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Abstract

Aggregate Computing is an emerging paradigm for complex distributed systems
where a vast number of distributed devices are involved in a global computation
and must cooperate to produce a collective result. This situation is common in the
Internet of Things, large-scale urban events, drone coordination and smart cities.
Modern Aggregate Computing APIs are normally based on the Field Calculus that
offers the basis for the global-to-local computation abstraction, providing Compu-
tational Fields. Moreover, these APIs also rely on abstraction layers that hide
the complexity of the environment from the sight of the developer (complexity
“hidden under the hood”), offering a simple and friendly way to develop this kind
of applications. An Internal Domain-specific language that offers these features
is Scala with Computational Fields (ScaFi), a Scala framework implementing ag-
gregate programming mechanisms. A critical concept for these types of libraries
is portability since their nature implies the possibility of being run over a wide
range of different devices. The work shown in this thesis offers a solution to im-
prove the portability and flexibility of ScaFi integrating Scala Native, a Scala
ahead-of-time compiler that makes it possible to directly compile Scala code over
devices that do not support the JVM (enabling the so-called Cross-compilation).
Cross-compilation between different platforms is a very desirable feature for a pro-
gramming language because it makes the language much more flexible. For this
reason, it is often included in many modern languages such as Kotlin and Rust.
To conclude, several tests are done to validate the stability and the performance
of the integration and in order to prove that the implementation proposed can
efficiently extend the number of devices on which ScaFi can be run.
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“Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza”
Inferno, Canto XXVI (vv. 118-120)

v



vi



Acknowledgements

I would like to acknowledge and thank my family, friends and relatives for sup-
porting me during my studies.

I would not be where I am right now without Prof Rita Diodato, Comparetto
and my high school teachers that encouraged my love for sciences and interest in
humanistic subjects.

I would also like to thank my co-supervisor Dr Gianluca Aguzzi who guided
me through this research and whose advices made this thesis possible.

I cannot not mention my supervisor Prof Mirko Viroli who offered me the
possibility to pursue the thesis with him and that taught me so much during these
three years.

Finally, to the Great Almighty, I express my sincere gratitude for guiding me
every day through the difficulties.

vii



viii



Contents

Abstract iii

1 Introduction 1

2 Scala 3
2.1 Scala: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Scala 2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 OOP Features . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Other modifiers . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Types and the Type system . . . . . . . . . . . . . . . . . . 12
2.2.5 Implicits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Cross-platform compilation . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Scala.js (Integrated) . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Scala Native (Not yet integrated) . . . . . . . . . . . . . . . 18

2.4 Scala 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Aggregate Computing 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Space-time programming . . . . . . . . . . . . . . . . . . . . 24
3.1.3 The amorphous abstraction . . . . . . . . . . . . . . . . . . 24
3.1.4 Aggregate programming . . . . . . . . . . . . . . . . . . . . 25
3.1.5 Aggregate processes . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Evolution of coordination models . . . . . . . . . . . . . . . . . . . 27
3.2.1 Early coordination models . . . . . . . . . . . . . . . . . . . 27

3.3 Field Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Computational Model . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Syntax and semantic . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Higher-Order Field Calculus . . . . . . . . . . . . . . . . . . 31
3.3.4 Properties of field calculus models . . . . . . . . . . . . . . . 32

ix



x CONTENTS

3.3.5 Protelis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 From Building blocks to Applications . . . . . . . . . . . . . . . . . 34

3.5 Problematic and Research directions . . . . . . . . . . . . . . . . . 36

3.5.1 Library development . . . . . . . . . . . . . . . . . . . . . . 38

3.5.2 Dynamics controlling techniques . . . . . . . . . . . . . . . . 38

3.5.3 Mobility of Devices and Processes . . . . . . . . . . . . . . . 38

3.5.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.5 Software Platforms limits . . . . . . . . . . . . . . . . . . . 39

4 ScaFi 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 ScaFi Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 ScaFi Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 ScaFi Commons . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 ScaFi Simulator . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 ScaFi Standard Library . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Basic semantic and syntax . . . . . . . . . . . . . . . . . . . 46

4.3.2 Field-operation utilities (FieldUtils) . . . . . . . . . . . . . . 46

4.3.3 Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.4 Gradient-cast (BlockG) . . . . . . . . . . . . . . . . . . . . . 47

4.3.5 Collect-cast (BlockC) . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6 Leader Election (BlockS) . . . . . . . . . . . . . . . . . . . . 48

4.3.7 Time Utilities (TimeUtils) . . . . . . . . . . . . . . . . . . . 48

4.4 Other relevant projects . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 ScaFi-web . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Alchemist simulator . . . . . . . . . . . . . . . . . . . . . . . 49

5 Analysis 51

5.1 ScaFi portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Implementation 55

6.1 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Conflicts with Java Libraries . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Java.lang.Thread . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Java.time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.3 Plugin scoverage . . . . . . . . . . . . . . . . . . . . . . . . 59



CONTENTS xi

7 Validation 61
7.1 Benchmark for Scala Native . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 General Structure . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.2 How to use . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Benchmark for ScaFi . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 Compilation times . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2 Binary sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.3 Start-up times . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.4 Execution times . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.5 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusions 73
8.1 Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xii CONTENTS



List of Figures

2.1 Scala Native compilation process . . . . . . . . . . . . . . . . . . . 19

3.1 Comparison of amorphous medium abstraction . . . . . . . . . . . . 25
3.2 Aggregate programming abstraction layers . . . . . . . . . . . . . . 26
3.3 Random network generated using ScaFi web [7] . . . . . . . . . . . 29
3.4 Protelis environment structure . . . . . . . . . . . . . . . . . . . . . 34
3.5 Simulation of crowd detecting software with ScaFi-web . . . . . . . 37

4.1 Scheme of Core module . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Scheme of Common module . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Scheme of Simulator module . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Compilation times - Bar char [35] . . . . . . . . . . . . . . . . . . . 67
7.2 Binary sizes - Bar char [34] . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Tests - execution times . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Test 10 - Execution with different compilation modes . . . . . . . . 71

xiii



xiv LIST OF FIGURES



Listings

2.1 Classes code example - Classes and Fields . . . . . . . . . . . . . . 6
2.2 Classes code example - Object and Usage . . . . . . . . . . . . . . . 6
2.3 Object code example . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Packages and Imports code example . . . . . . . . . . . . . . . . . . 8
2.5 Traits code example . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Class construction order . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Override code example . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Abstract code example . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Abstract Override code example . . . . . . . . . . . . . . . . . . . . 11
2.10 Final code example . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.11 Sealed code example . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.12 Lazy code example . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.13 Types code example - Parameterised types . . . . . . . . . . . . . . 13
2.14 Types code example - Tuple types . . . . . . . . . . . . . . . . . . . 13
2.15 Types code example - Compound types . . . . . . . . . . . . . . . . 14
2.16 Types code example - Infix types . . . . . . . . . . . . . . . . . . . 14
2.17 Types code example - Function types . . . . . . . . . . . . . . . . . 14
2.18 Types code example - Annotated types . . . . . . . . . . . . . . . . 14
2.19 Types code example - Variance types . . . . . . . . . . . . . . . . . 15
2.20 Types code example - Structural types . . . . . . . . . . . . . . . . 15
2.21 Types code example - Self types . . . . . . . . . . . . . . . . . . . . 16
2.22 Implicits code example . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.23 Scala Native - Primitives code example . . . . . . . . . . . . . . . . 18
2.24 Scala Native - C code calling example . . . . . . . . . . . . . . . . . 18
2.25 Scala Native - JUnit Test . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Pseudo-code examples . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 ScaFi code implementing a simple crowd detecting software . . . . . 37
6.1 Scala Native Plugins - Source: project/plugins.sbt . . . . . . . . . . 55
6.2 Scala Native Import - Source: project/build.sbt . . . . . . . . . . . 56
6.3 Scala Native Files - Source: project/build.sbt . . . . . . . . . . . . 56
6.4 Scala Native Enable Plugin - Source: project/build.sbt . . . . . . . 56

xv



xvi LISTINGS

6.5 Scala Native disable stub errors - Source: project/build.sbt . . . . . 57
6.6 Scala Native settings - Source: project/build.sbt . . . . . . . . . . . 57
6.7 Scala Native constants - Source: PlatformDependentConstants.scala 57
6.8 Scala Native stacktrace (Old) - Source: Semantics.scala . . . . . . . 58
6.9 Scala Native stacktrace (New) - Source: Semantics.scala . . . . . . 58
6.10 Scala Native Time library - Source: project/build.sbt . . . . . . . . 58
6.11 Scala Native Coverage - Source: project/build.sbt . . . . . . . . . . 59
7.1 Test example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 ScaFi Tests definition . . . . . . . . . . . . . . . . . . . . . . . . . . 65



Chapter 1

Introduction

Over the past decades, computer devices have become steadily more accessible and
portable due to the technological progress. It is obvious that the traditional way
of programming, which has always been based on an attempt of micro-managing
each device individually, is not efficient in these scenarios. In fact, in complex dis-
tributed applications traditional solutions lack both modularity and reusability.
Aggregate Computing is an emerging paradigm for complex distributed systems
where a vast number of distributed devices are involved in a global computation
to produce a result weakening the importance of the “local computation” over
the single device. This situation is common in the Internet of Things, large-scale
urban events, drone coordination and smart cities. Modern Aggregate Computing
APIs are normally based on Field Calculus. Field Calculus (FC) gives a general
model and properties useful to define the global and local relationship of devices
in a network, similarly as Featherweight Java does for OOP. Additionally, these
APIs also rely on an abstraction layer implementing resilient blocks that hide the
complexity of the environment from the sight of the developer (approach: com-
plexity “hidden under the hood”), offering a simple development environment and
proving self-stability to the layers above. An Internal DSL that offers these fea-
tures is Scala with Computational Fields (ScaFi), a Scala framework implementing
aggregate programming mechanisms through computational fields. Internal DSLs
are written using the syntax and semantics of the host language, which for ScaFi
it is Scala. In fact, Scala providing first-class functions and a both rich and static
type system is a perfect environment on which develop the Field Calculus system.
ScaFi not only includes a complete API but also a simple simulator to run aggre-
gate applications together with a simple GUI. A critical concept for these types of
libraries is portability since their nature implies the possibility of being run over a
wide range of different devices. The research shown in this thesis offers a solution
to improve the portability and flexibility of ScaFi integrating Scala Native, a Scala
ahead-of-time compiler that makes it possible to directly compile Scala code over
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2 CHAPTER 1. INTRODUCTION

devices that does not support the JVM. The document is organised in 7 chapters
(excluding this one): Scala Chapter 2 where the main characteristics of Scala -
needed to use ScaFi - are exhibited with a detailed explanation of the OOP features
and the Scala type system. Aggregate Computing Chapter 3 where the evolution
of this new type of computing technique is illustrated and particular attention will
be given to the modern structure of these systems that will be described with a
bottom-up approach (from the basis of the Field Calculus to the application code).
A chapter ScaFi Chapter 4, about what it is, how it has been built and how it can
be used. We continue with Analysis Chapter 5 where we state the requirements
of Scala Native implementation and analyse the tools that can be used to do it.
The implementation is shown in Chapter 6 and the testing phase is described in
Validation Chapter 7. Finally, a Conclusion Chapter 8 includes final thoughts and
some future improvements.



Chapter 2

Scala

In this chapter, it will be explained several features of the Scala language and -
more specifically - Scala 2, essential to use ScaFi. We will give a general overview
of the language (Section 2.1) and then a more exhaustive illustration of the main
features (Section 2.2). This last section is inspired and based on the works: [28, 39,
18, 40]. In addition, we will describe Cross-Project (Section 2.3) - a Scala plugin -
that is currently used by ScaFi. To conclude, we will expose the main innovations
brought in with Scala 3 (Section 2.4).

2.1 Scala: Introduction

Scala is a multi-paradigm and general-purpose programming language. It concili-
ates functional and object-oriented programming becoming a high-level language
suitable for developing high-performance systems. It can run on the JVM and
JavaScript giving the developer flexibility and access to an enormous amount of
libraries. Its name derives from “scalable” because the main purpose of this lan-
guage is to serve as an intuitive workbench for the creation of systems subjected
to growing complexity. In the following sections, several features and mechanisms
of Scala will be introduced. However, this chapter is not trying to be a compre-
hensive guide for this language but only a reference and a preparation for the
reader to better appreciate the next part of the paper where Scala code and li-
braries are being proposed. For this reason, some basics and expert skills won’t be
included in the overview. This amount of knowledge is the bare minimum to be
able to use ScaFi and understand how it works. To be more specific, we need to
introduce a system that categorises the knowledge of Scala into levels of expertise.
Odersky Martin, the inventor of Scala, defines a Scala expertise levels system [37]
differentiating between application programming and library designing. A table
summarising the levels is shown below table 2.1.

3



4 CHAPTER 2. SCALA

Scala Levels Table
Overall Level Application Program-

mer
Library Designer

Beginner Beginning (A1)
Intermediate Intermediate (A2) Junior (L1)
Advanced Expert (A3) Senior (L2)
Expert Expert (L3)

Table 2.1: Table: levels

The table shows how each expertise level corresponds to a certain level of knowl-
edge in both application programming and library designing. In this document, we
will mainly focus on the intermediate topics involved in application programming
(levels A1, A2) because are essential to be able to write Scala code and interact
with ScaFi. Of course, some of the junior (L1) and senior (L2) techniques will be
discussed cause knowing them is necessary to proficiently use and - more impor-
tantly - understand a Scala library. It follows a list of the topics explained in this
chapter classified by expertise level. This will be useful to have an overall view of
the functionalities offered by the language and it can be used as a table of contents
for the next section.

Application Programming A1, A2:

• OOP statements: classes, objects, fields, packages, imports;

• class construction;

• modifiers: access modifiers and others;

• type system and standard types.

Application Programming L1, L2:

• traits;

• generic programming;

• control abstractions;

• advanced type: existential types, structural types;

• variance annotations;

• implicit definitions.
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2.2 Scala 2 Features

First, we are going to illustrate the main OOP features included in Scala such as
Class, Field, Object, Package and Trait.

2.2.1 OOP Features

Classes

Scala classes can be seen as blueprints for creating objects. They may include
values, variables, traits, methods, objects as well as nested classes. In the same
way as in C++ or Java to utilise classes, you construct an object and then invoke
its methods. Classes can contain primary (the class body) or auxiliary constructors
(using this). If an object has been defined in the same file of a class with the same
name, the object becomes the companion object of that class (these entities can
then access each other’s private fields and methods). Additionally, classes cannot
include static methods, however, they can be included directly in the companion
object. The keyword case can be used to define a class that models immutable
data. In fact, in this case the word new is not needed to initialise the class and a
already developed method apply takes care of the object construction. To conclude,
a class must follow the single-class inheritance scheme, but it can implement more
than one trait.

Fields

Fields can be created using the declarations val or var. On the one hand, fields
constructed with val are immutable, on the other hand, those defined with var are
mutable. If the keyword private is used during a field definition, the field can be
accessed from outside the class. Additionally, primary construct parameters are
private by default but using either val or var they can be accessed from other
classes.

It follows listing 2.1 a Scala code snippet with several useful examples.

Objects

Objects are classes with only one instance (basically a singleton) that can inherit
a class as well as multiple traits. Objects can have methods, inner classes and
fields. In addition, they are created lazily when referenced. listing 2.3
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Listing 2.1: Classes code example - Classes and Fields�
1 // Class with Primary construct

2 class Point_1(var x: Int , var y: Int) {

3 // Auxiliary constructor

4 def this(x: Int) = {

5 this(x, 0)

6 }

7 // Auxiliary constructor

8 def this() = {

9 this(0, 0)

10 }

11 }

12 // Class with overridden setters

13 class Point_2 {

14 private var _x = 0

15 private var _y = 0

16 private val min = 10

17 def x = _x

18 def x_=(n: Int): Unit = {

19 if (n > min) _x = n else printMessage

20 }

21 def y = _y

22 def y_=(n: Int): Unit = {

23 if (n > min) _y = n else printMessage

24 }

25 private def printMessage = println("Low value")

26 }

27 // Single inheritance

28 class Point_3 extends Point_2 {

29 override def toString: String = s"($x, $y)"
30 }
� �

Listing 2.2: Classes code example - Object and Usage�
1 // Companion object of Point_2

2 object Point_2 {

3 def createZero (): Point_2 = {

4 var p = new Point_2

5 p._x = 0

6 p._y = 0

7 p

8 }

9 }

10 // How to use

11 val p1_1 = new Point_1(2, 3)

12 var p1_2 = new Point_1 (3)

13 var p2_1 = new Point_2

14 var p2_2 = Point_2.createZero ()

15 var p3_1 = new Point_3
� �
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Listing 2.3: Object code example�
1 object PizzaMargherita {

2 val toppings = Array("tomato", "mozzarella", "basil")

3 def description: String =

4 this.getClass ().getName ().stripSuffix("$") + " is made with " + toppings

5 .mkString(", ")

6 }

7

8 // How to use

9 println(PizzaMargherita.description)

10 // PizzaMargherita is made with tomato , mozzarella , basil
� �
Packages

Packages are included in Scala to manage namespaces in structured programs. In
C++ this is done using the keyword namespaces, in Java with packages. However,
in Scala, packages are implemented differently. Firstly, a package may contain
members such as classes, objects or traits. Moreover:

• Packages may have a package object that can be created naming the object
with the same name as the package, in the same way as companion objects
are created for classes. This object can be seen as a container shared through
all the packages. It can have variables, methods and values definitions.

• Scala packages can be used without specifying the other packages at the top.
Additionally, the same file can be part of more packages;

• In Scala it is possible to import members from other packages in different
ways. Both the whole file can be included or a specific list of members
can be selected (even renaming them). In addition, imports are admitted
everywhere in the code.

These features make Scala’s definition of packages far more flexible than Java’s
version. All these features can be better appreciated looking at the examples
proposed in listing 2.4;

Traits

Traits are similar to Java interfaces and are used to share the same interfaces
and fields over more classes. Traits cannot be instantiated and that is why they
have no parameters. However, they can be extended by classes, objects and traits.
Traits can be used in two ways:
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Listing 2.4: Packages and Imports code example�
1 // Imports

2 import pizza._ // Import everything from the package pizza

3 import pizza.Dough // Import the member Dough

4 import pizza .{Dough ,Toppings} // Import the members Dough and Toppings

5 import pizza .{ Toppings => NewName} // Import the member Toppings remaning it

6

7 // Package: pizza.Toppings

8 package Toppings

9 // Package object

10 package object Toppings {

11 val Size = List(Big , Medium , Small)

12 def showPrice(topping: Topping): Unit = {

13 println(s"The price of ${topping.name} is ${topping.price}")
14 }

15 }
� �
• As interfaces: When a trait includes only abstract fields and methods. These
traits can be implemented by concrete classes or objects only if all the trait’s
abstract members are implemented;

• As mixin: Here, a trait includes concrete methods and fields. The classes or
object extending a mixin will acquire its concrete entities;

These two functionalities are shown in Listing 2.5

Class construction and linearisation

A class can inherit both mixin traits and another class but this must be done
following a strict order:

• Super-class’ construct;

• Traits’ constructors (parents constructed first);

• Class constructor;

This order is fundamental to understand the linearisation of a class, namely
the process that define the hierarchy of the class’s parents. An illustration of this
process is shown in Listing 2.6.

2.2.2 Modifiers

Modifiers are keywords that may precede member definitions modifying their ac-
cessibility or general usage. More than one modifier can be used in a single member
definition and no specific order should be respected.
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Listing 2.5: Traits code example�
1 // Trait as interface

2 trait Good {

3 var availableQuantity: Int

4 var price: Double

5 def calculatePriceWithTax(quantity: Int): Double

6 }

7 class Pen extends Good {

8 var availableQuantity = 1000

9 var price = 1.50

10 val lowTaxPercentage = 0.02

11 val highTaxPercentage = 0.04

12

13 def calculatePriceWithTax(quantity: Int): Double = {

14 if (quantity < 50)

15 price * (1 + highTaxPercentage) * quantity

16 else

17 price * (1 + lowTaxPercentage) * quantity

18 }

19 }

20

21 // Trait as mixin

22 trait SellableGood extends Good {

23 def sell(quantity: Int): Unit = { availableQuantity -= quantity }

24 }

25

26 class SellablePen extends Pen with SellableGood

27

28 // How to use

29 var pen = new Pen

30 var spen = new SellablePen

31 println(pen.calculatePriceWithTax (20)) // 31.2

32 println(spen.calculatePriceWithTax (20)) // 31/2

33 spen.sell (10)

34 println(spen.availableQuantity) // 990
� �

Listing 2.6: Class construction order�
1 class A { print("A") }

2 trait B { print("B") }

3 class C extends A with B { print("C") }

4

5 new C // ABC
� �
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Access modifiers

Access modifiers are keywords used to restrict the definition of classes, packages or
objects to a specific region of the code. This visibility is implemented differently
than in Java. In fact, in Scala the keyword public does not exist because it is the
default access level. On the contrary, in Java, the default modality is package-
private. Follows a list of the access modifiers available in Scala:

• Public (not a keyword): This is the default access level, anyone can access
the member;

• Protected: Members in this access level can be accessed by any subclass and
object of these sub-classes. This keyword can be used with the following
syntax: private[x] ;

• Private: Members in this access level can be accessed only by the same class
as well as by objects in the same class. This keyword can be used with the
following syntax: private[x] ;

2.2.3 Other modifiers

Override

This modifier must be included before any member definition which overrides
another concrete member definition belonging to a parent class, in this case, the
keyword override is mandatory. Moreover, it can be used (even if it is not strictly
necessary) when implementing an abstract member;

Listing 2.7: Override code example�
1 // Override

2 class getOne {

3 def getValue (): Int = { 1 }

4 }

5 class getTwo extends getOne {

6 override def getValue (): Int = { 2 }

7 }
� �
Abstract

Scala also offers the possibility to use abstract classes (similar to Java’s definition
of abstract class). Those are particularly similar to traits and for this reason, are
rarely used. However, there are some situations when their usage is extremely
useful:

1. When you need a trait with constructor arguments;
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Listing 2.8: Abstract code example�
1 // Abstract

2 // Syntax error

3 trait Concerts(code: String) {

4 def generateTicket (): String

5 }

6 abstract class Concerts(code: String) {

7 def generateTicket (): String

8 }

9 // Implementation with a class

10 class ConRoma(code: String) extends Concerts(code) {

11 var ticketNumber = 0

12 def generateTicket (): String = {

13 ticketNumber += 1

14 code + (ticketNumber - 1)

15 }

16 }
� �
2. When the Scala code will be called from a Java code (Java doesn’t have the

concept of traits);

Abstract override

These modifiers are used when a member is being partially overwritten. This
means that even the new implementation of the member is abstract. Abstract
override can only be used in members of traits. This strategy can be used to define
“stackable traits”, that are traits providing stackable modifications to underlying
traits or classes [48];

Listing 2.9: Abstract Override code example�
1 // Abstract override

2 abstract class superClass () {

3 def me(): Unit

4 }

5 trait subTrait extends superClass {

6 abstract override def me(): Unit = { super.me() }

7 }
� �
Final

This modifier can be used with different members:

1. final Class member definitions: cannot be overwritten by any sub-classes;

2. final Class : cannot be inherited by any template;

3. final Objects: in this case the keyword final is redundant;
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4. final Members of final classes: in this case the keyword final is redundant,
however it is necessary case of constant value definitions ;

Listing 2.10: Final code example�
1 // Final

2 final class numbers {

3 final val pi = 3.14

4 }

5 class operands {

6 final def sum(a: Int , b: Int): Int = { a + b }

7 }
� �
Sealed

A sealed class can only be inherited by other classes defined inside the same file.
Nevertheless, any class can inherit a subclass of another sealed class;

Listing 2.11: Sealed code example�
1 // Sealed

2 sealed abstract class Pizza

3 case class Margherita () extends Pizza

4 case class Diavola () extends Pizza

5 case class Capricciosa () extends Pizza
� �
Lazy

The lazy modifier can be applied to value definitions. These are initialised only
when the variable is being accessed for the first time (in case the program will try
to access the value during its initialisation, a loop behaviour would follow);

Listing 2.12: Lazy code example�
1 // Lazy

2 lazy val x = getOne ()
� �
2.2.4 Types and the Type system

Scala is characterised by a unique statically type system, nevertheless, still dynamic
and flexible to use. There are several benefits deriving from the usage of a statically
typed language:

• They help the IDE to provide a strong syntax support to the developer;

• They avoid many kinds of compile-time errors;

• They offer a more effective refactoring;
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• They can provide a detailed documentation that hardly will be outdated;

We will quickly introduce the type categories offered by Scala.

Parameterised types

A parameterised type can be defined with the following syntax:

T [T1, T2, ..., Tn]

where T is the type designator, T1, T2, ..., Tn are type parameters, n ≥ 1 and
T requires n parameters.

Each type parameter Ti may have a lower bound Li and upper bound Ui. We
say that the parameterised type T is well-formed if and only if every parameter is
inside its bounds;

Listing 2.13: Types code example - Parameterised types�
1 // Parameterised types

2 trait Iterator[T] {

3 def hasNext (): Boolean

4 def next(): T

5 }
� �
Tuple types

This category of type corresponds to an alias for a Scala class.Tuplen[T1, ..., Tn]
with n ≥ 2, its syntax is (T1, ...Tn).

These tuples are nothing more than classes with fields that can be accessed
only using n selectors;

Listing 2.14: Types code example - Tuple types�
1 // Tuple Type

2 val tuple = (1,2,3)

3 val (val1 , val2 , val3) = tuple

4 print(tuple._1) // 1

5 print(tuple._2) // 2

6 print(tuple._3) // 3
� �
Compound types

A compound type is defined as T1with...TnR with n ≥ 2. This entity is a collection
of objects with members defined in the components T1, ..., Tn and a refinement R.
The refinement consists of a set of type definitions and declarations that override
the ones included in the components;
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Listing 2.15: Types code example - Compound types�
1 // Compound Type

2 trait Left

3 trait Right

4 def turn( obj: Left with Right ): Unit = {

5 // ...

6 }
� �
Infix types

An infix type is defined as T1opT2 with op as an infix operator applied to T1 and
T2 (two type operands). Another analogue syntax may be: op[T1, T2];

Listing 2.16: Types code example - Infix types�
1 // Infix Type

2 case class Person(name: String)

3 class Loves[A,B](val a: A, val b: B)

4 def printCouple(c: Person Loves Person) =

5 print(c.a.name + " loves " + c.b.name)
� �
Function types

This type is represented as (T1, ..., Tn) ⇒ U with n ≥ 2. It can be seen as a set of
function values

Listing 2.17: Types code example - Function types�
1 // Function type

2 def map[B](func: A => B) = // ...
� �
Annotated types

Here, n annotations are attached to a type T with the syntax: Ta1, ..., an with
n >= 2;

Listing 2.18: Types code example - Annotated types�
1 // Annotation Type

2 @deprecated("Function deprecated")

3 def dep(): Unit = {

4 // ...

5 }
� �
Variance types

The variance is used to define the sub-typing of parameterised classes or traits. If
we have the following sub-typing relationship: A <: B we can define three types
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of variance: Invariant expressed as X[T], that basically is a normal generic type
and X[A] has not typing relationship with X[B]; Covariant expressed as X[+T],
where X[A] will have a sub-typing relationship with X[B]; Contravariant expressed
as X[-T], where X[A] will have a super-typing relationship with X[B];

Listing 2.19: Types code example - Variance types�
1 // Variance type

2 trait Basket

3 trait AppleBasket extends Basket

4 trait PearBasket extends Basket

5 // If T = Basket , List [ T ] can include both AppleBasket and PearBasket

6 trait CovariantPicnic [+T] {

7 def getFood (): List[T]

8 }

9 // If T = AppleBasket or PearBasket , T can return a Basket

10 trait ContravariantPicnic[-T] {

11 def composeBasket(basket: T): Unit

12 }

13 // If T = Basket , getBasket will return a Basket

14 trait InvariantPicnic[T] {

15 def getBasket (): T

16 }
� �
Structural types

This category helps the developer in those situations where a dot notation would
be needed (dot notation exists in dynamic contexts);

Listing 2.20: Types code example - Structural types�
1 // Structural type

2 type Animal = { def call: String }

3 def getCall(a: Animal) = a.call

4 // Every object with a method ’m’ implemented is accepted , such as

5 case class Cat() { def call: String = "miao" }
� �
Self-types

Self-types are used to declare a trait mixed into another one even if it does not
“extends” it. The syntax of this construct is shown in Listing 2.21. This type
is used for dependency injection, a mechanism used to build dependencies among
types. This normally done using the Cake pattern that builds layered components
using traits and self-types;

2.2.5 Implicits

The mechanisms listed here are static features of Scala that permit the developer
to shorten the code by giving the compiler the duty of deducing the missing data.
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Listing 2.21: Types code example - Self types�
1 // Self -type

2 trait A

3 class B { a: A =>

4 def C(): Unit = {

5 // ...

6 }

7 }
� �
Listing 2.22: Implicits code example�

1 // Implicit member in the scope of Square

2 implicit var value: BigInt = 10

3

4 // Implicit parameter

5 def Square(implicit x: BigInt) = x*x

6

7 // Implicit conversion

8 Square (1)

9 // value autimatically converted from Int to BigInt
� �
Using the keyword implicit, the compiler will provide the missing information
according to scoping rules and lookup mechanisms.

This process is triggered in two cases:

• implicit parameter list : This type of implicit statement can be used in
method calls or constructs by including the keyword implicit at the start
of the list. Doing this, in case no parameters are passed, Scala will try to
find and pass an implicit type and value automatically;

• implicit conversion: This type of implicit statement consists in an implicit
conversion from a type A to a type B and can happen in three situations
listing 2.22:

– when a function is called with one or more wrong parameter types,

– when the type of the expression is different than the expected one,

– when having an object x and a member m, the statement x.m is invoked
even if it does not exist.

There are strict rules that define the behaviour of the compiler in the case
of implicit notations. The first check that is done by the compiler is to see if
any ambiguity in the implicit resolution is present, and in that case, throw a
compilation error. If this does not happen, then:
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1. Look for a conforming implicit entity accessible as a single identifier. If it
finds something, it goes on, otherwise, it throws an error,

2. Here, the compiler behaviour can be: i when it is handling an implicit pa-
rameter, it will consider the implicit scope of the parameter type. ii When
it is handling an implicit conversion, it will consider the implicit scope of the
target type.

Implicit scope

It is a space where the compile looks for implicit entities including the current
scope (nothing more than the local scope of the code and the one of the imports)
and the associated types, that is a set of companion objects and type parameters.

It is generally not considered good practice to abuse the flexibility of these
rules. It is normally suggested to merge all the implicit entities in one object or
package object.

2.3 Cross-platform compilation

Cross-platform compilation consists in the possibility to run a certain application
over different platforms with the same code base. It is a very desirable feature
for a programming language because it makes the language much more flexible.
For this reason, it is often included in many modern languages such as Kotlin [4]
and Rust [5]. This feature is supported by Scala though the “sbt-crossproject”
plugin [1]. Using this plugin, a Scala project can be executed over three different
platforms:

• JVM Platform: Default and supported by Scala;

• JavaScript Platform: with Scala.js 0.6.23+ or 1.0.0+;

• Scala Native Platform: with Scala Native 0.3.7+.

By doing this, it is possible to build a web application with Scala and Scala.js,
in the same way, it has been done with ScaFi-web. And it is possible to execute a
Scala Application on devices that do not support Java and the JVM using Scala
Native.

Now, we will illustrate these two new tools: Scala.js which has already been
integrated in ScaFi, and Scala Native. For this, we will show a possible integration
in the next chapter.
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2.3.1 Scala.js (Integrated)

Scala.js [23] is a Scala compiler that can translate the code into JavaScript code, as
a consequence, the application can run on a web browser or any other environment
that supports JavaScript. In this case, we won’t be limited anymore by only being
able to run the software on the JVM.

2.3.2 Scala Native (Not yet integrated)

Scala Native [54, 55] is an under-development project implementing an optimising
ahead-of-time compiler for Scala. As we have already said this makes us able to
run Scala applications without the Java interpretation. But it is also important
to list all the other advantages and features included with Scala Native:

• Low-level primitives : Including pointers and structs. They can be really
useful to have more control over the application Listing 2.23;

Listing 2.23: Scala Native - Primitives code example�
1 // Primitives

2 type vType = CStruct3[Int , Int , Int]

3 // C struct

4 val v = stackalloc[vType ]()

5 v._1 = 3

6 v._2 = 2

7 v._3 = 1

8 length(v)
� �
• Interoperability with C code: It is easy to call C code using “extern” objects
and most importantly without run-time overhead Listing 2.24;

Listing 2.24: Scala Native - C code calling example�
1 // Calling C code

2 import scala.scalanative.native._

3

4 @extern object clib {

5 def malloc(size: CSize): Ptr[Byte] = extern

6 }

7 val p = clib.malloc (8)
� �
• Instant start-up time: Since Scala Native is an ahead-of-time compiler, the
start-up time is noticeably reduced. As a consequence, the application is
immediately ready to be compiled (cause not compiled anymore by a just-
in-time compiler but by the LLVM )

Scala Native offers a re-implementation of the JVM. The process of code com-
pilation is illustrated in Figure 2.1. As we can see, the Scala code is first compiled
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into Native Intermediate Representation (NIR) through the Native Scala Compiler
Plugin (nscplugin). The NIR is a high-level object-oriented representation that in-
cludes both LLVM instructions and primitives (necessary to compile Scala). Its
purpose is to simplify the code optimisation process done by the Native Compiler
that, after a second compilation, generates .ll files that can be read by the LLVM.
The last phase of the compilation involves directly the LLVM that produces exe-
cutable binaries.

Figure 2.1: Scala Native compilation process

LLVM

LLVM [32] is nothing more but a collection of reusable and modular compiler
technologies. The project tries to provide a modern SSA-based compilator able to
support both static and dynamic compilation of programming languages. A sub-
project of LLVM is Clang [31] that is a LLVM-native compiler for the languages: C,
C++ and Objective-C offering great performances and detailed error and warning
messages.

Scala Native Versions

Each Scala Native version has a list of compatible Scala versions, the latest is 0.4.3
(the one used in our integration). A table including all the Scala Native versions
related to Scala versions is shown in Table 2.2. The reason behind our choice is
that we wanted to maximise the number of Scala versions compatible with our
integration (this can be appreciated looking at the table).

Compilation Modes

Scala Native 0.4.0+ offers three different modalities in which compile the native
code:

• default: The default mode is optimised to run with the shortest compilation
time. Not a lot of optimisations are applied to the code. For this reason, the
run-time performances are poor in this scenario;
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Scala Native Versions Scala Versions

0.1.x 2.11.8
0.2.x 2.11.8, 2.11.11

0.3.0-0.3.3 2.11.8, 2.11.11
0.3.4+, 0.4.0-M1, 0.4.0-M2 2.11.8, 2.11.11, 2.11.12

0.4.0 2.11.12, 2.12.13, 2.13.4
0.4.1 2.11.12, 2.12.13, 2.13.4, 2.13.5
0.4.2 2.11.12, 2.12.13..15, 2.13.4..8

0.4.2-RC1, 0.4.3-RC2 2.11.12, 2.12.13..15, 2.13.4..8, 3.1.0
0.4.3 2.11.12, 2.12.13..15, 2.13.4..8, 3.1.0..1

Table 2.2: Scala Native versions

• release-fast: This mode is optimised for both the compilation time and
run-time performance. This is done by adding a link-time optimisation. The
code size is still relatively small;

• release-full: Here, some aggressive optimisations are included in the com-
pilation (i.e. type-driven method duplication). With this modality, we can
reach the best run-time performances. However, the code size and the com-
pilation time increase noticeably.

Garbage Collectors

Scala Native offers three different garbage collectors and even the possibility to
compile without it, here we compare these possibilities:

• immix: The default solution since v0.3.8 and it is a mostly-precise and
mark-region tracing GC;

• commix: This GC has been introduced with v0.4.0 and consists in a parallel
version and, in general, more performing version of immix;

• bohem: It is a conservative generational GC;

• none: The compilation can also be executed without any GC, this option
is experimental and may be useful for short-running application or in those
situations where pauses caused by the GC are not acceptable;

A complete comparison of these tools can be found in [45].
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Listing 2.25: Scala Native - JUnit Test�
1 import org.junit.Test

2 import org.junit.Assert._

3

4 class Tests {

5 @Test def Test(): Unit = {

6 assertTrue("Assertion message", true)

7 }

8 }
� �
Link-Time Optimisation

Link-time optimisation or LTO aims to increase the run-time performance opti-
mising the binaries that are generated. Here, three alternatives are proposed by
Scala Native:

• none: The default mode, it does not optimise calls between Scala and C,
only calls Scala-Scala are still optimised;

• full: Applies in-lines between Scala and C through FullLTO offered by
LLVM.

• thin: Applies in-lines between Scala and C through ThinLTO offered by
LLVM. This mode does not slow down too much the compilation but in-
creases noticeably the run-time performance (even more than the full alter-
native);

Testing and Profiling

Scala Native also offers some testing and profiling tools. Firstly, it supports JUnit,
and JUnit tests can be written like in any other java project as shown in List-
ing 2.25.

On the other hand, the profiling is supported with the command time help-
ful to measure the execution time (to test our implementation we will use a
more advanced benchmark). In the documentation it is also suggested to use
Flamegraphs [27] to have a graphical representation of the CPU usage.

2.4 Scala 3

With Scala 3, the language has been heavily revolutionised by minor cleanups, big
new implementations and several modifications of the API. In the following, we
list a brief overview of the main innovations, more details can be found in [38]:
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• New Syntax: The syntax has been revisited and the following changes have
been done:

1. A new “quiet” Control syntax for structures (while, if, for);

2. The keyword “new” is now optional;

3. Supporting distraction-free with optional braces;

4. Indentation sensitive programming;

5. Implicits revisited and heavily modified;

• Type System Improvements: The type system has been changed to sup-
port a better type inference and several new features:

1. Enumerations;

2. Opaque Types;

3. Intersection and union types;

4. Dependent function type;

5. Polymorphic function type;

6. Type lambdas;

7. Match types;

• Meta-programming: New powerful tools for meta-programming are In-
line (reduce methods and values at compile time), Compile-time operations
(functionalities implemented in the package scala.compiletime), Quoted code
blocks (quasi-quotation tools) and Reflection API (tools to generate and
analyse program trees).



Chapter 3

Aggregate Computing

In this chapter, we analyse the concept of aggregate computing and describe each
one of the abstraction layers on which modern APIs for aggregate programming
are based using a bottom-up approach. We start outlining what space-time and
aggregate programming are and why they are so important today (Section 3.1),
then we give an overview of the development that brought traditional models to the
ones used today (Section 3.2). In addition, we review the theoretical foundations
and properties of field calculus (Section 3.3), then we study the resilient building
blocks existing between Field Calculus constructs and developer APIs showing a
possible implementation (Section 3.4). To conclude, we discuss the main problems
of these approaches and future research direction (Section 3.5).

3.1 Introduction

This section illustrates the definitions of space-time programming, aggregate pro-
cesses, aggregate programming - with a quick overview on how it is structured -
and the context in which the necessity of these techniques has emerged.

3.1.1 Context

Over the past decades, computer devices have become steadily more accessible
and portable due to the technological progress. The decreasing cost and size of
electronic components has resulted in a massive increase in the number of wireless
networked devices, ranging from smartphones and point-of-service terminals and
tablets to smart lighting. Additionally, the Internet of Things (IoT) has noticeably
increased the number of sensors and embedded systems with which we interact
daily. All these phenomena are leading to an exponential growth of the number
and variety of objects connected to the network.

23
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Fox example, with swarm robotics, multiple robots have to cooperate as a
unified system to produce the expected collective behaviour. The result of a single
computation is the result of the communication of a high number of devices located
in a physical space and not anymore a local computation on a single machine.

In a similar way, modern biology and material science are also starting to use
hardware solutions composed by an enormous number of smaller and error-prone
devices. Each of them able to interact only with its adjacent neighbours. In this
scenario the system have to act harmoniously as a group to efficiently carry on the
computation.

It is obvious that the traditional way of programming, that has always been
based on an attempt of micro-managing each device individually, is neither efficient
nor effective. In fact, in complex distributed applications traditional solutions lack
both modularity and reusability.

3.1.2 Space-time programming

We define space-time programming as an umbrella term for programming tech-
niques based on the use of spatial abstractions. This space, also called virtual
space, consists of a network of interacting devices existing in a real environment.
This type of spatial computation is executed by an abstract entity defined as
spatial computer, that in more concrete term refers to a whole physical network of
interacting devices able to cooperate to do certain computations. This approach
is defined in [24] also as “computing somewhere” - just one of the four classes in
which all space-related approaches can be categorised:

• Computing somewhere: location-related information and spatial constraints;

• Computing everywhere: location-related information and non-spatial con-
straints;

• Computing anywhere: location-unrelated information and spatial constraints;

• Computing nowhere: location-unrelated information and non-spatial con-
straints;

3.1.3 The amorphous abstraction

It is correct to specify the difference between the continuous and discrete network
representation. The first one refers to the amorphous medium abstraction [16] - a
view of the network including a infinite number of devices, the second one consists
in an approximation of the continuous version where only a limited number of
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interacting devices exist. This comparison can better be appreciated and under-
stood analysing the Figure 3.1. The reason why both these representations are
important in distributed algorithms is that programs able to properly operate in
both these environments normally have less problems in terms of sensitivity and
scalability.

(a) Continuous network space (b) Discrete network space

Figure 3.1: Comparison of amorphous medium abstraction

3.1.4 Aggregate programming

For the above-mentioned reasons, a new approach - offering a programming strat-
egy both scalable and easy to use in these applications for the developers - is needed
today. Aggregate programming [14] provides an innovative solution simplify-
ing the development of this type of system, keeping the focus on collections of
devices rather than the single entity. Its goal is to simplify the creation and design
of these complex systems. This large-scale programming approach relies on three
main points:

• subsystems and modules must have a transparent composition;
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• programmers are not required to interact with the coordination mechanisms,
that are hidden “under the hood”;

• specific coordination rules are needed in subsystems located over different
regions and times.

Those three key points are ensured by the abstraction layers that compose
aggregate programming APIs (Figure 3.2). The lowest layer is nothing more than
the devices sensors, actuators and all that is directly supported by the hardware.
Then the three middle layers consist of software libraries and finally the top one
includes the code that is written by the developer using an aggregate programming
API. Each of those layers will be discussed and examined in the following sections.

Figure 3.2: Aggregate programming abstraction layers

3.1.5 Aggregate processes

An Aggregate process [22] can be called “computational bubble” and it is an
abstraction that identify a set of devices that perform a specific work. These
groups are dynamic and context-driven collection of computational devices that
can stretch or shrink over time. This concept is essential to describe and implement
areas of the network where groups of devices have to behave differently.
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3.2 Evolution of coordination models

Aggregate computing is just a modern solution for distribute computing. First
we will analyse how older models evolved through the years [50]. This will be
fundamental to appreciate the importance of field calculus at the base of aggregate
computing.

3.2.1 Early coordination models

• Generative communication: These models are based on the notion that
interaction between various, autonomous software systems - also called agents
- can be possible using a shared data space. Numerous coordination models
have historically described this space as a whiteboard for parallel computing
systems, where agents are able to write and read data, producing the so
called generative communication. One example of this method is Linda [26],
where processes - rooted on a centralised tuple-space - communicate writing
and reading (using queries to represent partially the structure matching the
piece of data needed) heterogeneous chunks. These actions are implemented
using a suspensive semantic that freezes the process firing the query until its
conclusion.

• Programmable Coordination Rules: The above-mentioned tuple-based
coordination model rooted on a shared data space to make agents commu-
nicate can be improved using a logic tuple-space model, namely giving the
possibility to agents to program tuples through first-order logic rules. This
improvement removes the limit of the previous approach where only data
can be saved in a tuple. A well-known framework that uses this technique
is Shared Prolog [8], but also several others exist like MARS [17], which is
based on a Linda-like model integrated with a sort of intelligence, able to
manipulate the data stored in the shared space.

• Distribution: This branch of techniques is not focused on distributed sys-
tem coordination but instead on centralised local components that are spread
through the physical environment. As a result, there is no need to use a
shared space and tuples can finally be distributed. This progress enables
us to use distributed settings, event-based interactions and coordination ab-
stractions. JavaSpaces [25] offers a good example of this model. Here, a step
further is taken towards the pervasive computing scenario.

• Self-organising Coordination: These models are directly inspired by sci-
entific scenarios and solve the problem of openness, large-scale and intrin-
sic adaptiveness proposing a self-organising coordination. It refers to those



28 CHAPTER 3. AGGREGATE COMPUTING

mechanisms where coordination abstractions (logical rules) locally manage
interactions between devices to guarantee that the global coordination works
properly. Further reading on this topic can be found in [52], where a frame-
work for implementing and modelling self-organising coordination is exhaus-
tively illustrated.

• Field-based coordination: The most relevant progress made during the
evolution of coordination models has been the introduction of coordination
fields. First, the notion of field [56] belongs to sciences (electromagnetic or
gravitational field) and is basically a way to manipulate distributed data.
Then, the definition of coordination field or co-field has been introduced
in [33] trying to adapt this mathematical concept to support self-organisation
models. The final goal was to simulate the environment through the co-field
structure and - by singularly storing it in every device - to let agents interpret
and analyse the current state of the system at any time.

• Spatial computing approaches: This is the last intermediate phase that
precedes the modern way how aggregate computing is structured. With these
approaches the general level of abstraction of the spatial system increased,
leading to a simplification of the programming process. Additionally, spatial
patterns, tools to stream data over space and time as well as space-time mod-
els are introduced in order to successfully manipulate data that is spreading
over the space and evolving over the time.

In the following section we will discuss the Field Calculus that is the modern
basis of aggregate computing.

3.3 Field Calculus

Field Calculus [53] is the theoretical foundation and mathematical core of aggre-
gate programming. Field calculus or “FC” gives a general model and properties
useful to define the global and local relationship of devices in a network, similarly
as Featherweight Java [29] does for OOP. FC has been built using a semantic
and syntax inspired by Proto [51] - a general purpose space-time programming
language - but simplified. The result is a compact and minimal model able to
cover all Proto’s functionalities and more. This section is going to discuss the
computational model and syntax of the Field Calculus introducing the concept of
computational field. Then, it will be explained what higher-order field calculus is
and its advantages. Moreover, we will talk about properties of FC models such
as self-stabilisation and space-time universality and conclude with an overview of
Protelis - a DSL for field calculus.
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3.3.1 Computational Model

In the computational model a program P is run by a network of devices δ includ-
ing dynamic neighbouring relationships representing logical or physical proximity.
This scenario is expressed in Figure 3.3 where each point corresponds to a device
and each line to a neighbouring relation.

Figure 3.3: Random network generated using ScaFi web [7]

In addition, the computational model defines the concept of computational
field ϕ, that maps each device (at a given time) to a certain value produced by
a round-based computation executed on the device. Therefore, we consider the
computation from two opposed viewpoints, first from a local point of view, where
computations are nothing more than round-based schemes executed in single de-
vices.

In each round [13], a node:

1. Wakes up;

2. Gathers information (sent by neighbours during the sleeping time) generating
neighbouring fields ϕ - structures mapping a unique set D of devices δ to
values v ;
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3. Detects information from internal sensors or other internal sources of data;

4. Finds information stored in the local memory during the previous round;

5. Evaluates the program P using the data collected during steps: 2, 3, 4;

6. Stores the result in the local memory and sends a message to all the neigh-
bours;

7. Goes to sleep again for a certain amount of time;

From now on, we will say “device ϕ fires” referring to a device ϕ that executes
a whole computational round.

From the global or aggregate perspective a single spatial computing machine
handles a data abstraction defined as a space-time field evolution ϕ, that can be
seen as a map of events ϵ - moments in the space-time domain when devices fire -
to the respective results. In this scenario, each computation takes fields evolution
as input and returns fields evolution as output.

3.3.2 Syntax and semantic

As already mentioned above, the syntax and semantic [9] of the field calculus have
been built with a minimalist approach and kept simple.

program P ::= F e

function declaration F ::= def d(x) e

expression e ::= x | v | let x = e in e | f(e)

rep (e){ (x) => e} | nbr {e} | if (e) {e} {e}

value v ::= l | ϕ

local value l ::= c(l)

neighbouring field value ϕ ::= δ 7−→ l

function name f ::= d | b

The program P is defined as a list of function declarations and an expression
e. A function declaration F defines a function with name d, a list of parameters x
and an expression e for the body. Expressions can be:
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• a variable x ;

• a value v, that can be both a local value l - result of a construct c - and
a neighbouring field value which we have already defined in the previous
subsections;

• a let that is calculated applying the value v0 of e0 and recursively apply the
results;

• a function f that can be declared d or build-in b, for example logical opera-
tors;

• a branch if (domain restriction) that splits the system into two groups of
devices (depending on how each one evaluates the condition). The operations
carried on in different domains do not interfere with each other;

• a nbr defining a function producing a neighbouring field value ϕ , that is a
result of e from the neighbours;

• a rep defining a function which evaluates an expression e substituting the
variable x.

3.3.3 Higher-Order Field Calculus

Higher-order field calculus or HFC is an expansion of the standard field calculus.
It includes all the functionalities existing in the FC and implements a way for the
developers to use functions as any other value. Doing this, through HFC is possible
to dynamically add code to the network or modify the existing one. Precisely, in
HFC functions can:

• Take other functions as arguments and, in the same way, return functions
rather than only values;

• Be created “on the fly”. As a result, it is possible to inject new code into
the system;

• Be moved from a device to another one via constructs such as nbr or rep;

• Compose a field and possibly be shared through the network.

Even if the potential of this model is exponentially higher then the standard
field calculus, its syntax [13] is still simple and laconic. As can be observed, all
the definitions are noticeably similar to the original versions.
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program P ::= F e

function declaration F ::= def d(x) e

expression e ::= x | (x) =τ> e | v | let x = e in e | f(e)

rep (e){ (x) => e} | nbr {e} | if (e) {e} {e}

value v ::= l | ϕ

local value l ::= f | c(l)

neighbouring field value ϕ ::= δ 7−→ l

function value f ::= d | b | (x) =τ> e

3.3.4 Properties of field calculus models

Now we dig into the properties required in field calculus models. Those are global-
local coherence, self-stabilisation, space-time universality and eventual consistency.

Global-local coherence

This property is guaranteed by the field calculus keeping aligned the nbr opera-
tions through the distributed network. Nevertheless, this is not trivial due to the
fact that nbr operations can be requested multiple times and that the function’s
execution could proceed with different speed depending on the device.

If global-local coherence is not achieved, at a certain time a subset of the
network’s devices may not be properly synchronised with the whole network.

Self-stabilisation

Self-stabilisation [49] prevents the system from assuming incorrect states. This
property plays an important role in distributed systems because it ensures that
firstly, a program with an unvarying input converges to a defined value in a dis-
crete time and that secondly, this is always true for every transitory input values
happened before the execution of the program. In other words, the output of an
algorithm defined as self-stable will be completely independent by the past values
assumed by the system.
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Space-Time Universality

Space-time universality implies that the field calculus is Turing-complete [46, 47]
for every local computation as well as able to gather values from certain past
events. A detailed proof of this property is illustrated in [9].

Eventual consistency

The system can be defined as eventual consistent if the state on which it converges
depends only on the continuous environment and not on the way how the devices
are distributed. This definition expands the one of self-stabilisation. A rigorous
definition of this property and explanation can be found in [15].

3.3.5 Protelis

To properly be able to use HFC in programming are also needed several other tools
such as an interpreter, a language and all the other tools responsible for handling
run-time aspects.

Protelis [44, 42] is a DSL that solves this problem implementing:

• A HFC semantic;

• An interpreter;

• A virtual machine;

• A device interface abstraction and API;

• A communication interface abstraction and API;

Protelis source code first have to be converted into a valid HFC code, this is
done by the Protelis parser, then this new code together with the execution context
is given to the virtual machine that runs the interpreter at regular intervals fig. 3.4.
The structure of Protelis assures an easily-portability into both simulated (i.e
Alchemist [43]) and real world scenarios.

Protelis has been developed using Java, thus it runs on the JVM. This guaran-
tees a high portability and the possibility to use Java’s libraries. Protelis syntax
looks similar both to C and Java, making it fast to learn. Moreover, it is a pure
functional language also inspired by Proto.
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Figure 3.4: Protelis environment structure

3.4 From Building blocks to Applications

As we said in the first section, one of the goals of aggregate programming is to
hide all the complex coordination mechanisms that are implemented with field
calculus. To guarantee this, other two abstraction layers exist between the real
application code and the field calculus layer. The first one is composed by the
resilient coordination operators, the last remaining is the developer API layer,
both will be discussed in this section.

Resilient layer

As already said before, this layer is composed by resilient operators, these are
respectively: if with the same meaning as the one found in field calculus, G that
basically spreads information through the network, C does the opposite collecting
information, T tracks values over time and S being responsible for partitioning
the network into smaller zones with the same radius (this is done using a leader-
electing mechanism). Now let us take a closer look on how they work [16]:

• G(source, initial, metric, accumulate): This operator spreads information
starting from initial for a distance equal at metric and following the path
defined in source. In addition, the value that is being spread changes every
time according to the function accumulate;

• C(potential, accumulate, local, null): This operator gathers the data local
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from a field of devices potential starting with the value null and merging
values using the function accumulate;

• T(initial, decay): This operator keeps track of the time, starting with an
initial value initial and decreasing it according to the function accumulate;

• S(grain, metric): This operator elects a set of leaders according to three
rules: (i) every device must not be distant from a leader more than grain,
(ii) every two leader must be distant at least 1

2
grain, (iii) every distance

must be measured according to the function metric. Then the network is
partitioned depending on the selected leaders;

Developer API layer

The last level before the application code is the APIs layer and it includes the
libraries made to create a user-friendly interface for developers. Moreover, it also
improves the underlying levels adding:

• Reusability : using generic components;

• Productivity : implementing specific components for certain application con-
texts;

• Declarativity : offering high-level functionalities and programming patterns;

• Flexibility : using low-level functions;

• Efficiency : implementing a coherent substitution semantic;

Additionally, these APIs also inherit the properties of below layers such as
being resilient and self-stable.

The abstract structure on which aggregate computing is founded makes it pos-
sible to build API functions easily and concisely. For example only few lines of
code are needed to implement functions to measure device-to-device distance or
to execute a broadcast (Listing 3.1).

Application Code

Here, we just want to show how powerful aggregate programming is. It is illus-
trated a simple crowd detecting system (fig. 3.5, Listing 3.2) written using ScaFi
[18] - API for aggregate programming based on Scala [39]. The program simply
counts the number of neighbours and evaluates the crowd risk using a mathemat-
ical formula. This program is simulated using ScaFi-web [7].
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Listing 3.1: Pseudo-code examples�
1 procedure broadcast(nbrRange , value)

2 G(source , value , nbrRange ,identity)

3 end procedure

4

5 procedure crowdDetector(limit)

6 nbrs <- C(1,sum ,1,0)

7 if nbrs >limit

8 Crowd Warning

9 end if

10 end procedure
� �
Basically, the program evaluates the crowd situation of each node counting the

number of its neighbours nbrs, using the following formula:

nbrs = foldhoodP lus(0)((a, b) => a+ b)(nbr(1))

foldhoodPlus folds over the node’s neighbourhood starting with the value zero
and summing the results of the expressions nbr(1) executed by the nodes. The
word “Plus” in foldhoodPlus indicates that the node calling the function will be
excluded from the computation.

Then the software fits the result in the range 0 - maxNbrs. Then, the code
turns on the led of the node with the colour resulting from the computation:

0.5 + (nbrs ∗ 10)/colors.toDouble

Where color is calculated as:

colorGap ∗maxNbrs ∗ 2

These formulas guarantee that the colours will be within a certain range, with
a specific padding between each admissible values and that all the possible results
correspond in different hsl colours.

This is just a quick overview these tools and they will be described in a more
deeply way in Chapter 4.

3.5 Problematic and Research directions

Aggregate computing has evolved over the last decade from a disparate collection of
ideas and technologies to a solid core calculus and a consistent layered framework.
While several researches are trying to further refine the underlying layers, a sizeable
percentage is devoted to solving challenges afflicting the higher levels of the stack.
Now, we are going to list the major directions on which these researches are leading,
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Listing 3.2: ScaFi code implementing a simple crowd detecting software�
1 class MyProgram extends AggregateProgram

2 with Actuation {

3 override def main(): Any = {

4 val maxNbrs = 15

5 var colorGap = 10

6 val colors = colorGap * maxNbrs * 2

7 var nbrs = foldhoodPlus (0)((a, b) => a + b)(nbr (1))

8 if (nbrs > maxNbrs) nbrs = maxNbrs

9 ledAll to hsl (0.5 + (nbrs * 10) / colors.toDouble , 0.5, 0.5)

10 }

11 }

12 val program = new MyProgram
� �

Figure 3.5: Simulation of crowd detecting software with ScaFi-web

included the one studied in this paper. Those are the development of libraries,
the understanding and controlling dynamics, mobility of devices and processes,
security and limits of software platforms.
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3.5.1 Library development

This direction may be the most obvious and consists in expanding the existing
library collection in order to create a universally more applicable and easier-to-
use interface at the top of the stack. The majority of these improvements and
modifications is based on the creation of alternative implementations of resilient
building blocks like in [11], others are intended to capture popular design patterns
and functionalities specific to particular application domains.

3.5.2 Dynamics controlling techniques

The theoretical research over the properties of these distributed systems - such as
eventual consistency and self-stabilisation - have been resulting in working solu-
tions. However, all those modern solutions presuppose that the system is frequently
in a quasi-stable state. This term refers to a network where both the environment
and the connections between the devices do not change for an extended period of
time. Nevertheless, this is normally not applicable for large scale systems and this
quasi-stable states are scarce and too transient due to the frequent perturbations
in the system. In addition, these theories are not even applicable with systems
implementing feedback between building blocks, excluding so their usefulness for
these situations.

A possible solution could be using techniques to control or predict dynam-
ics [30], some of these approaches have already produced well-developed solutions
working with systems that require feedback. Therefore, these frameworks can-
not yet be used in aggregate computing and work is needed to adapt them to be
compatible.

3.5.3 Mobility of Devices and Processes

Another critical aspect - where aggregate computing requires improvements - is the
tolerance of the network to handle mobility of processes and devices. This research
field is related to the previous section because environments with mobile devices
and processes are subject to perturbations and thus they rarely reach a quasi-
stable state - required to achieve self-stabilisation. The main research direction
here is studying how to predict the effects of this instability proposing alternative
building block implementations to support applications involving mobility [12, 10].

3.5.4 Security

Security issues are a critical concern for every open environment, especially in per-
vasive computing and IoT systems where individuals or organisations - unaware
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of weaknesses in the network security - administrate the whole environment. But
not all these problems are related to coordination, code mobility may be a con-
cern in some systems or also code execution. In addition, confidentiality on the
propagated or collected data in distributed systems should be better understood
together with availability, also authenticity and integrity issues determine frailties
of these type of systems. Attacks based on epidemic deviation are a concern due to
the fact that aggregate computing is based on cooperation between devices, some
researches are studying trust mechanisms to avoid this [19].

3.5.5 Software Platforms limits

Aggregate computing can be useful in a plethora of applications and software
platforms for pervasive programming should be compatible with a wide range of
systems - supporting heterogeneity - and easy to use. Many modern distributed
applications need to manage devices with different architectures and operative
systems. For this reason, the software platform and the compiler should impose
as few as possible software or hardware limitations that would decrease the num-
ber of devices on which the application can run. A solution to manage aggregate
computations in heterogeneous networks is shown in [20], where - using a “pulveri-
sation approach” - the application logic becomes deployment-independent. This
paper will follow this direction showing how it has been possible to integrate Scala
Native [54, 55] with ScaFi to finally run a ScaFi program on a physical machine
without the intermediary of the JVM.
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Chapter 4

ScaFi

This chapter will introduce Scala with Computational Fields (ScaFi) [18] - a
Domain-specific language based on Scala implementing aggregate programming
mechanisms. It will be given a general introduction of the software in Section 4.1,
then a detailed illustration of the project architecture in Section 4.2 and standard
library in Section 4.3. We will conclude by describing two other relevant projects
useful to integrate the usage of ScaFi in Section 4.4.

4.1 Introduction

ScaFi is a library implemented using Scala. It offers a set of tools to develop and
execute aggregate programming applications such as:

1. A Domain-specific language (DSL) implementing a Field Calculus on which
aggregate programs are based. The DSL is defined as:

• Internal: cause the language is both founded and typed using Scala;

• Modular: as the solution is kept easy, concise and reusable;

• Complete: because it includes all the field calculus constructs;

• It supports a high-order field calculus;

2. A Virtual Machine (VM) to interpret the DSL;

3. A Simulator and a Graphic User Interface (GUI) to execute aggregate appli-
cations.

With these tools, ScaFi can both define and execute distributed systems imple-
menting aggregate computing applications. Since aggregate computing may target

41
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a wide range of devices (with different hardware and software specifications), the
system has been built to provide flexibility and portability.

The DSL is defined as complete because it provides implementations for:

• function definition and call;

• build-in operator call;

• nbr, interaction;

• rep, time evolution;

• if, domain restriction.

In addition, other several entities must be defined to recreate the whole system
such as network, environment, system boundary. Another important entity in
ScaFi is the device, which includes:

• A structure: sensors and actuators;

• A behaviour: the local aggregate computation with a defined frequency;

• An interaction:

– broadcast and receive devices state;

– sense the environment;

ScaFi, as we have already said, is an Being an Internal DSL. This implies that
its implementation is based on the host language syntax and semantics, that in this
case is Scala. Scala providing first-class functions and a both rich and static type
system is the perfect environment on which to develop the field calculus system.

4.2 ScaFi Architecture

The ScaFi architecture can be distinguished into different modules:

• scafi-commons : including basic entities such as spatial and temporal abstrac-
tions;

• scafi-core: including the DSL implementation and standard library;

• scafi-simulator : including functionalities to simulate the execution of aggre-
gate systems;
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Figure 4.1: Scheme of Core module

• scafi-simulator-gui : including a GUI to visualise the simulation of the aggre-
gate system;

• spala: including the actor-based platform;

• scafi-distributed : including the ScaFi integration for the module spala.

In this chapter, we will discuss more in detail the first three modules of ScaFi
because they will be subject of the main research of the paper.

4.2.1 ScaFi Core

The Core module is composed of several components. Here, we describe its struc-
ture showing the relationship between the main components. First, a Core com-
ponent is used to define the basic elements. Then, a Language entity is based
on the core definitions and implements the constructs of the DSL. This last com-
ponent is also extended by RichLanguage. The Semantic extends both the core
and language to provide the semantics. This component is then made executable
with the Engine that extends it. A simplified scheme of the Core module is shown
in Figure 4.1.

4.2.2 ScaFi Commons

In the Commons module, a SpatialAbstraction component defines the notion of
neighbouring relationship modelling the space where the elements are positioned.
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Figure 4.2: Scheme of Common module

Then, this component is extended by AdHodSpatialAbstraction, that models a
specific situation of the network where: every node is located differently and the
neighbouring relation is a function on the domain P → P , with P being the posi-
tion of the element and P a set of possible positions. Another component extend-
ing SpatialAbstraction is MetricSpatialAbstraction that deals with those situations
where a distance is used to calculate the position of the nodes. Additionally, both
BasicAdHocSpatialAbstraction and BasicSpatialAbstraction are used to merge the
Euclidean metric with the space abstraction generating a three-dimensional space.
A simplified scheme of the Commons module is shown in Figure 4.2

4.2.3 ScaFi Simulator

In the Simulation module, a MetaActionManager component is used to manage
the action requests send to the simulator. Then, the Simulation component defines
the platform-view of the running system extending SimulationPlatform (to access
to the core module). The SpatialSimulation component simulates spatial networks
and extends SpaceAwarePlatform and Simulation. A simplified scheme of the
Simulator module is shown in Figure 4.3
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Figure 4.3: Scheme of Simulator module

4.3 ScaFi Standard Library

In this section, we analyse the ScaFi standard library describing some of its mod-
ules and giving an overview of the functions included. The library is composed
of a basic semantic and several additional modules. Here, we explain the main
packages that have been used in the following chapters. Those are FieldUtils,
Gradients, BlockG, BlockC, BlockS, TimeUtil. A more in-depth exposition can be
found in [21].
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4.3.1 Basic semantic and syntax

The basic syntax and semantics of ScaFi is composed by the following definitions:

• mid(): Gets the ID of the node calling the function;

• rep(init)(func): This is the implementation of the rep concept already
explained in field calculus section 3.3;

• nbr(e): This is the implementation of the nbr concept already explained in
field calculus section 3.3;

• aggregate(func): Creates sub-domains of nodes working on the same func-
tion func;

• foldHood(init)(acc)(e): This function executes the expression e in every
neighbour and collapses the evaluations obtained starting with an initial
value init and merging the results according to the function acc;

• branch(cond)(a)(b): This function implements a domain restriction based
on the condition cond. If a node evaluates the condition as true it will execute
the code block a, otherwise the block b;

• mux(cond)ab: Multiplexer, that depending on the Boolean value of the con-
dition cond returns the expression a (if true) or b (if false);

• sense(name): Retrieves the value of the sensor name;

• nbrvar(name): Similar to nbr but works locally as a “environmental probe”.

4.3.2 Field-operation utilities (FieldUtils)

This package includes all those functionalities based on the aggregation of neigh-
bours’ values. These functions can be accessed by two objects: includingSelf and
excludingSelf that respectively include or exclude the node calling the function
from the computation.

Now we list and describe some of these functions:

• sumHood(e): This function takes an expression e, executes it over the neigh-
bourhood and returns the sum of all the evaluations;

• unionHoodSet(e): This function takes a sequence of expressions e, executes
them over the neighbourhood and returns the union of all the evaluations;



4.3. SCAFI STANDARD LIBRARY 47

• unionHood(e): This function takes an expression e, executes a unionHood-
Set on it;

• mergeHood(e)(overwritePolicy): This function works similarly to union-
Hood but takes a map (from expressions to values) called e and a function
overwritePolicy used to collapse two values in one;

• anyHood(e): This function takes an expression e, executes it over the neigh-
bourhood and returns true if at least one node evaluates the expression to
be true, otherwise it returns false;

• everyHood(e): This function takes an expression e, executes it over the
neighbourhood and returns true if all the nodes evaluate the expression as
true, otherwise it returns false;

4.3.3 Gradients

In this package, the function classicGradient is defined as follows: classicGra-
dient(source, metric). It calculates the gradient, a computational field whose
values describe the distance from the sources defined in the Boolean field source.
And a metric, namely a 0-ary function, describing the distance between two nodes.

4.3.4 Gradient-cast (BlockG)

Here are collected functions that use gradients to deliver the result.
Some of them are:

• G(source, field, acc, metric): This function offers a generalised gra-
dient with parameterers: source, field (values spread through the network),
acc (function evolving the values) and metric;

• distanceTo(src, metric): This function calculate the distance of every
node from a source src and with a distance metric;

• broadcast(src, field, metric): This function broadcast a field from a
node src to every one within a distance of metric;

• channel(src, target, width): This function define a path connecting a
starting node src and a ending node target with a specified width;
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4.3.5 Collect-cast (BlockC)

This package implements the function C(potential, acc, local, Null). And, as al-
ready said in chapter 3, it does the opposite of G by collecting the value local in
a potential field and collapsing the values according to the function acc.

4.3.6 Leader Election (BlockS)

This package implements the function S(grain, metric). And, as already said
in chapter 3, it elects a set of leaders with grain the mean distance between two
and with a definition of distance named metric.

4.3.7 Time Utilities (TimeUtils)

Here, we have implemented all the time-related functions. The most important
one is T(initial, floor, decay) what simply create the time-abstraction decreasing
the initial value according to a function decay until it reaches the floor value. All
the other functions in this package are variants of T.

4.4 Other relevant projects

We now want to introduce some other projects that are based on aggregate com-
puting and are tightly connected with ScaFi.

4.4.1 ScaFi-web

ScaFi-web [7] is an under-development project that can be used to quickly develop
ScaFi applications and simulate them using customised networks.

This web app also allows us to use already developed codes to promptly observe
in action the ScaFi standard library. Moreover, the advanced mode can be disabled
to see the pure ScaFi code or enabled to simplify the code helping the learning
process.

As already said it is possible to customise the network on which the program
runs, this can be done by choosing: the displacement (grid or random), rows and
columns numbers, step size over the axis X and Y, tolerance, radius, LED’s colour
and size, nodes’ sensors (name and value).

To conclude also the executing speed can be chosen between three different
modalities.
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4.4.2 Alchemist simulator

Alchemist [43, 41] is a simulator for chemical-oriented computational systems that
can easily be used to simulate ScaFi distributed computations. It can be seen as
more advanced alternative to the built-in simulator that can be found in ScaFi
(modules: scafi-simulator, scafi-simulator-gui).
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Chapter 5

Analysis

In this chapter, we start introducing the core focus of this research (Section 5.1)
describing why portability is such an important topic in ScaFi. The, we will state
the requirements and set the goals for our implementation, which aims to improve
ScaFi’s portability using Cross-project, and more specifically Scala Native (Sec-
tion 5.2).

5.1 ScaFi portability

In ScaFi, and every other framework for the development of Collective Adaptive
Systems (CAS), the portability is a fundamental property. It provides to the
library the capability of being used over a wide range of devices with different
physical characteristics (Hardware-independent) and with few software constraints
(Software-independent).

Let us define these two terms:

• Hardware Independent: When a software can successfully run on every
equipment. Some possible limitations to this concepts can be:

– Memory requirements;

– Processing power requirements;

– Architecture limitations (not executable on different types of hardware
architectures such as x64 or arm64).

• Software Independent: When the software can successfully run on every
piece of equipment, without depending on the software already present in
the machine. There can be several possible limitations and here we list some
of them:
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– Operative System requirements;

– Intermediate program required;

– Translator program required.

These two concepts are utopias and can never be completely achieved. Every
software implementation must have some hardware or software limitations. How-
ever, they represent two possible directions to which improve the flexibility and
portability of a system.

A solution to improve Software independence in ScaFi is by integrating Cross-
compilation to successfully execute ScaFi applications in environments that do
not provide a JVM. As we explain in the previous chapters, this has already been
partially done through the plugin “sbt-crossproject” and with Scala.js. However,
we want to continue that work integrating Scala Native.

5.2 Requirements

We now define the requirements of the ScaFi implementation illustrated in the
next chapter:

1. ScaFi will be integrated with Scala Native:

• over the following modules: Core, Commons, Simulator and Tests.

• offering customised settings to improve the performances with:

– Garbage-collectors;

– Link-time optimisations;

– Compilation modes.

• generating light-weight binaries;

• offering relatively good run-time performances.

• with the least impact over the whole project: avoiding numerous changes
of the standard code base.

2. The integration will be tested and analysed:

• with the standard test routine to test the integration with all versions
Scala supported by ScaFi;

• with personalised and complete tests to evaluate the run-time perfor-
mances and average binary size:

– testing the basic semantic;
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– testing the basic code modules;

– testing high level patterns (i.e SCR and Channel);

– testing single and multi processes;

• comparing the results obtained between different Scala versions, com-
pilation modes and with the performances of JVM and Scala.js.
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Chapter 6

Implementation

In this chapter, we show how Scala Native has been integrated in ScaFi. Starting
with how we added and enabled the plugin (Section 6.1). Continuing with the core
of the integration (Section 6.2), inspired by the one already present of Scala.js.
Concluding listing the conflicts caused by unimplemented Java libraries in the
Native compiler (Section 6.3).

6.1 Plugins

To successfully use Scala Native plugin in a cross-platform project only a few lines
of code are needed. First you need to add the plugin dependencies of Scala Native
(sbt-scala-native) and Scala portable for native (sbt-scala-native-crossproject) in
the plugins.sbt (Listing 6.1). We decided to use respectively the versions 0.4.3 and
1.1.0 that are the latest stable releases.

Listing 6.1: Scala Native Plugins - Source: project/plugins.sbt�
1 // Scala Native plugins

2

3 addSbtPlugin("org.scala -native" % "sbt -scala -native" % "0.4.3")

4

5 addSbtPlugin("org.portable -scala" % "sbt -scala -native -crossproject" % "1.1.0")
� �
It is also necessary to enable the plugin in the file “build.sbt” for all the modules

that will support the Native compilation. In the analysis phase, we decided to
apply Scala Native to commonsCross, coreCross, simulatorCross and TestsCross
(in the same way that it has been done with Scala.js).

This can be easily done with three steps:

• Import the build package (Listing 6.2): We need to import all the utilities
to enable the plugin. Later we will use other tools from this package to set
the settings for the compilation;
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Listing 6.2: Scala Native Import - Source: project/build.sbt�
1 // Imports

2 import scala.scalanative.build._
� �
• Update project lazy val Listing 6.3: We also have to add between the files
in the val scafi all those that will be generating use Scala Native such as core-
Cross.native, commonsCross.native, simulatorCross.native, testsCross.native
(in the same way we did for Scala.js);

Listing 6.3: Scala Native Files - Source: project/build.sbt�
1 // Update files

2 lazy val scafi = project.in(file(".")).aggregate(

3 core , commons , spala , distributed , simulator , ‘simulator -gui ‘, ‘renderer -3d

‘,

4 ‘stdlib -ext ‘, ‘tests ‘, ‘demos ‘, ‘simulator -gui -new ‘, ‘demos -new ‘,

5 ‘demos -distributed ‘, coreCross.js , commonsCross.js , simulatorCross.js,

testsCross.js,

6 coreCross.native , commonsCross.native , simulatorCross.native , testsCross.

native)

7 //...
� �
• Enable the plugin in the modules Listing 6.4: Doing this is essential if we
want to have running Scala Native in a module and we have to do it for every
single one that will have to compile in the native language.

Listing 6.4: Scala Native Enable Plugin - Source: project/build.sbt�
1 // Add Native Platform

2 lazy val commonsCross =

3 crossProject(JSPlatform , JVMPlatform , NativePlatform).in(file("commons"))

4 lazy val coreCross =

5 crossProject(JSPlatform , JVMPlatform , NativePlatform).in(file("core"))

6 lazy val simulatorCross =

7 crossProject(JSPlatform , JVMPlatform , NativePlatform).in(file("simulator"))

8 lazy val testsCross =

9 crossProject(JSPlatform , JVMPlatform , NativePlatform).in(file("tests"))
� �
Once done these three steps, it is possible to continue the integration of Scala

Native with the module’s code.

6.2 Integration

To do the integration we first disable the linking errors caused by stubs, because
we want to be sure that every function is implemented. To do it is enough to set
the variable to false Listing 6.5.
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Listing 6.5: Scala Native disable stub errors - Source: project/build.sbt�
1 // Set to false or remove if you want to show stubs as linking errors

2 nativeLinkStubs := false
� �
We also decided to customise the native compilator setting using the commix

garbage collector to increase the run-time performances Listing 6.6. Of course,
these configurations only determine the type of native compilation of the ScaFi
library, every project that makes use of it can choose different compilation modes
and settings.

Listing 6.6: Scala Native settings - Source: project/build.sbt�
1 lazy val commonNativeSettings = Seq(

2 nativeConfig ~= {

3 _.withLTO(LTO.none)

4 .withMode(Mode.default)

5 .withGC(GC.commix)

6 }

7 )

8

9 lazy val commonsCross = //..

10 .nativeSettings(commonNativeSettings: _*)

11 lazy val coreCross = //...

12 .nativeSettings(commonNativeSettings: _*)

13 lazy val simulatorCross = //...

14 .nativeSettings(commonNativeSettings: _*)

15 lazy val testsCross = //...

16 .nativeSettings(commonNativeSettings: _*)
� �
Since different platforms manage the stack differently, we had to define an ob-

ject PlatformDependentConstants including two different variables (used to access
the stack trace) that will be defined with different values depending on the plat-
form. This is what has been done with Scala.js and the same has been done to
integrate Scala Native (Listing 6.7). We assigned the value “5” to the val Caller-
ClassPosition, that is used to select the caller class, and “6” to StackTracePosition,
used to access the stack trace. We found these values trying different combinations
and analysing the errors obtained running the module testsCross.

Listing 6.7: Scala Native constants - Source: PlatformDependentConstants.scala�
1 package it.unibo.scafi

2

3 object PlatformDependentConstants {

4 val CallerClassPosition = 6

5 val StackTracePosition = 5

6 }
� �
6.3 Conflicts with Java Libraries

In this section, we list the library conflicts caused by the usage of Scala Native
and we propose our solutions. This happened because the native compiler com-
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piles without the JVM and so without all the Java libraries. Some of them have
been implemented even in Scala Native, however, for the majority of them, an
alternative solution must be found.

6.3.1 Java.lang.Thread

The current version of ScaFi utilises the library Java.lang.Thread to access get the
stack trace Listing 6.8.

Listing 6.8: Scala Native stacktrace (Old) - Source: Semantics.scala�
1 // Get stacktrace using Java.lang.Thread - Not implemented in SN

2 override def elicitAggregateFunctionTag (): Any = Thread

3 .currentThread ()

4 .getStackTrace ()(PlatformDependentConstants.StackTracePosition)
� �
To solve this problem we found another way to access the stack trace but using

libraries implemented in Scala Native. In fact, an equivalent way to access the stack
trace is through the object Throwable using the method getStackTrace Listing 6.9.

Listing 6.9: Scala Native stacktrace (New) - Source: Semantics.scala�
1 // Get stacktrace using Java.lang.Throable - Implemented in SN

2 override def elicitAggregateFunctionTag (): Any =

3 new Throwable ().getStackTrace ()(PlatformDependentConstants.StackTracePosition)
� �
Even if Throwable offers an access to the stack trace with the same perfor-

mance, its implementation is slightly different. For this reason, we had to modify
the PlatformDependentConstants of the JVM decreasing them by 1. Their new
values are listed below:

• v2.11: CallerClassPosition = 3, StackTracePosition = 3;

• v2.12: CallerClassPosition = 5, StackTracePosition = 4;

• v2.13: CallerClassPosition = 5, StackTracePosition = 4;

6.3.2 Java.time

ScaFi uses Java.time both in the modules commons and simulator to use the
following classes: Instant, ChronoField, ChronoUnit and TemporalField. These
classes are not yet implemented in Scala Native and no direct alternative exists.
For these reasons we decided to use a external plugin that implements the package
time using Scala (scala-java-time [2]) Listing 6.10.

Listing 6.10: Scala Native Time library - Source: project/build.sbt�
1 // Used library as alternative to Java.time (Not implemented in SN)
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2 lazy val commonsCross = //...

3 .nativeSettings(

4 libraryDependencies += "io.github.cquiroz" %%% "scala -java -time" % "2.4.0-M1"

5 )

6

7 lazy val simulatorCross = //...

8 .nativeSettings(

9 libraryDependencies += "io.github.cquiroz" %%% "scala -java -time" % "2.4.0-M1"

10 )
� �
6.3.3 Plugin scoverage

Another problem has been encountered with the CI during the testing phase. The
CI is built to do a code coverage after the build testing using the plugin scoverage.
However, it cannot be used with Scala Native at the moment. We did not find a
quick alternative for this problem and we decided to disable this check only for
the native part of the application. This is done changing the value of the variable
coverageEnabled inside nativeSettings Listing 6.11.

Listing 6.11: Scala Native Coverage - Source: project/build.sbt�
1 // To disable coverage in native settings

2 coverageEnabled := false
� �
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Chapter 7

Validation

In this chapter, we describe how the integration of Scala Native illustrated in the
previous chapter has been tested. To do it, we use a benchmark for native tests
modifying it to include: our tests, Scala configurations and test configurations.
Here, we first show how the benchmark “scala-native-benchmark” works (Sec-
tion 7.1), then how it has been adapted to support our testing criteria and the tests
used (Section 7.2). We conclude by analysing the results obtained (Section 7.3).

7.1 Benchmark for Scala Native

A valid benchmark for Scala Native applications can be found in the GitHub
repository [3] called “scala-native-benchmark”. This code-base has been useful to
create the platform used to validate our implementation. For this reason, we will
first illustrate how this code is structured (this will be useful to understand how
we modified it in the next section) and how it can be used.

7.1.1 General Structure

This benchmark consists of a collection of Python scripts that can test a group of
Scala files following certain configurations.

Configurations: confs

This folder includes all the possible configurations which with the Scala code can
be compiled and run. Here, it is possible to include compiling settings. and switch
from the JVM to the Scala Native compiler.

A single configuration may normally include the following files:

• build.properties : Where it is possible to define the “sbt-version”;
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Listing 7.1: Test example�
1 abstract class Benchmark {

2 def run(input: String): Any

3

4 def main(args: Array[String ]): Unit = {

5 //...

6 }

7

8 // Other methods ...

9 }

10

11 object MyTest extends communitybench.Benchmark {

12

13 def run(input: String): Int = {

14 // Test code ...

15 }

16 // To use the imput args

17 override def main(args: Array[String ]): Unit =

18 super.main(args)

19 }
� �
• compile: Where it have to be specified the command to use to compile the
program:

– JVM: compile;

– JS: fullLinkJS;

– Scala Native: nativeLink.

• build.sbt : Here, as in every build.sbt file we should specify the name of the
project, the version of Scala that has to be used, the dependencies and the
settings of the plugins used in the project;

• plugins.sbt : Here, we list the dependencies of the plugins;

• run: Where we have to specify the command to execute to run the program
following the format: “target/scala-2.%version%/%build-name%-out” (for
Scala native compilations).

Source code: src/main/scala

In this folder, the tests’ code are included. It is suggested to use a different package
for every test. In addition inside the package communitybench it is possible to find
the definition of the abstract class Benchmark that have to be inherited to properly
define a test. It must be implemented the method run that will contain the code
of the test that have to be executed (Listing 7.1).
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Input and Output: input,output

The folder input is used to pass the arguments to the projects that have to be run.
It is necessary to create a file for every different test and its name must follow
the pattern: “%package-name%.%file-name%”. Inside it is possible to specify the
parameters that have to be passed during the test.

The folder output is used to specify the output that a test should produce and
are fundamental to understand whether or not a test is successful. In the same
way, as we did for the input, here every file must be named following the pattern:
“%package-name%.%file-name%”.

Scripts: scripts

This folder contains the Python scripts that will make this benchmark work and
several constants such as:

configuration.py

default runs : Defining the number of times the test must be executed (default:
2000);
default batches : Defining the number of times that the code must be tested during
a single run (default: 20).

benchmarks.py

benchmarks : Array defining the tests and the order which with they will be exe-
cuted.

cmdline.py

latest : Name of the configuration to be used if others are not specified;
stable: Name of the configuration to be used if others nor stable are not specified.

comparison.py

default warmup: Number of iterations to skip before calculating percentiles (de-
fault: 500);

7.1.2 How to use

To properly use the benchmark it is necessary to first create and fill the following
files:
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• ./build.sbt;

• ./project/plugins.sbt (optional);

Then, it will be possible to use the following command:

python3 script/run.py

To generate the following folders

• binaries: Containing all the binaries produced (one for each test case);

• results: Containing all the statistics generated by the runs (the execution
time of every run and batch) and the compilation times;

Another useful command is:

python3 script/summary.py

That will generate a folder reports including a comparison of the configurations
that have been tested using the previous command.

python3 script/run.py

Finally, the file notebook.ipynb defines numpy statements for generating graphs
using the data inside the folder results.

7.2 Benchmark for ScaFi

We modelled this benchmark to support our tests [6, 36] and modified some con-
stants, to make it easy to fire the tests using the same commands that are shown
in the previous section. Now, we explain the modifies that has be done in detail:

• configurations: we implemented a configuration folder for Scala Native with
Scala 2.11.x, 2.12.x and 2.13.x (one folder of each situation). There are
three configurations with the version 2.12.x that define different compilation
modes (releaseFull, releaseFast, default);

• libraries: we added the .jar files of scafi-commons, scafi-core and scafi-
simulator compiled using Scala Native or the JVM.

• output: we set every output file to the value “()”, because every test will
simply simulate a simple aggregate program and will return just a Unit value;



7.2. BENCHMARK FOR SCAFI 65

• scripts: changes constants to reduce the number of batches and runs, and to
change the predefined benchmarks and configuration.

Then, for each test we created an object implementing the abstract class bench-
mark, inside its method run we defined the test code and the settings for the
simulation Listing 7.2.

Listing 7.2: ScaFi Tests definition�
1 // Definition of single test

2 object BuildingBlocksBundleBenchmark extends communitybench.Benchmark {

3

4 def run(input: String): Unit = {

5 val howMany = 5

6 val range = 2

7 val ticks = 10000

8 val simulator = simulatorFactory.gridLike(

9 GridSettings(howMany , howMany , range , range),

10 range

11 )

12 (0 to ticks) foreach { _ => simulator.exec(new TestClass) }

13 }

14

15 override def main(args: Array[String ]): Unit = super.main(args)

16 }
� �
We now list (in alphabetical order) the tests that have been used, together with

a brief description:

1. BuildingBlocksBundleCheck: used to verify the bundle size using all the
building blocks;

2. CCheck: includes an usage of the function C, hopDistance and mid ;

3. ChannelCheck: execute a high-level pattern channel between the node 0
and 10 with size 1 ;

4. FewProcessCheck: generate few processes using the function sspawn2 ;

5. FoldhoodCheck: implements a basic usage of the function foldHood ;

6. FoldhoodAndNbrCheck: implements a usage of the function foldHood
calling mid and nbr ;

7. GCheck: includes a possible implementation of the function G (to test the
building G);

8. GradientCheck: tests classicGradient ;

9. ManyProcessCheck: generate many processes using the function sspawn2 ;
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10. RepCheck: implements a simple code using rep;

11. SCheck: includes a possible implementation of the function S (to test the
building S);

12. SCRPattern: execute a high-level pattern SCR using the functions: S, C,
G, classicGradient ;

13. taticFieldCheck: implement a constant main with value 10 ;

14. TCheck: includes a possible implementation of the function T with time
100 (to test the building T).

7.3 Analysis

This section analyses the results obtained by running these tests. In some sit-
uations, we could refer to the tests mentioning their number (according to the
list shown in the previous section). We will separately analyse the performances
observing the compilation times, binary sizes, start-up and execution times.

7.3.1 Compilation times

These tests have been done compiling the project with Scala Native using three
different versions of Scala (2.11, 2.12, 2.13) - specifically the ones supported by
ScaFi - and all the three compilation modes available. We have used the Scala
Native compiler with LTO.thin and immix as the GC. We also added the results
obtained compiling with the JVM to give a more wide perspective. The results
obtained are shown in Figure 7.1.

Observing the chart it is possible to see how better is the compilation using
versions 2.12 and 2.13. On the other hand, Scala 2.13 scored poorly in every test.
Additionally, we can also appreciate how the compilation time is just noticeably
superior in those tests where a high number of Bundles are extended, this means
that, independently of the code written, the performance of the computation using
Scala Native is quite stable. The reason behind this behaviour is the optimisation
offered by the native compiler. Only the bundle’s code that is actually used is also
compiled and included in the final binary file. This can be noticed looking at the
compilation times of FewProcessCheck and ManyProcessCheck.

If we look at the results using other compilation modes, we will see an important
increase of the performance. This is due to the reduction of optimisation that will
also generate a smaller binary but resulting in poorer execution performances.
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Figure 7.1: Compilation times - Bar char [35]
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7.3.2 Binary sizes

Here, we compare the binary sizes of the compiled tests. First, we vary the Scala
version then the compilation mode. The results obtained are shown in Figure 7.2.
Three main analyses can be done over the bar plot proposed.

Comparison between Scala version

Firstly, it is easy to appreciate how the smallest binaries are generated using a
Scala version 2.12. On the other hand, switching to 2.11 causes a considerate
increase of the binary sizes. With 2.13 the result shows only an augment of a
fraction of the original value.

Comparison between Compilation modes

Secondly, comparing the compilation modes we can see how the compilation is
lighter using ReleaseFast or Debug. However, the run-time performance will be
much worse.

Comparison between tests of a certain version

Lastly, if we see the binary size difference between the tests, it is possible to
understand how those tests that extend a high number of Bundles are likely to
produce bigger binaries. However, this difference is just a fraction and we can
consider it irrelevant and that the optimisation made by the compiler is adequate.

7.3.3 Start-up times

Using Scala Native it is possible to generate binaries and to execute them instantly
start-up, really useful in those scenarios where it is not acceptable to waste time
waiting for the JVM.

7.3.4 Execution times

We then analysed the execution times of every test observing that, in general,
every box plot can be well approximated with an hyperbole (due to the warm-
up effect). This means, that the software is showing great stability. Some tests
showed more stable results, others (in particular the most complexes such as the
high-level patterns) showed more irregularities. Here, we include two antipode
cases (Figure 7.3), the first (Test 4) represents the normal case where we have a
stable execution from the start to the end (the number of irregularities reduces
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Figure 7.2: Binary sizes - Bar char [34]
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over time due to a warm-up effect), the second (Test 3) shows the worst result
obtained with much more peaks from start to end.

(a) Test 4 - Line Plot (b) Test 4 - Box Plot

(c) Test 3 - Line Plot (d) Test 3 - Line Plot

Figure 7.3: Tests - execution times

Another interesting comparison can be done between the results obtained
running the same test with different native compilation modes and using the
JVM (Figure 7.4). Here, as expected, the execution time increases in using fastRe-
lease or default. We can also observe that the performance gap between fullRelease
and the JVM is acceptable, with an execution time of the native compilation of
just a few seconds more. To appreciate the difference we include a table that shows
the percentiles and mean of each mode (Table 7.1).

7.3.5 Considerations

After these analyses, we can affirm that Scala Native has been successfully in-
tegrated with ScaFi. In fact, both the compilation time and execution time are
regular and stable in a wide range of different tests and with different compilation



7.3. ANALYSIS 71

(a) fullRelease (b) fastRelease

(c) default (d) jvm

Figure 7.4: Test 10 - Execution with different compilation modes

FullRelease FastRelease Default JVM

5th percentile 15.181 22.465 120.066 10.068
50th percentile 15.476 25.497 122.889 10.586
95th percentile 18.360 32.131 155.379 20.776

Mean 15.842 26.131 128.317 12.474

Table 7.1: Test 10 - Calculation over different compilation modes fig. 7.4

settings. Other considerations about the final result of this project and possible
future improvements are included in the next and last chapter.
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Chapter 8

Conclusions

This chapter contains general observations about the work presented in this thesis
as well as some references to potential future advances Section 8.1.

The work illustrated in this document managed to successfully integrate Scala
Native in ScaFi. Additionally, we validated the implementation of the common
patterns doing analyses of the binaries, execution times and compilation times.
We proved that the integration is stable and produces competitive performances.
As a consequence, it is now possible to execute ScaFi codes over devices that are
supporting neither the JVM nor JavaScript. This has been a step toward** for the
ScaFi project and a notable improvement for its portability and flexibility, very
desirable features of every framework based on aggregate or distributed comput-
ing. With this integration, we widened the possible applications of ScaFi opening
its way toward the world of IoT, robotic swarms and embedded systems. All
those other scenarios where the device due to a lack of memory or other hardware
limitations cannot support the JVM.

This strategy, of offering cross-platform solutions, is a modern programming
approach. Several other modern programming languages have implemented this
feature, such as Rust and Kotlin. The reason is that with the current technolog-
ical progress we need to provide software solutions that are, as much as possible,
both hardware and software independent, without having to implement different
codebases.

8.1 Agenda

We proved the effectiveness of this integration. However, other improvements
must be done to consider it complete. Future works may do research toward the
following directions:

• Enable “releaseFull” or “releaseFast” as compilation modes in the ScaFi

73



74 CHAPTER 8. CONCLUSIONS

project. It would increase the code optimisations and, as a consequence, the
run-time performances of the library’s modules;

• Compare the performances between the different platforms supported, such
as Scala.js and Scala Native.

• Execute a comprehensive test of ScaFi with embedded systems and analyse
the results. Our tests have been done on a Windows machine, however,
testing the integration directly on devices with different architectures and
smaller memory spaces could show interesting insights.
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