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Abstract

There are numbers of mathematical models to describe the relation between immune

effector cells and cancer cells. The purpose of this thesis is to explore the influence of

Allee effect on immune effector cells and cancer cells.

First, we introduce some background information of how the immune system in-

hibit and suppress cancer growth and Allee effect.

In Chapter 2, we propose a general model to describe the interaction between

immune effector cells and cancers. We discuss some basic dynamical properties of the

system under strong Allee effect and weak Allee effect with linear functional responses.

For instance, the existence of equilibrium points and their local stabilities.

In Chapter 3, using Matlab code, we do sampling-based sensitive analysis on the

density of cancer cells. Sensitive analysis can narrow down the parameter of interest

and suggest the most significant parameter that affect the density of cancer cells.

In Chapter 4, due to the difficulty of solving the explicit form of positive equi-

librium point. We give numerical simulation to explore the existence of positive

equilibrium points and their stabilities.

At last, in Chapter 5, we summarize the results in this thesis, and indicate some

problems for future work.
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Lay summary

Cancer has become a leading cause of death worldwide and has deeply impact on

millions of people’s life. In order to provide therapies for patients, it is very important

for researchers to understand how the immune system fight against with cancer cells.

In this thesis, we build a mathematic model to study the interaction between immune

effector cells and cancer cells. We introduce Allee effect on immune effector cells and

cancer cells to see its influence. We perform sensitivity analysis to find the most

influential parameters in the model.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

It is known that cancer is an evolutionary process and has been widely thought to

originate from mutation and an inhibition of growth suppressors. What is worse is the

cell proliferation and the risk of metastasis. It has become a leading cause of death

worldwide. Millions of people’s life has been deeply affected by cancer every year and

its impact continues to increase. According the report by World Health Organizaton in

2021 (WHO), there were approximately 10.1 million people living with cancer around

the world in 2020 and 5.019 million people died from cancer throughout the world in

2020 [29].

Immune system plays a vital role in inhibiting or suppressing tumor growth. One

of the major challenges of the twenty-first century for scientists in immunology and

cancer research is to fully understand how the immune system affects cancer devel-

opment and progression [27]. In 1909, Paul Ehrlich [31] first suggested that cancer

can occur in vivo suddenly and our body could generate immunity against cancer.

The immune response for the cancer indicates that there exists unique molecules that

can recognize and protect against specific cancer. In the late 1950s, based on the

studies of the cellular basis of transplantation and tumor immunity, Burnet [1] and

Thomas [2] proposed that complex organisms possessed a system that can recognizes

and destroys continuously arising nascent transformed cells and postulated the con-

cept of cancer immunosurveillance. Data obtained from the studies on both mice
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and humans with cancer suggest that there were several factors can suppress tumor

growth by destroying cancer cells or inhibiting their outgrowth such as innate and

adaptive immune cell types, effector molecules, and pathways. On the other hand,

the immune system can also promote tumor progression from two sides: one by s-

electing for tumor cells that are more fit to survive in an immunocompetent host;

another by establishing conditions within the tumor microenvironment that facilitate

tumor outgrowth (Dunn et al. [3], Matsushita et al. [7], Mohme et al. [11], Pardoll et

al. [12], Schreiber et al. [27], Vesely et al. [18]). Immune system can both suppress

and promote tumor growth. This dual role of immune system is termed cancer im-

munoediting, which consists of three processes: elimination (immunity functions as an

extrinsic tumor suppressor in naive hosts); equilibrium (expansion of transformed cells

is held in check by immunity); and escape (tumor cells attenuate immune responses

and grow into cancers)(Dunn et al. [3, 5], Koebel et al. [17], Schreiber et al. [27] ).

One of the most vital components of the immune system in the process of fighting

against cancer is T cells . Generally, T cells originate from hematopoietic stem cells in

the bone marrow. CD8+ T cells, also known as ”killer T cells” , are cytotoxic T cells.

These T cells can directly kill virus-infected cells, as well as cancer cells and also can

produce cytokines IL-2 and IFNγ which can influence the effector functions of other

cells, in particular macrophages and NK cells. In order to have the ability of killing

cancer cells, the naive T cells move to the lymph nodes where they can be activated

after contacting with cognate antigens. Activated T cells will proliferate rapidly and

be transported to the tumour site through the blood vessels to kill the infected cells.

It is known that Allee effect is a biological phenomenon characterized by positive

association between population size or density and absolute average individual fitness.

There are two types of Allee effect: strong or weak. When Allee effects are strong,

populations less than threshold will decline to extinction. When Allee effects are

weak, the growth rate of population always remains positive.

Cancers growth has been assumed as cell autonomous proliferation, manifested as

exponential increase in cell number, and limited by the carrying capacity. However,

an increasing number of studies show that, in some cases, cell population kinetics are

best described by considering processes models involving the Allee effect, we refer:

Johnson [32], Korolev [33], Neufeld [28] for more details. A variety of mechanisms

may be the reason that cause Allee effect such as cooperative interactions (Korolev
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[33]). Cooperation is common to a wide variety of organisms. In cancer, cooperation

might be needed to produce sufficient growth factors which guarante the proliferation

of tumor (Korolev [33]). Some mathematical models with Allee effect have been

presented in Böttger [34], Konstorum [26] and the impact of Allee effect in spreading

of cancer cells has been investigated in Feng [19], Sewalt [6]. Studies show that there

is Allee effect phenomenon on the dynamics of immune effectors. That is because

immune system can weaken at some times, either by the presence of other disease,

or due to a bad nutrition (Mckenzie [8], Kirchner [9]). Thus, there is a threshold. If

the immune effector density is greater than this threshold, it will converge to carrying

capacity. This assumption on the dynamics of immune effectors may be useful to

evaluate the impact of the immune effectors on the disease progression.

Mathematical models provide a useful method and framework to investigate and

solve real world problems. In the context of dynamics system, through the math-

ematical analysis, we maybe able to predict the development direction in advance

and propose an effective measure to prevent the spread of tumor and control tumor

growth. There exist several handful of compartmental mathematical models of cancer

dynamics (Kirschner and Panetta [14], Kuznetsov et al. [42], Owen and Sherratt [21])

to study the interaction between tumor and immune system. However, few achieve-

ments consider Allee effects both on immune effector cells and tumor cells.

Sensitivity analysis (SA) is a method to quantify uncertainty and examine how the

critical parameters affect outcomes. The Pearson correlation coefficient (CC) provides

a measure of the strength of a linear relationship between input parameters and an

outcome in a model. The problem is that CC is limited to quantify the association

between two variables. It does not account the impact of the other parameters on out-

put variable by showing the degree of monotonicity between specific input parameters

and corresponding output variable.

Partial correlation coefficient (PCC) is a more appropriate measure to explore

the sensitivity. In fact, after discounting the linear effects of the Latin Hypercube

Sampling (LHS) parameters on the outcome, Partial Correlation Coefficient quantify

the linear relationship between the LHS parameters and the outcome (Marino [39]). It

does not widely apply to the type of sensitivity analysis when the outcome measures

has a nonlinear relationship with input parameters or variables.

Partial rank correlation coefficients (PRCC) provides a robust sensitivity measure
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for nonlinear, but monotonic, relationships between the output and each of the inde-

pendent parameters ( Marino [39]), Saltelli [47]). PRCC is also a powerful techniques

to analyze the sensitivity of a parameter that is strongly monotonic yet highly non-

linear, regardless of whether the parameter has a positive or negative influence on the

outcome variable.

1.2 Preliminaries

In mathematics, a function which describes the time dependence of a point in a

geometrical space is called a dynamical system.

Differential equations is the most widely used methods to describe and investigate

a system that changes over time. It provides a better approach to analyze the long

time behavior of dynamical system, to discover the factor that cause the change

of behavior and improve the good behavior of the system. The origination of the

behavior of a system generally is the structure of dynamic system. Feedback loops,

accumulations and flows, nonlinear behavior created by the interaction of structure

consist the structure of a system (Sterman [23]).

In this thesis, we mainly discuss the equilibrium points, stability of dynamical

systems. Zero change is one of the most important forms of change, i.e. stability,

where the dynamics could recreate its preceding state into the current state.

An equilibrium solution of a general autonomous system

ẋ = f(x), x ∈ Rn. (1.1)

is a point x̄ ∈ Rn such that f(x̄) = 0.

To determine the stability of equilibrium points we generally linearize the system

(1.1) at the equilibrium points x̄ and obtain the linear system

ẏ = Df(x̄)y,

where Df = [∂fi/∂xj] is the Jacobian matrix of first partial derivatives of the function

f = (f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fn(x1, . . . , xn))T (T denotes transpose).

The local stability analysis of hyperbolic equilibrium points can be done based
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upon the standard linearization technique and using the Jacobian matrix.

The characteristic equation is

|λ−Df(x̄)| = 0

Then, we have the following theorem:

Theorem 1. Suppose all of the eigenvalues λ1, . . ., λn of Df(x̄) have negative real

parts. Then the equilibrium solution x = x̄ of the vector field (1.1) is asymptotically

stable [22].

Consider a characteristic polynomial with real coefficients:

p(λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an, ai ∈ R, a0 6= 0. (1.2)

Generally, we can not obtain an explicit form of λ by solving characteristic e-

quation. We introduce the following theorem which study the roots of characteristic

polynomials by exploring the coefficients.

Theorem 2. (Descartes’ Rule of Sign) Consider the sequence of coefficients of

(1.2):

an, an−1, · · · , a1, a0.

Let k be the total number of sign changes from one coefficient to the next in the

sequence. Then the number of positive real roots of the polynomial is either equal to

k, or k minus a positive even integer [22],. (Note: if k = 1 then there is exactly one

positive real root.)

First we construct the Routh table associated with the polynomial (1.2) [22]. This

is given by:

a0 a2 a4 a6 · · ·
a1 a3 a5 a7 · · ·
r3,1 r3,2 r3,3 r3,4 · · ·
r4,1 r4,2 r4,3 r4,4 · · ·

...
...

...
... · · ·

rn+1,1 rn+1,2 rn+1,3 rn+1,4 · · ·
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where

(ri,1 ri,2 · · · ) ≡ (ri−2,2 ri−2,3 · · · )−
ri−2,1
ri−1,1

(ri−1,2 ri−1,3 · · · ), (i > 2)

(The notation ri,j stands for row i, column j.) Now we have the following test.

Theorem 3. (Routh-Hurwitz Test) All of the roots of the polynomial (1.2) have

real parts strictly less than zero if and only if all n+ 1 elements in the first column of

the Routh table are nonzero and have the same sign [22].



Chapter 2

Model Formulation

2.1 The Allee effect

There are different ways using various mathematical methods to express the Allee

effect. For instance, a simplest form of continuous growth equation to describe the

Allee effect is given by

dx

dt
= r(1− x

K
)(x−m)x,

where −K < m � K, x is the number/density of cancer cells, for instance in this

thesis, r is the reproduction rate and K denotes the carrying capacity. Clearly, if

m = 0, we have the weak Allee effect, and if m > 0, it has the strong Allee effect

which means the population growth rate decreases if the population size is below the

threshold level m and the population will go to extinction.

More and more ecological research suggest that two or more Allee effects generate

mechanisms acting simultaneously on a population (Berec [4]). It has been shown

in [49] that many forms of Allee effect models are topologically equivalent. Another

popular model with Allee effect is in the form of,

dx

dt
= r(1− x

K
)(x− m+ n

x+ n
)x, (2.1)

where m is the Allee threshold, and the auxiliary parameter n with n > 0 and m > −n
(Boukal [35], Sabelis [15], Voorn [25]). It is easy to see that equation (2.1) can be
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rewritten as

dx

dt
=

rx

x+ n
(1− x

K
)(x−m), (2.2)

(2.2) represents two types of Allee effect affecting the same population, one is the

factor x − m, and m expresses the minimum of viable population, another is rx
x+n

which can be interpreted as the impact of Allee effect due to other causes affecting

growth rate, for instance, the predation reducing breeding success at low densities

(Clark [36], Gascoigne [30]).

2.2 The Model

Based on the study of the above research, in this thesis, we propose a two-dimensional

Ordinary Differential Equation model for the interaction of tumor cells and immune

effector cells to study the dynamic behavior and explore the influence of Allee effect

on cancer cells and immune effector cells. Immune effector cells here means killer T

cells. The basic modeling idea is that we assume immune effector cells attack tumor

cells and their proliferation is stimulated, in turn, by the presence of tumor cells.

A general model system is described by the following differential equations,ẋ = r1x(1− x
k1

)(1− A1+a1
x+a1

)− α(x)y − θ(t)x,

ẏ = r2y(1− y
k2

)(1− A2+a2
y+a2

) + α(x)y,
(2.3)

where (x, y) ∈ Ω = {(x, y) ∈ R2|x > 0, y > 0}. x(t) and y(t) denote tumor cells and

immune effector cells, respectively, as functions of time t. We describe each equation

and all parameters in the following.

For the equation

ẋ = r1x(1− x

k1
)(1− A1 + a1

x+ a1
)− α(x)y − θ(t)x (2.4)

where r1 scales the growth rate of the tumor cells, k1 is intrinsic carrying capacity,

A1 is the Allee threshold, a1 is the auxiliary parameters with a1 > 0 and A1 > −a1.
Interaction with immune effector cells and using chemotherapy would lead to the

death of cancer cells, which are expressed as −α(x)y and −θ(t)x.
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(2.4) can be rewritten as

ẋ =
r1x

x+ a1
(1− x

k1
)(x− A1)− α(x)y − θ(t)x, (2.5)

We state that (2.5) represents two types of Allee effect affecting the same population.

Clearly, if A1 > 0, we have strong Allee effect. If A1 = 0, it has weak Allee effect.

For the equation

ẏ = r2y(1− y

k2
)(1− A2 + a2

y + a2
) + α(x)y (2.6)

where r2 denotes the growth rate, k2 is intrinsic carrying capacity, A2 is the Allee

threshold, a2 is the auxiliary parameters with a2 > 0 and A2 > −a2. To describe that

the presence of cancer cells would stimulate rate of the immune effector cells due to

their interaction with tumor cells, we use the term α(x)y. Similar to equation (2.5),

there are double Allee effects in (2.6) and it must fulfill −ki < Ai � ki with i = 1, 2.

The functional response between the tumor cells and immune effector cells α(x)

can be chosen as one of normal Holling type function as the linear α(x) = px, hy-

perbolic α(x) = px
c0+x

and sigmoid α(x) = px2

c20+x
2 . In order to simplify the analysis

of system (2.3), we consider linear functional response α(x) = px. The influence of

immunotherapy function θ(t) results a non-autonomous system in general, while we

take it as positive constant function for simplicity, θ(t) = g1 > 0. Therefore through

the entire thesis, we mainly work on the following modelẋ = r1x(1− x
k1

)(1− A1+a1
x+a1

)− pxy − g1x,

ẏ = r2y(1− y
k2

)(1− A2+a2
y+a2

) + pxy,
(2.7)

In order to simplify the analysis of system (2.7), we consider a C∞-equivalent

polynomial extension by the following change of coordinates:

φ : Ω̃×R+ → Ω×R+ such that φ(u, v, τ) =
(
k1u, k2v, (v+ a2

k2
)(u+ a1

k1
)τ
)

= (x, y, t),

with Ω̃ = {(u, v) ∈ R2|u > 0, v > 0}.

Clearly, the Jacobian determinant: Dφ(u, v, τ) = k1k2(v + a2
k2

)(u+ a1
k1

) > 0. Then,

φ is a diffeomorphism preserving the orientation of time and the system (2.7) in the
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new system of coordinates is topologically equivalent to the following system (2.8).u̇ = u(v + a2
k2

)[r1(1− u)(u− A1

k1
)− g1(u+ a1

k1
)− pk2(u+ a1

k1
)v] := f1(u, v),

v̇ = v(u+ a1
k1

)[r2(1− v)(v − A2

k2
) + pk1(v + a2

k2
)u] := f2(u, v),

(2.8)

where u̇, v̇ denotes du
dτ

and dv
dτ

respectively.

2.3 Positivity and Boundedness

First, we show that the solutions of model (2.7) are nonnegative and bounded. This

well-posedness property implies that the proposed model is sensible.

Theorem 4. The nonnegative orthant R2
+ is positively invariant under the flow in-

duced by the system (2.7).

Proof. From the first equation of (2.7), we know that

x(t) = x(0)e
∫ t
0 [r1(1−

x
k1

)(1−A1+a1
x+a1

)−py−g1]

which means x(t) > 0 if and only if x(0) > 0. The initial value indicates the positivity

of x(t). Similarly, we can obtain the positivity of y(t). This implies that all solutions of

the system (2.7) with initial condition (x(0), y(0)) ∈ R2
+ stays in the first quadrant.

Theorem 5. Solutions of model (2.7) are nonnegative and bounded with

lim
t→∞

sup(x(t) + y(t)) ≤ r1k1
4g1

+
k2

4r2g1
(r2 + g1)

2

for t > 0.

Proof. For the boundedness of the solution, we define B(t) = x(t) + y(t) and B(0) =

x(0) + y(0) ≥ 0.

Differentiating B(t) with respect to time along the solution of (2.7) yields

dB(t)

dt
= r1x(1− x

k1
)(1− A1 + a1

x+ a1
) + r2y(1− y

k2
)(1− A2 + a2

y + a2
)− g1x

≤ r1x(1− x

k1
)− g1x+ r2y(1− y

k2
)
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Let us consider the following function:

dB(t)

dt
+ g1B(t) ≤ r1x(1− x

k1
) + r2y(1− y

k2
) + g1y

≤ r1k1
4

+
k2
4r2

(r2 + g1)
2

Then, we know

B(t) ≤ B(0)e−g1t + (
r1k1
4g1

+
k2

4r2g1
(r2 + g1)

2)(1− e−g1t)

when time t→∞, we have B(t) ≤ r1k1
4g1

+ k2
4r2g1

(r2 +g1)
2. This shows that, the solution

of system (2.7) is bounded.

2.4 Existence of Equilibrium Points

2.4.1 Weak Allee effect

In the following we consider weak Allee effect which is described when Ai = 0 (i = 1, 2)

and the system (2.8) has the form:u̇ = u(v + a2
k2

)[r1u(1− u)− g1(u+ a1
k1

)− pk2(u+ a1
k1

)v] := ϕ1(u, v),

v̇ = v(u+ a1
k1

)[r2v(1− v) + pk1(v + a2
k2

)u] := ϕ2(u, v),
(2.9)

To find all the possible equilibrium point, let the functions ϕ1(u, v) = ϕ2(u, v) = 0,

we have the following cases:

I Trivial equilibrium point. Obviously, the trivial equilibrium point E = (u, v) =

(0, 0) always exists.

II Boundary equilibrium point with u = 0 and v > 0,

From (2.9), we have

r2(1− v)v = 0

so there exists one tumor-free equilibrium points (0, 1).
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III Boundary Equilibrium point with u > 0 and v = 0.

From (2.9), we have

r1(1− u)u− g1(u+
a1
k1

) = 0,

which yields

r1u
2 − (r1 − g1)u+

a1g1
k1

= 0. (2.10)

When 4 = (r1 − g1)2 − 4r1
a1g1
k1

> 0 and r1 − g1 > 0, that is,

(K1) g1 < L∗ = r1(

√
1 +

a1
k1
−
√
a1
k1

)2, (2.11)

there exists two positive roots in (2.10), given in the following form:

u1 =
r1−g1+

√
(r1−g1)2−4r1 a1g1

k1

2r1
and u2 =

r1−g1−
√

(r1−g1)2−4r1 a1g1
k1

2r1
.

Thus with the condition (K1) : g1 < L∗, there are two different boundary

equilibrium point. Ei = (ui, 0) (i = 1, 2)in the system. Notably when g1 = L∗,

these two equilibrium points Ei merge into one boundary equilibrium point

Eu = ( r1−g1
2r1

, 0).

IV Positive equilibrium point with u > 0 and v > 0:

From (2.9) r1(1− u)u− g1(u+ a1
k1

)− pk2(u+ a1
k1

)v = 0,

r2(1− v)v + pk1(v + a2
k2

)u = 0,
(2.12)

we solve u and v which result the following:
u = − r2

pk1
(
1+

a2
k2

v+
a2
k2

− 1)v,

v = r1
pk2

(
1+

a1
k1

u+
a1
k1

− 1)u− g1
pk2
.

(2.13)
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To simplify the analysis, we let u+ a1
k1

= U and v+ a2
k2

= V , then (2.13) becomesU = − r2
pk1

(V − F2)(
G2

V
− 1) + a1

k1
:= h1(V ),

V = r1
pk2

(U − F1)(
G1

U
− 1)− g1

pk2
+ a2

k2
:= h2(U),

(2.14)

with

Fi =
ai
ki
, Gi =

ai
ki

+ 1, i = 1, 2.

To find the positive roots (u∗, v∗) in (2.12) or (2.13), firstly it is straightforward

to check that such (u∗, v∗) must lay in the region u∗ ∈ (0, 1) and v∗ ∈ (1,∞)

with the assumption r1 > g1. Consequently, the positive roots (U∗, V ∗) in (2.14)

must stay in the region

{W} = {(U, V )|U ∈ (F1, G1), V ∈ (G2,∞)} = (F1, G1)× (G2,∞)

Next to discuss the possible intersection points between the two curves U =

h1(V ) and V = h2(U) in the region W , we draw a schematic diagram (Figure

2.1) to explore the intersection points of these two curves.

Next we discuss the possible intersection points between the two curves U =

h1(V ) and V = h2(U) in the regions W .

Both h1(V ) and h2(U) are quadratic functions. It is easy to check that, in re-

garding the two branches V = h−11 (U) in the curve U = h1(V ), as the increasing

of U , V is strictly decreasing when V <
√
F2G2 and strictly increasing when

V >
√
F2G2, from dV

dU
= 1

h′1(V )
= pk1

r2(1−F2G2
V 2 )

.

Thus, the intersection points of hi for i = 1, 2 can be located from the maximum

value of V = h2(U) with respect to the curve U = h1(V ) in the region W .

Obviously V = h2(U) reaches its maximum Vm = a2
k2
− g1

pk2
+ r1

pk2
(
√
G1 −

√
F1)

2

at Um =
√
F1G1 ∈ (F1, G1).

Parallely, at Um =
√
F1G1, there are two corresponding points (Um, S±) on

U = h1(V ) with
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Figure 2.1: Schematic diagram for the intersection of the two curves U = h1(V ) and
V = h2(U). The solid black and blue curve are h1(V ) and h2(U), respectively.
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S± =
F2 +G2 + pk1

r2
(
√
F1G1 − a1

k1
)±

√
[F2 +G2 + pk1

r2
(
√
F1G1 − a1

k1
)]2 − 4F2G2

2
,

where S− < F2 < G2 < S+ from

h1(
√
F2G2) < h1(F2) = h1(G2) = F1 < Um = h1(S−) = h1(S+)

and the monotonicity of h1(V ).

To better discuss and analyze the existence and number of positive equilibrium

points in W , we distinct the two cases with the following assumptions:

(K2) : Vm = S+ (K3) : Vm > S+

It should be clear that if (K2) or (K3) holds, condition (K1) holds. In fact,

since the intersection points of h1(V ) and h2(U) stay in the region W , we have

G2 < Vm, that is

a2
k2

+ 1 <
a2
k2
− g1
pk2

+
r1
pk2

(
√
G1 −

√
F1)

2,

g1 < r1(
√
G1 −

√
F1)

2 − pk2.

Clearly, r1(
√
G1 −

√
F1)

2 − pk2 < L∗. Therefore, whether (K2) or (K3) holds,

(K1) holds. This implies there are two immune effector-free boundary equilib-

rium points Ei = (ui, 0) with i = 1, 2.

Then we have the following theorem:

Theorem 6. (i) If condition (K2) hold, there exists a positive equilibrium point

in system (2.9).

(ii) If (K3) hold, there exists two positive equilibrium points in system (2.9).

We summarize all the possible cases of the number of the equilibrium points in

the model and the corresponding conditions in Table 2.1, under the weak Allee effect

hypothesis.
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Table 2.1: Stationary states in the model with weak Allee effect

Equilibrium No. E.P. Existence condition
E(0, 0) Always exist
E(0, 1) Always exist
E1(u1, 0) (K1)

E2(u2, 0) (K1)

E∗(u∗, v∗) 1 (K2)
E∗(u∗, v∗) 2 (K3)

2.4.2 Strong Allee effect

Strong Allee effect on both tumor cells and immune effector cells implies Ai > 0

(i = 1, 2).

Similar to the discussion in the weak Allee effect case, parallely,

I Trivial equilibrium point. Obviously, the trivial E.P. E0 = (u, v) = (0, 0) always

exists.

II Boundary equilibrium point with u = 0 and v > 0,

From (2.8), we have

r2(1− v)(v − A2

k2
) = 0

so there exists two tumor-free equilibrium points (0, 1) and (0,A2

k2
) which is dif-

ferent from the weak Allee case. The extra steady state (0, A2

k2
) results from the

strong Allee effect.

III Boundary Equilibrium point. with u > 0 and v = 0.

From (2.8), we have

r1(1− u)(u− A1

k1
)− g1(u+

a1
k1

) = 0,
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which yields

r1u
2 − [r1(1 +

A1

k1
)− g1]u+

r1A1 + a1g1
k1

= 0. (2.15)

When 4 = [r1(1 + A1

k1
)− g1]2− 4r1

r1A1+a1g1
k1

> 0 and r1(1 + A1

k1
)− g1 > 0, that is,

(H1) g1 < C∗ = r1(

√
1 +

a1
k1
−
√
A1 + a1
k1

)2, (2.16)

there exists two boundary positive roots in (2.15), given in the following form:

u± =
r1(1+

A1
k1

)−g1±
√

[r1(1+
A1
k1

)−g1]2−4r1 r1A1+a1g1
k1

2r1
(i = 1, 2).

Thus with the condition (H1) : g1 < C∗, there are two different positive e-

quilibrium point. E± = (u±, 0) in the system. Notably when g1 = C∗, these

two equilibrium points E± merge into one positive boundary equilibrium point

Eu = (
r1(1+

A1
k1

)−g1
2r1

, 0).

IV Positive equilibrium point with u > 0 and v > 0:

Although the discussion is parallel to the weak Allee case, with strong Allee,

the analysis is much more complicated.

From (2.8)r1(1− u)(u− A1

k1
)− g1(u+ a1

k1
)− pk2(u+ a1

k1
)v = 0,

r2(1− v)(v − A2

k2
) + pk1(v + a2

k2
)u = 0,

(2.17)

we solve u and v which result the following:
u = − r2

pk1
(1 + a2

k2
− (v + a2

k2
))(1−

A2+a2
k2

v+
a2
k2

),

v = r1
pk2

(1 + a1
k1
− (u+ a1

k1
))(1−

A1+a1
k1

u+
a1
k1

)− g1
pk2
.

(2.18)

To simplify the analysis, we let u+ a1
k1

= X and v+ a2
k2

= Y , then (2.18) becomesX = − r2
pk1

(C2 − Y )(1− B2

Y
) + a1

k1
:= h1(Y ),

Y = r1
pk2

(C1 −X)(1− B1

X
)− g1

pk2
+ a2

k2
:= h2(X),

(2.19)
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with

Bi =
Ai + ai
ki

, Ci =
ai
ki

+ 1, i = 1, 2.

Obviously, 0 < Ci − 1 < Bi < Ci since Ai < ki for i = 1, 2.

To find the positive roots (u∗, v∗) in (2.17) or (2.18), firstly we can check that

such (u∗, v∗) must lay in the region u∗ ∈ (A1

k1
, 1) and v∗ ∈ (0, A2

k2
)
⋃

(1,∞).

Different again from the weak Allee case, there is an additional region (0, A2

k2
)

for the immune effector cells which can stay in its steady state.

Consequently, the positive roots (X∗, Y ∗) in (2.19) must stay in the region

D = {(X, Y )|X ∈ (B1, C1), Y ∈ (C2 − 1, B2) ∪ (C2,∞)} = {W1,W2}

with the two subregions W1 = (B1, C1) × (C2 − 1, B2) and W2 = (B1, C1) ×
(C2,∞).

Next we discuss the possible intersection points between the two curves X =

h1(Y ) and Y = h2(X) in the regions W1 and W2. (See Figure 2.2).

Parallel to the previous discuss, we know that the intersection points of hi for

i = 1, 2 can be located corresponding to the maximum value of Y = h2(X) with

respect to the curve X = h1(Y ) in the regions W1 and W2.

Since Y = h2(X) reaches its maximum Ym = a2
k2
− g1

pk2
+ r1

pk2
(
√
C1 −

√
B1)

2 at

Xm =
√
B1C1 ∈ (B1, C1). If the intersection points exist inW1, then Ym > C2−1

which implies the condition (H1) : g1 < C∗ exactly. While at Ŷ = C2−1, there

are two points (M±, Ŷ ) on the curve Y = h2(X) with

M± =
B1 + C1 − g1

r1
±
√

(B1 + C1 − g1
r1

)2 − 4B1C1

2
∈ (B1, C1). (2.20)

In fact, on the curve Y = h2(X), from dY
dX

= h′2(X) = r1
pk2

(B1C1

X2 − 1), we know

Y = h2(X) is strictly increasing when X < Xm =
√
B1C1 and strictly decreasing

when X > Xm, and

h2(B1) = h2(C1) = Ŷ − g1
pk2

< Ŷ = h2(M−) = h2(M+) < Ym,
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Figure 2.2: Schematic diagram for the intersection of the two curves X = h1(Y ) and
Y = h2(X).

thus B1 < M− < Xm < M+ < C1 .

Similarly, at Xm =
√
B1C1, there are two corresponding points (Xm, N±) on

X = h1(Y ) with

N± =
B2 + C2 +

pk1
r2

(
√
B1C1 − a1

k1
)±

√
[B2 + C2 +

pk1
r2

(
√
B1C1 − a1

k1
)]2 − 4B2C2

2
,

(2.21)

where N− < B2 < C2 < N+ from h1(
√
B2C2) < h1(B2) = h1(C2) = C1 − 1 <

Xm = h1(N−) = h1(N+) and the monotonicity of h1(Y ).

On the other side, there is one point (P0, Ŷ ) on the curve X = h1(Y ) with

P0 = h1(C2 − 1) =
a1
k1

+
r2
pk1

A2

a2
. (2.22)
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Therefore if and only if

(H2) : P0 > M−,

there is at least one intersection point in W1. More specifically, if P0 > Xm,

that is h1(N−) = Xm < P0 = h1(C2 − 1) in W1, then N− > C2 − 1.

With different relation of the values among P0,M+, Ym and N±, we can identity

the exact numbers of positive equilibrium points. Notably we make the following

assumptions:

(H3) : P0 < M+ (H4) : Ym < N+ (H5) : Ym > N−

(H6) : P0 > M+ (H7) : Ym = N+ (H8) : Ym > N+

It should be noted that if (H5), (H7) or (H8) holds, condition (H1) holds. In

fact, since the intersection points of h1(Y ) and h2(X) stay in the region W1∪W2,

we have C2 − 1 < Ym, that is

a2
k2

+ 1− 1 <
a2
k2
− g1
pk2

+
r1
pk2

(
√
C1 −

√
B1)

2,

g1 < r1(
√
C1 −

√
B1)

2 = C∗.

Therefore, we have the following theorem:

Theorem 7. (i) If (H1) ∼ (H4) hold, there exists a positive equilibrium point

in system (2.8).

(ii) If either (H4) ∼ (H6), or (H2) ∼ (H3) and (H7), hold, there exists two

positive equilibrium points in system (2.8).

(iii) If either (H6) ∼ (H7), or (H2) ∼ (H3) and (H8), holds, there exists three

positive equilibrium points in system (2.8).

(iv) If (H6) and (H8) holds, there exists four positive equilibrium points in

system (2.8).

The results of the number of the Equilibrium points of the model and the associated

conditions are summarized in Table 2.2.
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Table 2.2: Stationary states in the model with strong Allee effect

Equilibrium No. E.P. Existence condition
E0(0, 0) Always exist

E01(0,
A2

k2
) Always exist

E02(0, 1) Always exist
E+(u+, 0) (H1)

E−(u−, 0) (H1)

E∗(u∗, v∗) 1 (H1) ∼ (H4)
E∗(u∗, v∗) 2 (H4) ∼ (H6)
E∗(u∗, v∗) 2 (H2) ∼ (H3), (H7)
E∗(u∗, v∗) 3 (H2) ∼ (H3), (H8)
E∗(u∗, v∗) 3 (H6), (H7)
E∗(u∗, v∗) 4 (H6), (H8)

2.5 Stability Analysis

As we know from the preliminaries that the local stability near an hyperbolic equi-

librium point can be determined from the characteristic equation of the linearized

system.

At each equilibrium point E = (u∗, v∗), the characteristic equation for system (2.8)

is

λ2 − (δ1 + δ4)λ+ δ1δ4 − δ2δ3 = 0. (2.23)

where

δ1 = (v∗ +
a2
k2

)[r1(1− u∗)(u∗ −
A1

k1
)− (g1 + pk2v

∗)(2u∗ +
a1
k1

) + r1u
∗(1 +

A1

k1
− 2u∗)],

δ2 = u∗[r1(1− u∗)(u∗ −
A1

k1
)− g1(u∗ +

a1
k1

)− pk2(u∗ +
a1
k1

)(2v∗ +
a2
k2

)],

δ3 = v∗[r2(1− v∗)(v∗ −
A2

k2
) + pk1(v

∗ +
a2
k2

)(2u∗ +
a1
k1

)],

δ4 = (u∗ +
a1
k1

)[r2(1− v∗)(v∗ −
A2

k2
) + pk1u

∗(2v∗ +
a2
k2

) + r2v
∗(1 +

A2

k2
− 2v∗)].

Therefore, we can obtain the stability conditions for the trivial/boundary equilibrium
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points in a straightforward way. Although we have provided the existence conditions

for the positive equilibrium points previously, due to the complexity of the system, it

is impossible to discuss the stabilities of those steady states explicitly. We will provide

some numerical simulations to display their rich dynamics.

Theorem 8. For the Weak Allee Effect case (Ai = 0),

(i) E(0, 1) is always locally asymptotically stable.

(ii) E1(u1, 0) is saddle point; and E2(u2, 0) is unstable point.

(iii) The point E(0, 0) is a non-hyperbolic singularity.

Proof. (i) The characteristic equation of (2.9) at E(0, 1) is

(λ1 + (
a2
k2

+ 1)
g1a1 + pk2a1

k1
)(λ2 + r2

a1
k1

) = 0

Obviously both λ1 and λ2 are negative since all the paramters are positive. There-

fore, E(0, 1) is always locally asymptotically stable.

(ii) At Ei(ui, 0) (i = 1, 2), (2.23) becomes

(λ1i − ui ·
a2
k2

[r1 − 2r1ui − g1])(λ2i − uik1p
a2
k2

(ui +
a1
k1

)) = 0,

It is easy to see that both Ei are unstable from

λ2i = uik1p
a2
k2

(ui +
a1
k1

) > 0.

More specifically, recall that, Ei(ui, 0) exists under the condition given in (K1), with

0 < u2 <
r1 − g1

2r1
< u1.

From

λ11 = u1 ·
a2
k2

[r1 − 2r1u1 − g1] = u1 ·
a2
k2

2r1(
r1 − g1

2r1
− u1) < 0,

λ12 = u2
a2
k2

[r1 − 2r1u2 − g1] = u2 ·
a2
k2

2r1(
r1 − g1

2r1
− u2) > 0,

we know that E1(u1, 0) is unstable saddle node and E2(u2, 0) is a unstable node.
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(iii) The characteristic equation of (2.9) at E(0, 0) is

λ1(λ2 + g1
a1a2
k1k2

) = 0

λ1 = 0 which implies we can not obtain its local stability by computing eigenvalues

and E(0, 0) is non-hyperbolic singularity.

Theorem 9. For Strong Allee Effect case (Ai > 0),

(i) E0(0, 0) is always locally asymptotically stable.

(ii) E01(0,
A2

k2
) is always an unstable saddle point; E02(0, 1) is always locally asymp-

totically stable.

(iii) If u+ < r2A2

pk1a2
, then E+(u+, 0) is stable and E−(u−, 0) is saddle point; If

u− <
r2A2

pk1a2
< u+, then E+(u+, 0) and E−(u−, 0) are saddle point; If r2A2

pk1a2
< u− < u+,

then E+(u+, 0) is saddle point and E−(u−, 0) is unstable node.(See Table 2.3)

Proof. (i) it is straightforward to show that the characteristic equation of (2.9) at

E0(0, 0) is

(
λ+

a2(r1A1 + g1a1)

k1k2

)(
λ+

a1r2A2

k1k2

)
= 0

So it is easy to obtain that E0(0, 0) is always stable.

(ii) The characteristic equation of (2.8) at E01(0,
A2

k2
) and E02(0, 1) are, respectively,

(λ1 + (a2 + A2)
r1A1 + g1a1 + pA2a1

k1k2
)(λ2 − r2

a1A2

k1k2
(1− A2

k2
)) = 0

and

(λ1 + (
a2
k2

+ 1)
r1A1 + g1a1 + pk2a1

k1
)(λ2 + r2

a1
k1

(1− A2

k2
)) = 0.

Since k2 > A2, we know E01 is an unstable saddle point and E02 is always stable.

(iii) The linearization of (2.9) at E±(u±, 0) is given by


u′(t) = u±

a2
k2

[r1(1 +
A1

k1
)− 2r1u± − g1]u(t)− u±pa2(u± +

a1
k1

)v(t),

v′(t) = (u± +
a1
k1

)(u±k1p
a2
k2
− r2

A2

k2
)v(t),

(2.24)
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Recall that E±(u±, 0) exists under the condition (H1), with

0 < u− <
r1(1 + A1

k1
)− g1

2r1
< u+.

Thus for the stability of E+(u+, 0), from the characteristic equation of (2.24)

(λ1+ − u+ ·
a2
k2

[r1(1 +
A1

k1
)− 2r1u+ − g1])(λ2+ − (u+ +

a1
k1

)(u+k1p
a2
k2
− r2

A2

k2
)) = 0,

we have

λ1+ = u+ ·
a2
k2

[r1(1 +
A1

k1
)− 2r1u+ − g1] = u+ ·

a2
k2

2r1(
r1(1 + A1

k1
)− g1

2r1
− u+) < 0,

and

λ2+ = (u+ +
a1
k1

)(u+k1p
a2
k2
− r2

A2

k2
).

Consequently we know that E+(u+, 0) is locally asymptotically stable when u+ <
r2A2

pk1a2
. Otherwise E+(u+, 0) becomes unstable saddle.

In a parallel way, we can show that if u− >
r2A2

pk1a2
, E−(u−, 0) is a unstable node; if

not, E−(u−, 0) is a unstable saddle node.

In short, we can conclude that the stability conditions of the equilibrium points

of E+ and E− in the following table.

Table 2.3: Stability of E+(u+, 0) and E−(u−, 0)
E+(u+, 0) E−(u−, 0)

u+ <
r2A2

pk1a2
locally stable saddle

u− <
r2A2

pk1a2
< u+ saddle saddle

r2A2

pk1a2
< u− saddle unstable node



Chapter 3

Sensitivity Analysis

In this project, the primary model outputs of interest for the sensitivity analyses were

the density of cancer cells. Therefore, we choose the density of cancer cells as the

sensitivity function to rank the influential parameters in our model that affect the

density of cancer cells . The uncertainty of the model output is generally arose from

the uncertainty of inputting parameters. A good technique to assess and address

uncertainties is uncertainty analysis (UA).

In the following, we use the most popular sampling-based approach i.e. Latin

Hypercube sampling (LHS) to perform uncertainty analysis (McKay [38], Jain [13]).

LHS is one kind of Monte Carlo sampling methods to determine the uncertainty in

model output. It is stratified sampling that provide each random parameter range with

an equal probability to sample every parameter. Compared with random sampling,

LHS requires fewer samples and a minimum number of computer simulation, but it

does not lose its accuracy. It also ensures an unbiased estimate of the average model

output. Moreover, if the parameter range is very large, performing a log scale on the

parameter range for LHS can prevent under-sampling (Marino [39]). Furthermore,

LHS ensures that exactly one parameter is sampled from each stratum in a given

sample without replacement.

Using the MATLAB LHS and PRCC code provided in (Marino [39] ), we perform

sensitivity analyses on all the parameters using PRCC analysis by sampling parame-

ters from a uniformly distributed range using LHS. Here, the parameters is sampled

40 time for 40 runs. All the parameter values (except the auxiliary parameters αi for

cancer/immune effector cells) are chosen from references, see Table 4.1.
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We can see the relationship between the density of cancer cells and input param-

eters from scatter plots, along with PRCC values and p-values. This has been shown

in Figure 3.1. Parameters with large PRCC values (> 0.5, or < -0.5) as well as corre-

sponding small p-values (< 0.05) are the most important (Richard [16]). If the PRCC

value is closer to +1 or −1, the LHS parameters has more strongly impact on the

outcome. The sign implies the relationship between the input parameters and output

variable.

We have also done the uncertainty and sensitivity analysis with each parameters,

see Figure 3.2. The PRCC between the density of cancer cells and each parameters

in Figure 3.2, indicates the expected number the cancer cells has a significantly pos-

itive relation with A1. This is reasonable because A1 is the threshold, below which

the population size decreases or insreases when the parameter is below or above the

threshold value. In addition, we notice that A1 has higher PRCC values than other

the parameters. Thus, A1 is the most influential parameter on the density of cancer

cells.
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Figure 3.1: Scatter plots showing either monotonic relationships or no relationships
between input parameters and cancer cells. p-values that are greater than 0.05 are
not statistically significant.
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Chapter 4

Numerical Simulation

To make up the lack of theoretical analysis for the positive equilibrium points, in

this part, we present some numerical results for Strong Allee Effect case by choosing

parameters from Table 4.1.

Case (1) : first we choose

r1 = 4.1; k1 = 2.764× 109; a1 = 0.2764× 107;A1 = 108; p = 3.4× 10−9;

r2 = 0.8; k2 = 5× 108; a2 = 5× 106;A2 = 2× 107; g1 = 0.21;

then, we know that C∗ = 2.6746 in Eq. (2.16), Ym = 1.4598, M+ = 0.9477 in Eq.

(2.20), N+ = 3.2991 in Eq. (2.21) and P0 = 0.3415 in Eq. (2.22). It is obvious that

(H1) ∼ (H4) hold. Then two curves of Eq. (2.19) has one positive intersection point

(0.03971, 0.03421) in W1, which implies there exists one positive equilibrium point

E∗(0.0387, 0.0242) in the system (2.8).

Since condition (H1) holds, we know boundary equilibrium points E−(0.0383, 0)

and E+(0.9467, 0) exist and E−(0.0383, 0) and E+(0.9467, 0) are unstable saddle points,

from Theorem 9 and 0.0383 < r2A2

pk1a2
= 0.3405 < 0.9467.

By computing the eigenvalue at the endemic equilibrium E∗(0.0387, 0.0242), we

know it is unstable (see Figure 4.1). Some nearby trajectories approch to the boundary

equilibrium point E(0, 1) which is always locally asymptotically stable, some approch

to the stable origin, implying that, under such condition, either the cancer cells will

be killed by the immune effector cells or both cells will vanish in a long run, from the
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viewpoint of biology.

(a) (b)

Figure 4.1: The existence of uniqe endemic equilibrium E∗(0.0387, 0.0242) and its
stability with A1 = 108. (a) Existence of the uniqe equilibrium point (balck spot).
(b) Phase portrait.

Case (2) : Based on the data given in Case (1), if we only change the vlue

of A2 to 2 × 108, we obtain C∗ = 2.6764, P0 = 3.4061, M+ = 0.9477, Ym =

1.4598, N− = 0.1164 and N+ = 3.5581. We can check that (H4) ∼ (H6) hold.

Then two curves in Eq. (2.19) have two positive intersection points (0.044, 0.2482)

and (0.9375, 0.0335) in W1, implying there exist two positive equilibrium points:

(0.043, 0.238) and (0.9365, 0.0235) in the system (2.8), both of them are unstable

saddle point. (See Figure 4.2)

Different from that in Case (1), here 0.0383 < 0.9467 < r2A2

pk1a2
= 3.4051, so

E−(0.0383, 0) is saddle point and E+(0.9467, 0) is stable point, from Theorem 9.

Case (3) : Still keep all the other parameters same as those in Case (1), except

for A1 and 4A2. If we change A2 to 2.5 × 107 and A1 to 107, we have C∗ = 3.5655,

P0 = 0.4266, M+ = 0.9495, Ym = 1.9838, N− = 0.0332 and N+ = 1.8237 and

(H2) ∼ (H3), and (H8) hold. Then two curves in Eq. (2.19) have three positive

intersection points: one (0.005, 0.057) in W1, and two (0.082, 1.978), (0.0095, 1.12)

in W2 (see Figure (4.3) (a)). Thus, the system (2.8) have three positive equilibrium

points: (0.004, 0.047), (0.081, 1.97) ,(0.0085, 1.11). By computing the eigenvalue at

these equilibrium points, we know that they are unstable node, locally stable spiral,

an unstable saddle point, respectively. (See Figure 4.3 (b))

The existence of the boundary equilibrium points and their stabilities are similar
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(a) (b)

Figure 4.2: The existence of two endemic equilibrium points and their stabilities with
A1 = 2×108. (a) Existence of two equilibrium points (black spot). (b) Phase portrait.

to that in Case (1).

(a) (b)

Figure 4.3: (a) Existence of three positive equilibrium points. (b) Phase portrait with
A2 = 2.5× 107, A1 = 107.

Case (4) : Again based on the data in Case (1), when we change A2 to 2× 108

and p to 3.4× 10−10, then, we have C∗ = 2.6746, P0 = 34.0522, M+ = 0.9477, Ym =

14.5078, and N+ = 1.3353 and we can check that (H6) and (H8) hold. So the two

curves in (2.19) have four positive intersection points: (0.04, 0.382) and (0.94, 0.185) in

W1, (0.041, 1.09) and (0.85, 2.233) in W2. Thus, there exists four positive equilibrium

points, and by calculating the eigenvalue at these points, we have the following results:

i Unstable node (0.039, 0.372);

ii Unstable saddle point (0.939, 0.175) and (0.04, 1.08);
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iii Locally asymptotically stable (0.849, 2.223).

(See Figure 4.4)

The existence of the boundary equilibrium points and their stabilities are similar

to those in Case (2).

(a) (b)

Figure 4.4: (a) Existence of four positive equilibrium points with A2 = 2 × 108, p =
3.4× 10−10. (b) Phase portrait.



Chapter 5

Summary and Future Work

In this thesis, we propose a general model to explore the influence of Allee effect on

immune effector cells and cancer cells .

In chapter 2, we simplified the general model to discuss the existence of steady

states and their local stabilities. For the boundary equilibrium points and trivial e-

quilibrium point under weak/strong Allee effect, we have discussed the existence con-

ditions and all possible numbers of positive equilibrium points, and further provided

the explicit conditions for the local stability at the boundary equilibrium points.

In Chapter 3, we use LHS and PRCC methods to analysis the influences of each

parameters and confirm that which parameter has a great/least impact on the density

of Cancer cells.

In Chapter 4, we illustrate some numerical simulation to show the possibilities of

one to four positive equilibrium points and their stabilities.

Although I have done some work for the existence and stability of the equilibrium

points in the model 2.8, but no bifrucation analysis has been carried beyond the

stability regions. Due to the complexity of the model, there may have different kinds

of bifurcations we can investigate.

Further research of this thesis, one would like to change the form of α(x) and

θ(t) in the system 2.8. For instance, the hyperbolic hyperbolic α(x) = px
c0+x

and

sigmoid α(x) = px2

c20+x
2 , etc. and θ(t) = βt or other complex form. And using Poincaré-

Bendixson theorem to analytically study the global dynamics of the model for centain

range of parameters in order to gain more biological insights.
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Another direction of future work is in introducing time delay. For example, a time

delay for the interaction between cancer cells and immune effector cells or time delay

for the proliferation of cancer cells and immune effector cells.
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