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High harmonic generation is a versatile experimental technique for probing ultrafast electron dynamics. While
in the past it has been employed typically in dielectrics and semiconductors, recently high harmonic generation
was also observed from a topological surface [Schmid et al., Nature 593, 385 (2021)]. It has been found that
harmonic orders in the intermediate range of 13 – 18 continuously shift when the carrier envelope phase (CEP)
is varied. In this work, we adopt a minimal model of the topological surface state and calculate analytically
the high-harmonic spectrum. We derive formulæ describing the parametric dependencies of CEP shifts in high
harmonics; in particular, we have a transparent result for the shift of the (peak) frequency ω when changing
the CEP ϕ: dω/dϕ=−2 f̄′ω/ω0, where ω0 describes the fundamental driving frequency and f̄′ characterizes the
chirp of the driving laser pulse. We compare the analytical formula to full-fledged numerical simulations finding
only 17 % average absolute deviation in dω/dϕ. Our analytical result is fully consistent with experimental
observations. It therefore provides the first understanding of the phenomenon of CEP shifts in solids based on
analytically derived parametric dependencies.

I. INTRODUCTION

High harmonic generation (HHG) is a unique fingerprint of
ultrafast electron dynamics in solids1–16: It is generated when
atomically strong electric fields drive charge currents that in
turn emit electromagnetic radiation. In solids, such currents
are understood as interband transitions and (semiclassical) in-
traband currents. The emitted light supports frequencies much
higher than those of the driving field, see also Fig. 1 as an il-
lustration. Since high harmonics are sensing acceleration pro-
cesses of the charge carriers, HHG can be used for monitoring
dynamical processes. The information thus incorporated al-
lows to reconstruct band structures12,13; it reflects dynamical
Bloch oscillations3,6,17 and Berry phase effects16.

In the past, HHG has been analyzed to study charge carrier
dynamics in dielectrics2,6,10,11 and semiconductors3–5. Fresh
applications to three-dimensional topological insulators and
their gapless surface states have been published recently9,18.
These surface states have been argued to be an ideal platform
for lightwave electronics9,19. This is because the suppression
of backscattering due to the spin-momentum locking makes it
easier to facilitate quantum control for long times.9,19,20

A distinct feature of HHG in the topological surface state is
the effect of the carrier-envelope phase (CEP)21 on the high-
harmonic spectrum9: Under tuning of the CEP, the observed
harmonic orders 13 – 18 experience a continuous shift to ar-
bitrary, non-integer multiples of the driving frequency9. As
a first illustration for this shift, Fig. 1 displays the strong de-
pendence of HHG on two values of the CEP for the case of a
topological surface state. CEP shifts in HHG have been ob-
served before in the emission spectrum from semiconductors3

and dielectrics10,11, but the observed peak frequencies are dis-
continuous functions of the CEP3,10,11, in contrast to continu-
ous peak shifts in HHG from a topological surface state9.

In this work, we develop a minimal semiclassical model
that explains the CEP shifts in analytical terms, that have
been observed experimentally and computationally in high
harmonics from a topological surface state9. The main re-
sult of our work is that under a tuning of the CEP by dϕ, the

frequency ω of high harmonics shifts by

dω = − 2
ω

ω0
f̄′ dϕ ; (1)

here, ω0 describes the fundamental frequency and f̄′ charac-
terizes the chirp of the driving laser pulse. Formula (1) has
been derived for a the case of a Dirac-type band structure and
ignoring interband transitions. We take this as the reason why
(1) does not feature electronic structure parameters. We fur-
ther show that the formula is in line with CEP shifts observed
in Ref. 9 and with an additional, extended set of simulations.
Thus, the assumptions underlying our minimal model are val-
idated. Our work thus is yet another stepping stone towards an
improved understanding of the fundamental mechanisms and
parametric dependencies governing HHG.
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FIG. 1: High-harmonic emission spectrum I(ω) as func-
tion of the frequency ω computed from semiconductor Bloch
equations (SBE)14,22,23, Eq. (5). For the SBE simulation,
we employ a two-band Hamiltonian9 to model the topolog-
ical surface state of Bi2Te3. As driving electric field E(t),
we use Eq. (4) with E0 = 3 MV/cm, ω0 = 2π · 25 THz,
fchirp =−1.25 THz, σ= 90 fs as used in simulations in Ref. 9.
We employ two different CEPs, ϕ= 0 (blue) and ϕ= π/2 (red).
The driving electric field E(t) is sketched in the inset.
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II. MATHEMATICAL DEFINITION OF CEP SHIFTS

For deriving parametric dependencies of CEP shifts in high
harmonics, we consider a CEP variation ϕ→ϕ+ dϕ in the
driving electric field, see inset of Fig. 1 as an illustration. A
formal definition of CEP shifts of high harmonics spectra I(ω)
embarks on the observation that for a given dϕ a correspond-
ing frequency shift ω→ω+ dω can be found that leaves the
emission unchanged, dI = 0.24 We have

dI = (∂I/∂ω)ϕ dω+ (∂I/∂ϕ)ω dϕ , (2)

and the condition dI !
= 0 translates into the definition of the

frequency shift per CEP variation,

dω
dϕ
B − (∂I/∂ϕ)ω

(∂I/∂ω)ϕ
. (3)

In general, dω/dϕ is a function of ω and ϕ; dω/dϕ mathe-
matically describes the tilt angle of the equi-intensity lines in
the (ω, ϕ)-plane, which is observed in CEP-dependent high-
harmonic spectra; see Fig. 2 for an illustration.

By integrating Eq. (3) one can find the equi-intensity
line ω(ϕ) – for a fixed initial condition of integration,
e.g. ω̄Bω(ϕ= 0); we denote this by ωω̄(ϕ). Intuitively speak-
ing, ωω̄(ϕ) is the line in the map of I(ω, ϕ) that traces the equi-
intensity line crossing the point (ω̄, ϕ= 0).

III. CEP SHIFT FROM SBE SIMULATIONS

We start with numerical simulations of CEP shifts in high
harmonics to illustrate the phenomenon and to motivate the
minimal analytical model that we introduce later. For our the-
oretical analysis, we model the incoming laser pulse by the
time-dependent electric field aligned in x-direction

E(t) = x̂ E0 sin
(
ω0 (1 + fchirp t) t + ϕ

)
e−t2/σ2

, (4)

with the parameters field strength E0, CEP ϕ, and pulse du-
ration σ. We employ the two-band model for the topological
surface state of Bi2Te3 used in Ref. 9; it includes a Dirac cone
at the Γ-point and the hexagonal warping in the band structure
of the topological surface state25. Taking the pulse form and
the model Hamiltonian as an input, we solve the semiconduc-
tor Bloch equations (SBE)14,22,23 yielding the time-dependent
density matrix ρ(t). From this we obtain the physical current
density j(t) and the emission spectrum I(ω),23

j(t) B
−e
V

Tr(ρ(t)ṙ) , I(ω) =
ω2

3c2 |j(ω)|2 , (5)

where −e/V is the electron charge density, ṙ the velocity oper-
ator, c the speed of light and j(ω) the Fourier transform of j(t).
We checked the convergence of observables with numerical
parameters, see the Supporting Information (SI), Sec. S1.

The resulting high-harmonics spectrum I(ω) for pulse pa-
rameters adapted to experiment9 is shown in Fig. 1, for a sine-
like pulse (ϕ= 0) and a cosine-like pulse (ϕ= π/2): Both high-
harmonics spectra are similar up to fifth harmonic order, ν= 5,
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FIG. 2: (a) High-harmonics spectrum I(ω) computed from
SBE, Eq. (5) for 384 discrete CEPs ϕ∈ [0, 2π] with E(t) and
parameters as in Fig. 1. The heat map along the blue and red
horizontal line (CEP ϕ= 0 and ϕ= π/2) represents the emis-
sion spectra from Fig. 1. (b) Local extrema of I(ω) from (a).

using a dimensionless frequency νBω/ω0. At higher fre-
quencies, 14. ν. 20, the two spectra differ in the sense that
the maximum of one coincides with the minimum of the other.
At even higher frequencies, 30. ν. 35, maxima of the two
spectra coincide and minima also coincide.

Similar to the experiment9, we continuously vary the CEP
from 0 to 2π, see Fig. 2 (a) and (b). We confirm the main
experimental findings, albeit here observed in a much larger
window, 5. ν. 35, instead of 12. ν. 21 in Ref. 9: The fre-
quency shift grows at increasing harmonic order, which even-
tually leads to a pattern of tilted lines with tilt angle grow-
ing from left to right in Fig. 2 (b). Indications of an increase
of the tilt-angle have been observed before in semiconductors
and dielectrics, but the patterns there are less pronounced and
systematical10. Presumably this is why a systematic theoreti-
cal understanding predicting parametric dependencies of CEP
shifts has not been worked out.

IV. CEP SHIFTS FOR A SEMICLASSICAL MODEL –
ANALYTICAL FORMULA

The systematic growth of the tilt angle with the high-
harmonic order seen in Fig. 2 (b) suggests that there should
be a simple analytical formula characterizing parametric de-
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pendencies. In this section such a formula is derived within a
minimal model.

We employ a semiclassical framework26 neglecting anoma-
lous velocity contributions27. Within this model, the electron
velocity is given by

v(t) =
∂ε

~ ∂k

∣∣∣∣∣
k=k(t)

. (6)

k(t) is the excursion of the electron in reciprocal space. In
semiclassics, k(t) fully characterizes the dynamics of the elec-
tron and is given by the Bloch acceleration theorem

k(t) = k0 +
1
~

t∫
−∞

F(t′) dt′ , (7)

where F is the acting force, F(t) =−eE(t), if only electric
fields are to be accounted for. In our simplified approach we
assume that the time dependence of j(t) is captured by v(t)
taken at a characteristic wavenumber k0. For the purpose of
calculating CEP shifts, prefactors - such as effective charge
densities - can be ignored since they cancel for CEP shifts in
Eq. (3).

We now analyze CEP shifts within the framework of model
(6) and (7). Since it is assumed j(t)∝ v(t), we have

I(ω)∝ω2|v(ω)|2 = |∂tv(ω)|2 (8)

from Eq. (5), where

∂tv(ω) B
∫

dt e−iωt ∂tv(t) =

∫
dt e−iωt ∂t

∂ε

~ ∂k

∣∣∣∣∣
k(t)

(9)

is the Fourier transform of the time-dependent acceleration.
If the k-derivative is analytic in the range of excursion of

k(t), we may simplify

∂tvi (ω) =
∑

j

∫
dt e−iωt ∂2ε

~ ∂ki∂kj

∣∣∣∣∣∣
k=k(t)

∂tkj (t)

= − e
~

∑
j

∫
dt e−iωt ∂2ε

~ ∂ki∂kj

∣∣∣∣∣∣
k=k(t)

Ej (t).

where we have ∂tkj (t) =−eEj (t)/~ in the absence of magnetic
fields. It is a necessary condition for the generation of high
harmonics that ∂2ε/(∂ki∂k j)|k=k(t) is time dependent. For the
special case of parabolic dispersions with isotropic effective
mass m we obtain

∂tv(ω) = − e
m

E(ω) .

The conclusion is that parabolic dispersions do not exhibit
HHG (within the validity of our minimal model).

As a minimal model for Dirac fermions we consider a linear
dispersion

ε(k) = ~vF |k| . (10)

The velocity (6) for the linear dispersion is

v(t) = x̂ vF sgn(kx(t)) ; (11)

the velocity is a constant, vF, and it only changes its sign when
kx(t) crosses zero. Hence, the acceleration ∂tv(t) is a sequence
of δ-functions in time with a corresponding Fourier transform

∂tv(ω) = 2vF x̂
Nz∑

m=1

(−1)m+1 exp(iωtm) . (12)

The summation is over the zeros tm of kx(t), which are read-
ily obtained from (7); Nz denotes the number of these zeros
(see SI, Sec. S2 for a formal derivation.) The zeros tm will
shift in the presence of a CEP, tm(ϕ). Since we require a 2π-
periodicity in ϕ, we have tm(±2π) = tm±p(0), so after a full ro-
tation a root m shifts into root m± p, p being integer.28

The emission intensity (8) corresponding to (12) reads

I(ω) ∝ |∂tv(ω)|2 ∝
Nz∑
`,m

(−1)`+meiωt`m(ϕ) , (13)

with t`m(ϕ)B t`(ϕ)− tm(ϕ). Then, Eq. (3) readily implies

dω
dϕ

= −ω I′t
It

(14)

where

It(ω, ϕ) B
Nz∑
`,m

(−1)`+meiωt`m(ϕ)t`m(ϕ) , (15)

I′t (ω, ϕ) B
Nz∑
`,m

(−1)`+meiωt`m(ϕ)∂ϕt`m(ϕ) . (16)

As an application, we consider the situation in which
the CEP ϕ induces a homogeneous shift of all roots:
tm(ϕ) = tm(0) +ϕ/ω0 and, in addition, an equidistant spacing
tm(π) = tm+1(0). Here implied is that t`m(ϕ) is independent
of ϕ and therefore I′t = 0. We conclude that a non-vanishing
CEP shift requires that the zeros of k(t) are not equidistantly
spaced.29

Non-equidistant roots of k(t) result from a time-dependent
carrier frequency, which is defined as (1 + f(t))ω0 (”chirp”
f(t)). In the SI, Sec. S3, we show that for small and slowly
varying f(t), Eq. (14) simplifies to

dω
dϕ

= −2
ω

ω0
f̄′ , (17)

where f̄′ is the average slope of f(t). Eq. (17) is our main
result; it implies that under generic conditions the tilt angle
dω/dϕ increases linearly in ω, and is independent of ϕ.

We now adress the shift of peak frequencies ωpeak in
the high-harmonics spectrum, when changing the CEP from
0 to 2π, ∆ωpeakB

∫ 2π
0 dϕ (dω/dϕ) along an equi-intensity

line ω(ϕ). In the regime |f̄′/ω0| � 1 we focus on, dω/dϕ is
only weakly dependent on the integration variable, because
the relative change of ω(ϕ) along the equi-potential line is
small: ∆ωpeak�ωpeak; we thus approximate on the rhs of (17)
ω(ϕ)≈ ω(ϕ= 0) =ωpeak, and arrive at the peak shift

∆ωpeak = − 4π
ωpeak

ω0
f̄′ . (18)
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FIG. 3: Quantitative comparison of the peak shifts as obtained from the semiclassical model (18) (background, ∆ωpeak) and from
SBE simulations (color-filled circles, ∆ωSBE

peak) in the parameter plane. ∆ωSBE
peak are obtained by tracing continuous maximum lines

of the emission I(ω) as shown in Fig. 2 (b) from the initial point (ωSBE
peak, ϕ= 0) to the final point (ωSBE

peak + ∆ωSBE
peak, ϕ= 2π). The

dashed lines are guiding the eye; they indicate that best quantitative agreement is reached at peak-shifts exceeding 50% of ω0.
(For the SBE simulations, we considered 29 chirps with 384 CEPs each resulting in 11136 SBE runs.)

As an application of Eqs. (17) and (18), we consider an
archetypical electric-field pulse (4), implying f̄′ = fchirp, and
small filling, i.e., kF far away from all Brillouin zone bound-
aries, motivating a non-vanishing |k0|. kF. In this case the
number of roots of k(t), Nz, is bounded: at infinite times the
integral in (7) vanishes (since E(ω= 0) = 0) so that k(t) takes
a non-vanishing limiting value.

Eq. (17) takes a simple form; while the frequency ω and the
detuning per period f̄′/ω0 enter, other material or system pa-
rameters do not. The absence of vF follows from the fact that
the CEP is given as an intensity ratio, Eq. (3). Similarly, the
envelope parameter σ of the driving electric field (4) (parame-
terized via Nz) cancels since our approximations imply I′t ∝ It.

The linear dependency of dω on the chirp parameter f̄′ is
rationalized as follows: By definition, the chirp accounts for
the non-linear spacing of the roots of k(t). Therefore, in the
absence of chirp, the CEP translates all roots by the same
amount and therefore can be eliminated by a redefinition of
the origin of time, t→ t− dϕ/ω0. Thus, at f̄′ = 0 the current
and the emission spectrum are both independent of ϕ resulting
in the absence of CEP shifts, dω= 0. At non-vanishing chirp,
corrections arise already at linear-order, dω∝ f̄′, reflecting the
fact that the tilt dω/dϕ can take either sign.

Finally, the proportionality dω∝ω/ω0 can be understood
by recalling that the electrons perform a number of ω/ω0 cy-
cles during a single fundamental period of E(t). They thus
can be expected to be more sensitive to a parametric change
in E(t), for example a change of f̄′, by a factor of ω/ω0.

V. COMPARISON OF SEMICLASSICS TO SBE
SIMULATIONS AND EXPERIMENTS

We proceed with a comparison of the semiclassical, analyt-
ical formulæ (17), (18) to SBE simulations and experiments9.

In Fig. 2 we display SBE simulations of the CEP-dependent
high-harmonic spectra. A straight-line character of the ex-
tremal lines – and correspondingly also the equi-intensity
lines – is seen which is synonymous with a minor tilt-angle
dependency on CEP ϕ; further the tilt angle dω/dϕ increases
with ω. Both observations are fully consistent with our main
result Eq. (17).

With respect to the sign of the tilt, we further observe in
Fig. 2 that the extremal lines are tilted to the right (from
south west to north east) which implies a positive tilt angle,
dω/dϕ≥ 0. The sign agrees with the semiclassical prediction
(17), since we evaluate for the pulse (4) a negative f̄′ implying
dω/dϕ≥ 0 (for ω≥ 0); specifically f̄′ = fchirp =−1.25 THz.

For a quantitative comparison, we focus on peak shifts
∆ωpeak. From the SBE simulations Fig. 2 (b), we extract
peak shifts by tracing continuous maximum lines (”percolat-
ing lines”) of the emission I(ω) connecting the points in the
parameter plane (ωSBE

peak, ϕ= 0) and (ωSBE
peak + ∆ωSBE

peak, ϕ= 2π).
We obtain pairs of (∆ωSBE

peak/ω
SBE
peak) as (1.0/10.2), (1.6/19.7),

(2.2/24.7). Based on equation (18) we expect a ratio
∆ωpeak/ωpeak =−4πf̄′/ω0 = 0.1, in good quantitative agree-
ment with the extracted SBE data (simulation parameters:
ω0 = 2π · 25 THz and f̄′ = fchirp =−1.25 THz). We proceed and
calculate the peak shifts ∆ωpeak for a collection of chirps to
test the limits of (18) in the plane spanned by ωpeak and fchirp.
Fig. 3 shows the (color-coded) semiclassical result (18). The
color-filled circles superimposed to the colored, semiclassical
”background” indicate the corresponding SBE results, ∆ωSBE

peak;
the circle-colors follow the same scale abopted also for the
semiclassical data.

In Fig. 3, we observe that SBE peak shifts (circles) are
in good overall quantitative agreement with the semiclassi-
cal prediction (background): the color of the circular discs
matches the background. (Averaging over the entire plane,
we compute a mean absolute deviation of only 0.21ω0.)
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FIG. 4: CEP-dependency of the high-harmonics spectrum of
Bi2Te3; experimental data taken from Ref. 9. We report lo-
cal maxima as colored dots. We form sets of local maxima,
as indicated by the various colors. For each set, we perform a
quadratic fit ω(ϕ) =ω0[α+ β(ϕ− ϕ̄) + γ(ϕ− ϕ̄)2] (dotted lines,
ϕ̄ is fixed as the average CEP of a line segment, fit parame-
ters α, β, γ are reported in Table I and SI-Table S1).

TABLE I: Fit parameter β (tilt angle) of fits reported in Fig. 4,
as function of the average frequency ω̄ of the line segment.

ω̄/ω0 13.4 13.5 13.6 14.8 15.3 15.8 17.0 17.5 18.1 20.1
2πβ 1.81 2.00 1.89 1.86 2.23 2.25 2.19 2.24 2.39 2.84

At weak chirp and small peak frequencies (low harmon-
ics), the SBE-simulations exhibit many vertical maximum-
intensity lines; the corresponding peak shifts vanish. These
vanishing peak shifts appear in a region in the phase diagram
Fig. 3, which reveals itself as the area that supports light gray
circles. The region has a characteristic boundary correspond-
ing to |∆ωpeak| ≤ 0.5ω0; it is indicated by the dashed lines in
Fig. 3. Within this region, the relative discrepancy to the semi-
classical model is somewhat enhanced. Outside this region,
we find the mean relative absolute deviation in the peak shift
to be only 17 % between SBE simulations and the semiclassi-
cal formula (18).

We compare our findings (14) and (17) to the experimen-
tal high-harmonics spectra emitted from a topological surface
state9. The experimental data, Fig. 4, indeed displays the char-
acteristic stripe pattern that our theoretical analysis predicts.
Beyond this, there is also a qualitative agreement in details;
e.g., the increase of the tilt angle with growing harmonic or-
der predicted in (17) is also seen in Fig. 4.

For a quantitative analysis, we fit parabolas to discrete local
maxima, see Fig. 4. We find that the linear order is dominating
the fit, in line with our analytical result (17). From our quan-
titative analysis, we also find that tilt angle tends to increase
with the frequency, see Table I. From 14th to 19th order we
observe a ”locking effect”, i.e., the average tilt angle between
15th and 18th harmonic order is identical within at most 3 %

(Table I). This locking effect is directly related to an equidis-
tant placement of the maxima. Locking effects and equidistant
placement of maxima are also seen in SBE simulations, Fig. 2.

The linear tilts of the fits together with the analytical re-
sult (17) give an estimate for the pulse-shape parameter,
2πf̄′/ω0 =−0.067 ± 0.001. The experimental pulse shape has
actually been reported in Ref. 9, so that f̄′ can be directly
calculated for the given pulse as −2πf̄′/ω0 ≈ 0.037, see SI,
Sec. S4, which is only ∼ 55 % of the fitted value. We assign
this quantitative discrepancy to the fact that the experimental
pulse shape does not match the condition for the applicability
of the semiclassical formula (17), which is that the curvature
f′′(t) is negligible, see SI, Sec. S4 for a detailed analysis.

The validity of the formulae (17)/(18) even outside the strict
limits for its derivation deserves a special attention. Indeed,
the main requirement for the applicability of the arguments
that constitute our semiclassical theory is that the charge car-
rier acceleration changes abruptly on a time scale that is very
short compared to the intrinsic time scales of the laser pulse.
Then, the expressions for the dynamical forces, Eq. (12), and
the high-harmonics emission, Eq. (13), are faithful representa-
tions. We expect that this basic requirement is fulfilled when-
ever there are sharp features or transitions, e.g., in the band
structure or in the laser-pulse itself. Correspondingly, the
semiclassical ansatz should be reliable also for more general
situations than considered in our explicit analytical calcula-
tions, such as the presence of multiple bands, interactions and
even dissipation. This robustness ensures the general appli-
cability of our semiclassical arguments to full-fledged SBE
simulations and, in particular, also to real experiments9.

VI. CONCLUSION

We propose a semiclassical theory for the carrier envelope
phase (CEP) dependency of high-harmonic generation under
illumination of a material with strong laser pulses. The cen-
tral result is a semiclassical theory that provides, in particular,
an analytical formula describing the shifts of high-harmonic
peaks under the change of the CEP. This formula explains,
e.g., why peak positions can occur at non-integer harmonic
orders. Further, it predicts that the shift velocity is propor-
tional to the peak frequency and the chirp of the driving laser
pulse. The comparison with a full-fledge simulation based on
the semiconductor-Bloch formalism establishes the quantita-
tive accuracy of the semiclassical result in a large parameter
regime. Also the comparison to the experiment9 works out
in quantitative terms. We believe that our theory provides the
first understanding of the phenomenon of CEP shifts in solids
based on analytically derived parametric dependencies. Fi-
nally, we emphasize that our theory is broadly applicable since
the main condition being the existence of sharp features in the
band structure of the material hosting the charge carriers. Our
work is thus another stepping stone towards understanding the
microscopic mechanisms underlying high-harmonic genera-
tion in solids.
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CODE AVAILABILITY

For all SBE simulations, we have used our program pack-
age CUED23, that is freely available, https://github.com/
ccmt-regensburg/CUED.
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Donald, T. Brabec, and P. Corkum, Nature 522, 462 (2015).

6 T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan,
and E. Goulielmakis, Nature 521, 498 (2015).

7 M. Garg, M. Zhan, T. T. Luu, H. Lakhotia, T. Klostermann,
A. Guggenmos, and E. Goulielmakis, Nature 538, 359 (2016).

8 N. Yoshikawa, T. Tamaya, and K. Tanaka, Science 356, 736
(2017); H. A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green,
N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert,
Z. Wang, K.-J. Tielrooij, Z. Liu, Z. Chen, A. Narita, K. Müllen,
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Supplementary material for

Theory of non-integer high-harmonic generation in a topological surface state

S1. COMPUTATIONAL DETAILS AND CONVERGENCE TESTS

As electric field, we use Eq. (4) throughout where the parameters E0 = 3 MV/cm, ω0 = 2π · 25 THz and σ= 90 fs were fixed
for all calculations. We align the electric field along the Γ-M direction which we label as x-direction in Eq. (4). We have used
the two-band Dirac-like model Hamiltonian for the topological surface states of Bi2Te3 from Ref. 9 together with a hexagonal
Brillouin zone with a size that stems from a real space lattice constant a = 4.396 Å. As in Ref. 9, we start from an equilibrium
band occupation that is given by a Fermi-Dirac distribution with a Fermi level of 0.176 eV above the conduction band minimum
and with a temperature of 30 meV. We compute the time-dependent density matrix ρ(t) from SBE in the velocity gauge with a
dephasing time T2 = 10 fs which is an accepted simulation value31. For the time evolution in the SBE formalism, we employ
an adaptive algorithm32 with a maximum time step of 0.1 fs and with a time window of [−500 fs, 500 fs]. These settings lead to
intensity spectra that are converged with respect to time discretization. The Fourier transform to frequency domain includes a
Gaussian window function with full width at half maximum of 2

√
ln 2 · 90 fs. In the SBE, dipoles are used which are diverging

for the Dirac-like two-band Hamiltonian at the Γ-point23,33. Thus, we carefully checked the convergence of the k-point mesh, see
Fig. S1. We observe excellent agreement between the 900×90 and 1800×180 k-mesh. We conclude that the 900×90 mesh is
sufficient to reach convergence in the k-point mesh size and therefore, we have used a 900×90 mesh for all SBE calculations. In
all figures, we have varied the CEP from 0 to 2π, where we have used NCEP = 384 discrete CEPs in the [0, 2π] window thoughout.

S2. FOURIER TRANSFORM OF THE TIME-DEPENDENT CURRENT

The time derivative of the current (11) is

∂tv(t) = − 2 x̂
evF

~
E(t) δ(kx(t)) , (S1)

where δ denotes the Dirac delta function. Then,

δ(kx(t)) =
∑

m

δ(t − tm(ϕ))∣∣∣∂tkx(t)|tm(ϕ)

∣∣∣ =
∑

m

δ(t − tm(ϕ))
e |E(tm(ϕ))| /~ . (S2)

Combining Eqs. (S1) and (S2), we arrive at Eq. (12),

v(ω) =
1
iω

∂tv(ω) =
2vF

iω
x̂
∑

m

(−1)m+1 exp[iωtm(ϕ)] . (S3)
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FIG. S1: Maxima of I(ω) computed with parameters as in Fig. 2 c for three different Monkhorst-Pack k-point meshes34 N1×N2
(450×45, 900×90, 1800×180), where N1 is the number of k-points in Γ-M direction and N2 is the number of k-points orthogonal
to the Γ-M direction.
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The linear dispersion (10) of the model band structure is justified by the Dirac character of the surface conduction band of
Bi2Te3 close to the Γ-point.25 For the other commonly adopt model band structure, a parabolic dispersion ε(k) = ~2|k|2/(2m), no
high-harmonic emission is observed under driving by an electric field from Eq. (4). This is due to the velocity v(t) = ~k(t)/m
[Eq. (6)] oscillating solely with the fundamental frequency ω0.

We also do not consider excitonic effects and other electron-electron interaction during the non-equilibrium dynamics as
they are believed to have negligible contributions9. Also, we omit bulk bands which have been shown to not contribute to the
high-harmonic emission for the pulse shape we consider in this work9.

S3. GENERAL DISCUSSION OF CEP-SHIFTS AT WEAK CHIRP

We give more details on the discussion of the spacing of roots in Sec. IV. The starting point is a homogeneous spacing,
t(0)
m (ϕ) = (mπ+ϕ)/ω0 of the zeros of (7), k(t(0)

m (ϕ)) = 0, where ω0 is the fundamental frequency. We achieve a non-uniform
spacing by implementing a small rescaling of the time, k(t)→k

(
t(1 + f(t)

)
, such that we have for the zeros tm(ϕ) with non-

uniform spacing

t(0)
m (ϕ) =

[
1 + f(tm(ϕ))

]
tm(ϕ) . (S4)

The chirp introduced in Sec. IV corresponds to a linear dependency f(t) =− fchirp. We consider more general situations subject to
the condition that f(t) is slowly varying from one zero to the next. Solving (S4) for tm we have

tm(ϕ) = t(0)
m (ϕ) − f(t(0)

m (ϕ)) t(0)
m (ϕ) + O(f2)

≈ t(0)
m (ϕ)

[
1 − f(t(0)

m (ϕ))
]

(S5)

where gradient terms have been neglected. Further, after defining the equal spacing
(t(0)
`mB t(0)

`
(ϕ)− t(0)

m (ϕ) = π(`−m)/ω0 = t(0)
`−m(ϕ=0)), we define the non-uniform spacing t`m(ϕ)B t`(ϕ)− tm(ϕ)

t`m(ϕ) ≈ t(0)
`m −

[
t(0)
`

(ϕ) f(t(0)
`

(ϕ)) − t(0)
m (ϕ) f(t(0)

m (ϕ))
]

≈ t(0)
`m

[
1 − f(T (0)

`m (ϕ)) − T (0)
`m (ϕ) f′(T (0)

`m (ϕ))
]

(S6)

where T (0)
`m (ϕ)B (t(0)

`
(ϕ) + t(0)

m (ϕ))/2 = t(0)
(`+m)/2(ϕ) and terms involving second derivatives have been dropped. Similarly, we have

∂ϕt`m = −2t(0)
`m f

′(T (0)
`m )/ω0 (S7)

and Eqs. (15) and (16) are therefore to leading order in f

It(ω) =

Nz∑
`,m

(−1)`+meiωt(0)
`m t(0)

`m , (S8)

I′t (ω, ϕ) = − 2
ω0

Nz∑
`,m

(−1)`+meiωt(0)
`m t(0)

`m f
′(T (0)

`m ) . (S9)

For the situation of an equidistant spacing, the double sum can be reorganized as a sum over pairs. The first summation is over
pairs with the same distance, s = `−m, while the second sum is over the different values M = (m + `)/2 that these pairs will have

It(ω) =

Nz−1∑
s=−Nz+1

eiωt(0)
s t(0)

s

Nz−|s|/2∑
M=1+|s|/2

(−1)2M (S10)

I′t (ω, ϕ) = − 2
ω0

Nz−1∑
s=−Nz+1

eiωt(0)
s t(0)

s

Nz−|s|/2∑
M=1+|s|/2

(−1)2M f′(t(0)
M (ϕ)) (S11)

where we abbreviated t(0)
s B t(0)

s (ϕ=0) = πs/ω0. Using the relation

Nz−|s|/2∑
M=1+|s|/2

(−1)2M = (−1)s(Nz − |s|) (S12)

S2



we can simplify

It(ω) =
π

ω0

Nz−1∑
s=−Nz+1

eiπ(ω/ω0+1)s s (Nz − |s|) (S13)

I′t (ω, ϕ) =
−2π
ω2

0

Nz−1∑
s=−Nz+1

eiπ(ω/ω0+1)s s (Nz − |s|) f̄′(s;ϕ) ; (S14)

in the last line we have introduced an average chirp

f̄′(s;ϕ) B
1

(Nz − |s|)
Nz−|s|/2∑

M=1+|s|/2
f′(t(0)

M (ϕ)) (S15)

motivated by the observation that a factor (−1)2M−|s| in the M-summation can be replaced by unity. In the special situation where
f̄′(s, ϕ) is independent of s and ϕ, we have I′t /It =−2 f̄′/ω0; with Eq. (17), we obtain

dω
dϕ

= −2
ω

ω0
f̄′ . (S16)

In the special situation where f(t) is linear in t, we recover (17).

In particular, when choosing a sinusoidal pulse (4), the zeros of k(t) for k0 = 0 are obtained as

tm =
1
ω0

((m+
1
2

) π − ϕ) (1 − fchirp

ω0
((m+

1
2

) π − ϕ)) , (S17)

in the limit of small chirp (| fchirp|�ω0) and for small |m|,m∈Z as it is applicable in case of a few-cycle pulse E(t). When
comparing to Eq. (S5), we obtain f̄′ = fchirp.

S4. EVALUATING THE TIME-LOCAL CHIRP OF THE EXPERIMENTAL ELECTRIC FIELD PULSE

In the main text, we have found that fchirp =−1.5 THz is a good choice in Eq. (17) for reproducing experimental CEP shifts,
see Fig. 4. In this section, we discuss how well this choice for fchirp matches with the actual shape of the experimental electric
field.

The experimental electric field pulse9 is sketched in Fig. S2 (a) for ϕ= 0 and ϕ= π/2. We evaluate the ”time-local chirp”
f′(t(0)

M (ϕ)) which is the key quantity in our analysis for general pulses in Appendix S3. f′(t(0)
M (ϕ)) follows from Eq. (S5),

f′(t(0)
M (ϕ)) = 1− tm(ϕ)/t(0)

m (ϕ), where t(0)
m , tm are determined from the experimental pulse ϕ= π/2. The result is sketched in Fig. S2.

We observe that close to M = 0, we have a constant local chirp f′ ≈−0.92 THz (giving −2πf̄′/ω0 ≈ 0.037 with ω0 = 2π · 25 THz)
while for roots |M| > 1, the local chirp is not constant. Thus, higher-order derivatives of f become important that are not included
in the analysis in Appendix S3 and in our analytical result (17).

Please note, that, compared to the data in Ref. 9, we have redefined the CEP, −ϕ→ϕ+ 2π, to match the definition in Ref. 9 to
the definition in our work.

S5. PARAMETERS OF THE FITS REPORTED IN FIG. 4

In Table S1, we report the full set of fit parameters obtained from the fitting in Fig. 4.

S6. CEP-DEPENDENT EMISSION INTENSITY FOR MODIFIED CHIRP

When employing SBE simulations, we can easily modify fchirp in Eq. (4). To test the prediction dω/dϕ∝ fchirp from Eq. (17),
we double the chirp from fchirp =− 1.25 THz (Fig. 2) to fchirp =− 2.5 THz [Fig. S3 (a)] and we observe a stronger tilt of the ex-
tremal lines of I(ω) in the (ω, ϕ)-plane. When changing the sign of the chirp from fchirp =− 1.25 THz (Fig. 2) to fchirp = 1.25 THz
[Fig. S3 (b)], the direction of the tilt is reversed, in agreement with the sign change of dω/dϕ present in Eq. (17).

S3



TABLE S1: Fit parameters α, β, γ of the fits ω(ϕ) =ω0[α+ β(ϕ− ϕ̄) + γ(ϕ− ϕ̄)2] reported in Fig. 4, as function of the average
frequency ω̄ of the line segment. We also report the average CEP ϕ̄ of the line segments.

ω̄/ω0 13.4 13.5 13.6 14.8 15.3 15.8 17.0 17.5 18.1 20.1

α – 0.02 0.01 0.00 – 0.01 – 0.01 – 0.01 – 0.03 – 0.04 0.00 – 0.01

2πβ 1.81 2.00 1.89 1.86 2.23 2.25 2.19 2.24 2.39 2.84

γ 0.02 – 0.02 0.01 0.02 0.00 0.00 0.00 0.02 – 0.01 0.03

ϕ̄/π 1.1 2.1 0.3 2.2 1.6 1.2 1.3 0.9 0.4 1.3

.
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FIG. S2: Top: Experimental pulse shapes from Ref. 9.
Bottom: Chirp-like shifting f′(t(0)

M (ϕ=π/2)) evaluated from
Eq. (S5) for the experimental pulse shape.
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different chirp of the driving field (4), (a) fchirp = − 2.5 THz
and (b) fchirp = 1.25 THz.
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