Optimal Control of anisotropic
Allen—Cahn equations

DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES
DER NATURWISSENSCHAFTEN (DR. RER. NAT.)
DER FAKULTAT FUR MATHEMATIK

DER UNIVERSITAT REGENSBURG

vorgelegt von

Johannes Meisinger

aus Bayreuth
im Jahr 2022

Promotionsgesuch eingereicht am: 07.12.2021

Die Arbeit wurde angeleitet von: Prof. Dr. Luise Blank (Universitdt Regensburg, Erstbetreuerin)
Prof. Dr. Eberhard Béansch (Friedrich-Alexander Universitit
Erlangen-Nirnberg, Zweitbetreuer)

Prifungsausschuss: Vorsitzender: Prof. Dr. Bernd Ammann
Erst-Gutachterin: Prof. Dr. Luise Blank
Zweit-Gutachter: Prof. Dr. Michael Hinze (Universitét Koblenz Landau)
weiterer Priifer: Prof. Dr. Harald Garcke
Ersatzpriifer: Prof. Dr. Helmut Abels

Abstract

This thesis is concerned with the solution of an optimal control problem governed by an
anisotropic Allen-Cahn equation as a model for, e.g., crystal growth.

The first part treats the analytical existence theory and first order optimality conditions of
the in time continuous and of the time discretized versions. The state equation is discretized
implicitly in time with piecewise constant functions. To this end, we consider a more general
quasilinear parabolic equation, where the quasilinear term is strongly monotone and obeys a
certain growth condition while the lower order term is potentially non-monotone. The existence
of the control-to-state operator and its Lipschitz continuity is shown for the time discretized
as well as for the time continuous problem. Then we present for both the existence of global
minimizers as well as the convergence of a subsequence of time discrete optimal controls to a
global minimizer of the time continuous problem. The results hold in arbitrary space dimensions.
Under some further restrictions we are able to show Fréchet differentiability of the in time
discretized problem and use this to rigorously set up the first order conditions. For this the
anisotropies are required to be smooth enough, which in this thesis is achieved by a suitable
regularization. Therefore, the convergence behavior of the optimal controls are studied for a
sequence of (smooth) approximations of the former quasilinear term. In addition the simultane-
ous limit in the approximation and the time step size is considered. For a class covering a large
variety of anisotropies we introduce a certain regularization and show the previously formulated
requirements. Finally, we will show that the results cannot be straightforwardly transferred to a
semi-implicit discretization scheme.

In the second part a trust region Newton method is presented, that eventually is used to
numerically solve the optimal control problem. Different ways of preconditioning the involved
Steihaug-CG solver are discussed and the limits of existing approaches in the present case are
worked out. Then, several aspects of the implementation are examined, like the solver for the
appearing partial differential equations, parallelization and the utility of adaptive meshes in the
context of the control problem.

In the final part, various numerical results based on the previously mentioned choice of
anisotropies are presented. These include convergence with respect to the regularization
parameter, numerical evidence for mesh independent behavior and a thorough discussion of
the simulation in several relevant settings. We concentrate on two choices for the anisotropies
and in addition include the isotropic case for comparison. Among others, crystal formation
and topology changes are addressed and we see that the algorithm is able to handle these.
Furthermore, the behavior of various quantities over the course of the algorithm is investigated.
Here we observe that the number of Steihaug steps, and therefore the execution time per trust
region step, growths considerably towards the end of the algorithm. Finally, we look at the
impact of some implementational aspects with respect to execution speed. We observe that the
implicit and semi-implicit approaches perform comparably fast if the implementation is suitably
optimized. We however conclude that the implicit approach is preferable since it is less sensitive
with respect to the regularization and is supported by more theoretical results.

Zusammenfassung

In dieser Arbeit wird die Losung eines Optimalsteuerungsproblems behandelt, welches eine
anisotrope Allen-Cahn Gleichung als Modell fiir beispielsweise Kristallwachstum enthélt.

Der erste Teil befasst sich mit der analytischen Existenztheorie und den Optimalitdtsbedingungen
erster Ordnung der zeitkontinuierlichen und zeitdiskreten Versionen. Die Zustandsgleichung
wird implizit in der Zeit mit stiickweise konstanten Funktionen diskretisiert. Dazu betrachten
wir eine allgemeinere quasilineare parabolische Gleichung, bei welcher der quasilineare Term
stark monoton ist und einer bestimmten Wachstumsbedingung gehorcht, wéhrend der Term
niedrigerer Ordnung nicht unbedingt monoton ist. Die Existenz des Steuerungs-Zustands-
Operators sowie dessen Lipschitz-Stetigkeit wird sowohl fir das zeitdiskretisierte als auch fiir das
zeitkontinuierliche Problem bewiesen. Anschlielend zeigen wir sowohl die Existenz von globalen
Minimierern als auch die Konvergenz einer Teilfolge von zeitdiskreten optimalen Steuerungen
gegen einen globalen Minimierer des zeitkontinuierlichen Problems. Die Ergebnisse gelten fiir
beliebige Raumdimensionen. Unter einigen zusétzlichen Einschriankungen sind wir in der Lage
die Fréchet-Differenzierbarkeit des zeitdiskretisierten Problems zu zeigen und nutzen dies um die
Bedingungen erster Ordnung rigoros aufzustellen. Hierfiir miissen die Anisotropien glatt genug
sein, was in dieser Arbeit durch eine geeignete Regularisierung sichergestellt wird. Daher wird das
Konvergenzverhalten der optimalen Steuerungen fiir eine Folge von (glatten) Approximationen
des urspriinglichen quasilinearen Terms untersucht. Zusétzlich wird der gleichzeitige Limes der
Approximation und der Zeitschrittweite behandelt. Fiir eine Klasse, welche eine grofie Vielfalt
an Anisotropien abdeckt, fiihren wir eine spezifische Regularisierung ein und zeigen die zuvor
formulierten Voraussetzungen. SchliefSlich werden wir zeigen, dass die Ergebnisse nicht ohne
Weiteres auf ein semi-implizites Diskretisierungsschema iibertragen werden kénnen.

Im zweiten Teil wird ein Trust-Region-Newton-Verfahren vorgestellt, das schliefSlich verwendet
wird die numerische Losung des optimalen Steuerungsproblems zu berechnen. Auf verschiedene
Moglichkeiten der Vorkonditionierung des beteiligten Steihaug-CG-Losers wird eingegangen
und die Grenzen vorhandener Ansétze im vorliegenden Fall werden herausgearbeitet. Dann
werden mehrere Aspekte der Implementierung beleuchtet, wie der Loser fir die auftretenden
partiellen Differentialgleichungen, Parallelisierung und der Nutzen von adaptiven Gittern im
Zusammenhang mit dem Steuerungsproblem.

Im letzten Teil werden verschiedene numerische Ergebnisse prasentiert, die auf der zuvor
erwahnten Wahl der Anisotropien basieren. Dazu gehéren Konvergenz in Bezug auf den Regula-
risierungsparameter, numerische Evidenz fiir netzunabhéngiges Verhalten und eine ausfiihrliche
Diskussion der Simulation in verschiedenen relevanten Situationen. Wir konzentrieren uns auf
zwei Moglichkeiten fiir die Anisotropien und ergénzen zum Vergleich auch den isotropen Fall.
Unter anderem werden die Kristallbildung und Topologieinderungen behandelt und wir werden
sehen, dass der Algorithmus in der Lage ist diese zu bewéltigen. Weiterhin wird das Verhalten
verschiedener Groflen im Verlauf des Algorithmus untersucht. Hier beobachten wir, dass die
Anzahl der Steihaug-Schritte und damit die Ausfiihrungszeit pro Trust-Region-Schritt, zum Ende
des Algorithmus hin erheblich ansteigt. Schliefllich betrachten wir die Auswirkungen einiger
Implementierungsaspekte im Hinblick auf die Ausfiihrungsgeschwindigkeit. Wir stellen fest, dass
die impliziten und semi-impliziten Ansétze vergleichbar schnell sind, sofern die Implementierung
entsprechend optimiert ist. Wir kommen jedoch zu dem Schluss, dass der implizite Ansatz zu
bevorzugen ist, da er weniger empfindlich beziiglich der Regularisierung ist und durch mehr
theoretische Ergebnisse gestiitzt wird.

Contents

1__Introductionl 7
I1.1 Overview of the occurring equations and quantities| 10
1.2 Notation and auxiliary results|. o000 14

|12 Analytical results| 19
2.1 Assumed properties of A, ¢ and their derivatives| 20
2.2 Solution of the time discretized and time continuous state equations| 23
2.3 Existence ot the optimal control in the time discretized and in the continuous |

.. 34
2.4 Fréechet differentiability of the reduced cost tunctional for the time discretized |

| problem| 36
2.5 Convergence with respect to a regularizationof Af. 42
2.6 The regularization of a class of anisotropies| 45
2.7 A semi-implicit splitting scheme for the anisotropy| 49

2.7.1 Existence and stability result| o000 49
2.7.2 First order conditions and linearized equations| 53
2.7.3 On the continuous dependence of the state] 55

13 Algorithms and implementation| 61

3.1 Presentation of the algorithms|. 00000 61
3.1.1 Steepest descent and trust region method| 64
3.1.2 The Steithaug-CG method| 66
3.1.3 A note on the preconditioned Steihaug-CG method|. 71

3.2 Preconditioning| 75
13.2.1 Dependence of the condition number on y and p| 75
13.2.2 Dependence of the condition number on the mesh and 7. 77
13.2.3 Factorizing the Hessian| 79
13.2.4 Considering the tull system as an alternative] 80

3.3 Comments on the implementation| 83
3.3.1 Solving the PDEs|. oo 83
B.3.2 Parallelization| oo 91
B.3.3About mesh refinement] 92

4__Numerical results| 95
4.1 Dependence on the regularization parameter o|. 99
4.2 Mesh independent behavior| oo oo 100
4.3 Numerical examples for different desired states and anisotropies|. 102

[A3.1 FEvolution to star-like structured. 102
4.3.2 Splitting and merging geometries| oL oL 105
4.3.3 Filling the whole domain| 00 108

4.4 Monitoring quantities| 109
..................................... 111

4.4.2 Steihaug-CG iterations and time per step| 111
4.4.3 Trust region radius| 112

Contents

4.5 Efficiency discussions|

.................................. 113
4.5.1 Semi-implicit scheme|. o 118
4.5.2 Keeping assembled terms in memory|o L. 119
4.5.3 Parallelization|l 124
6_Conclusion and outlookl 127
B1b 0 D

Introduction

In many scientific areas the optimal control of an interface evolution towards a prescribed
anisotropic shape is desired. For example, in chemistry or materials science one wishes to
steer the solidification process of crystals and in medicine this supports the production of new
pharmaceuticals. We refer to |27} |50} 59} |102] and references therein for examples. Concerning
the time evolution of shapes, phase field models—that are often of Allen-Cahn or Cahn-Hilliard
type—have shown great promise in many application areas. After the introduction of the Allen-
Cahn equation in the late 70s [2], several attempts have been made to also formulate an anistropic
version starting from the 90s |97} [125]. The use of the latter better meets the requirements
of the above tasks as it allows for a more realistic modeling. The involved anisotropies are
typically nonsmooth, which has to be taken care of when setting up optimality conditions. To
the best of the author’s knowledge there does not yet exist any mathematical treatment on the
optimal control of anisotropic phase field models so far. Also the analysis of optimal control of
quasilinear partial differential equations is still in its infancy.

For the phase field ansatz the interface is modeled by a diffuse interface layer. Therefore an
order parameter y—the so called phase field—is introduced which reflects the pure phases with
the values +1, e.g., the liquid phase for y ~ 1 and the solid phase when y ~ —1. The diffuse
interface is then given by values between —1 and 1. The gradient flow of the Ginzburg-Landau
energy of the form

Ey) = /QgA(Vy) + e M(y) da (1.1)

then determines the time evolution of the shape, in other words the state equation for the
control problem. Here the first term represents the surface energy, where A : R — R is an
(an-)isotropy function that typically is absolutely homogeneousﬂ of degree 2. Hence, high values
of [Vy| are penalized, leading to moderate interface transitions. Also the amount of interfacial
regions is kept small by this term. The effect of the additional anisotropy property of A is that
the evolution prefers to build interfaces perpendicular to some directions. The potential 1) can
be thought of being symmetric and to have its global minima at = +1, forcing the constant
phases to attain these values. The variable € > 0 determines the interfacial thickness and can be
considered as fixed throughout the whole thesis. Considering in particular the scaled L2-gradient
flow

€0y = —V20)€(y) (1.2)

of (|1.1]) with a sufficiently smooth potential and anisotropy, we obtain the anisotropic Allen-Cahn

LA function f is absolutely homogeneous of degree k if f(rz) = |r|*f(z) for all z € R%, 7 € R.

1 Introduction

equation, as will briefly be sketched in what follows. The L?-gradient is given by the relation
(Vi@ €y),v)12(0) = DE(Y] Vv e LA(Q). (1.3)

By a formal variation of £(y) in direction v, we obtain for the directional derivative

DE(y)[v] = /Q cA/(Vy) - Vo + e~/ (y)v da. (1.4)

If we further impose A’(Vy)r = 0 on 09, we can identify V2)E(y) after integrating by parts

DE@D] = | (=29 A(Ty)+= 0/) v (1.5)

Vi2@)€®)

Hence, we may write the anisotropic Allen-Cahn equation as

Dy -V A (VY + W) =0 @,
A'(Vyr =0 on 3, (1.6)
y(0) = yo in Q,

where we defined the space-time cylinder by @ = [0,T] x © and its lateral boundary by
¥ :=10,T] x 09Q. For a further introduction to phase field models we refer to [48] and references
therein.

In the literature there exist several ways to define the anisotropy A. We will give a small
overview here and refer to [19, 45] as well as references therein for additional information.
In the pioneering paper [86] the author considers convex anisotropies in order to obtain a
well-posed problem. In [101} [113] [126] |136] various approaches are taken to enlarge this also
to non-convex anisotropies by adding regularization terms or changing the structure of the
energy functional. These approaches lead to higher dimensional terms which make the analysis
complicated. The authors of |[49] try to tackle the problem by convexifying the anisotropies, but
also there mathematical difficulties appear. For the analysis part of this thesis we will keep the
choice of A rather general, having in mind assumptions that are satisfied by a more concrete
choice that will be treated later in Section and that was first introduced by [16, [14]. This
choice avoids most of the problems that the approaches from above comprise. Also for 1 we
will demand some general requirements and hence the following analysis and numerical ansatz
will not only be valid for the standard Allen-Cahn equations but can be applied in general to
differential equations arising from a gradient flow of energies of the form .

The aim is now to determine the distributed control w driving the solution y of the anisotropic
Allen-Cahn equation with source term

ey — eV - A'(Vy) + L9/ (y) = u, (1.7)

such that it minimizes a certain cost functional that penalizes deviations from a prescribed target
function yo at a given final time 7. Hence the optimal control problem considered throughout
this thesis may be described by the following setting:

Let Q C R? be a bounded Lipschitz domain and yq € L?(f2) be a given target function. Let a
final time 0 < T' < oo be given and define Q and ¥ as before. For a given initial state yo € H*(Q)
the objective is to find a solution to the optimal control problem

. 1 A
min J(y, u) = §||Q(T) —yalliz2@) + %HUHQL%Q)a (1.8)

subject to the quasilinear, possibly nonsmooth parabolic state equation
1
/ =0y +eA'(Vy) Vi + —¢'(y)n = / un v € L*(0,T; H' (),
Q Q

y(0) = yo in Q,

where u € L?(Q) = L*(0,T; L*(Q)) and y € L2(0,T; H*(Q)) N H*(0,T; L?(12)).

(1.9)

We want to stress that the results also hold for a target function yg € L?(0,T; L*(Q)) that is
given over the whole time horizon with small modifications (see Remark and the cost
functional is studied rather exemplary. Note that J is well defined due to the embedding
L2(0,T; HY(Q)) N H* (0, T; H(Q)') < C([0,T); L*(2)). The weighting with 1 in is due to
the fact that by numerical observations the main contributions of the control are located around
the interface of the phase field with comparable width. Dividing by € intends to compensate
this behavior, such that the cost functional is invariant with respect to a rescaling thereof. Note
again that € is fixed, but the scale invariance will be helpful when considering the sharp interface
limit in possible later studies.
The ultimate goal of this thesis is to study the problem presented above analytically as well as to
supply a numerical solver and perform the necessary investigations on showcase simulations. For
the optimal control we follow an approach where we first discretize the problem in time, then
apply an optimization solver to this time discretized problem, and finally discretize in space for
the implementation. For the time discretization we choose an implicit scheme which also allows
for the viewpoint on the problem as a control problem of a series of quasilinear elliptic problems.
A steepest descent algorithm as well as a trust region Newton solver were implemented as part
of this work, where for the numerical investigations we stick to the latter due to its superior
convergence properties in direct comparison.
For the numerics the first order conditions are required, that is we need to be able to differentiate
the solution operator of the state equation (control-to-state operator). However for many
common choices of the anisotropy A this is accompanied with difficulties. Usually the anisotropy
is given by

A(p) = 3 (p)I%, (1.10)

where the density function v is assumed to be an absolutely 1-homogeneous function in C2(R% \
{0}) N C(RY) (see, e.g., [14, 45, 53, |64]) providing absolutely 2-homogeneity of A. Consequently
A" is absolutely 0-homogeneous and therefore it cannot be defined to be continuous at the origin
unless v is an energy norm. Hence the control-to-state operator is potentially non-differentiable.
Since numerical methods for nonsmooth optimal control problems are still in its infancy, this
is problematic for the search of efficient solvers. For a nonsmooth quasilinear elliptic control
problem,; a semismooth Newton method is applied to a relaxed optimality system in [39]. To
the best of the author’s knowledge globally convergent methods for parabolic equations without
extra regularity requirements do not exist. To circumvent this problem, the present approach is
to consider a regularized version of A by modifying the function ~.

In order to solve the problem f we will face several additional equations that are derived
from by linearization as well as discretizations of those equations in several stages. The
next section tries to provide an overview of the approach pursued in this thesis by presenting the
general discretization strategy and providing a formal derivation of just mentioned linearizations
in the time continuous setting. With that, they can be consulted retrospectively whenever they
appear later in the one or other form and can be placed in the proper context quickly. In the
final section of this introductory chapter, we will specify the notation we use and collect the
most important results needed throughout this thesis.

The outline of the remaining parts of this thesis is as follows:

In Part [2] we will discuss the analytical results that are related to problem (L.8)—(L.9). In
particular, the existence of solutions for the state equation as well as for the control problem
is considered in Sections and 2.3both for the time continuous as well as for the time
discretized versions. Here we build on the results of [53] that allow for a treatment in arbitrary

1 Introduction

space dimension. The hitherto results for the optimal control of the (isotropic) Allen-Cahn
equation that are known to the author invoke the constraint d < 3 [141} [41] or some potential
differing from ours [107]. Our results also hold for non-homogeneous anisotropies like the
regularization introduced in Section In Section we will proceed with proving Fréchet
differentiability of the solution operator of the state equation and derive the first order necessary
conditions needed later for the numerics. Here we will restrict ourselves to the time discrete
problem. There are several reasons why we do so. While there exists much literature about
existence results for quasilinear parabolic problems and first order conditions of parabolic
control problems separately, literature containing a treatment of both topics at once is sparse.
A known result treating quasilinear parabolic control problems uses a nicer nonlinearity (in
particular a monotone one) and requires spaces where a result is lacking for in our case [38].
Many other papers on quasilinear parabolic equations consider a quasilinear term that is of a
different structure, like merely including dependence on y or |Vy| |32} |26} [103]. With our time
discretization we obtain a sequence of quasilinear elliptic problems. For such equations at least
some results exist for distributed control problems with Dirichlet boundary (35, 37] or Neumann
boundary controls |33} [34], which we can adapt to our case. We also provide results concerning
the convergence of global minimizers with respect to the time discretization as well as with
respect to the regularization parameter. Most of the results of this part so far were already
published in [22| [23]. In Section we will investigate how much of the analysis done so far
can be carried over to the semi-implicit discretization introduced in [13} [15]. Although we will
be faced with several issues, we will nevertheless give the formally derived first order condition
and Hessian matrix to be able to compare this scheme to the implicit one in the numerics.

In Part [3] we are concerned with the algorithmic and implementational aspects of the optimal
control problem. First, we will introduce the steepest descent method and trust region method
with Steihaug-CG we implemented to tackle the problem on the computer in Section [3.1] Due
to performance advantages we will stick to the latter in the numerical part. A similar method
was applied in [24] for the isotropic Allen-Cahn equation. We will continue to discuss several
preconditioning approaches for the full system as well as for the Steihaug-CG method applied
to the reduced system in Section Here, to the author’s knowledge, only [20] considers the
preconditioning of a comparable Allen-Cahn control problem. Then, in Section [3.3] several
remarks about some important details of the implementation are given. We will explain how
the partial differential equations were implemented in C++ and FEniCS [5], how the program
was parallelized and the usefulness of mesh adaptivity in the present context.

The thesis is completed with a thorough investigation of the numerical solution of the control
problem in Part [d First, in Sections and we will verify previous theoretical findings
concerning the dependence on the regularization parameter and the mesh. In Section [£:3] we
will provide the results of simulations of several settings that show interesting behavior like
topology changes or the formation of shapes with extreme excrescences. These will be further
investigated with respect to the behavior of the algorithm in Section and we will compare
the implicit scheme to the semi-implicit one in Section Generally, in Section some of
the implementational aspects from before will also be considered from the numerical point of
view. Some of the numerical results from this part can also be found in [23].

Finally, in Part |5} the results of this thesis are summarized and an outlook on possible further
investigations is given.

1.1 Overview of the occurring equations and quantities

As already mentioned in the previous section, the scope of this thesis comprises the analysis
of f on both, a time discrete and a continuous level, as well as the provision of a
numerical solver for the control problem. The present section tries to give an overview of the
appearing equations by presenting them as they logically appear in the context of deriving first
order conditions for the control problem using a Lagrangian-based point of view. The following
discussion is meant for illustrative purposes only and we stress that the derivations are intended
to be short, therefore are rather formal, and make no claim to mathematical rigor. Rigorous

10

1.1 Overview of the occurring equations and quantities

derivations will be addressed in the subsequent chapters. We note that this section is inspired
by the presentation in |79, Section 1.6].
We begin by considering an optimization problem in the more abstract form

min J(y, u) subject to e(y,u) =0, (1.11)
yu
where e(y, u) stands for a general state equation. In many cases, given u the equation e(y,u) =0
can be solved uniquely for the state y and we write y(u) = Su in this case, where S denotes the
solution operator of the state equation. Inserting this into the cost functional of (|1.11)) we can
define the reduced control problem by

muinj(u) = J(y(u),u). (1.12)

For this control problem we can readily write down the first order condition in terms of the
gradient of the reduced cost functional j, namely Vj(u) = 0.

Since the definition of j contains the solution operator S of the state equation whose exact form
is not known a priori (and is costly to compute for the numerics), the next task is to find a
practical definition of said gradient. One quick way to derive such a representation is by means
of the formal Lagrangian method. This gives an idea on how the gradient might be represented
by introducing a so-called adjoint state. That this really gives a correct definition of the gradient
and that the derived adjoint equation is well defined then still remains to be shown afterwards
and will be done for our control problem in Section [2.4] As a starting point, let us define the
Lagrangian associated with the problem

L(U,y,p) = J(yvu) - (p7 6(7!7”))’ (113)

where p is the Lagrange multiplier. The KKT-theory relates the first order conditions of (1.11]
to the gradient of the Lagrangian (|1.13)). Inserting the solution of the state equation y(u), one
recovers the reduced cost functional

() = J(y(u),u) = L(u,y(u), p). (1.14)

We note that p is arbitrary so far but we are free to choose p(u) satisfying some special condition,
which we will do in the following to derive a useful expression for the gradient of j. Using the
relation (1.14)), we can write down the following expression for the derivative of j applied to a
direction d

J'(w)ld] = DuL(u, y(w), p(w))[d]+ Dy L(u, y(u), p(w) [Duy (u)[d]+ Dp L(u, y(U)W(U))[Dup(?) [d]])-
1.15
We will now look closer to each of the three terms. By the definition (1.13)), we obtain

Dy L(u, y(u), p(u))[d] = Ju(y(u), w)[d] = (p(u), eu(y(u), u)[d])- (1.16)

This cannot be simplified further without additional knowledge of the special form of the cost
functional J and the state equation defining e(y, u). For the derivative with respect to y we get

Dy L(u, y(u), p(w)[Duy(u)[d]] = Jy(y(u), w)[dy] — (p(u), ey (y(u), u)dy)
i=dy (1.17)

= (Jy(y(u)’ u) — ey(y(u)7 u)*p(u), dy)'

Finally, the last contribution vanishes due to the definition of the state y(u)

Dy L(u, y(u), p(w)[Dup(w)[d] = = (Dup(u)ld], e(y(u), u)) = 0. (1.18)

11

1 Introduction

(OP) time discretization (OP)T (OP)T,h
(k) (k-) space discretization k
o (OP)- (0P)%)

Figure 1.1: Schematic description of the ways the optimization problem can be tackled with
respect to discretization and optimization. The path we take in this thesis is indicated
by the thick arrows.

In total we are left with the contributions from and that still are not of a particularly
convenient form. At this point we should recall that so far we left open the choice of the multiplier
p(u) which now we are free to impose in order to eliminate the contribution from . As
we want this term to vanish for all directions d and hence all dy (provided the linearization is
onto), we obtain that p(u) should satisfy the following adjoint equation

ey (y(u),u) p(u) = Jy(y(u),u). (1.19)

The derivative of j is then determined from this and . Summarized, we recover the state
equation by demanding the derivative of the Lagrangian with respect to p to vanish
and likewise we obtain the adjoint equation by differentiating with respect to y and the
gradient of j by differentiating with respect to u. Let us further specify for the most
common cases. Typically we are confronted with functions of the form

J(u,y) = $llull* +q(y), ely,u) = A(y) — Bu,

where ¢ is a functional only depending on y, A is possibly a nonlinear operator and B is some
linear operator. Then we have J,,(y,u)[d] = a(u,d) and e,(y,u)[d] = —Bd and by taking the
Hilbert space representative, altogether one obtains

Vi(u) = au+ B*p(u), (1.20)

with p(u) solving
Ay (y(u)p = gy (y(u)). (1.21)

If A was linear, we would simply have A,(y) = A. By a similar procedure as above one can also
derive a representation of the Hessian of j. Since in this thesis this is only needed as part of an
algorithm (see Algorithm [3)), we will content ourselves with just stating an expression for the
special choices given above, which can be thought of as a linearization of

V2j(u)du = adu + B*6p(u, du). (1.22)

The vector dp can be obtained by first solving a linearization of the state equation and subse-
quently a linearization of the adjoint equation. For more details consult, e.g., |79, Section 1.6.5].
What these equations look like for the control problem considered in this thesis is given below.
We are now in position to discuss the approach we pursue in this thesis to tackle problem
7. In principle we have discussed all the equations one needs to find a candidate
for a local optimizer. Since we are out for the numerics, we have to discretize the appearing
equations at a certain point. In our case, the state y is dependent on the spatial variable x and
time ¢ with regard to those it can potentially be discretized separately. All these possibilities
are summarized in Figure [[.I] Arrows pointing to the right indicate discretization, first with
respect to time (7) and then with respect to space (h). Arrows pointing downwards indicate
solving the first order system obtained by the just shown formalism ((k), representing some

12

1.1 Overview of the occurring equations and quantities

iteration number counter). For instance following all the arrows in the first line to (OP),

and then going down to (OP)(Tk})L results in the approach first-discretize-then-optimize (DO),
where the first order conditions are set up for the fully discrete system. Likewise, going via
(OP)*) is known as first-optimize-then-discretize (OD) and in this case the equations are not
discretized before the optimization procedure stands. The approaches (DO) and (OD) may
result in different algorithms, but in case the state equation is discretized implicitly in time as
we do and appropriate space discretizations are chosen for y, u and p, they typically commute.
In this case the resulting algorithm should be identical also for the mixed approach we take here.
This one is indicated in the graphic by the thick arrows and consists of first discretizing the
state equation only in time, then setting up the optimality conditions for the resulting control
problem and finally conclude with the space discretization. Invoking said time discretization, in
chapter [2] we are able to show existence of global solutions to the optimal control problem for
both, the time discrete version as well as the time continuous counterpart. In Section [2.7] we
will also discuss another possibility to discretize the equations in time given by [13| [15]. Here,
due to the semi-implicit nature, the commutativity of (DO) and (OD) is no longer given then.
The final space discretization will be done automatically by the tools of the FEniCS framework
[5]) we use for our implementation. As this is carried out by a straightforward final element
approach, the fully discrete equations will not be discussed explicitly within the scope of this
work.

That all said, we shall conclude this section by giving explicit expressions for the equations that
arise from the previous discussion applied to the concrete problem 7. We will only give
the time continuous equations in there classical formulation as they are the most memorable
and we have not discussed the discretization yet. When the discrete versions are introduced
we will back-reference to their counterparts here. First, let us repeat the state equation for the
reader’s convenience

1
ey —eV - A(Vy) + ' (y) = u in @,
A(Vy)tv=0 on X, (1.23)
y(0) =yo in Q.

Existence of a unique weak solution for this and its discrete counterpart will be subject of

Section [2.2] Inserting (L.23) and (L8] into the Lagrangian (L.13)), deriving with respect to y as
in (|1.17)), one obtains for the adjoint equation (|1.21f) in this case

1
—e0ip — eV - (A" (Vy)Vp) + gz//’(y)p =0 in Q,
Oy,p=0 on ¥, (1.24)
1 .
p(T) = g(y(T) —ya) in €,

with v4 = A”(Vy)v. At this point we should again emphasize that this equation may only hold
on a formal level since A is not twice differentiable in general. In the course of this thesis, we
will circumvent this problem by regularizing the function A. Having determined the adjoint
state, one can readily compute the gradient from

Vj(u) = 2u+ p(u), (1.25)

cf. (1.20). The representation ([1.25)) via the adjoint state (1.24)) will be shown rigorously in
more detail for the implicit time discretization at the end of Section

Although relation , which is required for the gradient method, will be derived rigorously
in the course of this thesis, for the numerics we will fall back on Newton’s method, as the latter
converges way earlier. Therefore, we supplementary give the linearized equations. However,
also their time discretizations will only be derived formally later. The linearized state equation
can be obtained by varying with respect to u in direction du and with the definition

13

1 Introduction

0y = Dy,y(u)du is given by

1
eddy — eV - (A" (Vy)Viy) + gw”(y)&g =du in Q,
Oy, 0y =10 on Y, (1.26)
dy(0) =0 in Q.

Apart from the sign before 0; and the end point value that has become an initial value, it is of
the same nature as the adjoint equation (1.24]). Linearizing the latter results in

1 ’ 1 .
—e010p — eV - (A" (Vy)Vép) + gw”(y)&? =eV - (A"(Vy)[Vp, Véy]) — gw”’(y)péy in Q,
0y, 0p =0 on X,
op(T) = ééy(T) in Q.
(1.27)

Note that the appearance of the third derivatives on the right-hand side results from the chain
rule. It possibly diverges at the origin. The computed additional adjoint state dp can be used to
determine the application of the Hessian to a vector du by

VZj(u)du = 26u + dp. (1.28)

This allows for the efficient use of an iterative method later (see Section [3.1.2)), without the need
of setting up the complete fully discretized Hessian.

1.2 Notation and auxiliary results

In this section we shall fix the notation that is used throughout the thesis and provide some
important theorems that we will use in the following. Most statements can be found in the
standard literature on linear and nonlinear functional analysis as [8} {139} 140, [117]. First, recall
from the introduction that @ C R? throughout the thesis denotes some bounded Lipschitz
domain, where d > 1 is arbitrary for now and will be restricted later if necessary. A (real)
Banach space V is a real vector space equipped with a norm |||y : V' — R with respect to
which it is complete . The most common Banach spaces used in this thesis are the Lebesgue
spaces LP(Q) with 1 < p < oo, the Sobolev spaces W*P(Q) with k € N and the Bochner spaces
L?(0,T; X) where X denotes some other Banach space. Note that if X = LP({2) the latter can
be identified with LP(Q). Furthermore the space of Banach-valued LP-functions W*?(0,T; X)
can be defined by demanding that the derivatives with respect to time up to the k-th order lie
in LP(0,T; X). For a Banach space V we will denote its dual by V' and the duality product
by (-,-)y - It is well-known that for the Lebesgue and Sobolev spaces, the dual spaces can be
represented in terms of another one with exponent p’ = p’%l if 1 < p < oo. The dual of the
Bochner space is given by L?’ (0,T; X"). If a Banach space in addition is equipped with a scalar
product that relates to its norm by ||-|[v = +/(:,-)v, then it is called a Hilbert space. For p = 2
and X being an Hilbert space the above spaces are Hilbert spaces. Here we use the common
notation W*2(Q) = H*(Q). An important property of a Hilbert space is that it is isometrically
isomorphic to its dual space (by Riesz representation theorem). If no subscripts are provided, by
(-,-) and || - || we denote the L2- or l-scalar product and norm, respectively. The space should
be clear from the context.

Next, we will briefly repeat the different notions of convergence on Banach spaces.

Definition 1.2.1. Let V' be a Banach space.
A sequence {v}r C V is said to converge

1. strongly to v € V if limg o0 ||vx — v||yv = 0, denoted by v, — v in V,

2. weakly to v € V' if (vg, "), kpe (v,v"), for all Vo' € V', denoted by v, — v in V.

14

1.2 Notation and auxiliary results

A sequence {v}, }r C V' is said to converge

k—o0

3. weakly-+ to v' € V' if (v,v}) "= (v,0') for all v € V, denoted by v}, = v’ in V.

In particular strong convergence implies weak and weak-x convergence. For the next result we
have to clarify two further terms. A Banach space is called separable if it contains a countable
subset that is dense. It is called reflezive if the mapping v € V — (-,v) € (V') is surjective.
Hilbert spaces are always reflexive. The Banach spaces given above are separable for 1 < p < oo
and if X is separable, and reflexive for 1 < p < oo and if X is reflexive. The following theorem
summarizes some important auxiliary results on weak convergence that we will use from time to
time in this thesis (see, e.g., [8, chapter 8]).

Theorem 1.2.2. Let V' be a Banach space.

1. If V is reflexive, then for every bounded sequence {vi}r C V, there exists a weakly
convergent subsequence.

2. If V is separable, then for every bounded sequence {v} }r C V', there exists a weakly-*
convergent subsequence.

3. Conversely, each weakly (-x) convergent sequence is bounded.
4. If V is a Hilbert space, then for every sequence {vi} C 'V the following equivalence holds
v — 0, ||okl] = ||vl & v = v in V.
Since L'(2) and L*°(£2) are not reflexive, they are not weakly compact. However, as L(Q) is
separable, we have at least that bounded sets in L°>°(£2) posses a weakly-*-convergent subsequence.

In the special case of Lebesgue spaces the following two results on weak convergence will prove
to be useful.

Theorem 1.2.3.

1. Let a sequence fy € LP(Q) with 1 < p < oo be given. If fr, = f in LP(Q) and fr — f
almost everywhere for k — oo, then f = f almost everywhere.

2. Let fr, — f in LP(Q) and g — g in L1(Q) with 1 <p < co and g = 1%'
Then frgr — fg in L*(9).

Proof:
1. See, e.g., |8, E8.1].
2. Using Holder’s inequality one obtains for all ¢ € L>()

‘ /Q frgrodz - /Q foodu

= ’/Q(fk = fgxd + f(gx — g)pdx

< 11fe = Fllirienlgell oy 16l o +] /Q (g0 — 9)foda

(1.29)
The statement now follows from the assumed convergences (note that f¢ € LP(£2)) and
the fact that weak convergent sequences are bounded. O

The following theorem finds frequent application in the theory of optimal control.

Theorem 1.2.4 (weak lower semicontinuity of convex functionals). Let V' be a Banach space.
Then any continuous and convex functional F : V — R is weakly lower semicontinuous, i.e.

v — v = lim inf F(vg) > F(v).
k—r o0

15

1 Introduction

We note that also norms are weakly (-x) lower semicontinuous.
In what follows, we collect several common inequalities and imbedding theorems.

Theorem 1.2.5 (Holder’s inequality, |8, Lemma 3.18]). Let be 1 < p; < oo fori=1,...,n and
1 < g < oo such that

1 1 _ 1
p1+"'+pn_q'

Then given f; € LPi(Q) for allt=1,...,n, the product fi... [, lies in LI(Q) and it holds
[f1- fallLa) < Mfillev) - - 1fillzen @)

Along the lines of the proof of |8 (3-11)] the following generalization to well-known Young’s
inequality can be shown.

Theorem 1.2.6 (scaled Young’s inequality). Let a,b € R and € > 0, then it holds

a? eb?
ab < 5 + 5

We continue by recalling Gronwall’s inequality (see, e.g., [87, A.1]).

Theorem 1.2.7 (Gronwall lemma).
Let T > 0 and ¢ > 0. Let u : [0,T] — R be measurable and bounded and v : [0,T] — R be
continuous and nonnegative. If

u(t) < c—i—/o v(s)u(s)ds vt € [0, T,

then

u(t) < cexp (/Otv(s)ds> vt € [0,7).

When considering the discrete equations, the following version of the discrete Gronwall lemma
taken from [87, A.3] will be useful.

Theorem 1.2.8 (discrete Gronwall lemma).
Let ¢ > 0 and {u;};>1 as well as {v;}j>1 be nonnegative sequences. If

j—1
u; < c—l—Zviui forj>1,

i=1

then
Jj—1 Jj—1
uj < cH(l +v;) < cexp (sz> forj > 1.
i=1 i=1

The next result is frequently used and can be found for instance in [44, Theorems 12.11 and
12.12].

Theorem 1.2.9 (Sobolev imbedding theorem). Let 2 be as above. For k,l € Ny, 1 < p < oo,
1< q as well as

k—d>1—

SIS
Qe

and k>1,

the imbedding
WEP(Q) — Whe(Q) (1.30)

holds.
Furthermore, if

d d

then satd imbedding is compact.

16

1.2 Notation and auxiliary results

By a compact imbedding we understand that a sequence bounded in the former space has a
strongly convergent subsequence in the other space. Here for k = 0, we define Wo?(Q) := L?(Q).
In particular for d < 3 it holds H'(Q) — L%(Q) and for d < 2 this imbedding is compact.

We continue with results on Bochner spaces. First, recall the following continuous imbedding

L0, T; HY () N HY(0,T; HY(Q)') < C([0,T]; L*(2)),

see, e.g., [139, Proposition 23.23] for a proof in a more general setting. This result is important
as it renders the initial and final conditions of the appearing parabolic PDEs to be well defined.
Concerning compact imbeddings, the following results are useful and can for instance be found
in |28, Theorem II.5.16] or [120] (only for reflexive spaces).

Theorem 1.2.10 (Aubin-Lions-Simon). Let X CY C Z be three Banach spaces with continuous
imbedding Y — Z and compact imbedding X — Y. Further let 1 < p,q < 0.

1. If p < oo, then the imbedding
LP(0,T; X)NWh49(0,T; Z) — LP(0,T;Y)
is compact.

2. If ¢ > 1, then the imbedding
L>=(0,T; X) NnWh4(0,T; Z) — C([0,T);Y)

is compact.

We note that without further information the imbedding L?(0,T; H*()) < L2(0,T; L*()) is
not compact, as for example for functions constant in space the norms of both function spaces
coincide.

When considering first order conditions of our optimal control problem, we need a notion
of differentiability on Banach spaces. The most common ones are summarized by the next
definition.

Definition 1.2.11 (Gateaux and Fréchet differentiability). Let X and Y be Banach spaces
and F: U C X — Y with U being nonempty and open.

1. If for w € U and given h € X the limit

1P, h) = lim F(u+ tl”;) — F(u)

ey

exists, it is called the directional derivative of F' in direction h.
If this limit exists for all h € X, then the mapping h — dF(u, h) is called first variation
of F at u.

2. If in addition for given u € U, the mapping F'(u) : X 3 h + dF(u,h) € Y is bounded
and linear, i.e., F'(u) € £(X,Y), then F is called Gdteauz differentiable at u.

3. If F is Gateaux differentiable in every v € B,.(u) C U for a r > 0 and in addition it holds

[1F(u+h) = F(u) = F'(w)hlly
1Pl x

then F is called Fréchet differentiable at u.

-0 for l2|lx — O,

4. If for F one of the above three properties holds at every uw € V with V' C U open, then F
is called directionally, Gateaux or Fréchet differentiable on V', respectively.

An important relation between Gateaux and Fréchet differentiability is given by the following
theorem (see, e.g., [117} Satz 2.5]).

17

1 Introduction

Theorem 1.2.12. Let X and Y be Banach spaces and F : X — Y be Gateaux differentiable in
U C X open. If F' is continuous in ug € U, then F is Fréchet differentiable in ug.

The next theorem demonstrates that Fréchet and Gateaux differentiable functions satisfy a
chain rule if they are combined appropriately.

Theorem 1.2.13 (chain rule). Let X,Y and Z be Banach spaces, U C X, V CY open subsets
and F:V — Z as well as G : U —»'Y, where G(U) C V.

1. If G is Fréchet differentiable in x € U and F is Fréchet differentiable in G(x) € V, then
F o G is Fréchet differentiable.

2. If G is Gateaux differentiable in x € U and F is Fréchet differentiable in G(x) € V, then
F oG is Gateauz differentiable.

In both cases the derivative of F oG : U — Z can be written as
(Fo@)(z) = F'(G(2))G (x), (1.31)
where with F' and G' we denote the kind of derivative that was assumed, respectively.
Proof:
1. See, e.g., |117, Satz 2.7].

2. By the definition of the Gateaux derivative we can write G(z+th) —G(x) = tG'(z)[h]+o(¥)
and therefore we get

d(F o G)(z,h) = }1\{‘% 1 (F(G(z + th)) — F(G(x)))
= lim ¢ (F(G(2) + tG"(2)[h] + oft)) — F(G(2)))
= }l\{g% (F(G(x) +1(G"(@)[h] + 10(t)) — F(G(x)))
= lm i (F(G(2) + tF (G(2))[G"()[A] + Fo(t)] + o([[tG" (z)[h] + o(t)]ly) — F(G(x)))
= lim (F'(G@))G (2)[h] + Fo(t)] + 1ot G (z)[h] + Fo(t)]y))

= F'(G(x))[G (z)[h]].

For the limit we used in the first term the linearity of F’'(G(z)) and for the second term
that ||G’(z)[h] + $o(t)|ly < C for fixed h and small ¢. Noting that this representation
holds for every h and F'(G(x))G'(z) is linear and bounded the assertion follows. O

Note that F being Gateaux differentiable is not enough in the second statement. The proof would
not work out as the direction tG’(x)[h]+o0(t) cannot be written in the form tv with fixed v. Indeed
there exist explicit counterexamples already for finite dimensional vector spaces El However, if
the Gateaux derivative of F o G exists (e.g. because it is actually Fréchet differentiable), it has

to be of the form ((1.31).

2Take M = {(a,b) € R2 | a? < b < 3a%} and G : R = M C R?,z + (22,22*). Then G is Gateaux (and
even Fréchet) differentiable with G’(0) = (0,0). Choose F : R? — R which has only support in M, satisfies
F(s,25%) = /s for s > 0 and is Géteaux differentiable. Since for every line £ C R? with (0,0) € £ there
exists an € > 0 such that it holds £ N M N B.(0) = {(0,0)}, the last two requirements don’t contradict
each other and such a construction is indeed possible (with dF(0,h) = 0 for all h € R?). However it holds
F(G(x)) = Va2 = |z| and thus the combination is not Gateaux differentiable at the origin. The problem is
that F' is not Fréchet differentiable. This example was inspired by [83].

18

Analytical results

The first part of this thesis is dedicated to an analytical treatment of the optimal control
problem f with the goal to provide an existence result for it, as well as providing
the necessary first order conditions that are crucial for the numerics later. As a first step we
will study the state equation . Therefore, in Section we introduce an implicit time
discretization by piecewise constant functions that will be utilized both, in the proof of the
existence result as well as for the implementation. Then we discuss the existence and uniqueness
of the solution of the discretized state equation as well as the Lipschitz continuity of the pertinent
control-to-state operator. Furthermore, for a set of bounded controls we obtain bounds on the
states that are independent of the discretization level. Using these results we consider the limit
with respect to the time discretization and obtain the corresponding results also for the in time
continuous state equation . Consequently, we also obtain convergence of the discretization.
For the latter, we in addition show energy stability. As a next step, in Section [2:3] the existence
of optimal solutions is shown in the time continuous and time discrete case. In addition the
convergence of a subsequence of time discrete global optimal solutions to an optimal control of
the original problem is obtained. These results do not only hold for the aiming at an end time
state, but also for steering to a prescribed function over the whole time horizon. Furthermore,
up to this point, the results hold in arbitrary space dimension. In Section 2.4 we study under
stricter assumptions the Fréchet differentiability of the reduced cost functional for the time
discretized problem. As a first step we analyze the differentiability of one time step of the state
equation. Then, due to the implicit discretization, one can successively prove differentiability of
the control-to-state operator and of the reduced cost functional. The corresponding time discrete
adjoint equation is deduced rigorously. Subsequently, in Section 2.5 we give sufficient conditions
on the regularization As of A such that the corresponding states converge to the solution of the
formerly given state equation in the limit § — 0. Furthermore, also for global minimizers u’
the convergence of a subsequence with respect to the regularization parameter ¢ and the time
discretization coarseness 7 is addressed. All results hold under rather general assumptions on
A. In the subsequent section we study the class of anisotropies given in |16} |14], that we
will also use later for the numerics. For this class we introduce a regularization that is done by
modifying v (cf.) Furthermore, we show that A fulfills the formerly stated assumptions
that were required for the existence results of the state equation and the control problem, and
that the regularization As fulfills additional assumptions that are needed for obtaining Fréchet
differentiability. Finally, in Section 2.7 we discuss a semi-implicit time discretization of the state
equation, which is based on that from the just given references where the special choice of A
is used. We will see that, although for merely solving the forward problem this might be a
reasonable choice, adapting above results for optimal control turns out to be difficult, since the

19

2 Analytical results

sensitivity analysis with respect to the right hand side is now more involved. This is one of the
reasons why we prefer the implicit time discretization in this thesis. Let use remark that parts
of the results of this chapter were already published in [22] [23].

To the best of the author’s knowledge, there does not exist any mathematical treatment of the op-
timal control of anisotropic phase field models so far. Control problems involving isotropic phase
field models in contrast are studied, e.g., in |81} 88|, and such involving isotropic Allen-Cahn
variational equations in |20} [24} 40, |56, |106] and for Cahn-Hilliard variational (in-)equalities
consult |77, 42, 78] and references therein. Let us further mention results given in the context of
anisotropic Allen-Cahn equations. One possible anisotropy was introduced in a pioneering paper
by Kobayashi [86] and existence and uniqueness of a solution for some corresponding phase field
equations are studied in [30} 101} [126]. The kind of anisotropy we will introduce in Section
was first utilized in [16, [14]. For quite general anisotropies the solution of Allen-Cahn equations
with obstacle potential is analyzed in [53]. Among others, the authors use 2-homogeneity of
A, an approximation of the potential similar as we will do in below and an implicit time
discretization (without showing convergence of the discretization). Explicit and semi-implicit
approximations are discussed in the survey paper [45], where also many references are given. For
convex Kobayashi anisotropies, several time discretizations are considered in [64]. In [15][13],
an efficient semi-implicit method using a particular linearization of A’ and a convex/concave
splitting is presented for the particular kind of anisotropies that also we use. Furthermore, energy
stability is shown. Also several numerical experiments are shown comparing the anisotropies.
Literature covering optimal control of quasilinear parabolic equations of the form is still in
its infancy. Most literature known to the author treats quasilinearities with coefficients depending
on z,t and on the function y, but not on its gradient |26} |80} (32} 199} [L00]. For quasilinearities
involving spatial derivatives of y, we refer the reader to [103} |57} |38]. In particular, it is worth
mentioning that, according to the author’s assessment, the latter reference addresses a control
problem that is most similar to the one addressed in this thesis. The authors require a rather
general quasilinearity with some particular polynomial growth condition. However, they demand
the nonlinearity 1’ to be monotone. All the literature listed here assumes the quasilinear term
to be rather well behaved, in particular none of its derivatives shall be singular at the origin. In
the present context, to the author’s knowledge, such difficulties have only been considered for
elliptic equations [36].

2.1 Assumed properties of A,) and their derivatives

As already mentioned above, throughout this chapter we will not work directly with the smooth
double-well potential and a concrete anisotropy. We rather give some general assumptions
that are also fulfilled by the special choices we will use later, see also Remark below.
Under particular circumstances these assumptions need some enhancement which will then be
given in the respective subsections, see for instance Assumptions [2.4.1] and the assumptions of

Theorem 2511
Assumptions 2.1.1. Assume A € C*(RY) with A’ being strongly monotone, i.e.,
(A'(p) — A(@).p—q) > Calp—aql*> Vp,qeRY,

with C'4 > 0 and fulfilling the growth condition |A’(p)| < C|p|.
Furthermore let 1 € C'*(R) be bounded from below and such that it can be approximated by f,
satisfying

anC2(R), fn_>w in C’lloc’ _CSfTLSC(w""l)a fvlz/Z _th |f7/z/‘ Scm (2'1)

with ¢, Cy > 0, C,, > 0 and ¥(yo) € L' (Q) for the given initial data yo € H'(12).

Some examples of A and 1 with respect to Allen-Cahn equations are mentioned below. Note
that the assumptions on v in particular imply

20

2.1 Assumed properties of A, ¢ and their derivatives

Lemma 2.1.2. Let Assumptions[2.1.1] hold. Then

W' (y1) =¥ (y2),y1 = y2) 2 —Cylyr —yel* Y,z €R. (2:2)
Proof: First we assume that ¢ € C%(R) and show that (2.2) is then equivalent to
V'(y) 2 -Cy VyeR. (2:3)

For the implication (2.2) = (2.3, we set y; = y + tv (with v # 0) and yo = y. Inserting this
into (2.2]) we obtain

(W/(y+) =@t = —Cut? & (L) g > e,
Taking the limit ¢ — 0 we arrive at
w//(y)yQ Z _va27

which yields (2.3) after dividing by v? > 0.
For the inverse implication we note that by the mean value theorem there exists &, 4, € [y1, y2]

(y1 < y2 w.lo.g.) such that ¥'(y1) — ¥ (y2) = ¥ (€yrw) (Y1 — Y2)-
From this and (2.3]) we obtain

(W' (1) = ¢ (12)) (Y1 — y2) = ¥" (Eyy o) (1 — 92)* = =Clylyn — w2l

which is exactly (2.2]).
For ¢ € C'(R) as in Assumptions we use the fact that it can be approximated by

fn € C?(R). Then, for y,ys fixed, it follows by adding zero and applying the previous to the
assumed f > —Cly

(W' (1) = 4" (y2), 1 — y2) = (V' (1) — frlyr) + (Fr(y2) — ' (v2)) + (fr(y1) = Fr(y2)), 1 — y2)
> ((7/1,(3/1) - fT/L(yl) + (frlz(yQ) - 1//(312)),% - yz) - Cw|?/1 - y2|2-

The first term vanishes in the limit n — oo by using f/, — ¢’ in Clec. Since yi, y2 were arbitrary
this shows also in this case. O
As promised above, let us now comment on possible choices for the function A of the quasilinear
term and the function ¥—in particular with respect to the application to optimal control of
anisotropic Allen-Cahn equations.

Remark 2.1.3.
The Assumptions 2.1.1]on A are fulfilled when

1. A € C'(R?) is convex, 2-homogeneous and satisfies A(p) > 0 for p # 0 as in [53] In this
case the analysis can actually be done with only A € C°(R) as described in the reference.
If A(p) = %v(p)z then sufficient conditions on + can be found, e.g., in |64]. In Section
we will discuss optimal control including anisotropies arising for v(p) = Zlel (pTGlp)l ’
with symmetric positive definite G; € R4*¢ and show the relevant properties of v. For the

Allen-Cahn equation such anisotropies are studied in |15} |13].

2
2. Alp) = 1 (ZzL:1 (" Gip + 6)1/2) with symmetric positive definite matrices G; € R4*4

and § > 0, which is a regularization of A given above. A is not 2-homogeneous but in
C?(R%) and hence suitable for numerical optimal control approaches. Details will be found
in Section [2.6l

The Assumptions 2.1.1] on ¢ are fulfilled in the following cases:

IThe growth condition |A’(p)| < C|p| follows since A’ is then 1-homogeneous. Furthermore from homogeneity
and A(p) > 0 it follows A(p) > ¢|p|?> with ¢ > 0. Together with convexity this implies the uniform convexity
of A and finally the strong monotonicity of A’.

21

2 Analytical results

1. if ¢ € C?(R) is bounded from below, " > —Cy for some Cy > 0 and limy_, 45, 9" (t) =
+0o0.
Because in this case one can choose, e.g., z_1 > 0 large enough such that ¢/ > 1,9’ > 0
on [r_1,00) and define with z,, := argmin ¢, 1 50)%" () the approximation on [0, z,]
by fn =1, for & >z, as fn(z) = (zn) + ¢/ (z0)(x — x,) + $0" (z0)(x — 2,,). Then use
this construction respectively on (—oo,0]. Further details will be given in Lemma [2.1.4]

2. for the double-well potential
YY) = 10" - 1% (2.4)
since then the conditions in 1. hold.

In addition to the regularity y € L>(0,T; H*(2)) for the solution of (2.10) shown in
Theorem this potential yields together with the estimate (2.37) also the regularity
y € L%(0,T; L5(9)) for all space dimensions.

3. for regularizations of the obstacle potential 1,45 Which is

Yobat = { s1-a%) on[-11] (2.5)

00 else,

as for example:

o the regularization considered in [25] for analyzing the solution of the isotropic Allen-
Cahn or Cahn-Hilliard variational inequalities. There 1), is regularized to ¢ € C?
by a smooth continuation with a cubic polynomial in a neighborhood (1,1 + §) and
then by a quadratic polynomial (cf. formula (2.9) there).

o the Moreau-Yosida regularization of ¥.ps, i.e., 1 € Ct with ¥(z) = %(1 —z?) +
s(min{z+1,0})%+s(max{zr—1,0})2. It is for instance used in [77] to study the optimal
control of isotropic Allen-Cahn inequalities and to obtain a numerical approach.

As mentioned in Remark 1 for 1, we will conclude the section by showing in more detail
how the construction given there works.

Lemma 2.1.4. Let ¢ € C*(R) with ¢(z) > —Cy , " (z) > —Cy for all x € R and Cy € R,
limy 100 ¥ (x) = co. Then there exists a sequence f, that satisfies , i.e.

In € OZ(R)z —c< fn < C(¢+ 1)7 ’I/L, > *Cl/n |frlzl| <Cp, fn—=Yin C}

loc*

Proof: In what follows, we only modify ¢ outside some ball around 0, i.e., we can consider
the modifications of ¢|g+ and g separately. That is, we will only show how we modify g+
to treat the case x — oco.

There exists 7o > 0 with " I > 1, otherwise contradicting the divergence. On using

50,00) —

x

(@) = ¥/ (Fo) + / "(s) ds,

> 0. We fix such

we can choose o > %o > 0 large enough to obtain V" 170,000 = 1 and d’ll[iro,OO) >

an To and define
xo = argming;, 9" (2), (2.6)
and
Y(z) for 0 <z < xo,

folx) = (2.7)

P(zo) + U (z0)(x — x0) + %1/)”(950)(1‘ — x0)? for xg < z.

Using
//()= wll(x) for 0 < z < xo,
o ¥ (20) for zy < z,

22

2.2 Solution of the time discretized and time continuous state equations

one can readily check the first four properties for fy. Let us just comment that for the second
property the lower bound follows from v’(z), %" (xz¢) > 0 and that the construction of zq in
(2.6)) ensures that the upper bound holds. Next define z,, for n =1,2,... by

T = argming, 4 9" (@),

fn analogously to with zg replaced by x, and observe that the first four properties
analogously hold for f,, possibly with another constant C,,. It remains to show the convergence
in C.(R) for the whole sequence (f,)nen. Let us choose an arbitrary compact set S C R.
By construction z,, > x,_1, so there exists an N € N such that for all n > N, we have
SN[0,z,] =S8N[0, zn,]. If there had been a need, we find a similar N_ for the construction
on R™, otherwise just set N_ := 1. Then for n > max(N,, N_) we have ¢jg = f,|g and the
convergence follows trivially. O

We now turn without further ado to the existence of solutions of the state equation.

2.2 Solution of the time discretized and time continuous
state equations

The goal of this section is to obtain the existence of a solution to the state equation as well
as of an implicit discretization thereof. We also derive bounds on the solution that will become
useful later when we head over to investigating existence of the associated control problem. The
approach in this section is based on [53] where the authors show the existence of a solution to
an anisotropic Allen-Cahn equation with an anisotropy that is assumed to be homogeneous.
Following the reference, we start by introducing the time discretization and show a certain
boundedness property. This one will be used to demonstrate the convergence of the solution
of the discretized problem to the time continuous one. That also shows convergence of the
discretization method. To obtain the result, the potential v is approximated by a sequence of
functions f,, with bounded second derivatives (as, e.g., in [53] and [34]), such that the dominated
convergence theorem can be used. Following the lines of [53] we do not have to restrict the space
dimension d.

Our approach differs by the more general assumptions we impose on A as well as the uniqueness
and Lipschitz continuity that we show in addition. Furthermore, in [53] first the limit in the time
discretization and then in the approximation of 1 is taken. In our proceeding this is different
since we keep the results for the time discrete equation separate, since we will also have to deal
with it later.

In order to not overload the notation, let us set ¢ = 1 in this and the next subsection. For
instance the Ginzburg-Landau energy now reads as

E(y) = ; A(Vy) +¢(y) dz, (2.8)

and the control problem (|1.8)—(1.9) is given by
min J ~1 I') — 2 + A2 29
inJ(y,u): B ly(T) yﬂHL?(Q) B) HUHL?(Q)a (2.9)

where y € L2(0,T; HY(Q)) N H*(0,T; L?(2)) and u € L*(Q), subject to the state equation

/Qatyn + A (Vy)TVn + ¢ (y)n = /QW? Vi € LX(0, T; H'(2), (2.10)

For introducing the time discretization, we divide the interval [0, 7] into subintervals I; =
(tjfl,tj] fOI‘j = 1,...,N with 0 = tg < t1 < ... < ty = T and define T = tj —tj,1
and 7 := max; 7;. The discrete scheme for the state equation we obtain by employing a

23

2 Analytical results

discontinuous-Galerkin method (dG(0), see, e.g., [54]). Therefore, let us define the spaces

Y, i={y, : Q = R|y.(t,.) € H(Q),y,(.,2) constant in I; for j =1,..., N},

2.11

Uy i={u,; 1 Q = R | u,(t,.) € L*(Q),u,(.,x) constant in I; for j =1,..., N}, (211)
and for each interval we label the constant by a subscript, e.g., y; := y-|r,. Occasionally we will
also use the vector containing these constants, i.e., (y;)j=1,.. .~ € HI(Q)]{]. Apparently it holds
Y, C L*(0,T; HY(Q)) and U, C L>(0,T; L?*(2)). The time discretized variant of eqs. ([2.9)
and ([2.10) is then given by

N

. 1 2 A 2

Ly J(Yryur) = §||yN —yal” +) Z;TjHUjH ; (2.12)
j=

subject to the time discretized state equation

(s 0) + (A (YY), Vo) + 750 (45), 0) = 75 (ujo0) + (Y1,) Ve HY(Q), (2.13)

with 5 =1,..., N. The function y,(0,.) := yo € H(Q) is given.

We note that the state equation could have arised equally well from an implicit Euler discretization
and we will use the notation 0; "y with

O Tyrin, = 7 (Y — Y1)

One may favour an approximation of the quasilinear term A as in |13, [15] or a splitting approach
for v instead of the fully implicit method. However, to our knowledge there exists no convergence
proof for these discretizations of the state equation to the time continuous one in the limit
7 — 0. Even more important is that for solving the control problem we aim at differentiability
of the control to state operator, which will be addressed in Section 2.4} For a semi-implicit
discretization of the quasilinear term it could not be shown that this property holds. The reader
is referred to Section for a discussion about the problems arising here. Moreover, for the
trust region method used later, we will see in Section [£.4] that the additional computational cost
for solving the state equation is nearly negligible. Therefore it is reasonable to stick with an
implicit discretization thereof.

As mentioned in the beginning, we start by showing existence of a solution to the time dis-
cretization and some bound satisfied by that solution. First ¢ will be replaced by better suited
function f, i.e., one of the f,, from Assumptions can be taken. Note that if A € C1(R?),
the variational inequality is equivalent to (2.13)) (apart from the replacement with f)
using Remark

Lemma 2.2.1. Let A fulfill the conditions in Assumptions . Furthermore, let yo € H(Q)
and u, € U;.

Then for every f € C*(R) with f bounded from below, |f"| bounded and f(yo) € L*(2) there
exists for T < & a yr € Y; which is a solution of y-(0) = yo in Q and

/Qafyj(n — ;) + A(Vn) — A(Vy;) + f'(y)(n —y;) —uj(n—y;) =0 Vne HY(Q),

(2.14)
forallj=1,...,N.
Moreover, given a A > 0 then for all u,,yo, A, f fulfilling in addition
[urllz2 122 Ivollze@) <A, —A+ A7 p|* < A(p) and A'(p)"p < Alp|?,
as well as
/ (A(Voo) + o) <A and [> A, f'>—A, (2.15)
Q

24

2.2 Solution of the time discretized and time continuous state equations

forall T < & there exist solutions y, of satisfying
107 "yr ll2(0,7;02(9)) + 1Yzl Lo 0,750 () + 1 (o)l L20,702(0)) < C(A). (2.16)

Note that we consider directly the bounds defined by A since for fixed u,, vy, A and f this
constant can be chosen appropriately. In particular for A the constant can be found since
the growth condition induces A’(p)Tp < C|p|? as well as A’(0) = 0 and therefore the strong
monotonicity of A’ implies A’(p)?p > C4|p|? which gives

Alp)=A /A’ sp)ipds > A0 /C’As|p\ ds = A(0) + $Calp|*.

Proof: We note that f and f’ induce Nemytskii operators f : L?(Q) — L'(2) and f’ :
L?(Q) — L*(Q) due to the bounds on f”.

Starting with yo := y(0), we define y; € H*(Q) successively for j > 1 to be the unique minimizer
of the functional

By) = [(35101 ACTn) + £(0) = ugn) (217)

where the integrands are strongly convex for % + f"(s) > % —Cy > 0. Forn € H'(Q), § > 0 we
obtain with 7s = y; + §(n — y;) and using the convexity of A as well as ®; - (y;) < ®; (ns)

[(4 = A > [S(ATm) = AV)
> = [(sl = vy = s =0y + U0 — S =) (218)
= [(B -)+ £)= 1) = =)

The limit in the last term is done by a similar argumentation as in Remark using that

|f'(z)] < C(1+|z|). Therefore we obtain (2.14)).
We now want to show (2.16). The summation of ®; -(y;) < ®; - (y;—1) yields

Z / o =P AT+ 1) < [AT+) + =)

= Z::/S)A(Vyz)+f(yz)+§/gm(yzyz_l),

from where we get

;/92171 1 —yl—1\2+/QA(Vyj)+f(yj) < /QA(V:UO)-Ff(yo)—&-;/ng(yl — Y1),

1 t; _ . —
:ifoj Jo 107 Ty 2 =/’ Jour0; Ty~

and finally using (scaled) Young’s inequality

/ [3o P+ [(AV3) + 1)
/((V30) + F(0)) //u Ty, < C(A /tj/|a P (219)

25

2 Analytical results

From this we obtain

107 "yrll2(0,7502(0) + IVl 0,7522(0)) + 17l 0,1502(02)) < C(A). (2:20)
The boundedness of the first two terms directly follows from (2.19) using the assumptions
—A+ A p|* < A(p) and —f < A. The last relation then can be deduced from ||yo|r2(0) < A,

Yi = Yo+ fo . "y, as well as the previously obtamed bound on 0; "
It still remains to show the bound on f/(y,) in . For this, we choose n=1y;—0f"(y;),6 >0

in and obtain
[P < [B) s) - AT - AT - 5 1))
@ @ (2.21)
= [)+ 0 0) — A Eal) V) - V)

To the third integral we applied the mean value theorem pointwisely almost everywhere, with the
intermediate point of 1 and 1 — § f”(y) denoted by &s(y). Note that due to the boundedness of
f" also &5(+) is bounded and & — 1 for 6 — 0 pointwise. Now we can use 0 < A’(p)Tp < Alp|?
and —f"” < A as well as dominated convergence to obtain

/f / BV () s (yy) + C(A) [V,
</ (i) + 1) + Sl 4 11 (47)7 + C(W)| Wy
Q

The last inequality follows from Young’s and scaled Young’s inequality. Estimating the appearing
terms with (2.20) we get

N 1/2
> ol @)l < C(A). (2.22)
=1

Together with (2.20) this yields (2.16]). O

Remark 2.2.2. As mentioned before the proof above, the strong monotonicity of A’ and the
growth condition |4’(p)| < C|p| induce A’'(0) =0, A'(p)p < c|p|? and A(0) + 1Calp|> < A(p).
Furthermore also A(p) < ¢(1+ |p|?) holds. Hence A(Vn) € L'(Q) and (using Young’s inequality)
we have A'(Vn)TV¢ € LY(Q) for all n,& € L?(0,T; H'(Q2)). It also induces the pointwise
estimate |A'(Vy + sdVE)TVE < C'(|Vy]? + |VE|?), for 0 < s6 < 1 providing an integrable
majorant, which allows to take the limit 6 N\, 0 for the integral below. Hence we obtain

.1 / _ /
}1{%5 Q(A(VeréVf)fA(_K%// A(Vy + s6VE)TVEds /QA(Vy)TV§.
(2.23)

The same holds respectively for integration over 2. Together with the monotonicity of A’, this
enables the usual steps of the proof that solving the variational inequality (2.14)) is equivalent
to solving the variational equality (2.13)) with f instead of .

With Lemma at hand, we are in the position to show the existence of a unique weak
solution to the time discretized state equation (2.13)).

Theorem 2.2.3. Let Assumptions|2.1.1] m be fulﬁlled If T = max; 7; < 1/Cy then for every
ur € U, the time discretized state equation (2.13|) has a unique solution y, € Y.

The solution operator is denoted by S; : U, — Y

Furthermore, given a ¢ > 0 then for all ||ur | 12(0,1;02(0)) < € it holds independent of T

107 "yl 220,102 (2)) + Y= lnoe 0,51 () + 19" () |2 0,7522(9)) < Cap o (€)- (2.24)

Proof: We consider the approximation of ¢ by f, according to Assumption [2 Then, due

26

2.2 Solution of the time discretized and time continuous state equations

to Y (yo) € L) for given yo € H(Q) and —c < f,, < c(¥p+1), —=Cy < f! one can find A large
enough depending only on A, ¥ and g, such that

Isollzoy. | (AT0)+ o)), = nf £u(8), = inf £7) < A

—A+A"'p|* < A(p) and A'(p)"p < Alp|.

(2.25)

We denote by y;,, the solutions of (2.14) with f = f,, which exist according to Lemma
and remark that they exist for 7 < T where the integrands of 1) are strongly convex due

tol+ fll(s)>L1—Cy>0. Also Lemmam provides the estimates (2.16]), i.e., for all 7 and
n it holds

107 "yrmll 20,102)) + 1YrmllLoeo,m5m1 @) + 1 Wrn) 20,1522 (0)) < C(A, ©). (2.26)

The second estimate implies yr Aoy, in L=(0,T; H*(Q)) for a subsequence and therefore
also weak convergence in L?(0,T; H'(£2)). Next we choose p > 2 such that H'(Q) < LP(Q).
Then it holds L(0,T; HY(Q)) — LP(0,T; H(Q)) — LP(0,T; LP(Q)) = LP(Q) — L*(Q) =
L2(0,T;L*()) where the last imbedding is compact. Therefore we have y,, — y, in
L?(0,T; L*()) and pointwise a.e. in Q. The first and the last estimate provide a further
subsequence with 9; "y, — Oy, and fl(yrn) — ¥'(y,) in L*(0,T; L*(R)), where the limits
are identified due to pointwise a.e. convergence. For the latter, there entered the requirement
11— " in Cle as will briefly be sketched in what follows. First, we choose an arbitrary x €
with y, ,(z) = y,-(z). Further we take N € N such that y,,(z) € [a,b] for all n > N with
a,b € R and a < b. Then it holds

|fé(yr,n($))—¢’(y7($))\ < |frll(y‘r,n(x)) - "//(yf,n(x))l +| 1p/(y‘r,n(x)) - wl(y‘r(‘f)” —0 for n — oo,

SSUPgq,p) [£1, (2) =" (2)| =0 —0, since v’ is continuous

(2.27)
where in the first term we used f;, — ¢’ in Cjo.. This shows the pointwise a.e. convergence of

fr/L(y‘r,n)-

The just stated convergences together with the weak lower semicontinuity of A yield after
taking the limit n — oo for all terms in ([2.26]) and in (2.14)) the estimate (2.24]) and that for all
n € H'(Q) it holds

/ (A(Vn) — A(Vyy) > / —(H) (n—w5) = ') (1 — ;) + (0 — ;). (2.28)
Q Q

Tj

Finally we can go over to the equality (2.13]) by the reasoning from Remark
The uniqueness of the solution of (2.13|) can be shown for each time step separately one after

another. For this purpose assume the existence of two solutions yq(-l) and yq(-z) to the same initial
data and right-hand side. Subtracting their defining equations, testing with their difference and
using the strong monotonicity of A" and of s + 7;9/(s) due to 7 < 1/Cy, we get for each time
step

2 1 2 1 2
Clly; D — 42120 0y = CIVYSY = Vi 1220y + Cllyt — 421120

<7 (A' (VYY) = (V) vy = vy + 8 + i (05) = o - '), 8 -)

1 2 2 2
= 75(uy —uj gt =y + Y -y —) = 0.

In the last line we used that both solutions were defined with the same right-hand side u; and
that we already know that the previous time step can be solved for uniquely (Note that for

. . 1 2

j =11t holds y](_)1 = yj(_)1 =1). O
With a further (minor) restriction on the maximal time step 7 we obtain Lipschitz continuity
with a constant independent from 7.

27

2 Analytical results

Theorem 2.2.4. Let Assumptions and T < 1+2C

yr where y, is the solution of equation (2.13|), is Lipschitz continuous, i.e., more precisely it
holds

hold. Then the mapping Sy : (yo, ur) —

[y7(-2)||L°°(O,T;L2(Q)) + ||V — VyS-Q)“LZ(O,T;L?(Q)) < (2.20)
1 2 .
< Car (08" = o6 2o + 168 = Pl pao,zim o))

where yg) =5, (y(gz),uT) fori=1,2.

Proof: We note down the differences by a prescript 9, e.g., dy, == yg) (2). With %(a2 —b?) <
(a — b)a, testing the defining equalities (2.13)) with dy; and using that A’ is strongly monotone
as well as (2.2)), we obtain

3 (189511 = 118y;-111%) + 7;,Cal Vay;|?
< (dyj — 0yj—1,0y;) + 75 (A'(Vyﬁl)) — A'(VyP), V5yj)
= 7j (6uy, 0y;) — 75 (w’(y](-l)) — ' (5P, 5yj)
< S lI8u; [+ B N6ys117 + 75 Cu 10y

In the last step we used scaled Young’s inequality (see Theorem [1.2.6)) with 0 < e < min(1,2C}y).
We now sum over j =1,...,J and get

J J J
516y l? +Ca Y mllVoy;l* < 5 | Nowoll® + D Zllouslizr | +3Cs Y milloy;|*, (2.30)

Jj=1 Jj=1 Jj=1

for all 1 < J < N,. Here we defined Cy := Cy — 5 and Cw = € + 2C,. Omitting the gradient
term on the left and absorbing the J-th term from the right, we obtain

J ~ J—-1
1) Cy 9
16y711* < ———=— [lowoll* + > Zllou;llFn | + —2—>_ 71yl
(1—Cy7y) ; ‘ 1-%”2
J—-1
<Cyr ||5yo||2+2 I6ujlf3e |+ CyrCo D 75ll0y51°,
Jj=1 j=1

where we had to make use of the requirement Cy, , :=
Gronwall Lemma [1.2.8] which yields

1 ‘o is
TCor > 0. To this we apply the discrete

N, J—1
16y51% < { Idwoll* + D ZN6u;ll3 | Corexp | CprCy 7
j=1 j=1
(2.31)
N,
< [16yoll* + Y Z16u;ll e | Corexp (Cy rCuT) -
j=1
Inserting this into we finally get for all J =1,..., N,
J N,
Ca Y 7ilVoy 1> < 5 | Iowoll® + Y Zlduslifn | (14 CyrCyTexp (CprCuT)), (2:32)
j=1 j=1

which together with (2.31) and the boundedness of Cy - independently of 7 yields the inequality
(12.29)). O

A similar result as that of Theorem could also be obtained by using results on monotone

28

2.2 Solution of the time discretized and time continuous state equations

operators, see, e.g., [89]. Together with an argument formerly found by Stampacchia one would
obtain the regularity y; € L>(2) N H'(£2) at each step of our time discretization [122, 34].
These results are applicable if 7 is sufficiently small such that the term y; + 7;4'(y;) becomes
monontonic. However this regularity comes with restriction on the space dimension d.

Our approach also allows taking the limit 7 — 0 providing the existence of a solution in the
time continuous case, as is demonstrated in the following theorem.

Theorem 2.2.5.
Let Assumptions hold. Then for every u € L%(0,T; L?(Q)) there exists a unique weak
solution y € L>(0,T; H'(2)) N H(0,T; L*(Q)) to , i.e., to y(0) = yo a.e. in Q and

/8tyn+A’(Vy)TVn+w'(y)n=/un vn € L*(0,T; H' ().
Q Q

Moreover the solution depends Lipschitz continuously on (yo,u). More precisely it holds

lyr — valleqom:r2@)nr2 .m0) < Co,ar (1y1o — v2.0ll L2 + llur — w2l 20,701 @))) s
(2.33)
where y1, Y2 are the solutions to the data (y1,0,u1) and (y2,0,us) respectively.

Proof: Given u € L%(0,T; L?(Q2)) we choose a sequence of discretizations u, € U, with u, — u
in L2(0,T; L?(Q)) for 7 — 0. This allows for the choice of a ¢ > 0 with ||u, || < & Let y, be the
solution of corresponding to u,. Then the estimates hold. Hence, for 7 — 0 there
exists a (sub-)sequence satisfying

Yr =y in L*(0,T; H' (%)),
Yyr =y in L>(0, T; H(Q)),
Yr =Y in LQ(O T; LQ(Q , (2.34)

)
Oy Ty, — Oy in L*(0,T; L*()),
V' (yr) = 4'(y) in L*(0,T; L2(2)),

where the weak limits are identified using pointwise almost-everywhere convergence of 3, and
continuity of ’. With that we can take the limit in

/Q O Tyr(n —yr) + A(VD) = A(Vy-) + ¢ (yr)(n — yr) —ur(n—y-) >0 Vne L*(0,T; H' ()

(2.35)
which is obtained by summing variational inequality (2.28]) to obtain that y satisfies

/Q Oy(n—y)+A(Vn) — A(Vy) + ¢ (y)(n—y) —uln—y) =0 Vne L*(0,T; H'(Q)). (2.36)

Here also the weak lower semicontinuity of A entered. Remark yields that y solves further
the variational equality (2.10). Furthermore, using weak (-*) lower semicontinuity of the norms
the solution y satisfies

10:yll 22 0,7:22 () + 1Yl Los 0,311 (@)) + 10" ()| 22 0,7522(02)) < Ca g (€)- (2.37)

The uniqueness follows from the Lipschitz continuity shown further below.

Recall that the choice of discretization (given by the choice of the intervals) was arbitrary.
Furthermore, on the way to obtain y from ¥;, we had to take subsequences twice. Whatever
choice was made, we would have got a y satisfying the same variational inequality. However, this
variational inequality has a unique solution, so the whole sequence has to converge. Summarized,
for all discretization, we get a sequence y;, that for n — oo and then 7 — 0 (j — o0o) results in
the same limit y satisfiying the variational inequality.

Finally, we will turn our attention to the Lipschitz continuity. Let y1,y2 € H(0,T; L*(2)) N

29

2 Analytical results

L2(0,T; HY(Q)) be two solutions belonging to (yo.1,u1) and (yo.2,uz2) and define dy == y; — ya,
du = uy — ug as well as 6y == yo,1 — Yo,2. Subtracting the defining equations and testing with
0y, we obtain for almost all ¢ € [0, 7]

3 10y + (A (V) — A/ (), V) = (s 6) — (' (3n) — ¥ (a), 3).

Using strong monotonicity of A’, (¢¥'(y1) — ¥’ (y2),y1 — y2) > —Cylly1 — y2||* as well as Cauchy-
Schwarz and scaled Young’s inequality yields

d d
s loyll? < 5 —

L2102 < 215yl + (Ca — HIVEYIP < EoulBngay +(Co+ DUl (239)

with 0 < € < 2C4. Integrating from 0 to s < T, we obtain (note that yi,ys € C([0, T]; L3(£2))
by imbedding)

I60(5)17 < (180O)1? + Houlis o) + 2Cut o) [Tl ae, (29
and an application of Gronwall’s inequality gives

I6y()I? < exp (2Cy +OT) (I6y(O)I + H15ull3 20 7,120) - (2.40)

Hence ||5y||%w(0’T;L2(Q)) < Cy.ar (H(Sy(0)||2 + %||6u|\%2(O)T;H1(Q),)) and then (2.38]) yields

1969113200722 < Conar (13O + 21603200 15) (2.41)

with a generic constant Cy 4 v depending only on ¢, A and T'. Together the estimates imply
(12.33)). O
Note that (2.33) is the time continuous equivalent to and the counterparts to and
(2.41) are (2.31)) and (2.32), respectively. Especially note that the constants equal if one sets
7 = 0 there. However, since the convergence of y, is not shown in L>°(0,T; L?(Q2)), we cannot
built the proof of on .

Before we continue, let us compare the proceeding pursued so far in this section with approaches
that can be found in the literature.

Remark 2.2.6. Consulting the literature of optimal control problems with state equations
resembling one time step in , like, e.g., [33l 135, [34, 31|, one notices that the authors
work with an L°°-regularity result for the state y. In contrast to this, we use the boundedness
of [|4'(y;)|lz2(q), which is less. However, for this we don’t need a restriction on the space
dimension d. In the next section, we will derive similar results as given in the above references,
but only using said boundedness of ¥’ (y;).

Let us compare the argumentation leading to Theorem [2:2.3] with the one leading to the L>°-
bound, where we exemplary have in mind [34] Theorem 3.1]. In both approaches a cutoff
argument is used. As seen before, we truncate the function ¢ whereas Casas and Fernandez
truncate a function which in the present setting would translate to ¢’(s) + % In our case,
the cutoff is required to be able to go over to the limit in , where we have to argue with
dominated convergence (cf. Remark . Casas and Fernandez directly apply a result from
[89], which requires the boundedness assumptions on the nonlinearity. The main difference
lies in the way the transition to the former equation with the uncut nonlinearity is done. Our
truncated functions f,, approach 1 in C}._ and satisfy the bound , which allows taking the
limit in the weak formulation. Since the bound holds independently from d, the existence of a
solution for arbitrary space dimensions follows. In contrast to that, Casas and Fernandez apply
Stampacchia’s method [122], that requires some conditions on d, but obtain an L*°-bound in
return. The limit is taken by the observation that the bound does not depend on the cutoff and
by choosing the cutoff large enough such that the obtained solution does no longer change. Note

30

2.2 Solution of the time discretized and time continuous state equations

also, that for this approach the cutoff does not necessarily need to be done in a way yielding the
resulting function differentiable.

Beyond the just presented differences our approach in addition allows to take the limit 7 — 0,
due to the supplementary estimate . The authors of [53]—which our approach is based
on—first take 7 — 0 and then go over to 1, since they are not interested in a discretization
of the state equation. Also Casas et al. have considered continuous in time (i.e. parabolic)
problems in 38|, where existence of a solution to the state equation is shown by a similar cutoff
argument as in the elliptic case. However no relation to a discrete in time equation is included
there. Even if we were only interested in the time continuous problem, their results would not be
applicable to our setting. The reason is that the requirements on the nonlinearity stay the same
as in the elliptic case. Most notably a nonnegative derivative of the nonlinearity is required. In
the discrete case we could apply their results by choosing 7; small enough in ¢’(s) + T%, which
is no longer possible in the parabolic case. '

Including results from the preceding proof also the following statement regarding the convergence
of the time discretization holds.

Theorem 2.2.7. Let Assumptz'ons and u € L?(0,T; L*(Q)) hold. Then for every sequence
of discretizations u, € U, with u, — u in L*(0,T; L*(Q)), the corresponding solutions y, €
Y, of the time discretized equation converge to the solution y € H'(0,T;L?(Q)) N
L*(0,T; HY(Q)) of the continuous problem with uw in the spaces specified in ,
Furthermore we have as 7 — 0

(1) —y(t — 0. 2.42
s lyr(6) ~ y(O)llxo (242)

Proof: It only remains to show the convergence in (2.42). Using the definitions from (2.11]),
for given y, we define its linear interpolant z,, i.e.

Zr ()1, = yj—1 + (t = ti-1)0; "y- (). (2.43)

Note that from (2.24) we have ||z-|| 1 (0,7;22(0))nL>= (0,111 (2)) < C independent from 7. By the
compact imbedding L°°(0,T; H'(2)) N H(0,T; L3(2)) < C([0,T); L*()) (see Aubin—Lions—
Simon compactness theorem we deduce the existence of a z such that (possibly for a
subsequence) z, — z in C([0,T]; L*()).

In addition, for ¢t = Bt; + (1 — 5)t;—1 with 5 € (0,1] we find

ly=(8) = 2 (D172 () = lyr (t) = (B2 () + (1 = B)zr (tj-1)) |20

=(1-8)?|z(t;) — ZT(tj—l)HQL?(Q)
2

tj

=(1-p3)? Oz, (t) dt

i (%)

. /([d) “ -

]

<(1- B “// ? dtds

<(1-) alllos yT||L2(O,T;L2(Q)) S CawyT,

where 7 := max; 7; as before. We have used that the integrand 9, "y, is constant on I; as well
as - Note that the constant C'4 y,y, is independent from ¢. Consequently, together with
the convergence of z; stated above, it follows max;c(o, 77 |3+ (t) — 2(t)[|z2(@) — 0 as 7 — 0. Note
that the limit z is uniquely given by y due to the p01ntvv1se a.e. convergence of y, (cf. -
and in addition the whole sequence converges. O

Using the fact that the linear interpolant z, from the previous proof actually is Hélder continuous,

31

2 Analytical results

we can deduce the following supplementary theorem concerning the regularity of y. The idea of
the proof is taken from [61, Lemma 3.4].

Theorem 2.2.8. Let the assumptions of the previous theorem hold. Then in addition the
solution y of lies in C%*([0,T]; L*(Q)) where o € (0, §).

Proof: Again we consider the linear interpolant z, € H1(0,T; L?(2)) N L>(0,T; H*(Q)) from
(2.43). Since it holds 0,2z, = 9; "y, almost everywhere in [0, 7], we can rewrite (2.13) as

(atZT(t7 ')7 90) + (A/(VyT(ta))7 v‘)@) + (¢,(y7(ta))7 90) = (u‘l’(t7 ')7 90) VQO € Hl(Q)7 (245)

for almost all t. We now take t1,t2 € [0,T], t1 < ta, test with ¢ = z,(¢1,) — 2,(t2,-) and
integrate from ¢; to t5 to obtain

ta
/Q o (t1,) — 2t)| < / (1A Ty)Lz + 19 ()l oy + s llzzen) 2 () — 20 (62
t
1 .
<C (CallVyrllrz) + 1Y (o)l n2@) + lurll2@))

ty

1
< Clta = t1)2 (lyrllze om0y + 19" (o)l 20,02 0)) + llurllzz o2 (0))) -
(2.46)
For the second inequality we used the L°°(0,T; H'(Q)) regularity of z, as well as the growth
condition on A" and the last inequality follows from the Cauchy-Schwarz inequality. Together

with ([2.24)) this in total yields

1
27 (t1,) = 27 (t2,)l L2 () < Capylts — ta]4. (2.47)

Since y, are uniformly bounded in L>(0,7T; H'(Q)) (cf.) also the z,; are and together
with the compact imbedding H'(2) — L?(2) and the equicontinuity given by we infer
from the Arzela—Ascoli theorem for Banach space valued functions [120] (followed up by a
reasoning as in [8, Theorem 10.6] involving (2.47)) that (possibly for a subsequence)

zr — 2z in C%([0,T]; L*()),

for some z. In the proof of Theorem [2.2.7] we have seen that the limit is uniquely given by y
and so in fact the whole sequence converges to . O

Since the state equation is given by the gradient flow of the energy & given in (2.8]) (cf. also
(1.2) and below), this functional decreases in time when there is no input, i.e., v = 0. The
discretization shall inherit this property.

Theorem 2.2.9. Let Assumptions and 7 < 2/Cy hold. Then the scheme for the
state equation is energy stable, i.e., for ur = 0 the energy functional £ is decreasing in time.

Proof: We set u; =0 in (2.13) and test with the difference y; — y;_1 to obtain
1
—lys = yiall* + (A(Vy), Vo = Vi) + (@' (), 95 — 95-1) = 0. (2.48)
J

The convexity of A (recall A’ is strongly monotone) yields
(A'(Vy;), Vy; — Vy;-1) = A(Vy;) — A(Vy;-1)
for the second term. The third term can be estimated by the following relation

V() (5 — yi—1) = ¥(y;) — (y-1) — %(yj —yj—1)> (2.49)

32

2.2 Solution of the time discretized and time continuous state equations

To see this, we note that this holds for f,, approximating ¢ as in Assumptions[2.1.1] i.e., it holds

Cy
Fri) (Wi =yi=1) = fuys) = fa(yim) + 3 0 () (Y5 —yi-1)* 2 falys) = Fa(yj—1) — 5 (5 —y5-1)%
(2.50)
where s is some appropriate intermediate point from the Taylor expansion. By adding zero and
rearranging, from this we obtain

G (Y)Y — yim1) = 0(ys) — (Y1) — Sy — yi1) >+
(W' (y5) = fn(wi) (5 = yi—1) + (fulys) — ©(ys)) — (Falyj—1) = ¥(yi-1))]-

Taking the limit n — oo using that f, — ¢ in C[_ the inequality (2.49) follows.
Collecting terms and using the definition of the Ginzburg-Landau energy (2.8]) one finds

1 C
(2= %) s = soalP + o) ~ -] <0, (2:51)
J
and thus £(y;) < E(yj_1) if 7 < 2/Cy. O

The result from Theorem [2.2.9] can be applied to the discretizations assumed in Theorem [2.2.3]
and Theorem [2.2.4] since it provides a less restricting assumption on the step length 7.

For the numerics it is useful to know the boundedness of the solution at least in the uncontrolled
case u = 0. The following theorem shows that |y| < C holds under certain circumstances for the
anisotropic Allen-Cahn equation.

Theorem 2.2.10. Let Assumptions[2.1.1) hold and y be the weak solution of the Allen-Cahn
equation (cf. Theorem with u = 0. Further assume that '(s) = 0 has finitely
many real solutions that we denote by c;. We set €y = max; ¢; and cy = min; ¢; and finally
require that '(s) > 0 for s > ¢y and ¢¥'(s) <0 for s < cy (e.g., choose ¢ like in Lemma .
Then, if ¢y < yo(x) < Ty almost everywhere in Q, we have ¢y, < y(z,t) < ¢y almost everywhere
in Q. That in particular means that y € L>(0,T; H*(Q)) N H*(0,T; L*(2)) N L>=(Q).

Proof: In the following we will only show y(z,t) < ¢, almost everywhere, since the case
y(z,t) > ¢, works analogously. To this end, we define the following test function for (2.10)

7 == max(0,y — Cy), (2.52)

i.e., it holds 7j = 0 where y < ¢,. Note that 7 € L2(0,T; H'(Q)) n H*(0,T; L*(Q)) and
for the derivatives we obtain 9] = x{y>z,}0:y and Vi) = x{,>z,} VY, where x denotes the
characteristic function. These facts follow, e.g., from [62] Lemma 7.6]. From this we further get
almost everywhere the following inequalities

Oy = OryX (y>e,yy = O = S0, A'(Vy)" Vil = xysz, 4" (Vy) ' Vy > 0,
V()7 = Xqysz,1 ¥ (W) (y — Cp) > 0.

Here we used the requirement ’(s) > 0 for s > ¢,. With these identities it follows from (2.10))
that
1

T 4 ,
5/0 %HnHL%Q) <0,
and using the fundamental theorem of calculus and that yo < ¢, almost everywhere, we can
conclude [|7(#)[|z2(qy < 0 for almost all ¢ € [0,T7, i.e., 7 = 0 almost everywhere in Q. From the

definition (2.52)) it finally follows that y(x,t) < €, holds almost everywhere in Q. O

In case of the familiar double-well potential ¥ (s) = +(s® — 1)?, the previous theorem would

yield |y| < 1 provided that |yo| < 1 almost everywhere. Although the previous theorem does not
apply to the controlled problem, we observed no strong deviation from this numerically. As can
be seen from the plots in Section [£.3] we obtain values of u that reach into the two-digit range,
but still the function values of y are very close to one.

33

2 Analytical results

2.3 Existence of the optimal control in the time discretized
and in the continuous setting

Having shown the existence of solutions to the discretized equation (2.13)) and time continuous
state equation (2.10), we will further develop our results to show existence of solutions to the

pertinent control problems (2.12))—(2.13) and (2.9)—(2.10)). In the end we will show that global

minimizers of a series of discrete problems converge to a global minimizer of the time continuous
problem for 7 — 0.

Theorem 2.3.1. Let Assumptions be fulfilled and max; 7; =7 < m hold. Then for

every yqo € L?(Q) the control problem (2.12)—(2.13)) has at least one solution in U, X Y.

Proof: The requirements assure that Theorem [2.2.3|is applicable and for every u, € U, we
find a unique solution S;(u,;) = y, € Y, of (2.13). Since the feasible set {(u,y,) | yr =
S:(u;) for u, € U,} is nonempty and the cost functional in (2.12)) is bounded from below, we

can deduce the existence of an infimum ¢ and of a minimizing sequence ((u{™, y{™)),, with
¢ = lim, 00 J(u(Tm),ygm)). If u™ € L2(0,T; L*()) was unbounded so would be J, which
would contradict its convergence to an infimum. Hence there exists a constant ¢, > 0, possibly
depending on 7 with Hu(Tm) lz2(0,1322()) < & for all m, and we can extract a weakly convergent

subsequence denoted in the same way u'™ — ur in L2(0,7T; L?(2)). From Theorem we
obtain independent from m

1S | oo 0,727) + 119 ™) 22 0.7:22(02)) < Cag (Er)- (2.53)

This yields y\™ — y,* in L?(0,T; L?(2)) and almost everywhere, as well as w’(yﬁm)) — 9 (y¥)
in L?(0,T; L?(£2)) possibly for a subsequence. Since U, is finite dimensional in time and due
to the compact imbedding L2(€) < H(Q)’ we obtain u{™ — u* in L2(0,T; H()). So the
Lipschitz continuity stated in Theorem in addition yields 1™ — y.* in L2(0, T; H(Q)).
Now we can take the limit in the state equation and obtain

(]~ yj-10) + (A (V). Vo) + (0 w)), 9) = 5l 0) j=1,.., N (254)

The convergence of the second term arises from the fact that A’ : L2(Q) — L?(f2) is a Nemytskii
operator. From we conclude that y* = S-(u) and hence (uf,yr) is feasible and its
optimality follows by using the weak lower semicontinuity of J. O
Similarly we can show the existence of the optimal control in the time continuous setting given
the control-to-state operator S : u — y and the estimates for y provided in the proof of
Theorem

Theorem 2.3.2. If Assumptions and yo € L*(Q) hold, then there exists a solution to the
optimization problem (2.9)—(2.10).

Proof: From Theorem for each u € L?(0,T; L?(Q2)) we get the existence of a unique
weak solution y = S(u) in L*(0,T; H*(Q)) N H*(0,T; L*(Q)) to (2.10). Since J is bounded from
below, we deduce the existence of an infimum of J over the feasible set of solutions (y,u) of
and denote the minimizing sequence by (Y, tm)men. The sequence (U,)men is bounded

A
in L2(Q) due to J(Ym, tm) > §||um||2 and by reflexivity of L?(Q) we can extract a weakly

convergent subsequence with limit 4. We now choose A at least large enough to bound the
sequence (U,)men. Then the estimates are fulfilled independently of m. Consequently
the estimate holds independently of m for the solutions v, = S(u,) of constructed
in the existence proof. Hence, due to the uniqueness of the solutions, we have for y,,

10:ymll 20,122 (2)) + |Ymll 220,751 () + 119" (Ym) L2 (0,522 (02)) < € (2.55)

34

2.3 Existence of the optimal control in the time discretized and in the continuous setting

From this we get a subsequence (y,, ¥,) With u,, converging weakly to a u in L2(0, T; L?(f2)), and
Ym converging to a § weakly in L2(0,7T; H(Q)) N H(0,T; H'(2)"), by the compact imbedding
1 strongly in L?(Q) and pointwise almost everywhere in Q. Note that %(0) = yo due to
L2(0,T; HY(Q)) n HY(0,T; HY(Q)') < C([0,T]; L*(22)). Moreover, 8;y,, and ¢’ (y,,) converge
weakly to 0,1, respectively to 1’(y) in L?(0,T; L?(Q2)). That the limit actually equals 1’ (%) is
due to the pointwise a.e. convergence ¥, — ¥ (from strong convergence in L?(Q)) and continuity
of v,

In order to obtain § = S(u), we need to be able to pass to the limit also in the A’-term of (2.10).
Given the fact that A’ : L2(Q) — L*(Q) is a Nemytskii operator it is sufficient to show the strong
convergence Vy,, — Vi in L?(0,T; L?()). Then finally, the weak lower semicontinuity of .J
(deduced from its continuity and convexity as a functional L2(0,7T; H'(Q)) N H(0,T; L*(Q)) x
L?(Q) — R, where in particular the continuous imbedding L2(0,T; H*(Q))NH(0,T; H*(Q)') —
C([0,T]; L*(Q)) is used) provides (¥, %) being a minimizer of J.

The time derivative is monotone if y,,(0) — (0) = 0, which follows from

Oym = 07, ym =) = 5 ([ym(T) = GO = Iym(0) = 5(O0)1) = 5llym (T) = F(T)II* = 0.
Hence we have <6t7j7 Ym — 7;> < <8tym7 Ym — g>7 and y,, = S(um) yields
(AI(Vym)a Vym - v:g) S (Uma Ym — g) - <w/(ym)>ym - g) - (81‘/?]’ Ym — Zj> .

Recalling the convergence properties of y,, together with ||w.m, || + |4/ (ym)|| < C, the right-hand
side vanishes in the limit m — oo. From strong monotonicity we obtain

C”vym - ngQ § (A/(vym) - A/(Vg)a Vym - Vg)
< (A,(vym)v vym - vﬂ) - (A/(Vg)a Vym - v@))

where the second term on the right hand side vanishes in the limit by weak convergence and we
have just shown that the limit of the first one can be bounded by 0 from above. This finally
yields the desired strong convergence of Vy,, in L?(Q). O
Note that for the convergence Vy,, — Vy in L?(0,T; L?(£2)) we could not use (2.33) like we could
use for Theorem The reason is that in the time continuous case we do not have the
analogon to the compact imbedding L?(Q)Y < HY(Q)N (L2(0,T; L*(Q)) < L*(0,T; H*(Q))
is not compact). Therefore we had to show the convergence more directly.

Finally we obtain a convergence result for the discrete optimal controls like, e.g., in [132] or [74].

Theorem 2.3.3. Let the previous assumptions on A and 1 hold. Consider a sequence of

global optimal controls (ur,y,)r of (2.12)—(2.13) belonging to a sequence of discretizations with
7 — 0. Then there exists a subsequence with u, — u in L?(0,T; L?(Y)) where (u,y(u)) solves

E9 &),

Note that one can only expect to deduce the convergence of a subsequence. The whole sequence
does not necessarily have to converge, since the global minimizers, whose existence was shown
previously, do not have to be unique. Also note that, using the first order conditions, in practice
one is usually only able to find local optima. Here one typically has to modify the cost functional
to obtain convergence, unless one were to consider only strict local minimizers. The consideration
of local minimizers also requires a generalization of Theorems and for problems
where u or u, lie in some (possibly bounded) admissible set U,q instead of L?(Q) as the idea
is to transform the optimization problem to a new one that is minimized only over some ball
containing the local optimizer. For further information on this we refer the interested reader to
[132] where this analysis is done for another problem.

Proof of Theorem [2.3.3t First we choose an arbitrary u* € L?(0,T; L?*(Q)) and a sequence
u* € U, with v — u* in L?(0,T; L3(2)). Hence y* = S, (u}) is bounded in L>(0,T; H'(Q))
due to (2:24). Now let (u,), be the sequence of global minimizers to subject to (2.13)). It
holds

J(yﬂ'vuT) < J(yT’uT) = §||yT(T) - yQ||2 + 5”“7’”2 S ¢,

35

2 Analytical results

where the first inequality follows from global optimality and in the last inequality we use the
just shown boundedness and that u* is bounded due to convergence. This implies that (u,),
is bounded in L2(0,T; L?(2)) and we deduce a subsequence with u, — u in L2(0,T; L?(Q)).
Then Theorem yields that for y, = S;(u,) and y = S(u) we have the strong convergence
y(T,-) — y(T,-) in L?(2). Respectively, given some arbitrary sequence @, with @, — @ in
L?(0,T; L?(Q)), we obtain the latter also for ¢, and §. This yields

J(y,u) <liminf J(y,, u,) < liminf J(§,, @) = J(g, @), (2.56)
T—0 T—0

where in the first inequality we used the weak lower semicontinuity of the norm and strong
convergence of y,(T'), then the global optimality of (y,,u,) and finally the strong convergences
of §,-(T) in L*(Q) and @, in L(0,T; L*(9)), respectively. Since % was arbitrary this yields the
global optimality of u. Plugging in @ = u yields the convergence |lu,|| — ||u| and therefore with
the weak convergence also the strong convergence u, — u in L2(0,T; L?(2)). O

Remark 2.3.4. If instead of the cost functionals (2.9) and (2.12)) one considers the cost
functionals with a target function yo € L?(0,T; L*(Q)) given over the whole time horizon

1 A
JQ(%U) =Sy - yQHi?(Q) + *H“”QL?(Q)’ (2.57)
2 2

and its discrete counterpart

N

N
1 A
JE(Yr,ur) = 3 > 7illy — voll* + 5 > il (2.58)
J=1 J=1

with ygo - € Y; and yo » — yo in L?(0,T; L?(12)), the theorems of this section still hold true
with proofs following the same lines.

2.4 Fréchet differentiability of the reduced cost functional
for the time discretized problem

In this subsection we investigate the Fréchet differentiability of the cost functional j,(u,) :=
J(y-(ur),us) for the time discretized optimal control problem reduced to the control w, under
slightly stricter assumptions than given in As the ultimate goal of this subsection is to
deduce the first order optimality conditions that are also used for the numerical procedure, in
contrast to the preceding two subsections we again work with the interface thickness €. For
this purpose, let us again state the time discretized control problem 7, which in this

convention is given by

N
: 1 2 A 2
Juin J(ye,un) = Sllyy el + o Z;TjHujH ; (2.59)
j:
subject to
(W 0) + (A (Vyy), Vo) + 20" (),) = (uj,0) + £ (yj-1,9) Vo € H'(Q),

2.60
j=1,...,N, (2.60)

and yo € H'(Q) is given as initial condition like before. The spaces Y, and U, are defined as
in .

In contrast to the preceding sections, the present discussion will need some stricter requirements
that we shall summarize here. Note that the first part is a repetition of Assumptions 2.1.1] and
contains the restriction on the time step size elaborated before (now including ¢).

36

2.4 Fréchet differentiability for the time discretized problem

Assumptions 2.4.1.

a. Assume A € C'(R?%) with A’ being strongly monotone and fulfilling the growth condition
|A’(p)| < Clpl.
Let ¢ € CY(R) be bounded from below and such that it can be approximated by f,
satisfying

f’nGCZ(R)7 fnﬁﬁj iIl Clloc7 7C§fn§6(¢+1)7 f;{zfcwa ‘f;” SCnv

with ¢,Cy >0, Cp, > 0 and ¥(yo) € L*(Q) for the given initial data yo € H' ().
In addition, for the time discretization the restriction max; 7; < £2/Cy on the time steps
Tj = tj — tj—l holds.

b. Assume further that A € C2(R?) with bounded A” and let ¢ € C?(R), where the Nemytskii
operator given by ¢ is continuous from H!(Q) to L4(Q) for some ¢ > max{d/2,1}.

Let us mention that one can find p > 2 with H'(Q) — LP(Q) and % + % < 1, e.g., when
d € {1,2} choose some p € (%, o0) and for d > 3 choose p = d%dQ. In this section we assume p
to be always chosen like this. Note that the assumptions imply that A" is uniformly positive
definite and ¢ > —C, holds. Furthermore, the double-well potential fulfills the condition
if d < 3 since " induces a continuous Nemytskii operator from L2?(Q) to LI(Q2) (see, e.g., [140|
Proposition 26.6]) and the imbedding H!(Q2) < L27(Q) is only valid for d < 3.

As a first step the Fréchet differentiability of the discrete control-to-state operator S, : U, — Y,
of is shown. Here, the idea is to prove it for a single time step and then to apply the chain
rule Theorem [I.2.13]1. That is, we need to show Fréchet differentiability for each time step.
This is in contrast to the case of a single elliptic equation (like, e.g., in [33} [35]), where Gateaux
differentiability would be enough to obtain the first order conditions due to Theorem [[.2.13]2 as
long as the cost functional was Fréchet differentiable.

Let us recall, that the solution operator S, : U, — Y, of is given by mapping u,,

correspondingly (ug,...,un), to yr = S-(u,) determined by (y1,...,yn) with
yi =S(tuj + +£yj-1) Vi=1,...N. (2.61)

Here S : L?(Q) — H'(Q), g +— y is defined as the solution operator of the quasilinear elliptic
problem

(A(Vy), Vo) + (L(y), o) = (9.9) Ve H(Q), (2.62)
with
C(s) == H'(s) + Tijs. (2.63)

Note that under Assumptions [2.4.I]a the left-hand side defines a strongly monotone operator.
In Theorem [2:2.3] we have shown the unique existence of the solution. Let us recall from
Remark that with the restriction on the space dimension d < 3, a result from [34] for
quasilinear elliptic equations with controls on the Neumann boundary provides solutions in
L>(Q) if in addition A’(0) = 0. Here the restriction on d is due to the use of Stampacchia’s
method. We do not have such a constraint, but note from Assumptions [2.:4.1]b that the choice
of ¢ becomes more limited if d gets bigger.

The next auxiliary lemma will be used several times in what follows. It is the analogue of
Theorem for S and in fact can be deduced from it (one can replace L?(0,T};-) with
L*>°(0,T;-) there since the functions are defined to be piecewisely constant). However in this
simplified setting there exists a more basic proof that we do not want to withhold.

Lemma 2.4.2. Let Assumptions |2.4.1.a hold. Then the solution operator S for is
Lipschitz continuous with a constant independent of T for small enough 7, i.e., to be more
precise, for g,G € L?(Q) and y = S(g), ¥ = S(g) it holds

Iy = 3llar) < Cllg — glary < Cllg—dlle2)- (2.64)

37

2 Analytical results

Proof: To make the constant independent of 7, we fix some 0 < 7 < é—i and use that for all

7 < 7 it holds ('(s) > _EC;” + % > _E—CQ‘” + % := C. Then, subtracting the defining equations,

testing with y — § and using strong monotonicity of A" and ¢, we obtain

ly = 3l @) = IVy = VillZa () + Iy = 3122 ()
< C(A'(Vy) = A'(V9),Vy = V§) + &(C(y) —¢(F).y = 9)
=Cl9 =9y =V m < Cllg = gllar@yly = Illmr @),

and therefore the assertion after dividing by ||y — ¥l #1(q)- O

Now we turn our attention to the Fréchet-differentiability of the discrete control-to-state operator.
Due to difficulties related to a required norm-gap for the differentiability of the A’-term, the
implicit function theorem is not applicable directly (cf. [130]). Also the standard approach like,
e.g., in [127, Theorem 4.17] cannot be applied without further ado due to this norm gap and the
so far shown insufficient regularity properties of Vy; for that purpose. Instead of this, we follow
the approaches in |35} (33 34] and first show Gateaux differentiability. Afterwards we will add
some further effort in order to upgrade to Fréchet differentiability.

Theorem 2.4.3. Let Assumptions hold. Then the solution operator S : L*(Q) — H(Q)
of is Gateauz differentiable and the directional derivative S8'(g)v = z is given with y = S(g)
by 2 € HY(Q) such that

(A"(Vy)V2, Vo) + (('(1)z,9) = (v,9) Vo € HY(Q). (2.65)
Furthermore there exists a C independent of g € L*(2) and T with

I2llm1 @) < Cllvlize)- (2.66)

Proof: Due to the Assumptions we have that A” is uniformly positive definite and
together with
) = H0"(s) + £ > 5=+ 1 >0,

e -

the bilinear form defined by the left-hand side of (2.65)) is elliptic with an ellipticity constant
independent of y = S(g). Furthermore it is continuous given that

(<" (y)z, 9)| < CIIC @) lpa@yllzllLe@ lellLr@) < CIC @) lnay 2]l a @ 1ol ar @)

and A” is bounded. Hence the Lax-Milgram theorem provides existence and uniqueness of the
solution of for v € L?(Q) and—using ¢'(s) > C > 0 for small enough 7 as in the previous
proof—the estimate holds for the solutions independently of g and 7. For v € L?() and
p > 0 let us consider

(A'(Vy,), V) + (C(y,):) = (g + pv,) - (2.67)
Subtracting the equation with p = 0 and dividing by p, we obtain
A(Vy) —A(V -
< (yp)p (y)’v(p> N (C(yp)p C(Y)7<p> o) VeeH\Q). (2.68)
. . 1
Lemma 2.4.2| yields for z, := < (y, —y)
1Zollm (@) < Cllvllzz@) Ve (2.69)

Therefore there exists a subsequence with z,, — z in H'(£2). We now show that this solves
(2.65) by taking the limit in (2.68]). This implies that z is in fact the desired Gateaux derivative.

38

2.4 Fréchet differentiability for the time discretized problem

For the first term we have

/Q i (A’(Vypn) — A'(Vy)) Vedr = /QVsznA”(wpn)Vgp doe =57 /QVZTA”(Vy)th dz,
(2.70)
where wp, (z) = Vy(z) + s(x)(Vy, (r) — Vy(z))) with s(z) € [0,1] is some intermediate
point. Since y, — y in H*(Q) as p — 0 (due to Lemma it holds w,, — Vy in L?(9)%
The convergence follows since Vz, converges weakly, and A”(-)Vy is a continuous Nemytskii
operator from (L2(2))? to (L2(2))? given A” : RY — R4*? is continuous and bounded. Therefore
it holds A”(w,,)V — A" (Vy)Vy in L*(Q)4. Analogously it holds for the second term

| (w0 =) ede= [2.Cede™=S [CGpde. 211

with intermediate values s, between y, and y using that ¢’ : H L(Q) — L4(Q) is a continuous
operator.

Hence z fulfills . Since the limit is given uniquely by the latter equation, the whole
sequence (z,),>0 converges weakly to z in H'(Q).

It remains to show the strong convergence in H*(£). Due to the compact imbedding into L?()
only the part Vz, — Vz in L?(Q)% is left. For this we consider the sequence {LIVz,},50
where L, is the Cholesky-decomposition of the s.p.d.-matrix A”(w,). From boundedness and
uniformly positive definiteness of A”, we obtain ¢ < ||L,(x)|| < C with constants independent
from p and z. Since A”(w,) — A”(Vy) in L*(2)4*?, from the resulting almost everywhere
convergence and just stated boundedness one can verify by dominated convergence that

L,— Land L' — L' in L*(Q)™4,

where L is the Cholesky-decomposition of A”(Vy). Furthermore we have

||L;:;szp||2L2(Q) = / VZ;:;FA”(U);))VZP dr < / VZZAH(wp)vzp dz + (¢ (sp) 20, 20)
Q Q ~——
>0
= (v,2p)r2(0) < Cllol72(q)
using (2.68) in the intermediate value formulation and (2.69). So we can extract from the
sequence {L,:)FVZP} >0 a weakly convergent subsequence in L?(2)4. Since we have the strong
convergence of L, and the weak convergence of Vz, we know that LZVZP — LTVz in L1(Q)4
(see Theorem 2) and since the limits in L'(Q)? and L?(2)¢ have to coincide we conclude

that the previous weak limit actually is LT Vz. Due to the uniqueness of the limit also the
whole sequence converges weakly in L?(€)¢. Furthermore, there exists a p’ < p with % + % <1

Hence the compact imbedding H'(Q) < L? (Q) provides z, — z in LP' (). Then, using s, — y
in H*(2) and given ¢’ : HY(Q2) — L9(Q) is a continuous operator, we have

ILT2l 3y < lminf L] V2l 3aa) = lim [(0:2,) = (¢'(5)2: %)
= (0,9) = ((5)22) = IL7Vz]}a(0)

and with that we can even deduce LEVZP — LTVz in L?(Q)?. Furthermore there exists some
dominating function m € L*(Q) with |[LTVz,| < m. Finally, from the pointwise relations

Vz, = (L;T)(Lszp) — (L_T)(LTVZ) =Vz and [Vz,|= \L;TLZVZA < C’|L£Vzp\ < Cm,

we get by dominated convergence that Vz, — Vz in L?(2)%.

Ultimately, the desired continuity of S’(g) : L*(Q2) — H'(2) needed for the Gateaux differentia-
bility is given by (2.66)). O
The following theorem enhances the last result to Fréchet differentiability.

39

2 Analytical results

Theorem 2.4.4. Let Assumptions hold. Then the mapping S : L*(Q) — H'(X) is Fréchet
differentiable.

Proof: Due to Theorem|1.2.12|it remains to show that the mapping g — S’(g) € L(L*(Q), H(Q2))
is continuous, i.e., that for g, — g in L?(£2) it follows that

] 1[S"(gn) — S ()]0l 7100
sup
vEL2(Q) ||UHL2(Q)

—0 for n — oo. (2.72)

For g, — g in L*()), Lemma provides y, = S(gn) — v == S(g) in H'(Q) and given
v € L?(Q) we set 2z, := S8'(gn)v, 2 := §’'(g)v. Subtracting the defining equations for z, and z
(see (2.65))), testing with (z, — z) € H*(2) and inserting 0 terms yields

0 :/Q (A" (Vyn)Vz, — A”(Vy)Vz)T (Vzp — V2)dx + (¢ (yn)zn — C'(Y)2, 20 — 2)
_ /Q (A" (Vy,)V — A" (Vy V)T (Vin — V) do

+ / vl (A" (Vy,) — A" (Vy)) (Vz, — Vz)dz
Q

+((yn)zn = C(yn)2 20 — 2)
+ ()2 = ¢ (y)2 20 — 2)
> O|Van = V2|isq)
- HAH(VYn) - AH(VY)H||VZ||L2(Q)||VZ71 - vZ||L2(Q)
+ Cllzn = 2720y
= Cl¢(y,) = CWDlzall2llze@)ll2n — 2l Lr ()

where we used the ellipticity of A”(s) and (’(s) with constants independent of s. Given the
estimate (2.66) it holds [|z|| g1 (q), [|2n — 2||a1 (@) < cl|v]|L2(q) and by rearranging the previous
equation it follows

Iz — 2011 0

147 (Vy,,) = A" (Vo) + 1< () = ¢ W lzay = € Yu e L*(9).

||UH2L2(Q)

Since A”(.) is a continuous operator from (L2(Q))¢ — (L2(2))?*¢ and ¢'(.) is a continuous
operator from LP(Q) — L(2), y, — y in H'(Q) provides that the left-hand side goes to 0 as
n — 00. Since this convergence holds independent from v with it follows that S is Fréchet
differentiable. O

With the just shown results for the model problem (2.62]), we are now in position to consider the
solution operator S; : U, — Y., for the whole time discretization (2.60]). On each time interval
I; we have y; (ur)|1, = y;(u1, ... u;) = S(Lu; + %jyj_l(’lll, ...u;_1)). Using the previous shown

theorem for § as well as the chain rule we obtain for j =1,..., N
dy (ur)1, dyr(ur)|1,
zZj = TJUT =8'(Zu; + T%yj—l)(%”j + %TJI’UT)
= S’(%Uj + 7'%‘yj_l)(%’l}j + %Zj_l), (273)

where we used 2y := 0 and by induction we can state the following theorem.

Theorem 2.4.5. Let Assumptions hold. Then the operator S, : U, — Y, is Fréchet
differentiable and consequently also the reduced cost functional

Jr:Ur = R with jr(ur) = J(Sr(ur), ur)

40

2.4 Fréchet differentiability for the time discretized problem

is Fréchet differentiable with

Je(ur)ve = (ynv — Y, 2n) + 2 (ur, vr),
where zy is given by the solution of the following sequence with zg := 0

(€A"(Vy;)Vz, Vo) + (20" ()2 + £25,0) = (v + £2j-1,9) Vi=1,...N, p € H(Q).
(2.74)

We note that the z; satisfy a linearized state equation given by z; = S.(y,)v, € Y;. Furthermore,
(2.74) is the dG(0) discretization (as used for the state equation) of the in time continuous,
linearized state equation
1
£(0zm) + (A" (Vy)Vz, Vi) + (" (y)z,m) = (v,m) V€ L*(0, T H'(Q),

see also ([1.26]). Given Assumptions the unique solvability of (2.75)) is guaranteed by

standard results on parabolic equations.

(2.75)

Let us mention that for the forward problem it may be more efficient to use the semi-implicit
scheme of [13], where A’(Vy;) is approximated by M (Vy,;_1)Vy,. However, to show Fréchet
differentiability with the above technique of applying the solution operator S recursively, higher
regularity properties are required. In particular, to our best knowledge, the gradient of the
previous time step solution—which appears in the ellipticity coefficient—has to be bounded in
L>(£2) to obtain a convenient result [137]. For more information see Section [2.7.3]

Let us now define for given y the weak formulation of the adjoint equation in the time continuous

setting (cf. (1.24)):

—e(n,0p) + (A" (Vy)Vn, Vp) + %(1/}”(@/)77,19) =0 vn e L*(0,T; H' (),
p(T) = L(y(T) — ya) in Q.
(2.76)

After the substitution t — —t, as for the linearized equation , the existence of a unique
adjoint state p as a solution of follows. In analogy to the discretization of the state
equation, but taking into account the backward-in-time nature, we use the piecewise constant
time discrete p, € P., where

Pr:={p,:Q =R |p.(t,.) € H(Q),p-(.,x) constant in [; for j =1,..., N},
with I; := [t;_1,t;) and we use the notation py; := p(T). The Galerkin scheme
e(A"(Vy;)V, V) + (24" (y;)e + %‘P;Pj) = %(%Pﬂl) for j=N,... 1, (2.77)

starting with py41 = 2(y~ — yo), then determines the approximation p, of p. Given (2.65) and
the symmetry of §'(g;) with g; = %uj + %jyj_l and y; = S(g;) we have

pj = %Sl(gj)ijrl forj=N,...,1.

With (2.73)) this leads to

(25, pj+1) = (8'(g5) (2vj + £ 2-1)pj1) = (205 + 7-2j-1, 8 (g5)pj41) = 2 vy, 05) + (2j-1,05),
(2.78)
for j = N,...,1 and consequently we have

N
(yn — Yo, 2n) = e(Pnr1,28) = 75PN ON) + (PN, 2no1) = ..o = Y 75(ps ;) = (pryvr),
j=1

41

2 Analytical results

using zg = 0. Altogether, we have shown

Corollary 2.4.6. Under Assumptions[2.].1] the reduced cost functional j, : U, — R is Fréchet
differentiable and the derivative can be represented as

A
VjT(U’T) = guT + pr, (279)

where p, is the solution of the discrete adjoint equation (2.77)).

Remark 2.4.7. Note that there is some freedom in scaling the adjoint variable p,. By defining
DN+1 = YN — Yo = epn+1 and repeat the steps after (2.77)), one would obtain
. 1 ~
Vir(ur) = EO‘UT + Pr)-
This formulation is equivalent to (2.79) upon replacing p; — 15,. Numerically, however, there
was observed no difference between both versions.

2.5 Convergence with respect to a regularization of A

In the previous section A had to fulfill Assumptions [2.4.1}a and b. However, as mentioned in the
beginning, typical anisotropy functions A only fulfill Assumptions [2.4.I]a. In order to guarantee
Fréchet differentiability for the numerical approach, we regularize such an A to As, so that in
addition Assumptions [2:4.1]b hold. An example of such a regularization is given and discussed
in and the paragraph before. In this subsection we consider the dependence on § of the
solutions of the in time discretized optimization problem 7. To consider convergence
with 0 — 0 we need that A5 — A’. However, the results of this section do not require Fréchet
differentiability yet, such that Assumptions [2.:4.1]a on As are sufficient. We denote by y, € Y,
the solution of with A, while y® € Y, shall be given as the solution of the regularized

equation

(¥, 9) — (1) 1.) 1 .
eI 4 e (A(VY), Vo) + (). 9) = (u,0) Ve € HY(Q), j=1,....N,
J

(2.80)
and y2(0,-) = yo. As before we define the reduced cost functional by

. 1 A
gra(ur) = 5llya (ur) = vollizio) + o lurl iz (o) (2.81)

We note that to not overload the notation, js is used in place of j; ;5 as long as it is clear from
the context that 7 is considered fixed. The goal of this section is to derive a convergence result
for minimizers of a sequence of j, s to minimizers of j; ¢ in the limit § — 0 and to minimizers
of j when additionally 7 — 0 holds. Therefore some convergence behavior of the d-dependent
solution y? is needed that then is combined with results concerning 7 — 0 from Section
The behavior of y° will be covered by the following two auxiliary results.

Theorem 2.5.1. Let the Assumptions|2.4.1la hold and in addition let Al : R? — RY be strongly
monotone with a constant C4 independent of §, i.e.,

(A5(p) — A5(q),p—q) = Calp—q*> V6 >0,p,q € R?,

and furthermore let
[A5(p) — A'(p)l <n(8) YpeR™

Then, for fized yo, u. and max;7; the solutions y.(u,) and y2(u,) of (2.60) and (2:30),
respectively, satisfy the following estimate

lyr (ur) — y2(ur) | Lo 07522 (00)) + 1 VY-(ur) = VY2 (ur) I L20.1:02(0)) < Caprn(6). (2.82)

42

2.5 Convergence with respect to a regularization of A

The proof uses the same idea as the proof of Theorem [2:2.4] Proceeding similarly as in
Lemma is possible, but only gives an estimate ||y (ur) — yr (ur)| g1 @)y < C-n(6), so the
limit 7 — 0 that we consider later on would not be possible without further effort.

Proof: We note down the differences by a prescript A, e.g., Ay, =y, —y2. With 1(a®—b%) <
(a — b)a, testing the defining equations and with Ay; and using that Af is strongly
monotone as well as (¢/(z) — ¢/ (y),z —y) > —Cylz — y|?, we obtain

2 ([|1Ay;)1? = |Ay;-1]1”) + 75CallVAyY; |1
A5(Vy2), VAy;)
A

< (Ay; — Ayj-1, Ay;) + 75 (A5(Vy;) —

< (Ay; — Ayj1, Ay;) + 75 (A'(Vy;) — A5(Vy)), VAyJ) + 75 (A5(Vy;) — A'(Vy;), VAy;)

=3 (W(y) ' @)), Ay;) + 75 (A5(Vy;) — A'(Vy;), VAy;)
<IIAG(Vy)—A' (Ty)IIIV Ay, |20V Ay, |

Tj TjC Q
< BC 0y 17 + ZEA 1V Ay, |2 + 1L (8)2.

In the last step we used scaled Young’s inequality (see Theorem [1.2.6]) with the scaling C'4. We
now sum over j = 1,...,J and get

sl Ays)? + 5 ZTJIIVAyJH2 < 35k

j=1

ZTJ + Cw ZTJHA% 1%, (2.83)

for all 1 < J < N,.. Here we defined C’w = % Omitting the gradient term on the left,

absorbing the J-th term from the right and using (lleJ) < ¢, we obtain

clQ 2 R J—1
1801 < 106 + e 3 78

=1
To this we apply the discrete Gronwall Lemma [T.2.8] which yields

”2 < C|Q|2

A
|| Yy Ca

Tn(8)? exp (CC¢T) . (2.84)

Inserting this into (2.83]) we finally get for all J =1,..., N,

J
Q|2 ~ ~
Ca er||VijH2 < uTr](é)2 (1 + cCyT exp (cC’wT)) ,

j=1 Ca
which together with (2.84]) yields the inequality (2.82)). O

With this at hand, together with results from Section [2.2] we obtain the following convergence
result.

Corollary 2.5.2. Let the assumptions of Theorem be fulfilled and u.,u, € U, be given.
Then the estimate

lyr(ur) — yf—(aT)”LW(O,T;LQ(Q)) + IVy-(ur) — vyf—(ﬂT)”LQ(O,T;LQ(Q))

) (2.85)
< CA,¢,T(H(5) + [lur — UTHL?(O,T;Hl(Q)’))

holds. Hence, given a sequence (u,), with u, — wu in L2(0,T; L?(Q)) for 7 — 0, there exists
o(7) with lim,_oo(7) = 0 such that

e () = 92 ur) el 2y < C (n(0) + (7). (2:86)

Proof: Estimate (2.85]) follows by zero completion with y, (@,), triangle inequality and esti-

43

2 Analytical results

mating the resulting terms by Theorem [2.5.1] and Theorem [2.2.4] respectively .

For the second estimate we recall from Theorem [2.2.7| that if u, — w in L?(0,T; L*(Q2)) there
exists o(7) with lim, oo (7) = 0 such that max,cpo 1l|y(w);e — yr(ur)ellL2) < Co(r). By
inserting y,(u,) and using the triangle inequality together with the first estimate one obtains
(12.86]). O
Finally, we conclude this section with the following convergence result of global minimizers. The
second statement is a generalization of Theorem [2.3.3]

Theorem 2.5.3. Let the assumptions of Theorem be fulfilled and lims_,on(6) = 0. Denote
by u® a global minimizer of Jr,5. Then it holds:

1. Considering § — 0 for fived T > 0, there exists a subsequence such that it holds u® — u,
in Ur, v2(u) — yr(ur) in Yy and jr5(ud) — j-(u,) for § — 0. Furthermore, u, is a
global minimizer of j,.

2. Considering 7,6 — 0, there exists a subsequence such that it holds ud — w in L*(0,T; L?(Q)),
Y2 (ud) — y(u) in L2(0,T; L3(Q)) and j,5(ul) — j(u). Furthermore, u is a global mini-
mizer of j.

Proof:
1. Take @, € U, fixed. From Theorem we obtain vy (u,) — y,(t,) in Y, for 6 — 0 and

therefore from the boundedness of this sequence and the fact that the uﬁ are optimal, we
obtain \
5 . 5 S
522 1z2(q) < dra(u?) < jrs(iir) < C.
Hence uf — u, € U, for a subsequence, which is considered in the following, and
consequently y3 (ud) — yn(u,) in L?(Q), see Corollary Using the definition of j; s

in (2.81)) leads to

j‘r(y‘r) < hminfjr,é(uf—) < hmsupj‘rj(uf—) < lim j‘r,é(u‘r) = j‘r(u‘r) Vur € Us. (287)
6—0 §—0 6—0

Hence u, is a minimizer. Since we can also choose u, on the righter part of , in
addition we obtain j, s(ul) = j,(u,).

Since we already have uf — u,, to obtain the strong convergence uf — u, in U, it remains
to check that the norms converge. This follows from

s . 5 § (.8 .
%HUTH%z(Q) = Jr,é(UT)—%||2/N(uf)—y£2\|%2(n) - JT(HT)—%||Z/N(Er)—ysz||%2(9) = %H%H%Z‘(Q)'

2. First we choose an arbitrary but fixed 4 € L?(0,T; L?(Q)) and a sequence i, € U,
with lim, 0 @, = @ in L?(0,T; L?(R2)). Hence lims 0y (ir) 7 = y(@);r in L?(Q) due
to (2.86]). As above it holds

Aspe L5, 2 Az e
27€||UTHL2(Q) < 5”%(“7)@ —yollz2) + 278||UTHL2(Q) <C.

Hence we can deduce a subsequence denoted in the same way with ud — w in L2(0, T; L?(Q)).
Then Corollary yields that y2(ud);r — y(u)r in L*(©2) and hence

j(u) < liminf j. s(ul).

7,0—0

Respectively, given some arbitrary @ € L%(0,7T; L?(Q2)) and a sequence i, with @i, — ,

we obtain lim; s 0 jr5(%,) = j(%). Then the assertions follows as in 1. O
Remark 2.5.4. Like in Remark the previous theorem also holds true if instead of the
cost functional (2.81) one considers the whole time horizon (yq - € Y;)

. 1 A
335(ur) = 31 (ur) = yorllEig + 5 llur 3 . (239)

44

2.6 The regularization of a class of anisotropies

with a proof along the same lines. The resulting limit is a minimizer of the reduced problem
belonging to (2.57) or (2.58), respectively (with £ inserted). This case even is a little bit casier
86]).

as one does not need (2.

Remark 2.5.5. As in Theorem we could only show the convergence of a subsequence.
This is the case because there might be more than one minimizer. The convergence to a certain
minimizer u} or u* can be achieved by modifying the cost functional by

. 1 A 1, .
Jrelur) = §||yfv(u7) - yQH%Z(Q) + %HUTHQL’Z(Q) + 5“% - u”zL?(Q)a (2.89)

or an analogous expression for u*. The new term measures the distance to the desired optimum.
For more information we refer to, e.g., [33, 135, 36, Sections 4], where some other regularization
on quasilinear equations—resembling one of our time steps—is considered. The goal there is
however different to ours. The authors consider a broader class of anisotropic terms with different
growing conditions. In certain cases the optimality system cannot be deduced directly since
the solution operator is not Gateaux differentiable. So they apply a certain regularization and
use their analogous result to our Theorem to take the limit in the regularized optimality
conditions that hold in any specific minimizer. In our case this is not possible, since the limiting
optimality condition is expected to be of another form since A’ is not differentiable and hence
the adjoint equation is not well defined. As a remedy one can consider only regions where
|[Vy| > 0, cf. the last reference given. However, in that paper the limit procedure works, because
already for the regularized equation they are treating this kind of optimality system.

For the numerical application we are interested in, convergence to a specific minimizer is not
of interest nor can be expected. This is because we do not know the optimizer a priori, so we
cannot include it in the cost functional as in . Also, by solving merely the first order
conditions, we can only find local minimizers. Furthermore, we usually fix one é and do not
consider the limit numerically, since the algorithm is expected to break down for § too small
due to the ill-definedness of the first order conditions in the case 6 = 0. We only want to be
sure that if we have found a global solution by solving the optimality system of the regularized
problem, that then it is close to at least some optimizer of the unregularized system.

2.6 The regularization of a class of anisotropies

In order to be able to perform the numerical simulations in Part [f] later, we have to specify the
anisotropy function A. As already mentioned in the previous sections, this function typically
can be thought of being absolutely 2-homogeneous. In general however this conflicts with
the requirement of A being twice continuously differentiable. Our approach is to apply a
regularization, but without further information on A it is unclear how exactly this should be
achieved. Therefore this section’s goal is to specify the employed A, to introduce an appropriate
regularization As and to show that A satisfies Assumptions 2:4.1p. and As fulfills in addition
Assumptions [2.4.Ip. This guarantees that the results from the preceding chapters can be applied.
First, recall from the introduction on page [J] that A can be written as

A(p) = 3P vpeRY, (2.90)

where the so-called density function v : R — R with v € C2(R4\ {0}) N C(R?) shall be
absolutely 1-homogeneous. The terminology ‘density function’ goes back to the study of sharp
interface models, where the surface energy of the interface between a solid and liquid phase, say,
is given by |T'|, = [Lv(v) ds. In the isotropic case v(p) = |p| this would reduce to the area of
the interface |T'|, = [I'|. The authors of [1} 53] show for the Allen-Cahn equation (L.9)—with A
defined as in —that in the limit € — 0 the zero level sets converge to a sharp interface I'
moving with V' = (v)k, if u = 0. While there exist several approaches to define v, like, e.g., in
[86] or in [45], we constrain ourselves to a class of anisotropies for which the density function v
is introduced in |16} [14]. The corresponding phase field ansatz is studied for instance in 13|
15]. In the following they are referred to as BGN-anisotropies. They allow for the modelling

45

2 Analytical results

and approximation of a large class of common anisotropies. Also they are well suited to model
crystal growth, since crystals build characteristical faces. The basic observation is that for the
metric (-, -)s defined by symmetric positive definite G, the surface area element can be expressed

1.
as y(v) = VT Gr with G = det(G)d=1 G~ (see [14]). This motivates the choice of the class of
density functions «y given by

L

¥(p) =D (), where %(p) = VpTGip, (2.91)

=1

and G; € R™? are symmetric and positive definite. Note that for p # 0 the gradient of A can
then be computed as

A'(p) =)V (p) =) v’;((pp)) Gip, (2.92)

and A’ is continuous also at p = 0 with A’(0) = 0.
The second derivative exists for p # 0 and is given by

A" (p) =)' (0) ++' ()7 ()", (2.93)

Y'(p) = XZ: < G Glp(Glp)T> .

where

Yi(p) Y(p)?

We note that A” : R?\ {0} — R?*9 is continuous as a combination of continuous functions.
Furthermore, using arguments from [64] we can show the following properties.

Lemma 2.6.1. The function A” : R4\ {0} — R¥? is uniformly positive definite and bounded,
i.e., it holds
ald® <q"A"(p)g < ealal® VP e R\ {0}, ¢ € R, (2.94)

where the constants c1,ca > 0 are independent from p.
Moreover, A’ : R4 — R? is Lipschitz continuous and strongly monotone.

Proof: First we note that for the density functions the following relation holds:
Ty (p)v > colv]? Vp,v € R? with pTv =0 and |p| = 1. (2.95)

This follows by an application of the Cauchy-Schwarz inequality

T G (0" Gip)? TG)0 _
v = zl: (n) np)?) - zl: ("(p) n(p)?) -

where equality does not hold for p”v = 0. Further note that the set
{(p,v) €eR* xR | |p| = |v| =1, p"v =0}

is compact as a closed subset of the compact set S~ x S4~1 where S~ is the d—1 dimensional
unit sphere. Hence there exists the minimum of v7+4”(p)v on this set and a rescale argument
yields the desired relation (2.95).

To show the positive definiteness of A”(p), for some fixed p # 0 with |p| = 1 we decompose
q € R? as ¢ = ap + p*, where p’pt = 0. From the 1-homogeneity of ~ it follows 7" (p)p =

%7’(@]9)‘(;1 = %7’(p)|a:1 =0,i.e. v"(p)g = v"(p)p*. Having this in mind, we now distinguish
two cases.

If pt # 0, it follows using (2.95) and neglecting the nonnegative second term

q" A" (p)g =) (¢"7" (p)a) + ("7 (9))* = v(p)colp™|* > 0.

46

2.6 The regularization of a class of anisotropies

On the other, hand if p* = 0 the first term vanishes and from pT’y'(p) = %’Y(ap)\aﬂ =
%G’Y(p)\aﬂ = v(p) we obtain

q" A" (p)g = *y(p)(P" V" (P)p) + > (p" ¥ (p))* = &*(p)* > 0,

since p # 0.

Finally, the uniform positive definiteness and boundedness again follow from a compactness argu-
ment noting that the function (p,q) — ¢7 A”(p)q is continuous on the compact set S9! x §91
and absolutely 2-homogeneous in ¢ as well as absolutely 0-homogeneous in p.

Now we go for the Lipschitz continuity of A’ : R? — R?. For this, let p, ¢ € R?. We denote the
straight line between p and ¢ by [p, q].

If 0 & [p, q], then v, 4 € C? and using the boundedness of A” obtained from the just shown
relation , one obtains from the mean value theorem that

|A'(p) — A'(q)] = [A"(&p.0) (P —)| < calp —ql,

where &, ; € [p,¢] is an intermediate point.

The Lipschitz continuity in the case [0, g] follows from taking the limit » — 0 in the above case
for [rp, g] and the continuity of A’. The same can be done for [p, 0].

Finally, if 0 € [p, ¢] we have p = ag with a certain o < 0 and using that |p — ¢| = |(a« — 1)¢| =
(—a+1)lgl = |ag| + [q] = [p[+ |q|, we obtain

|A"(p) — A'(q)| < |A'(p) —A'(0)[4|A'(0) = A'(q)| < calp—0|+c2/0—q| = c2(|p| +g]) = c2lp—dl,

and the Lipschitz continuity is shown.

With the same case distinction we can show the strong monotonicity of A’.
This time, in the case 0 € [p, g] we can use the lower estimate in (2.94]) of A” to obtain from the
mean value theorem that

(A'(p) = A'(q),p—q) = (A" (&) P — @) p— @) = calp — g

The cases [0, ¢] and [p, 0] once more follow from continuity.
Ultimately, if 0 € [p, g] we can again write p = g with a < 0 and using the previous it follows

(A'(p) — A'(q).p—q) = (A'(p) — A’(O),w) +(A’(0) — A’(Q),w)

—(lfl/a) =(a—1)q
=(1-2)(Ap) — A(0),p—0) + (1 - a)(A'(0) — A'(),0 — q)
> (1- i)ﬁlp 0|2 (1—a)er]0 —qf?
= ((0® = a)lgl + (1 = a)lg?) = erl(a = Dgl* = e1|p — g
With this all properties are shown. O

Our goal for regularizing A is that As € C?(R?) shall fulfill the requirements for the existence of
an optimal control (Assumptions , that the derivative shall be simple to evaluate and that
the influence on the interfacial region (i.e., Vy % 0) shall be little. The approach is to modify
the ~;, but one could also think of regularizing, e.g., the quotient appearing in the sum in .
Among various choices we considered (see also Remark , the most promising was to alter
the functions 7; by a small shift of ¢, i.e.,

%=/ +9, (2.96)
where § > 0. This we use in the following and, like in Section [2.5] we denote the resulting
regularizations by As and 5. Both lie in C*°(RY) now. A very convenient property for this
choice is that

v(p) = 7((p, V)", (2.97)

47

2 Analytical results

where 7 is defined employing the matrices G, = (G’ 1) Hence one can also view the regularized

anisotropy As on R? as an unregularized BGN-anisotropy A on R¢+! for which above properties
hold.
The derivatives still have the same structures as in (2.92) and (2.93), namely

L)
AS(p) = l’;l ,_Yl(;(p) Glpa (298)
Af(p) = vs(p)V5 (p) + v5(0)v5(0) " (2.99)

L (G _GzP(GlP)T> (2.100)

with 7 (p) :; nwwe o AP

though these hold in the regularized version for all p € R?. Note that for L = 1, i.e., for
A(p) = 1p" Gp which includes the isotropic case, it holds A§ = A’. As in this case A is already
smooth by itself and hence there is no need for regularization anyway, this is a particularly
convenient property of this kind of regularization. Using the handy relations

Ag(p) = A(\%) s Ag(p) = (A/ (%))1’,,,7(17 Ag(p) = (AH (\%))} d) (2-101)

we can proof the following theorem.

Lemma 2.6.2. The mappings As : R — R for § > 0 (with As—o = A as shorthand notation)
have the following properties:

a) As fulfill the growth condition c|p|> < As(p) < Cs + C|p|? for all p with positive constants
c,C, Cs, where only Cs may depend on §.

b) Aj are Lipschitz continuous and strongly monotone on R? with constants independent of &
and A5(0) = 0.

¢) AY induce uniformly equivalent norms on R? for 6 > 0, i.e., there exist constants cg, C
such that
collal* < q"A5(p)a < Cllgl* Vp,q e RY,6 >0,

and A§(0) =L Zlel G;. Furthermore, if § = 0, the same holds true for all p # 0.

d) A\ (p) is Hélder continuous with exponent 1/2 and with a constant independent of p. It
especially holds

A5’ (p) — A'(p)| <CVS VpeRLG>0. (2.102)

In particular the Assumptions are fulfilled if 6 > 0, Assumptions[2-{.1a. hold for A and
finally the estimate assumed in Theorem holds.

Proof: For 6 = 0 property a) with Cs5 = 0 is an immediate consequence of the 2-homogeneity.
Noting (2.101]) we can use this special case to deduce for arbitrary §

Asp)=A(L) <O F) =C(plP+6) and As(p) = A (%) = c(jpl> +5) > clpl?,

from which the desired estimate follows.

For the Lipschitz continuity and strong monotonicity in the unregularized case we recall the
result from Lemma For ¢ > 0 these follow again from as follows. Using that an
additional (d + 1)th entry can only make the norm bigger, one obtains

4500 - 4501 < |2 () - 2 (s < 2| () = ()| = o=l waeme,

48

2.7 A semi-implicit splitting scheme for the anisotropy

and hence the Lipschitz continuity holds also for Ag. The strong monotonicity follows from
(3~ 5600 =) = (4 () -2 () (75 1))
A i p—q
-(H -2 (52 %)

2
> C‘(ig) - (\35) =Clp—q* VpgeR:

Note that in both cases only the constants for A’ appear which are independent from é.

Moreover, since A” induces uniformly equivalent norms on R%*! the same holds for AY on R,

Hence Aj(p) is bounded independent from p and ¢ and we obtain assertion c).

Finally, Holder continuity of A% (p) with respect to 0 is a consequence of the Lipschitz continuity

of A" as can be seen from

145, () — 45,0 = | (A () = & (i), < 1A () = 4 ()]

<C|(Ji) - (Jp)l = C Vo = Vaa| < v/l =,

where for the last inequality we used the known fact that the square root function is %—Hélder
continuous. O

Remark 2.6.3. Note that the property d) seems to be suboptimal at first sight if compared to
property b) that holds with respect to the variable p. Recalling the definition however,
one notices that actually the square of p (or rather a function behaving like that) appears under
the square root compared to ¢ that enters only as it is. So this actually is an artifact of the way
we defined & to show up in the regularization. Replacing § — 62 one would obtain Lipschitz
continuity with respect to . For the discussion in Section the actual rate of convergence
was not of importance however.

2.7 A semi-implicit splitting scheme for the anisotropy

So far we have considered an implicit discretization (see, for instance) of the state equation
. Regarding the fact that solving such an implicit discretization requires a nonlinear solver,
it might be tempting to consider a semi-implicit discretization for the state equation instead.
In the following subsection we will introduce such a semi-implicit discretization and discuss
some results that find their analogues in the previous sections. After that, we will give the
adjoint equation that is required to formulate the first order condition as well as the linearized
state and the additional adjoint equation which are required to compute the action of the
Hessian on a vector. The derivation of these equations will be done on a formal level, since
there are some serious problems hindering a more rigorous treatment, as will be explained by
the end of Section In the final subsection we will point out one of these problems in more
detail—namely finding proper spaces for a continuity result for the chained time step problems.
Nevertheless, the formally derived equations can still be fed into the optimization solver to
obtain numerical solutions of the control problem. The results for this and a comparison between
the implicit and semi-implicit schemes is presented in Section [£.5.1]

2.7.1 Existence and stability result

Let us now introduce the concrete form of the semi-implicit splitting scheme. We will maintain
the same partition of the interval [0,T] into I; as in Section Note that in contrast to there
we prefer not to use the notion of y, and w, living in the spaces Y, and U, defined in ,
respectively, since the scheme discussed in this section can no longer be obtained by applying a

49

2 Analytical results

discontinuous-Galerkin method on (1.9). Rather we prefer to denote the state and control as
(Yj)j=1,...N € HY(Q)N and (uj)j=1,..N € L2(Q)N | respectively.

The general idea is to seek a splitting of the anisotropy A’ that is given by a linearization of it
as follows

A'(Vg;) = M(Vp;j-1)Ve; +b(Vpj1), (2.103)

where M and b are still to be determined. Here we already indicated the place where each
time step enters. Note that with this convention the known previous time step solution appears
in the coefficients and the seeked solution ¢; only appears linearly. As we have to set up the
first order conditions for the numerical approach, the functions M and b should be regularized,
preferably using a regularization related to a regularization of A’.

Let us get more concrete at this point by explicitly considering the anisotropy and regularizations
given in Section Considering the expressions from and (2.98), we observe that we can

write

A'(p)=M(p)p or As(p) = Ms(p)p, (2.104)
respectively, with
L
> 20 iz
— l
M(p) = "=t (2.105)
LY G if p=0,
=1
or
5 ()
M;(p) Gl (2.106)
o= n(p)
Note that

motivating the definition of M for p = 0 in . The unregularized version M is not
continuous at the origin, in contrast to A’(p), which vanishes there due to the extra factor of p.
The splitting in (2.104) and (2.105)) which is of the form with b = 0, was first proposed
and analyzed in |13} 15]. In particular, the authors showed the following stability inequality

(M(9)p)"(p—q) > A(p) — Ala) Vp,q €RY, (2.107)

which is essential for their scheme to provide energy stability. Note that, in contrast to here,
they use the double obstacle potential. Our first step after proposing is to check if
still holds true in the regularized case. After that we will specify our scheme and check
if it also fulfills energy stability using said inequality.

Lemma 2.7.1. Let § > 0. Then for Ms defined in (2.106)), there holds the following stability
inequality:
(Ms(9)p)" (p —q) = As(p) — As(g9) Vp,q € R% (2.108)

Furthermore, Ms is uniformly positive definite, bounded and Lipschitz continuous.

Proof: The proof for (2.108) is an extensmn of the proof of [13| Lemma 2.2]. Inserting the
definition of Mjs, v and) (cf. egs. and -) one obtains

(Ms(a)p)" (0 — q) Z% 1(p)? = ¢"Gp).

The trick now is to insert 0 = § — § to obtain

(Ms(q)p)" (p — Zw @) =7 (@) > (@) g Gip + 9).

l

50

2.7 A semi-implicit splitting scheme for the anisotropy

Applying Cauchy-Schwarz backwards it is easy to verify that the first term can be estimated by

1 5
@Y A @ 0 > [T @ L2) — e
l

Also using Cauchy-Schwarz one obtains

qTGip+ 6 <A ()7 ().

Putting together the previous results and applying Young’s inequality one finally gets

(Ms(@)p)"(p — q) = °(0)2 = ()’ (p) = 37°(0)? — 37°(9)*.

Recalling the definition of As this is exactly (2.108).

Finally, uniformly positive definiteness and boundedness for instance follow from and the
fact that the 4; define norms. The Lipschitz continuity is a consequence of the fact that the
derivative, which for instance is given later in , is bounded in q. O

Remark 2.7.2. If one considers a regularization of the type

() =),

the stability inequality (2.108]) is not satisfied and several other problems appear.
First, a short computation reveals that

L
Loy Y (p)F°
A5(p) - (1 + 6) l7§1 'Yl(p)li& Glp

We note that due to the different growth condition |A%(p)| < C|p|**2° the Nemytskii operator
belonging to Aj no longer provides a mapping L?(Q) — L*(Q) (yielding several issues in the
considerations from the previous chapters). To see that the natural splitting Aj§(p) = M;(p)p
with .

Tm (p)1+6
M(; p) = 1 + (5 767‘[
)= (1+8) >, Y(p)t—o

l,m=1

does not satisfy (2.108]), we insert ¢ = 0, since then
0= (M5(0)p)"p > As(p) — A5(0) = As(p) > 0

for all p # 0, which is a contradiction. Furthermore, uniformly positive definiteness and
boundedness is clearly not satisfied.

Numerically we observed several issues that arise apart from the above also from the fact that
the denominator with this regularization is actually allowed to vanish. Also with the altered
power dependency, regions with high values for p (that is, Vy) are influenced strongly by this
regularization, which are precisely represented by the vicinity of the interface that mainly drives
the evolution of the phase field.

We now want to introduce the discrete scheme that we are going to consider in the remainder
of this chapter and for which we can show energy stability under certain conditions using the
previous result. It is given by

(5, 0) + 75 (M5(Vy;-1)Vy;, Vo) = (yj-1,0) + T;J(uyw @) — Z%(w’(yj—l), p) VeeHY(Q)
(2.109)
for j =1,..., N and where yo € H'(Q) shall be given. This defines time step wise the mapping
Ssemi : L2(QN — Hl(Q)N,(uj)jzl _____ N — (y;)j=1,..~n. Note that we have set by = 0 as
suggested by the splittings from the previous discussion. The considerations that follow would

o1

2 Analytical results

also hold true for other choices in as long as no specific form of My is assumed, but
we will keep bs = 0 for sake of presentation, since the equations quickly become clumsy. It is
not difficult however to add the suitable terms if needed, since the more complicated ones arise
from Mjy. Let us therefore state at this place the assumptions on My that will be used in the
following.

Assumption 2.7.3. We assume that Ms € C?(R9)4*? satisfies (2.108)) and is bounded and
uniformly positive definite, i.e.

Mig)? < ¢"Ms(p)g < Mg|> Vp,q e RL

For M; as given in these properties were shown in Lemma Note that we need the
first and second derivative of My to define all equations that are needed for the numerics (see
below).
We also note that in we chose to take the potential 1)’ explicitly, so it appears on the
right-hand side as it only depends on the previous time step. From a numerical point of view
this choice may seem questionable, since explicit schemes for 1’ are known to lead to stability
issues and severe time step restrictions [119]. Let us give some reasons why we nevertheless
focus on this kind of discretization here.
First, recall from the previous sections that in the existence theorems it was mostly the term
involving v’ that led to the biggest issues, as on A we imposed suitable growing conditions.
Due to the lack of a direct correspondence to the continuous case via discontinuous Galerkin we
cannot use the same arguments as done in Section to show boundedness of the 1)’ term here.
Since we would like to concentrate on the novel issues the M; term brings along, we decided
to include the potential explicitly to simplify the discussion. As a drawback, in the theorems
that follow we will then have to assume d < 3 and restrict ourselves to the smooth double-well
potential

Y(s) = 11— %) and hence ¢/(s) = 5% — s, (2.110)

to be able to use the imbedding H'(2) — L5(Q), such that ¥’ : H*(Q) — L?(Q) defines a
continuous Nemytskii operator.

A second issue is that the reason we introduced the splitting was to circumvent a costly
application of a nonlinear solver for the state equation. Reintroducing a term as ¢’(y;) in the
state equation would practically nullify this advantage. At this point we should note that there
are some schemes that are probably better suited and still linear in y; (see for instance [67] |68])
but they involve a certain splitting of the potential which leads to additional terms that we
want to avoid in the discussion due to the reasons stated above. Finally let us comment that
since we do optimal control, we are only interested in evolving the state until a fixed end time
point T. Given that we have to evaluate the appearing PDEs many times we cannot afford T
being as big as in usual considerations, where one only considers the state equation. Hence we
did not observe any numerical issues arising from the explicit discretization in our settings.

Before we go on with discussing the optimal control issues, we have to face the question regarding
the solvability of the scheme . Fortunately this can be dealt with rather quickly (compared
to the implicit one (2.13)), since it is of a form that allows us to use standard results from the
theory of elliptic PDEs.

Theorem 2.7.4. Let d < 3 and Assumption[2.7.3 hold. Furthermore, take 1 to be the smooth
double-well potential (2.110). Then for every u = (u;)j=1,..n € L*(Q)N and yo € H*(Q) there
exists o unique solution y = (y;)j=1,..N € HY(Q)N that satisfies the scheme (2.109)).

Proof: The assertion can be shown time step wise. Given y;_1 € H'(f2), from the imbedding
HY(Q) — L%(Q) it follows that the right-hand side of is an element of L2(Q). Then, since
M5(Vy;—1) € L>®(2)?4 is uniformly positive definite we can apply the lemma of Lax-Milgram
to deduce the unique existence of y; € H (). O

Remark 2.7.5. Note that although we can consider each time step as a linear elliptic equation,
the full system that treats all time steps simultaneously is still quasilinear. In particular, the

52

2.7 A semi-implicit splitting scheme for the anisotropy

solution operator Sgem; (defined below (2.109)) continues to be nonlinear and hence a nonlinear
solver is needed to tackle the optimization problem. Furthermore this means that uniqueness of
a minimizer is still not provided.

Now we demonstrate how one can use the inequality (2.108)) to derive the stability of the splitting
scheme for the state equation under certain conditions (most notably we have to cut). This
theorem is the analogue of Theorem in the implicit case.

Theorem 2.7.6. Let the previous assumptions hold, but replace the double-well potential v by
2

~ ~ 2e
a potential ¢ that obeys || < R. Then provided 1; < 53 the scheme for the state equation
(2.109) is energy stable if u; =0 for all j € N, i.e., the energy functional £ is decreasing in time.

Proof: We test (2.109)) (with 1,2’) with the difference y; — y;_1 and obtain

1 1 -
;Iij —yjl® + (Ms(Vy;-1)Vy;, Vy; — V1) + = (V' (yj-1),y; —yj—1) = 0. (2.111)
J

The second term we estimate by the stability inequality (2.108)) and the third term by the
relation

O (y5-1) (Y5 —yi-1) = D) = (Y1) = 39" (s() (Wi —y5-1) = b(ys) = P(y;-1) = S (y;—y5-1)7,
(2.112)

where s is some appropriate intermediate point.

Collecting terms and using the definition of the Ginzburg-Landau energy (2.8]) one finds

1 R 1
(5 528) s =3l + S) — E(3y-)] <0 (2113
) 2e2
and thus £(y;) < E(yj—1) if 7; < = O

Remark 2.7.7.

1. Note that in comparison to Theorem we had to cut the potential here. The reason
is that the signs in front of the second derivative differ in and . That is,
here we have to estimate 9" from above instead of below and therefore we have to cut
the potential. This theorem would hold analogously without cutting if we included the
1)/-term implicitly.

2. In the numerics we still use the former version of the double-well potential. Recall from
Theorem that we expect y to be restricted to the interval [—1,1] if yo almost
everywhere lies therein. In numerical simulations we did not observe strong deviations
from this also in the controlled case. Therefore we do not see a problem in leaving 1’ in
the equation, as its behavior outside some compact interval becomes irrelevant.

3. The authors of [13] do not need to cut their potential as they use the obstacle potential

(2.5)) instead.
4. A possible choice for 1 is given by fo in (2.7) with zo suitably chosen.

2.7.2 First order conditions and linearized equations

In contrast to the implicit case we are faced with several problems when trying to deduce the
existence of an optimal solution as well as setting up the first order conditions here. This
prevents us from doing such a rigorous consideration as done there. Instead we will derive
the first order conditions by means of the formal Lagrangian method (cf. Section see also
[127, 84]). The arising equations are the time discrete counterparts to 1' for the
semi-implicit scheme. In the upcoming section we will then add further information on the

93

2 Analytical results

problems that we mentioned above. We will show that there are already serious restrictions
when proving the continuous dependence of the solution y; on the previous solution y;_1.

The Lagrangian for problem (2.59)) subject to (2.109)) is given by

1 A
Liy.p.w) = 5lyw = ol + 22 D 7l
j=1

-
Z[e(y;pj) + €(Wj—1,p5) — €Tj(M6(Vyj71)Vyj7VPj)—;](W(yjfl)apj)JrTj(uj»Pj) ;

(2.114)
where the adjoint states p;, j =1,... N act as Lagrange multipliers.

As a quick check, one can verify that by variation with respect to p; one recovers the semi-implicit
state equation (2.109). The gradient of the reduced cost functional j.(u) = J(Ssemi(u), u) with
J from ([2.59) is obtained by deriving the Lagrangian with respect to the control variable

N
A
Ou), L(y, v, u)[(vy) ZTJ (ug,05) p2(0y + 75(05, v 2 () = (Vi (u),0),

Jj=1

i.e., we can write Vj,(u) = (%uj +pj)j:1_“ in terms of the discrete space-time scalar product
()= Z;Vﬂ 7;(+,-)z2(q)- Note that this is of the same form as l} however the adjoint state
will be defined differently here.

As usual the appearing adjoint state (p;);j=1,.. n can be determined by solving an adjoint
equation. It is deduced by varying the Lagrangian with respect to the state variable y and reads
as

1
(o,) + 78 (Ms(Vyn-1)Vpn, Vo) = g(yN —Ya,¥),

(pj, @) + 75 (Ms(Vyj—1)Vp;, Vo) = (pjr1,) — 7j11(M§(Vy;) [VelVyjs1, Vpj)

Ti4+1)
_%W”(yj)pjﬂ,sﬁ) j=N-1,...,L

(2.115)
The appearing derivative of M;s is a 3-tensor and, if it is defined as in (2.106)), its action to a
vector w € R is given by

/ — - W (q
Mj(q)[w] = l%:l VAP)7 @ TGmq G — Z TP Giq Gi. (2.116)

Note in particular that although Mj is symmetric, its derivative is not symmetric under exchange
of all indices, so we cannot simplify by freely swapping around V¢ to the right of the scalar
product. Due to our regularization scheme, the limit ||g|| — 0 is well defined for § > 0. For
0 = 0 the limit ||g|| — 0 becomes divergent.

Finally we will deduce the linearizations of the state and adjoint equation. They are needed to
determine the application of the Hessian of j(u) to the direction du, which formally is given by
V25 (u)du = (%(Mj + 6pj)j:1_“ ~- The linearized state equation may be obtained by deriving
the state equation with respect to u in direction du and setting (D,y;)du = dy; and
(Dyuj)du = duj. One finds

-
(0yj,) +7(M5(Vy;-1)Voy;, Vo) = ;](5%',90) + (6yj—1,) — 75 (M§(Vy;-1)[Vdy;-1]Vy;, Vo)

T .
—;”(w (Yj-1)0Yj-1,9) j=1,...,N,
(2.117)
and dyg = 0.

For the additional adjoint equation, we analogously derive the adjoint equation with respect to

54

2.7 A semi-implicit splitting scheme for the anisotropy

w in direction du and in addition to the earlier replacements, we set (D,p;)du = dp;. Doing so,
we obtain

1
(0pns) + T (Ms(Vyn—-1)Vipn, V) = g(5yN» ©) — TN (M5(Vyn—1)[Voyn—1]Vpn, Vo)

(0pj,) + 75 (Ms(Vy;—1)Vp;, Vi) = (0pj1,) — Tj41(M5 (Vy;)[Vp, Vy;1V Y11, Vpjga)
= 741 (M§(Vy;) [Vl Vi1, Vopji1)
— 711 (M5(Vy;) [Vl VoY1, Vpji1)
— 7 (M5(Vy;-1)[Vy;-1]Vp;, Vo)

T4 T4
= L (0")8y Py) — L5 (W (4P,)
j=1,...,N.
(2.118)

Note that there appears the 4-tensor M. Like M{ in general it is not symmetric. We will not
give the expression for My’ explicitly, since it gives no new insights. In the implementation it is
automatically determined by the FEniCS Form Compiler. Like Mj it possesses a divergence at
q = 0 in the case § = 0 that now behaves like ~ ¢~2 (as M is 0-homogeneous).

Equations (2.115)), (2.117)) and (2.118) mainly differ by the right-hand sides that contain terms
arising from the chain rule. They consist of terms that contain among others products of
up to four times the gradient of the appearing variables ¢, y;, p;, dy; and Jp;. For these
terms being well defined, an affiliation to H'(Q) is not sufficient. This already is a sign that
a rigorous treatment of the derivation even of egs. (2.115)) and (2.117) will be more involved.
In order for the solutions to be better than H'(Q2), one will in general need better regularity
both for the right-hand side and the coefficient Mj. Since both depend on previous time step
solutions, there are some further restricting requirements on the previous time step and so on.
To obtain continuity or even Fréchet differentiability, these requirements might be even stronger.
Eventually one typically ends up with a sequence of regularities that the solutions have to fulfill
for the single time steps. Such an analysis is for example done in [133], Section 3.2] in order to
obtain Fréchet differentiability that is required to rigorously set up the first order conditions.
Similar to our problem, the previous time step appears in a coefficient on the left-hand side
there, however not as a gradient. Also unique to our case, said gradient Vy;_; appears in the
ellipticity coefficient Ms which by its boundedness provides a mapping L*(2) — L>°(Q) for
some s > 1. We will investigate below how this s has to be chosen to provide at least continuity.
We will see that s can be chosen to be finite, but nevertheless the argument of M; has to be
bounded in L*°(2) in the most convenient case. For Fréchet differentiability these conditions
will only become stricter. We emphasize that Vy;_1 € L>(1) is a very strong requirement that
involves much regularity on the data that lead to y;_1.

2.7.3 On the continuous dependence of the state

As promised before, in this subsection we will supply a derivation of the continuity of the
solution operator of the state equation with respect to the control variable. It will turn out that
the main bottleneck is given by Vy;_; that appears as an argument for the coefficient Ms. As
already mentioned, to the best of our knowledge this requires that Vy;_; is bounded in L>°(Q)
to obtain a convenient result as it is the case in [137]. Also matching the regularities to apply
the presented theorems in chain constitutes a serious problem. The latter reference is also the
basis of this chapters discussion.

First let us simplify the appearance of the problem by writing as

(M(Vy;-1)Vy;, Vo) + (y5,0) = (f(yj—1,u5),), (2.119)

with f(yj_1,u;) = yj—1 +u; —¢'(yj—1). Here, for presentational purposes, we set 7; = ¢ =1
and dropped the index ¢, i.e., we expect M to fulfill the Assumption Since y;—1 € HY(Q),
the right-hand side is an element of L2() using the imbedding H'(Q) — L5(Q).

In this chapter we shall assume that) is regular in the sense of Groger |66 Definition 2]. We

95

2 Analytical results

note that for the case of a square domain [—1, 1] this condition is fulfilled and also generally for
bounded Lipschitz domains if we consider Neumann boundary conditions on the whole boundary
as we do. We refer to 71, Section 5] for a proof of this fact and more information. Now the
results from [66] yield:

I >2: y; € WHP(Q) solves and |ly;llwie) < Cllfllwrwry VP € [2,0],
(2.120)
where % + i =1 as usual. The number p is dependent on the domain and already for simple
ones not easy to determine.
Essentially, the dependence on the control in occurs at two places. One time explicitly
on the right-hand side but on the other hand also implicitly through y;_; on both sides, since
the previous time step itself depends on the control as it satisfies a similar equation. We consider
both dependencies—on the right-hand side and through M on the left-hand side—separately.
For the former, we first observe that for fixed Vy;_1 the equation simply has the form of a linear
elliptic one and the continuous dependence of the solution in space on f in space immediately
follows from a standard result of PDE theory. Furthermore, f depends continuously on the
control and the solution from the previous time step due to the appearance of the Nemytskii
operator 1)’ (see and below). Now we consider fixed right-hand side and look at the
dependence on Vy;_; on the left-hand side. This case is a bit more complicated and restricting
and will be discussed in the remainder of this section.
We first address the regularities needed to deal with continuity in the H*(Q2)-norm for one time
step. We will see in the next theorem that Vy;_1 needs to belong to a space better than L?(f2),
so this theorem is not applicable to the previous time step anew. That means we have to think
of different spaces to get a result for the whole system of equations. This motivates the more
general treatment done afterwards. We also note that the required Lipschitz continuity holds

for M = My given in (2.106]), as shown in Lemma m

Theorem 2.7.8. Let Assumption[2.7.3 hold for M and in addition let M be Lipschitz continuous.
Let p > p > 2 with p from (2.120) and yj_1,7j—1 € WH*(Q) with s € [1%, o0]. Denote by y;
and 7j; the solutions of

(M(9)Vy, Vo) + (y,0) = (f,9) Vo e H(Q), (2.121)

with fized right-hand side f € (Wl’p/ (Q))" and coefficients g = Vy;j_1 and g = Vy;_1, respec-
tively.
Then there exists a constant C'y such that

ly; = Gill @) < CrllVyj—1 — (@) (2.122)

e., the solution of the next step is Lipschitz continuously dependent on the gradient of the
solution from the previous step as a mapping from L*(Q) — H(Q).

The proof is based on [137, Theorem 2.12 (i)].
Proof: From simple manipulations one obtains
(M(Vy;-1)(V; = Vy;), Vo) + (75 — v5,)
= (M(Vy;—1)V;, Vo) + (75 9) — (M(Vy;—1)Vy;, Vo) = (y;, ¢)
= (M(Vy;—1)V§;, Vo) + (75) — (M(VG;-1)VF;, Vo) = (T, ¢) (2.123)
= (M(Vy;-1)V;, Vo) — (M(V5-1)V;, V)
= ([M(Vy;j—1) — M(V§;-1)]Vi;, Vo),

where between the second and third line we used the fact that the right-hand side of (2.121)) is
fixed. Testing with §; — y; this gives

(M(Vy;—1)(V§;—=Vy;), Vi;=Vy;)+ 0~y U5 —y;) = (M (Vy;—1) =M (VG;-1)]VT;, Vi —Vy;).

56

2.7 A semi-implicit splitting scheme for the anisotropy

The left-hand side can be estimated from below by

Cllg; = yill) < (M(Vy;—1)(VT; — Vy;), VG — Vi) + (T5 = v5: G5 — Y5),

using the uniformly positive definiteness of M. Invoking the Lipschitz continuity of M we obtain
for the right-hand side

([M(Vyj-1) = M(V§;-1)IVY;, VY; = Vy;) < CIVyj—1 — V1]

Lo lFillwre@ 175 — yill)

(2.124)
where we have used that % + % + %—;2 = 1. The term ||g;||w1.»(q) can be estimated using ([2.120)
and is contributing the f-dependence to the constant. Combining the last three equations one
obtains the desired inequality (2.122). O

Since the guaranteed regularity of the previous time step is also restricted by p from Groger’s
result, we should assume s < p. This leads to the requirement p > 4 as can be seen from the
following consideration: Assume p < 4, then it always holds s > 4, hence p > s > 4. On the
other side, to be able to choose s < 4, it has to hold p > 4 and hence p > p > 4.
Unfortunately, it is not clear (if not even rather unlikely already for the most common cases)
that this choice can be made, since the regularity result cited at the beginning of this section
only assures the existence of some p > 2 that supplies the index for the desired higher regularity.
Also recall that this number is dependent on the domain 2 and no sufficient conditions for p > 4
are known to the author.

Anyway, the just shown theorem cannot be applied in chain, since for this we would need the
continuity of y;_1 in the Wls-norm, which is not covered by employing the same theorem to
the previous time step. Therefore, the next theorem treats the continuity with respect to a more
regular space. As a downside we now require L>-regularity of Vy;_1, to obtain a convenient
result.

Theorem 2.7.9. Let the previous assumptions hold. In addition, let 2 < p < min{p,4} and
5€ [pQpr oo|. Denote by y; and §j; the solutions of

(M(9)Vy, Vo) + (y,0) = (f,¢) Ve H'(Q), (2.125)

with fized right-hand side f € (WP (Q)) and coefficients g = Vyj—1 and g = V§;_1, respectively.
Furthermore, we require y;_1,%;—1 € Yqa, where

Yoa = {y e Wh(Q) | |Vy| < C almost everywhere in Q} ,

with C > 0. Then it holds
ly; = Gillwrwy =0 for [[Vyj—1 = Vi _1llrs() = 0. (2.126)
The proof is based on [137, Theorem 2.12 (ii)].
Proof: We recall from that
(M(Vy;—1)(VT; = Vy;), Vo) + (5 — ¥,) = ([M(Vyj—1) = M(V;-1)IV;, V). (2.127)
From this, §; — y; can be interpreted as the weak solution for the right-hand side defined by
(F,o) = ([M(Vyj-1) = M(V§;-1)IVG;, Vo) Ve € H(Q). (2.128)

The idea is now to apply Groger’s result (2.120) in order to obtain continuity in the space
WP(Q). In what follows we therefore show that F' € (WP (Q))" with p’ = 527+ In contrast to
(2.124)) we need to assume less regularity for the last term at the expense of the first two terms.

57

2 Analytical results

To proceed with this, first let us choose

22
0<e<min{p—p,p p},

4—p

which is possible due to the requirements on p. We can apply Hoélder’s inequality and the
Lipschitz continuity of M to arrive at

[{(F o) | < ClIVYj—1 = Vimall pore 1Tillwrere@ lellwr o)

@ (2.129)
< CIVYj—1 = V-1l preo vy Il @)
L € (Q)

for all ¢ € Wl’p/(Q). The center term was again estimated by Groger’s result. For the well
definedness of the first term the assumed L°°-regularity enters. We will now use the boundedness
in the latter space to get rid of the explicit e-dependence. Our assumption on € yields that

2
P <p(p+6)
p—2 €

5= (2.130)
(this is the minimum possible exponent given from the previous theorem). We can now pull out
some power of Vy;_1 — V§;_1 € Yaq and absorb it into a constant due to the required pointwise
almost everywhere boundedness and obtain

S€e

-+
P (2.131)

IVyj—1 = Vi1l ppre < CoolVyj—1 — V1]
L € (Q)

Since from what has been shown so far it follows F € (W'Y as desired, we can now use (2.120)
in (2.127) as announced above and obtain in total

))
v = Gillwir) < ClFlwrwy < CrlIVYi—1 = Vii—1ll ppto
Lo (@ (2.132)
< CreolVyj—1 - AN
From this the claim follows first for s and then by imbedding also for s > s. O

Applying this theorem to our sequence of elliptic problems provides several problems. For the
discussion, let us add a subscript j to the regularity indices of Theorem that are related
to the time step j we are considering in the following. First, in contrast to Theorem we
are now forced to set p; < 4 and, as discussed before, this implies s; > 4 yielding the same
issues as already there. In addition, if we want to apply this theorem in chain, we now also need
continuity of y;_; with respect to Whsi(Q), ie., Dj—1 = 85, which contradicts the requirement
pj—1 < 4. As already mentioned, a further issue is the required regularity assumption on Vy;.
From Groger’s result there is no hope to get Vy; € L>(Q). Note that the requirement is even
stronger as we need to find a ' such that the bound IVTi—1llLee () < C holds for all Vij;_;
that are sufficiently close to Vy;_1 in L*(€2). The author does not know any results that would
yield the desired regularity, also having in mind that such results probably need better regularity
of the data, i.e., also of y;_; on the right-hand side, which satisfies a similar equation.

Remark 2.7.10. Note that in principle the restrictions y;_1,%;—1 € Yaq and p < 4 could

be avoided by concluding the proof after (2.129) (i.e. after the second inequality in (2.132))
and leaving € a free parameter satisfying 0 < ¢ < p — p. In (2.126)) we will then require the

p(p+te)
(Q2) instead of L*(2) and then also ([2.129) is automatically well defined.

However p will probably be close to 2 and hence ¢ small yielding 2 (p +9) 5 1, so still (too) much
(pj+e)
g > BRREE

convergence in L

regularity is needed. Further, applying the theorem in chain then requires p;_

58

2.7 A semi-implicit splitting scheme for the anisotropy

which applied recursively grows very strongly.

Ultimately, we want to recall that on all accounts the final goal is to apply an optimization
algorithm to the problem and to discretize the resulting equations also in space. For this it
is favorable to work in Hilbert spaces which we would be abandoning by above results. For
Fréchet differentiability we can expect even stricter requirements. As the issues could not be
solved satisfactorily already for the consideration of continuity, the rigorous treatment of the
semi-implicit scheme will stop at this point. We will nevertheless discuss numerical results
obtained from the purely formal considerations in Section [2.7.2] and compare them to those from
the implicit scheme in Section

99

Algorithms and implementation

The following part of this thesis is devoted to a discussion of different aspects that belong to
the task of solving f numerically. First, in Section we will motivate and present
the algorithms that have been implemented for this. We will discuss the differences between
approaches using the full and the reduced system and give an overview of the solvers and
preconditioners that already exist in the literature. For our purposes, we will continue with the
reduced approach. For this, we will introduce a steepest descent method with line search and a
trust region Newton algorithm with the Steihaug-CG method in Sections and The
latter is a globally convergent extension to ordinary Newton’s method and due to its preferable
convergence properties will almost exclusively be considered in the remainder of this thesis. In
Section [3.1.3] we will enlighten the connection of the Steihaug method formulated in function
space with a preconditioned algorithm in the Euclidean space after discretization. Due to this,
we can conclude that the convergence properties of the reduced problem should already be
mesh independent. As this does not seem to suffice for a reasonably fast solution process, a
more general discussion about how to precondition the full and reduced systems is presented in
Section [3.2] We will look at the dependency of the condition number on certain parameters and
variables of the control problem. We will further work out the issues that come up when using
state of the art preconditioning techniques. There exist more approaches for the full system
here, but they only provide mesh independence and have not been observed to be faster than
the pure Steihaug method in our experiments.

In Section some concrete details, thoughts and technical aspects, that made its way into
the code, will be given. How the quasilinear parabolic partial differential equations were solved
using the FEniCS framework will be explained in Section [3.3.1] By the end of this subsection,
we will present a way to speed up the Steihaug method by storing reusable quantities in the
memory. The actual benefits of this implementation aspect will be demonstrated later in this
thesis in Section We will also explain how the data has to be stored in memory such
that the parallelization capabilities of FEniCS can be harnessed, see Section [3.3:2] Finally, in
Section [3:3:3] we will investigate to what extent using an adaptive mesh is reasonable for our
control problem.

3.1 Presentation of the algorithms
In the following subsections we want to introduce the numerical methods that were implemented

to compute a solution to the optimal control problem (T.8)—(1.9). Recall from Section [L.I}—in
particular Figure [[.I]-that there are different ways to tackle the problem with regard to the

61

3 Algorithms and implementation

discretization procedure. The same holds true also for the optimization algorithm to choose and
the formulation of the problem we want to apply it to. As indicated in the section mentioned
above, we will solve the first order condition for the reduced cost functional using second order
information. However, we have not discussed there why we selected this approach. Before we
start to treat the algorithm we implemented in more detail, we shall therefore become clear
about what reflections our choice is based upon. In principle there are two formulations of the
problem that we could build on for optimization—the reduced and the unreduced problem. To
illustrate this, let us consider the abstract control problem

min J(y, u) subject to Aly) = u, (3.1)

with possibly nonlinear state equation. Recall that if the state equation is uniquely solvable, we
can define the reduced cost functional

() = J(y(u), u). (3-2)

In Section [I.1] we showed that then the first order optimality condition for the cost functional
(1.8) reads as

Vi(u)=2u+p =0, (3.3)

where the variable p is given by the solution of the adjoint equation. In principle the gradient is
already sufficient to implement a steepest descent method (see the following section), but this is
known to typically possess a slow convergence behavior. Therefore it makes sense to implement
a Newton-like method that utilizes second order information. For problem 77 the
Hessian is of the form

V?j(u)du = 26u+6p = (21 + K(y) *P(y,p)K(y) ") ou, (3.4)

where KC(y) is the operator associated to the linearized state equation (1.26)), i.e. (for the smooth
double-well potential (2.4)))

K(y) =ed, — eV - (A"(Vy)V-) + L(3y* - 1), (3.5)
and K*(y) given by
K*(y) = —e0, — eV - (A"(Vy)V-) + 1(3y° — 1) (3.6)

is associated to the additional adjoint equation (1.27).
Then w = K(y) v is given by the solution of

Ky)yw=v inQ, J,,w=0 onX, w(0)=0 inQ, (3.7)
and w = K(y) *v by
Ky)w=v inQ, O,w=0 on%, w(T)=1v(T) inQ. (3.8)

The operator P(y,p) converts the solution 6y = K(y)~'du into the right-hand side of the
additional adjoint equation by

P(y,p)dy = —Sypby + eV - (A" (Vy)[Vp, Viy]). (3.9)

In the subsequent discussion we will drop the arguments of K(y), K*(y) and P(y, p) for the sake
of readability. Working with is known as the reduced Hessian approach (see, e.g., [46]
and the references therein). For later convenience, let us mention that in discretized form the
reduced Hessian can be written as

V%j(u) = (2M + MK~"PK~'M), (3.10)

62

3.1 Presentation of the algorithms

where M shall be a mass matrix and K and P are discretized versions of X and P.

Often it suffices to find a good approximation of the Hessian, but only solving the appearing
PDEs inexactly might not be adequate. The reason is that it is unclear how an outer iterative
solver for the whole operator in behaves if its application varies slightly among iterations due
to uncertainties. Literature about the influence of such kind of inexactness in inner iterations is
sparse as this is still an active topic of research (see, e.g., [76} 46} |47, [121]). To apply the Hessian
to a vector du one is therefore more or less obliged to solve two linear parabolic equations ezactly
(or rather to high accuracy). This can be considered as a big disadvantage of this approach,
since the application of the Hessian typically has to be computed numerous times which due to
above is very costly. On the other hand, globalization does not comprise many problems with
this strategy as there exist well-established methods like the trust region Newton method we will
present later. Globalization is necessary, since in some cases P might be singular (e.g. if p = 0)
or have negative eigenvalues and therefore the operator in might not be positive definite.
Another topic we would want to touch on is the accessibility to preconditioning techniques,
see Section First let us comment that, as will be discussed in Section (see also [96]),
should already be mesh independent by itself, which would eliminate the main reason for
preconditioning in the context of PDEs. On the other hand, if there nonetheless arises the need
for preconditioning due to other sources of bad condition, the structure of provides more
issues than for the unreduced problem that will be considered next (see also Section .

In contrast to (3.3]), one could also try to find a saddle point of the Lagrangian defined in (1.13)),
which under some conditions provides a local minimum of the original task. In this case the
first order necessary condition is given by
Jy(y,u)—Ay(y)"p |
VL(y,u,p) = V[J(y,u) — (Aly) — u,p)] = Tyt) = 0. (3.11)
—A(y)+u

Also here it is preferable to invoke second order information. For instance, in order to apply
Newton’s method to this problem, in each step one has to solve

VZL(y,u,p)(dy, du,dp) = =V L(y, u,p),

which in matrix form reads as

P 0 —K*\ /oy

Ly
0 2I I Sul| =—| Ly (3.12)
-K 1 0 dp L,

Note that the operators K and P are the same as appearing in (3.4). In fact, the relation

between egs. (3.4) and (3.12)) becomes apparent by determining the Schur complement of (3.12])
with respect to du. Doing this, one obtains

Sou= (21~ (0r) (%K) (9))ou= A+ 1K PKT) bu,
(: 7/<-**7D)<—1)

where we used a formula for the inversion of 2 x 2 block matrices, see, e.g., [94]. Note that
for computing the gradient of L in , neither a state nor an adjoint equation has to be
solved, but only applied. All variables are updated by the step sizes determined in . Hence
the main effort lies in solving in each Newton step. Here one has much more freedom
concerning the tolerance in case of an iterative solver, since the variables dy, du, dp no longer
depend on each other, but are rather computed together and no inner iterations appear as
before. In contrast to the other approach, in each iteration y and p do not necessarily fulfill the
state or adjoint equation since otherwise L, = L, = 0 would have to hold in every step. As by
Newton’s method we seek a root of VL this is only the case for the solutions found in the end.
However, if the state and adjoint equation were fulfilled, due to the vanishing of the respective
derivatives of L the system would reduce to a Newton system for j(u) after taking the

63

3 Algorithms and implementation

Schur complement also on the right-hand side.

The unreduced approach also has disadvantages. On the one side, due to the lack of related results,
one can no longer expect the condition number of the system to be mesh independent.
This means that preconditioning becomes important. In the literature, preconditioning a block
system of that form has successfully been studied in [21} |124} |112], but most of the considered
systems only involve linear state equations like the Laplace equation, heat equation or alike.
In the context of the Allen-Cahn equation only the paper [20] is known to the author. On the
other side, for nonlinear problems a globally convergent method is required, since one is not
guaranteed to start with a positive definite system matrix. Here one should note that as far the
author knows, literature on the just mentioned preconditioning does not consider globalization
strategies, but rather relies on the initial value to be suitably close to the solution. One common
approach for a globalization of the unreduced problem is the trust region SQP method [43].
Here one applies the trust region method to the optimization subproblems that have to be solved
in each iteration of the SQP method. The trust region subproblems that arise there in context
of optimal control are well suited to be approximated by splitting the iterates into a normal and
a tangential step [73].

As we have seen, both the reduced as well as the unreduced problem have their advantages and
disadvantages. For this thesis, we have decided to apply a trust region method to the reduced
system, as for the given structure the trust region subproblem can be solved efficiently by the
Steihaug-CG method. In context of the Allen-Cahn equation this ansatz has shown promising
results [24]. Finally the mesh independence is already provided, whereby the need for further
preconditioning due to other reasons cannot be excluded.

3.1.1 Steepest descent and trust region method

As discussed introductory, in the following we will consider the reduced problem. Hence in this
section, let us generally consider an unconstrained optimization problem of the following form

min j(u), (3.13)
where j : U — R and U denotes some Hilbert space. By virtue of the Riesz representation
theorem, we identify the gradient Vj(u) with an element of U. In case of the optimal control of
the anisotropic Allen-Cahn equation we have U = L?(Q). In general, numerically we are only
able to find local minima by solving for the first order condition, that is, for a local minimizer
u* € U it holds

Vj(u*) =0. (3.14)

In this section we treat two algorithms: the steepest descent method and the trust region method.
Both methods are based on solving the problem iteratively by starting at the current iterate uy
with function value j(ug) and finding a direction duy such that the next iterate ugy1 = ug + dug
fulfills j(ug+1) < j(ug). For the stopping criteria they use , i.e., the norm of Vj(ug41) is
checked against a tolerance. In principle, both methods differ only by the choice of duy, which
however has strong impact on the computational cost of one step as well as the convergence
properties of the whole algorithm.

Steepest descent method

Let us start with discussing the steepest descent method. Here one makes use of the fact that
the negative gradient —Vj(u) points into the direction of the steepest descent. So one simply
takes dup, = —a'Vj(uy) with some o > 0. The scaling with « is necessary as the descent is only
guaranteed to be local and the function might increase again if going to far. On the other hand
a must not be chosen too small since the method might not converge then. To determine «,
there are several conditions and algorithms one can prescribe. One simple rule to demand is the
so called Armijo condition, which in case of the steepest descent method reads as

J(uk +aVij(ur)) < j(ur) — cal Vj(ur) |7 (3.15)

64

3.1 Presentation of the algorithms

with some ¢ € (0,1). If one reduces «a successively by a constant factor, i.e., a; = k’ag with
k € (0,1), one can show that this conditions is fulfilled after a finite number of iterates. For
more information about the choice of @ and convergence results we refer to [104] in the finite
dimensional case and [79] on Banach spaces. Algorithm [1| provides a pseudo code of the just
described method. The numerical effort per step lies in evaluating Vj(uy) in line [3[as well as
evaluating j(ur + ;Vj(uy)) in line [9 several times. In terms of PDE solves per iteration the
latter requires the evaluation of a nonlinear parabolic PDE (the state equation) and the former
the evaluation of a linear parabolic PDE (the adjoint equation), since starting with the second
iteration over k, the state equation that is required to evaluate Vj(uy) is already known from
line [in the last iteration.

Algorithm 1 steepest descent method with line search

Input: initial control ug
Output: local minimizer u of j

1: k=0

2: while k < k. do

3: determine search direction duy = —Vj(ug)
4 if [|[Vj(ur)| r2(g) < tol then

5: return

6: end if

7. while i < i, do

8: compute j(uy + o; Vi(ug))

9 if jluk + @iVij(uk)) < j(ux) = cai||[Vj(ug)|7; then
10: o=

11: break

12: end if

13: Qi1 = KOy

14: =1+ 1

15: end while

16: Upt1 = Up + adug
17 k=k+1

18: end while

Trust region method

As is common knowledge and as we will later also verify for our case (see Figure , the
convergence properties of the steepest descent method are not optimal. Efforts were therefore
made to improve the performance by finding a better search direction than Vj(u). As long as it
is a descent direction, that is it satisfies

(0u, Vj(u))u <0, (3.16)

the value of j will decrease in the next iterate provided the step size is sufficiently small. To find
such a direction, one usually starts with the gradient and modifies it in an appropriate manner.
For example the prescription

ou = —BVj(u)

fulfills if the operator B : U — U is positive definite. Typically one sets B = [V2j(u)]~*
or some reasonable approximation of it. By choosing the Hessian of j one obtains the so-called
Newton’s method. In the vicinity of a local optimizer the second order sufficient condition
ensures that V2j(u) is positive definite and so du is a descent direction. It can be shown to
locally converge superlinearly or even quadratic if j is sufficiently smooth. Again we refer to
[104, |79] for further information.

The last statement already hinted towards a problem with Newton’s method: we can only expect
the convergence properties to hold locally. If we start too far away from the optimizer, then

65

3 Algorithms and implementation

we are not even guaranteed to obtain a descent direction at all as the Hessian could be no
longer positive definite. To remedy this issue one has to apply a globalization strategy. One
common approach for this is the so-called class of trust region methods. The idea goes back
to the obervation that one step of Newton’s method is equivalent to solving the quadratically
approximated problem

amé% m(du) = j(u) + (Vj(u),6u)v + 3(V?j(u)du, su)u, (3.17)
u

which can be checked by writing out the first order necessary (and in this case also sufficient)
conditions. Since m is just an approximation of the function j around a specific point, one can
‘trust’ it to be sufficiently similar only in some small environment. Therefore, instead one can
propose to consider solving the problem

inf m(du), (3.18)

lldullv <o

where o > 0 is sufficiently small. In principle also other choices than the ball of radius o are
possible, but we will stick to this most common choice here. Note that now the problem is
also well defined for indefinite V2j(u). Since in infinite dimensional spaces the unit ball is not
compact, we had to replace the minimum by an infimum in this case. This means that we might
not be able to find a du such that the infimum is attained, but in practice this is irrelevant, since
we only seek an approximate solution of problem , i.e., we seek a du such that m(ou) is
close to the infimal value. In each iteration the trust region method updates the current iterate
by du given as the approximate solution of . The main concern is now to choose and
adapt the trust region radius ¢ in each iteration. How it is altered depends on how good j is
approximated by m in the region specified by the current value of 0. To estimate this one can
consider

— Jutou) — j(u)

 m(0u) —m(0)

which should be close to the value 1 if the approximation is good. Based on the value of p there
are different updating strategies for the radius o. Our choice is given in Algorithm [2] for other
ones we refer to [104} 43]. In principle one should increase the radius if the approximation is
good and decrease it otherwise. It can be shown that being near the optimizer, the radius of
the trust region eventually becomes inactive and Newton’s method is recovered in the final few
steps. The only question that is still open is how to solve the trust region subproblem in line
Bl Since this can be very costly, one usually only approximates the solution, which will be the
subject of the next chapter. Note that the first term in does not need to be computed as
it is just a constant that does not affect the location of the minimum.

(3.19)

We conclude this section by a discussion of the numerical effort of Algorithm [2 The trust
region subproblem in line [8| contributes strongly to this, but also depends on how it is actually
approximated. Further, we have to consider the function evaluations. In line [3| we have to
compute the gradient of j that corresponds to the evaluation of the nonlinear state equation
and the adjoint equation. Like before the solution of the state equation is known at this point
from the second iteration onwards, since it is also needed in line [0] Further the Hessian or
rather its application to du is needed in line which requires the solution of the linearized
state equation and the additional adjoint equation. In contrast to the gradient the application
of the Hessian and j itself have to be recomputed each time ¢ is adapted. Depending on its
nature, the approximation in line [§ might be recomputed in a cheaper way then.

3.1.2 The Steihaug-CG method

As promised we will now address the problem of determining a solution to the trust region
subproblem in line [§ of Algorithm [2} We already pointed out in the last section that an exact
solution in general is too costly and also not practical since in infinite dimensions the infimum
will not always be attained. Therefore the solution will only be approximated. Before we do so,

66

3.1 Presentation of the algorithms

Algorithm 2 trust region Newton method

Input: initial control ug, trust region radius o, k1 > 1, ke € (0,1), n € [0, %), Omax
Output: local minimizer u of j

1: k=0

2: while k < k.« do

3: compute Vj(u)

4. if ||Vj(ug)||u < tol or ||Vj(uk)|lu < reltol||Vj(up)||v then
5 return

6: end if

7 repeat

8 approximate inf 5., <o m(6u)

9: compute j(u + ou) = J(S(u + ou), ux + ou)
10: compute m(du) —m(0) = (Vj(uk), 6u)u + 5 (V2j(uk)du, du)y
11: determine p = %

12: if p~ 1 then

13: o = min{K10, Omax }

14: else

15: 0 ‘= RoO

16: end if

17: if p > n then

18: accepted = true

19: else
20: accepted = false
21: end if

22: until accepted
23: Upyl = up + ou
24 k=k+1

25: end while

67

3 Algorithms and implementation

let us reflect a moment on how the exact solution of does look like if the minimum exists.
If V2j(u) is positive definite, then there exists also a global minimum of the unconstrained model
problem and there are two possibilities. Either the unconstrained minimizer lies outside or inside
the trust region. If it lies inside, the minimizer of the constrained problem will coincide and can
be computed by [VZj(u)]71Vj(u). Otherwise the minimizer will lie on the boundary of the trust
region and the exact determination would be more involved. In case the Hessian has a negative
eigenvalue, the minimizer may lie on the boundary of the trust region. Considering the minimizer
as a function of the boundary radius o, one typically observes that it describes an arc-like shape
starting at the center of the trust region and terminating at the unconstrained minimizer, at
least if the Hessian is positive definite. Typical approaches for approximating the solution of
the trust region subproblem therefore try to approximate this path by an easier version, where
the intersection with the boundary can be computed by a reasonable computational effort. Also
the Steihaug-CG method [123| we ultimately want to present in this chapter can be understood
as an approximation of the arc by iterates of the CG method.

Before we go on let us quickly introduce the notion of the Cauchy point which is important
for the convergence properties of the trust region method. The Cauchy point is defined as the
minimizer of the model function on the set {—aVj(u) | @ > 0} N B,(0) and can be given
explicitly by

C._ . Vi)
P = TGSl (3.20)
where : ; ; i
{ ! , if (V2j(u)Vi(u), Vilw)y <0,
S . ¥l
min (et e 1) else

It is either given by the unconstrained minimizer (7 < 1) or lies on the boundary of the trust
region, which is the case if the unconstrained minimizer is to large or the curvature in direction
Vj(u) is negative. The importance of the Cauchy point lies in the fact that it provides a
condition on the sufficient reduction per step. That is because one can show that the trust
region algorithm converges globally if its steps duy provide a reduction in the model function
that is at least some fixed positive multiple of the decrease obtained by the Cauchy step p©.

Of course only taking the Cauchy point as next iterate wouldn’t yield an efficient algorithm
since one effectively falls back to the steepest descent method with a certain step size then.
Therefore one should improve the Cauchy point. Common ideas are the dogleg method or
double-dogleg method, where one approximates the above described arc by line segments between
the origin, the Cauchy point, dependingly a third intermediate point and the unconstrained
solution. Another idea is the two-dimensional subspace minimization where one minimizes
the model function over the subspace spanned by Vj(u) and [V2j(u)]~'V;j(u). For a more
detailed discussion on these briefly mentioned ideas we refer to [104]. All these methods have in
common that they require an (approximate) solution of [V2j(u)]~1Vj(u). Since the Hessian
typically is high dimensional, this might be very expensive—also with an iterative method.
Another problem is the fact that both methods require the Hessian to be positive definite, since
otherwise the computed “unconstrained minimizer” would not be valid. Since this cannot easily
be checked in general, one can only apply these methods in regions where one knows that the
Hessian is positive definite or use an approximation where one has this property. In the subspace
minimization one can also add a multiple of the identity to the Hessian but nevertheless the
multiplication constant still has to be estimated.

These problems are elegantly faced by the Steihaug-CG method [123|. The idea is that during
solving [V2j(u)]~1Vj(u) iteratively (by the CG method) one checks at each step if the curvature
in direction of the current iterate is positive and if one is still inside the trust region. Otherwise
the algorithm is aborted with a proposed step obtained from the current iterate. Therefore, one
only needs to fully iterate in the vicinity of the final solution, when the trust region radius is
inactive. A full pseudo code of the Steihaug method is given in Algorithm [3] Apart from the
lines following the if-conditions in line [5] and [T1] one recognizes the regular CG method. For
instance in lines |§| and the solution of the line search of the model problem in the
direction of d; is computed and in lines [L6| and [L7] the previous search direction is projected out

68

3.1 Presentation of the algorithms

Algorithm 3 Steihaug-CG

Input: control u, gradient Vj(u), trust region radius o
Output: the solution du of minjsy |, <o m(du)

1: dug =0, ro = Vj(u), do = —Vj(u)

2: 1:=0

3. while i < i,.«x do
4: compute V?j(u)d;
5 if (dz,VQJ(u)dZ)U <0 then
6 duipq = 0u; + 7d; with 7 > 0 s.t. ||6ujpa|lu =0
7: return du;yq
8
9

end if
Ca= (v /(di, V2 (u)di)u
10: 5'U/i+1 = du,; + ayd;
11: if ||5ui+1HU > o then

12: w1 = 0u; + 7d; with 7 > 0 s.t. ||ou; + 7d;||lu =0
13: return du;
14: end if

15: Tiv1 =T+ Ozzv2j(’u,)dl
16: Big1 = (Tig1, 1) v/ (15, 73)U

17: dz’+1 = —Tip1 + qu+1di

18: if ||riq1]ju < tol or ||riy1|lu < reltol||ro|y then
19: return du;

20: end if

21: ti=1+1

22: end while

of the residual such that the next direction is orthogonal to the previous ones with respect to
the scalar product induced by V2j(u). As these steps only make sense if the matrix is positive
definite, it is checked in line [5|if d; is a direction with negative curvature and the algorithm is
stopped in this case. After having updated the proposal for the next iterate of the trust region
Newton method in line [I0] it is checked in line [IT] if this proposal surpasses the trust region
radius and if that is the case the algorithm is also terminated. In both of the just described
early stopping scenarios the current search direction is pursued until the boundary. This makes
sense vividly in both cases. In case of negative curvature one knows that the model function
can only get smaller in direction d;, so the solution should lie on the boundary. In the second
case taking the intersection with the boundary of the line between current and next iterate is
an evident choice. If neither of the just discussed cases occur, the Steihaug-CG method reduces
to the standard CG method and it iterates out until [V25(u)]71Vj(u) is solved with desired
accuracy.

Apart from the two modifications discussed above there is also another minor difference to the
CG method. Note that in line [I] the initial value is constrained to be dug = 0. This is important
in order for the method to produce reasonable iterates in context of the trust region problem.
For instance, consider the first iterate. If neither of lines [p] or [[1] apply, it is given by

— — (T A) — (v()7v()) y
dup = dug + apdo =0+ mdo = - (vj(u)]’ézj(j)gj(i))uV](u)-
Otherwise, one obtains, since ||0u;|| = o has to hold that
I (1)
UL =~ TG

Taken together one recognizes that this exactly produces the Cauchy point defined in .
This means that we have sufficient decrease as it holds Am(5uST) > Am(p®) (with Am(p) =
m(0) — m(p) and §uST is the solution returned by the Steihaug method) which follows from the
next theorem.

69

3 Algorithms and implementation

Theorem 3.1.1. The sequence of iterates {0u;}i=o,...n produced by Algom'thm@ satisfies
m(dug) > ... > m(du;) > m(du;y1) > ... > m(dup—1) > m(duy),

i.e., the model function is strictly decreasing apart from possibly the last iterate.
Proof: See |123, Theorem 2.1], where the steps also hold true for the scalar product on U. O
If the Hessian is positive definite, one can even show that Am(6uST) > 3 Am(du*), where du*

is the exact solution of (3.18) (see [43, Theorem 7.5.9]).
The next theorem justifies the termination of the algorithm after line [I1]

Theorem 3.1.2. Ezcept for the last one, the iterates {du;}i=o,...n are independent of o.
Furthermore it holds ||du;||u < ||[duit1||u for all iterates.

Proof: This is shown in [104, Theorem 7.3] or also in [123, Theorem 2.1], where the steps of
the proof also work with the scalar product on U. We point out that the choice dug = 0 enters
here. O
As the norm of the iterates only becomes larger the longer the algorithm iterates, it makes sense
to abort the algorithm as soon as the trust region radius is reached since the iterates won’t
reenter the trust region. Furthermore note that after shrinking the trust region radius without
accepting the step (i.e. p<n < % # 1 in Algorithm , the result of this theorem implies that
the iterates do not have to be recomputed except for the last one given by the intersection with
the boundary.

We note that the solution to ||0u; + 7d;||y = o with 7 > 0 from lines [5| and |11} is given by

7'2||di||%,+27'(6ui7di)U+ (H(S’U,lHQU—UQ) =0, 7>0,

or equivalently

= (6ui,di)u+/ (Bui di)3 +llds |17 (2= llowi|13)
Tl '

T =

The appearing norms and scalar products can be determined efficiently by the recurrence
relations

dir1llE = lrisally + BEpalldill?

following from line [17] and the relation (r;11,d;)y = 0 known from the ordinary CG method |75}
Theorem 4.1], and

(Ouit1, dis1)v = (6u; + qidi, —riv1 + Bis1di)u = Bir ((Sui, di)u + | dilF)

using again the previous relation and the fact that due to dug = 0 the vector du;41 is a linear
combination of the directions d;. The appearing norms and scalar products are either known
directly from the algorithm or from the previous recursion step.

Finally let us turn back to the discussion of the numerical effort from the end of the last
section, now that we have presented the ansatz we will use to approximate the trust region
subproblem. Also for the Steihaug-CG method the main effort lies in solving PDEs and with that
the computation of scalar products and norms in general can be neglected. Let us nevertheless
briefly comment that like in the ordinary CG method in principle one gets along by computing
the scalar products (r;,7;)y and (d;, V2j(u)d;)y once per step. But as just indicated the main
effort lies rather in computing the application of the Hessian V2j(u)d; appearing in the last
scalar product. In the case of optimal control, for this one has to solve two linear parabolic
PDEs—the linearized state equation and the additional adjoint equation—that themselves
depend on the state and adjoint state. Note however that the latter two are known from the
trust region algorithm and are fixed during the whole Steihaug method, so they do not need to
be recomputed. As also mentioned previously, recomputing the solution to the model problem
after having shrunk the trust region radius can be executed in a much cheaper way, as the
directions d; (and their norms indicating excession of the boundary) are already known. So one
only has to solve for the crossing with the boundary which as discussed above can be computed
in a cheap manner. The total number of iterates performed by the Steihaug-CG method also

70

3.1 Presentation of the algorithms

has a strong influence on the effort one trust region step takes. However they are not known
a priori and depend on whether the algorithm stops earlier or not. As one expects from the
intuition of the trust region method and as we will also see in the numerical section later, the
Steihaug method iterates longer towards the end of the algorithm. When the trust region radius
is inactive we observed that the Steihaug method iterates until convergence or stops due to
exceeding tmax-

3.1.3 A note on the preconditioned Steihaug-CG method

In what follows we want to discuss a preconditioned formulation of the Steihaug-CG method
We will also see that by discretizing the algorithm one will actually end up with a preconditioned
method formulated in R™, where n is the number of the degrees of freedom after discretization.
This indicates that the algorithm is mesh independent. Further the different viewpoints allow to
find an implementation that saves a matrix multiplication.

Preconditioning can be viewed as a change of the underlying scalar product. To this end we
take a positive definite operator C' : U — U and define the new scalar product by

(u,v)c = (u, Cv)y Yu,v € U. (3.21)
In terms of this scalar product we can reformulate the trust region subproblem (3.18)) as

g m(du) = (V) bu)y -+ (V% (u)ou, du)o = (Ve (), u) + 5 (Ve (u)du, duo.
u s||oufj|lcso
(3.22)

Note that we freely omitted the constant j(u) not affecting the minimizer of the model function.
The only difference to is that the trust region is now given in terms of the norm induced
by C. The model function m is identical apart from now being formulated in terms of the
C-scalar product using the adapted quantities

Vei(u) = C7V5(u), (3.23)
Vii(u) = C7'V2j(u).
The new Hessian Vzc j(u) is now symmetric with respect to the C-scalar product. Using these
quantities one can simply translate the Algorithm |3| by using the C-scalar product and norm
instead of the U counterparts and using the quantities h; belonging to V¢ j(u) instead of r;.
The resulting method is presented in Algorithm [} Note that the steps in this algorithm are
identical to those in Algorithm [3]as can easily be verified line by line. The only difference lies
in the stopping criterion where we now use a quantity that is computed in the course of this
version of the algorithm.
Often one does not want to work with the transformed problem but rather with the former
quantities. Using relations and defining the new vectors h; :== C~'r; one obtains the
standard form of the preconditioned Steihaug-CG method that is given in Algorithm [5l Also
here the stopping criterion was adapted to use already computed quantities. Comparing this
to the unpreconditioned version in Algorithm [3| one may observe that the difference in the
numerical effort lies in solving line [I] In return one is rewarded with better convergence
properties (at least if the algorithm does not stop earlier) that are given by the condition number

of C_%Vz J (u)C_%, which should be smaller than the former one if C' is in some sense a good
approximation of V2j(u).

As we will see in the following, sometimes a mixture of the formulations [4] and [5]is more useful in
our context. Therefore we look at the algorithm resulting from a discretization of Algorithm
Upon discretizing we would like the appearing vectors living in, say, L?(Q) to be replaced by
elements from R™. Doing so, the scalar products (-,-)z2(g) would become the discrete scalar
products (-,) given by some positive definite matrix M € R™*™. This means that we will
replace the Hilbert space (L(Q), (-,) 12(q)) with (R™, (-,-)ar). The natural question that arises
is how this relates to the usual formulation of the algorithm that is given in (R™,(-,)s,). Since

71

3 Algorithms and implementation

Algorithm 4 Steihaug-CG (C-scalar product)

Input: control u, gradient Vj(u), trust region radius o
Output: the solution du of minjsy |, <o m(du)
1: 5U0 =0, hg = VC](’U,), do = 7ij(’U,)
2: 1:=0
3: while 7 < i,.«x do
4: compute VZj(u)d;
5. if (di, V&j(u)di)c <0 then
6 5ui+1 = du; + 7d; with 7 > 0 s.t. ||6ui+1||c =0
7: return du;
8 end if
9: o = (hi,hi)c/(di7V%j(u)di)c
10: (5ui+1 = (5ui + Oéidi
11: if ||5u,'+1Hc > o then

12: dujy1 = 0u; + 7d; with 7 > 0 s.t. ||ou; + 7di||c =0
13: return du;
14: end if

15: hi+1 = h; + OQV%](u)dz

16: Bit1 = (hit1, hiy1)ce/(hi hi)e

17: dz’+1 = *hz’—&-l + Bi—!—ldi

18: if ||hit1]lc < tol or ||hit1]lc < reltol||hgllc then

19: return du; 1
20: end if
21: 1=1+1

22: end while

Algorithm 5 preconditioned Steihaug-CG

Input: control u, gradient Vj(u), trust region radius o
Output: the solution du of minjsy |, <o m(du)
1: dug =0, rg = VJ(U), ho = C'_le(u), do = —hg
2: 1:=0
3: while 7 < i, do
4: compute V%j(u)d;
5 if (d“ng(u)dz)U < 0 then
6: duip1 == O0u; + 7d; with 7 > 0 s.t. ||0uip1|lc =0
7 return du;y;
8 end if
9 oy = (ri, hi)u/(di, V2§ (u)di)u
10: (5ui+1 = du; + ayd;
11: if ||duiq1]|c > o then

12: duiy1 = 0u; + 7d; with 7 > 0 s.t. ||du; + 7di||c = o
13: return du;y
14: end if

15: Tiy1 =71 + aiV2j (’U,)dl

16: hi+1 = C_l’l“i+1

170 Biy1 = (Tiv1, hiv)u/(ri, hi)u

18: diy1 = —hip1 + Bit1d;

19: if (Ti+1, hz’+1)U < tol or (Ti+17 hi+1)U < reltol(ro, hO)U then

20: return du;
21: end if
22: =1+ 1

23: end while

72

3.1 Presentation of the algorithms

Algorithm 6 preconditioned Steihaug-CG (computationally efficient version formulated in R™)

Note that M ~1V?2j(u)d; can be cheaply computed by simply omitting the multiplication with
M in (3.10) (and similarly for M ~'Vj(u)). In particular note the difference in line [17| compared
to line [16] of Algorithm [5]

Input: control u, gradient M ~1Vj(u), trust region radius o
Output: the solution du of min sy, <o M(0u)
1: dug =0, hg = M~1Vj(u), ro == Mhg, dy = —hg
2: 1:=0
3: while ¢ < i, do
yi = M~'V?j(u)d;
Zi = M’yl
if (d;, zi)e, <0 then
duipy = 0u; + 7d; with 7 > 0 s.t. ||0uip1|lp =0
return Su;q
end if
10: o = (’I’i, hi)@/(di, Zi)gQ
11: 5Ui+1 = 5U1 + ayd;
12: if ||duit1||pm > o then

13: (SuiJrl = du; + 7d; with 7 > 0 s.t. ||(5ui + Tdi”]b[=0
14: return du; 1
15: end if

16: Tig1 =T + 042

17: hi+1 = h; + a;Y;

18 Big1 = (Tig1, hig1)es/ (T, hi)es

19: dig1 = —hip1 + Big1d;

20: if (7”1‘4_1, hi+1)52 < tol or (7‘1'_;,_1, hi+1)52 < reltol(rg, ho)gQ then

21: return du;y
22: end if
23: 1=1+1

24: end while

73

3 Algorithms and implementation

the discretization does not result immediately in the f¢s-formulation, we could try to apply
the results obtained so far in this section to see if we can identify it with a preconditioned
algorithm. Looking at we may try relating U to ¢5 and C' to the matrix M there, i.e., we
suspect the discretized version to be preconditioned with the matrix M. Then the resulting
algorithm after the discretization would resemble Algorithm [(identifying Vj(u) and VZi(u)
with the quantities obtained from discretization) and from the above discussion we would obtain
the equivalence to Algorithm [5| which is now formulated in terms of ¢5. Hence the discretized
algorithm is indeed equivalent to a preconditioned Steihaug-CG method with preconditioner M
formulated in terms of the standard scalar product of R".

To better understand the fact that the discretized formulation is related to a preconditioned
algorithm, let us for a moment return to Algorithm [3]in the undiscretized version. Note that
on Banach spaces derivatives are actually elements of the dual space, i.e., we have j'(u) € U’
and j"”(u) : U — U’. Since U was assumed to be a Hilbert space we implicitly used the Riesz
mapping Ry : U — U’ to identify Vj(u) = R;'5'(u) € U and V2j(u) = R;'j"(u) : U = U
such that the algorithm could be formulated in terms of the U-scalar product instead of using
the duality product (-,-)ys . However, in formulating the algorithm, we would not be able
to proceed without using the Riesz representative Vj(u), since in line we add the search
direction d; to the iterate du; € U. As d; is related to the gradient (see line|[l]) at the latest at
this point we would have had to make the just stated identifications to obtain d; € U and a well
defined sum. In some sense the preconditioning step in the discrete version corresponds to this
identification that admittedly is somewhat hidden in the former Hilbert space formulation. The
operator Ry is in the discrete version given by the matrix M. In Algorithm [4] where we apply
the ‘scalar’ product we have to use the Riesz representatives given by the relation and in
Algorithm [5| where we apply the ‘duality’ product the quantity ;41 has to be ‘converted’ in line
|E| to its Riesz representative such that d;; is in the correct space.

As mentioned above, Algorithm [5] can be implemented more efficiently in the context of optimal
control by also using the formulation in terms of Vj(u) and VZj(u) given in Algorithm
The reason is that the application of the Hessian is in our case performed by evaluating several
operators in a row (cf. also) First we would have to solve the linearized state equation
and then the additional adjoint equation. At this point we would already have computed V2j(u)
and obtaining j”(u) would correspond to applying Ry (or M in the discrete case). But since we
are actually interested in the former, there would be an unnecessary application of this operator
that would be removed again by the subsequent preconditioning step. Instead, one can store
both quantities h; and r; in parallel, first computing h; using VZj(u) = j”(u) and then after
applying C = M the residual r; using V2j(u). r; can then be used to cheaply apply the scalar
product ((r;, h;)e, is favorable to (h;, h;)as as no matrix multiplication is involved) and h; can
be used to update the search direction d;. In this case no inversion of M is needed, just its
application. The just described combination of the Algorithms [4] and [f] is listed in Algorithm [f]
formulated for the discrete case. Let us conclusively summarize the main aspects of this section.

Conclusion 3.1.3. As is known, the Steihaug-CG algorithm in the C-scalar product (Algo-
rithm is equivalent to a preconditioned Steihaug-CG method with preconditioner C' (Al-
gorithm @ From this we can deduce that upon discretizing the Steihaug-CG algorithm in
(L2(Q), (,-)r2(q)) one obtains an algorithm formulated in (R™, (-,-)s,) with preconditioner M.
For the reduced Hessian approach, mesh independence is assured as a consequence. Further, in
this case one can write down Algom'thm@ that per iteration saves one matriz-vector application
in Algorithm[f) and the linear solve in line [16) of Algorithm[5 by combining these two algorithms.

In fact, the mesh independence will be checked numerically later, see Section Nevertheless,
as also mentioned earlier, the algorithm still takes forbiddingly many iterations in some situations
which hints to a bad condition number due to other reasons than mesh dependence. The question
arises if one further could apply other kinds of preconditioning to remedy this. This will be
discussed in the next section.

74

3.2 Preconditioning

3.2 Preconditioning

As hinted at the end of the previous section, numerical investigations suggest that the Newton
system for the considered optimization problem is ill-conditioned. As an indicator one may
consider the amount of iterations the Steihaug-CG method takes closely before the trust region
Newton method converges. It does not uncommonly take a total count of 300 to 500 for most
relevant settings and sometimes even exceeds the given maximum amount of 800 iterations,
see Section Furthermore, these trust region steps occupy a significant amount of the total
running time of the algorithm. This is despite the fact that, due to the function space formulation
of the Steihaug algorithm, its convergence properties should be relatively independent of the
space and time discretization. As discussed in the previous section, this formulation belongs
to an effective preconditioning by the mass matrix, which however might be insufficient as in
principle it approximately only induces a scaling of the system matrix. Also the authors of
[24], where the case of the isotropic Allen-Cahn equation is considered, conclude that already
this problem is ill-conditioned with comparable iteration counts. Hence, it is unlikely that the
anisotropy contributes the dominating part to the deficiencies although it might still provide
some residual effect. For sake of an investigation of the main issues, we will therefore mainly
concentrate on that simpler case in this section.

To this end, let us briefly repeat the Hessian’s form given in egs. (3.4) to in the isotropic
case for the reader’s convenience. It reads as

V%j(u) = (21 + K(y) Py, p)L(y)), (3.24)
where egs. (3.5) and (3.6]) in this case reduce to
K(y) =ed, —eA+1(3y> - 1), K*(y) = —e0, — eA + 1(3y* — 1), (3.25)

and the application of K(y)~! and K(y)~* is given as in eqgs. (3.7) and (3.8)) (with v4 = v). The
right-hand side of the additional adjoint equation is now provided by

P(y,p)dy = —Sypdy. (3.26)

We point out that the main difference to the anisotropic case is the lack of a further term in
P(y,p)dy, that would render its behavior even less predictable as described in the subsequent
subsection. As before, we will drop the arguments of K(y), £*(y) and P(y,p) for the sake of
readability. It is difficult to make precise statements about the condition number of .
From a theoretical point of view, the dependence on the a priori unknown state y and the
adjoint state p provides serious obstacles. Their appearance of both as a product in the operator
P and the appearance of y in the operator X—that in addition enters by its inverse—make
an analytical treatment nearly impossible. Also the need to explicitly compute this inverse to
determine the condition number provides limitations in the sense that realistic system sizes
cannot be investigated numerically.

In the following subsections we nevertheless try to shed further light on the issues and discuss
the dependence on several quantities as well as some problems that arise for the classical
preconditioning ansatzes. First, we will treat the just mentioned dependence on the functions
y and p. Then we will once again have a look at the mesh independence, in particular we
will address the time discretization. Finally, we will discuss preconditioning strategies for the
reduced and in the end also for the all-at-once approach.

3.2.1 Dependence of the condition number on y and p

When solving the Newton system, the functions y and p are given functions that were computed
as solutions of the state and adjoint equation, respectively. One difficulty is that from the point
of preconditioning they are rather arbitrary functions whose behavior can barely be predicted.
This is due to the ‘arbitrariness’ of the control u(t,z) provided in intermediate steps of the
algorithm. Also this control might differ in orders of magnitude both with respect to ¢ (at the

(0]

3 Algorithms and implementation

beginning the control is empirically more moderate than at the end) and with respect to z
(for given ¢ the support mainly lies on the interface). The same can be said about the adjoint
state that, due to the first order optimality condition , should fulfill p ~ —%u in vicinity
of the optimal solution. Fortunately all this is not reflected by the state y which (at least
during the converging phase) is observed to still obey |y| < 1 in case of the smooth double-well
potential (compare to Theorem and the discussion below). Here, the values y =~ 0
are only attained at the interface. This should render the operator K to be a perturbation of
the heat equation, but note that the additional term has a relative scaling of 6%

More problems should be provided by the operator P which prepares the right-hand side of the
additional adjoint equation. For linear problems as the heat equation this operator would be
positive semidefinite which would yield the whole V2 to be positive definite as a perturbation
of a multiple of the identity. This is not guaranteed for the present nonlinear case and in fact
this is the reason why we had to use Steihaug-CG instead of CG. As it is a requirement for
the convergence of Newton’s method, the Hessian should be positive definite in vicinity of an
optimizer. So if the algorithm converges this should be fulfilled at least in the last few iterations.
As already hinted, it is usually not until then that we require preconditioning, as before the
Steihaug-CG method typically stops due to other reasons. But nevertheless, we sometimes
observed large iteration counts already at the middle of the algorithm (see also Section and
we do not know a priory when the algorithm has entered the region of convergence. Also, we
still cannot exclude that some eigenvalues are close to zero at the end.

As indicated before, the whole trouble originates from the operator P. For the present nonlinear
case, it in addition contains a term involving the product of y and p that we even do know less
about than both individually. However, there are still some vague statements one can make
about it. Most importantly, we expect the product to be small on most part of the domain
Q). This arises from the fact that y ~ 0 in vicinity of the interface and p ~ 0 away from the
interface where almost no control takes place. It is hard to predict however of what order of
magnitude the product will be in vicinity of the interface, where one factor is rather large and
the other rather small.

Anyway, as there is no guarantee for y and p to have the same sign, the resulting operator P is
expected to have both positive and negative eigenvalues. The negative ones might lead to small
eigenvalues for the total VZ5. On the other hand also (positive) eigenvalues with large magnitude

might lead to an ill-conditioned Hessian. For certain values of y (for instance y = :l:\/g , i.e., the

roots of ¢"") we might get eigenvalues of the order A(K) ~ ¢ that together with the L-scaling of P
yields an amplification of ~ 8% In any case we can conclude that due to the explicit dependence
of K and P on the state and adjoint variables, clustering of the eigenvalues is not granted.
This was not the case already for the heat equation but for the Allen-Cahn the situation is
definitely worse. In case of the anisotropic Allen-Cahn equation—where the operator P contains
an additional term arising from the chain rule for A (cf. (3.9))—the described situation is even

more unclear.

Conclusion 3.2.1. The product yp appearing in the operator P is the reason for negative
and/or possibly small eigenvalues of . Although it should always hold |y| < 1, the value of
p highly depends on the present setting. As a consequence it is hard to make any statements
about yp. As the support of p is expected to lie around the interface, yp should be small nearly
everywhere. For the anisotropic Allen-Cahn equation an additional term appears (cf. @)) that
makes the investigation even more obscure.

Finally, let us briefly comment on the influence of the weight parameter A\. By choosing A large
enough one can always tune the system to be positive definite and have a good condition
number. This however leads to unpleasing qualitative results. As A weights the penalization of
the control cost, by choosing a value too large the algorithm eventually does not care about
reaching the proper end state. An optimal solution would then be to just control virtually
nothing at all. The standard value for A used for the numerical results later is the biggest choice
possible before such effects become dominant. For this value the influence of the second term in
still shows the problems described in this subsection.

76

3.2 Preconditioning

3.2.2 Dependence of the condition number on the mesh and T

Due to the strong intervention of effects stemming from y and p that were discussed previously,
it is difficult to deduce results on the mesh dependence of the condition number for the reduced
Hessian arising in the optimal control of the anisotropic Allen-Cahn equation. To the author’s
knowledge there exists only literature in case of linear parabolic control problems, see, e.g.,
|96} |124) 1112], where a similar system has to be solved for the reduced gradient that is already
linearly dependent from the control in this case. In the present subsection we will therefore treat
this simplified situation and suggest that the emerging mesh independence also holds in our
case—which we at least can verify numerically (see Section . In all of the cited references
the authors conclude that the condition number is independent of the coarseness of the space
discretization. For the implicit time discretization the first reference contains an estimate that
goes like %, whereas the authors of the second reference conclude only a small dependence from
their bound. Let us note however that there is a flaw in the argument leading to the latter result,
that starts after equation (5.9) in [124]. The deduced expression (¢; + T¢o — dy) is generally
not positive for small 7, so one is not allowed to take the square as is done there. To obtain a
definite result, we performed an own investigation that uses similar arguments as in the proof
of Theorem [2.:2.4] and that lead to a bound independent from the time step size 7 and with at
most linear growth in the end time point 7. This will be discussed in the remainder of this
subsection.

As a model problem we consider

. 1 B
min J(,w) = S19(T) — veliam + Slulldso).

where u € L*(Q) and y € H*(0,T; L*(Q)) N L*(0,T; H'(Q)) shall fulfill the linear parabolic
partial differential equation

Oy,) + a(Vy, V) + coy,m) = (w,m) Vn € L*(0,T; H'(Q)),
y(0) = yo in Q,

with a > 0 and ¢y € R. Here 3o € H'(Q) and Q C R? is again a bounded Lipschitz domain.
The corresponding implicit time discretization of the state equation reads as

%(yy@) + oz(Vy],Vgo) + CO(yja (10) = (Uj,(ﬂ) + %(y]—h(p) V(P € Hl(Q)a] = 17 e aNa
(3.27)
with given yo € H'(Q). The last time step can then be understood as a function of the control
variable and the initial state, i.e. yn(ur,y0). The adjoint equation corresponding to (3.27))
reads as

= (0,05) + &V, Vp)) +colp,p) = £(0,p41) Vo € HY(Q), j=N,....1, (3.28)

and pyy1 = yn — yq- In the following, we use the same notation as given in (2.11). Again,
we can understand the adjoint state as a function of the just given py41 and it further can be
splitted due to linearity as

Pr = pr(Yn (ur,v0) —ya) = pr(yn (ur, 0)+yn(0,50) —ya) = p- (Y~ (ur,0)) +p-(yn(0,%0) — ya),

=P,

(3.29)
such that the first order condition in essence reads as

Fruy == Bu, + p‘r(yN(u‘ra 0)) = —Dr. (330)

The linear operator F, : U, — U, has the same structure as the operator V2;(u) (see (1.28)) in
our case and hence we are interested in its condition number.

7

3 Algorithms and implementation

Theorem 3.2.2. The condition number of the operator F, defined in can be estimated by
1+1.82Z forco >0

< A — :
K(Fr) < { 1+ \/E%(exp (=2¢oT) + s(7)) for co <0, (3:31)

for T being small enough and where s(1) — 0 for 7 — 0.

So if 7 is small enough, the condition number of F, is bounded independently of the time
discretization and for ¢y > 0 we have a bound with linear growth in T

Proof: We will estimate the eigenvalues of the linear operator F; in order to deduce a bound
for its condition number. Since p, = S*S,u, where S, : U, — H'(Q),u, + yxn, the map
U, — pr is positive semi-definite and hence the smallest eigenvalue can simply be estimated by
tmin > 3. For the largest eigenvalue we have to make some further considerations. As in the
proof of Theorem [2.2.4] one obtains for the present time discrete state equation as an analogue

to €3]

N.
= 1 € —2c¢
2< 241 Nu;||? | —————— 1 S . (3.32
bl < | bl + £ 3l | e max {10 (= 20)} (32)

Here the additional max-function arises from a case distinction with respect to the sign of ¢
and € is an arbitrary parameter from scaled Young’s inequality satisfying 1 > 7 (e — 2¢g) and
that we will specify later.
We also need a similar inequality for the time discrete adjoint equation that in forward
notation (i.e. p; := pny1—; for j=1,...,N) reads as

L— (B — Dj-1,9) + @ (VP;, V) +co (B, 0) =0 V€ HI(Q),

TN41—j

and Po := yn — yq. The same analysis as above yields after transforming back to backward p,

the bound T 9
2o < Iy — yal?—— 1 S 3.33
Ip ||L2(Q) < llyn — yall 1+ 12¢ maX{ » XD (1 + T2c¢o ’ ()

where we define for now and later 7 := min; 7; and 7 := max; 7; or vice versa if cp < 0. With 7
we still denote 7 := max; 7; as in the chapters before. Combining (3.32)) and (3.33]), we get

||pT<yN<u77 0))”%2(62) < k(Tv T, co, 6)HU‘FHZL2(Q)7

with

T € — 2¢cq
k(r, T = 1 F—r—
(7. T co,€) (1 — 7 (e — 2¢0)) (1 + T2¢0) max{ P (1 — 7 (e~ 2¢o) >}

-2
-max < 1, exp 7_COT
14 72¢

(remember that we set yo = 0,yo = 0 due to the splitting (3.29)). It remains to estimate
k(7,T,co,€) and for this we have to distinguish between the two possible signs of ¢g.

For the case ¢y > 0 and assuming 7 < 7T/N with N > 11 we can deduce by choosing ¢ = %
(which is optimal in the limit with 7 — 0)

k(r, T, co, %) < k(7,T,0, %) < % exp (%) T? < 1.1exp(1.1)T?

and hence bounded independently of 7). So in this case we can conclude that for 7 small enough

B<pu<B+T1lexp(ll) <B+1.82T. (3.34)

On the other hand if ¢y < 0 we again set € = % and by observing that the maxima are always

78

3.2 Preconditioning

attained by the exponentials we obtain
k(r, T, co, %) — T?%exp (1 —4cT),

for 7 — 0. Summarized, we have shown that the condition number can be estimated by
(13.31)). O

Note that we derived our result by using the Hilbert spaces L?(Q2) and H!(Q) for the spatial
variable and did not make any use of the properties of these spaces and their scalar products.
Therefore, if we discretize the problem by a conforming finite element method, for the condition
number we obtain the same estimate , meaning that it is also independent from the
space discretization. Finally, let us again mention that the mesh independence was checked
numerically to also hold for solving the Newton problem arising in optimal control of the
anisotropic Allen-Cahn equation in Section [£.2]

3.2.3 Factorizing the Hessian

Having talked about the potential dependencies of the condition number as well as possible
sources of bad condition, we now want to turn our attention to the issues that arise in applying
known preconditioners to our problem. In this section, we will again consider the reduced
Hessian approach, whereas in the subsequent one the all-at-once system is treated. Let us look
at a general operator of the form (I + AB). One typical idea would be to split it up as

(I+AB)~ (I + A)I + B), (3.35)

cf,, e.g., |12] or [118]. If for example A = B = A (i.e. the Laplacian) one could use the fact that
there are well-established (fast) solvers for (I + A) like, e.g., multilevel solvers |29, [70, [110] that
can be used to approximate the right-hand side. This does also work for more general elliptic
operators. For parabolic equations, (parareal) time domain decomposition methods can be used
(see, e.g., [129} 196, |72]). So how does apply to our case? To keep the presentation clear,
we set % = 1. The first question concerns the definition of the operators A and B. In fact, in
(3.24) there appears the product of three operators X~*PK 1. One obvious idea would be to
take the square root of the central operator P (which in matrix representation would be block
diagonal). As already seen above, however, in general P has negative eigenvalues and so the
root would have to be approximated by, e.g., \/|P|, which would yield

VZj(u) = (I+K*V|P)UI + V|PIK™). (3.36)

Here, an efficient way to obtain the square root of the diagonal blocks of P is essential. Also
it is not clear how well the approximation by the absolute value mimics the real eigenvalue
distribution. As this seemingly already leads to open questions here, in the following we leave P
as it is and take A = K~* and B = PK!, i.e.

V2j(u) = (I +K*) (I +PK™1). (3.37)

The next question arising would be how to efficiently solve (I +K~*)~!. The author does not
know any results on this. Note that here the action of the operator A is not explicitly known
as it belongs to an inverse that typically is not set up explicitly. Also note that the second
term still contains a product which deteriorates the situation (this is also a problem for the
square root ansatz). This stands in contrast to the Laplacian situation that we mentioned
earlier and is more standard in the discussion of such preconditioners. Another problem is that
the operator—or in any case (I + PKX~!)—might even not be invertible due to nonpositive
eigenvalues. We only know that (I + K~*PK~!) has an inverse (at least in vicinity of the
optimal solution). Although it is quite unlikely that we get an eigenvalue that exactly matches
zero, already small values might have a great impact on the stability of the involved solvers.
Also, if we have negative eigenvalues, it is not obvious which efficient solvers can be used. For
the analysis it is problematic if we cannot exclude explicitly that the operator may be singular.

79

3 Algorithms and implementation

Finally, another idea would be to rewrite the just discussed approach as
V2j(u) ~ K~*(K* + I) (K +P)K . (3.38)

In contrast to the other cases, no products and inverses appear in the factors that contain
the sums. That is, for the terms (K* 4+ I) and (K 4 P) there may exist again efficient solvers.
However, also here the problem remains that these two factors could potentially be singular or
at least have negative eigenvalues and some which are close to zero. Another observation and
potential drawback is that we now have to apply four operators in a row and the question arises
if this would still be efficient enough for a preconditioner. The answer to this probably would
have to be tested out in practice so we cannot say much at this point. If one wants to compute
the approximate inverse of above expression it at least turns out that the additional factors are
only applications of an operator belonging to a parabolic PDE and involve no solves. Note also
that transforming the problem to K*V?2j(u)K probably provides no further advantage as one
actually does not intend to solve the remaining problem iteratively.

Conclusion 3.2.3. We discussed different approaches to apply the splitting (3.35) to our setting.
The following issues were elaborated:

3.30|): It is unclear if this is a good approximation and no efficient solver is known.

(13.37)): The right operator is not guaranteed to be invertible and no efficient solver is known.

(13.38): The third operator is not guaranteed to be invertible and it is unclear if applying the product

of four operators is efficient enough.

3.2.4 Considering the full system as an alternative

As we have seen, the reduced system comes with several problems concerning preconditioners
other than the simple mass matrix. Many researchers therefore prefer to consider the full system
instead (see, e.g., [124} |20, [114]). Hence, we conclude this section by discussing the problems
that are present there in context of the (anisotropic) Allen-Cahn equation. For convenience let
us repeat its expression initially given in :

P 0 K%\ [dy Ly
0 21 I bu|=—(Lu|. (3.39)
-£ I 0 dp L,

Here, K and P are given by (3.25)) and (3.26) for the isotropic case, or by (3.5)) and (3.9) for

the anisotropic case, respectively. We recall that in contrast to the reduced approach, mesh
independence is not granted here, so preconditioning is in fact required already to achieve this.

Symmetrical preconditioner

A typical candidate for a preconditioner of (3.39)) would be the block diagonal operator

P 0 0
Poym=[0 21 0 |, (3.40)
0 0 -S

where S should be an approximation to the Schur complement S of (3.39) with respect to dp,
ie. S=—[KPIK* + I(%I)_lf]. This is a different operator than Which resulted from
the Schur complement with respect to du. For the approximation of S one typically leaves away
the second term [114], so for instance —S = AMG(K)P~*AMG(K*), where by AMG(O) we
want to note down that the inverse of the operator O shall be approximated by an algebraic
multigrid method [115] [55] (combined with forward/backward substitution in the parabolic
case). Also parareal algorithms may be used to (approximately) solve the linearized state and
adjoint equation [46) 128]. The identity I (i.e. the mass matrix after discretization) is usually

80

3.2 Preconditioning

treated by the Chebyshev semi-iteration [135] 63| or can simply be inverted if approximated by
a lumped mass matrix. The difficulties for this approach again are related to the operator P
that potentially is not positive definite and even could be singular. Therefore one might use an
invertible approximation or simply replace it by an appropriately scaled mass matrix.

Nonsymmetrical preconditioner

Another idea would be to use a nonsymmetric preconditioner instead of (3.40) (see, e.g., [111]
or [21]), as this avoids the need for the (1, 1)-block to be positive definite. Here the idea is to
first permute the system matrix (3.39) by exchanging the first and last row to obtain the matrix

-K I] o0
0 21| I . (3.41)
P 0 |-K*

The indicated block structure suggests the following block triangular preconditioner

-K I 0
Pnonsym,H = 0 %I 0~ s (342)
P 0 =S

where Sy should be an approximation of the Schur complement Sy of (3.41) with respect to
the (2, 2)-block, i.e.

SumSu=—-K —PK T (2L (3.43)
Here and in the following we do not simplify the term (%I) ~! such that the reader can better
follow the derivation. The inverse of ﬁnonsymﬂ is then given by

—K~! K1 (3[)’1 0
Pronsym,11 = 0 (21)” o |, (3.44)
SSytPEt Pkt (AT -8y

which can be verified by direct computation. Permuting this back one finally obtains the
following preconditioner for the system (|3.39))

. 0 IC*l.T(%_IP_l —K!
Pronsym = 0 (21) Lo : (3.45)
—-Spt Sy'PKTI(21) T =SptPKT!

The application

p—1 R (o
v = PronsymW with v = v and w = (w2

w3

can be computed as follows. From the second row we get
vy = (1) w,. (3.46)
Inserting this into the first row, we obtain
v =K (I D w, - w3) = K1 (Tvy — w3). (3.47)
Finally, after some straightforward rearrangement, vs can be computed from the third row by

V3 = Sﬁl (7)’1}1 - wl) . (348)

81

3 Algorithms and implementation

For egs. (3.46) and (3.47) the same approximation ideas as discussed in the previous subsection
can be applied. The efficient solvability of (3.48) relies on a good approximation of Sy;. Here
one could use for example

Sn=- (K +P)t (kK+1(20)7" 1), (3.49)

as proposed in |111]. Unfortunately, as before, the first factor is not guaranteed to be invertible,
since in our case the operator P can also assume negative eigenvalues. To test the preconditioner
ﬁnonsym we tried to set P = 0, since in Section we argued that the product yp should be
of small magnitude in most parts of the domain. Also simply setting S = —K* (i.e. neglecting
the second term in) yielded comparable results.

Comparison between the preconditioners

The question that remains is whether preconditioning the full system provides an advantage
opposed to using the reduced system that the main focus lies on in this thesis. Therefore we
implemented a test program for the full system with the symmetric preconditioner and
the nonsymmetric one (3.45). To deal with the block matrix structure, the implementation
was done in Python using the cbe.block library [95] building on FEniCS (see [5] and also the
next chapter). For the AMG solver we resorted to pyamg [109]. Note that the reduced and
full approach are difficult to compare, due to their rather different nature. For instance, the
state y produced after each Newton step of the full approach does not necessarily have to
fulfill the state equation with the current iterate u as right-hand side. To test the all-at-once
approach we looked at one step of a Newton solver (i.e. one solve of) that we fed with a
configuration obtained from the reduced approach and then considered the next iteration for
both solvers. The result is presented in Table We tested different linear solvers provided
by c¢be.block combined with both the nonsymmetric and the symmetric preconditioner (with P
approximated by I). The best result was obtained by the nonsymmetric preconditioner
with Sip = —K* using an LGMRES solver with 10 inner iterations, which we present exemplary
for comparison in Table [3:I] As a setting we considered the isotropic case with 50 timesteps of
size 107* on a 129 x 129 grid for keeping a circle of radius 0.5 constant (for more details on
the other standard parameters chosen consider the introduction of Part . To compare both
ansatzes, we measured the running times the solvers required to reduce the residual by six orders
of magnitudes. As can be seen, solving the full system lasted about an order of magnitude longer
than the reduced approach. That is mainly due to the higher iteration count the full problem
required even with preconditioning. Also the times per iterative solver iteration are better for
the reduced system but should be taken with a grain of salt due to the different implementation
frameworks. Nevertheless, the difference could be partially explained by the higher amount
of degrees of freedom for the full system ((y,u,p) instead of just u) and the overhead of the
preconditioner. Furthermore, for the preconditioner we could not observe notable differences
when dropping y- and p-dependent terms or replacing A’ by the Laplacian in the anisotropic
case. Also using only the identity as an approximation of P seemed to be a good approach.
As the involved preconditioner is not sensitive to such details, together with the performance
properties discussed above, it seems that only mesh independence can be reduced which however
is a natural property of the reduced Hessian ansatz.

Finally let us note that only using Newton’s method for the full system is not enough in general
as only its local convergence is guaranteed. For global convergence, strategies as sequential
quadratic programming (SQP) usually have to be involved. In contrast, the Steihaug-CG
method, which we used for the comparison with the reduced system, is already part of the
globalization via the trust region method as explained in Sections and [3:1.2] For the
numerical example discussed above, we ensured that the Steihaug-CG method does not have to
stop earlier and in principle it is similar to a pure CG method.

Conclusion 3.2.4. The full system (3.39) requires preconditioning to be mesh independent.
We discussed a symmetric (3.40) and a nonsymmetric (3.45)) preconditioner that are commonly
used in the literature. For the symmetric preconditioner, as P can become singular it has to be

82

3.3 Comments on the implementation

reduced problem unreduced problem
with preconditioner

degrees of freedoms | 832,050 2,496,150
iteration count 32 114

time per iteration 5-6s 12-13s
time total 193s 1455s

Table 3.1: Comparison of one step of the solvers for the reduced as well as the all-at-once system.
The latter was preconditioned with a nonsymmetric preconditioner. The iteration
counts belong to the Steihaug-CG solver and a LGMRES solver, respectively, and
are given for a reduction of six orders of magnitude. Here, the isotropic Allen-Cahn
equation was considered. For further details consult the explanations in the pertinent
subsection.

replaced. This is remedied by the nonsymmetric one, but also here the indefiniteness of P might
exclude some common ansatzes for the approximation of the appearing Schur complement ,
as, e.g., (3.49). Further it was observed that dropping y-dependent terms in KC usually has no
negative impact on the effectiveness of the preconditioner. In numerical experiments we observed
that the mesh dependence could in fact be removed, but nonetheless the reduced approach
performed better. This also means that the other sources of bad condition could not be met.

3.3 Comments on the implementation

Before we discuss the numerical results obtained from the methods described in Section let
us give some comments on various implementational details. We note that the algorithm was
implemented in C++, where the appearing partial differential equations were solved using the
finite element toolbox FEniCS [5]. In the following section we shall give further information
on how the solutions to the PDEs were computed. Later, we will comment on the use of
parallelization in our code and issues that arise when applying mesh adaptivity.

3.3.1 Solving the PDEs

As mentioned introductory, in order to solve the appearing partial differential equations we
resort to the finite element toolbox FEniCS [5] or rather its C++ interface DOLFIN [91] [92].
For more information than we will discuss here, we refer the reader to [90] for the general aspects
of this framework, or [60] for an introduction closer related to optimal control. The components
of FEniCS comprise an all-in-one solution for the problem of solving PDEs on the computer,
starting from providing a simple domain-specific language to formulate the variational problem
in a notation similar to the usual one used in the mathematical context up to finally supplying
convenient interfaces to various PDE-solvers provided by common linear algebra packages as
PETSc, Trilinos or Eigen. Let us briefly describe how a typical workflow for including a PDE
solver in the code does look like using FEniCS. First of all the variational forms are coded
into a UFL file. The Unified Form Language (UFL, [6} |3]) is a Python based domain-specific
language for representing weak formulations of PDEs. In a next step this is compiled using the
FEniCS Form Compiler (FFC, [85] 93, [108]), which outputs a C++ header file that is conform
to the UFC specification. The Unified Form-assembly Code (UFC, |7, 4]) defines functions in
C++ that perform the assembly of variational forms and classes that then finally can be used
in the C++ (or Python) code via the DOLFIN library. Before we discuss in more detail how
the parabolic (quasilinear and linear) PDEs needed for the outer solver were implemented, let
us give an overview of the inner solvers from the FEniCS framework we utilized. Figure [3.]
provides a quick overview of the trust region algorithm we described previously with respect
to the elliptic problems that have to be solved. With N we denote again the numbers of steps

83

3 Algorithms and implementation

min j(u
min j(u) .
state y (N xnonlin.) TR T) GMRES
| adjoint p (N Xxlin.) GMRES

TR subproblem
min sy <o (Vi(w), 6u) + 5(V2j(u)du, bu)

l lin. state 8y (N Xxlin.) GMRES
Steihaug-CG < >
add. adjoint §p (N xlin.) GMRES

Figure 3.1: The trust region Newton method with Steihaug-CG and the solvers that were used
to compute solutions to the appearing PDEs. The value of 2-4 inner Newton steps
is an empirical estimate from numerical observations.

the time discrete problems consist oiﬂ (see text below) First we have to solve the state
and adjoint equations, each of which requires the successive solution of N elliptic PDEs. To
treat each linear elliptic PDE in case of the adjoint equation, we will use a GMRES (generalized
minimal residual) solver as it showed the best convergence behavior. Each time step of the
state equation is of nonlinear nature and hence we apply the built-in Newton trust region solver
of FEniCS to it. From experiment we can say that the number of linear solves this requires
lies around 4. The latter are again performed by the GMRES method. Note that in case of
the semi-implicit discretization presented in Section [2.7] solving the trust region subproblem
requires the successive solution of the linearized and additional adjoint equation. Each of them
again consist of N linear equations to that we apply the GMRES method. The latter is in all
cases provided by the backend PETSc |11} |10} 9] and is preconditioned by an incomplete LU
factorization (ILU). It needs about 10 iterations per time step with a relative tolerance of 10~1°.
In what follows we discuss how the state and adjoint equation were implemented. The linearized
state and additional adjoint equation are computed in an analogous way as the adjoint equation
(because for each of those three equations the elliptic subproblems are linear) and therefore will
only be discussed briefly at the end. We decided to start with the adjoint equation, as for the
nonlinear state equation we in addition have to set up a Newton solver. Note that for sake of
clarity the presented code snippets are modified versions of the actual implementation in terms
of leaving out some commands and comments that are insignificant or distracting. Also some
variable and function names were changed slightly to better fit the notations used in the thesis.
The full code that was used to produce the results of Part [4] can be found on the CD attached
to this dissertation.

Adjoint equation

First let us have a look a the UFL codes which specify the PDEs in their variational form. We
would like to adopt the general definition of A’ as given in . Therefore we first look at a
helper code written in Python which can be called in UFL files (recall that UFL is a domain
specific language on the basis of Python). The following code defines a function that returns
Al (p) for some p € R? and § > 0.

from ufl import *
nl =8

def A_prime(p, E, delta):
return dot(M_rg(p, E, delta), p)

1This number is the same for each of the four equations as we do not resort to adaptivity, see also Section m

84

6

7

8

9

10

11

12

10

11

12

13

14

15

16

17

18

19

20

21

22

3.3 Comments on the implementation

def M_rg(p, E, delta):
G = [as_matrix([[E[i*4] ,E[i*4+1]1], [E[i*4+2], E[i*4+3]111) \
for i in range(len(E)/4)]
GAM = [sqrt(inner(dot(Gl,p), p)+delta) for Gl in G]
gamma = sum(GAM)
return sum(gamma*xinv(GAM[1])*G[1] for 1 in range(len(G)))

Note that in the code we made use of the splitting by calling a second function which
implements Mj;(p) as defined in (2.106). With that we can reuse the code above also for the
implementation of the splitting scheme (2.109). The main issue in defining Aj is to leave the
choice of (G; as general as possible. In our case this is accomplished by storing its entries in
the VectorConstant E. The latter will appear as an attribute in the forms we will define soon.
Let’s assume we have a LinearForm called L in the C++ code, then the matrix entries can be
handed over by

L.E = std: :make_shared<Constant>(std: :vector<double>{1,0,0,1e-2,1e-2,0,0,1});

where in this case we have defined the exemplary 2 x 2 matrices

1 0 1072 0
G1:<0 10—2>’ GQ:(0 1)'

This can be seen by looking at the extraction in line 8. Note that with this approach the
dimension is fixed to d = 2 and also the number of matrices L has to be defined before compiling.
In the Python code this is the hard coded number nl = L - d? defined in line 2. Nevertheless,
increasing d or L can be done straightforwardly if needed, but requires to recompile. The next
listing demonstrates how we can use the previous definition to implement the forms needed for
specifying the discrete adjoint equation .

import imp
def_A = imp.load_source('', './def_A.py')

E = VectorConstant("triangle", def_A.nl)

P1 = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(P1)

p = TrialFunction(P1) # current solution

p0 = Coefficient(P1) # solution from previous time step
y = Coefficient(P1) # y(T-t)

tau = Constant (triangle)

epsilon = Constant(triangle)

delta = Constant(triangle)

second derivative of the potential
ddphi = 3*y*y-1

define forms
a = tauxdot(derivative(def_A.A_prime(grad(y), E, delta), y, v), grad(p))*dx \
+ v¥p*dx + tau/(epsilon*epsilon)*ddphi*p*v*dx

L = pO*v*dx

The most important part is the definition of the BilinearForm a and the LinearForm L in lines
20 and 22. Here a is the left-hand side of (2.77) with the unknown p; represented by p and the
right-hand side is given by L where the previous computed solution p; 1 appears as p0. Note that

85

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

3 Algorithms and implementation

the derivative Aj is computed automatically by the derivative function provided by FEniCS
in line 20. The purpose of the previous bunch of lines is to define the quantities appearing
in the definition of the forms. For instance, the scalar values 7;, € and ¢ are represented by
variables of type Constant and will be defined in the C++ code similar to E above (no need for
a std::vector here). Furthermore the appearing functions are defined in lines 7 to 10. Both
forms contain a TestFunction and the BilinearForm a differs from the LinearForm L by also
including the TrialFunction p after which is solved. Functions without further purpose like
the solution of the previous time step or of the state equation enter as Coefficient. The above
specifications can now be compiled on the command line by

ffc -1 dolfin -0 Adjoint_i.ufl

where the option -1 specifies for which interface the output should be generated and -0 instructs
the form compiler to produce optimized code. The next listing demonstrates how the defined
forms can be used in the C++ code via the DOLFIN library to solve the adjoint equation.

void solve_adjoint(std::shared_ptr<const Mesh> mesh, double* y, double* p_out)
{

// initialize forms and set the required parameters

auto V = std::make_shared<Adjoint_i::FunctionSpace>(mesh);

Adjoint_i::BilinearForm a(V, V);
Adjoint_i::LinearForm L(V);

auto p = std::make_shared<Function>(V);
auto pO0 = std::make_shared<Function>(V);
auto y_t = std::make_shared<Function>(V);

auto c_tau = std::make_shared<Constant>(pms.tau) ;
auto c_epsilon = std::make_shared<Constant>(pms.epsilon);
auto c_delta = std::make_shared<Constant>(pms.delta);

a.tau = c_tau;
a.epsilon = c_epsilon;
a.y = y_t;

a.delta = c_delta;
a.E = E;

L.p0 = pO;

// set up intitial condition

TargetState y_omega;

auto y_T = std::make_shared<Function>(V);

auto y_omega_i = std::make_shared<Function>(V);
y_omega_i->interpolate(y_omega) ;

set_vector (*(y_T->vector()), y, pms.n_timesteps, mesh);
p=y.T;

*(p—>vector()) -= *(y_omega_i->vector());
*(p->vector()) *= 1/pms.epsilon;

// set up GMRES solver (default preconditioner ts ILU)
KrylovSolver solver('"gmres", "default");
solver.parameters["nonzero_initial_guess"] = true;
solver.parameters["relative_tolerance"] = pms.lin_tol;
solver.parameters["absolute_tolerance"] = pms.lin_globaltol;

86

40

41

42

43

44

45

46

47

48

49

1

2

3.3 Comments on the implementation

Vector b;
Matrix S;

// solve the time discrete problem
int i=pms.n_timesteps;
for (double t = pms.T; t >= pms.tau-__EPS__; t -= pms.tau)

{
*(p0->vector()) = *(p->vector());
set_vector (*(y_t->vector()), y, i, mesh);
assemble(b, L);
assemble(S, a);
solver.solve(S, *(p->vector()), b);
set_data(*(p->vector()), p_out, i, mesh);
i--;

+

set_data(*(p->vector()), p_out, i, mesh);

}

The function solve_adjoint takes as parameters the grid, a vector containing the solution of
the state equation that appears as final condition and a vector where the computed solution is
stored. In lines 4 to 22 the BilinearForm and LinearForm defined in a file called Adjoint_i.h
outputted by the previous ffc command are initialized. pms is a global struct containing
several parameters that appear quite commonly in the whole simulation. Also E which contains
the definition of the G;’s is defined globally as it appears in every function that solves one of
the PDEs. Next, the right-hand side of the first equation given by py1 (see below ([2.77)) is
defined. The GMRES solver is initialized in line 35 and its parameters are set up until line 38.
The computationally expensive part is done in the for-loop between lines 45 and 56, where
each time step of is computed successively. The value of __EPS__ is 107'° and it is used
to compensate rounding errors accumulated during the subtractions. The GMRES solver is
called in line 52, where the parameters are a Vector and Matrix containing the previously
assembled forms and a Vector where the obtained solution for the current time step is stored.
The collection of all time steps is stored in the variables y and p_out that are of type doublex*
and have dimension (N + 1) x N7, where with N we denote the number of time steps like
in Section and by Nj we denote the number of spatial grid points in one direction. The
additional time step is for the initial value that for convenience is also stored in these variables.
Finally we note that line 50 could equally well have been written as

M.mult (* (pO->vector()), b);

with a mass matrix M defined once. This might be cheaper as an explicit assembly, but in the
example above we wanted to demonstrate how the right-hand side can generally be obtained by
defining a LinearForm.

State equation

Now we head on to the state equation. In principle the appearing files and functions are of
the same structure as for the adjoint equation. However one has to take care that, due to its
nonlinear nature one has to set up a corresponding solver. In C++ the NonlinearProblem
needed by the Newton solver is defined as follows.

class AllenCahnNLP : public NonlinearProblem
{

87

10

11

13

14

15

16

17

19

20

21

22

23

24

3 Algorithms and implementation

public:
AllenCahnNLP(AllenCahn_i: :LinearForm& L,
AllenCahn_i::BilinearForm& a): _a(a), _L(L) {}
virtual void F(GenericVector& b, const GenericVector& x)
{
assemble(b, _L);
}
virtual void J(GenericMatrix& A, const GenericVector& x)
{
assemble(A, _a);
}
private:

AllenCahn_i::BilinearForm& _a;
AllenCahn_i: :LinearForm& _L;
i

The class AllenCahnNLP needs to override the virtual functions F and J provided by its base
class. Here F should assemble in the vector b the equation whose root is looked for (in our case
the left-hand side minus the right-hand side of the discrete Allen-Cahn equation) and J should
set up its derivative. The forms we use to setup these are handed over in the constructor in
line 4. Their definitions can be found in the following UFL code that to most part is similar to
the one from the adjoint equation.

import imp
def_A = imp.load_source('', './def_A.py')

E = VectorConstant("triangle", def_A.nl)
P1 = FiniteElement("Lagrange", "triangle", 1)

dy = TrialFunction(P1)
v = TestFunction(P1)
y = Coefficient(P1) # current solution

yO = Coefficient(P1) # solution from previous time step

u = Coefficient(P1) # control u(t)
tau = Constant(triangle)
epsilon = Constant(triangle)
delta = Constant (triangle)

first and second derivative of the potential
dphi = -y*(1-y*y)
ddphi = 3*y*y-1

L = tau*dot(def_A.A_prime(grad(y), E, delta), grad(v))*dx + v*y*dx \
+ tau/(epsilon*epsilon)*dphi*v*dx - v*(y0 + uxtau/epsilon)*dx
a = derivative(L, y, dy)

In line 22 we define the LinearForm that belongs to one time step of the discrete Allen-Cahn
equation . Analogously to before, the solution from the previous time step y;_1 appears
as the Coefficient yO. Note that also y is only a Coefficient as this form only appears
on the right-hand side of the Newton equation. In contrast, the BilinearForm defined in

88

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

3.3 Comments on the implementation

line 24 contains the TrialFunction dy. It is simply given by the directional derivative of L into
direction dy which is computed by the means of the FEniCS toolbox. With these definitions the
built-in Newton solver is able to iteratively compute a solution to the nonlinear state equation.
The complete code to solve the state equation for a given right-hand side u is given in the
following listing.

void solve_state(std::shared_ptr<const Mesh> mesh, double* u, double* y_out)

{

// initialize forms and set the required parameters
auto V = std::make_shared<AllenCahn_i: :FunctionSpace>(mesh) ;

AllenCahn_i: :BilinearForm a(V, V);
AllenCahn_i: :LinearForm L(V);

auto y = std::make_shared<Function>(V);
auto y0 = std::make_shared<Function>(V);

auto u_t = std::make_shared<Function>(V);

auto c_tau = std::make_shared<Constant>(pms.tau) ;

auto c_epsilon = std::make_shared<Constant>(pms.epsilon);
auto c_delta = std::make_shared<Constant>(pms.delta);

a.tau = c_tau;

a.delta = c_delta;

a.E = E;

a.epsilon = c_epsilon;
a.y =y,

L.tau = c_tau;

L.delta = c_delta;

L.E = E;

L.epsilon = c_epsilon;
Ly =1y;

L.y0 = yO;

L.u=nu_t;

AllenCahnNLP NLP(L, a);

// set up nonlinear solver
PETScSNESSolver newton_solver (MPI_COMM_WORLD) ;
newton_solver.parameters["method"] = "newtontr";

newton_solver.parameters["linear_solver"] = "gmres";

newton_solver.parameters["maximum_iterations"] =
newton_solver.parameters["relative_tolerance"] =
newton_solver.parameters["absolute_tolerance"] =

// set up intitial condition
InitialState y_initial;

¥y = y_initial;

set_data(x(y->vector()), y_out, O, mesh);

int i=1;

200;
pms.nonlin_tol;
pms.nonlin_globaltol;

for (double t = pms.tau; t <= pms.T+__EPS__; t += pms.tau)

{
*(yO->vector()) = *(y—>vector());
set_vector (*(u_t->vector()), u, i, mesh);

89

10

11

12

14

15

16

17

3 Algorithms and implementation

auto [nnorm,nconv] = newton_solver.solve(NLP, *(y->vector()));
if (!nconv)
printf ("Newton did not converge!\n");

set_data(*(y->vector()), y_out, i, mesh);
it++;

}

Apart from the mesh, the function takes the control u and the array y_out, where the solution
is stored. Note that the latter is typically identical to the array y handed over in the function
solve_adjoint discussed previously. As before, first the LinearForm and BilinearForm are
set up starting at line 3 until line 28. The class AllenCahnNLP defined in the previous listing
is initialized in line 30 and used later in line 51 to solve the Newton equation appearing in each
time step. The trust region solver used for this is defined in line 33 and configured in the lines
that follow. The state equation is solved between lines 45 and 57, where each iteration of the
for-loop corresponds to one time step.

Linearized and additional adjoint equation

The linearized and additional adjoint equation are implemented in functions that are called
solve_linearized and solve_additional_adjoint. As the implementation is very similar to
the adjoint equation, they will not be listed completely here. Note however that the operators K,
K* and P (cf.) are the same in each iteration of the Steihaug-CG solver. As their assembly
needs to load the previously computed functions y and p as well as to compute the quadrature
of nonlinear integrals, it makes sense to store them for later reuse. For the operator P (that
only has to be computed in solve_additional_adjoint), it is not clear a priori if there will
be any benefit from this, as it has to be combined with the solution from the previous time
step anyway owed to the stepwise forward/backward substitution we implemented. This will be
further investigated in Section [£-5] To conclude this subsection let us briefly take a look at how
the function solve_linearized has implemented the discussed feature.

void solve_linearized(std::shared_ptr<const Mesh> mesh, doublex y, double* du,
double* dy_out, int iter)

{
static std::vector<Matrix> Mat_store_S(pms.n_timesteps+1);
[...]
for (t = pms.tau; t <= pms.T+__EPS__; t += pms.tau)
{
[...]
if (iter == 1)
{
set_vector (*(y_t->vector()), y, i, mesh);
assemble(Mat_store_S[i-1], a);
}
[...]
solver.solve(Mat_store_S[i-1], *(dy->vector()), b);
[...]
}
[...]
}

First of all, we have to pass the iteration count of the Steihaug-CG method in line 2. This is
needed later in line 9 as the matrix has only to be assembled in the first iteration. For all other
iterations we can readily use the matrix in line 15 as it is already stored in Mat_store_S then.

90

3.3 Comments on the implementation

The latter is initialized in line 4 and is of type static std::vector<Matrix>. The attribute
static ensures that it is only initialized once at startup and available at every function call
with the modifications previously applied.

Finally note that the third derivative of A appearing in is computed by automatic
differentiation, i.e., in the ufl code we write

(derivative(derivative(defM.A_prime(grad(y),E,delta),y,v),y,dy),grad(p))*dx

Note that the order of the application of the various variables is important here as A"’ is not
guaranteed to be symmetric.

3.3.2 Parallelization

As we have seen, the algorithms presented in this chapter are computationally expensive as they
require the repeated solution of several PDEs. Although we believe to have chosen the most
suitable methods for our problem and also made use of the built-in preconditioning options of
our PDE solving backend, due to the complexity of the present control problem computations
may still take long time. Another possibility of speeding up the code in addition on the hardware
level is to allow the use of multiple processing cores which will be subject of this section. For
doing so we use the Message Passing Interface (MPI, [58]) that is also supported by FEniCS
and is commonly used in scientific computing. This standard defines routines that coordinate
communication between processes on a multiple instruction multiple data (MIMD) machine. In
principle MPI is fully supported by FEniCS and the code will automatically run in parallel if it
is started via

mpirun -n 4 ./a.out

where in this example the executable file a.out is run by 4 processes. In the case of optimal
control we also would like to temporarily save the solutions of every time step of the appearing
PDE:s since they might reappear in another PDE or just to avoid repeated computations (for
example in case the trust region radius is reduced). Further we would like to be able to store the
computed solutions on a hard drive as a backup copy or for later resumption. Note that the vtu
files produced by FEniCS are only meant for plotting and cannot be read back into the program
offhand. Therefore, we pursue a different approach. Instead of storing the results in terms of
the vector data type provided by the FEniCS framework we stored the binary data of the node
values in an array. The latter is sufficient as we use the same uniform mesh in every time step,
so the mesh information does not have to be stored separately. The data can be stored in a
binary file by simply calling the C routine fwrite. Since every process only holds the data it
uses, each of them has to write its own file in order to avoid unnecessary communication. The
code snippet

sprintf(filename, "example_file_%i.bin", MPI::rank(mesh->mpi_comm()));

can be applied to avoid name collisions. The FEniCS interface however only allows to modify its
built-in vector class component-wise or by passing a std: :vector<double>. On the other side
we store all time steps of a quantity in one array, so we only have the starting address of the
storage belonging to a specific time step. To be able to efficiently use the std: :vector interface
of FEniCS, we use the following wrapper class template adapted from [82].

template <class T>
class vectorWrapper : public std::vector<T>
{
public:
vectorWrapper (T* sourceArray, int arraySize)
{

this->_M_impl._M_start = sourceArray;

91

13

14

15

16

3 Algorithms and implementation

this->_M_impl._M_finish = this->_M_impl._M_end_of_storage
sourceArray + arraySize;

}
“vectorWrapper ()
{
this->_M_impl._M_start = this->_M_impl._M_finish
= this->_M_impl._M_end_of_storage = NULL;
}

};

This allows the construction of a class compatible to std: : vector out of existing storage without
clearing it upon destruction. We note that its definition depends on the specific implementation
of std: :vector and might have to be adapted for other compilers or future revisions of the
C++ standard library (we use the g++ compiler in version 7.5.0). Nethertheless this allows
to seamlessly communicate with the interface of the GenericVector class without reallocating
memory and invoking unnecessary copies. The following code demonstrates how to get the data
of a GenericVector derivative and save it in an array of type doublex.

void set_data(GenericVector& v, double* data, int step,
std: :shared_ptr<const Mesh> mesh, int nTimesteps)

{
double* y_t = get_func_at_timestep(data, step, mesh, nTimesteps);
vectorWrapper<double> tmp(y_t, v.local_size());
v.get_local(tmp) ;

}

The code assumes that the array data consecutively stores every time step after another. Since
the correct advancement of the pointer is a recurring task, it was outsourced into a function called
get_func_at_timestep. The data is fetched in line 6 using the instance of vectorWrapper
defined in the previous line from the computed memory address. We note that FEniCS makes
sure that only the local memory of each process is read out here and apart from calling
GenericVector: :local_size we do not have to care about the local index structure. Further-
more, we remark that the above approach works because GenericVector: :get_local does not
change the memory allocated by the passed std: :vector, since otherwise the vectorWrapper
was corrupted. In a similar fashion we can also set the data of a GenericVector.

void set_vector(GenericVector& v, double*x data, int step,
std: :shared_ptr<const Mesh> mesh, int nTimesteps)

{
double* y_t = get_func_at_timestep(data, step, mesh, nTimesteps);
const vectorWrapper<double> tmp(y_t, v.local_size());
v.set_local (tmp);
v.apply("");

}

Also here the call to GenericVector: :set_local with the vectorWrapper argument in line 6
is crucial. The final invocation of GenericVector: :apply is necessary to finalize the vector
construction.

3.3.3 About mesh refinement

Another technique that is commonly applied to improve computational efficiency in context of
numerics for PDEs is the use of an adaptive mesh strategy. By doing so, one is typically able
to drastically decrease the number of degrees of freedom and hence computation time. This is
especially amenable for phase field models, where in general only the interface has to be resolved

92

3.3 Comments on the implementation

sufficiently well, since in the remaining regions the solution stays almost constant. However, in
context of optimal control there arise several additional challenges, which will be discussed in
this subsection.

Generally speaking, mesh adaptivity requires a good estimator of the local discretization error
based on which the decision regarding a possible refinement is taken. Like before, the space
and time discretizations are usually considered separately. In case of phase field models, we
refer to |17} |105] |52] for presentations of different approaches to adaptive space discretization.
With respect to time, in this particular context no special adaptivity strategies are known to the
author. The cited approaches work well as long as merely the forward problem without control
is considered, since then the interfaces are expected to only change slowly between the time
steps and topology changes are foreseeable at an early stage. This might no longer be true for
non-vanishing right-hand sides. For instance, in the controlled case, new phases can appear out
of nowhere which is not predicted by the above approaches early enough. For optimal control,
the usual strategy therefore is to try to reduce errors in a special cost functional (that does not
need to be J(y,u)), rather than looking at the state equation. We refer to [98] for a discussion
in the parabolic case where space as well as time adaptivity is considered. These strategies
generally apply to optimal control problems and are not specifically adapted for phase field
models.

In any case, the question that arises is whether to use different meshes for the different quantities.
For all PDEs most of the action is expected to take place in vicinity of the interfaces. Nevertheless,
there still can be strong deviations from this. For instance consider the adjoint state which
satisfies p(T) = é(y(T) — yq) by definition. At the beginning of the control procedure, y(7T') is
expected to be significantly different from yq and as a consequence an important part of the
evolution of the adjoint equation will take place outside of the interface region of the state. This
can be remedied by using a different mesh for the adjoint equation. The same holds true for the
linearized equation and the additional adjoint equation if one were to use the trust region Newton
method with Steihaug-CG presented in Sections [3.1.1] and [3.1.2] Using different meshes also
has disadvantages however. One drawback is that the approaches first-discretize-then-optimize
and first-optimize-then-discretize (cf. Section may no longer coincide as the discretization
spaces differ. Further, for the semi-implicit scheme that was introduced in Section [2.7] the
discretization of the equations could not be derived from a discontinuous Galerkin approach. So
it would not be clear how a reasonable discretization of the adjoint equation would look like
in case the time steps differ from those of the state equation, since then the approach from
Section does no longer work and would have to be discretized directly. Another
problem is that the solutions have to be projected or interpolated into the appropriate spaces
when appearing in another equation. On the one hand this leads to additional computational
effort that might nullify the gains obtained from the reduction of degrees of freedom aimed at
by adaptivity. On the other hand it might not always be clear how the interpolation should be
done. As an example, we again mention the semi-implicit scheme where no clear correspondence
of the solutions y; to a specific time interval I; is possible. This then also complicates the
mapping between solutions of forward and backward problems.

The other approach would be to use the same mesh for all four appearing PDEs. Then one might
run into the incompatibility problems described above, but after the optimization algorithm
has established for a certain time, it might be a good approach to assume that the area of
interest is the same for all equations. Instead of considering the state equation time step wise,
one could also consider to successively solve the optimization problem for increasingly refined
meshes as is also pursued in [98]. If one interpolates the old solution as a starting configuration
for the refined run, the adjoint state should already live in the vicinity of the interface from
the beginning. Some test cases performed for the isotropic Allen-Cahn equation indicated that
also in this case the adaptive version performs inferior to the non-adaptive one, see [116]. The
latter allows for various tweaks in the implementation with respect to efficiency that can be
implemented instead then.

Finally, let us note that another question concerns the choice of the discretization of the control
space. A common choice is to take the same space as that for the adjoint state motivated by
the form of the gradient . However, in context of adaptivity this implies that one might

93

3 Algorithms and implementation

have a different discrete control space in each step of the optimization procedure. With that, it
is in general not clear that the optimization algorithm converges at all.

Due to the significant amount of extra work one has to put into the implementation and
the questionable increase in performance that can be expected, we ultimately decided not to
employ mesh refinement in our programs. Instead we resort to parallelization as described
in Section [3:3.2] and implemented various optimizations that are possible for a non-adaptive
version, like reusing some already computed quantities. As mentioned before, we do not expect
any drawbacks according to the observations of |[116]. The situation could be different if we
considered smaller € as then also the space discretization has to be finer, leading to much more
degrees of freedom if we would not use an adaptive mesh. Also for possible simulations in three
space dimensions one should think about adaptivity again.

94

Numerical results

In the final part of this thesis we want to report the numerical results for the optimal control
of the anisotropic Allen-Cahn equation that were achieved with the presented method. Let
us note that in contrast to chapter [2 here we fix 1) to consistently be the smooth double-well
potential 1(s) = 1(1 — s?)? which corresponds to Cy = 1 in Assumptions and For
the anisotropy A we consider various choices that will be specified below, but are all of the form
introduced in Section Furthermore, in constrast to Section to keep the presentation
lucid we drop the index ¢ in the relevant quantities as long as we consider this parameter fixed.
In fact, all simulations in this chapter, apart from the isotropic ones, were computed with a
regularized anisotropy.

Preliminary numerical results have been obtained by a line search method based on the gradient
Vj, as described in Section This however performed rather poor for the present optimiza-
tion problem. For instance, the simulation from Figure [1.18b| later only took 37 iterations with
the trust region method. In Figure [£.I] we see the first 5000 steps obtained from applying the

| | \ \ |
10° steepest descent ———
102 ey trust region ——

el

S
=10 8
Z 10710

10—12

10-14 \ \ \ \ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

iteration k

(
—_
o
I
o vl o ol \HIJ

Figure 4.1: Comparison of the convergence of the steepest descent method and the trust region
Newton method for the setting from Figure [£.18h]

steepest descent method to the very same setting. As expected we observe linear convergence,
but the rate of error reduction is very small. In case of the isotropic Allen-Cahn equation,
for a more detailed comparison we refer to [116] (see also [24]). Due to these performance
deficiencies, we stayed with the trust region solver as we have not seen any relevant differences
in the computed controls and states.

95

4 Numerical results

Before we will present the actual numerical results, we will therefore first introduce the additional
equations that are needed to incorporate the second order information that is needed for the
trust region Newton method. In contrast to the analysis in Section they are only given
formally here. After that we will specify the matrices G; from Section that are needed to
define the utilized anisotropies and will also provide the values of the remaining parameters that
are used for the simulations. Most of them stay fixed throughout the simulations if not stated
otherwise. In the following sections we will then discuss various outcomes of the numerical
simulations. First we will give support for the convergence result of Theorem [2.5.1] concerning
the regularization. Then, we will provide numerical evidence for mesh independent behavior
in the solution process and we present optimal control results for different anisotropies and
different desired states, including star like objects and topology changes. This is followed by a
discussion of some of the quantities that give some information about the solution process of the
algorithm. In the end, we compare some of the implementational issues that were brought up in
course of the thesis, especially with regard to execution speed. For instance, we will compare
our implicit scheme to the semi-implicit one from Section discuss the benefit of storing
quantities from the linearized equations as discussed by the end of Section [3:3.1] and investigate
the usefulness of parallelization in our context.

Linearized equations

Let us briefly summarize the main formulas that are needed to understand the trust region
Newton method with Steihaug-CG from Sections and in context of the optimal
control of the anisotropic Allen-Cahn equation. As a quick overview one might also consult the
pseudocodes from listings [2| and [3, where in our case U = L?(Q).

In this thesis the trust region method is used to find a local optimizer of the reduced cost
functional

. . 1 A
jr i Ur =Ry jr(ur) = 5 llyr(T) = woll* + o [lu |,

by solving the first order condition Vj,(u,) = 0 with
_ A
V.]T(UT) = guT + Dr-

Here y, = S:(u;) is given by the state equation (2.60) and p, = (S.(u;))*(y-(T) — yq) is
the solution of the time discrete adjoint equation Recall that the trust region method
extends the established Newton method by a globalization strategy that is needed due to the
nonlinearity of the state equation, and hence the non-convexity of j.(u;).
The Steihaug-CG method [123] determines in each step the approximate solution du, of the
quadratic subproblem at the current iterate u.,. given by

min (Vi (ur),6ur) + (V257 (ur)dur, du,). (4.1)

lldurll<o

The new iterate is then set to u, + du.,.
The second derivative that we require here, in particular its action on an L?(Q)-function, can
be deduced formally like in Section [2:7.2] Since we do not need it at other places, we will be
content with that. As expected, its general form is given by

VQjT(uT)(SuT = g(sur + 0p. (42)

Here, for the given solution p,(u,) of (2.77), the derivative

dpr(ur
Spr = M<
du,

shall fulfill the additional adjoint equation, which in time discrete form is given by dpy 41 := %(Sy N

96

and
e(A5 (Vy;)Ve, Vop;) + (20" () + £, 0p5) = (¢, £0pj+1)

—e(AY' (Vy)) [V, Voy,], Vo)) — (" () edys.p) Vi=1,....N, ¢ € H'(Q).
As for the unique existence of the solution to is guaranteed in each time ste(;)l z;

long as the right-hand side is well defined. The time continuous counterpart can be found in
(1.27) and reads in variational formulation as

—&(n, 9:0p) + e(A5(Vy)Vn, Vop) + é(w”(y)n, op) =

L msy.p) Wne 20T H\Q), (44)

— e(AY'(Vy)[Vn, Véyl, Vp) — -

op(T) = ééy(T) in Q.

The appearing linearized state 0y, is determined as the unique solution to the linearized state

equation (2.74) with v = du.,, i.e.

5(Ag(Vyj)V5yj,V(p)+(%¢”(yj)5yj+$j5yj,<p) = (5uj,<p)+$j((5yj_1,np) Vj=1,...N, pc HY(Q).
(4.5)
Analogous to before, this equation in essence is given by the derivative of y, in direction of du,
ie.
dyr (ur)
oYy i:= ———=0
4 du,

The time continuous counterpart reads in variational formulation as (cf. egs. (1.26]) and (2.75))

T

1
£(0e9y.m) + (A5 (Vy)Voy, Vi) + — (4" (y)oy,m) = (Ju,m) ~ Vn & L*(0,T; H'(2)),
5y(0) =0 in Q.

Note that egs. (4.5)) and (4.6) as well as egs. (4.3) and (4.4 are related by the discontinuous

Galerkin time discretization as for the state and adjoint equations. With that we have that
each of the discretized equations has a time continuous counterpart (cf. egs. , ,
and) As described in Section eqs. , and are the equations you would
expect to get as the adjoint and corresponding linearized equations for . Thus at least on a
formal level it holds that the approaches first discretize then optimize and first optimize then
discretize commute for the implicit time discretization in the sense of 79, chapters 3.2.2 and
3.2.3]. Also discretization and optimization are interchangeable for the spatial discretization if
one chooses the same ansatz spaces for y and p (see also the discussion in Sections and .
Consequently, one expects to obtain for the optimization solver iteration numbers independent
of the discretization level. This is also strengthened by the numerical observations in Section [£.2}
Note that in contrast to Aj, in general the 3-tensor A§’ appearing in is not symmetric,
so we had to keep care of order in the corresponding term. In the implementation, Af’ is
determined by automatic differentiation (cf. the very last code snipped in Section —stating
an explicit formula does give no new insight. Moreover, since Vy = 0 in the pure phases one
is particularly interested in the behavior of A%(q) when ¢ — 0. However, A" (\/3§ (1)) behaves
like 1/v/8 due to the 2-homogeneity of A (see) Hence lim,_,o A4’ (g) cannot be bounded
independently of 6. Numerically we face this problem for values § < 1073,

(4.6)

Standard choice of the parameters

In the following we will expose the standard setup that we used as a basis for all simulations. If
not mentioned otherwise, the values given here are used in the considered example. To keep
the computational cost moderate we set d = 2 in all experiments. Furthermore, throughout
this section we use as a spatial domain the square = (—1,1)2. For the time horizon [0, 7] we

97

4 Numerical results

choose T = 1.625 - 10~2 and we set the parameters ¢ = ﬁ, A = 0.01 and the regularization
parameter 6 = 10~7. We choose the constant time step size 7 = 1.625 - 10~%, which fulfills the
condition 7 < £2/Cy and Q is uniformly discretized with 129 x 129 grid points. Moreover by
numerical evidence we know that the interface is resolved sufficiently with 6-14 mesh points
across its expansion.

For the optimization solver the settings are as follows. As stopping criterion we use an absolute
tolerance of 10! for the trust region method and for the Steihaug-CG solver we use a relative
tolerance of 10719 and an absolute tolerance of 103, Furthermore, we allow for a maximum
amount of 800 CG steps per trust region iteration. The initial trust region radius is set to o =1
and the upper bound is given by omax = 100. Finally, each computation started with u(9) = 0.
Throughout this section, we will look at various setups that mainly vary by yg, yq and the final
time T'. For the anisotropies determined by G; (cf. egs. and) we use three different

choices, that are listed in the following.

1. isotropic case: y(p) = ||p||2 this would belong to the choice L = 1 with

G = <(1) ‘1)> . (4.7)

Note that in this case regularization is not necessary. In addition, the regularization would
cancel out as can be seen in (2.98) and as it is also discussed in the corresponding text
thereunder.

2. regularized [;-norm: This is given by L = 2 and

1/1 0 1/e O
G1_2<0 6)7 G2_2<0 1)7 (48)

with some small parameter e that we set to e = 0.01 (not to be confused with the interface
parameter). For ¢ = 0 and without the scaling of %, this would reduce to the ordinary
l1-norm.

3. form of a smoothed hexagon: Here L = 3 and

Glzl))<cos(al) —sin(al)> ((1) 0><cos(al) sin(al)), @9)

sin(ag) cos(ay) €) \—sin(oy) cos(ay)

where a; = £1, 1 =1,2,3 and € as before.

Remark 4.0.1. Note that in general there can be more than one combination of matrices that
lead to the same outcome. For example, for arbitrary L the first choice is equivalent to using

& 0
Gl:(%z 1) forl=1,...,L,
iz

as can quickly be verified by inserting this into . Of course one should not use this
version as it provides much more computational overhead since the algorithm does not simplify
automatically. Nevertheless, this formulation can be used to check the correctness of the
equations that were enhanced to contain the anisotropy. Note however, that the results might
differ slightly though as the versions for different L are no longer completely the same after
discretization.

In contrast to the choices in [14] we divided the matrices by their total amount L. By this
scaling the costs between the different anisotropies becomes more comparable, since by numerical
observation the velocity of the shrinkage is approximately equal. This can also be seen by
looking at the Wulff shapes, which are defined as

=2

W = {qeRd: sup ﬁgl},
pERI\{0}

98

4.1 Dependence on the regularization parameter ¢

see [138], and whose boundary can be parametrized as

for ze 84t

L
Y 5) = GlZ

v

see [69]. In Figure they are visualized for the above choices of «v. Without the rescaling the
Waulff shape of the hexagon anisotropy would extend approximately to the label 2.0 on each
axis, with the rescaling they have about the same extension as can be observed in the figure.
For completeness, we give also the corresponding Frank diagrams that are defined by

F = {qeRd:'y(q)gl},
and whose boundary can be parametrized by

zr(2) = & for z € 841,

see again [69]. They can be looked at in Figure

Figure 4.2: Wulff shapes of isotropic, ;- and hexagon-anisotropy settings.

Figure 4.3: Frank diagrams of isotropic, /- and hexagon-anisotropy settings.

Recall from Section that as computing framework we used FEniCS [5] or rather its C++
interface DOLFIN [91]. The version number thereof was 2019.1.0. The simulations were carried
out on an HP EliteDesk 800 G4 workstation containing an Intel Core i7-8700 CPU with 12 cores
& 3.20GHz and 16 GB of RAM.

4.1 Dependence on the regularization parameter ¢

Here we analyze numerically the dependence of the solution of the state equation on the
parameter §. As a setting we start from a circle of radius 0.5 and look at the evolution of the
state only using u = 0. Here T" and the remaining parameters remain the same as given in the
introductory section before. A plot containing the results for the choices of both anisotropies
respectively is given in Figure[£.4] Recall from above that for the isotropic case the regularization
drops out, so it does not make sense to discuss it here. We have plotted both the difference
of the states in L%({2) as well as H({2) at the end point 7. Since errors accumulate during
the time evolution, the deviation at 7" should be a good metric for comparison. As one would
expect, the values for the H'(2)-norm are steadily bigger than those for the L?(Q)-norm. Apart

99

4 Numerical results

from that, the values between both anisotropies seem to be very similar. With the additionally
plotted function f(x) = 2'/2 (i.e. a line with slope 1/2 on the log-log-plot) the figure clearly
exhibits the convergence order 1/2 which is expected according to egs. and , ie., it
equals the approximation order of A5 to A’. One can observe deviations from the straight line
for values below 10722, Here errors arising from computational inaccuracies dominate. However,
the optimization algorithm may break down earlier as it also involves the adjoint and linearized
equations.

10° | & 100 | &
1072 | E 1072 | E
104
10-6
10-8

10-10 10710 |

1012 10712 |

I ey ——]

10—14
I lae) ——
zl/?

10—14

10—16]U—IS

- . - ol . d i - . - d - i i ud .
1073(] 1072) 1072(\ 10715 1071“ 1075 100 107«5[\ 10725 1071“ 10715 10710 1075 100
regularization parameter o regularization parameter &
(a) Results for the regularized /;-norm. (b) Results for the hexagon anisotropy.

Figure 4.4: Comparison of ||y2(T) — y,(T)| in the L?(Q2)- and H'(Q)-norms for different values
of 4.

Furthermore, also with regard to the next section, let us mention that according to our experience
there is at most weak dependence of the number of the trust region as well as of the Steihaug-CG
iterations when varying §. They stay nearly the same as in Tables [£.1] and [£.2] and are therefore
not listed there. If ¢ is such small that rounding errors accumulate for A and even more for A}’
(and consequently for the solutions of the respective equations) the algorithm may not converge.
However, for § > 10710 the algorithm was always robust.

4.2 Mesh independent behavior

In this section we investigate numerically if the problem solver depends on the granularity
of the mesh. Recall from Sections and that the Steihaug-CG method should be
independent of the time steps size and the spatial discretization. For the trust region solver
we do not have a theoretical result. More concretely, in this section we look at the number
of trust region iterations, called TR steps in the following tables, as well as at the number of
Steihaug-CG steps that are needed to solve the quadratic subproblems. Since the Steihaug
algorithm consists of early stopping criteria given by the trust region algorithm, the amount of
Steihaug-CG steps might vary drastically over the progress of the algorithm. Also, given that
we have a fixed absolute tolerance, this amount can depend strongly on how close we are to the
actual solution, since this has an influence on the initial residual. During the end of the outer
trust region method, the Steihaug-CG algorithm already starts with a small residual. Therefore
only looking at the average amount of Steihaug steps is no good metric to measure performance
of the method. We rather look at the average amount of steps, called mean CG in the following
tables, that are needed to decrease the residual by 6 orders of magnitude. This is only done
for trust region steps where this kind of measurement is possible (i.e. span a proper amount of
magnitudes). In addition we also take the maximum amount, called maz CG as an indicator.
These numbers of CG iterations reflect on the conditioning of the linear systems corresponding
to the quadratic subproblems. To avoid confusion we point out that the results of the numerics
section were computed without extra preconditioning. The mesh independence observed here is
rather a consequence of considering the reduced Hessian approach (see Sections and .
As final time we choose in these experiments 7' = 2 x 1073, The deviating choice for T just
comes from the fact that it is easier to vary the time step size with it in the following. The

100

4.2 Mesh independent behavior

remaining parameters are left unchanged. We inspect the dependence on the space discretization
by fixing 7 = 10~ and varying h = 2/N. For analyzing the dependence on the step size T we
fix the spatial mesh size using N = 128.

As model problem for the isotropic case, we consider the control of a circle from radius r = 0.5
to r = 0.55. The corresponding results can be found in Table [£.I] One cannot observe a clear
tendency that would suggest dependency of the maximal or mean number of CG iterations and
of the trust region steps on the granularity, as is expected by the discussion from earlier in this
numerics section. Only the amount of total computing time clearly increases with the number
of unknowns which is owed to the growing computational costs. Let us mention that in case of
7 =10"% and N = 516 the reduced optimization problem has around 5.4 million unknowns given
by the amount of discretization points of u. If 7 = 107¢ and N = 128 the number of unknowns
is roughly 33.3 million. Note that the column associated with N = 128 of the left table presents
the same data as the column associated with 7 = 10~ of the right table. For reproducibility we
point out that due to the parallelization of the algorithm and the non-commutativity of floating
point operations the results might vary slightly among runs sharing the same configuration.

N 64 128 256 512 T 107* 107** 1075 107%% 107°
max CG 38 48 38 39 max CG 48 60 34 34 34
mean CG 212 227 188 204 mean CG 227 222 184 18.0 185
TR steps 12 16 11 12 TR steps 16 11 9 8 8
time (s) 17 72 235 1196 time (s) 72 105 213 706 2032

Table 4.1: Dependence on N and 7 for the isotropic case.

Next we do the same analysis for the anisotropic Allen-Cahn equation with the regularized
l1-norm. Here we choose yy and yq to be identical, i.e., we try to keep a square constant. The
outcomes are listed in Table {:2] Again, almost no dependence on the discretization parameters
is observed. Numbers for the average Steihaug steps as well as for the total trust region steps
rather seem to ameliorate for more accurate computations. The values for the Steihaug iterations
are comparable to the isotropic case—the table comparing different 7 may show less tendencies
but the second columns of Table may just be a fluctuation. Only the amount of trust region
steps is generally lower (but still shows a relatively constant behavior across the row). However,
since we chose another configuration that is better adapted to the present anisotropy, a deviation
here is expected.

N 64 128 256 512 T 10-% 10=%*% 1075 10735 1076
max CG 60 40 40 39 max CG 40 40 39 35 35
mean CG 30.0 220 21.3 21.0 mean CG 220 21.8 24.0 20.0 20.7
TR steps 10 6 6 6 TR steps 6 6 7 5 5
time (s) 24 66 194 1193 time (s) 66 161 537 1127 3306

Table 4.2: Dependence on N and 7 for the regularized l;-norm where yq = yqg.

Finally, in Table [£.3] we list the outcomes for the control of a circle to a star with four fingers,
as we want to see if the results also hold for more involved simulations. To get an impression
of the utilized initial and final state, the reader can consult Figure In this case a more
fine-grained control has to be computed which is also reflected by the solution process which
now takes significantly more trust region steps. Also, compared to Table £.2] the number of CG
iterations is increased. While this again indicates a dependency on the control configuration, the
results concerning the CG iterations still hint at a behavior independent of the discretization
level. A slight increase in the number of trust region steps towards finer meshes is present.

101

4 Numerical results

64 128 256 512 T 10-* 107%®* 10°° 10755 1076
max CG 185 207 243 167 max CG 207 180 175 181 175
mean CG 129.0 127.7 139.7 117.0 mean CG 127.7 153.0 148.0 130.5 137.3
TR steps 71 83 106 125 TR steps 83 95 146 126 108
time (s) 95 641 4068 23657 time (s) 641 1462 5476 13753 46297

Table 4.3: Dependence on N and 7 for the simulation circle to 4-star for the regularized /;-norm.

4.3 Numerical examples for different desired states and
anisotropies

In the following subsection we present the solutions for four different objectives: the evolution
to star-like structures, the splitting as well as the merging of geometries and finally the filling of
the entire domain. For the figures showing the evolution of the control u we employed a scaling
of the color that was adjusted to the values at ¢ &~ T'/2. Hence this allows to see where in € the
control is present although its values may be clipped on some images. However adjusting the
range for each image individually would lead to a very confusing presentation. Rather we in
addition include figures showing the L?()-norm of the control over time in order to see how
much the system is controlled at which time step.

4.3.1 Evolution to star-like structures

In the first experiment we start from a circle of radius 0.5 and try to steer it to a star-like
structure with 4 or 6 fingers respectively. The images of the time evolution of the corresponding
states and controls can be found in Figures and For the ‘4-star’ target, the solution of
the state equation is given by the Allen-Cahn equation with the regularized [;-norm anisotropy,
and for the ‘6-star’ target with the ‘hexagon’ anisotropy. In addition we present the results in
both cases for the isotropic evolution equation for comparison. In practice the choice of the
version of the Allen-Cahn equation is given by the model equation and not by the desired state.
Qualitatively the main observation is that in all cases the control takes place in a neighborhood
of the interface. Moreover, the evolution is controlled essentially in the second half of the time
interval. This can be particularly seen in Figure where the L?(2)-norms of the control
are plotted over the time ¢. On the t-axis we indicated the times at which the states and
controls were sampled for Figures and [£.6l One can observe that the control cost gets
bigger during the time evolution. While for the isotropic case the middle part seems to grow
nearly linearly, for the cases of the regularized [;-norm and the hexagon anisotropy one observes
bigger jumps intersected by approximately constant parts. The first plateau comes from the
fact that at the first part the evolution follows the nearly uncontrolled Allen-Cahn flow to get a
square-like, respectively a hexagon-like shape. Only then the control truly enters to initiate the
development of the petals with the strongly non-convex parts. From that point onwards more
control is needed for the anisotropic cases than for the isotropic case but towards the end they
approximately overlap. The last sharp increase arises from the fact that much of the control
is spent to form the details of the excrescences in the last few time steps. Finally we observe
that the intermediate states show strong characteristics of the underlying anisotropy. For the
isotropic cases the contours have a much smoother appearance than for the anisotropic ones. In
comparison to that, the ‘hexagon’ states in Figure for instance have small tips on their
petals. These show exactly into the direction of the corners of the Wulff shape.

4 star 6 star
iso 1 iso hexa
j(u) 0.102184 0.107378 0.115034 0.12248
71+ 72 0.0115987 + 0.0905854 0.0108916 + 0.0964865 0.0122366 + 0.102798 0.0156595 4+ 0.106821

102

Table 4.4: Values of the cost functional.

4.3 Numerical examples for different desired states and anisotropies

(a) Results for the regularized l;-norm.

(b) Results for the isotropic case.

Figure 4.5: ‘circle to 4-star’ solutions: states in the first and third row and controls in the second
and fourth row .

) Results for the hexagon case.

5 5 5 3
B

) Results for the isotropic case.

Figure 4.6: ‘circle to 6-star’ solutions: states in the first and third row and controls in the second
and fourth row.

103

4 Numerical

results

0
0

T
isotropic
reg. Iy

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
t

(a) Results for ‘circle to 4-star’, cf. Figure

j(u)

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0
0

T
isotropic
hexagon

I
0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
t

(b) Results for ‘circle to 6-star’, cf. Figure

Figure 4.7: Time evolution of |lu(t,-)| z2(q)-

T T
isotropic
reg. Iy

L s 4 4 4

20 40 60 80 100 120 140 160
trust region iteration k

(a) Results for ‘circle to 4-star’, cf. Figure

104

- T
isotropic
hexagon

20 40 60 80 100 120
trust region iteration k

(b) Results for ‘circle to 6-star’, cf. Figure

Figure 4.8: Evolution of j(u) over the trust region iterations k.

4.3 Numerical examples for different desired states and anisotropies

In Table the values of the computed (local) minima are listed together with their single
constituents—the difference of the optimal state to the desired state j; = 1 |y(T) — yQH%Z(Q) as

well as the contribution of the control j, = Z%HUHQLQ(Q). We note that the (local) optima for
the isotropic case are slightly below their anisotropic counterparts. We also observe that in all
cases the values for jo are about a magnitude higher than those of j;. As for u the norm over
the whole time horizon is considered, this seems nevertheless a balanced ratio. Further, for our
purposes it is important that the error in the end time point is small so we don’t matter about
having a little bit more cost on the control side.

In Figure the corresponding plots of j(u) against the trust region iterations k are given. One
can observe that a value close to the optimum is soon reached after a rather steep decrease in
the first few iterations. So most of the running time is seemingly taken to optimize some rather
small details in the control of the state equation. Further, the lines nearly overlap as one would
also expect from watching Table [I.4] as the local minima are very comparable in magnitude. At
most one can say that after some time the line for the isotropic case lies constantly below the
other, but this is a consequence of the fact that the algorithm generally converged earlier for
the isotropic case here.

4.3.2 Splitting and merging geometries

Next we take a look at examples where topology changes are necessary to aim at the target. In
Figure we present the results for a simulation where we try to split a circle, a square and a
hexagon into two of such respectively. The underlying model equation uses the (an-)isotropy
with the Wulff shape corresponding to the initial value. In Figure [£.10] the solutions of merging
two of these objects into one are given. Here the target objects are the initial states of the
splitting examples and vice versa. The norms of the corresponding controls over the time can be
seen in Figure To avoid potential confusion, we point out that the scales of the ordinates
are adapted to better fit the plots.

While the hexagon is split by squeezing it together vertically, the circle is controlled to develop
first a hole in the middle and then to increase the hole until the split is present. The square is
divided at the whole middle line simultaneously—as far as we could see visually. The controls
are largest at times where they force topology changes as can be observed in Figure
Considering the examples for ‘merging’ (see Figure we observe a very similar behavior of
the states as for the ‘splitting’ solutions, only backwards in time. There is less control necessary
which is indicated by the values for jo in Tables and where the cost functionals are given
as for the star like examples before. For the isotropic and hexagon example the splitting cost is
higher by a factor of approximately 1.5. That the difference is not bigger is probably due to
the short time interval that forces the evolution of the gradient flow to be accelerated to obtain
the target in time—a phenomenon present for splitting as well as for merging, with comparable
impact. This also leads to the nearly constant time behavior for a long period that can be seen
in Figure Further note that the value of j(u) is mainly driven by js, since the value of
j1 is comparatively small. This is pleasing as we would like the algorithm to approximate the
end time point equally well independent of the special situation. Therefore the costs should
only differ on the intermediate way that can vary strongly between different settings. The
reduction at the end of Figure that is most notable for the square example, is due to the
agreement of the merging with the uncontrolled Allen-Cahn evolution. The steep peak at the
end is explained by the adjustment of small details as was also the case in the earlier examples.
Also notable is the almost linear increase for the isotropic example in the beginning starting at
about 0.002. Comparing with Figure [£.10]lets us conclude that this is due to the deformation
of the circle to build two prongs at the top and bottom, which strongly opposes the natural
Allen-Cahn flow. As soon as the two circles touch at these two points (see the fourth snapshot)
the control cost decreases again.

For completeness we also give the values of j(u) over the course of the trust region algorithm
in Figure [£.12] The behavior is the same as already explained in the previous subsection. In
Figure the lines are a little bit more distinguishable but also the optimum is in Table

105

4 Numerical results

) Result for the ‘splitting circle’ in the isotropic case.

) Result for the ‘splitting square’ with the regularized l;-norm.

(c¢) Result for the ‘splitting hexagon’ using the hexagon anisotropy.

Figure 4.9: States (above) and corresponding controls (below) for the solution of splitting

geometries.
iso l1 hexa
j(u) 0.103955 0.0562286 0.0884921
71+ 72 | 0.00409254 + 0.0998625 | 0.000728494 + 0.0555001 | 0.00115402 + 0.0873381

Table 4.5: Values of the cost functional for splitting geometries.

iso 1 hexa,
j(u) 0.0666414 0.0496374 0.0588482
1+ j2 | 0.00274715 + 0.0638943 | 0.0010941 + 0.0485433 | 0.000905395 + 0.0579428

Table 4.6: Values of the cost functional for merging geometries.

106

4.3 Numerical examples for different desired states and anisotropies

) Result for ‘merge circle’ in the isotropic case.

) Result for ‘merge square’ with the regularized l;-norm.

(c) Result for ‘merge hexagon’ using the hexagon anisotropy.

Figure 4.10: State (above) and corresponding control (below) for the solution of merge geometries.

14 T T T T T T 5.5 T T T T T T
1sotr0plc

reg. Iy
hexagon

1sotr0p|c
reg. Iy
hexagon

2 P e Y YR et e 3 L L L
0.002 0.004 0.006 0.008 001 0012 0014 0016 0018 0.002 0004 0.006 0.008 001 0.012 0014 0016 0.018
t t

(a) Results for ‘splitting’, cf. Flgures-tou(b) Results for ‘merging’, cf. Flguresto

Figure 4.11: Time evolution of [|u(t, -)|[z2(q) when topology changes are present.

107

4 Numerical results

; 1.8

T - - T
isotropic isotropic

reg. Iy reg. Iy ——
hexagon hexagon

0.4 4 04 | 4
02 H E 02 F E

0 1 1 1 I I I 0 ! I I 1 1
0 50 100 150 200 250 300 350 0 10 20 30 40 50 60
trust region iteration k trust region iteration k

(a) Results for ‘splitting’, cf. Figures to (b) Results for ‘merging’, cf. Figures to

Figure 4.12: Evolution of j(u) over the trust region iterations k when topology changes are
present.

4.3.3 Filling the whole domain

As final example we want to consider a set of simulations where we seek filling the whole domain
with one phase. Also here a topology change is present. As a starting configuration we choose a
square with rounded corners that already covers a fair amount of the area. On the one hand this
saves much computation time and on the other hand this allows a more detailed investigation of
the final boundary occupying phase, in which we are mainly interested. As we have the same
initial and final conditions for all anisotropies considered here, this setting also allows for a more
direct comparison, exposing also subtle qualitative differences that we may have missed during
the prior subsections. The associated results are depicted in Figure [£.13]

As in essence the control does not have much freedom, at first glance the outcomes look very
similar for all three cases. The starting configuration soon begins to grow constantly until the
whole domain is covered. Also the control costs plotted in Figure resemble each other
very much among the different anisotropies. However, as already mentioned, there are some
differences in the details. Let us first have a look at the images of the controls in Figures [f.13a]
to As expected, also in this setting they have their support located in vicinity of the
interface. By looking at the values that are assumed thereon, we find that for the isotropic and
hexagon cases the cost expended at the corners is higher than at the rest, whereas for the square
situation it is much more equally distributed. The reason for this behavior is that the form of
the whole domain also is that of a square. Hence the most straightforward strategy, that was
also pursued by the three simulations, is to fill the area by just growing a square—at least as
long as no topology changes take place. As for the regularized [; simulation the actual Wulff
shape is similar to this square, the force that has to be applied is comparable in all directions.
This is in contrast to the isotropic and hexagon cases. For instance, in the isotropic case without
control, a square would soon be deformed into a circle by first contracting the protruding corners.
So this has to be counteracted by the control u, which explains why it attains its highest value
at the vertices. Also for the hexagon anisotropy the control is strongest there. Note that in
contrast to the isotropic case the attaching angle is somewhat skew.

The next difference concerns the final phase in which the boundary is reached. Also here the
regularized [; case stands out, as being the only one where the contact takes place everywhere at
the same time. In the isotropic case, the control prefers to initially build small excrescences that
touch the boundary first. As it seems, these appear primarily next to the corners of the domain.
Furthermore it is striking that this is not a symmetric solution. In repeated simulations one
observes these excrescences in other places (but still around the corners). In Figure such an
alternative solution is presented. So it appears that there exists more than one local minimizer,
all lying symmetrically around the starting guess u(?) = 0. The decision for one of those is made
at the beginning based on some small but random rounding errors (recall that we are computing

108

4.4 Monitoring quantities

in parallel and that the floating point summation is not commutative). Finally, the hexagon
anisotropy seems to provide a mixture of the two settings described before. The top and bottom
parts approach the boundary as a whole like for the regularized [; anisotropy. In contrast to
that, the left and right boundaries are again first touched by small excrescences. However there
appear more than for the isotropic case and moreover they are arranged more regularly. The
first and also biggest outgrowths are again built close to the corners. The reason for this twofold
behavior can once more be explained by the Wulff shape. On the top and bottom it has a face
that is more or less parallel to the boundary of the domain, just as is the case for the square
anisotropy. In contrast to that, on the sides it tapers and is no longer parallel, which explains
the behavior similar to the isotropic case.

The control costs of the regularized [; case are also qualitatively a bit different from the other
two cases, see Figure In the middle section, the expense is more or less constant in
the former case, whereas for the other two anisotropies it begins to vary at about ¢ = 0.009.
Comparing this to the related images it becomes apparent that this is exactly the moment when
the excrescences are built. The control costs for the last segment are equivalent for all three
settings. As soon as the boundary is reached, the expense rapidly decreases. Only in the end it
goes up again by a small amount.

As already for the settings from the previous subsections, we provide the values for the cost
functionals of the final solutions, which can be seen in Table [f.7] Again the main contribution
results from the control cost term %Hu”%z@). For the regularized !/; norm it has the highest
value. It therefore seems that for the ‘fill all’ simulation a strategy where not the whole boundary
is reached at once is preferable, as was done for the isotropic and hexagon cases. Since the
shape of the domain resembles a square, the optimal solution for the regularized [; case still
approaches the boundary with the interface parallel to it, but this compares worse to the other
two cases. Additionally in Figure the values of j(u) are given over the course of the trust
region algorithm, but the behavior is the same as for the other settings.

iso l1 hexa,
j(u) 0.121633 0.144512 0.11084
1+ 72 | 0.000737542 + 0.120896 | 0.000918727 + 0.143593 | 0.000668872 + 0.110171

Table 4.7: Values of the cost functional for ‘fill all’.

4.4 Monitoring quantities

In this section we will investigate a bit more in detail how the algorithm behaves in course
of the numerical simulations. Therefore, for each trust region step k£ we will look at several
quantities providing information about this, including the residual ||Vj(u)| z2(q), the amount of
Steihaug-CG iterations, the current trust region radius o and finally the the amount of seconds
required for it. The corresponding results are presented in Figures [I.16] to [£.19] For each of the
simulations discussed in the previous section, the corresponding plot of the monitoring quantities
is included (see also the references given in the description of the figures). Before we start to
treat the previously listed aspects in the following subsections, let us have a look at the general
reading of the data presented. In each of the single graphs all four quantities that we mentioned
above are given at once. Their respective color assignments are defined in the descriptions below.
The residual is plotted in log-scale with the values given on the left ordinate. The values for
the Steihaug iterations and the time spent in each trust region step can be read off the right
ordinate. The latter is given in terms of seconds. Note that the scale for the trust region radius
o is not drawn in. The value at the first step is always initialized to 1.0 and can be taken as
a reference. Further note that although o can traverse several orders of magnitude, the most
vivid representation was found to be achieved with a linear scale, like already for the latter two
cases. For sake of comparability, for all presented plots we decided to use the same scale on
the y-axis. That has as a consequence that in rare cases some values might be cut off. When

109

4 Numerical results

IDDE]I
INEE

) Result for ‘fill all’ with the regularized [;-norm.

e

) |

|

1

|

1

E |

P |

—_— NS
-.

_— 4 N o

(c) Result for ‘fill all’ using the hexagon anisotropy.

Figure 4.13: State (above) and corresponding control (below) for the solution of ‘fill all’.

8 T 4 - —
lsotrop)(‘ lSOtr()p;(‘
reg.
7L hovagon —— | 35 | hexagon .
3 L J
6 -
g{ 25 | —
& 7 -
= = 2 -
= z e
4]
= 1.5 |- B
3 . L 4
2 b 0.5 e
. Ly 0 ‘ ‘ ‘ ‘ : :
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0 50 100 150 200 250 300 350
t trust region iteration k
(a) Time evolution of ||u(t,)|l L2 () (b) Evolution of j(u) over k.

Figure 4.14: |lu(t,-)||2(q) and j(u) for ‘fill all’, cf. Figures to

110

4.4 Monitoring quantities

ENEENNNE
]

Figure 4.15: Another run of the simulation ‘fill all’ in the isotropic setting. Here, in contrast to
Figure a different local minimizer has been determined, but the minimum is
still j(u) = 0.121633.

108400

| 05
o
05

106400

y

_-1.06+00

they are important for the understanding, they are given in the corresponding discussion. In
most cases, though, they also can easily be guessed. However note that the scale of the x-axis is
different in all graphs. It is adapted to the respective total amount of trust region iterations.

4.4.1 Residual

Let us first discuss the residual, which is given by [|Vj(u)||r2(0). Recall from Algorithm
that we terminate the algorithm if this value falls below some fixed threshold (we only use
the absolute tolerance in the simulations). As given introductory and can also be read off the
graphs, the tolerance is set to 107!3. In all simulations, the initial residual is approximately of
order 10° or 10'. By looking at the history, one notices that it can essentially be split in two
phases. In the majority of the simulations, most part of the running time is governed by the
first phase which is characterized by the fact that there is barely a reduction of the residual.
In many cases it rather oscillates around some value and only on a larger scale one can spot a
small reduction. The length of this phase varies strongly between the different settings, as in
most cases it roughly matches the total amount of trust region steps the algorithm took. The
second phase corresponds to the superlinear convergence of the trust region Newton method
close to the minimizer. This typically can be observed in the last 5 to 10 steps. Here the residual
drastically decreases compared to the rest of the algorithm. Note that in some plots, e.g., those
in Figure [I.18] the reduction in the very last step is smaller compared to the iterates before.
However this is only an artifact of the algorithm. We stop as soon as the tolerance is reached,
although in theory the residual could still be decreased at that point by the Steihaug method.

4.4.2 Steihaug-CG iterations and time per step

Next let us investigate the number of Steihaug-CG iterations and the time that was expended in
each step of the trust region Newton algorithm. We will discuss these two quantities together as
they share the same behavior. In fact, if one assumes that each Steihaug iteration approximately
takes the same time and neglects further contributions, then as a rule of thumb one would expect
that the time required for each iteration is given by a fixed multiple out of the corresponding
Steihaug iteration. This can indeed be observed in the simulations. For instance, in Figure [{.174]
from step 50 onwards the amount of time is a bit below the Steihaug iteration count, implying
that one iteration thereof needs somewhat less than a second. In the other cases the situation is
similar for the most part. In Figure [£.I7b] between steps 50 and 270, it seems that more time
was needed. The reason is that here the trust region radius o often had to be adjusted, forcing
the Steihaug method to reiterate. For all simulations, at the beginning, the line corresponding
to the time passed is clearly above the line for the Steihaug iterations, see, e.g., steps 0 until 50
in Figure Indeed, the latter is barely visible there. That means that other contributions,
like the solution processes of the state and adjoint equations, dominate. This phase is however
short for most of the simulations which took many trust region iterations, like, e.g., the two
examples discussed above.

111

4 Numerical results

As we have just seen, when we include the Steihaug iterations, in principle we can now observe
three phases in the most cases. In the following, we will refer to them as is described next.
They can best be seen in Figure and we give the corresponding trust region iterations
for this example as a reference. The first phase is characterized by a small amount of Steihaug
iterations and almost no error reduction (0-50). In the second phase, the latter is still the case,
although the Steihaug iterations now have significantly increased (50-315). In third phase the
superlinear error reduction takes place and often the amount of Steihaug iterations again have
slightly increased in comparison to phase 2 (315-328).

The time passed in phases 2 and 3 is one or two orders of magnitude higher than that in phase 1.
In simulations where phase 1 is short, we can therefore conclude that the main bottleneck of the
algorithm lies in the solution of the Steihaug-CG method. For instance, let us check this for
Figure (splitting setting for isotropic case). Considering only the contributions from step
50 onwards and taking an average of about 150 seconds for each step, one obtains an estimated
total running time of about (330 — 50) x 150s/36004 ~ 11.7h which coincides pretty well with
the value of 11.98h given later in Table This demonstrates that in cases where phases 2
and 3 dominate, the total running time indeed can be estimated by the Steihaug-CG method.
Now let us discuss in more detail the Steihaug iterations only. Recall from before that in phase 1
their amount is fairly small. The reason is that in this phase the Steihaug method does not
iterate to the end, but rather breaks down due to the two other stopping criteria discussed
in Section [3:1.2] That is, either a direction with negative curvature has been found, or the
trust region boundary has been reached. As soon as the current iterate gets closer to the local
minimizer, the amount of CG iterations increases. Ideally, at that point one is already very
close to the optimizer, such that the Steihaug method only iterates to completion for a small
amount of trust region steps, see, e.g., Figures [4.16a} [4.18b| and [4.19¢| This is not always
the case, however, as can especially be observed when the algorithm resides for a long time
in phase 2, like for instance in Figures [£.17a] and [£.176] Note also that in Figure one
can clearly observe that sometimes the time spent strongly surpasses the amount of CG steps
that is very low (e.g. in vicinity of k = 250). The reason is that the algorithm first did a full
pass of the Steihaug method, then realized that the final solution did not approximate the
model problem in a satisfying way, shrank the radius and then eventually stopped with a much
fewer amount of Steihaug iterations. In Figure at about trust region iteration 60, the
number of CG iterations sharply increased for a short time, although the algorithm was far
from converging. All in all, it became apparent that an increasing amount of Steihaug iterations
does not necessarily indicate that the algorithm is close to the end (i.e. in phase 3), although in
many of our simulated situations this was the case.

Finally, let us briefly comment on the maximum number of Steihaug steps that were attained.
Recall that in the simulations, we do not allow for more than 800 iterations. For instance, this
limit was indeed reached in Figure Also in Figure the amount of iterations is close
to that several times. In most other simulations, the number of iterations in phase 3 lies at
about 300. For slightly different situations, the maximum amount of 800 can be surpassed quite
commonly. For example, if the end states of Figure and Figure would not contain the
little square or circle in the middle, the situation would be more involved. Also the end time
point T has a huge impact on this (cf. Section .

4.4.3 Trust region radius

The final quantity we want to look at is o, the trust region radius. Recall from Section [3:1.1] that
it determines how far we ‘trust’ the quadratic approximation to be sufficiently well and
therefore enters in the model problem . Roughly speaking, we would expect o to be small
in the beginning and increase towards the end of the algorithm. Indeed, this can be observed in
the plots. As we do not know what ‘small’ means in a specific setting, we just initialize it with
a value of 1.0. Typically this is too high and the radius soon shrinks to a smaller value. With
the latter it stays for a long time and only in the last few iterations it increases strongly. For
example, in Figure [{.I7b] by the end a radius of roughly 43 is reached. At step 50, o is only
about 0.045. In Figures and one observes that the trust region radius oscillates in

112

4.5 Efficiency discussions

phase 2. Here the way of how o is steered is probably not optimal and could be improved by
tweaking the parameters k1,k2 and 7 in Algorithm [2l However, it is difficult to know that this is
required in advance, as for the other situations the same values seemed to be robust choices. If
the trust region radius became some orders of magnitude larger compared to its previous values,
this was always a sign that the algorithm has been close to the end, i.e., that it entered phase 3.
The converse is not true as can be seen in Figure where o’s final value has already been
attained earlier. Sometimes o is also observed to decrease again in the end. This can best be
seen in Figure In Figure the final radius is so small that it cannot be read off from
the plot. In fact it is of the order 107° there. If the cost functional is approximated very well,
the nominator and denominator in can consist of fairly small numbers. Due to rounding
errors, p is then no longer guaranteed to be a reliable estimator in Algorithm [2] and hence the
radius can also decrease in this case. As the updates computed in the last few steps are also
quite small, the size of the boundary however did not have an influence on the algorithm’s
superlinear error reduction.

Conclusion 4.4.1. In most cases, the algorithm can be roughly divided into three phases.
They are characterized by the amount of Steithaug-CG steps as well as the error reduction. In
phase 1 both of these characteristics are low. When the superlinear error reduction of Newton’s
method shows up (phase 3), the amount of Steihaug iterations typically increases by some orders
of magnitude. This growth can also enter earlier (phase 2), but this phase is not always so
pronounced. The total running time is dominated in the first phase by its length, in the second
phase additionally by the amount of Stethaug iterations and in the third phase only by the
Stethaug iteration count. When the trust region radius o increases strongly, the algorithm is
typically in phase 3. There are however situations where o does not show this behavior.

4.5 Efficiency discussions

The last section of this thesis is devoted to the investigation of the algorithm’s characteristics
with respect to some implementational aspects that were raised throughout this thesis. This is
in contrast to the last chapters, where all simulations were executed using the same program
(differing only between the (an-)isotropies). Topics that we will consider in this section include
the comparison to the semi-implicit scheme that we formally derived in Section [2.7.2] the effect
of using Mat_store_S introduced by the end of Section [3:3.1] as well as the benefits of the
parallelization discussed in Section [3.3.2

As we will mostly concentrate on runtimes in the following, let us quickly compare the performance
of the algorithm on the settings discussed so far. An overview is given in Table [L.8] where we
compare the total iteration count and the total time the trust region solver took, as well as
the median, maximum and minimum of the times that were spent at the single trust region
steps. Note that instead of the mean we give the median as the former would not be meaningful
in this context due to the two phases with rather different behavior, see also the last section.
Concerning the iteration count we can state that the behavior varies a lot between the different
configurations. For example in the ‘star’ settings, the isotropic case in both cases required less
iterations than the anisotropies, whereas in the ‘merge’ and ‘split’ settings it took the most.
The iteration count can also serve as an indicator for the total running time, but this has to
be taken with a grain of salt, since the amount of Steihaug-CG iterations can also vary a lot
(cf., e.g., Figure . For the merging simulations, the regularized /; and hexagon cases
seem to be very comparable however. This is also strengthened by a glimpse at Figures [.18h]
and Note that the total runtime is a bit higher for the hexagon anisotropy, but this is
expected because there is an additional matrix in and hence more computational effort. In
most cases other aspect are more important however. For instance, for the splitting setting the
isotropic simulation took about twice as much time as with the regularized /;-norm, although
the total iteration counts are comparable. By looking at Figures [£.17a] and [£.I7b] we recognize
that this is potentially due to the single Steihaug run-throughs taking more iterations and
therefore more time. Note also that the median strongly differs from the others in the former

113

4 Numerical results

102 . 900
109 2 - 800
10~2 ;r - 700
76 L]
10 F - 400
10~8 2 - 300
10710 - 200
10-12 | /\ . - 100
10-14 L A o A I AN e P oo RN A
0 20 40 60 80 100 120 140 160
(a) 4-star: the regularized [case, cf. Figure
10 E T T T T T T 900
10° s - 800
102 ;r - 700
] o
_6 —
07 — 400
10-8 2 - 300
10710 | | - 200
10712 | J\ /\ W\A \/ 1 100
1014 L | L | | L Y YV UV \ \ 0
0 10 20 30 40 50 60 70 80 90
(b) 4-star: the isotropic case, cf. Figurem
102 . ‘ ‘ ‘ ‘ 900
109 2 - 800
1072 ;r — 700
76 7
07 - 400
10~8 3 - 300
10710 -{ 200
10-12 | L L | - 100
10-14 L) A_L\H__A;ﬁ/»/\w»‘—//u ey 0
0 20 40 60 80 100 120
(c) 6-star: the hexagon case, cf. Figure
102 g \ \ \ \ \ \ 900
109 = - 800
102 | - 700
j o
_6 L]
1078 F -1 400
W E M 300
1077 & - 200
10712 | \/ - 100
10— 14 L !] | | | e f | 0
0 10 20 30 40 50 60 70 80 90

(d) 6-star: the isotropic case, cf. Figurem

Figure 4.16: Corresponding to Figures and the following quantities are plotted against

the trust region iteration k:

114

o residual | Vj(ug)| (left axis)

o St-CG iterations (right axis)

Note that the values belonging to the linear scale of o are not given, but as a
reference one can use that we always initialize it to 1.0.

4.5 Efficiency discussions

102 g 900
10° . - 800
1072 | - 700
4 [- 600
18_6 i | 500
0 ‘ﬁ 70
w0 [Il | e Wl 300
10 10 3 | \f’v\h”wh‘ux*«”f“ V‘A‘ ’\ - 200
Sl
10—14 - H [¥ I8 Bl LI b vl A Y Y d) 0
0 50 100 150 200 250 300 350
(a) ‘splitting circle’, cf. Figure
109 . —{ 800
1072 3 - 700
1076 L b
18_8 F — 400
L0-10 2 - 300
3 - 200
10712 Jl . 4 M - 100
10-14 &\A vy .uik”\’ “J‘/ “Aw | L ‘u‘ ‘]L” UL UL * 0
0 100 150 200 250 300 350
(b) ‘splitting square’, cf. Figure m
102 3 ‘ ‘ ‘ ‘ 900
100§ | - 800
1072 | 4 700
1074 i— - 600
- - 500
1 —6
0_8 3 -{ 400
10_10 3 1 300
10 2 - 200
10712 ~ 100
10—14 A G T~ s | 0
0 20 40 60 120

(c) ‘splitting hexagon’, cf. Figure

Figure 4.17: Corresponding to Figure the following quantities are plotted against the trust
region iteration k:

e residual ||Vj(ug)| (left axis) e St-CG iterations (right axis)
e TR radius o (see below) e seconds passed (right axis)

Note that the values belonging to the linear scale of o are not given, but as a
reference one can use that we always initialize it to 1.0.

115

4 Numerical results

102 3 900
10° - - 800
102 | - 700
10 | -{ 600
i — 500
—6 L
1078 g — 400
10,10 3 - 300
10710 A A /m/w -{ 200
10712 =] — 100
10~ ‘ : : L 0
0 10 20 30 40 50 60
(a) ‘merging circle’, cf. Figure
102 3 I I I I 900
10° - - 800
1072 | - 700
1074 | - 600

i — 500
1076 L
0_8 F — 400
10 . 2 - 300
107 & ~= — 200
1012 | . /N - 100
10-14 L I | | | | \/ \ 0

0 5 10 15 20 25 30 35 40

(b) ‘merging square’, cf. Figure
102 3 ‘ ‘ ‘ ‘ 900
10° - - 800
1072 | - 700
1074 - 600

j ~ 500
1078

F — 400

—8
10 . 2 — 300
107 &

E N — 200
10—12 - A /\ \\\ — 100
10—14 | ! —— | \v‘/ | 0

0 5 10 15 20 25 30 35 40

(¢) ‘merging hexagon’, cf. Figure

Figure 4.18: Corresponding to Figure the following quantities are plotted against the trust
region iteration k:
o residual | Vj(ug)| (left axis) o St-CG iterations (right axis)
Note that the values belonging to the linear scale of o are not given, but as a
reference one can use that we always initialize it to 1.0.

116

4.5 Efficiency discussions

102
10°

102

10~2
1074
1076
10~8
10—10
10—12
10—14

900

L L BRI L L B R

800
700
600
500
400
300
200
100

I

LR LA

o~ | e AN AV I
40 60 80 100 120 140

(a) “fill all’ (isotropic case), cf. Figure

L0 BERLL B BERLL BRI BERLL L e

900
800
700
600
500
400
300
200
100

10 20 30 40 50 60 70
(b) ‘fill all’ (regularized l;-norm), cf. Figure

L L EIL L L L B

‘ 900
800
700
600
500
400
300
200
100

| e Vl

0

100 150 200 250
(c) “fill all’ (‘hexagon’ anisotropy), cf. Figure

50

Figure 4.19: Corresponding to Figure the following quantities are plotted against the trust

region iteration k:
e residual ||Vj(ug)| (left axis) e St-CG iterations (right axis)

Note that the values belonging to the linear scale of o are not given, but as a
reference one can use that we always initialize it to 1.0.

117

4 Numerical results

4-star 6-star fill

L | iso hexa [iso iso | 5 | hexa
iterations 146 85 114 84 157 87 306
total time [h] 1.71 1.62 1.36 1.26 3.49 1.10 2.42
median [s] 28.55 19.37 20.63 14.89 21.97 16.95 18.85
max [s] || 442.95 | 378.69 | 535.31 | 471.90 | 489.46 | 441.61 | 408.84
min S 195 007 1.05| 002 004 007 128

split merge

iso | &1 | hexa iso | 51 | hexa
iterations 328 319 108 56 37 38
total time [h] 11.98 5.85 1.76 0.76 0.45 0.53
median [s] 171.11 28.73 21.87 14.09 14.36 22.35
max [S] 449.18 | 333.98 | 414.34 | 187.58 | 219.15 | 279.74
min [s] 0.95 1.02 1.03 0.94 7.31 1.11

Table 4.8: Comparison of the total iteration count of the trust region Newton solver, its total
time consumption, as well as the median, maximum and minimum times required by
the Steihaug-CG solver.

| 4-star® | split* | merge | fill |

iterations 241 399 82 1228
total time [h] 3.37 2.43 0.38 4.07
median [s] 16.55 12.85 12.15 10.48
max [s] 718.70 | 167.63 | 123.91 | 209.99
min [s] 1.53 1.72 1.77 1.44

Table 4.9: The analogue to Table with the semi-implicit discretization for comparison. Here,
as anisotropy we only considered the regularized [1-norm. The asterisk indicates that
the setting was computed with 6 = 0.1. As a comparison let us mention that in the
implicit case the 4-star setting took about 3 hours and 129 trust region iterations
if run with § = 1071, The reason it takes more time compared to Table is that
towards the end there are more Steihaug run-throughs that run to completion.

case. Finally, observe that for the ‘filling’ simulations the iteration counts (and hence also the
total time) is very different between the settings.

4.5.1 Semi-implicit scheme

In this subsection we will briefly compare the results from Sections and with those that
are achieved by using the semi-implicit discretization scheme discussed in Section The
semi-implicitly discretized versions of egs. to were derived formally in Section m
Recall from Section that a rigorous treatment of the optimality conditions turned out
to come up with serious difficulties in the semi-implicit case. Nevertheless, the trust region
algorithm from Section can still be applied using the formally derived equations. In order
to compare this to the implicit discretization, we will exemplary look at the regularized [;-norm
and recompute the four settings we considered before, now with the semi-implicit equations.
The pictures of the resulting state and control can be seen in Figure Hardly any difference
can be spotted by eye. The values of the cost functionals are slightly different however, cf.
Table [L.101

Let us make some remarks about the simulation at that point. We first tried the standard
choice § = 107 from before. For this, only the settings ‘“merging square’ and ‘fill all’ converged

118

4.5 Efficiency discussions

successfully. But they, too, were already showing signs of instability. The latter setting required
1228 trust region iterations, which is of orders of magnitude higher than the 87 taken by the
implicit scheme. With 82 iterations, the merging simulation required less. The total number
of iterations is observed to be rather sensitive with respect to rounding errors however. In
successive simulations we got total iteration counts between 75 and 101. Note that these are
the simplest settings that also for the implicit approach required the fewest iterations. For the
simulations ‘circle to 4-star’ and ‘splitting square’ also after 3000 iterations the minimum has not
been reached and there was no sign that this would be the case in the foreseeable future. The
situation was no different for the choice § = 107%. We eventually tried the rather sophisticated
choice § = 107!, where finally a solution could be found. This one will be considered in the
following for the settings that did not work with § = 10~7. We asterisked the name of the
settings with 6 = 10~! in the description of the plots to remind of this fact. The difference in
the determined minimum of the cost functionals can at most partially be explained by using
another regularization parameter, as also for the merging and filling simulations it is different
in Table In fact, for the 4-star setting with 6 = 10~ and § = 10~7, we respectively
obtained the values j = 0.123919 and 7 = 0.124101 at the point we aborted the simulation,
which compare pretty well to the values given in Table [L.10] We suspect the cause of these
instabilities to be the matrix M and its derivatives that appear in the semi-implicit equations,

cf. egs. (2.115) to (2.118)). As explained in the pertinent chapter, the matrix tensor Mj behaves

"

like ~ ¢~ at the origin for § = 0. In contrast to that, A}" only behaves like ~ ¢~ for § = 0.
This also explains the strong dependence of the stability on § in the semi-implicit case. The
explicit appearance of the double-well potential may render the evaluation of the state equation
more unstable, but this typically gives a restriction on the time step size which was chosen small
enough to provide sufficient stability. This fact alone was not observed to have an effect on the
behavior of the optimization algorithm.

Now let us further discuss the results we obtained. In Figure [£:2] the corresponding plots of
lu(t,-)||L2(q) against ¢ are presented. Qualitatively, we can only make out a difference from the
implicit case for Figure where now two hills appear at the beginning of the deformation
and when the excrescences grow the most. In general, in all situations the costs are slightly
higher as in the implicit case as we also can observe for j(u) in Table The meanwhile
familiar graphs of the monitoring quantities are plotted in Figure [£.22] Note that with the more
moderate regularization, the algorithm needs less trust region iterations than for the setting ‘fill
all’. In the implicit case, where § was left untouched (i.e. § = 10~7), this was the other way
round. It is noticeable that in Figure the maximum amount of 800 Steihaug steps was
reached quite often. Overall, the behavior of the algorithm is comparable to the implicit case.
Finally, in Table [£.9] we give the analogue of Table [4.8] now for the semi-implicit simulations.
Again we observe that the total amount of iterations is not necessarily proportional to the total
time, since also the behavior of the Steihaug method enters here. The remaining observables
show minor differences to the implicit case. Only the maximum time in the first column stands
out a bit. Furthermore, the median for the last two columns is a little bit better compared to
the implicit case, but this is probably due to the fact that the algorithm is stuck for a long time
with very few Steihaug iterations. So in total we can state that the semi-implicit discretization
runs comparable to the implicit one, but needs significantly more regularization. In the following
subsection, the benefit of a certain implementation aspect is addressed, also with respect to the
semi-implicit approach.

4.5.2 Keeping assembled terms in memory

In this subsection we want to numerically investigate an implementational aspect that we initially
discussed in the part ‘Linearized and additional adjoint equation’ of Section [3.3.1] on page
Recall from there that for the linearized equations being solved in turn during the Steihaug-CG
method, for a fixed trust region step most terms don’t change as they include the same state and
adjoint variable. This fact can be harnessed to speed up the simulation by storing the reusable
terms, as was demonstrated there. We now want to corroborate the assertion that this in fact
leads to an acceleration of the simulation. For respectively storing the left-hand sides of both

119

4 Numerical results

‘circle to 4-star’*

) ‘splitting square’™

‘merging square’

) ‘il all’

Figure 4.20: State (above) and corresponding control (below) for the considered settings for the
semi-implicit discretization. The asterisk indicates that the setting was computed

with 6 = 0.1.

120

4.5 Efficiency discussions

semi 4-star* split* merge fill

j(u) 0.123892 0.0660538 0.0600625 0.178357

j1+J2 | 0.01190 + 0.11200 | 0.00097 + 0.06509 | 0.00128 + 0.05878 | 0.00056 + 0.17780
implicit | 4-star split merge fill

j(u) 0.107378 0.0562286 0.0496374 0.144512

j1+72 | 0.01089 + 0.09649 | 0.00073 + 0.05550 | 0.00109 + 0.04854 | 0.00092 + 0.14359

Table 4.10: Values of the cost functional for the semi-implicit scheme (above). The values for
the implicit scheme (below) are given for comparison and were collected from Tables

ESE5 Eand L7

semi-implicit*
implicit

0
0

t

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

spnu nnphm
implicit

9 I I I I

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

t

(a) Results for ‘circle to 4-star’*, cf. Figure (b) Results for ‘splitting square’™, cf. Figure{4.20b

8 T T

5.5

T
seml lmphmt
implicit

0

0.002 0.004 0.006 0.008 0.01
t

0.012 0.014 0.016 0.018

(c) Results for ‘merging square’, cf. Figure

Figure 4.21: Evolution of |ju(t,

o

() ez e

o

b

T
sem “n; 1])hmt
imiplicit

t

1 \
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

(d) Results for ‘fill all’, cf. Figure [4.20d

) z2() over the time ¢ for the semi-implicit settings from

Figure Their implicit counterparts are plotted for comparison and were taken
from Figures m @.11a} 4.11b|and {4.14a}

121

4 Numerical results

102 900
100 L -{ 800
102 | 4 700
0 b | o
6 [— 500
18*8 3 < 400
r - 300
10717 ﬂ M 200
10772 i \ | WA 100
10-14 L JUIIW P N N SN N . 0
0 50 100 150 200 250
(a) ‘circle to 4-star’*, cf. Figure
102 ¢ \ \ \ \ 900
100 & - 800
1072 -{ 700
10-4 L 600
6 [500
18_8 3 400
3 4300
10710 & w 200
1012 | ﬁl A WTWW 100
1014 e \ | w ! 1) WL UNUT
0 50 100 150 200 250 300 350 400
(b) ‘splitting square’™, cf. Figure
102 g \ \ \ \ \ 900
T - 800
102 | - 700
-4 L -{ 600
6 [— 500
13_8 3 < 400
- - 300
10717 -{ 200
10712 /\ -{ 100
10714 | | | | | | | | 0
0 10 20 30 40 50 60 70 80 90
(c) ‘merging square’, cf. Figure
102 g \ \ \ \ 900
10 & - 800
1072 -{ 700
104 - 600
- — 500
18*8 3 - 400
r 300
10710 - 200
10712 | - 100
10_14 | | | | | susibiel| 0
0 200 400 600 800 1000 1200 1400

(d) “fill all, cf. Figure [4.20d

Figure 4.22: For the semi-implicit results corresponding to Figure the following quantities
are plotted against the trust region iteration k:
o residual | Vj(ug)| (left axis) o St-CG iterations (right axis)
Note that the values belonging to the linear scale of o are not given, but as a
199 reference one can use that we always initialize it to 1.0.

4.5 Efficiency discussions

equations, one expects a benefit offhand, as they are exactly the same in each iteration. For
the right-hand sides this is not that clear as they also contain terms that have to be assembled
in any case, as they rely on variables that are updated in each iteration, like du;, dy; and the
solution from the previous time step.

Let us first concentrate on the implicit case that is mainly considered in this thesis. For the
linearized state equation the right-hand side only contains terms with changing quantities,
so it has to be reassembled anyway. The additional adjoint equation contains terms
involving A" and ", which apart from the factor dy; remain the same in each iteration. Hence
there could be a benefit from storing the matrix that results from these terms if one leaves
away 0y;, then apply that matrix to the latter and add it to the first term. However it is not
clear a priory if this is worth the effort, as the assembly typically consists of only one for-loop
over the elements which we now exchange for several for-loops for the matrix applications and
the subsequent vector addition. We therefore consider two cases, one where we only store
the left-hand side (S) and another where in addition also the right-hand side is saved as just
described (S & L).

For the semi-implicit discretization from Section [2.7] the situation is a little bit different. Here
also for the linearized state equation the right-hand side contains non-trivial terms.
So it is reasonable to apply the just described procedure also for this equation, and hence
for the semi-implicit discretization, the case (S & L) additionally contains this improvement.
Furthermore another issue can appear in the semi-implicit case that is best understood by
looking at the additional adjoint equations and (2.118). Note that for the semi-implicit
discretization this equation consists of a larger amount of individual terms. However, the number
of floating point operations that are needed to set it up are the same as in the implicit case,
as we will reason in the following. For this, recall the relation between A’ and the
matrix M. Given this, for the implicit case we are actually free to express the derivatives A’,
A” and A’ also in terms of M and its derivatives. Due to the product rule that has to be
applied when using the latter, there appear additional terms that each can be related to one of
those in the semi-implicit equation. Since in the latter case quantities at different time steps
are incorporated, one does not have the freedom to express everything in terms of A’ and its
derivatives there, yielding the cumbersome looking additional terms. Note also that, compared
to the implicit scheme, some parts of the equation appear on another side, leading to a slightly
different balancing of the costs. There are however other sources of additional expense for the
semi-implicit case. First of all, additional variables, namely y;_1, yj+1, Pj+1, 0yj—1 and dy;41,
have to be loaded out of the memory now. Further note that not only dy; appears on the
right-hand side, but also dy;_1 and dy;11. Hence one now has to separately store four terms
(belonging to 0y;—_1, 0y;, 0yj+1 and dp;41) that eventually have to be added in each iteration of
the Steihaug-CG method. In summary, for the semi-implicit discretization it is even less clear
than for the implicit one if storing the right-hand side comes up with a benefit.

The answer to all these questions is given in Table Here we present the results that
were achieved with the just described optimizations for both, the implicit and semi-implicit
discretizations. For the first column no optimization was done, for the second column we only
store the left-hand side and for the third column we in addition save parts of the right-hand sides
as described above. To compute the values shown, we took exemplary the first two Steihaug-CG
steps of the first trust region step of the setting where we split a square in the regularized
[1-norm (Figure . In other situations the times could be different, but the observed relative
behavior should be the same. By looking at the first two steps, we are able to catch the behavior
we are interested in. All values are given in seconds and in terms of the wall clock time that was
spent to solve the given equation. The first value is the value of the second Steihaug step and
represents the expected behavior of all the remaining steps of the Steihaug method. Here the
benefits of the optimization will show up. The value in brackets belongs to the first Steihaug step
and is given for comparison. This step will take longer since here the assembly and subsequent
storage is performed. As expected, for the first columns both times are the same, apart from
some natural fluctuations. At that point let us briefly mention the times that were taken for
the state and adjoint equations. For comparison, in the implicit case the adjoint equation took
about 2.5 seconds and in the semi-implicit case about 4.2 seconds, which is in good agreement

123

4 Numerical results

implicit

standard | store S | store S & L
linearized equation 2.59 (2.56) | 0.49 (3.14) | 0.48 (3.07)
add. adjoint equation || 4.96 (4.88) | 2.80 (5.45) | 0.49 (6.06)

semi-implicit

standard [store S | store S& L
linearized equation 4.26 (4.25) | 2.62 (5.09) | 0.45 (5.57)
add. adjoint equation || 5.79 (5.86) | 4.14 (6.41) | 0.50 (14.03)

Table 4.11: Comparison of the wall clock times between different ways of solving the linearized
and additional adjoint equation for the implicit (above) and semi-implicit (below)
discretizations. In the column titled ‘standard’ no storage was done. With S we
refer to the bilinear form (left-hand side) and with L to the linear form (right-hand
side). The first value given is the time required for one iteration of the Steihaug-CG
method. In brackets we give the time of the first iteration, where the storage is
performed. All times are given in seconds.

with the times presented for the linearized equations. This is reasonable as for both in essence
the same things have to be computed. Note also that here the semi-implicit approach takes more
time, which probably lies in the fact that for the right-hand side the additional variable y;_; has
to be loaded. For the state equation the situation is different. In the semi-implicit case it also
took about 4.2 seconds, whereas for the implicit case it required about 15 seconds. The latter
however is not surprising, as a nonlinear equation has to be solved now. For the semi-implicit
approach the equation to solve is still of linear nature. The second column, where we saved the
left-hand side for later reuse, is more interesting. Note that in all cases the first iteration (the
time in brackets) now took significantly more time than the other iterations. Compared to the
first column, the first iteration has taken longer but the other steps are computed quicker now.
The relative speed up is better for the implicit case, since as discussed above, the right-hand
side is quite trivial here. In comparison to this, in the semi-implicit case some terms moved
from the left-hand side to the right-hand side. As it seems, there is actually a good benefit
from storing in addition the right-hand side, as can be seen in the last column. Note that
for the linearized equation in the implicit case, apart from fluctuations, there is no difference
to the previous case. This is because we could not make any further improvement on the
implementation. Especially for the semi-implicit case we obtain a great speed up. The times
now compare to the implicit case—only the first step takes longer than before. In particular
this can be observed for the additional adjoint equation, that now lasts about 14 seconds. The
reason is that we have to assemble several parts of the right-hand side separately, each for a
different variable and time step. Formerly, the right-hand side was assembled at once. But also
here the storing approach is preferable, as the overhead is compensated after three Steihaug
iterations ((14.03 + 0.50 + 0.50)/5.79 < 3). This amount is typically attained also very early
in the trust region algorithm when the Steihaug-CG method stops earlier. So choosing this
approach should give a benefit in any case. In summary we have demonstrated that the most
benefit can in fact be achieved by storing both parts of the equations.

4.5.3 Parallelization

Let us finally comment on the effects of the utilized parallelization that was discussed in
Section As explained there, we use the built-in parallelization of the FEniCS solvers to
speed up the solution process of the equations. With this also the whole algorithm will terminate
earlier. However, the general behavior of the trust region method in terms of the iteration count
is not affected by this, although due to the non-commutativity of the floating point addition
there can appear minor differences on the long run. To explore the effect of the parallelization,

124

4.5 Efficiency discussions

state equation ——
adjoint equation ——
10 + linearized state equation —
additional adjoint equation
8 -
26 |-
4 L
2 -]
0 \ \ \ \ \
0 2 4 6 8 10 12

number of cores

Figure 4.23: Plot of the average computation times for one solve of each of the equations.

we will look at the equations being solved. As an example we again measured the times of the
first trust region step of the simulation belonging to the splitting of a square in the regularized
li-norm. The results are plotted in Figure [£:23] Considering another trust region step or a
different setting could yield different times, but the relation among them should be the same.
To be more concrete, the presented figure demonstrates the wall clock time in seconds for the
four appearing equations. Here we measured the time that is needed to solve the full parabolic
equation, that itself consists of a sequence of several elliptic equations. The number of processes
is chosen between one and twelve, where the latter is the maximum amount of cores our machine
provides. As can be observed, the state equation takes the most time to solve. The reason for
this is that in each time step we have to solve a nonlinear equation. The adjoint and linearized
equation both require approximately the same amount of time. This is expected as in essence
the same equation with different right-hand sides has to be solved. Also for the additional
adjoint equation, only linear elliptic equations have to be solved. However the operator differs
from that of the equations just discussed. Further the assembly of the right-hand side, which
also contributes to the times, takes longer. This explains why the line for this equation is a
little bit above the other two. However, all four graphs in principle show the same behavior.
The runtimes decrease until an amount of six cores is reached. The times between one and
two cores as well as two and four cores approximately are halved for the state equation. After
the minimum at six cores the times stagnate and are even slightly worse. That we reach the
optimum so early is potentially a consequence of the relatively small space discretization we
use. With 129 x 129 = 16641 grid points and six cores, each process has to handle about 2774
degrees of freedom in each time step. For a computer this is not much and probably the costs of
communication overweight soon. With a finer space discretization one will be able to take more
profit of the parallelization. As for optimal control one has to solve a high amount of equations,
this is not always suitable. Also note that these equations have to be solved in sequence, so the
use of parallelization is only limited for our purposes.

Conclusion 4.5.1. If the implementation is suitably optimized, the time spent to solve the
linearized state equation and the additional adjoint equation is comparable for the implicit and
semi-implicit approaches. In the former case, the state equation takes longer to solve because
of its monlinear nature. This fact is negligible in our simulations, as typically the execution is
dominated by running the successive Stethaug iterations. We also found that, unlike the implicit
approach, the semi-implicit one frequently does not converge if the reqularization parameter is

125

4 Numerical results

too small. The use of parallelization is limited by the coarseness of the discretization as well as
the overall sequential nature of the algorithm.

126

Conclusion and outlook

In this thesis we have applied the framework of optimal control to an anisotropic Allen-Cahn
equation, comprising analytical results as well as numerical considerations. While there already
exists plenty literature about the analysis of phase field models, quasilinear optimal control
problems and numerical methods for optimization problems, to the author’s knowledge a
combination of all these different facets is still pending. A first step was done in this thesis by
providing as a new contribution the associated analysis and numerical results as well as pointing
out the issues that arise. In this concluding chapter, we summarize the work and review the
enhancements that were made to the existing literature. Later we will point out some open
problems that could not be resolved within the scope of this thesis and could be the subject of
future investigations.

The general form of the anisotropic Allen-Cahn equation that has been used in this thesis is
similar to the one given in [53]. Our result concerning the existence of a weak solution was
formulated based on this, but the approach differed by the assumptions we put on the anisotropy
and the double-well potential. While for the latter the intention was just to obtain a slightly
more general result, the altered assumptions on the anisotropy were actually necessary in view
of the regularization we had to invoke later in order to formulate the first order conditions.
A further difference was that we delayed taking the limit in the time discretization to the
end in order to simultaneously obtain results also for the implicit in time formulation and
its convergence pursued in this thesis. Hereby the inequalities and were of big
interest as they also appeared later in the proof of the existence of an optimal control for the
optimization problem. They further allowed the existence results to be independent of the space
dimension. We also could show that a subsequence of global minimizers of the regularized and
time discrete problems converge for the regularization parameter 6 — 0 and/or time step 7 — 0
where the limit is again a global minimizer of the pertinent problem. Furthermore we specified
the appearing anisotropy to be of a certain form that was first introduced in |16} [14]. Therefor
an efficient time discretization was applied by the same authors in 13| |15], but in Section
we saw that this was unsuitable for optimal control as continuity and differentiability results
turned out to provide some serious issues. The special choice of anisotropies allowed to specify
some regularization prescription that rendered the quasilinear term to be sufficiently smooth
and moreover suitable for the numerics.

We also derived first order necessary conditions for our control problem. Here we restricted
ourselves to the time discrete version. We could adapt results from [33, 35] and applied
this to the single time steps with a generalization concerning the space dimension, although
being a little bit more restrictive now depending on the actual choice of the potential (see
Assumptions . The linearized equations needed for the later used Newton type solver were

127

5 Conclusion and outlook

derived formally. Due to the term (A§'(Vy;)[Vy, Vdy;], Vp;) in , the associated rigorous
treatment is expected to require more than L?-regularity for the gradient terms. This would
also force all the previous considerations to be altered leading to a regularity-‘cascade’ similar
to the semi-implicit discretization as in Section This remains as an open problem.

The next part of the thesis covered the implementation of an optimization solver and eventually
the provision of numerical results. As solver we ultimately decided to use a trust region Newton
method with a Steihaug-CG algorithm to solve the quadratic subproblems. We weighted up
several arguments to decide between solving the full or reduced system and different algorithms
therefor. We will briefly repeat the main points here. The full problem does not require the
single PDEs to be satisfied, but on the other hand has to handle thrice as much degrees of
freedom at once. Also, for the full system there exist more preconditioning approaches in the
literature, however these are primarily applied to provide mesh independence which is already
included in the reduced approach (see Section . Also a test implementation favored the
reduced approach in this regard. Finally, the existing globalization approaches are more involved
for the full system, whereby for the reduced system, which represents an unconstrained problem,
the globalization using a trust region method can be applied quite naturally. All these arguments
led our choice to consider the reduced problem in this chapter. With a look at the numerics,
the reduced system still seemed to be quite ill-conditioned. In Section [3.2] we pointed out the
possible reasons for this as well as problems that conventional preconditioning techniques provide
in the present context. We concentrated on the isotropic case as the driving problems were
already believed to appear here. To the author’s knowledge there exists no literature about the
preconditioning of the reduced Hessian of a nonlinear parabolic control problem. For the present
case, the analysis is mainly hindered by a term —gpy appearing in the reduced operator that
also possibly causes negative and/or small eigenvalues. In the anisotropic case a similar term
would also appear for the gradients. Also the end time point T has an influence on the condition
number, whereas the discretization—both with respect to space and time—does not. Finally we
saw that an approach where the operator is factorized cannot be transferred straightforwardly
to this case as it is unclear whether there exist efficient (approximate) solvers for the resulting
terms if they are invertible at all.

In the end, we presented various numerical results. First we supported the previous theoretical
considerations about mesh independence and convergence with respect to the regularization
parameter. Then we demonstrated the applicability of the method to several settings of interest.
These included crystal formation and topology changes. Also the behavior of some of the
algorithm’s monitoring quantities was discussed. Here we observed that towards the end of the
algorithm, the number of Steihaug steps grew considerably, and with that also the execution time
per trust region step. Finally, we compared the efficiency between the implicit and semi-implicit
schemes and some further implementational aspects. We observed that if the implementation
is suitably optimized, both discretization schemes performed comparably fast. As the implicit
approach is less sensitive with respect to the regularization and as it is supported by more
theoretical results, we however preferred it over the semi-implicit one.

We want to conclude this thesis with a discussion of several possible future research topics built
on some open problems that could not be resolved within the scope of this work.

First, recall that our approach to deal with the nonsmoothness was to regularize the problematic
term. Another way would be to leave the term as it is, adopt the analysis accordingly and
use nonsmooth solvers to handle the problem numerically. The advantages would be that the
quasilinear term stays homogeneous, expiring the need for some unhandy assumptions, and the
fact that one is closer to the original problem, not leading to approximation errors due to the
regularization (that were quite small in our case though). However optimal control with such
kinds of nonsmoothness is still in its infancy and probably some concepts would have to be
tested on simpler problems first. The closest work known to the author is [36], where only an
elliptic problem is considered. The quasilinearity also is of another form however, but includes
a singularity at the origin. Furthermore, the term that would correspond to the double-well
potential is required to be monotone there. The resulting first order conditions are of a form that
omits areas with vanishing state in the formulation of the adjoint equation. Most other literature

128

that exists, as, e.g., [41, |78, |65], treats nonsmoothness in the potential term, as for instance
the obstacle potential . Semismooth Newton methods seem to be good candidates as they
can be applied when the singularity only appears at countably many points [39]. They have
to be extended by a globalization strategy in order to be suitable for our purposes. The cited
reference merely treats elliptic equations with the nonsmoothness appearing in the potential
term. Furthermore, for our problem, A"’ is not only undefined at the origin, but also diverges
by approaching it (unless A is the square of an energy-norm). Note that this problem was
implicitly remedied by our regularization. So it could be the case that one needs regularization
anyway at least for a numerical treatment. A further problem that is present for the Allen-Cahn
equation is that Vy =~ 0 due to the phase separation correspondence. Analytical problems are
only expected to hold at places where Vy = 0, but as hinted above, potential numerical solvers
can break down earlier. Also, for other choices of the potential (e.g. for the double obstacle
potential), the gradient of the state will in fact vanish on some set with positive measure.

The next point concerns the analysis of egs. to (|1.28) at different discretization levels. In
course of the thesis, we treated the state equation (1.23)) both—in the time continuous as well
as in the time discrete setting. The adjoint equation (1.24)) was derived for the time discretized
control problem. In a future project one might also do the same analysis on the time continuous
level. Recall from above that [38] is the closest reference to this topic known to the author,
however with the drawbacks discussed before.

We only derived formally the equations related to the second order condition (i.e. and
(1.27))—also for the time discrete problem. In our case this was reasonable as the Hessian
appeared as second order information in a Newton type algorithm, where it is common to only
involve approximations. If one were to do a more rigorous treatment for the time continuous
case, one is expected to encounter the same problems as for the first order conditions discussed
above. But note that there are already issues for the discrete equations. Recall again that the
third derivative of A can be divergent. To the author’s knowledge there does not exist any
literature treating this problem for the present kind of quasilinearities—even for the elliptic case.
We refer to |26} |31] as some exemplary selection of second order treatments of other kinds of
quasilinear terms.

Instead of a deeper analytical treatment of the equations considered throughout the thesis,
one may enhance the present discussion by coupling further equations. For example, to model
dendritic growth, the control variable u might be replaced by the solution of a heat equation
[51]. The new control variable could then enter for instance at the Dirichlet boundary of that
newly coupled equation. This will probably yield more realistic numerical results. Also here
only the forward problem has been investigated in the literature so far. For instance, in [15]
the authors enhance their splitting scheme from [13] to this new setting. As one is expected
to get the same problems as we encountered in Section [2.7 one might again try an implicit
discretization first. Provided that one wants to derive the first and possibly also second order
conditions, the new equation will render the analysis more difficult of course. On the other
hand, the most problematic terms will stay the anisotropy and the double-well potential that
both appeared already in the mere Allen-Cahn equation.

Finally, also to the numerical algorithm some extensions or modifications could be applied.
The biggest potential seen by the author is to speed up the solution process of the trust
region subproblem . This was also attempted at some points in the thesis and in the
implementation. For instance, in Section we addressed the problem of preconditioning the
employed Steihaug-CG method. As already summarized above this turned out to be rather
involved for the present problem and we were not able to give a final answer here. Probably
some new approaches should be developed here, possibly also for a simpler model problem first.
Another idea would be to simply replace the exact evaluation of the Hessian performed by the
Steihaug-CG ansatz with some approximation that can be computed in a cheaper way. Here
the BFGS or rather L-BFGS method [104] seems to be suitable. Also some simplifications of
the appearing PDEs, like dropping costly terms, may be considered. Of course, also completely
different algorithms could be tried out.

As we have seen, the optimal control of anisotropic phase field models is a rich field of research
with large future potential and the contributions of this thesis will hopefully provide a good
starting point for prospective projects.

129

Bibliography

M. Alfaro et al. “Motion by anisotropic mean curvature as sharp interface limit of an
inhomogeneous and anisotropic Allen-Cahn equation”. Proceedings of the Royal Society
of Edinburgh: Section A Mathematics 140.4 (2010), 673-706.

S. M. Allen and J. W. Cahn. “A microscopic theory for antiphase boundary motion
and its application to antiphase domain coarsening”. Acta metallurgica 27.6 (1979),
pp. 1085-1095.

M. S. Alnzs. “UFL: a Finite Element Form Language”. Automated Solution of Differential
Equations by the Finite Element Method, Volume 84 of Lecture Notes in Computational
Science and Engineering. Ed. by A. Logg, K.-A. Mardal, and G. N. Wells. Springer, 2012.
Chap. 17.

M. S. Alnaes, A. Logg, and K.-A. Mardal. “UFC: a Finite Element Code Generation
Interface”. Automated Solution of Differential Equations by the Finite Element Method,
Volume 84 of Lecture Notes in Computational Science and Engineering. Ed. by A. Logg,
K.-A. Mardal, and G. N. Wells. Springer, 2012. Chap. 16.

M. S. Alnzs et al. “The FEniCS Project Version 1.5”. Archive of Numerical Software
3.100 (2015).

M. S. Alnzs et al. “Unified Form Language: A domain-specific language for weak
formulations of partial differential equations”. ACM Transactions on Mathematical
Software 40.2 (2014).

M. S. Alnaes et al. “Unified Framework for Finite Element Assembly”. International
Journal of Computational Science and Engineering 4.4 (2009), pp. 231-244.

H. W. Alt and R. Niirnberg. Linear Functional Analysis: An Application-Oriented
Introduction. Universitext. Springer London, 2016.

S. Balay et al. “Efficient Management of Parallelism in Object Oriented Numerical
Software Libraries”. Modern Software Tools in Scientific Computing. Ed. by E. Arge,
A. M. Bruaset, and H. P. Langtangen. Birkhauser Press, 1997, pp. 163-202.

S. Balay et al. PETSc Users Manual. Tech. rep. ANL-95/11 - Revision 3.15. Argonne
National Laboratory, 2021.

S. Balay et al. PETSc Web page. https://petsc.org/. 2021.

E. Bénsch, P. Morin, and R. H. Nochetto. “Preconditioning a class of fourth order
problems by operator splitting”. Numerische Mathematik 118.2 (2011), pp. 197-228.

J. W. Barrett, H. Garcke, and R. Niirnberg. “On the stable discretization of strongly
anisotropic phase field models with applications to crystal growth”. ZAMM - Journal
of Applied Mathematics and Mechanics / Zeitschrift fiir Angewandte Mathematik und
Mechanik 93.10-11 (2013), pp. 719-732.

J. W. Barrett, H. Garcke, and R. Niirnberg. “A variational formulation of anisotropic
geometric evolution equations in higher dimensions”. Numerische Mathematik 109.1
(2008), pp. 1-44.

J. W. Barrett, H. Garcke, and R. Niirnberg. “Stable phase field approximations of
anisotropic solidification”. IMA Journal of Numerical Analysis 34.4 (2014), pp. 1289—
1327.

131

Bibliography

[16]

132

J. W. Barrett, H. Garcke, and R. Niirnberg. “Numerical approximation of anisotropic
geometric evolution equations in the plane”. IMA Journal of Numerical Analysis 28.2
(2007), pp. 292-330. eprint: http://oup.prod.sis.lan/imajna/article-pdf/28/2/
292/1945147/drm013. pdf.

J. W. Barrett, R. Niirnberg, and V. Styles. “Finite Element Approximation of a Phase
Field Model for Void Electromigration”. SIAM Journal on Numerical Analysis 42.2
(2004), pp. 738-772. eprint: https://doi.org/10.1137/S0036142902413421.

S. Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Springer
Series in Computational Mathematics. Springer International Publishing, 2015.

G. Bellettini and M. Paolini. “Anisotropic motion by mean curvature in the context of
finsler geometry”. Hokkaido Mathematical Journal 25.3 (1996), pp. 537-566.

P. Benner and M. Stoll. Optimal control for Allen—Cahn equations enhanced by model
predictive control. Vol. 1. IFAC, 2013, pp. 139-143.

P. Benner et al. “Low-rank solvers for unsteady Stokes-Brinkman optimal control problem
with random data”. Computer Methods in Applied Mechanics and Engineering 304 (2016),
pp. 26-54.

L. Blank and J. Meisinger. Optimal control of a quasilinear parabolic equation and its
time discretization. 2021. arXiv: 2102.02616 [math.0C]k

L. Blank and J. Meisinger. Optimal control of anisotropic Allen—Cahn equations. 2021.
arXiv:|2105.13310 [math.0C].

L. Blank et al. “Optimal control of Allen-Cahn systems”. Trends in PDE Constrained
Optimization. Ed. by G. Leugering et al. Springer, 2014, pp. 11-26.

J. F. Blowey and C. M. Elliott. “The Cahn—Hilliard gradient theory for phase separation
with non-smooth free energy Part I: Mathematical analysis”. European Journal of Applied
Mathematics 2.3 (1991), pp. 233-280.

L. Bonifacius and I. Neitzel. “Second order optimality conditions for optimal control
of quasilinear parabolic equations”. Mathematical Control & Related Fields 8.2156-
8472.2018_1_1 (2018), pp. 1-34.

C. Borchert et al. “On the prediction of crystal shape distributions in a steady-state
continuous crystallizer”. Chemical Engineering Science 64.4 (2009), pp. 686-696.

F. Boyer and P. Fabrie. Mathematical Tools for the Study of the Incompressible Navier-
Stokes Equations and Related Models. Applied Mathematical Sciences. Springer New
York, 2012.

J. Bramble. Multigrid Methods. CRC Press, 2019.

E. Burman and J. Rappaz. “Existence of solutions to an anisotropic phase-field model”.
Mathematical methods in the applied sciences 26.13 (2003), pp. 1137-1160.

E. Casas and F. Troltzsch. “First- and second-order optimality conditions for a class of
optimal control problems with quasilinear elliptic equations”. SIAM Journal on Control
and Optimization 48 (2009), pp. 688-718.

E. Casas and K. Chrysafinos. “Analysis and optimal control of some quasilinear parabolic
equations”. Mathematical Control € Related Fields 8.2156-8472_2018_3-4 607 (2018),
pp. 607-623.

E. Casas and L. A. Fernandez. Boundary control of quasilinear elliptic equations. Research
Report RR-0782. INRIA, 1988.

E. Casas and L. A. Fernandez. “Dealing with Integral State Constraints in Boundary
Control Problems of Quasilinear Elliptic Equations”. SIAM Journal on Control and
Optimization 33.2 (1995), pp. 568-589.

http://oup.prod.sis.lan/imajna/article-pdf/28/2/292/1945147/drm013.pdf
http://oup.prod.sis.lan/imajna/article-pdf/28/2/292/1945147/drm013.pdf
https://doi.org/10.1137/S0036142902413421
http://arxiv.org/abs/2102.02616
http://arxiv.org/abs/2105.13310

Bibliography

E. Casas and L. A. Ferndndez. “Distributed Control of Systems Governed by a General
Class of Quasilinear Elliptic Equations”. Journal of Differential Equations 104.1 (1993),
pp- 2047.

E. Casas and L. A. Ferndndez. “Optimal control of quasilinear elliptic equations with
non differentiable coefficients at the origin”. Revista Matemadtica de la Universidad
Complutense de Madrid 4 (1991), pp. 227-250.

E. Casas and L. A. Fernandez. “Optimal control of quasilinear multistate elliptic systems”.
Analysis and Optimization of Systems. Springer, 1988, pp. 393-406.

E. Casas, L. A. Fernandez, and J. Yong. “Optimal control of quasilinear parabolic
equations”. Proceedings of The Royal Society A: Mathematical, Physical and Engineering
Sciences 125.3 (1995), pp. 545-565.

A. R. Christian Clason Vu Huu Nhu. “Optimal control of a non-smooth quasilinear
elliptic equation”. Mathematical Control and Related Fields 11.3 (2021), pp. 521-554.

P. Colli, M. H. Farshbaf-Shaker, and J. Sprekels. “A deep quench approach to the
optimal control of an Allen—-Cahn equation with dynamic boundary conditions and
double obstacles”. Applied Mathematics and Optimization 71 (2015), pp. 1-24.

P. Colli and J. Sprekels. “Optimal control of an Allen—Cahn equation with singular
potentials and dynamic boundary condition”. SIAM Journal on Control and Optimization
53.1 (2015), pp. 213-234.

P. Colli et al. “Optimal boundary control of a viscous Cahn—Hilliard system with dynamic
boundary condition and double obstacle potentials”. SIAM Journal on Control and
Optimization 53.4 (2015), pp. 2696-2721.

A. Conn, N. Gould, and P. Toint. Trust Region Methods. MPS-STAM Series on Optimiza-
tion. Society for Industrial and Applied Mathematics, 2000.

B. Dacorogna. Direct Methods in the Calculus of Variations. Applied Mathematical
Sciences. Springer Berlin Heidelberg, 2012.

K. Deckelnick, G. Dziuk, and C. M. Elliott. “Computation of geometric partial differential
equations and mean curvature flow”. Acta numerica 14 (2005), pp. 139-232.
X. Du et al. “Inexact and truncated parareal-in-time Krylov subspace methods for

parabolic optimal control problems”. Electronic Transactions on Numerical Analysis 40

(2013), pp. 36-57.

X. Du et al. “Varying iteration accuracy using inexact conjugate gradients in control
problems governed by pde’s”. Proceedings of the 2nd Annual International Conference
on Computational Mathematics, Computational Geometry and Statistics (CMCGS 2013).
2008, pp. 29-38.

C. Eck, H. Garcke, and P. Knabner. Mathematical Modeling. Springer Undergraduate
Mathematics Series. Springer International Publishing, 2017.

J. Eggleston, G. B. McFadden, and P. Voorhees. “A phase-field model for highly anisotropic
interfacial energy”. Physica D: Nonlinear Phenomena 150.1 (2001), pp. 91-103.

H. Eisenschmidt, A. Voigt, and K. Sundmacher. “Face-Specific Growth and Dissolu-
tion Kinetics of Potassium Dihydrogen Phosphate Crystals from Batch Crystallization
Experiments”. Crystal Growth € Design 15.1 (2014), pp. 219-227.

C. M. Elliott and A. R. Gardiner. “Double obstacle phase field computations of dendritic
growth”. CMATA University of Sussex Report 1996-19 (1996).

C. M. Elliott, A. R. Gardiner, and T. Kuhn. Generalized double obstacle phase field approz-
imation of the anisotropic mean curvature flow. Tech. rep. Technical report, University

of Sussex CMATA Research report, 1996.

C. M. Elliott and R. Schétzle. “The limit of the anisotropic double-obstacle Allen-Cahn
equation”. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126
(1996), pp. 1217-1234.

133

Bibliography

[54]
[55]

[56]

134

K. Eriksson et al. Computational differential equations. Cambridge University Press,
1996.

R. D. Falgout. “An Introduction to Algebraic Multigrid”. Computing in Science and
Engineering 8.6 (2006), pp. 24-33.

M. H. Farshbaf-Shaker and C. Hecht. “Optimal control of elastic vector-valued Allen—
Cahn variational inequalities”. STAM Journal on Control and Optimization 54.1 (2016),
pp. 129-152. eprint: https://doi.org/10.1137/130937354.

J. Fischer. “Optimal Control Problems Governed by Nonlinear Partial Differential Equa-
tions and Inclusions”. PhD thesis. Bayreuth, 2010. eprint: https://eref .uni-bayreuth.
de/4377/.

M. P. Forum. MPI: A Message-Passing Interface Standard. Tech. rep. USA, 1994.

K. Fujiwara et al. “Growth of structure-controlled polycrystalline silicon ingots for solar
cells by casting”. Acta Materialia 54.12 (2006), pp. 3191-3197.

S. W. Funke and P. E. Farrell. A framework for automated PDE-constrained optimisation.
2013. arXiv: [1302.3894 [cs.MS]l

H. Garcke. “On Cahn-Hilliard systems with elasticity”. Royal Society of Edinburgh -
Proceedings A 133.2 (2003), pp. 307-331.

D. Gilbarg and N. Trudinger. Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics. Springer Berlin Heidelberg, 2015.

G. Golub and R. Varga. “Chebyshev semi-iterative methods, successive overrelaxation
iterative methods, and second order Richardson iterative methods - Part I”. Numerische
Mathematik 3 (1961).

C. Gréser, R. Kornhuber, and U. Sack. “Time discretizations of anisotropic Allen-Cahn
equations”. IMA Journal of Numerical Analysis 33.4 (2013), pp. 1226-1244.

C. GraBle et al. Simulation and Control of a Nonsmooth Cahn-Hilliard Navier-Stokes
System with Variable Fluid Densities. 2019. arXiv: 1907.04285 [math.0C]|

K. Gréger. “A WlP-estimate for solutions to mixed boundary value problems for second
order elliptic differential equations”. Mathematische Annalen 283 (1989), pp. 679-687.

F. Guillén-Gonzélez and G. Tierra. “On linear schemes for a Cahn—Hilliard diffuse
interface model”. Journal of Computational Physics 234.1 (2013), pp. 140-171.

F. Guillén-Gonzélez and G. Tierra. “Second order schemes and time-step adaptivity for
Allen—Cahn and Cahn—Hilliard models”. Computers and Mathematics with Applications
68.8 (2014), pp. 821-846.

M. E. Gurtin. Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford
mathematical monographs. Clarendon Press, 1993.

W. Hackbusch. Multi-Grid Methods and Applications. Springer Series in Computational
Mathematics. Springer Berlin Heidelberg, 2013.

R. Haller-Dintelmann et al. “Hélder continuity and optimal control for nonsmooth elliptic
problems”. Applied Mathematics and Optimization 60.3 (2009), pp. 397-428.

M. Heinkenschloss. “A time-domain decomposition iterative method for the solution of
distributed linear quadratic optimal control problems”. Journal of Computational and
Applied Mathematics 173.1 (2005), pp. 169-198.

M. Heinkenschloss and D. Ridzal. “A Matrix-Free Trust-Region SQP Method for Equality
Constrained Optimization”. SIAM Journal on Optimization 24.3 (2014), pp. 1507-1541.

R. Herzog and C. Meyer. “Optimal control of static plasticity with linear kinematic
hardening”. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 91.10 (2011),
pp. 777-794.

https://doi.org/10.1137/130937354
https://eref.uni-bayreuth.de/4377/
https://eref.uni-bayreuth.de/4377/
http://arxiv.org/abs/1302.3894
http://arxiv.org/abs/1907.04285

Bibliography

[75]

M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear systems”.
Journal of research of the National Bureau of Standards 49 (1952), pp. 409-436.

J. E. Hicken. “Inexact Hessian-vector products in reduced-space differential-equation
constrained optimization”. Optimization and Engineering 15.3 (2014), pp. 575-608.

M. Hintermiiller, M. Hinze, and C. Kahle. “An adaptive finite element Moreau—Yosida-
based solver for a coupled Cahn—Hilliard /Navier—Stokes system”. Journal of Computa-
tional Physics 235 (2013), pp. 810-827.

M. Hintermiiller and D. Wegner. “Distributed optimal control of the Cahn—Hilliard
system including the case of a double-obstacle homogeneous free energy density”. SIAM
Journal on Control and Optimization 50.1 (2012), pp. 388-418.

M. Hinze et al. Optimization with PDE Constraints. Mathematical Modelling: Theory
and Applications. Springer Netherlands, 2008.

F. Hoppe and I. Neitzel. “Convergence of the SQP method for quasilinear parabolic
optimal control problems”. Optimization and Engineering (2020), pp. 1-47.

W. Horn, J. Sokolowski, and J. Sprekels. “Control Problems with State Constraints for
the Penrose-Fife Phase-field model”. Control and Cybernetics 25 (1996), pp. 1137-1153.

Ethereal (https://stackoverflow.com/users/1546600/ethereals). C++ - pointer array to
Vector? Stack Overflow. URL: https://stackoverflow.com/a/15203325 (version: 2018-04-
25). eprint: https://stackoverflow.com/a/15203325.

R. Israel (https://math.stackexchange.com/users/8508 /robert israel). Counterezample for
the Chain rule for the Gateauz-derivative. Mathematics Stack Exchange. URL:https://math.
stackexchange.com/q/705876 (version: 2014-03-09). eprint: https://math.stackexchange.
com/q/705876.

K. Tto and K. Kunisch. Lagrange Multiplier Approach to Variational Problems and Appli-
cations. Advances in Design and Control. Society for Industrial and Applied Mathematics,
2008.

R. C. Kirby and A. Logg. “A Compiler for Variational Forms”. ACM Transactions on
Mathematical Software 32.3 (2006).

R. Kobayashi. “Modeling and numerical simulations of dendritic crystal growth”. Physica
D: Nonlinear Phenomena 63.3 (1993), pp. 410-423.

R. Kruse. Strong and Weak Approximation of Semilinear Stochastic Evolution Equations.
Vol. 2093. 2014.

C. Lefter and J. Sprekels. “Optimal boundary control of a phase field system modeling
nonisothermal phase transitions”. Advances in Mathematical Sciences and Applications
17 (2007), p. 181.

J. L. Lions. Quelques Méthodes de Résolution des Problémes auz Limites Non Linéaires.
Etudes mathématiques. Paris: Dunod, 1969.

A. Logg, K.-A. Mardal, G. N. Wells, et al. Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012.

A. Logg and G. N. Wells. “DOLFIN: Automated Finite Element Computing”. ACM
Transactions on Mathematical Software 37.2 (2010).

A. Logg, G. N. Wells, and J. Hake. “DOLFIN: a C++/Python Finite Element Library”.
Automated Solution of Differential Equations by the Finite Element Method, Volume 84 of
Lecture Notes in Computational Science and Engineering. Ed. by A. Logg, K.-A. Mardal,
and G. N. Wells. Springer, 2012. Chap. 10.

A. Logg et al. “FFC: the FEniCS Form Compiler”. Automated Solution of Differential
Equations by the Finite Element Method, Volume 84 of Lecture Notes in Computational
Science and Engineering. Ed. by A. Logg, K.-A. Mardal, and G. N. Wells. Springer, 2012.
Chap. 11.

135

https://stackoverflow.com/a/15203325
https://math.stackexchange.com/q/705876
https://math.stackexchange.com/q/705876

Bibliography

[94]
[95]

[96]

[97]

[98]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

136

T.T. Luand S. H. Shiou. “Inverses of 2 x 2 block matrices”. Computers and Mathematics
with Applications 43.1-2 (2002), pp. 119-129.

K.-A. Mardal and J. B. Haga. “Block preconditioning of systems of PDEs”. Automated
solution of differential equations by the finite element method. Springer, 2012, pp. 643-655.

T. P. Mathew, M. Sarkis, and C. E. Schaerer. “Analysis of block parareal preconditioners
for parabolic optimal control problems”. SIAM Journal on Scientific Computing 32.3
(2010), pp. 1180-1200.

G. B. McFadden et al. “Phase-field models for anisotropic interfaces”. Physical Review E
48.3 (1993), pp. 2016-2024.

D. Meidner and B. Vexler. “Adaptive Space-Time Finite Element Methods for Parabolic
Optimization Problems”. STAM Journal on Control and Optimization 46.1 (2007), pp. 116—
142. eprint: https://doi.org/10.1137/060648994.

H. Meinlschmidt, C. Meyer, and J. Rehberg. “Optimal Control of the Thermistor Problem
in Three Spatial Dimensions, Part 1: Existence of Optimal Solutions”. SIAM Journal
on Control and Optimization 55.5 (2017), pp. 2876-2904. eprint: https://doi.org/10.
1137/16M1072644.

H. Meinlschmidt, C. Meyer, and J. Rehberg. “Optimal Control of the Thermistor Problem
in Three Spatial Dimensions, Part 2: Optimality Conditions”. SIAM Journal on Control
and Optimization 55.4 (2017), pp. 2368-2392. eprint: https://doi.org/10.1137/
16M1072656.

A. Miranville. “On an anisotropic Allen-Cahn system”. Cubo (Temuco) 17.2 (2015),
pp. 73-88.

K. Nakajima and N. Usami. Crystal Growth of Si for Solar Cells. Springer, 2009.

S. Nicaise and F. Troltzsch. “Optimal control of some quasilinear Maxwell equations of
parabolic type”. Discrete and Continuous Dynamical Systems - Series S 10.6 (2017),
pp. 1375-1391.

J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006.

R. Nochetto, M. Paolini, and C. Verdi. “A Dynamic Mesh Algorithm for Curvature
Dependent Evolving Interfaces”. Journal of Computational Physics 123.2 (1996), pp. 296
310.

T. Ohtsuka, K. Shirakawa, and N. Yamazaki. “Optimal control problem for Allen—-Cahn
type equation associated with total variation energy”. Discrete and Continuous Dynamical
Systems - Series S 5 (2012), pp. 159-181.

T. Ohtsuka, K. Shirakawa, and N. Yamazaki. “Optimal control problem for Allen—-Cahn
type equation associated with total variation energy”. Discrete and Continuous Dynamical
Systems - Series S 5.1 (2012), pp. 159-181.

K. B. Qlgaard and G. N. Wells. “Optimisations for Quadrature Representations of
Finite Element Tensors Through Automated Code Generation”. ACM Transactions on
Mathematical Software 37 (2010).

L. N. Olson and J. B. Schroder. PyAMG: Algebraic Multigrid Solvers in Python v4.0.
Release 4.0. 2018.

P. Oswald. Multilevel Finite Element Approximation: Theory and Applications. Teubner
Skripten zur Numerik. Vieweg+Teubner Verlag, 1994.

J. W. Pearson, M. Porcelli, and M. Stoll. “Interior-point methods and preconditioning
for PDE-constrained optimization problems involving sparsity terms”. Numerical Linear
Algebra with Applications 27.2 (2020), e2276. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/nla.2276.

https://doi.org/10.1137/060648994
https://doi.org/10.1137/16M1072644
https://doi.org/10.1137/16M1072644
https://doi.org/10.1137/16M1072656
https://doi.org/10.1137/16M1072656
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2276
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2276

Bibliography

[112]

[113]

[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

J. W. Pearson, M. Stoll, and A. J. Wathen. “Regularization-robust preconditioners
for time-dependent pde-constrained optimization problems”. SIAM Journal on Matrix
Analysis and Applications 33.4 (2012), pp. 1126-1152.

A. Réatz and A. Voigt. “Higher order regularization of anisotropic geometric evolution
equations in three dimensions”. Journal of Computational and Theoretical Nanoscience
3.4 (2006), pp. 560-564.

T. Rees, H. S. Dollar, and A. J. Wathen. “Optimal solvers for PDE-constrained optimiza-
tion”. SIAM Journal on Scientific Computing 32.1 (2010), pp. 271-298.

J. W. Ruge and K. Stiiben. “Algebraic multigrid”. Multigrid methods. STAM, 1987,
pp- 73-130.

C. Rupprecht. “Numerische Losung optimaler Steuerung der Allen—Cahn Gleichung
inklusive Adaptivitdt”. Diploma thesis. Regensburg, 2011.

M. Ruzicka. Nichtlineare Funktionalanalysis: Eine Einfihrung. Springer-Lehrbuch Mas-
terclass. Springer Berlin Heidelberg, 2004.

A. Schiela and S. Ulbrich. “Operator preconditioning for a class of inequality constrained
optimal control problems”. SIAM Journal on Optimization 24.1 (2014), pp. 435-466.

J. Shen and X. Yang. “Numerical approximations of Allen—-Cahn and Cahn—Hilliard
equations”. Discrete & Continuous Dynamical Systems 28.4 (2010), p. 1669.

J. Simon. “Compact sets in the space LP(0,T; B)”. Annali di Matematica Pura ed
Applicata 146 (1986), pp. 65-96.

V. Simoncini and D. B. Szyld. “Theory of Inexact Krylov Subspace Methods and
Applications to Scientific Computing”. 25.2 (2003), pp. 454-477.

G. Stampacchia. “Le probléme de Dirichlet pour les équations elliptiques du second ordre
a coeflicients discontinus”. Annales de linstitut Fourier 15.1 (1965), pp. 189-257.

T. Steihaug. “The Conjugate Gradient Method and Trust Regions in Large Scale Opti-
mization”. SIAM Journal on Numerical Analysis 20.3 (1983), pp. 626-637.

M. Stoll and A. J. Wathen. “All-at-once solution of time-dependent PDE-constrained
optimization problems” (2010), pp. 24-29.

J. E. Taylor and J. W. Cahn. “Linking anisotropic sharp and diffuse surface motion laws
via gradient flows”. Journal of Statistical Physics 77.1-2 (1994), pp. 183-197.

S. Torabi et al. “A new phase-field model for strongly anisotropic systems”. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 465 (2009),
pp. 1337-1359.

F. Troltzsch and J. Sprekels. Optimal Control of Partial Differential Equations: Theory,
Methods, and Applications. Graduate studies in mathematics. American Mathematical
Society, 2010.

S. Ulbrich. “Generalized SQP methods with “parareal” time-domain decomposition for
time-dependent PDE-constrained optimization”. Real-time PDE-constrained optimization.
STAM, 2007, pp. 145-168.

S. Ulbrich. “Preconditioners based on “parareal” time-domain decomposition for time-
dependent PDE-constrained optimization”. Multiple Shooting and Time Domain Decom-
position Methods. Springer, 2015, pp. 203-232.

G. Wachsmuth. “Differentiability of implicit functions: Beyond the implicit function
theorem”. Journal of Mathematical Analysis and Applications 414.1 (2014), pp. 259 —272.

G. Wachsmuth. “Optimal control of quasistatic plasticity”. PhD thesis. Chemnitz, 2011.

G. Wachsmuth. “Optimal Control of Quasistatic Plasticity with Linear Kinematic Hard-
ening, Part I: Existence and Discretization in Time”. SIAM Journal on Control and
Optimization 50 (2012).

137

Bibliography

[133]

[134]

[135]

[136]

[137]

[138]

[139]
[140]

[141]

138

G. Wachsmuth. “Optimal Control of Quasistatic Plasticity with Linear Kinematic Hard-
ening, Part II: Regularization and Differentiability”. Zeitschrift fiir Analysis und ihre
Anwendungen 34 (2015), pp. 391-418.

G. Wachsmuth. “Optimal Control of Quasistatic Plasticity with Linear Kinematic Hard-
ening, Part III: Optimality Conditions”. Zeitschrift fiir Analysis und ihre Anwendungen
35 (2016).

A. J. Wathen and T. Rees. “Chebyshev semi-iteration in preconditioning for problems
including the mass matrix”. Electronic Transactions on Numerical Analysis 34 (2009),
pp. 125-135.

S. M. Wise, J. Kim, and J. S. Lowengrub. “Solving the regularized, strongly anisotropic
Cahn-Hilliard equation by an adaptive non-linear multigrid method”. J. Comp. Phys.
226 (2007), pp. 441-446.

M. Wolff and M. B6hm. “On parameter identification for general linear elliptic problems of
second order”. Berichte aus der Technomathematik 18-01. Universitdt Bremen, Zentrum
fiir Technomathematik, Fachbereich 3-Mathematik und Informatik, 2018.

G. Wulff. “XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflésung
der Krystallflachen”. Zeitschrift fir Kristallographie - Crystalline Materials 34 (1901),
pp- 449 -530.

E. Zeidler and L. Boron. Nonlinear Functional Analysis and Its Applications: 11/ A:
Linear Monotone Operators. Springer New York, 2012.

E. Zeidler and L. Boron. Nonlinear Functional Analysis and its Applications: I1/B:
Nonlinear Monotone Operators. Springer New York, 2013.

X. Zhang, H. Li, and C. Liu. “Optimal Control Problem for the Cahn—Hilliard /Allen—Cahn

Equation with State Constraint”. Applied Mathematics and Optimization 82.2 (2020),
pp. 721-754.

Acknowledgments

First of all I want to mention the following persons to which I want to express my gratitude:

my supervisor Prof. Dr. Luise Blank for her steady advice during the work on this thesis
and providing the topic

my co-supervisor Prof. Dr. Eberhard Bénsch for discussions on preconditioning and
tracking my progress

Prof. Dr. Harald Garcke, Dr. Christian Kahle and Prof. Dr. Martin Stoll for useful
discussions

Prof. Dr. Christian Meyer for providing me the PhD thesis of his former student Prof. Dr.
Daniel Wachsmuth |131] which also gave much inspirations and directions to this thesis

Kira Bangert and Jonas Bierler for useful discussions and social interaction

Dennis Trautwein, Paul Hiittl and Michael Kelly for proofreading

I also thank my family and friends for their constant support.

Finally, I gratefully acknowledge the financial support by the RTG 2339 “Interfaces, Complex
Structures, and Singular Limits” of the German Science Foundation (DFG).

	Introduction
	Overview of the occurring equations and quantities
	Notation and auxiliary results

	Analytical results
	Assumed properties of A, and their derivatives
	Solution of the time discretized and time continuous state equations
	Existence of the optimal control in the time discretized and in the continuous setting
	Fréchet differentiability of the reduced cost functional for the time discretized problem
	Convergence with respect to a regularization of A
	The regularization of a class of anisotropies
	A semi-implicit splitting scheme for the anisotropy
	Existence and stability result
	First order conditions and linearized equations
	On the continuous dependence of the state

	Algorithms and implementation
	Presentation of the algorithms
	Steepest descent and trust region method
	The Steihaug-CG method
	A note on the preconditioned Steihaug-CG method

	Preconditioning
	Dependence of the condition number on y and p
	Dependence of the condition number on the mesh and T
	Factorizing the Hessian
	Considering the full system as an alternative

	Comments on the implementation
	Solving the PDEs
	Parallelization
	About mesh refinement

	Numerical results
	Dependence on the regularization parameter
	Mesh independent behavior
	Numerical examples for different desired states and anisotropies
	Evolution to star-like structures
	Splitting and merging geometries
	Filling the whole domain

	Monitoring quantities
	Residual
	Steihaug-CG iterations and time per step
	Trust region radius

	Efficiency discussions
	Semi-implicit scheme
	Keeping assembled terms in memory
	Parallelization

	Conclusion and outlook
	Bibliography

