
Alma Mater Studiorum · Università di Bologna

Scuola di Ingegneria e Architettura

Dipartimento di Informatica - Scienza e Ingegneria (DISI)

Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea
in

Artificial Intelligence

Developing a New Approach for Machine Learning

Explainability combining Local and Global

Model-Agnostic Approaches

Relatore:
Prof. Federico Chesani
Correlatore:
PhD. Giorgio Visani

Candidato:
Vincenzo Maria Stanzione

Anno Accademico: 2020/2021
Sessione III

i

Alla mia famiglia

ii

iii

Contents

Abstract . vii

List of Figures . x

List of Tables . xii

Introduction . 1

1 Explainability . 5

1.1 Machine Learning . 6

1.1.1 Supervised Learning . 6

1.1.2 Semi-supervised Learning 7

1.1.3 Unsupervised Learning . 8

1.1.4 Reinforcement Learning 9

1.2 Deep Learning . 10

1.3 Overview on Explainability of ML 10

1.3.1 Methods for Interpretability 12

1.3.2 Local and Global Interpretability 13

1.3.3 Model-agnostic and Model-specific Interpretability 13

1.4 Interpretable Models . 14

1.4.1 Linear Regression . 14

1.4.2 Logistic Model and Probit Model 15

1.4.3 Generalized Linear Models (GLM) and Generalized Ad-

ditive Models (GAM) . 16

1.4.4 Decision Tree . 18

iv

1.5 Local Model-Agnostic Techniques 20

1.5.1 Local interpretable Model-agnostic Explanations (LIME) 20

1.5.2 Generation and Weighting Step 22

1.5.3 LIME Issues . 23

2 Global-Lime . 25

2.1 Generation Step . 26

2.2 Partitioning (Clustering) . 27

2.2.1 Model Segmentation Approach 28

2.2.2 Algorithm . 29

2.2.3 Objective Function and Score Function 30

2.3 Computational complexity . 33

2.4 Sampling . 35

2.4.1 Total Variation Approaches 36

2.4.2 Decision Tree Regressor and Grid Structure 37

3 Model Architecture . 39

3.1 Glime class . 39

3.2 MOB class . 40

3.2.1 Optimization of the Score Function 43

3.2.2 Advanced Optimization 44

3.3 Other Modules . 49

4 Testing and Results . 50

4.1 Testing MOB Implementation Behaviour 50

4.2 Test on DomainTree Custom Function 50

4.2.1 Key Performance Indicators (KPI) for DomainTree 52

4.2.2 Results . 55

4.3 Testing on Simple Math Functions 58

4.4 Testing on a Real Numerical Dataset (Boston Data) 60

4.4.1 Model Selection and Pre-processing 62

4.5 Testing on Categorical Data and Classification 64

v

4.5.1 Credit Risk Modeling Dataset of Example 65

4.5.2 Target Encoding for Explainable Categorical Features . . 67

4.6 Dashboard for Visualization . 71

4.6.1 Streamlit Front-end and Altair 71

4.7 Dashboard Layout . 72

4.8 Future Developments . 75

Conclusion . 79

Bibliography . 82

vi

Abstract

The last couple of past decades have seen a new flourishing season for the

Artificial Intelligence, in particular for Machine Learning (ML). This is reflected

in the great number of fields that are employing ML solutions to overcome a

broad spectrum of problems. However, most of the last employed ML models

have a black-box behavior. This means that given a certain input, we are not

able to understand why one of these models produced a certain output or made

a certain decision. Most of the time, we are not interested in knowing what and

how the model is thinking, but if we think of a model which makes extremely

critical decisions or takes decisions that have a heavy result on people’s lives,

in these cases explainability is a duty. A great variety of techniques to perform

global or local explanations are available. One of the most widespread is Local

Interpretable Model-Agnostic Explanations (LIME), which creates a local linear

model in the proximity of an input to understand in which way each feature

contributes to the final output. However, LIME is not immune from instability

problems and sometimes to incoherent predictions. Furthermore, as a local

explainability technique, LIME needs to be performed for each different input

that we want to explain. In this work, we have been inspired by the LIME

approach for linear models to craft a novel technique. In combination with

the Model-based Recursive Partitioning (MOB), a brand-new score function

to assess the quality of a partition and the usage of Sobol quasi-Montecarlo

sampling, we developed a new global model-agnostic explainability technique

we called Global-Lime. Global-Lime is capable of giving a global understanding

vii

of the original ML model, through an ensemble of spatially not overlapped

hyperplanes, plus a local explanation for a certain output considering only the

corresponding linear approximation. The idea is to train the black-box model

and then supply along with it its explainable version.

viii

ix

List of Figures

1.1.1 Classification and Regression . 7

1.1.2 Unsupervised Learning . 9

1.1.3 Reinforcement Learning . 9

1.2.1 Deep Neural Network . 11

1.3.1 Explainability Techniques Summary 14

1.4.1 Logistic Model and Probit Model 16

1.4.2 Example of a GAM on a non-linear output 18

1.4.3 Example of a decision tree on the iris dataset 19

1.5.1 LIME functioning . 21

1.5.2 Why does this image contain a cat? 22

1.5.3 LIME Sampling . 23

2.1.1 Sampling Examples . 26

2.1.2 Example of sampling for 3D function 28

2.2.1 MOB tree example . 30

2.2.2 MOB expected Behaviour . 32

2.4.1 Example of misleading sampling 35

2.4.2 2D grid structure obtained from a DecisionTreeRegressor . . . 37

3.1.1 Feature importance bar-chart . 41

4.2.1 Example of a DomainTree . 51

4.2.2 Grid structure of DomainTree domains 52

4.2.3 1-dimensional case for tree domain 53

4.2.4 Comparison of two domains . 53

x

4.2.5 3D view of a DomainTree . 55

4.2.6 DomainTree and Glime 1D-example 58

4.2.7 DomainTree and Glime 2D-example 58

4.3.1 xsinx 2D-example . 59

4.3.2 xsinx 1D-example . 60

4.4.1 Explanation on a row of Boston Dataset 64

4.5.1 Target Encoding . 68

4.5.2 Target Encoding plus Glime coefficients for AES 69

4.5.3 Target Encoding plus Glime coefficients for RES 70

4.5.4 Target Encoding plus Glime coefficients 70

4.7.1 Dashboard Layout . 73

4.7.2 Dashboard Functioning . 74

4.7.3 Dashboard Coefficients and What-If Analysis 75

4.7.4 Dashboard Sliding Coefficients 76

xi

List of Tables

4.1 Tests on DomainTree with various parameters 57

4.2 Testing GLime on math functions with various parameter 61

4.3 Hyperparameters used in XGBRegressor for Boston Housing dataset 63

4.4 Hyperparameters used in Glime for Boston Housing dataset . . . 63

4.5 Hyperparameters used in XGBClassifier for CRM dataset . . . 66

4.6 Hyperparameters used in Glime for CRM dataset 66

xii

xiii

Introduction

The last couple of past decades have seen a new flourishing season for the Arti-

ficial Intelligence, in particular for Machine Learning and all its inherent fields.

Thanks to a more consistent availability of computational power and in gen-

eral the spreading of on-premise cloud computing solutions, several companies

and researchers have brought their attention to this spectrum of topics. This

is reflected in a wide variety of applications and a countless number of fields:

from medicine to finance, from news recommendation to online retailing, from

autonomous driving to natural language processing applications. In each one

of these fields machines proved to be effective and of great support for human

beings, also for critical decisions.

However, most of the last employed Machine Learning models have a black-

box behavior. This means that given a certain input, we are not able to un-

derstand why one of these models produced a certain output or made a certain

decision. Neural network-based models in all their declinations are well-known

examples of these behaviors. Nevertheless, handling a black-box is not neces-

sarily a bad thing. Most of the time, we are not interested in knowing what

and how the model is thinking, but we are focused solely on the output. For

example, a news recommendation system will not need a transparent model in

the majority of its deployment, even if understanding the model more deeply

would be interesting. But if we think of a model which makes extremely critical

decisions (e.g. it handles the security system of a nuclear power plant) or takes

decisions that have a heavy result on people’s lives (e.g. it decides whether you

1

are eligible for obtaining a loan), in these cases, explainability is a duty. Even

before the deployment phase, being capable of understanding why a model is

behaving in a certain manner can be useful to predict how it will perform in a

real-world scenario.

Several Machine Learning models are not explainable, but a great variety of

techniques to perform global or local explanations (in respect to a prediction)

are available. One of the most widespread is Local Interpretable Model-Agnostic

Explanations (LIME), which creates a local linear model in the proximity of an

input to understand in which way each feature contributes to the final output.

However, LIME is not immune from instability problems and sometimes to

incoherent predictions. Furthermore, as a local explainability technique LIME

needs to be performed for each different input that we want to explain, resulting

in a higher usage of computing power, mostly if we want to interpret multiple

instances.

In this work, we have been inspired by the LIME approach for linear models

to craft a novel technique. In combination with the Model-based Recursive Par-

titioning (MOB), a brand-new score function to assess the quality of a partition

and the usage of Sobol quasi-Montecarlo sampling, we developed a new global

model-agnostic explainability technique we called Global-Lime. Global-Lime

is capable of giving a global understanding of the original Machine Learning

model, through an ensemble of spatially not overlapped hyperplanes, plus a lo-

cal explanation for a certain output considering only the corresponding linear

approximation. The idea is to train the black-box model and then supply along

with it its explainable version.

The work is structured in 4 chapters:

1. Explainability: here a brief overview of Machine Learning and its most

important paradigms is given. Then, it is reported what we mean by

"Explainability", what are interpretable models and which are the main

interpretability approaches. Finally, we focus on LIME, the technique

taken as reference, describing its functioning, pro and cons.

2

2. Global-Lime: it is the core chapter of the whole thesis. The theory

behind the new explainability technique is described in all its parts, from

MOB approach for partitioning to Sobol sampling. Afterwards, the Global-

Lime macro-algorithm is described.

3. Model Architecture: in this part, we expose how the model has been

implemented and which precautions have been taken during the drafting

of MOB and Global-Lime. Later, several possible mathematical and code

optimizations are discussed, with their advantages and drawbacks.

4. Testing and Results: it is the final chapter in which we report the results

obtained during the testing phase. We performed tests on continuous

and discontinuous ad-hoc functions, to assess the mathematical rigour

behind our thesis. Finally, we tested Global-Lime on two real datasets,

one numerical and one containing also categorical variables, witnessing a

coherent and sufficiently robust behaviour.

3

4

Chapter 1

Explainability

Explainability is defined as: "the usage of methods and models that make the

behavior and predictions of machine learning systems clear and understandable

to humans" [1]. Explainability is one of the hottest topics in AI (Artificial

Intelligence) in the last few years [2], due to several reasons and necessities that

are born thanks to the spreading of these technologies, especially ML(Machine

Learning) and Deep Learning, in a wide range of fields.

In fact, despite the widespread adoption of AI solutions, ML-based models

remain mostly black boxes. Given a certain input to the model, we obtain the

desired output, actually without any knowledge of its internal workings. Despite

the power of the AI-based approaches, black-box behavior is inconvenient and

disadvantageous if we want to know how the model "thinks" or why it has

predicted a class instead of another. Recently, it is something that also EU

decided to regulate [3] because of the importance of AI trust in highly critical

situations. Furthermore, understanding the reasons behind predictions is quite

important in assessing also its trust, which is fundamental if one plans to take

actions based on the predictions of a model or simply wants to have insights

into the model dynamics.

In this chapter, we will briefly introduce what are ML and Deep Learning,

what is explainability and why is important, and then we will discuss the most

5

important explainability techniques with their pros and cons.

1.1 Machine Learning

Usually, two definitions of Machine Learning are offered. Arthur Samuel de-

scribed it as [4]: “the field of study that gives computers the ability to learn

without being explicitly programmed.” Tom Mitchell provides a more modern

and formal definition [5]: "A computer program is said to learn from experi-

ence E with respect to some class of tasks T and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E." In

detail, it is seen as a part of artificial intelligence, whose aim is to design and

exploit algorithms and models that improve automatically through experience

and data, in order to make predictions and actions, without being explicitly

programmed to do so.

Nowadays ML is used in a wide variety of applications such as computer

vision, spam filtering, classification of items, speech recognition, market predic-

tion, weather prediction, medical diagnosis, etc. The core of all ML is to be

capable of generalizing from experience, in particular, the ability to perform

consistently also on new unseen examples after a training phase [6]. ML ap-

proaches are usually divided into 4 categories, depending on the nature of the

feedback mechanism for the learning process.

1.1.1 Supervised Learning

Supervised learning is the process of learning a mathematical model that tries

to map an input to an output based on the submitted training set of labeled

data, i.e. containing (input, output) tuples.

The inferred function is used to predict output values on unseen data. An

example of usage could be: we want to predict a person’s height using his

weight, age, and gender. The training data will be composed of tuples having

people’s weight, age, gender info along with their real heights to discover the

6

relationship between height and the other features in the dataset.

Furthermore, we can identify two subproblems under the supervised spectrum

(Figure 1.1.1):

• classification: the model learns to label an observation based on its

variable values. For example, if an email is spam or not analyzing the

occurring keywords.

• regression: the model tries to estimate the relationship between the in-

dependent variables (inputs) and the dependent variables (outputs), using

a certain mathematical model, then forecasts new outcomes. It is impor-

tant to understand that there are no fixed labels to assign in this case, but

more a computed value. For example, given the size in squared meters

m2, the zone, and the floor of a flat, we want to estimate the hypothetical

selling prize and renting revenue.

Figure 1.1.1: Classification and Regression [7].

1.1.2 Semi-supervised Learning

Similarly to supervised learning, semi-supervised learning, also known as active

learning, is a technique that involves a small number of labeled examples but also

a large number of unlabeled examples. The algorithm can interactively query

7

the user to label chosen data points. There are scenarios in which unlabeled

data is abundant but manual labeling is expensive, so the learner samples some

significant examples to submit to the user [8].

The evidence of an effective semi-supervised learning algorithm is that it can

achieve better performance than a supervised learning algorithm fit only on the

labeled training examples of the dataset.

Semi-supervised learning may be used or may contrast inductive and trans-

ductive learning1. Inductive learning refers to a learning algorithm that learns

from labeled training data and generalizes to new data. Transductive learning

refers to learning from labeled training data and generalizing it to available un-

labeled (training) data. Both types of learning tasks may be performed by a

semi-supervised approach.

1.1.3 Unsupervised Learning

Unsupervised learning is a type of machine learning in which the algorithm is not

provided with any pre-assigned labels or scores for the training data, whose aim

is to look for previously undetected patterns with minimal human supervision.

So it will self-discover any naturally occurring patterns in the given data, in

contrast to what is done in supervised learning, where a human gives a list of

assignable labels [9].

The main unsupervised approaches are:

• clustering: is a grouping process in which the members of a group (i.e.

a cluster) are more similar to each other than the members of the other

clusters (Figure 1.1.2).

• dimensionality reduction: the process of selecting T features in a

dataset, removing for example highly correlated variables, or the creation

of new features that are smaller in number in respect to the original ones.

The new features summarize the information carried by the previous ones.

1We will not cover in details inductive and transductive learning in this introduction to

ML because is out of our scope.

8

Figure 1.1.2: Unsupervised Learning [10].

1.1.4 Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with how agents

ought to take actions in an environment to maximize the notion of cumulative

reward. A reinforcement learning ecosystem is composed of (Figure 1.1.3):

• agent: the entity which performs the assigned tasks.

• environment: the logical space in which the agent completes its tasks.

• action: a move the agent can do which results in a change of the status

of the environment and a returned reward.

• reward: a negative or positive remuneration given by the environment,

depending on its status and the previous actions.

Figure 1.1.3: Reinforcement Learning.

9

1.2 Deep Learning

Deep Learning is a subset of ML in which techniques that involve the usage

of neural networks and representation learning are leveraged, to perform ML

tasks2. Recently, thanks to the increasing computing power available, Deep

Learning approaches led to outstanding results in a variety of fields. For exam-

ple, Alpha Go [11] successfully mastered the board game Go, reaching superhu-

man performances and being capable of defeating the world champion3.

Artificial Neural Networks (ANNs) are the core of Deep Learning. ANNs

are computing structures inspired by the functioning of the brain: a collection

of nodes called neurons are connected using weighted connections, to produce

an output given a certain input.

A Deep Neural Network (DNN) is a particular ANN composed of multiple layers

(input, hidden, output) of neurons between input and output (Figure 1.2.1).

The advantage of DNN is the ability to create a non-linear relationship between

input and output that can theoretically approximate any mapping.

However, Deep Learning models behave such as black boxes. Because of

that, Deep Learning does not thrive as the principal solution in fields which

require critical decisions such as financial and medical fields, nevertheless the

adoption is steadily growing.

1.3 Overview on Explainability of ML

As we stated in the previous paragraphs, despite the widespread adoption of

ML models, most of them are black boxes. A naive consideration would be why

explainable models are needed if we are just interested in the output. Several

times we are not interested in the internal mechanism inside the box, e.g. the
2The most successful tasks are: computer vision, speech recognition, natural language

processing, machine translation, bioinformatics, drug design, medical image analysis, board

games and so on.
3It is important to keep in mind that before 2015, the best Go programs only managed to

reach amateur levels and Go was considered unapproachable due to its intrinsic complexity.

10

Figure 1.2.1: Deep Neural Network.

model has great metrics scores yet. The answer is that from explainability

derives trust, so understanding the reasons behind predictions is fundamental in

assessing trust on a model [12]. Trust in a model is essential if one plans to take

action based on a prediction or when choosing whether to deploy a new model.

If a model is not trusted, the users will not use or rely on it, because it is difficult

to understand on what grounds a decision has been taken. Furthermore, as the

Right to Explanation [13] and the GDPR [14] state, each individual affected by

The algorithm’s decisions have the right to know the model’s rationale.

We can define trust from two different points of view:

• trusting a prediction: a user trusts an individual prediction sufficiently

to take some action based on it. It is a vital feature for decision making in

critical situations like medical diagnosis or bomb detection. The decision

cannot be made upon "blind" faith in the model.

• trusting a model: whether the user trusts a whole model to behave in

reasonable ways if deployed in the real world, which can be significantly

different from the depicted one in the training set.

11

1.3.1 Methods for Interpretability

ML is often difficult to interpret due to the complexity of the mathematical

structures inside the model. However, in the ML domain, a group of intrin-

sically explainable models exists. In order to achieve explainability one could

exploit one of these transparent models, with simple formulas to understand ,

or to use post-hoc techniques to convey the knowledge of a black box model

in an understandable representation, such as a simpler surrogate interpretable

model.

More strictly, we can define different criteria for classifying interpretability meth-

ods [15]:

• intrinsic interpretability: selecting and training a machine learning

model that is intrinsically interpretable due to its simple structure (e.g.

Decision Tree, Linear Regression).

• post-hoc or post-model methods: application of interpretability meth-

ods after the training of the model. They provide insight into what the

model has learned, without changing the underlying model.

• pre-model methods: independent of the model. They can be used

before the selection of the model (e.g PCA, t-SNE, clustering).

Our goal is to explain a prediction or the whole model, which means present-

ing textual or visual artifacts that provide a qualitative understanding of the

relationship between the instance’s components (e.g. words in a text, patches

in an image) and the model’s prediction, so human-understandable. Usually,

interpretability methods can also be classified by the outcome of the prediction

model. A not exhaustive list could be:

• Feature summary statistics: refer to a summary of each feature statis-

tic that affects the model predictions.

• Feature summary visualization: methods that can only be visualized

and could not be meaningfully presented in the form of a table.

12

• Data point interpretability: methods that return data points to make

the model interpretable.

• Intrinsically interpretable: interpretable by internal model parameters

of feature summary statistics.

1.3.2 Local and Global Interpretability

In general, if a method can explain a single prediction, we refer to those methods

as local, whilst if it explains the entire model behavior as global [1]. Local

interpretability can be achieved if we design a model which explains why a

specific decision has been made, then explanations are valid only in a tight

neighborhood of the selected point.

On the other hand, globally interpretable models offer transparency about

what is going on inside a model on an abstract level [16]. Global methods

describe how features affect the prediction on average4.

It is important to consider the fact that through a selected group of local

explanations, it is possible to obtain a global view of the overall behavior of a

model. So achieving a sort of global explainability, leveraging local explanations.

1.3.3 Model-agnostic and Model-specific Interpretability

Model-specific interpretation methods are limited to specific models and derive

explanations by examining internal model parameters [16]. However, it is very

annoying in a situation in which we are testing various models and we would

prefer to have a standard criterion to interpret them In this context, we un-

derstand that separating the explanations from the ML model leads to some

important advantages. The major one is flexibility. Model-agnostic interpreta-

tion methods are methods that can be applied to any type of model, without

changing its structure. With model-agnostic techniques, developers are free to
4However, several of these methods (e.g. Global-Lime) can be used for local and global

explanation both)

13

use any machine learning model they prefer, because potentially the interpre-

tation methods can be applied to any model. Interpretation and model become

independent.

By model flexibility we mean that the interpretation technique is valid for

every ML model [12].

Figure 1.3.1: Explainability techniques summary [15].

1.4 Interpretable Models

As we discussed in section 1.3.1, the most straightforward approach to guarantee

interpretability is to use a subset of interpretable algorithms. For completeness,

in this section, a brief overview of these methods will be given5.

1.4.1 Linear Regression

By definition, a linear regression is a weighted sum of the independent variables

to predict a dependent variable, this relationship between input and output
5There are several interpretable techniques not reported, we will cover only the ones that

will be of interest for the next sections.

14

makes the interpretation easy to understand.

y = β0 + β1x1 + ...+ βnxn + ϵ (1.4.1)

Or similarly:

y = Xβ + ϵ (1.4.2)

The predicted output is a weighted sum of n features, plus an intercept (β0)

and the error ϵ which follows a Gaussian distribution. Hence, we can think the

β weights as the importance of a certain variable to compute y. We estimate the

optimal weights by minimizing a certain objective function e.g. mean squared

errors, but various methods can be used.

1.4.2 Logistic Model and Probit Model

Linear models are easy to use and simple to interpret, but the predictions of

a linear model are not bounded, potentially they span through all the real

numbers. For example, this could be tedious if one would have to model a

probability (from 0 to 1). To overcome this limit, models like Probit (equation

1.4.4) and Logistic (equation 1.4.3) are used, where Φ(·) is the Cumulative

Distribution Function of a standard Gaussian N(0, 1) (Figure 1.4.1).

Both of them transform the probability into a new real variable, using a

bijective function. In this way, we can model the relation between the variables

in a non-linear way, with an increase in the representation capacity [17].

y =
eX

T β

1 + eXT β
(1.4.3)

y = Φ(XTβ) (1.4.4)

An additional perk of Logistic Regression, when compared to Probit, is its

interpretability: the parameters derived from the best curve’s estimation, can be

15

regarded as odds ratio, more precisely
P (Y = 1|X = x)

P (Y = 0|X = 0)
. Some disadvantages

of logistic regressions are:

• the interpretation is harder than a linear regression.

• it suffers from complete separation: if a feature perfectly separates two

classes, the logistic regression weight for that feature will never converge

because the optimal weight would be infinite [18].

Figure 1.4.1: Logistic model and Probit model [17], on the y-axis the probability

y = P (Y = 1|X = x).

1.4.3 Generalized Linear Models (GLM) and Generalized

Additive Models (GAM)

Understanding a prediction made by a linear regression model is simple due to

its intrinsic clarity: a prediction is modeled as a weighted sum of the features,

then we know which are the dominant features. However, simplicity is also the

16

biggest weakness of linear models. In real-world data, most of the time the

features might interact, the outcome might not be linear or might not have a

Gaussian distribution. The solution for outcomes that do not follow a Gaussian

distribution could be GLM, whilst for a not linear relationship between the

features could be GAM.

Linear regression models can be extended to support other types of out-

comes (non-gaussian outcomes) through GLM. GLM mathematically links the

weighted sum of the features with the mean value of the conditional distribu-

tion assumed for Y using a link function g, which can be chosen depending on

the type of outcome [1]. EY is a probability distribution from the exponential

family6.

g(EY (y|x)) = β0 + β1x1 + ...+ βpxp (1.4.5)

In this way, we can consider a linear model as a special case of GLM, in which g

is the identity function. The chosen distribution together with the link function

determines how to interpret the weights of the model. First, we need to invert

g and then consider the contribution of EY .

EY (y|x) = g−1(β0 + β1x1 + ...+ βpxp) (1.4.6)

Obviously, this leads to a harder interpretation of the β vector.

Instead, GAM models are used to model a non linear relationship between

features (Figure 1.4.2). For example, the 100m lap-time and the height/weight

of a sprinter, intuitively, are not linearly linked. More weight in proportion

to height could mean more muscles and then better speed, but at a certain

point adding weight becomes disadvantageous and can worsen performance.

Also being tall enough is an advantage, but being too tall is a problem if we

think about the acceleration phase. If the model was linear, then it would have

meant that increasing of 100kg the weight of an athlete is good for the lap

time (obviously very hard to think). One could think to bypass the problem
6We will not cover in details this topic. It is sufficient to know that is a set of distributions

that can be written with the same parametrized formula, including and exponent, the mean

and variance of the distribution [19].

17

considering the height/weight ratio, but the problems are only postponed. In

fact, if the relationship between input and output is not linear, could be harsh

to rearrange the features to obtain the desired effect.

Figure 1.4.2: Example of a GAM on a non-linear output.

GAM relax the linear regression assumption that the output is
∑d

i=0 βixi+β0

and assumes the output is a sum of arbitrary functions fj(xj). g and EY are

what we defined for the GLM case.

g(EY (y|x)) = β0 + f1(x1) + f2(x2) + ...+ fp(xp) (1.4.7)

The output is still a sum of features effects but with the possibility of a non-

linear relationship between between each feature and the target variable Y7.

1.4.4 Decision Tree

Linear regression and logistic regression models fail in situations where the re-

lationship between features and outcome is nonlinear or where features interact
7Most modifications of the linear model make the model less interpretable and inherently

more complex. Although, the power of GLM and GAM, our preference will go to linear

models.

18

with each other [1].

Decision trees (Figure 1.4.3) are capable of overcoming this problem. The

dataset is split multiple times, according to certain criteria and tests on the

attributes. At the end of this process, we obtain a group of leaves, which are

grouped elements with the same features. To predict the outcome in each leaf

node, the average outcome of the training data in this node is used.

Figure 1.4.3: Example of a decision tree on the iris dataset.

The interpretation of these trees is simple. Starting from the root node,

we traverse the tree, following the test that respects the characteristics of the

selected point. Once reached the leaf node, the output is predicted. In this

way, we are conscious in every moment of why the model has predicted a class

because the chain of tests followed is known.

However, decision trees can create over-complex trees that do not generalize

the data well (overfitting). Furthermore, decision trees can be unstable because

small variations in the data might result in a completely different tree being

generated. This leads also to the consideration that predictions are neither

smooth nor continuous with respect to the X variables, because of the constant

approximation process of subsetting the dataset [20].

19

1.5 Local Model-Agnostic Techniques

As we said, model agnostic techniques guarantee flexibility. In this section we

will discuss one of the major techniques for local explainability. In particular,

we will focus on Local interpretable model-agnostic explanations as the most

inspiring for our new technique described in chapter 2. There are several tech-

niques such as SHAP values8, but we will maintain the focus on LIME, which

is the technique we referred as the base for our new approach.

1.5.1 Local interpretable Model-agnostic Explanations (LIME)

LIME is an explanation technique that explains the predictions of any classifier

in an interpretable and faithful manner, by learning an interpretable model

locally i.e. around the prediction [12]. An explanation needs to use a human-

friendly representation to be useful, so in most cases we will retain only the

most important variables in a locality of the individual to interpret, reducing

the dimensionality of the explanation .

We can define g ∈ G a model in the class of interpretable models, which

has to approximate the original model f . We define Ω(g) as a measure of

the complexity of the explanation. Given x and z points of a model f to be

explained, we define πx(z) as a proximity measure between z to x, so a locality

of z from x. Let L(f, g, πx) be a measure of the error of the approximation g in

respect to f . Most of the time a weighted squared loss is used as L. The idea

behind LIME is to minimize L(f, g, πx) while keeping Ω(g) low enough. Than

find the optimal g:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (1.5.1)

We want to approximate the ML function f , in a locality of x. To do that, we

sample points from all over the f domain, weighted by πx, usually implemented
8Giving a short overall, SHAP interpret the impact of having a certain value for a given

feature in comparison to the prediction we would make if that feature took some baseline

value.

20

as a gaussian kernel:

πx(z) = e−
||x−z||2

σ2 (1.5.2)

The approximation g is obtained via K-LASSO, a combination of feature selec-

tion and Lasso regression. LIME chooses only the K most important features

because explanations with hundreds of variables could be chaotic and harsh to

understand. Theoretically, we may choose any kind of interpretable model as a

surrogate model e.g. Decision Trees, Logistic Regression, GLM, etc.

Thinking about a 2-dimensional example, we are building the best linear

equation which approximates the ML function f in a certain neighborhood (Fig-

ure 1.5.1).

Figure 1.5.1: LIME functioning intuition [12].

An interesting example is LIME applied to image data. One could just high-

light the super-pixels with positive influence regarding a specific class (presence-

absence of a characteristic). This approach gives an immediate intuition as to

why the model thinks an image contains a certain object or is of a certain class

(Figure 1.5.2). This kind of visualization enhances trust in the classifier (even

if the prediction is wrong), as it shows how the model is reasoning.

21

Figure 1.5.2: Why does this image contain a cat? LIME explanation using

superpixels.

1.5.2 Generation and Weighting Step

To generate the local approximation around a point x, LIME generates n points

x′i all over the Rd space9, then also in faraway regions from x. Essentially we

are generating a new dataset in which the X are given by the generated x′i. To

obtain the Y values, we use the ML function f : we compute f(x′i), in this way

we obtain Y = f(X). Hence, we are simply plugging each x′i to the surface of

f . A 1D example is shown if Figure 1.5.3.

Moreover, we need a fair way to generate X. LIME standardizes all the

features with x−µ(x)
σ(x) , then we sample from each variable separately, as if the

variable is gaussian. In this way, we will have more points near the variable

mean and fewer far away from it. For Categorical variables the approach is

similar: we sample the category ID randomly, the probability of obtaining a

given category is the same as in the original dataset.

Once the points are generated, we want to weight them referring to their

distance to x, since we are not interested in far-away points. Like shown in 1.5.2,

LIME uses a Gaussian kernel. If we define the distance as D(x′i, x) = ||x′i − x||
9Some works tried to generate points only close to reference point x, but still present issues

[21] [22].

22

Figure 1.5.3: LIME Sampling.

and kw the kernel width:

πx(x
′
i) = e−

||x′
i−x||2

kw (1.5.3)

πx(x
′
i) returns a value between [0, 1], the higher the closer to the reference

point x. The only tunable parameter is kw, which defines the radius of the

circle drawn around the reference point.

1.5.3 LIME Issues

LIME is a powerful method: is one of the few that works for tabular data,

text, and images and has the flexibility of all the model-agnostic methods. On

the other hand, it is not immune from problems. One of them is the intrinsic

instability from two points of view:

• when we submit very close samples, we would expect to obtain similar

explanations.

23

• when we perform different explanations on the same sample, we would

expect to have the same result.

First of all, we define the notion of robustness as something concerning

the prediction’s explanation concerning changes in the input leading to that

prediction. It means that if the input being explained is slightly modified, then

we expect the explanation to change a little, according to the modification [23].

Keeping this definition, LIME is not considered robust: two very close points

can have completely different explanations.

Furthermore, LIME is unstable because repeated explanations, with equal

settings, may have different outcomes. This is due to the generation step, which

creates a different dataset for each LIME explanation [24].

24

Chapter 2

Global-Lime

The goal of Global-Lime is to create a global model-agnostic explanation tech-

nique inspired by the LIME approach on local explanations, both in regression

and classification. The idea is to create an ensemble of interpretable models (lin-

ear regressions) spatially separated, that approximate well an unknown curvy

ML model function f(X); with X ∈ Rd d-dimensional space and Y = f(X) ∈ R.

In regressions, we consider Y as our continuous variable predicted by the ML

model, in classification Y can be regarded as the probability of class C, namely

P (X = C).

The macro-steps are:

1. Generation Step: generate points all over the domain of the ML model,

contained in the Rd space.

2. Clustering: create clusters exploiting generated points. In each one, a

linear regression is fitted to approximate the points in the cluster. The

final result is a group of clusters, each one containing a regression, that

"covers" well the ML f surface.

25

2.1 Generation Step

Differently from LIME, in Global-Lime we want to uniformly sample in the

fairest way possible the whole space. Not existing a reference point, here there

is no notion of weight like in LIME. To create a lattice to cover the space we

need n points for each variable, then if d is the number of dimensions nd points,

which is unfeasible with a high number of variables. We can use a sampling

strategy that covers well the ML function with fewer uncorrelated points and

that guarantees more evenly sampling, such as Sobol sequences (Figure 2.1.1)

[25].

(a) 2D Pseudorandom sequence. (b) 2D Sobol sequence.

Figure 2.1.1: Sampling Examples.

Sobol sequences are quasi-random low-discrepancy sequences. It means that

are sequences of values with the property that for all values of M, a subsequence

x1, ..., xM has a low discrepancy. The discrepancy of a sequence is low if the

proportion of points in the sequence falling into an arbitrary set B is close to

proportional to the measure of B, as would happen on average (but not for

particular samples) in the case of an equidistributed sequence. These sequences

use a base of two to form successively finer uniform partitions of the unit interval

and then reorder the coordinates in each dimension.

26

Here we report the mono-dimensional case. We start with initialization

numbers mi, at least a tuple of two (m1,m2) randomly chosen real numbers.

However, each assumed mi must satisfy two criteria:

• it must be an odd integer.

• it must be less than 2i.

Practically m1 < 2, m2 < 22, m3 < 23 and so on. However, this does not

mean that any integer that satisfies these two criteria would generate a good

quality low discrepancy sequence1. The values of the next mk can be derived

by (m1,m2) with a formula starting from the chosen primitive polynomial. For

simplicity, here we do not report it.

Then, we create direction numbers vi = mi

2i and gray code numbers gn,

obtained from the index n of the number we want to generate in the series:

G(n) = n ⊕ ⌊n/2⌋, with gn its binary representation. Sequence number are

generated as:

xn = g1v1 ⊕ g2v2 ⊕ g3v3... (2.1.1)

An example of sampling for a 3D function is shown in Figure 2.1.2.

2.2 Partitioning (Clustering)

The idea of this phase is to group a certain number of points, to create partitions

(or clusters) in which a criterion, such as R2, is locally optimized, leveraging

an approach inspired by MOB (Model-based Recursive partitioning) [27]. The

R2 score or the coefficient of determination provides a measure of how well-

observed outcomes are replicated by a model, so how much the approximated

function is "close" to the real one in terms of outcomes. Here we are searching

for the best linear approximation in each partition, weighting complexity, and

performance. It is clear that if we create very fine-grained partitions, the ap-

proximated model will be very tight to the real one, but the results will be a
1The quality of the random number depends on the set of initialization numbers. There

are a few studies that give the right initialization numbers [26].

27

Figure 2.1.2: Example of sampling for 3D function y = x0sinx0 + x1sinx1.

complete fragmentation of the domain and an incredibly rigid and slow perfor-

mance model. Furthermore, all these considerations are bound to the number

of available sampled points.

The MOB algorithm is structured in these 4 macro-steps [27]:

1. fit a parametric model to a data set.

2. test for parameter instability over a set of partitioning variables.

3. if there is some overall parameter instability, split the model with respect

to the variable associated with the highest instability.

4. repeat the procedure in each of the children until stop conditions are met.

In our case, we will change the instability parameter with a goodness cri-

terion of the approximation in the current partition (equivalent to R2). The

criterion will be described in the next sections.

2.2.1 Model Segmentation Approach

We start describing the ratio behind the MOB algorithm, then we will report

how it fits to our purposes. Consider a parametric linear model M(Y, β) with a

28

d-dimensional vector of parameters β ∈ B and observations2 Y ∈ Y. If we define

a certain objective function, Ψ(Y, β) and we take n observations Yi, M(Y, β) can

be fitted trying to minimize Ψ.

β̂ = argmin
β∈B

n∑
i=1

Ψ(Yi, β) (2.2.1)

β̂ can be found using estimation techniques e.g. maximum likelihood. The

aim is to find a global model which fits all n observations. This task is performed

recursively partitioning the initial domain D in respect to the d variables, until

we find good sub-partitions which locally approximate well f . Roughly speaking,

f represent the selected ML model andM its approximation in a locality created

through the a subset of the n observations and the computation of the β̂.

Given B the number of partitions {Bb} in which each domain will be divided

recursively, the best β̂s can be easily computed locally optimizing Ψ, then min-

imizing
∑B

b=1

∑
i Ψ(Yi, βb). Practically, successive greedy optimization (local)

are performed to obtain the best possible global score function (the minimum

of it). In this case, the number of partitions in which we will split a domain

will be fixed B = 2, in a similar way to what is done in a classic decision tree

(Figure 2.2.1).

2.2.2 Algorithm

The idea is to fit in each node a regression. To assess if the node needs to

be split, the R2 of the node and its number of observations Yi are checked. If

R2 < R̃2, where R̃2 is the minimum R2 to reach in each leaf, and there are

sufficient points, the split is performed. The split is performed in the point

and the variable which in a sense maximizes the difference between the 2 future

partitions, then creating the best regressions in each partition. The best β for

a node are computed putting the derivative of the objective function (score
2For an observation Y ∈ Y, we mean a matrix X of independent variables and a column y

of the corresponding ouput values, then (X; y)

29

Figure 2.2.1: MOB tree example.

function) to zero, then finding its minimum:

∂Ψ(Y, β)

∂β
= 0 (2.2.2)

Summing up the steps are:

1. Fit the model on all the observations of the current node.

2. Fit a regression on the node x and compute the R2 for Dx. If a split

is necessary and possible (R2 < R̃2 and we have a sufficient number of

points), search for z ∈ z1, ..., zd and zi = ẑ which locally optimize Ψ.

3. split the node on zi = ẑ.

4. repeat until stopping conditions for all nodes are met.

2.2.3 Objective Function and Score Function

We can consider as the global objective function Ψ the Mean Squared Error:

MSE = Ψ(X, t, β) =
1

2
(y −Xβ)T (y −Xβ) (2.2.3)

30

where X is a n × d matrix of the observations, containing the independent

variables, and y is the outcome column y = f(X) of dimension n, β is the vector

of dimension d of the coefficients of a linear regression fit on the observations

of a node. Moreover, X is simply a group of observations without the output

column, which is y. Working with the MSE is very similar to working with

the R2 3, so minimizing the MSE means optimizing the R2 (pushing it towards

R2 = 1).

The score function ψ related to a subset of the data X will be the derivative

of the MSE with respect to β:

ψ(X, y, β) = XTXβ −XT y (2.2.4)

We order the dataset Dx of the node x in an increasing way with respect

to a variable zi, then we compute ψ(X, y, β) cumulatively, so increasing the X

matrix with a new observation in increasing order (Xi,p partition p for variable

i). For example if X is composed of 3 rows x1, x2, x3, we compute ψ(X, y, β)

with X =
(
x1

)
, then X =

(
x1
x2

)
and X =

(x1
x2
x3

)
. The βs used in ψ(X, y, β) are

the ones of the regression fitted on the domain Dx of the whole node x. At the

beginning and the end of the dataset, the statistic will be 0, essentially because

we are keeping untouched the whole partition. The point inside Dx that yield

the highest value of ψ represents the best split because it tells us that the range

of the variable until the point considered has the best Least Squares estimates,

the most different from the ones we had for the entire range. Hence, practically

we are minimizing the global MSE through local maximum problems, in which

we find the best points for the split, so the points where the initial regression

with coefficients β on the node x perform the worst. Again, it is important to

underline the βs used in ψ(X, y, β) are the ones of the regression fitted on the

domain Dx of the whole node x.

The dimension of ψ(X, y, β) is d×1. To obtain a scalar which represents our

3R2 is defined as R2 = 1− RSS
TSS

with TSS total sum of squares and RSS Residual Sum of

Squares. After some derivations, the numerator of the MSE is equal to the numerator of R2

apart for 1/2.

31

score function, we sum the absolute value of each ck in ψ(X, y, β) = (c1, ..., cd),

than
∑d

k=0 |ck|.

If we repeat it for all the variables xi, we choose the split point with the

highest
∑d

k=0 |ck| (highest difference from 0).

bestxi
= argmax

p
ψ(Xi,p, yi,p, β) = argmax

p

d∑
k=0

|ck,i,p| (2.2.5)

bestx = argmax(bestx1
, ..., bestxd

) (2.2.6)

Following this approach, the global R2 decreases for each split performed. A

toy example is shown in figure 2.2.2.

Figure 2.2.2: MOB expected Behaviour on a toy example. Here the ML function

is y = x2, if we set the maximum depth of the tree to 2 (so only two leaves),

ideally we will obtain the blue and green regressions, which minimize the R2,

with split point x = 0.

Summing up, we are not explicitly calculating each "right" and "left" regres-

sion to check in which condition the average children R2 is the highest. This

is computationally advantageous because to obtain the β coefficients needed to

compute the R2, we have to do matrix inversions which are computationally

32

expensive. In the same node x, we always use the computed βx and then we

perform only matrix multiplications via ψ(X, y, β) = XTXβ −XT y.

Algorithm 1: Global-Lime iterative algorithm
Given D the initial domain, root the root of the tree with domain D

R̃2 maximum R2, Ñ minimum points in a partition

Nj the points in a node j

stack = root

foreach node in stack do

if R2(node) < R̃2 AND nSamples(node) > Ñ then
β = LinearModel(Nj).coefficients

variable, split-value = max(ψ(Nj , β))

node1, node2 = splitNode(node, variable, split-value)

node.leftChild = node1

node.rightChild = node2

stack.append(node1, node2)

else
node.regression = LinearModel(Nj)

end foreach

return root

2.3 Computational complexity

The difference between using our custom criterion and the leftside/rightside

regression approach is a better computational complexity. To assess this, we

inspect a single operation that is done in a node at a particular step. Suppose

in the node we have n points of dimension d (n × d matrix). Recalling the

computational complexity of some basic matrix operations for a matrix M a× b

[28]:

• multiplication: 2ab2

• addition/subtraction: ab

33

Algorithm 2: Global-Lime recursive algorithm
Given D the initial domain, root the root of the tree with domain D

R̃2 maximum R2, Ñ minimum points in a partition

Nj the points in a node j

if R2(node) < R̃2 AND nSamples(node) > Ñ then
β = LinearModel(Nj).coefficients

variable, split-value = max(ψ(Nj , β))

node1, node2 = splitNode(node, variable, split-value)

node.leftChild = recursiveGlobalLime(node1)

node.rightChild = recursiveGlobalLime(node2)

else
node.regression = LinearModel(Nj)

return node

• transpose: ab

• inverse: a3 (square matrix)

• multiplication (a× b and b× c): 2abc

The complexity for computing 2 regressions for (n−k) and k points of dimension

d (then we focus on n and not k which vary from 1 to n, so anyway a quantity

expressible as dependent from n):

C(regressions) = 2(n− k)2d+ 2k2d+ 2d3 =

O(n2d+ d3)
(2.3.1)

The complexity of XTXβ −XT y, supposing β is given (transpose, I multipli-

cation, II multiplication, subtraction):

C(∂MSE
∂β) = 2d(n− k) + (2d(n− k)2 + d2) + 2d(n− k) + d =

4(n− k)d+ 2d(n− k)2 + d2 + d =

O(n2d+ d2)

(2.3.2)

34

2.4 Sampling

Another important factor in the whole process is the number of points on which

the model is built.

First of all, we want to assure that we fairly sample the ML function, we

do not want to lose any type of irregularity and changes of behavior in the

original ML function. This means that if we use a not sufficient number of

points, we could lose important characteristics of the ML model. Making a

naive example, if we use only two points (symmetric in respect to the origin) to

sample a parabolic function y = x2, we obtain a constant approximation y′ = K

which completely erases the original function4.

Figure 2.4.1: Example of misleading sampling.

Then we understand that a minimum number of generated points is required
4It is very interesting how the concept we are seeking is quite similar to the Nyquist-

Shannon sampling theorem. The Nyquist-Shannon sampling theorem is used with signal

processing and establishes a sufficient condition for a sample rate that permits a discrete

sequence of samples to capture all the information from a continuous signal of finite bandwidth.

The problem with that is that requires knowing the frequency and the explicit form of the

ML function, which is not available, expressible, or transformable most of the time.

35

to obtain a minimum adherence of the approximated model to the ML function.

On the other hand, we cannot search the correct number of points using

an approach such as a grid search [29], performing every time the complete

algorithm due to the great expense of computational power and time. The idea

is to create a criterion to check a priori, without running the whole algorithm, the

minimum number of points which guarantees that we do not lose information,

using only the ML function, the number of points, and criteria that summarizes

the concept of not losing information. To do this, we can exploit the incremental

nature of the Sobol sequence. Indeed, given 2i points computed yet, if we are

interested in computing 2j points with i < j positive integers, we can simply

"restart" from the 2i points and then iteratively add the remaining 2j−2i points

continuing from the last of the previously generated points.

Summing up, the core concept is to obtain the correct number of points which

reduces as much as possible, given a certain threshold, the loss of information

as described in the previous paragraph. Furthermore, we need a measure of the

variation of the "output" value of the sampled points.

2.4.1 Total Variation Approaches

To simplify the exposition, in this section we will start to discuss the monodi-

mensional case. Considering as ML function y = f(x), we will sample the

function using Sobol generated points. For a fair coverage of the domain, the

number of Sobol points is always a power of 2 (2m points) [30] [31]. Intu-

itively, we can order the N points in respect to a variable (in our case the

only one x), and then compute the absolute value of the difference between

δi = |f(xi+1)− f(xi)|. Gathered all the δ, we can sum them in VN =
∑N−1

k=0 δk.

VN represents the mono-dimensional case of an approximated version of the

total variation for a discrete ordered dataset such as ours Sobol generated.

The idea behind is that the approximated version of the total variation is

a non-decreasing function that will converge when reached a certain number of

points and gives us an idea of how good we sampled the curve. This is done

36

by looking at the convergence of V : reached Ñ points, V becomes stable with

a confidence interval. Summing up, the total variation for a single variable

function f and a partition of ordered points P = {x1, ..., xN} is defined as:

VP (f) =

N−1∑
i=0

|f(xi+1)− f(xi)| =
N−1∑
i=0

δi (2.4.1)

So in a mono-dimensional case, we order the points and we compute the

total variation until we reach a satisfying result in terms of VP stability.

2.4.2 Decision Tree Regressor and Grid Structure

To extend this concept in multiple dimensions, we tried to apply a novel ap-

proach to compute the total variation in a n-dimensional domain (also valid

to calculate the approximated Riemann integral of a function). The idea is

to run a DecisionTreeRegressor [32] to create locally valid and constant ap-

proximation of the function. Then, we need to extend the boundaries of each

"hyper-volume" in a sort of grid as shown in Figure 2.4.2. This is performed

Figure 2.4.2: 2D grid structure obtained from a DecisionTreeRegressor

because in multiple dimensions we would not have a concept of the ordering

of the points. So we create a lattice of rectangles that can be ordered variable

by variable, to compute the total variation for various groups of points. Hav-

ing applied this for an increasing number of points, we would have seen the

total variation converge at a certain step. Hence, the nearer we are to the real

37

total variation value, the higher the probability that we have not missed any

particular variations in the function.

However, the approach theoretically worked, but practically the computa-

tional power required was extreme. We will make some examples to be clearer.

With only one independent variable, we have only to subtract elements, after

having sorted the domain. With two, the situation is as in 2.4.2 where you

obtain a matrix, then for each row and column you have to compute the total

variation. With three, we have a tensor to elaborate. Each "rectangle" contains

inside a matrix for which we have to compute the total variation for each row

and column. With four, each "rectangle" has a tensor inside. It is evident that

adding simply a dimension brings the problems to another level of complexity.

The experiment we performed proved this method to be unfeasible for our aim,

so we decided to move on different topics.

38

Chapter 3

Model Architecture

In this section, the model architecture and the implementation created is de-

scribed1. We will start inspecting the main class for the explanation which is

Glime, then we will focus on the real model inside, a MOB class instance with

our custom score function plus an optimization on the calculation of the score

function.

3.1 Glime class

The Glime class is the core of all we described before. Given2:

• the predict function of a ML model.

• the range of values for each feature (or the training dataset from which

they will be extracted).
1All the code which will be described is available on github. In the repository the python

MOB implementation, the Glime class, and test jupyter notebooks containing useful examples

are present. Note that we will describe only the central concepts of the library, without

lingering too much on utility modules.
2More parameters are available as input elements, but in this phase are not fundamentals

and could lead to confusion, so only the most important are listed. If you are interested, you

can check the __init()__.

39

https://github.com/giorgiovisani/Glob_Lime/tree/main/pymob/mob

• the number of Sobol points to be sampled.

• a dictionary of categorical features with the respective encoder/decoder.

the instance creates an approximation of the ML function and it is capable of

giving, for each predicted element, the relative weight for the single features

plus the intercept. In the specific, the core methods are:

• fit(): here we generate the Sobol points, we rescale them for each vari-

able, given the range of values for each feature. After the fit() is con-

cluded, the inside MOB instance is fitted and we are ready to explain in-

stances through the other methods.

• local_coeff(x): is the method which explain an instance x given as

input. It returns the coefficient for each variable (both numerical and cat-

egorical3.). If it is set through mode, it is possible to visualize graphically

in a way similar to LIME a horizontal bar chart of the coefficients. An

example is shown in 3.1.1.

• global_coeff(): shows the overall situation throughout the whole do-

main for the coefficients of all the variables. This is done through a

weighted average of the coefficients in all the leaves, depending on their

size4.

• predict(x): uses the underneath MOB instance to perform a predict on a

point x, returning the output value of the model.

Practically, Glime is a wrapper class that exposes utility functions and hides

the complexity of the real underlying model that is MOB.

3.2 MOB class

MOB represents the Python implementation of MOB algorithm described previ-

ously, in which our custom score function ψ(X, y, β) = XTXβ −XT y has been
3See section 4.5.2
4Currently the size of a leaf is represented by the numbers of points contained in it

40

Figure 3.1.1: Feature importance example bar-chart on Boston dataset.

optimized. Then MOB builds the tree structure recursively splitting a node start-

ing from the root that contains the starting domain, using the score function,

until the stopping criteria are met (we reached a sufficient R2 or the parti-

tion is too small yet). In each leaf is present a scikit-learn LinearModel which

approximates the slice of the domain of its responsibility.

Furthermore, the nature of MOB is compliant with sklearn.base.

BaseEstimator, exposing the methods fit(), predict() and the attribute

is_fitted_. In particular:

• once initialized a MOB instance, it is possible to call the method fit. The

signature of fit is fit(X, y, weights=None), such as a scikit-learn classic

estimator. Moreover, X represents the dataset on which we want to train

the model. The dataset can be potentially anything with the caveat to

contain continuous variables. In our case, MOB.fit() is used with the

Sobol points generated inside Glime. y represent the output or target

values in respect to X. This means that y = fML(X), where fML(·) is the

ML function, practically the model.predict of the related ML model. It

is also possible to set the initial weights of the function. They are a mask

41

of (True, False), that tells us which point we have to use and which not.

If None, the whole X is considered as the initial dataset.

• once the model has been fitted, it is possible to use predict(X), which

gives the prediction of a LinearModel related to each row of X. Through

the module mob_utils, you can retrieve with get_pred_node the node

related to a single point x and then simply doing node.regression the

regression with the coefficients and the intercept, that represent the ex-

planation5.

The nodes that constitute the tree of MOB are instances of the class Node in

classes.py. A node contains several attributes, the most important are:

• split_var: the variable on which the node has been splitted.

• terminal: True if the node is a leaf.

• left_child and right_child are the child nodes.

• domain is an instance of the class RealDomain and represents the domain

of interest of the node.

• regression contains the sklearn.linear.LinearModel.

RealDomain implements the abstract class AbstractDomain and represents

the support for multi-variables continuous real domains. It exposes methods

such as contains(x), insert(x) and most importantly split(var, value)

that splits the domain in respect to a variable and a value, returning two not

overlapped and complementary (in respect to the parent domain) domains. To

do that, RealDomain is composed by a dictionary of RealIntervals, which

represents a continuous interval (with the possibility to set the bounds open

or closed) for a single variable, with "lower-level" utility functions for checking
5A sklearn.linear_model.LinearRegression has been used, so to retrieve the coefficients

you can access the attribute coef_. However, it is not the focus in MOB. In fact, it is some-

thing we want to do in Glime and it is possible without using external modules directly via

Glime.local_coef(x).

42

if it contains an element, splitting the interval, and so on6. The split that we

perform is binary and retains the nature of the boundary of the original interval.

For example, if the original interval I = [0, 1], the generated sub domain with

split on 0.5 will be Il = [0, 0.5) and Il = [0.5, 1]

3.2.1 Optimization of the Score Function

To select the best variable for the split we:

1. order the subset of the dataset regarding a node.

2. compute in an incremental way the score function ψ adding row by row

until the dataset is exhausted.

3. select the value for that variable i that maximizes the score function ψ.

4. select the variable j with the best ψmax = ψj .

Looking at point 2, we can think to compute the value of the score function

only for the unique values in a column of the dataset. In fact, if we have multiple

identical values, it is useless and potentially harmful to compute the coefficient

in "not existing" splitting points. Since the split is virtually a hyperplane that

cuts the space into two parts, e.g. if the split is performed in x0 = 0, we cannot

bring some 0s in the left partition and others on the right one. Practically,

we are checking the score value for a split that is not achievable. Hence, we

check the score function only on the first occurrence of a value7. Therefore,

each time we add k rows, where k is the number of occurrences of the value we

are considering (the first row for the first iteration or the previous split point

checked).

Another small optimization concerns the parameter minsplit passed in the

__init()__ of MOB: it controls indirectly the minimum required size of a leaf,
6All the classes described are contained in the file classes.py.
7An important consideration that can be done is that for the nature of the Sobol points

it is not possible to have the same value in a certain column. The optimization has been

performed if one would use MOB as a classic ML model.

43

setting a minimum number of points contained in a leaf. Whereas it is not

possible to create a node with a number of contained points less than minsplit,

then the split points which will create these situations are excluded a priori from

the computation.

Third, recalling ψ(X, y, β) = XTXβ −XT y, we said that we compute it by

adding from 1 to k row to the X matrix. Ideally, we have Xi that represents

the subset of the dataset for the value of a split i and Xj , which is the "next"

matrix obtained from Xi adding k rows. Xi is a submatrix of Xj , for which we

have already computed ψi(·): the idea is to reuse the components of ψi(·) and

add only the part of the sum related to the recently added rows. If we call χk

the matrix made from the k rows we want to add to Xi, the resulting formula

is:

XT
j Xj = XT

i Xi + χT
k χk (3.2.1)

and the same is valid for XT y (the k new y are denoted as γk):

XT
j yj = XT

i yi + χT
k γk (3.2.2)

so putting everything together and adding the β:

ψj(·) = XT
i Xiβ + χT

k χkβ − (XT
i yi + χT

k γk) = ψi(·) + χT
k χkβ − χT

k γk (3.2.3)

3.2.2 Advanced Optimization

The previous section described how to optimize matrixes multiplications when

we extend them by adding iteratively rows at the bottom of the matrix. Hence,

we are optimizing the single operation of computing the score, but the score

continues to be computed in each node.

If we focus on how the score function is computed, we notice that essentially

we compute all the information we need to perform the split in the root node.

Moreover, in the root of the tree, we have the entire dataset of Sobol points,

we order it and we compute the score cumulatively row by row. The idea is to

reuse these pre-computed values to perform the expensive matrix multiplication

only once in the root. In fact, the elements of the score function ψi(Xi, yi, βi)

44

in a certain node, so XT
i Xi and XT

i yi, can be derived from the computation in

the root.

Take as an example the element XT
AyA for a node A. We start computing

in the root node XT
j yj = (c1,j , ..., cd,j) as we discussed before for each sub-

matrix for j ∈ 1, ..., n, where n is the number of Sobol points. To simplify the

exposition of the intuition, now suppose the score function is only composed by

this term and we are computing the score for a fixed variable d̃, then X and y

are ordered in respect to d̃. Then the score for Xj and d̃ is vj =
∑d

k=1 |ck,j |.

Doing this for all the j ∈ {1, ..., n}, we obtain a vector v = (v1, ..., vn), with the

precomputed scores for all the splitpoints cumulatively. If one want to compute

the score from row 1 to row k < d, it is possible simply taking vk. But if we

are in a subpartition of X, e.g. from row α to row β with α < β ∈ {1, ..., n} we

cannot compute the value in the same way, but such as a difference of values. In

particular the simplified score for the subpartition {X}(α,β) is equal to vβ − vα.

Extending it for all the d variables, we will have vectors vj with j ∈ {1, ..., d}

and then the score for variable j and for a sub-partition {Xj}(α,β) is equal to

vj,β − vj,α.

The same approach can be replicated for the term XTXβ̂, but with the

difference that β̂ changes from node to node. Thus, we can simply save XT
i Xi

for all the i ∈ {1, ..., n} in d vectors w (one for each ordering variable), then

multiply the cached value for β̂ later. Note that here we are saving a matrix of

size d× d and not a scalar, but the functioning is the same {X}T(α,β){X}(α,β) =

wβ − wα, given a fixed dimension d̃, where wβ = {X}T(1,β){X}(1,β) and wα =

{X}T(1,α){X}(1,α).

Summing up, we reduce drastically computation time removing matrix mul-

tiplications from all nodes except for the root and substituting them with simple

45

substractions, but inevitably we increase memory consumption8. In fact, we per-

form only a big matrix multiplication in the root note9 and we maintain two

groups of d vectors respectively for XTX and XT y. Furthermore, during the

execution when a node becomes a leaf we can delete the score parts regarding

its part of the domain, saving some memory. This becomes very simple if we

think of the vectors such as dictionaries from which we remove elements when

they are not useful.

Formalizing what we exposed in the paragraph, we represent a sub-partition

of a matrix M of dimension n× d from row α to row β, with α < β ∈ {1, ..., n},

as {M}(α,β):

M =

m1,1 ... m1,d

...

mα,1 ... mα,d

...

mβ,1 ... mβ,d

...

mn,1 ... mn,d

{M}(α,β) =

mα,1 ... mα,d

...

mβ,1 ... mβ,d

 (3.2.4)

We express that is sorted10 in respect to a variable d̃ ∈ {1, ..., d} with

{Md̃}(α,β). Given X the initial sobol matrix, y = fML(X) the value of the

ML function and β̂ the coefficients of the regression in a node, we compute for
8Several adjustments are possible. While performing the optimized multiplication, we can

remove rows from the loaded Sobol dataset when not useful, whilst adding the computed

coefficient in the vectors. This can be done by finding first the ordering for each variable

d̃, computing the first coefficient for each variable, then deleting the first row of X from the

memory and proceeding this way until the matrix is all consumed. Practically, X is used only

in the root node. Doing this, if one wanted to retrieve the values for the split point, it would

access from disk only the single tuple containing that value. The same is valid for β̂s of the

regression. In this way, we use half of the memory needed, with the price of slower access to

the actual value of the split. This will be something considered in future works.
9Actually we are performing multiple matrix multiplications, but optimizing the product

is like doing one big matrix multiplication d× n n× d and d× n n× 1.
10Sorted before partitioning.

46

each d̃ ∈ {1, ..., d}, j ∈ {1, ..., n} :

vd̃,j = {Xd̃}T(1,j){yd̃}(1,j) = (c1
d̃,(1,j)

, ..., cd
d̃,(1,j)

) (3.2.5)

then we obtain the first d n-dimensionals vectors (n×d×d tensor, (n×d)×d×1

matrixes):

vd̃ =

vd̃,1

...

vd̃,n

 =

(
c1
d̃,(1,1)

... cd
d̃,(1,1)

)
...(

c1
d̃,(1,n)

... cd
d̃,(1,n))

)

v =
[
v1 ... vd̃ ... vd

]
(3.2.6)

similarly we do the same for the other term:

wd̃,j = {Xd̃}T(1,j){Xd̃}(1,j) =

ω1,1

d̃,(1,j)
... ω1,d

d̃,(1,j)

..

ωd,1

d̃,(1,j)
... ωd,d

d̃,(1,j)

 (3.2.7)

where ω is the generic element of the XTX matrix. Then we obtain the second

tensor (a tensor n× d× d× d, n× d× (d× d) matrixes):

wd̃ =

wd̃,1

...

wd̃,n

 =

ω1,1

d̃,(1,1)
... ω1,d

d̃,(1,1)

..

ωd,1

d̃,(1,1)
... ωd,d

d̃,(1,1)

...

ω1,1

d̃,(1,n)
... ω1,d

d̃,(1,n)

..

ωd,1

d̃,(1,n)
... ωd,d

d̃,(1,n)

w =
[
w1 ... wd̃ ... wd

]

(3.2.8)

so that the score for a variable d̃, and the subset (a, b) of the sorted matrix

{Xd̃}(a,b), {yd̃}(a,b) and β̂ of the node is:

ψ(·) = (wd̃,b − wd̃,a)β̂ − (vd̃,b − vd̃,a) (3.2.9)

47

where only β̂ needs to be computed. Hence recalling 2.3, the computational

cost for a single operation in a node becomes (plus a subtraction of 2 d× d and

2 d× 1 matrix instead of the multiplications):

C(∂(MSE)
∂x) = 2dn+ (2dn2 + d2) + 2dn + d+ (d2 + d) =

4nd+ 2dn2 + d2 + d+ (d2 + d) =

2d2 + 2d =

O(d2)

(3.2.10)

However, the total memory cost is high, in particular for d very big (where f is

the size in byte of a floating point number, minsplit << n and d << n):

m = (n− 2minsplit)d[(d ∗ d ∗ f) + (d ∗ 1 ∗ f)] =

8d2f(d+ 1)(n− 2minsplit) =

O(fd2(d+ 1)n) =

O(fd3n)

(3.2.11)

Also hybrid approaches are thinkable, in which we "cache" only parts of the

products11 or e.g. only XT y which is only d× 1.

It is worth also mentioning that fixing d and n, XTX is invariant for all the

applications of Glime except for the scaling (but it is a reversible operation),

because Sobol sequences points without the scrambling option are fixed. Also,

the ordering is fixed. Hence, some kind of pre-computing of matrixes and indices

is thinkable in future applications.

Another optimization one could think of, and that is implicit in the whole

reasoning above, is to optimize the sorting process in all the nodes. In fact, we

perform it in every node, then we can simply save a parallel matrix with indices

of sorting for each variable so that they are selected in a subset from a node,

using the information of its domain of competence (in the implementation are

the weights). This could lead to a small improvement in performance, because
11For example, we can think to save only k * γ XTX products, where k are the best/most

promising k split-point in the root node, so the points in which ψ(·) is high, and γ is the

"neighborhood" of that points. Obviously, after the first split, we have no guarantees that

one of that points will be used.

48

if we use a fast algorithm such as quicksort, the computational time for a dataset

long n and d variables is O(d ∗ nlogn) [33], so almost linear yet.

Note: all these optimizations still need to be implemented.

3.3 Other Modules

Inside the repository are present other modules that contain utilities and other

useful methods. Inside glime_utils.py there are some methods used also by

the Glime class. For example get_sobol_x() and get_sobol_y() to generate

the Sobol points and rescale_sobol_points() to rescale them in the range of

the variables passed in the training dataset or specified in a dictionary containing

variable:range. Inside mob_utils.py are present methods to retrieve nodes

inside MOB, to interact with the tree, and other methods used by MOB during the

expansion (e.g. the workhorse function for computing the scores). A module

specific for visualization, called visualize.py and based on Altair and Plotly

has been developed to visualize the regressions, the domains created by MOB,

the coefficients of Glime, and the surfaces of Glime in two dimensions when

possible and useful.

49

Chapter 4

Testing and Results

4.1 Testing MOB Implementation Behaviour

Once described the implementation of Global-Lime, the next step is to conceive

a series of tests to inspect if the model performs correctly. The initial test will

be performed on ad-hoc functions and dataset, then on real data.

4.2 Test on DomainTree Custom Function

Summing up, the core of Global-Lime is to take an arbitrary ML function f and,

through a fair sampling strategy, to build a series of not overlapped hyperplanes

which approximate f . Hence, we obtain an ensemble of explainable models, each

one valid in a certain partition of the initial domain.

The first test we thought about is to see if the model is capable of recon-

structing with a certain margin a model which is very similar to how Global-

Lime works for. Hence, we built a tree structure that recursively partition a

domain, retaining for each variable a fixed percentage of their initial domains as

a minimum split, with the possibility of a random stop in the creation process

to allow generating more diverse tree models. This is done because we want

that the dimension of each the partition will be large enough, in order to have

50

a sufficient number of points to reconstruct the hyperplane with Global-Lime.

The tree fits in every obtained partition a random linear model1. An example

of DomainTree behaviour is shown in Figure 4.2.1.

Figure 4.2.1: Example of a DomainTree.

Each leaf of the tree represents a partition spatially not overlapped with the

others. DomainTree takes as input the variables and their initial domains, then

recursively partition the domain with the rule: left leaf has the right bound not

included and right leaf has the left bound included, the other bounds remain

unchanged.

For clarity we make an example: if we have only one variable, the starting

interval is [0, 1] and the split point is x = 0.5, we will have nodeleft = [0, 0.5)

and noderight = [0.5, 1]. Acting this way garantees to obtain spatially separated

domains with a simple and clear rule. The result for a bidimensional case (two

variables (x0, x1)) is shown in Figure 4.2.2.

For sure, it could be helpful to visualize what happens in a single dimension,

so with the initial domain of a single variable and only one output variable. The
1The linear model are LinearModel of sklearn in which the parameters coef_ and intercept

are randomly generated by a uniform distribution between parametric [a, b].

51

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

Figure 4.2.2: Grid structure of DomainTree domains. The initial domains for

the variables are x0 ∈ [0, 1) and x1 ∈ [0, 1) and the tree maximum depth was

fixed to 5. In each rectangle, a plane with random coefficients is inserted. Note

that this figure represent the partitioning of the domains of x0, x1, y is not

depicted.

result is shown in Figure 4.2.3

4.2.1 Key Performance Indicators (KPI) for DomainTree

To inspect if the model correctly reconstructed the DomainTree function, we

followed DomainTree approaches:

• qualitative: we inspected the functions created from a graphical point of

view to see whether the overall behaviour is the expected one, e.g. in Fig-

ure 4.2.4 of the idea behind this KPI. We compare only the reconstructed

domains (independent variables X) and not the output (y).

• quantitative: we developed 3 KPIs which consider the number of par-

titions, the overall R2 (as a weighted average in respect to the leaf size)

and the number of matching partitions between the models.

52

Figure 4.2.3: 1-dimensional case for tree domain. The initial domains for the

variables is x0 ∈ [0, 1). The blue lines represent the regressions created by

DomainTree with coefficients between [−5, 5]. The red lines represent the dif-

ferent leaves, while the yellow dots are the sampled points using Sobol sequence

(26 points).

Figure 4.2.4: Comparison of two domains. Here to highlight the differences

and show the idea behind the KPIs two random DomainTree are reported, then

overlapped in the last figure. In this case, we would consider the result as poor,

due to the fact that no partition matches another one.

The quantitative tests are namely:

• partition number: checks the number of partitions created by the DomainTree

and Glime so that the difference can be computed.

• R2: checks the minimum, maximum and average R2 weighted by the

53

partition size obtained by Global-Lime.

• matching partitions: checks the number of partitions that coincide be-

tween Global-Lime and DomainTree in respect to a certain confidence

interval. The confidence interval is a multiple of the minimum distance

between Sobol points δ(d, n) = 1
2

√
d

n , where d is the number of dimensions

and n is the number of points [34]. Global-Lime can perform the split only

on a value that coincides with a value present in the dataset, hence even

in case of optimal performance, it could be possible a slight waterfall mis-

alignment between original and reconstructed partitions. Thus, even only

one slightly shifted partition can lead to a compromised reconstruction of

the following ones. For this reason, a confidence interval is needed.

A partition P ∈ Rd is valid if all the intervals that compose the partition

match an original one. Having defined the minimum distance between two

points δ(d, n) and a constant γ positive integer, an interval [a, b] matches

with [α, β] if:

a ∈ [α− δγ, α+ δγ] ∧ b ∈ [β − δγ, β + δγ] (4.2.1)

So with δ(d, n) = 1
2

√
d

n :

a ∈ [α− 1

2

√
d

n
γ, α+

1

2

√
d

n
γ] ∧ b ∈ [β − 1

2

√
d

n
γ, β +

1

2

√
d

n
γ] (4.2.2)

As already shown in Figure 4.2.2, it is possible to extend the experiment in

more than one dimension. However, an interesting case of visualization can be

the 3D case, so when we have 2 independent variables and a dependent variable

computed in this case as the outcome of the linear regression in a certain region

of the initial domain. An example of a randomly generated 3D-tree function, to

better visualize the partitioning image 4.2.2 shown before, is depicted in Figure

4.2.5.

54

(a) Upper view of a 3D

DomainTree.

(b) Front view of a 3D

DomainTree.

(c) Lateral view of a 3D

DomainTree.

Figure 4.2.5: 3D view of a DomainTree with z = f(x, y) = β0 + β1x+ β2y from

-8 (violet) to 8 (yellow). x and y are the independent variables.

4.2.2 Results

From a qualitative point of view, Glime and then our MOB implementation per-

formed very well on this type of task. If MOB is run with a sufficient number

of Sobol points, then the original ensemble of linear models created by the

DomainTree are perfectly reconstructed. Obviously, if the number of Sobol

points is too small, we are not capable of capturing all the variation on the

original model, then we miss some hyperplanes and the partitions are less in

number. This affects the global R2 of MOB2. In the table 4.1 are reported

the outcomes of some experiments. The metrics inspected are the KPI men-

tioned above plus a delta on the number of created partitions (delta-p = δp =

textglime_partition_number - original_partition_number). For all the

experiments:

• γ = 2

• minplit which is the minimum percentage referred to the initial range of
2Note that the global R2 is computed as the weighted average of the R2 in the single leaves.

The weight is given by the number of points "contained" in the leaf.

55

an interval to retain3 is set to 0.05/0.1. Thus it is the minimum size in

percentage for each variable.

• tree-depth=6, which means 6 levels of splitting starting from the root

and proceeding to the children (5 levels of split for the 2 children generated

from the root etc.).

• the seed for the experiment is seed=42.

• the coefficients of the regression are sampled from a uniform distribution

in [-5, 5].

• the interval for each variable is [0, 1].

Regarding the internal MOB instance of Glime, the parameters are set to:

• minsplit = 10.

• stopping_value = 0.99.

• stopping_crit = "R2".

As we can see in Table 4.1, with the tree function is always possible to

achieve a good R2 score that is the core of the whole experiment (see if MOB

is capable of retrieving multiple discontinuous hyperplanes). In particular, you

have to pay attention to the correct number of Sobol points, weighting perfor-

mance and score. A higher number of points means a better score (score=1 is

always approachable with a sufficiently big number of points), but the space

and time complexity rises. Consider also that for a good space covering a cor-

rect dimensioning is fundamental. Since you can use only a number of points

which is a power of 2 (2m), the decision of the correct m impacts heavily the

overall performance: just changing m of 1 unit leads to a much more complex

model and higher computing and memory consumption. Besides that, we can

conclude the model guarantees good performance on our custom tree function
3For example if we have an interval [0, 1] and minsplit is set to 0.1, the smallest achievable

sub-partition will be of length 0.1.

56

Table 4.1: Tests on DomainTree with various parameters.

*2 to the power of

d minsplit sobol-points* R2 matching-p p-number δp

1 0.1 6 0.643 1 7 -2

1 0.1 7 1.000 7 7 0

1 0.05 7 0.871 3 12 -3

1 0.05 9 1.000 11 12 2

3 0.1 9 0.798 1 32 2

3 0.1 11 0.968 1 32 27

5 0.1 11 0.956 0 32 33

5 0.1 12 0.977 0 32 54

10 0.1 12 0.978 0 32 96

10 0.1 14 0.991 0 32 178

and it behaves correctly also in presence of drastic discontinuities such as that

shown in Figure 4.2.5.

Comparing the number of partitions of the ground truth model and of

Global-Lime, in general the functioning seems to be very coherent in a small

number of dimensions, whilst it degrades e.g. for d=10 when we have a delta

of 178. At the end this is not a great problem, it is only an index of how frag-

mented the model is in overall. This behaviour is also caused by the increasing

number of points in input, besides the increasing dimension number; for exam-

ple for d=3 the original partition number is 32, with 29 points delta is 2 but

R2 = 0.798 , with 211 points delta is 27 but R2 = 0.968 4.

Summing up, Global-Lime proved to perform well in this scenario. Two

qualitative examples for 1D and 2D are reported in Figure 4.2.6 and 4.2.7.
4A simple demo containing also a visualization section is available in /notebooks

/glime_discontinuous_test.ipynb

57

Figure 4.2.6: DomainTree and Glime 1D-example. The first image from left

represents the function generated by DomainTree, where the red lines are the

random splits and the blue ones are the regressions. The central image is the

function reconstructed by Glime. As we can notice from the last image, which is

the overlap of the first and the second, Glime perfectly reconstructs the original

model.

Figure 4.2.7: DomainTree and Glime 2D-example. The first image from left

represents the domains generated by DomainTree. The central image is the

domain reconstructed by Glime. As we can notice from the last image, which

is the overlap of the first and the second, Glime approximates well the original

lattice (the main splits are reproduced almost perfectly), even if the obtained

domain is more fragmented.

4.3 Testing on Simple Math Functions

The next step is to test Glime in a continuous domain scenario with more

complex functions. Even in this scenario, the model showed to perform well

58

with a collection of math functions. It is worth to discuss the case of f(X) =

f(x1, ..., xn) =
∑d

i=1(xisin (xi)) depicted in Figure 4.3.1 and in the monodi-

mensional case in Figure 4.3.2. As we can see, Glime correctly wraps the original

ML function in an ensemble of hyperplanes oriented coherently with the original

function. A slight drawback could be the instability shown near the 4 peaks, in

which multiple planes with quite different coefficients are close to each other.

Indeed, it is not trivial to solve, because it is inherent to the nature of the

original function.

In the table 4.2, a group of examples showing the average R2 for selected

functions is reported . As we can see, in one dimension the approximation is

always good, also with few points. It is more difficult if we have a particularly

unstable function, with higher dimensionality and not sufficient points. In the

table 4.2 the example of cos(
∑d

i=1 x
2
i) has been proposed. With d=2 and 212

Sobol points it has a score of 0.557, but with 214 points it approaches a score

of 0.784 that is sufficiently good. The others examples show how it is possible

to reconstruct the original model with a good R2, even if it becomes hard with

very wavy functions such as e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi).

(a)
∑d

i=1(xisinxi) function. (b)
∑d

i=1(xisinxi) reconstructed by Glime.

Figure 4.3.1: xsinx example with 2 indipendent variables, y = x0sinx0+x1sinx1

59

Figure 4.3.2: xsinx 1D-example. The blue dots represent the points from the

original dataset created from xsinx, the green line is the approximation obtained

from Glime.

4.4 Testing on a Real Numerical Dataset (Boston

Data)

After some artificial experiments on ad hoc and selected functions, we decided

to test Glime on a real numerical dataset to see how it performs in a plausible

scenario. The dataset is "The Boston Housing Dataset" [35]. This dataset

contains information collected by the US Census Service concerning housing

in the area of Boston. Even if is quite small (506 cases), it represents one of

the most used datasets for algorithm benchmarking. The variables are 14 and

nominally represent:

1. CRIM - per capita crime rate by town.

2. ZN - proportion of residential land zoned for lots over 25,000 sq.ft.

3. INDUS - proportion of non-retail business acres per town.

4. CHAS - Charles River dummy variable (1 if tract bounds river; 0 other-

wise).

60

Table 4.2: Testing GLime on math functions with various parameter. The do-

main for all the variables in the function is [-5, 5]. *2 to the power of

dimensions function sobol-points* R2

1
∑d

i=1(xisinxi) 9 0.979

1
∑d

i=1(xisinxi) 10 0.965

2
∑d

i=1(xisinxi) 10 0.785

2
∑d

i=1(xisinxi) 12 0.931

5
∑d

i=1(xisinxi) 12 0.791

5
∑d

i=1(xisinxi) 14 0.848

1 cos(
∑d

i=1 x
2
i) 9 0.876

1 cos(
∑d

i=1 x
2
i) 10 0.90

2 cos(
∑d

i=1 x
2
i) 12 0.557

2 cos(
∑d

i=1 x
2
i) 14 0.784

5 cos(
∑d

i=1 x
2
i) 14 0.643

5 cos(
∑d

i=1 x
2
i) 15 0.647

1 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 9 0.931

1 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 10 0.961

2 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 14 0.859

2 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 15 0.915

5 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 14 0.557

5 e−
∏d

i=1 |xi|cos(
∑d

i=1 πxi) 15 0.564

5. NOX - nitric oxides concentration (parts per 10 million).

6. RM - average number of rooms per dwelling.

7. AGE - proportion of owner-occupied units built prior to 1940.

8. DIS - weighted distances to five Boston employment centres.

9. RAD - index of accessibility to radial highways.

61

10. TAX - full-value property-tax rate per $10,000.

11. PTRATIO - pupil-teacher ratio by town.

12. B - 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town.

13. LSTAT - % lower status of the population.

14. MEDV - Median value of owner-occupied homes in $1000s.

The tasks for the dataset are two:

1. NOX is to be predicted.

2. MEDV is to be predicted.

We decided to perform task 2 (MEDV).

4.4.1 Model Selection and Pre-processing

As the ML model on which run Glime, XGBRegressor from the xgboost library

has been used. XGBoost is an optimized distributed gradient boosting library

[36]. Gradient boosting models are a class of ensemble ML algorithms used for

classification and regression tasks. These ensembles are obtained from groups of

small decision trees, where trees are added and fitted one at the time to adjust

the global prediction, as a result of the multiple contributions of the single

models. Models are fit with an arbitrary loss function and optimized with a

gradient descent optimization algorithm, similarly to the neural networks. In

Table 4.3 are reported the hyperparameters used for the regressor.

The dataset is already well-formed, hence no particular preprocessing proce-

dure is needed. Only a MinMaxScaler [37] has been used to scale all the features

in a range from 0 to 1. Afterwards, the dataset has been divided into train and

test with 85-15 proportions. The performance achieved by XGBRegressor on

the dataset are:

• MSE (Mean Squared Error): 9.048.

62

Table 4.3: Hyperparameters used in XGBRegressor for Boston Housing dataset.

If not specified, the default has been used.

*y_train.mean()

parameter value

booster gbtree

random_state 42

base_score 22.649*

n_estimators 40000

learning_rate 0.01

max_depth 2

early_stopping_rounds 300

seed 100

• MAE (Mean Absolute Error): 2.328.

Glime has been run, achieving R2 = 0.90 with 99 partitions created. The

hyperparameters are reported in table 4.4.

Table 4.4: Hyperparameters used in Glime for Boston Housing dataset. If not

specified, the default has been used

parameter value

n_sobol_points 11

predict_function regressor.predict(x)

minsplit 15

stopping_value 0.99

We may ask to perform explanations on new samples or samples deriving

from the dataset. For example, we can take the third row and ask for an

explanation of the output value of the model (36.31905). The output is shown

in Figure 4.4.1.

63

Discussing the most prominent coefficients, we understand that: LSTAT,

NOX, PRATIO negatively influence MEDV which makes sense. If NOX is

high, the area is polluted and less valuable, as well as LSTAT and PRATIO

are important indicators of the wellness of the zone. Moreover, RM seems to

be the most important parameter for MEDV and again it is legit to say that a

flat is more valuable if there is a higher number of rooms per dwelling. Again,

also all the other coefficients are coherent from what we could imagine before

running the explanation.

4.5 Testing on Categorical Data and Classifica-

tion

Since this moment, we have been discussing implicitly the behaviour of Glime

only in presence of pure numerical dataset and in regression tasks, but this

does not mean that Glime cannot work in presence of categorical features or

classification task. In this section we will see that with the correct preprocessing

Figure 4.4.1: Explanation on a row of Boston Dataset.

64

and leveraging a TargetEncoder [38] in combination with the coefficients of an

explanation, is possible to interpret also categorical (and then also ordinal) data

and adjust Glime for classification5.

4.5.1 Credit Risk Modeling Dataset of Example

The dataset of example is a dataset of Credit Risk Modeling [39] in which we

have to predict how capable each applicant is of repaying a loan. In particular,

we want just a flag 0/1 to understand if a creditor is good or bad (0 good and 1

bad). In particular, the dataset is composed by 1225 rows and 14 + 1 of output

(BAD) columns6. We have chosen to take only 9 of them, which are the most

significant:

1. YOB - Year of birth.

2. NKID - Number of children.

3. DEP - Number of other dependents.

4. PHON - Is there a home phone (1=yes, 0 = no).

5. SINC - Spouse’s income.

6. AES - Applicant’s employment status (categorical column).

7. DAINC - Applicant’s income.

8. RES - Residential status.

9. DHVAL - Value of Home.

The dataset is quite well-formed, so the preprocessing was minimal. All the nu-

merical features7 have been processed through MinMaxScaler, then the dataset
5Since now, we have been testing the model for tasks of binary classification e.g. predict

YES/NO, leveraging the predict_proba(x) of the classification models, but extensions for

general classification problems are conceivable.
6The dataset is downloadable from GitHub.
7For the categorical ones refer to the next section.

65

https://github.com/deepanshu88/Datasets/blob/master/CreditData/Loan%20Data.csv

has been divided in train and test with 85-15 proportion. As ML model we used

XGBClassifier again from the xgb library. In table 4.5 are reported the hyper-

parameters for the classifier. The model reached a ROC=0.7 and AUC=0.68,

showing difficulties mostly in classifying bad creditors.

Table 4.5: Hyperparameters used in XGBClassifier for CRM dataset. If not

specified, the default has been used. *(y_train == 0).sum()/(y_train ==

1).sum(). **y_train.mean()

parameter value

objective "binary:logistic"

scale_pos_weight 2.7992*

booster "gbtree"

random_stae 42

base_score 0.2632 **

n_estimators 40000

learning_rate 0.001

max_depth 2

early_stopping_rounds 3000

Then Glime has been called over the classifier with the hyperparameters

shown in table 4.6. The achieved R2 is 0.84 and 213 partitions have been

Table 4.6: Hyperparameters used in Glime for CRM dataset. If not specified,

the default has been used

parameter value

n_sobol_points 12

predict_function classifier.predict_proba(x)[:, 1]

minsplit 15

stopping_value 0.95

66

created. As shown in the tables, the predict_function is the second column

of predict_proba [40] of the classifier. So the probability of a sample to be 1

(BAD).

4.5.2 Target Encoding for Explainable Categorical Fea-

tures

The problem with categorical features is that they do not have an intrinsic

ordering, so we are not able to understand clearly how a feature varies the

output. To perform a linear regression, we need numerical values. Thus, we

must encode the categorical column into numbers and each category is bounded

to a certain real number. Assigning these numbers, we have to decide the

category ordering, even if it is not explicit. If we assign equally spaced numbers

(e.g. 0 1 2 3 . . .), we imply that the “conceptual” distance between categories

is the same, but several times this is not true. If we try to solve this problem

with a one-hot encoding, we fall into the curse of dimensionality.

An example is AES, that can have the following values:

• V = Government.

• W = housewife.

• M = military.

• P = private sector.

• B = public sector.

• R = retired.

• E = self-employed.

• T = student.

• U = unemployed.

• N = others.

67

• Z = no response.

We can think of using a LabelEncoder [41] or an OrdinalEncoder [42] to put an

artificial ordering on the variables, but it is not useful since the ordering do not

respect the real contribution which each different value of the feature gives to

the output. A solution could be to use a OneHotEncoder [43], but the problem

with this type of encoding is that it greatly increases the dimensionality of the

training data (by adding a new feature for each unique category in the original

dataset). This often leads to poorer model performance due to the curse of

dimensionality [44]. Furthermore, none of these encoders is capable of giving a

correct proportion to the values of the single labels and to discover coincident

labels in the features in respect to the output.

Figure 4.5.1: Target encoding.

A TargetEncoder allows to retain information about different categories,

without creating other columns and ordering them proportionally to the con-

tribution they give to the target value (output feature). For each feature, we

replace each category with the mean target value for samples that have that

category. An example is shown in Figure 4.5.1.

The interesting aspect of this type of encoding is that if we multiply the

68

obtained values for the coefficient of the feature in a certain locality, we ob-

tain the concrete variation in the target value. In our case, because the target

value is between 0 and 1, the product represents the increase in the percentage

of the probability to be a BAD creditor. To show this concept and to dis-

pose of a useful explanation also for categorical features, a small module inside

Glime has been implemented. The module retrieves the mapping inside the

TargetEncoder, identifies coincident labels and then is capable of visualizing

graphically the increments.

Figure 4.5.2: Target Encoding plus Glime coefficients on CRM dataset for AES

feature.

The case of AES is shown in Figure 4.5.2. As we can see the labels U

(unemployed) and Z (no response) coincident. Furthermore, again the results

we obtain make sense:

• the categories with the highest probability of default and which mostly

influence the output are respectively W, R and (U, Z).

• the difference between the right-side features and left-side is extremely

underlined in the jump T->W.

• best creditors are labels V, P, N, usually people with high money avail-

ability.

We can do the same for RES as shown in Figure 4.5.3.

In this way, adding the bar chart for the single feature importance (shown

in Figure 4.5.4) we are capable of explaining all the features on the dataset and

69

Figure 4.5.3: Target Encoding plus Glime coefficients on CRM dataset for RES

feature.

which weight they have on the probability of default. Referring again to Figure

4.5.4, we understand that higher SINC and DAINC (the spouse’s income and

the applicant income) lower the probability to be a bad creditor, as we could

think. Similarly, RES and AES are important to determine the probability of

default; and we understand which is the magnitude of the single labels thanks

to Figure 4.5.2 and 4.5.3. Also, you can look that higher NKID and YOB

mean higher probability to be a bad creditor.

Figure 4.5.4: Target Encoding plus Glime coefficients on CRM dataset.

70

4.6 Dashboard for Visualization

Once built the model and trained on a dataset, it is important to visualize simply

what we have produced via the approximated model. A simple use case could

be: given a pre-trained model obtained on a certain dataset, we are interested

in searching for an explanation on a single individual, also projecting a value for

a certain variable. Practically, we would be interested in making also "what-if"

analysis: adding in input an existing entry but with slightly modified values

(creating plausible future scenarios) or even never seen before individuals, then

trying to understand which parameters will be more important than the others,

inspecting the coefficients of the linear approximation of the node bounded

to that element. For this purpose, a simple dashboard has been built. The

dashboard takes as input a pre-trained model and a dataset, then it visualizes

the "current slice" of the model (and of the dataset) which we are interested

in. The control panel selects variables, values and make a prediction on a single

variable in the sidebar. There is also a "full-what-if" part in which you can

insert values for the x-variables and see the coefficients in a barplot form for

that element.

For the visualization part, the frameworks used are Streamlit for the dash-

board front-end in pure python and Altair plus Plotly for image visualization.

4.6.1 Streamlit Front-end and Altair

Streamlit is an open-source Python library that facilitates to create and share

custom dashboards as web apps for machine learning and data science. Even if

it is quite new8, it is a valid alternative to more complex frameworks like Dash.

The main characteristic of Streamlit is that all the app is a single .py file in

which the layout and the dynamics of the app are described and it is always

executed from top to bottom. This means that every time an event occurs, the

entire script is executed: a behaviour that leads to potential great inefficiency.
8A stable 1.0 version was released only on October 2021.

71

https://streamlit.io/
https://altair-viz.github.io/
https://plotly.com/
https://docs.streamlit.io/library/changelog#version-100

Because of that, another core concept is caching through st.cache9 decorator.

A function is marked through st.cache and then the Streamlit engine checks:

• The input parameters that you called the function with.

• The value of any external variable used in the function.

• The body of the function.

• The body of any function used inside the cached function.

If this is the first time Streamlit has seen these four components with these

exact values and in this exact combination and order, it runs the function and

stores the result in a local cache. Then, next time the cached function is called,

if none of these components changed, Streamlit will just skip executing the

function altogether and, instead, return the output previously stored in the

cache [45].

It is also possible to build stateful applications with the concept of session.

In Streamlit each browser tab starts with a blank state with no variables shared

between sessions. Session State is a way to share variables between reruns, for

each different user session, and callbacks can be used to manipulate state and

changing on the state [46].

Altair is a declarative statistical visualization library for Python, based on

Vega and Vega-Lite. Vega-Lite is a high-level grammar of interactive graphics.

It provides a concise, declarative JSON syntax to create an expressive range of

visualizations for data analysis and presentation.

4.7 Dashboard Layout

The dashboard is structured as (Figure 4.7.1):

• sidebar: in the sidebar there is the possibility to upload the selected

dataset and a pre-trained model to visualize. In a demo scenario, a mock
9with streamlit as st.

72

Figure 4.7.1: Dashboard Layout.

dataset containing the Sobol points of the ML function is visualized. Thus,

it is possible to select the target variable and perform through an expander

a "Single variable What-if scenario". Practically, you can select a row of

the dataset you uploaded (visualized in the first container of the applica-

tion), select an independent variable and see what happens if you change

the value of only that variable. This is visualized in the body of the app,

if you look at the graph of the two functions. The moving dot represents

the "Single variable What-if scenario".

• function visualization: the first container contains the graphs of the ML

function, the explainable model and the selected row. It is important to

say that only the points of the ML graph that belong to the nodes displayed

in the explainable model are visualized, and not the entire dataset.

• coefficients visualization: the first expander visualizes the coefficients

of the current node (decided throughout the single variable projection and

the selected row) for each variable and highlights the value of the current

variable, the local coefficient and the explanation for the target variable.

73

Figure 4.7.2: Dashboard Functioning. In this example the dataset is composed

of 212 points in D = [−7, 7] × [−7, 7], two variables (x0, x1) and the y =

x0sinx0 + x1sinx1. The blue dots are the points of the dataset relative to a

fixed region of the space, depending on what row of the dataset was selected and

which parameters were varied. The yellow dot represents the point selected and

changed by the "what-if" analysis. The green line is the Glime reconstructed

model. In this example, on the x axis as indipendent variable is placed variable

0, while variable 1 is fixed since we are performing a 2D representation of a 3D

dataset.

The second expander permits to perform a full what-if scenario for all

the variables, without being bound to a certain existing individual in the

dataset. Then the coefficients and the prediction of the target value are

displayed. In case of a categorical dataset, after inserting the name of the

categorical features, a list of target encoding representations multiplied by

the coefficient of the current node is displayed such as in Figure 4.5.3.

Finally, a chart containing the trend of all the coefficients varying a certain

feature is displayed (Figure 4.7.4).

74

Figure 4.7.3: Dashboard Coefficients and What-If Analysis. The dataset is

the same showed in Figure 4.7.2. The first box contains the coefficients of the

current node. The delta on the explanation and the y-value are shown on the

right-side. No target encoder bars are shown because the dataset of example is

purely numerical. The second box enables the user to perform a "full" what-if

analysis, without being bound to a particular row of the dataset.

4.8 Future Developments

As shown in the previous sections, Global-Lime proved to work well in various

different scenarios, giving important insights about the ML model functioning

and the contributes of each feature (locally and globally). However, there are

several open themes and problems which it is valuable to mention:

• correct dimensioning of the number of Sobol points: to have a

fair sampling of the space the number of Sobol points is a power of 2.

Furthermore, for a good adherence of Global-Lime to the ML function,

it is necessary to have a sufficient number of points. In section 2.4 we

75

Figure 4.7.4: Dashboard Sliding Coefficients.

tried to develop a method to assess the minimum number of points, given

a certain adherence to the function. These efforts did not bring valuable

results, since the Total Variation approach was computationally extremely

expensive10 and theoretically harsh. Because of that, now there is no

a priori criteria to decide which is the correct number of Sobol points.

Clearly more points lead to better precision, but the more points we add,

the more memory and computational power we consume.

• implementation of MOB: the current implementation of MOB is a re-

cursive depth-first expansion of a tree, so difficult to parallelize. A possible

improvement could be to substitute this implementation with an iterative

one, in which we maintain a first-in-first-out stack of open nodes, starting

from the root and proceeding with the expansion. The advantage of the

iterative implementation is the easier parallelization of multiple CPUs and

advanced threading.
10A library for computing the total variation of a function using a decision tree regressor

was built, but due to the poor performance of the method was set aside, waiting for further

ideas.

76

• implementation of the score function: now the score function is com-

puted using the optimization for matrix multiplication described in 3.2.1.

However, more advanced approaches can be done to speed up the algo-

rithm, such as that exposed in 3.2.2.

• GPU support: the model is not designed to work with GPUs. Fur-

ther developments could turn Global-Lime compatible with GPUs using

frameworks such as CuPy, JAX or Numba.

• extention to general classification: the model works only in case of

regression ad binary classification. With some efforts, it is possible to

extend the method for general classification.

77

78

Conclusion

In this work, we have designed and implemented a new global model-agnostic

technique for Machine Learning explainability, starting from the LIME approach

and trying to generalize it. We implemented a Python version of MOB with a

custom split criterion, which can be used as a classic Machine Learning model

for regression and binary classification tasks.

Unifying MOB and quasi-random sampling through Sobol sequences, we

developed a new explainability technique: Global-Lime. Global-Lime works

as a wrapper for the original model and supplies an interpretable version of

it, from both a local and a global point of view. After a series of tests on

ad-hoc functions, mathematical functions of increasing difficulty and two real

datasets (one purely numeric and one containing also categorical features), we

proved the correct functioning of Global-Lime. Moreover, we leveraged target

encoding in combination with our technique to provide a useful explanation also

for categorical features, depicting precisely how they impact the output value.

Furthermore, we discussed the possible drawbacks of the technique, the possible

mathematical and computational optimizations for our novel score function and

the future developments for the library.

To display more clearly the functioning of Global-Lime, a small visualization

module for displaying partitions, regressions, Sobol points, coefficients, and cat-

egorical features contribute has been built. Furthermore, a simple dashboard

for model analysis that encloses all the previous efforts have been developed.

Concluding, we hope to have contributed enriching the developing field of

79

Machine Learning explainability, providing a novel technique for a more trans-

parent AI.

80

81

Bibliography

[1] C. Molnar, Interpretable Machine Learning, A Guide for Making Black

Box Models Explainable. 2019.

[2] I. Sample, Computer says no: Why making ais fair, accountable and trans-

parent is crucial, Nov. 2017. [Online]. Available: https://www.theguardian.

com/science/2017/nov/05/computer-says-no- why-making-ais-

fair-accountable-and-transparent-is-crucial.

[3] “Europe plans to strictly regulate high-risk ai technology,” AAAS Articles

DO Group, 2021. doi: 10.1126/science.abb3741.

[4] A. L. Samuel, “Some studies in machine learning using the game of check-

ers,” IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–

229, 1959. doi: 10.1147/rd.33.0210.

[5] T. M. Mitchell, Machine learning. McGraw Hill, 2017.

[6] C. Bishop, Pattern recognition and machine learning. Springer, 2007.

[7] K. Soni, Supervised vs. unsupervised learning, Jul. 2020. [Online]. Avail-

able: https://towardsdatascience.com/supervised-vs-unsupervised-

learning-14f68e32ea8d.

[8] O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised learning. MIT

Press, 2006.

[9] G. Hilton and T. J. Sejnowski, Unsupervised learning: Foundations of Neu-

ral Computation. Massachusetts Institute of Technology, 1999.

82

https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://doi.org/10.1126/science.abb3741
https://doi.org/10.1147/rd.33.0210
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d

[10] A. Beck and M. Kurz, A Perspective on Machine Learning Methods in

Turbulence Modelling. Oct. 2020. doi: 10.13140/RG.2.2.17469.69608.

[11] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go

with deep neural networks and tree search,” Nature, vol. 529, no. 7587,

pp. 484–489, 2016. doi: 10.1038/nature16961.

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, "why should i trust you?":

Explaining the predictions of any classifier, 2016. arXiv: 1602 . 04938

[cs.LG].

[13] B. Goodman and S. Flaxman, “European union regulations on algorithmic

decision-making and a “right to explanation”,” AI Magazine, vol. 38, no. 3,

pp. 50–57, 2017. doi: 10.1609/aimag.v38i3.2741.

[14] J. Kingston, “Using artificial intelligence to support compliance with the

general data protection regulation,” Artificial Intelligence and Law, vol. 25,

no. 4, pp. 429–443, 2017. doi: 10.1007/s10506-017-9206-9.

[15] G. Stiglic, P. Kocbek, N. Fijacko, M. Zitnik, K. Verbert, and L. Cilar,

“Interpretability of machine learning-based prediction models in health-

care,” WIREs Data Mining and Knowledge Discovery, vol. 10, no. 5, Jun.

2020, issn: 1942-4795. doi: 10 . 1002 / widm . 1379. [Online]. Available:

http://dx.doi.org/10.1002/widm.1379.

[16] M. Du, N. Liu, and X. Hu, Techniques for interpretable machine learning,

2019. arXiv: 1808.00033 [cs.LG].

[17] G. Visani, F. Chesani, E. Bagli, D. Capuzzo, and A. Poluzzi, Explanations

of machine learning predictions: A mandatory step for its application to

operational processes, 2020. arXiv: 2012.15103 [cs.LG].

[18] Complete or quasi-complete separation in logistic/probit regression. [On-

line]. Available: https://stats.idre.ucla.edu/other/mult-pkg/faq/

general/faqwhat-is-complete-or-quasi-complete-separation-in-

logisticprobit-regression-and-how-do-we-deal-with-them/.

83

https://doi.org/10.13140/RG.2.2.17469.69608
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1007/s10506-017-9206-9
https://doi.org/10.1002/widm.1379
http://dx.doi.org/10.1002/widm.1379
https://arxiv.org/abs/1808.00033
https://arxiv.org/abs/2012.15103
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/

[19] P. McCullagh and J. A. Nelder, Generalized linear models. Chapman and

Amp; Hall, 1999.

[20] 1.10. decision trees. [Online]. Available: https://scikit-learn.org/

stable/modules/tree.html.

[21] T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, and M. Detyniecki, Defin-

ing locality for surrogates in post-hoc interpretablity, 2018. arXiv: 1806.

07498 [cs.LG].

[22] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Gi-

annotti, Local rule-based explanations of black box decision systems, 2018.

arXiv: 1805.10820 [cs.AI].

[23] D. Alvarez-Melis and T. S. Jaakkola, On the robustness of interpretability

methods, 2018. arXiv: 1806.08049 [cs.LG].

[24] G. Visani, E. Bagli, F. Chesani, A. Poluzzi, and D. Capuzzo, Statisti-

cal stability indices for lime: Obtaining reliable explanations for machine

learning models, Nov. 2020. [Online]. Available: https://arxiv.org/

abs/2001.11757.

[25] P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s quasiran-

dom sequence generator,” ACM Transactions on Mathematical Software,

vol. 14, no. 1, pp. 88–100, 1988. doi: 10.1145/42288.214372.

[26] F. Kuo and S. Joe, Sobol sequence generator: Primitive polynomials and

direction numbers. [Online]. Available: https://web.maths.unsw.edu.

au/~fkuo/sobol/.

[27] A. Zeileis, T. Hothorn, and K. Hornik, “Model-based recursive partition-

ing,” Journal of Computational and Graphical Statistics, vol. 17, no. 2,

pp. 492–514, 2008. doi: 10.1198/106186008x319331.

[28] Y. Li, S.-L. Hu, J. Wang, and Z.-H. Huang, “An introduction to the

computational complexity of matrix multiplication,” Journal of the Op-

erations Research Society of China, vol. 8, no. 1, pp. 29–43, 2019. doi:

10.1007/s40305-019-00280-x.

84

https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://arxiv.org/abs/1806.07498
https://arxiv.org/abs/1806.07498
https://arxiv.org/abs/1805.10820
https://arxiv.org/abs/1806.08049
https://arxiv.org/abs/2001.11757
https://arxiv.org/abs/2001.11757
https://doi.org/10.1145/42288.214372
https://web.maths.unsw.edu.au/~fkuo/sobol/
https://web.maths.unsw.edu.au/~fkuo/sobol/
https://doi.org/10.1198/106186008x319331
https://doi.org/10.1007/s40305-019-00280-x

[29] Sklearn.model_selection.gridsearchcv. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html.

[30] Scipy.stats.qmc.sobol. [Online]. Available: https://scipy.github.io/

devdocs/reference/generated/scipy.stats.qmc.Sobol.html.

[31] A. B. Owen, On dropping the first sobol’ point, Dec. 2021. [Online]. Avail-

able: https://arxiv.org/abs/2008.08051.

[32] Sklearn.tree.decisiontreeregressor. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.

html.

[33] W. Xiang, “Analysis of the time complexity of quick sort algorithm,” in

2011 International Conference on Information Management, Innovation

Management and Industrial Engineering, vol. 1, 2011, pp. 408–410. doi:

10.1109/ICIII.2011.104.

[34] I. Sobol and B. Shukhman, “Quasi-random points keep their distance,”

Mathematics and Computers in Simulation, vol. 75, no. 3-4, pp. 80–86,

2007. doi: 10.1016/j.matcom.2006.09.004.

[35] The boston housing dataset. [Online]. Available: https://www.cs.toronto.

edu/~delve/data/boston/bostonDetail.html.

[36] Xgboost documentation. [Online]. Available: https://xgboost.readthedocs.

io/en/stable/.

[37] Sklearn.preprocessing.minmaxscaler. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html.

[38] Target encoder. [Online]. Available: https://contrib.scikit-learn.

org/category_encoders/targetencoder.html.

[39] L. C. Thomas, D. B. Edelman, and J. N. Crook, Credit scoring and its

applications. Society for Industrial and Applied Mathematics, 2002.

85

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html
https://scipy.github.io/devdocs/reference/generated/scipy.stats.qmc.Sobol.html
https://arxiv.org/abs/2008.08051
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://doi.org/10.1109/ICIII.2011.104
https://doi.org/10.1016/j.matcom.2006.09.004
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html
https://contrib.scikit-learn.org/category_encoders/targetencoder.html

[40] Python api reference. [Online]. Available: https://xgboost.readthedocs.

io/en/stable/python/python_api.html#xgboost.dask.DaskXGBClassifier.

predict_proba.

[41] Sklearn.preprocessing.labelencoder. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.

LabelEncoder.html.

[42] Sklearn.preprocessing.ordinalencoder. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.

OrdinalEncoder.html.

[43] Sklearn.preprocessing.onehotencoder. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.

OneHotEncoder.html.

[44] E. Keogh and A. Mueen, “Curse of dimensionality,” in Encyclopedia of

Machine Learning and Data Mining, C. Sammut and G. I. Webb, Eds.

Boston, MA: Springer US, 2017, pp. 314–315, isbn: 978-1-4899-7687-1.

doi: 10.1007/978-1-4899-7687-1_192. [Online]. Available: https:

//doi.org/10.1007/978-1-4899-7687-1_192.

[45] Optimize performance with st.cache. [Online]. Available: https://docs.

streamlit.io/library/advanced-features/caching.

[46] Streamlit state. [Online]. Available: https://docs.streamlit.io/library/

advanced-features/session-state.

86

https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskXGBClassifier.predict_proba
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskXGBClassifier.predict_proba
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.dask.DaskXGBClassifier.predict_proba
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1007/978-1-4899-7687-1_192
https://doi.org/10.1007/978-1-4899-7687-1_192
https://docs.streamlit.io/library/advanced-features/caching
https://docs.streamlit.io/library/advanced-features/caching
https://docs.streamlit.io/library/advanced-features/session-state
https://docs.streamlit.io/library/advanced-features/session-state

87

	Abstract
	List of Figures
	List of Tables
	Introduction
	Explainability
	Machine Learning
	Supervised Learning
	Semi-supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Deep Learning
	Overview on Explainability of ML
	Methods for Interpretability
	Local and Global Interpretability
	Model-agnostic and Model-specific Interpretability

	Interpretable Models
	Linear Regression
	Logistic Model and Probit Model
	Generalized Linear Models (GLM) and Generalized Additive Models (GAM)
	Decision Tree

	Local Model-Agnostic Techniques
	Local interpretable Model-agnostic Explanations (LIME)
	Generation and Weighting Step
	LIME Issues

	Global-Lime
	Generation Step
	Partitioning (Clustering)
	Model Segmentation Approach
	Algorithm
	Objective Function and Score Function

	Computational complexity
	Sampling
	Total Variation Approaches
	Decision Tree Regressor and Grid Structure

	Model Architecture
	Glime class
	MOB class
	Optimization of the Score Function
	Advanced Optimization

	Other Modules

	Testing and Results
	Testing MOB Implementation Behaviour
	Test on DomainTree Custom Function
	Key Performance Indicators (KPI) for DomainTree
	Results

	Testing on Simple Math Functions
	Testing on a Real Numerical Dataset (Boston Data)
	Model Selection and Pre-processing

	Testing on Categorical Data and Classification
	Credit Risk Modeling Dataset of Example
	Target Encoding for Explainable Categorical Features

	Dashboard for Visualization
	Streamlit Front-end and Altair

	Dashboard Layout
	Future Developments

	Conclusion
	Bibliography

