here, averaging over Ny observations will reduce,
but not eliminate, the deviation. We point out that the
purpose for the hybrid filter is not to detect Gaussianity,
but rather to detect whether a distribution is significantly
non-Gaussian. This appears possible even for rather small
ensembles. Consider the example of Ne = 25 and 𝜅 = 25 as
used for the L63 model. A rough estimate for the standard
error of skewness is

√
6∕Ne, which for Ne = 25 yields 0.49.

The maximum skewness as used for the normalization in
nmas is approximated by

√
𝜅 = 5. Thus, for a Gaussian

distribution sampled by Ne = 25 states, we obtain nmas ≈
0.1, corresponding to a sampling error of 10%. This error
will be further reduced by the averaging over multiple
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observations used for a local analysis update. For L63, this
averaging was only done over three observations, while
for the L96 model between 9 and 15 observations were
assimilated locally.

Relying on only skewness and kurtosis to account for
non-Gaussianity is a simplification. However, with small
ensembles it is not possible to determine the full proba-
bility distribution, so that relying on these statistics is a
practical approach.

6.3 Numerical results

The experiments with the L63 and L96 models show a
clear improvement of the assimilation result by using the
hybrid filter compared with using either the linear LETKF
or the nonlinear LNETF. The hybrid variant HNK shows
the overall best performance. Utilizing the ensemble with
non-Gaussian distribution first in the nonlinear filter, fol-
lowed by the linear Kalman filter, can apparently make
the best use of the non-Gaussianity. Even though applying
the (L)ETKF first in the HKN filter would not completely
eliminate non-Gaussianity, it at least leads to an interme-
diate ensemble that is closer to Gaussian. The effect of
bringing the ensemble closer to the observation by the
stable LETKF appears to have a lesser influence than
the non-Gaussianity. The results of the HSync filter show
that the linear combination of the analysis ensembles of
LETKF and LNETF can also improve the analysis. Here,
the filters appear to be truly biased, with one filter acting
too strong and the other too weak, so that the linear com-
bination of their analysis ensembles yields an improved
ensemble.

For the L63 model, it was shown that, of the differ-
ent approaches to compute the hybrid weight, using a
fixed value of 𝛾 resulted in larger CRPS than the adap-
tive rules. This shows that the adaptive choices can indeed
utilize the information from the ensemble statistics (Neff,
skewness, kurtosis) to account for the current ensemble
situation at each analysis update. For the L96 model, the
behavior is similar (not shown here). Utilizing information
from the skewness and kurtosis improved the stability, but
also the estimates of the hybrid filter variants. This hap-
pened despite the sampling errors in the skewness and
kurtosis. However, for the smaller ensemble in the L96
case, the influence of the skewness and kurtosis had to be
reduced compared with the larger ensemble. This reduced
the influence of the sampling errors and let the hybridiza-
tion weight focus on the ensemble distributions with
sufficiently large non-Gaussianity, which were detectable
despite the sampling errors.

Localization was applied for the assimilation in the L96
model. The localization stabilizes the hybrid filtering. Very

low Neff will only occur for some local analysis domains,
while other domains show larger Neff. This averaging effect
avoids the case in which the ensemble for the full state
degenerates.

The hybrid filters tested here are particularly efficient
for small ensembles. For larger ensembles, as, for example,
tested for the L63 model, the advantage over the full use
of the LNETF or even a PF, if applicable, diminishes. This
is mainly due to the reduced sampling errors. However, a
large ensemble can also represent more than just the lead-
ing statistics (mean, covariances, skewness, and kurtosis).
This additional information can be utilized by the LNETF
or PF, but not in the hybrid rules using skewness and
kurtosis. Small ensembles lead to higher sampling errors,
which deteriorate the nonlinear filters in particular. How-
ever, they also limit the mathematical analysis, so that this
study relied on numerical experiments. An analysis of the
asymptotic behavior for large ensembles seems to be of
limited value, since this does not translate into a filter per-
formance for the small-ensemble regime. Nonetheless, the
hybrid rules 𝛾𝛼 and 𝛾sk,𝛼 can also be tuned to work well
for large ensembles. In contrast, the linear relationship on
Neff using 𝛾lin and 𝛾sk,lin appears to be too limiting for large
ensembles.

The hybrid rules using skewness and kurtosis only
used both higher-order moments in combination. The val-
ues for nmas and nmak in Tables 1 and 3 show that, in
particular for small 𝜅, both quantities can have a similar
magnitude. With the current definition of the hybrid rules,
it is not possible to distinguish the influence of skewness
from that of kurtosis. However, separating them would
require the introduction of a further parameter and hence
a larger tuning effort. The lowest CRPS was obtained for
𝜅 = 10 for both the L63 experiment and the L96 model
with Ne = 40. However, this numerical evidence is not suf-
ficient to consider this value as a standard value. Choosing
𝜅 = Ne and 𝛼 ≈ 0.3 resulted in the different experiments in
low, but not optimal CRPS. This might indicate that these
choices are a suitable starting value for tuning.

The models used in this study are highly idealized.
Obvious limitations of the models are that they have
a low dimension, no physical balances, and uniform
scales. Further, the L96 model is univariate and has spa-
tially homogeneous dynamics. The L63 model does not
allow for the case in which the ensemble size is smaller
than the model dimension, which is common in all
high-dimensional DA cases. However, a general conclu-
sion from the experiments is that the non-Gaussianity
caused by nonlinear model dynamics can be utilized by
the hybrid filter to generate improved state estimates. For
the small ensembles used here, this approach significantly
improves the analysis ensemble. The hybrid filter variants
allow us to apply inflation and localization in the same way
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as the LETKF and LNETF. Further, the hybrid filters do not
rely on any particular properties of the models. Thus, the
hybrid filters can be applied to realistic high-dimensional
DA cases and there is the expectation that they also yield
improved estimates if the nonlinearity is sufficiently large.
The magnitude of the improvement will depend on the
model nonlinearity. A critical aspect that was not tested
here is the multivariate character of a realistic application.
Skewness and kurtosis are univariate quantities. They are
computed here as mean absolute skewness and kurtosis
for the locally assimilated observations. Accordingly, with
observations of different quantities, it could be advanta-
geous to assimilate each observation type separately to be
able to account for its specific non-Gaussianity. A success-
ful multivariate correction, such that assimilating observa-
tions of one variable also improves other variables, can be
expected from the fact that both the LETKF and LNETF
can successfully perform multivariate state updates. This
feature is preserved by the hybrid filter.

An essential open question is what amount of non-
linearity is required so that the hybrid filter can yield
improved estimates. The non-Gaussianity in the ensem-
ble has to be detectable with the ensemble size feasible
for the DA application. The experiments showed that this
was possible in the L63 model for Ne = 25 and in the L96
model for Ne = 40. Initial experiments with an idealized
configuration of an ocean model simulating a wind-driven
double gyre at 0.25◦ resolution (the setup used by Tödter
et al., 2016 and Kirchgessner et al., 2017 to assess the per-
formance of the NETF) were performed. At ensemble size
120, they showed only 2–3% improvement compared with
the LETKF when simulated sea-surface height observa-
tions were assimilated with the HNK filter variant and
the hybrid rules utilizing the skewness and kurtosis. Only
for small localization radii, for which the LETKF showed
increased errors, was the effect of the hybridization larger.
These results might indicate that the nonlinearity of this
data assimilation problem is not large enough.

7 CONCLUSION

This study introduced variants of a hybrid ensemble fil-
ter combining the local ensemble transform Kalman filter
(LEKTF) with the localized nonlinear ensemble transform
filter (LNETF). A hybrid weight 𝛾 shifts the behavior of the
filter in between the LETKF and LNETF solutions. Three
variants of this hybrid local Kalman–nonlinear ensemble
transform filter (LKNETF) have been proposed. Two vari-
ants can be considered as iterative solutions. The HNK
variant applies the nonlinear LNETF first to generate an
intermediate ensemble, which is then used in the subse-
quent LETKF update. The HKN variant switches the order

and applies the LETKF before the LNETF. In these filter
variants, 𝛾 is used to inflate the observation-error covari-
ance matrix to distribute the observation information over
both filter updates. The third hybrid filter variant, HSync,
applies a linear interpolation of the analysis ensembles
obtained with the LNETF and LETKF. Here, 𝛾 determines
the weight for the linear interpolation. As the hybrid filter
variants combine the LETKF and LNETF directly, they can
easily be implemented based on existing implementations
of the LETKF and LNETF. The LETKF and LNETF com-
pute their update in the ensemble space and only require
the eigenvalue decomposition of a matrix with dimension
of the ensemble size squared, but no iterative solvers or
particular solver library as in the particle filters used in
the hybrid filters of Robert et al. (2018) and Chustagul-
prom et al. (2016). A particular feature of the LKNETF
filter is that it combines two transform filters and does not
apply resampling. Both filters can be localized in the same
way, so that the hybrid LKNETF can also be applied with
high-dimensional models.

The filters have been assessed in numerical experi-
ments using the chaotic Lorenz-63 and Lorenz-96 models.
In these experiments, the HNK variant resulted in the
largest effect of the hybridization. The estimation errors
(quantified as CRPS) were reduced by up to 38% com-
pared with the error of the LETKF in the case of the
Lorenz-63 model and up to 21.5% for the Lorenz-96 model.
The HKN variant exhibited the smallest effect, while the
HSync variant performed in between the HKN and HNK
variants.

Different rules to specify the hybrid coefficient 𝛾

have been studied in the experiments. Here, a new
approach was introduced that computes 𝛾 based on
the absolute mean of the skewness and kurtosis of the
observed ensemble in each local analysis update. A linear
dependence on a normalized skewness and kurtosis was
assumed to compute 𝛾 . To avoid the effective sample size
Neff becoming too low, this hybrid approach was com-
bined with rules that either set 𝛾 so that Neff remains
above a prescribed threshold or use a linear dependence
on Neff∕Ne. With sufficient tuning, the former approach
resulted in the lowest estimation errors, but needed an
additional parameter. Taking the skewness and kurtosis
into account improved the assimilation result compared
with only accounting for Neff and stabilized the filter fur-
ther. In particular, it allowed tuning of the hybrid filter
so that it always reduced the CRPS compared with the
LETKF, which was not possible when only the threshold
condition on Neff was used. Thus, the information from the
skewness and kurtosis was utilized successfully.

Overall, the hybrid filter resulted in significant
reductions of the estimation error compared with both
the LNETF and LETKF, in particular for the variant
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LKNETF-HNK. These error levels can otherwise only be
reached by the LNETF with a significantly larger ensemble
size and hence larger computing cost.

The data assimilation results with small chaotic mod-
els are promising. However, one would need to test the
hybrid filters with realistic models. Which data assimila-
tion problems have sufficient nonlinearity that the hybrid
filter can improve the assimilation estimates beyond those
of the LETKF is an open question. Also, the compu-
tation of the hybrid weight should be refined further.
Utilizing skewness and kurtosis resulted in promising
results and they have a theoretical basis in quantifying
the non-Gaussianity of the ensemble distribution. How-
ever, the linear dependence on the skewness and kurtosis
was chosen here as a simple direct approach. Likely, better
functions can be found to describe the dependence of the
hybrid weight on the non-Gaussianity.
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APPENDIX A. LIMITING CASES FOR SKEW-
NESS AND KURTOSIS

Equations 28 define normalized values of skewness and
kurtosis. Both statistical moments have bounds when they
are computed from finite samples. This can be illustrated
by considering limiting distributions, considering two val-
ues d ≠ 0 and a.
• Maximum skewness (max. skew): a maximum ampli-

tude of the skewness is obtained if one member has
the value a + d while all other members have the same
value a.
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• Symmetric distribution with maximum kurtosis
(max. kurt): Ne − 2 ensemble states have the value a,
one member has value a − d, one member a + d.

• Symmetric distribution with minimum kurtosis
(min. kurt): there are two groups of size Ne∕2 with
values a − d and a + d, respectively.

T A B L E A1 Limiting values for skewness (skew) and kurtosis (kurt). a and b are arbitrary values with d ≠ 0

Case Values skew limit kurt limit

max. skew x(1) = a − d, x(i) = a, i = 2,… ,Ne
√

Ne Ne

max. kurt x(1) = a − d, x(2) = a + d, x(i) = a, i = 3,… ,Ne 0 −2

min. kurt x(i) = a − d, i = 1,…Ne∕2; x(𝑗) = a + d, 𝑗 = Ne∕2 + 1,… ,Ne 0 Ne∕2

Table A1 shows the values of the distributions and the
limiting values of the skewness and kurtosis. Numerical
tests show that, for Ne = 100, the deviation is 5–6%, except
for kurt in the case of maximum kurtosis, where the value
−2 is exact.


