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Abstract

People hope that computers can be in constant intelligence development. Just like humans, they can ”see” the world and ”recognize”
a visual event. We propose an approach based on computer vision methods to recognize Human-Object interaction(HOI). The
technique stands on aggregating significant contextual features Human-Object interactions and scene recognition. We design a
branch architecture consisting of the main branch for HOI detection and a supplementary branch for scene recognition. We explore
the deep learning models through the knowledge distillation method and the Cross Branch Integration mechanism for encoding
models into graph neural network architecture. We construct a knowledge graph to merge between high-level context information.
When trained collaboratively, those models allow computing efficiency, strong context knowledge.
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1. Introduction

Computer vision has been used to perform a variety of tasks. One of the hallmark tasks is Human object interaction
(HOI) that requires a visual context analysis. Such clustering actions into one event may describe what is happening
in a scene. However, one of the major obstacles faced is the lack of standardization of visual actions that share the
same context from one human to another. To this end, it is still unable for machines to analyze and recognize human
activities to a large extent [? ]

Understanding dynamic scenes require large annotated datasets, which is a very time-consuming task. As a solu-
tion, researchers proposed methods to transfer knowledge of a network learned from the already annotated dataset to
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a new network to accomplish a particular task. Intuitively, visual events is a highly semantic concept whereby various
semantic cues [? ] Human-object interaction detection is a relatively new task in the world of computer vision, and

Fig. 1. person read book

visual semantic information extraction [? ]. When humans seek to interpret their environment, they observe other
humans and how they interact with one another or objects. The first step in discovering a human-object interaction is
to detect objects [? ]. Object proposals recovered should contain at least one human for a human-object interaction to
be present. Using these humans and object proposals, a model for solving this problem must then correctly identify
a human-object interaction between the humans present and any objects in the image. For example, in figure 1, the
activity is ”holding a book,” but due to the lack of standardization, the model may go wrong. For this reason, intel-
ligent systems need to know the place or context, which helps understand what might have happened in the present.
The scene has been addressed by ensemble techniques that combine different levels of semantics extracted from the
images (e.g., recognized objects, global information, and context [? ]).

Taking the figure which is located in ”the library”. Using deep learning and given that HOI detection is the main
network and scene recognition is an auxiliary network, the human object interaction and scene recognition allow the
tasks to work collaboratively via knowledge distillation [? ]. By designing two-branch networks, a more principled
approach learns rich context information for HOI detection without additional manual annotations. All of this infor-
mation may lead us to determine the correct activity, which is ”person read book”.
Contribution To improve the HOI detection model, we propose a method that aggregates meaningful context features
from another model with knowledge distillation. The model will learn HOI detection and scene recognition jointly.
The contribution of this paper is summarised as follows:

• The method has two different branches the main branch for HOI detection. The second branch for scene recog-
nition to help the primary model learn rich context information for HOI detection. The branches are trained
collaboratively, allowing the model to recognize human activities efficiently explicitly.
• Knowledge graph for modeling the correlation between the two branches, the scene recognition is encoded into

convolutional features by a Cross Branch Integration.
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• Our approach outperformed the HOI detection model when it was by itself with a top-A accuracy by 9.7% on
HOI detection method [? ].

2. Related work

We review in this section the recent works on object detection, HOI detection, knowledge distillation, and graph
neural network.

2.1. Object detection

As a longstanding, object detection represents a fundamental and challenging problem in the area of computer
vision. The main goal of object detection is to determine whether there are any instances of objects from a particular
category (person, cat, dog, etc.) in a given image or video [? ].

Object detection forms the basis in computer vision for solving complex level vision analysis such as HOI detec-
tion. In recent years, deep learning techniques have achieved huge improvement for object detection. Many standard
benchmark datasets are available like [? ], [? ] and various methods helps to detect objects such as YOLO [? ] and
SSD [? ]. Those models predict boxes at three scales, extracting features from these scales using a similar concept to
feature pyramid networks. Redmon in YOLO v3 [? ] uses a hybrid approach to perform feature extraction, building
on former YOLO v2 [? ], Darknet-19 [? ] and residual networks [? ]. The new network, Darketnet-53, is significantly
larger and has 53 convolutional layers.

In this work, we use the Feature Pyramid networks approach for object detection (FPN) [? ] which is a method
based on detecting objects at different scales. The procedure takes one single frame on input and outputs sized feature
maps at multiple levels. We used Renset as backbone network [? ] .

2.2. Human-Object Interaction Detection

Multiple elements can define a human activity [? ]. Interpreting any human activity is still challenging to
incorporate different external knowledge for recognition tasks accurately. An image may contain multiple humans
performing the same interaction; for example, the same human simultaneously interacts with multiple objects (”sit
on a couch and type on a laptop” ). Several humans share the same interaction and object (”catch throw and ball”)
or fine-grained interactions (”walk the horse,” or ”feed the horse” ). For this reason, HOI detection must be done
through different stages to analyze video content at a semantic level. In [? ] authors tried to combine objects, scenes,
and action recognition by using multiple instance learning models. In [? ] authors explored the relation of the object
and action by designing a discriminate classifier.
Reasoning over human interaction with objects (HOI) is essential for a complete understanding of the visual event.
Human beings can use actions in various technological application domains such as intelligent surveillance systems,
robotics, virtual reality, and soon on. However, understanding context knowledge is critical, and learning meaningful
context knowledge is important to improve performance. Human-object interaction (HOI) detection strives to localize
both the human and an object and the identification of complex interactions between them. The problem is challenging
since it involves complex interactions that humans make with multiple objects, and things also interact with each
other. Early work in HOI focus on Bayesian model [? ], learned structured representations with spatial interaction
[? ] or based on handcrafted features e.g, SIFT [? ] with object and human detectors. More recently, inspired by the
notable success of deep learning and the availability of large-scale HOI datasets. Several deep learning-based HOI
models were proposed. In [? ], a Fast RCNN model for HOI recognition. In [? ], the authors proposed a zero-shot
learning model applied for addressing the long-tail problem in human-object recognition. A graph neural network
like the graph parsing neural network (GPNN) [? ], where the method infers a graph parsing that includes the HOI
graph structure represented by adjacency matrices and node labels. The output explains a given scene with a graph
structure, humans and objects are represented by nodes, and actions are defined as edges. for example, for ”person
lick the knife,” the nodes are ”person” and ”knife,” and ”lick” is the edge.
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2.3. Knowledge Distillation

In recent years, deep neural networks have been successful in both industry and academia, especially computer
vision tasks [? ]. The great success of deep learning is mainly due to its scalability to encode large-scale data and
maneuver billions of model parameters. However, it is a challenge to deploy these cumbersome deep models on
devices with limited resources, e.g., mobile phones and embedded devices, not only because of the high computational
complexity but also the large storage requirements. To this end, a variety of model compression and acceleration
techniques have been developed [? ]. It aims at transferring knowledge acquired in one model (i.e., the teacher) to
another model (i.e., the student) that is typically smaller.

A knowledge distillation system is composed of three key components: knowledge, distillation algorithm, and
teacher-student architecture. The principal idea is that the student model mimics the teacher model to obtain a com-
petitive or even superior performance. The method is similar to how human beings learn. This approach shows that
softening the softmax predictions of a network by a high temperature conveys essential information, also called dark
knowledge.

Knowledge distillation has been proposed for multi-modal action recognition [? ].

2.4. Convolutional graph neural network

Convolution in GCNNs is the same operation in CNN [? ]. It refers to multiplying the input neurons with a set of
commonly known weights as filters or kernels. GCN performs similar operations where the model learns the features
by inspecting neighboring nodes [? ]. An image can be considered as a particular case of graphs where pixels are
connected by adjacent pixels. Hence, in a 2D convolution (image), each pixel is taken as a node where the filter size
determines neighbors. It takes the weighted average of pixel values of the node along with its neighbors. The forward
propagation in the GCNN of a simple layer is:

H = ρ(Ď−1ǍXW) (1)

A is a matrix representing the edges or connection between the nodes in the forward propagation equation. The
insertion of A in the forward pass equation enables the model to learn the feature representations based on nodes
connectivity, Ǎ = A + I is the adjacent matrix of the graph added self-loops, Ď is its diagonal degree matrix with
Ďii =

∑
jǍi j , W is a matrix of trainable graph, X is the node information matrix X ∈ Rn∗c , and ρ is a nonlinear

activation function.
The graph convolution is separated into four steps, a linear feature transformation applied to the node information
matrix by XW, mapping the c feature channels to c′ channels to the next layer. The filter weights are shared among
all vertices. The second step is ǍXW ,hence, XW propagates node information to neighboring vertices as well as its
self, where, (ǍXW)i =

∑
Ǎi j(XW) j = (XW)i +

∑
j∈T (i)(XW) j, i.e, the i(th) row of the resulting matrix is the summation

of (XW)i and (XW) j from i′s neighboring nodes. The third step tends to each row by multiplying Ď−1
ii to scale the

features after graph convolution. The last step is to apply a point-wise nonlinear activation function ρ and output the
graph convolution.

The graph convolution aggregates the node information in local neighborhoods to extract local substructure infor-
mation. the results of each layer are transformed to the next layer in this form:

Ht+1 = ρ(Ď−1ǍHtWt) (2)

Where H1 = X,Ht ∈ Rn∗ct is the output of the graph convolution layer. ct is the number of output channels of layer, and
Wt ∈ Rct∗ct+1 maps c1 channels to ct+1 channels. After calculating the different graph convolution layers, another layer
for concatenating the output Ht, t = 1, ..., h horizontally to form a concatenated output,written as H1:h = [H1, ...,Hh]
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, where h is the number of graph convolution layers and H1 : h ∈ Rn∗∑h
1 ct , In the concatenated output H1:h , row

represents the feature descriptor of a vertex,encoding its multi-scale local substructure information [? ]. In our case,
we apply one graph convolution layer, which has been demonstrated to be enough for modeling high-level context
information.

3. Methodology

In this section, we describe the mechanism of the proposed method, which can learn the context knowledge of HOI
detection and scene explicitly by training two different models jointly without extra manual annotations. We integrate
a teacher network to distill the extra knowledge of scene information for additional supervision and a guide for HOI
detection. We aggregate HOI and scene features by designing a knowledge Graph by CBI module.

3.1. The teacher network: Scene recognition

It’s interesting to utilize pre-trained technologies separately while the annotations are highly expensive. We use a
teacher network for scene recognition. Scene recognition has been addressed by ensemble techniques that combine
different levels of semantics extracted from the images, for example, recognized objects, global information, and
context at different scales [? ]. We use Place365 [? ] as a reference dataset, which is composed of 434 scenes which
account for 98% of the type of scenes a person can encounter in the natural. The dataset contains 10 million images
training set, validation set with 50 images per class, and test with 900 images per class.

Architectures trained on Place56 Validation set Test Set
AlexNet 82.89% 82.75%

GoogleNet 83.88% 84.01%
VGG 84.91% 85.01%

ResNet 85.08% 85.07%

Authors in [? ] propose different approaches to exploit the dataset at hand by training different CNN architectures
like AlexNet. The performance of these architectures over the validation and test splits of the Places365 dataset is
presented in Table 1. The authors experimented with the ResNet152 residual network architecture, fine-tuned over the
Places365. This work achieved a top-5 accuracy of 85.08% and 85.07% on the validation and, respectively. The test
set of the Places365 dataset, as shown in Table 2. For this reason, we use the Resnet architecture over the Place565
dataset in our model for scene recognition.

3.2. Main Network: Object-Human Interaction

HOI detection is an essential step towards detailed activity understanding. In this work, we followed the approach
in [? ], a detection method where interaction between human and objects are defined as a key point. The method
directly detects interactions between human-objects pairs as a set of interaction points based on the human and object
center points. The model learns to generate an interactive vector and then a grouping scheme that pairs the interaction
with the correlate human and object bounding box predictions. The objective of this approach is to localize the agent
(human) and object along with detecting. It comprises four steps: object detection, feature extraction, interaction
generation, and interaction grouping. Consequently, the interaction point and vector and the detected human and object
bounding boxes are input to the interaction grouping step for the final HOI triplet human, action, object prediction.
In the following figure, we describe the overall HOI approach. First, For object detection, we employ the FPN object
detector method to generate all the possible bounding box human and objects instances in a frame. Then, for feature
extraction, we follow the same methodology of [? ] by employing the Hourglass [? ] network as the backbone network.
The output of the Hourglass network is a feature map with size H/S ∗W/S ∗ D, where H is the height and W is the
width of the input frame, and D, S is the output channels and stride.

The output of the backbone network will be the input to the interaction generation module to produce the interaction
point and interaction vector. Interaction point is defined as the center point of the action between a human-object pair
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Fig. 2. the architecture of the HOI detection method. Workflow of the proposed HOI detection approach having a localization and an interaction
prediction stage, we adopt a standard object detector (FPN [? ]) to obtain human and object bounding-box predictions. Three steps of interaction
prediction, (1) feature extraction, (2) interaction generation and (3) interaction grouping. The interaction generation contains two independent
branches to produce interaction point and interaction vector, respectively. Interaction point and vector together with the recognized human and
object bounding-box predictions are then inputted to the interaction grouping for final HOI predictions: human, action, object

.

and is the starting point of the interaction vector. Consequently, the interaction point and vector and the detected
human and object bounding boxes are input to the interaction grouping step for the final HOI triplet human, action,
object prediction as shown in the following.

hoi.png

Fig. 3. The procedure of interaction grouping scheme. It has three inputs: the human/object bounding-boxes from object detection branch, the
interaction points from the interaction point branch and the interaction vector predicted by the interaction vector branch.

3.3. Knowledge Graph Mechanism

Our goal is to develop a feature integration approachable to aggregate context knowledge of different levels from
the scene recognition and the HOi detection models. To do so, we followed the method in [? ] based on two groups:
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Knowledge distillation and Convolutional neural network. The process encodes the knowledge of scene recognition
into HOI detection for more accuracy following the student-teacher architecture.

3.3.1. Knowledge distillation
This method aims to transfer knowledge between modalities, i.e., scene recognition and HOI detection. After

training the scene recognition network separately, we transfer the knowledge from this model (the teacher network)
to the HOI detection model (the student model). We use the features obtained by the student model for the HOI
detection as gated modulation of the main HOI features via implementing element-wise multiplication on them like
in the following equation (Equation 3).

f (xa, xb) = ReLU(W[θ(xa), φ(xb)]) (3)

3.3.2. Knolwegde graph neural network
We obtain four groups of representations vectors of the same size; each ensemble contains N feature vectors

corresponding to the number of frames. Following the method in [J’], we construct a knowledge graph to model
the pair-wise correlation among the representations explicitly. the method is based on Graph convolutional network
(GCN) to represent HOI detection and scene relationships. we construct the graph G graph V ,denoted the nodes
X =

{
xhuman

i , xaction
i , xob ject

i , xscene
i

}
,where i ∈ N and X ∈ Rd, with d indicating the channel dimension of the last

convolutional layer in the backbone. The graph G represents the pair-wise relationship among the nodes, The structure
of our graph is fuly connected knowledge graph as illustrated in the figure 4.

Fig. 4. The structure of the graph
.

The graph G ∈ RN∗N represents the pair-wise relationship among the nodes, with edge Gab indicates the relationship
between node xa and xb, to compute the relations between nodes and to build the correlation between HOI detection
and scene recognition, we adopt the relation module by concatenation [K’].

Gab =
e f (xa,xb)

∑N
b=1 e f (xa,xb)

(4)

here [·, ·] denotes the concatenation operation, and W represents the learnable weight matrix that projects the con-
catenated vector into a scalar. To normalize the knowledge graph, we apply the softmax function: We applied the
softmax function for implementing the normalization. Hence, the sum of all edges pointing to the same node must be
normalized to 1 to cast the dot product into the Gaussian function for directly learning the relations. We apply GCN
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[L’] on the constructed graph (figure) to aggregate g high-level semantic knowledge of cene into the HOI branch. We
used graph convolution, which is enough for integrating rich high-level context information. The output of the GCN
has the same size as the input X. We apply joint learning in order to train the tasks both collaboratively. While the
teacher network provides the ground truth of scene recognition as pseudo labels for knowledge distillation.The multi
task loss function is applied as:

L = αHOI[Lhuman + Laction + Lob ject] + αS Lscene (5)

We set αHOI = 1 for HOI task, αS = 0.01 for the student network (scene).

4. Experiments

4.1. Training the Main Network

To main our study to an effective end, we conduct meticulous experiments on two large HOI datasets: V-COCO
[? ] and HICO-DET [? ]. The V-COCO is a rich, varied dataset; It contains 2533 images for training, 2867 images
of validation, and 4946 images for testing. To train the model, 5400 images representing the training and validation
sets are required. Three action categories (cut, hit, eat) annotated with two types of targets (instrument and direct
object) are considered. Additionally to 26 binary action labels and three classes (run, stand, walk) annotated with no
interaction object are part of the Human instances in the V-COCO dataset. On the other hand, the HICO-DET dataset
accommodates 38118 images for training and 9658 images for testing. Six hundred classes of different interactions
annotating each human instance correspond to 80 object categories and 117 action verbs in this dataset. In our training
phase, we followed the strategy in [? ] for HOI detection by first using an FPN pre-trained object detector to initialize
the framework to obtain the object’s bounding box. Then we used the Hourglass network as a feature extractor for
interaction prediction. The head network for the interaction point and interaction vector generation is randomly ini-
tialized. Yet, to achieve the optimization of the loss function during training, we engaged standard data augmentation
techniques (random flip, random scaling) and Adam Optimizer [? ]. At long last, to obtain final predictions during the
test, we used flip augmentation.

4.2. Ablation study

In this part of the study, we will analyze each method and gather them little by little to determine the most efficient
processes.

Method Settings top-1 gain
Baseline HOI model 52.3 -

Knowedle distillation Baseline+Scene recognition 57.3 +5
CBI CBI+Baseline 59 1.7

KGCN Knowledge graph embedding 60.1 +1.1
Our approach KD+CBI+CBI 62 +1.9

4.2.1. Encoding Scene Recognition into HOI Detection by Knowledge Distillation
We use HOI detection based on points interaction [? ] as a baseline, then we firstly include scene recognition into

the HOI network by jointly learning the two tasks via knowledge distillation. The multitask learning with knowledge
distillation outperforms the baseline (Table 2). When HOI detection is jointly learning scene recognition are jointly
trained, the top-1 accuracy increases 5%.

4.2.2. CBI module
After encoding scene recognition into HOI detection by knowledge distillation, we applied the CBI module that

enables the intermediate features exchange, unlike simple knowledge distillation, which allows a simple multitasking
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learning. That is the main reason that justifies the enforcement of the learning ability of HOI by aggregating scene
recognition into HOI detection. According to the experiment results (Table 2), when we applied CBI, we obtain higher
accuracy with 1.7%.

4.2.3. Knowledge Graph Neural Network
The GCN method outperforms the two previous methods by boosting its performance using the aggregation of

multiple branches and models the relation among human, action, objects, and scene representation. By applying dot
embedded, the top-1 accuracy increases 1%.

4.2.4. Entire Framework
Finally, we combine all the previous components into the baseline (i.e., HOI detection), as shown in Table 1. We

find that the top-1 accuracy has been boosted to 62%, while the baseline is 52%. This significant improvement of
9.7% on the HOI detection benchmark proves the effectiveness of our proposed framework.

5. Conclusion

Since HOI detection is the main determinator of human activity in video. We proposed in this work the improve-
ment of this model by integrating scene recognition. We started with the knowledge distillation to merge the knowl-
edge of scene recognition with the knowledge of the HOI model. To do that, we integrated the GCN network, which
helped us learn relevant high-level semantic factors information.

In the future, we will improve our approach significantly by integrating further models into HOI detection, such as
human posture and human skeleton.
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