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Zusammenfassung

Im letzten halben Jahrhundert wurden erhebliche Fortschritte bei den molekularen Simulationstechniken
erzielt, die ein umfassendes Verständnis der Struktur-Eigenschafts Beziehung weicher Materialien auf
verschiedenen Zeit- und Längenskalen ermöglichen. Bislang ist jedoch das optimale Design von Kandidaten
für die nächste Generation weicher Materialien aufgrund des enormen chemischen und konfigurativen
Raums immer noch anspruchsvoll. Die Techniken des machine learning (ML), die eingesetzt werden,
um verwertbare Erkenntnisse aus großen, durch Simulationen generierten Daten zu gewinnen, können
die Engpässe bei der Optimierung weicher Materialien überwinden. Daher wurde in dieser Arbeit ein
Framework entwickelt, der auf der Kommunikation zwischen wechselseitigen Multiskalensimulationen
(atomistic und coarse-grained) und ML zur rationalen Untersuchung weicher Materialien basiert.

Ein Ziel dieser Arbeit ist es, die detaillierten Struktur-Zusammensetzungs-Eigenschafts-Leistungs Beziehun-
gen weicher Materialien auf Vorwärtsrichtung zu bewerten. Zunächst wird die Kompatibilitätsleistung von
Blockcopolymeren (d.h. lineare und Pfropfcopolymere) an der Grenzfläche zwischen zwei inkompatiblen
Polymerphasen mit Hilfe von dissipative-particle-dynamics (DPD) Simulationen untersucht. Es wird eine
phänomenologische analytische Relation entwickelt, um die Abhängigkeit der Kompatibilisierungseffizienz
von linearen Blockcopolymeren von der Polymerchemie, der molekularen Architektur und der Anzahl der
Copolymermoleküle zu quantifizieren. Pfropfcopolymere weisen jedoch im Vergleich zu linearen Blockcopo-
lymeren größere Unterschiede im Raum der Architekturparameter auf, was den traditionellen empirischen
Anpassungsprozess einschränkt. Dementsprechend füttern wir DPD-Ergebnisse mit ML-Modellen und
stellen fest, dass die Kombination von DPD und ML in der Lage ist, die Kompatibilisierungseffizienz von
Pfropfcopolymeren auf molekularer Ebene genau vorherzusagen. Für ein gegebenes Pfropfcopolymer mit
mehreren Deskriptoren (z. B. molekulare Architekturen und chemische Eigenschaften) kann die Kom-
patibilisierungseffizienz anhand der trainierten ML-Modelle gut vorhergesagt werden. Darüber hinaus
bieten ML-Techniken ein Maß für die relative Bedeutung der Deskriptoren, um die Korrelation zwischen
Deskriptoren und DPD-Vorhersagen aufzuzeigen. Wir stellen fest, dass die Anzahl der Seitenketten der
Pfropfcopolymere allmählich ihre Kompatibilisierungseffizienz dominiert, während die Länge der Seiten-
ketten unwichtig wird, wenn die Mischung stark inkompatibel wird. Diese Erkenntnis kann den Suchraum
in weiteren Simulationen und Experimenten eingrenzen. Darüber hinaus versuchen wir, den Kompatibilisie-
rungsmechanismus der linearen und Pfropfcopolymere zu verstehen, indem wir die Monomerverteilungen,
die Anzahl der ungleichen Kontakte zwischen verschiedenen Spezies und die molekularen Konformationen
charakterisieren. Insbesondere die Anisometrie der Copolymere, definiert als das Verhältnis ihrer Gyrati-
onstensorelemente in den Richtungen senkrecht und parallel zur Oberfläche, ist sowohl für lineare als
auch für Pfropfcopolymere stark mit ihrer Kompatibilisierungseffizienz korreliert.

Wir untersuchen auch die alkoholinduzierten Veränderungen an Coronavirusmembranen unterschiedlicher
Zusammensetzung mit DPD-Modellen, d.h. reines Dipalmitoylphosphatidylcholin, Dioleoylphosphatidylcho-
lin und Dimyristoylphosphatidylcholin sowie deren binäre und ternäre Mischmembranen. Die wichtigste
Erkenntnis dieser Studie ist, dass eine maximale Ethanolkonzentration von 32 mol % (55 Gew.%) in
alkoholischen Desinfektionsmitteln ausreicht, um alle Coronavirus-Modellmembranen, die aus diesen
drei Lipiden bestehen, zu zersetzen. Angesichts der großen Unterschiede in der Zusammensetzung und
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Struktur gemischter Membranen ist es jedoch schwierig, ihre Übergänge vom intakten zum geschädigten
Zustand zu identifizieren. Wir stellen zum Beispiel fest, dass der Übergangspunkt nicht quantitativ auf der
Grundlage physikalischer Deskriptoren wie der Fläche pro Lipidmolekül, der Membrandicke und der Orien-
tierungsparameter vorhergesagt werden kann. Außerdem ist die visuelle Prüfung der Membranintegrität
in Simulationen mühsam. Die Entwicklung eines einfachen und robusten Werkzeugs zur Charakterisierung
der Stabilität von Membranen gegenüber ethanolischen Desinfektionsmitteln kann daher den Optimie-
rungsprozess von Desinfektionsuntersuchungen beschleunigen. Dieses Ziel wird durch das in dieser Studie
entwickelte DPD/deep-neural-network Framework erreicht, das die Integrität von Lipidmembranen anstelle
von menschlicher Beobachter erfasst.
Ein weiteres Ziel dieser Arbeit ist die Entwicklung von Materialien mit optimaler Leistung in Bezug auf
die gewünschten Eigenschaften, Zusammensetzungen und Strukturen in umgekehrter Richtung, d. h.
inverses Design (Leistung-Eigenschaft-Zusammensetzung-Struktur). Wir setzen einen hybriden Rahmen
ein, indem wir einen genetischen Algorithmus und atomistische Molekulardynamiksimulation kombinieren,
um Polyethylen-Polypropylen-Copolymere mit hoher Wärmeleitfähigkeit zu entwickeln. Wir stellen fest,
dass Polyethylen-Polypropylen-Copolymere mit verschiedenen Sequenzen bei gleichem Monomerverhältnis
sehr unterschiedliche Wärmeleitfähigkeiten aufweisen. Dies deutet darauf hin, dass die Monomersequenz
einen entscheidenden Einfluss auf den Wärmetransport der Copolymere hat. Eine nicht-periodische und
nicht-intuitive optimale Sequenz wird tatsächlich durch dieses Hybridmethode identifiziert. Es weist die
höchste Wärmeleitfähigkeit im Vergleich zu Homopolymeren und allen regulären Blockcopolymeren, z. B.
Diblock, Triblock und Hexablock, auf. Im Vergleich zur Stoffdichte, den Kettenkonformationen und der
Dichte der Schwigungszustände hat die Monomersequenz den stärksten Einfluss auf die Geschwindigket
des Wärmetransports gegenüber inter- und intramolekularen Wechselwirkungen.
Der Erfolg der ML-Methode, die Vorhersagen über Eigenschaften von Materialien in großen Zusam-
mensetzungs - und Konformationsräumen ermöglicht, hängt von der Verfügbarkeit von Trainingsdaten
aus Simulationen ab. ML-Methoden wiederum ermöglichen eine robuste a-posteriori-Datenanalyse (z. B.
Wichtigkeit einzelner Deskriptoren) zur Erforschung von Korrelationen zwischen Deskriptoren und Zielei-
genschaften in Simulationen. Dadurch kann der Suchraum von Deskriptoren für weitere Untersuchungen
eingegrenzt werden. Zusammenfassend lässt sich sagen, dass die Integration von Multiskalensimulationen
mit ML-Algorithmen ein erhebliches Potenzial zur Beschleunigung des Designs weicher Materie bietet. Wir
glauben, dass unsere Arbeit effiziente und praktische Ansätze für die Entwicklung eines Hybridrahmens
für die Materialoptimierung bietet.
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Abstract

In the last half-century, considerable advances have been achieved in molecular simulation techniques
aiming at offering a comprehensive understanding of the structure-property relationship of soft materials
on several time and length scales. So far, however, the optimal design of candidates for the next-generation
soft materials is still a challenging task due to the enormous chemical and configurational space. The
machine learning (ML) techniques, which are utilized to extract actionable insights from big data generated
from simulations, can overcome the bottlenecks in the tasks of soft materials optimization. Hence, this
thesis has developed a framework based on the mutual communication between multiscale simulations
(atomistic and coarse-grained) and ML toward rational investigations of soft matter.

One objective of this thesis is to evaluate the detailed structure-composition-property-performance rela-
tionships of soft materials in a forward way. We firstly investigate the compatibilizing performance of block
copolymers (i.e., linear and graft) on the interface between two incompatible polymer phases by dissipative-
particle-dynamics (DPD) simulations. A phenomenological analytical power-law fit is developed to quantify
the variation of compatibilization efficiency of linear block copolymers with the polymer chemistries,
the molecular architecture, and the number of copolymer molecules. However, graft copolymers have
larger diversities in the space of architectural parameters as compared to linear block copolymers, which
limits the traditional empirical fitting process. Accordingly, we feed DPD results to ML models and find
that the combination of DPD/ML is able to accurately predict the compatibilization efficiency of graft
copolymers at the molecular level. For a given graft copolymer with several descriptors (e.g., molecular
architectures and chemistries), its compatibilization efficiency can be well predicted from the trained ML
models. Moreover, ML techniques provide a descriptor importance measure for the correlation between
descriptors and DPD predictions. We find that as the blend changes from weakly incompatible to strongly
incompatible, the number of side chains of graft copolymers gradually dominates their compatibilization
efficiency while the side chain length becomes unimportant. This finding can narrow the search space
in further simulations and experiments. Furthermore, we attempt to understand the compatibilization
mechanism of the linear and graft copolymers by characterizing the beads distributions, the number of
unlike contacts between different species, and the molecular conformations. Specifically, the relative shape
anisometry of copolymers, defined as the ratio of their gyration tensor elements in directions normal and
parallel to the surface, is strongly correlated with their compatibilization efficiency for both linear and
graft copolymers.

We also evaluate the alcohol-induced changes on coronavirus membranes of different compositions with
DPD models, i.e., pure dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, and dimyristoylphos-
phatidylcholine as well as their binary and ternary mixed membranes. The principal finding of this study is
that a maximum ethanol concentration of 32 mol % (55 wt. %) in alcoholic-based disinfectants is sufficient
to decompose any coronavirus model membranes composed of these three lipids. However, given the wide
variations in compositions and structures of mixed membranes, identifying their transitions from the intact
to the disrupted state is challenging. For example, we find that the transition point cannot be quantitatively
predicted based on physical descriptors such as the area per lipid molecule, the membrane thickness, and
the orientational order parameter. Additionally, the visual inspection of simulation profiles is cumbersome
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to characterize the state of these membranes. Developing a simple and robust tool to characterize the
stability of membranes against ethanolic disinfectants, can therefore accelerate the optimization process of
disinfection investigations. This target is achieved by the developed DPD/deep-neural-network framework
in this study, which accesses the integrity of lipid membranes in place of visual inspections.
The other objective of this thesis is to design materials with optimal performance on desired properties, com-
positions, and structures in the reverse direction, i.e., inverse design (performance-property-composition-
structure). We employ a hybrid framework by combining the genetic algorithm and the atomistic molecular
dynamics simulation, to design polyethylene-polypropylene copolymers with high thermal conductivity. We
find that polyethylene-polypropylene copolymers with various sequences at the same monomer ratio have a
broad distribution of thermal conductivities. This indicates that the monomer sequence has a crucial effect
on the thermal energy transport of the copolymers. A non-periodic and non-intuitive optimal sequence
is indeed identified by this hybrid framework, which gives the highest thermal conductivity compared
with both homopolymers and any regular block copolymers, e.g., diblock, triblock, and hexablock. In
comparison to bulk density, chain conformations, and vibrational density of states, the monomer sequence
has the strongest impact on the efficiency of the thermal energy transport via inter- and intra-molecular
interactions.
The success of ML, providing property predictions of materials in both large compositional and confor-
mational spaces, relies on the availability of training data from simulations. In turn, ML methods allow a
robust posteriori data analysis (e.g., descriptor importance measure) for exploring correlations between
descriptors and target properties in simulations, which can narrow the search space of descriptors for
further investigations. In short, the computational framework of integrating multiscale simulations with
ML algorithms has a significant potential for accelerating the design of soft matter. We believe our work
provides efficient and practical approaches to develop the advanced hybrid framework for the materials
optimization.
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1 Introduction

1.1 A hybrid framework

Scientific research can be classified into four paradigms (Figure 1.1): the first paradigm based on purely
empirical results (e.g., trial and error), the second paradigm supported by classical theories (e.g., laws of
thermodynamics), the third paradigm contingent on computational simulations (e.g., density functional
theory (DFT) and molecular dynamics (MD) simulations), and the fourth paradigm driven by big data[1, 2].
Although a comprehensive understanding of structure-property relationships of materials plays a major role
in the fourth paradigm, it is impossible to achieve this understanding with a single theory or computational
method so far. Multiscale simulation methods, which combine and systematically link several simulation
hierarchies, are powerful in addressing phenomena or properties of a given system at several levels of
resolution[3]. To be more specific in the field of soft matter science, the relevant multiscale simulations
span a wide range of length and time scales, ranging from the sub-atomic (∼ Angstrom and femtosecond)
scales to the macroscopic (∼ microns and seconds) scales[3–5]. However, the evolution in this multiscale
structural-property characteristics also increases the overall demand for new approaches. The emergence of
machine learning (ML) and modern optimization algorithms offers great promise for transcending previous
limitations, and forms an advanced framework coupled with multiscale simulations. This hybrid framework
is considered to be a promising tool to flourish breakthroughs in soft matter research[6, 7].

Figure 1.1: The four paradigms of science: empirical, theoretical, computational, and data-driven[1, 2].

1



In recent years, highly developed quantum chemistry methods could estimate many properties with
increasing accuracy, such as band gaps, dielectric constants, refractive indices[8, 9]. However, it is still
computationally unfeasible to solve the multi-electron Schrödinger equation for systems with more than
thousand atoms sampled in nanoseconds[9]. Accordingly, classical atomistic force-field methods have
been developed. In these atomistic force-fields, electronic interactions are usually approximated as simple
potential functions from the high-accuracy reference models (e.g., ab initio quantum models) or expriments.
However, it is still infeasible and often undesirable to simulate mesoscale systems with these atomistically
detailed models[4]. The process of collecting many microscopic degrees of freedom into fewer larger ones
is denoted as coarse-graining (CG)[5]. Furthermore, to make simulations at larger spatial-temporal scales
(macroscopic) possible, it is appropriate to use continuum mechanics, which assumpes that a material is a
continuous medium. Then, a polymer can be described by an all-atom model, a united atom model (e.g.,
grouping carbon with its bonded hydrogen atoms), a bead-spring model with multiple monomers (e.g.,
dissipative-particle-dynamics (DPD) models[10]) or Kuhn segments per bead, or a single bead or volume
element (e.g., continuum models)[11].

A key issue in multiscale simulation is constructing reliable force-fields or high-level CG models considering
both the accuracy and the computational cost. For example, an empirical force field can provide a
computationally cheap approach to address correct thermodynamics of a simple liquid. Still, it may not be
reliable in systems involving chemical reactions, while more accurate methods like ab-initio MD provide
reliable force fields, at the expense of a high computational cost[12]. The trade-off between computational
cost and accuracy results in the demand for alternative approaches. In 2007, Behler and Parrinello[13]
introduced a new kind of neural-network representation of DFT potential-energy surfaces, which is several
orders of magnitude faster than DFT but keeps the same accuracy. After that, ML techniques have emerged
as an alternative method for constructing effective interaction energies between particles in multiscale
simulations[14–17]. The promise of ML is to predict forces and energies with accuracy arbitrarily close to
the level of ab-initial methods, but with a much smaller computational cost[17].

Apart from the development of force-fields, two more aspects related to the mutual communication between
simulation and ML, have been attracting enormous research attention: 1) evaluating structure-composition-
property-performance relationships in a forward way; 2) designing materials with optimal performance
on desired properties in the reverse direction, i.e., inverse design[2, 18]. The first aspect is the forward
design of materials based on the availability of structure-property relation databases. However, this forward
design is limited in the field of synthetic polymers, whose data banks are heterogeneous and often outright
unavailable due to a general lack of rapid and parallelizable experimental techniques for measuring polymer
properties[7, 19, 20]. One of the main advantages of combining simulations and ML is that a large number
of simulation results can be used to form a pre-existing structure-property data set. The ML model is then
trained based on this data set to predict properties of many new candidate materials, which can direct the
experimental investigation to a very narrow region of the search space[7]. Moreover, identifying some
properties (e.g., knotting and phase transition) in polymers and other soft materials is challenging due
to the wide variations in microscopic degrees of freedom[21]. Machine learning, which is powerful in
recognizing minute changes of a data set, has recently emerged as a powerful tool for recognizing various
configurations generated from simulations, and identifying phases[21, 22] and knot types of polymers[23].
The second aspect is the inverse design, a promising approach for establishing an optimal set of structures
and compositions of materials with the desired properties[7, 24]. In other words, it can actively search for
unknown optimal materials instead of selecting materials with desired properties from multiple materials
in the known space[2]. For example, Webb et al.[25] have combined coarse-grained polymer modeling,
deep neural network model, and model optimization as a data-driven design approach for the chemical
design of polymers outside the known range of properties.
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Despite great success, a major criticism of ML referred to its “interpretability” still remain. ML algorithms
are often treated as black boxes, which not provide us with “physical laws” and that their inner workings are
usually outside our understanding[26]. For example, Ghiringhelli et al.[27] have argued that a prediction of
new promising materials are doubtful if the scientific connection between descriptors and their prediction is
unknown. Although the above controversy persists, there is a growing trend to agree that the interpretability
of ML is a multifaceted concept, in which various facets have different priorities and can be addressed
separately depending on the dataset and the research goal[26–28]. In the field of soft matter science,
the fear that ML models are operating on unphysical principles, can be alleviated by post hoc analysis
(e.g., attentive response map, descriptor importance measure)[29–32]. These techniques can reveal the
connections between descriptors and target properties, and therefore increase the trust of ML models in
our investigations. These discussions are related to bridging the knowledge gap between the two individual
communities, i.e., physics-driven simulation and data-driven machine learning. Both communities have
profound knowledge about the methods used in their particular fields[16, 33]. Necessary communications
and combinations are important to break limits and accelerate the sustainable development of both
communities. In this thesis, the key target is to investigate the structure–composition-property–performance
relationships of soft materials by combining the multiscale simulations (from atomistic to mesoscale) and
ML, both forward and reverse, as shown in Figure 1.2.

Figure 1.2: Schematic illustration of the key target in this thesis, i.e., forward and inverse evaluations of
structure–composition-property–performance relationships of soft materials by combining
the multiscale simulations (from atomistic to mesoscale) and machine learning.
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1.2 Compatibilization

1.2.1 Background

It is common to mix existing polymers to produce new materials with low cost and specific properties[34–
36]. An relationship exists between the miscibility of polymer blends and the Gibbs free energy of mixing
∆Gmix = ∆Hmix − T∆Smix, where ∆Hmix and ∆Smix are the enthalpy and entropy of mixing, respectively.
A miscible polymer blend is associated with a negative value of the free energy of mixing (∆Gmix ≤ 0), and
within the phase stability condition (𝜕2ΔGmix

𝜕𝜑2
𝑉

)𝑃,𝑇 > 0, where 𝜑𝑉 , 𝑇 , and 𝑃 represent the volume fraction,
the temperature, and pressure, respectively[37, 38]. Miscible polymer blends are rather an exception
than a general rule. Most polymers are immiscible or only partially miscible over certain compositions
and temperature ranges resulting from the positive ∆Hmix and low magnitude of ∆Smix. It is worth
mentioning that ∆Smix decreases as the molecular weight increases, resulting in the phase separation
for a high-molecular-weight polymer[38]. The phase separation in polymer blends significantly affects
their mechanical, thermal, optical, and physical properties[34, 38–40]. Hence, a major concern in the
commercial use of polymer blends is the stabilization of the desired morphology, preventing the break-up
of a co-continuous structure into disconnected domains[41–44]. The use of compatibilizers such as suitable
block copolymers is a well-established approach in enhancing the performance of the immiscible and
partially miscible blends, transforming the coarse morphology of the immiscible blend to fine morphology
by reducing the interfacial tension[45–49]. Although the interfacial tension, a value from measurements,
is relatively simple, the co-continuous structure is inherently thermodynamically metastable due to an
interfacial-tension-driven coarsening phenomenon[38]. An example of this is the study carried out by
Kirjava et al., in which the improved stability and morphology of polypropylene/polyamide blends is related
to the reduction in interfacial tension after the addition of compatibilizing copolymers. Moreover, the
compatibilization efficiency of block copolymers of varying molecular weight and mass concentration in
immiscible polymer blends, such as polystyrene/polyisoprene[50], polystyrene/polyethylene[51, 52], and
polystyrene/poly (methyl methacrylate) blends[36], has been intensively investigated. A general conclusion
from these works is that there exists an optimal molecular weight and mass concentration of copolymers to
achieve their best compatibilization efficiency. This can be explained from two perspectives: 1) a part of
the block copolymer molecules is trapped into micelles, and further addition of block copolymer yields no
improvement above its critical micelle concentration[52]; 2) the existence of an optimal molecular weight
is likely due to a trade-off balance between the ability of the block copolymer to diffuse into the interfacial
region and its relative effectiveness as a compatibilizer. For example, Galloway et al.[52] have found
that the middle-molecular-weight block copolymer has an intermediate compatibilization and diffusive
efficiency, leading to its best overall performance among all block copolymers.
However, experimental measurements of the interfacial tension are usually time-consuming and cum-
bersome. Several theoretical models have been developed based on self-consistent field (SCF) theory
to quantitatively predict the interfacial tension of incompatible blends as a function of chain lengths,
temperature, and Flory-Huggins interaction parameter[53–55]. A simple expression relating 𝛾 to the
Flory-Huggins interaction parameter 𝜒 and chain lengths 𝑙𝐴 and 𝑙𝐵 as follows:

𝛾 = 𝛾∞

[︂
1−𝐾(

1

𝜒𝑙𝐴
+

1

𝜒𝑙𝐵
)

]︂
(1.1)

𝛾∞ = 𝜌𝑠𝑘𝐵𝑇 (
𝜒

6
)
1
2 (1.2)
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where 𝜌 is the density,𝐾 is a constant and 𝑠 is the statistical segment size with𝑅2
𝑒 = 𝑛𝑚𝑠2. For the statistical

segment size, 𝑅2
𝑒 is the mean-squared end-to-end distance and 𝑛𝑚 is the number of beads per chain[53,

56]. The constant value 𝐾 is selected as 𝜋2/12 ∼ 0.8 and 2 ln 2 ∼ 1.4 under different approximations
from Broseta et al.[53] and Ermoshkin and Semenov[56], respectively. It should be noted that Ermoshkin
and Semenov derived their model to better reproduce the properties of strongly-incompatible system,
and the value of their 𝐾 is comparable to other work[57] with the same aim. Kim et al.[58] found that
values of interfacial tension obtained from above SCF models are similar to those of polystyrene/poly
(methyl methacrylate) blends measured experimentally from both the Choi[59] and Palierne models[60].
Investigations based on SCF theory are of great significance as they provide valuable insight into the
prediction and mark the first theoretical attempt to assess the broader impact of properties (e.g., chemistry
details and chain lengths) of polymer blends on their compatibility. However, most SCF studies are limited
by various approximations and a failure to exactly address the property of compatibilized blend. These
limitations include that the interplay of thermodynamics and coil structure in the interface is hard to treat
correctly in the presence of compatibilizers; fluctuations near the critical point are difficult to account
for[61]. For example, Govorun and Erukhimovich[62] proposed a predictive SCF theoretical model on the
adsorbed interfacial area per diblock copolymer in homopolymer blends, which is, however, only suitable
for the flat interface when the homopolymer chain length is long enough.
Computer simulations can avoid uncontrolled approximations in the system and provide valuable mi-
croscopic insights into the interfacial behaviors of the compatibilized blends. Müller et al.[61, 63] have
reported a series of Mont Carlo simulations regarding several unclear effects (e.g., bond fluctuations) in pre-
vious SCF studies, on the segregation behavior of immiscible homopolymer blends. Groot and Warren[10]
have established a link between DPD parameters and Flory–Huggins 𝜒 parameters for polymeric systems,
and found that DPD simulation results match well with the experimental results[64]. Qian et al.[65]
have performed DPD simulations, and summarized two conclusions for the compatibilization efficiency
of symmetric diblock copolymers: a) long diblock copolymers show a better compatibilization efficiency
because they can penetrate deeper into the homopolymer region as compared to short diblock copolymers
at a constant number of copolymer molecules; b) the effect of volume concentrations on improving the
compatibilization efficiency is more prominent for short diblock copolymers. Meenakshisundaram et al.[66]
have found by MD that regular multiblock copolymers (constant areal concentration) with a different
number of blocks exhibit different compatibilization efficiencies. Wang et al.[67] have addressed the issues
of graft copolymers. They have demonstrated that the compatibilizing efficiency of the graft copolymer
first increases, and then decreases with increasing the length of side chain, when the backbone length
and number of side chains are fixed. Moreover, these computational methods have been strongly used to
investigate the underlying compatibilization mechanisms of copolymers. Recall that the mixing behavior of
polymer blends is correlated with the unfavorable ∆Hmix and low value of ∆Smix. Regarding the unfavor-
able ∆Hmix, Ryu et al.[68] have investigated by MD the number of direct contacts between immiscible
homopolymer beads in the presence of graft copolymers. They attribute the reduction in interfacial tension
to the reduction of unfavorable contacts between the two immiscible homopolymer species, caused by the
interfacial coverage of graft copolymers. In terms of the ∆Smix, previous research findings reported almost
consistently point towards the conformation of compatibilizers (e.g., the end-to-end distance, the radius
of gyration, and the related stretching anisometry calculated from them)[40, 68–70]. For example, Sun
and Guo[69] have demonstrated that the balance between the stretching normal to the interface normal
direction and the expansion in the interface plane of copolymers are crucial for understanding the variation
of their compatibilization efficiency.
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1.2.2 Challenges and Objectives

Although, many experiments, simulations, and theories have been developed to predict the interfacial
properties of immiscible homopolymer blends[49, 65, 66, 71–74]. Even the efficiency of most common
symmetric diblock copolymers, cannot be predicted by a simple and general quantitative description from
the realistic chemical details. As mentioned previously, there is a failure of theory to exactly address the
properties of compatibilized blends and experimental measurements usually need long time. Hence, we
want to investigate the mechanisms involved in the compatibilization process and provide a promising way
to predict the compatibilization efficiency of linear block copolymer additives with different structures in
their respective polymer blends:

• Optimization of Compatibilization Efficiency of Linear Block Copolymers in Immiscible Ho-
mopolymer Blends

Compared with linear block copolymers, graft copolymers havemore complex branchedmolecular structures
consisting of backbone and multiple side chains. Despite the success of many previous works[67, 75, 76],
there has, to our knowledge, not been a comprehensive simulation-and-theory study looking at the general
effect of the diversity in the molecular architecture of graft copolymers on the compatibilization efficiency
with different chemical details. These previous works usually investigate the compatibilization efficiency
of graft copolymers by keeping one or two of the above descriptors constant. An overall evaluation of
the descriptors-efficiency (compatibilization) relationship of graft copolymers demands new approaches.
Machine learning methods have proven to be successful in the investigation of material properties with
multiple descriptors. Hence, we want to establish a prediction model considering the structure and
conformation complexity of graft copolymers on their compatibilization efficiency with the assistance of ML.
Moreover, the importance rank of different descriptors, which is extracted as the post hoc interpretability
of ML models, can provide guidance for the further investigations:
• Optimization of Compatibilization Efficiency of Graft Copolymers in Immiscible Homopolymer

Blends

1.3 Disinfection

1.3.1 Background

The nCOV-2019 outbreak has become a global pandemic[77, 78]. Most people worldwide are under some
form of lockdown or be suggested to stay-at-home to minimize the sustained spread of the virus. Currently,
rapid progress has been achieved in the development of safe and effective coronavirus vaccines and
potential SARS-CoV-2 therapies[79–82]. However, a significant portion of the world’s population remains
unvaccinated. More worse, the new variants of SARS-CoV-2 may spread among vaccinated people. For
example, a fast-spreading SARS-CoV-2 variant known as Omicron, has already shown its potential to evade
vaccines and cause reinfections[83]. The mutations of SARS-CoV-2 variants are mainly in the Spike-protein,
which is a major modulator of infectivity and immune evasion[83]. It is noted that the Spike-protein
and other proteins are mechanically anchored by the host-derived lipid bilayer, which gives the virus its
distinctive shape and structure, to protect its RNA from the surrounding environment (Figure 1.3 (a))[84–
87]. Therefore, washing hands with sanitizer that disrupts the lipid bilayer of virus, remains a significant way
to prevent the spread of SARS-CoV-2 (as well as its variants)[88, 89]. In this process, the deactivation of the
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virus is mainly controlled by its lipid membrane permeability to alcohol, which can be simplified as Figure
1.3 (b). Among all lipid types, phosphatidylcholines (PCs) are the most important lipid components of living
organisms. Specifically, they are the main components of the endoplasmic reticulum Golgi intermediate
compartment (ERGIC), where coronaviruses are replicated and assembled[90, 91]. Additionally, the lung,
the primary organ affected by the coronavirus, mostly uses dipalmitoylphosphatidylcholine (DPPC), i.e.,
one of PCs, as the abundant constituent of its surfactants[92]. As well as PCs (∼50 %), the ERGIC of a
mammalian cell contains smaller amounts of (∼15-25 %) phosphatidylethanolamines (PEs) and (∼10-15
%) phosphatidylinositols (PIs)[93]. It is worth mentioning that The PCs-, PEs-, and PIs-molecules have
different head groups but the same hydrophobic tails[94], which consist of saturated and/or unsaturated
acyl chains of various lengths.

Figure 1.3: (a) Illustration of the structure of coronavirus replotted based on previous literature[84]. (b)
Simplified schematic representation of the deactivation effect of disinfectant on the coron-
avirus model membrane.

1.3.2 Challenges and Objectives

The exact composition of the viral membrane is unknown and presumably changes between individual virus
particles. Before proceeding to run simulations, it should be clarified which parameters are more important
for the stability of membrane against alcoholic disinfectants. Previous experimental[95–98] reports show
that the phase of the membrane, which in turn depends on the hydrocarbon tail length and its degree of
saturation, is the main factor determining its stability. Hence, in our first simulation work[99], atomistic
MD simulations are performed to investigate the stability of the liquid-crystalline and gel DPPC membranes
in the presence of alcoholic disinfectants (n-propanol and ethanol). At a concentration of 10 mol % in the
surrounding water, the DPPC membrane (323 K, liquid-crystalline phase) allows almost free passage of the
disinfectant molecules. We reliably observe the disintegration of liquid-crystalline membrane at alcohol
concentrations above 15 mol %. On the contrast, the gel-phase DPPC bilayer (298 K), is less permeable to
alcohol because of the tight packing of lipid molecules. Although the same trend of alcohol weakening
effects on the liquid-crystalline phase of the membrane is observed in the gel phase as well, the effect is
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less pronounced[99]. Our work demonstrates the importance of the phase of the membrane on its stability
against alcoholic disinfectants (Figure 1.4). Moreover, the coronavirus membrane anchors proteins. The
presence of these proteins in the structure of the model membrane could possibly influence its stability
against damage by ethanol. However, an atomistic study from the other team in our group, which is about
the effect of the Envelope-protein on the stability of a mixed lipid bilayer, palmitoylsphingomyelin and
palmitoyloleoylphosphatidylcholine, immersed in ethanol-water mixtures, shows that the E-protein has a
negligible effect on the partitioning of water and ethanol from aqueous to lipid phase of the membrane
(Figure 1.4)[100]. Recall that major lipids PC, PE, and PI have different head groups but share the same
hydrophobic tail groups. These hydrophobic tails can be classified as saturated and/or unsaturated acyl
chains of various lengths. Hence, the rest parameters that may control the stability of lipid membrane
against alcoholic disinfectants, are summarized as the head group type, the tail length, and tail saturation
degree of lipids.

Figure 1.4: Schematic illustration of our first stage work on the stability of coronavirus model membrane
against alcoholic disinfectants.

This leads to our second stage work included in this thesis, i.e., evaluating the alcohol-induced changes
on coronavirus model membranes with different lipid compositions, as illustrated in Figure 1.5. The first
challenge comes as how important these three aforementioned parameters are for the stability of lipid
membranes against the damage of ethanol. Our previous atomistic simulation proves the connection
between the stability of the membrane and its phase (gel or liquid-crystalline)[99]. Hence, we firstly
compare experimental data[101] on the phases (stabilities) of PC-, PE-, and PI-membranes, of different
hydrocarbon tail lengths with a different number of unsaturated bonds and would argue that the lipid
head group does not have a dominant role in the phase behavior of the membrane. Besides, our previous
atomistic simulation results show that the largest free-energy barrier for the passage of small molecules is
observed very close to the center of the membrane at all concentrations[99]. Its height depends on the
membrane thickness, i.e., the gap that a penetrant needs to cross[99]. It is found experimentally[102] that
the thickness of the membrane depends nearly linearly on the length of hydrocarbon tail. In contrast, the
type of the head group does not have a noticeable influence on the membrane thickness. Hence, it is the
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hydrocarbon tails and their composition, which ultimately controls the membrane stability (Figure 1.5).
This argument is also in line with previous atomistic simulations[103, 104] of the stability of membranes
of pure palmitoyloleoylphosphatidylcholine (on of PCs) and phosphatidylethanolamine (one of PEs) at
high ethanol concentrations. As mentioned previously, PCs are the main components of the ERGIC, where
coronaviruses are replicated and assembled. The composition of ERGIC presumably resembles that of
the viral coating membrane, since the viral genome does not provide for lipid manufacture. We then
reasonably justify simulating mixed-PC membranes as coronavirus model membranes, to investigate their
stability against disinfectants. Therefore, we select three PCs with different classes of hydrocarbon chains,
namely DPPC (consisting of long saturated hydrocarbon chains), dioleoylphosphatidylcholine (consisting of
long unsaturated hydrocarbon chains), and dimyristoylphosphatidylcholin (consisting of short saturated
hydrocarbon chains) as the components of mixed lipid bilayers.

Figure 1.5: Schematic illustration of our second stagework on the stability of coronavirusmodelmembrane
against alcoholic disinfectants.

In principle, the widely used all-atomistic molecular dynamics (AA-MD) simulation can exactly provide
insight into the links between structures and physical properties of lipid membranes. However, even a pure
DPPC membrane of total 64 lipid molecules (surface area ∼ 0.7 nm) sampled in 750 ns, needs several
weeks on 12 CPU cores in our previous atomistic work[99]. Hence, it remains challenging to investigate
the targeted mixed lipid membranes with different compositions by AA-MD simulation. The dissipative-
particle-dynamics (DPD) simulation is a cheap coarse-grained method to handle complex systems with
length and time scales beyond the molecular scales. DPD models of lipid molecules immersed in 𝑝𝑢𝑟𝑒
water are well developed in the literature[105, 106]. The remaining unclear point is the choice of proper
interaction parameter between ethanol and lipid beads in the DPD simulation. We clarify this point by
scanning the interaction parameter over the reasonable region given in the literature[106], against the
free energy barrier for the passage of a single ethanol molecule across the membrane, according to our
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previous atomistic simulation results[99].
Having defined the compositions of coronavirus membrane and selected the proper simulation method, the
third challenge is how can we more robustly characterize the ethanol-induced intact-ruptured transition in
these membranes. The ethanol-induced transition is not a sharp transition, which is time-consuming to
characterize from plenty of visual inspections of the simulation profiles. There are many recent emphases
on developing the framework between simulation and ML for identifying and quantifying phase transitions
in soft materials systems[21–23]. Motivated by these studies, we want to investigate the underlying
mechanisms of membrane failure in the presence of ethanol and characterize it by applying a hybrid
simulation/deep-neural-network framework:

• Optimization of Disinfection Efficiency on Coronavirus Model Membranes

1.4 Heat Transfer

1.4.1 Background

The low thermal conductivity of polymeric materials (0.1 − 0.5Wm−1K−1)[107] is one of the major
technological barriers for their applications in many fields. For example, the limited heat dissipation due
to the low thermal conductivity may cause degradation and reduce the reliability and performance of
polymeric products in energy storage and semiconductor fabrications[108, 109].
Over the past two decades, research aimed at enhancing the thermal conductivity of polymeric materials has
emphasized the addition of highly conductive fillers, including graphite, carbon nanotubes as well as other
inorganics[110, 111]. The thermal conductivity of fillers is much higher than that of polymers. For example,
Balandin et al.[112] have reported a measurement of the thermal conductivity of suspended single-layer
graphene around 5000Wm−1K−1, which is one of the highest thermal conductivities of currently known
materials. However, the thermal conductivity of composites such as graphene/low-density-polyethylene
(LD-PE) composite (∼ 1.4Wm−1K−1)[113] is very low as compared to the filler. There are two possible
reasons: 1) fillers used in nanocomposites are influenced by the process and therefore different from those
pristine materials prepared for individual characterization of thermal properties. For example, graphene
in a composite usually have some defects (e.g., Stone-Wales defect and vacancy defects), which could
greatly reduce its effective thermal conductivity[110]; 2) Interfacial thermal resistance between the filler
and soft matrix can greatly reduce the benefits from the high thermal-conductivity fillers, resulting in
a low thermal conductivity of the composite[110, 111]. These two perspectives have been intensively
discussed in our previous works[114, 115] with graphene embedded in a soft matrix, i.e., n-alkanes phase
change material. Increasing the amount of filler is a common way to enhance the thermal conductivity
of composites. However, large amount of fillers may cause the aggregation of them and also significantly
increase the material cost[110].
On the other hand, looking for polymers with high intrinsic thermal conductivity has also attracted great
interest. These approaches can be classified as two main classes. First, the intrinsic thermal conductivity
can be enhanced by improving the order of chain alignment of polymers or engineering their molecular
architectures (e.g., chain length). For example, the thermal conductivity of PE nanofibers can reach as
high as 104 Wm−1K−1 after stretching[116]. The thermal conductivity of ultrahigh-molecular-weight
polyethylene (UHMW-PE) has also been reported as 40Wm−1K−1[117]. Second, the spatial arrangement
of chains can be tuned via blending different polymers. Kim et al.[118] have mixed poly(N-acryloyl
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piperidine) (PAP) with poly(acrylic acid) (PAA), and found an optimum composition of PAP to enhance
the thermal conductivity of PAA/PAP polymer blends to ∼ 1.7Wm−1K−1. Although significant progress
has been made in enhancing the intrinsic thermal conductivity of polymers, these methods suffer from
severasl limitations: 1) tuning chain alignment can improve the thermal conductivity in the alignment
dimention. However, an isotropic high thermal conductivity material is commonly more desirable[110];
2) the application of high-molecular-weight polymers is limited due to their high viscosity and poor
processability; 3) blending polymers to enhance the thermal conductivity is difficult, because of its complex
synthesis conditions[110, 118]. Another limitation for the polymer blending is the possible phase separation,
which has been discussed in the Section 1.2.

1.4.2 Challenges and Objectives

Apart from approachesmotioned above, Wei and Luo found that the thermal conductivity of PE-polypropylene
(PP) diblock copolymers can be changed by their block ratio[119]. This provides an opportunity to produce
bulk polymers with a high thermal conductivity. Unfortunately, all reported thermal conductivities of
diblock copolymers in their work are below that of the PE homopolymer. Since the monomer sequence
has recently been reported to influence multiple material properties of block copolymers such as complex
morphology[120], coil-collapse transitions[121], and electrostatic interactions[122, 123], there comes
a question: Will a specific monomer sequence of copolymers enable a maximum thermal conductive
efficiency?
To answer this question, we first need strategies to efficiently explore huge number of possible sequences.
For example, it is 2𝑁 permutations for a copolymer molecule of chain length 𝑁 which has only two types
of monomers. Although several sequence-defined polymers with limited chain length and chemistries
have been synthesized[120, 124], it remains a challenge for polymer chemists to synthesize routinely
sequence-defined polymers[6]. In contrast, molecular dynamics (MD) simulation is a valuable and powerful
tool for these sequence-defined polymers. Advanced machine-learning algorithms are being increasingly
interlinked with MD simulation to accelerate material design[25, 125–128]. Recently, Simmons and
co-workers proposed a computational framework by integrating the genetic algorithm (GA) with the
coarse-grained MD to design polymeric materials with target properties[129, 130].
In more specifics, the thermal conductivity can be calculated in a relatively short simulation time[131, 132].
Thus, it is an ideal test bed for trying out mutual couplings between MD and ML algorithms as compared
to other properties. On the other hand, atomistic MD simulation is able to provide more insight into the
details of processes such as the thermal energy transport via intramolecular interactions of polymers, which
is hard to investigate by coarse-grained methods. Therefore, this section is also a test for combining ML
with atomistic MD simulation, whereas all other sections use coarse-grained dissipative-particle-dynamics
method. In short, we want to explore whether the inverse-design polymer sequence engineering is a
promising approach for tuning the thermal conductivity or not, and to provide an example application of
integrating atomistic MD modeling (with chemical details) with GA for computational material design:

• Optimization of Heat Transfer Efficiency of Copolymers from the Perspective of Inverse Design
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1.5 Structure of this Thesis

The thesis is divided into four chapters. Chapter one conveys backgrounds and motivations of this thesis.
Chapter two provides an introduction to the simulation techniques and machine learning algorithms
involved in this thesis. Chapter three and Annex show research output including three peer-reviewed
papers (Section 3.1, Section 3.4, and Annex) and two manuscripts under review (Section 3.2 and Section
3.3). Finally, a brief summary and conclusion are given in the fourth chapter. Several comments on the
hybrid framework between simulations and machine learning methods have been provided then.
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2 Method

2.1 Overview

In this chapter, the methods used in this thesis are introduced. The main simulation techniques employed,
i.e., molecular dynamics (MD) and dissipative-particle-dynamics (DPD), have been well described in the
literature. We refer the reader to several excellent treatises: introduction to MD[133]; review of DPD[134];
comparison between MD and DPD[135]; introduction to coarse-graining[5] and multiscale simulations[3,
4]. Moreover, machine learning (ML) methods have rapidly revolutionized scientific research over the last
years. Although there are many excellent reviews on machine learning, it maybe still difficult for people to
understand them easily due to the knowledge gap between ML and simulation communities. Here, we try
to shed light on ML algorithms by comparing them with several traditional approaches that are usually
used in the pure simulation investigations.

2.2 Molecular Dynamics Simulation

The molecular dynamics algorithm, which consists of the numerical solution of the classical equations of
motion, could be written as:

f𝑖 = −𝜕𝑈

𝜕𝑟𝑖
(2.1)

ṙ𝑖 =
p𝑖

𝑚𝑖
and ṗ𝑖 = f𝑖 (2.2)

where the derivative of the potential energy 𝜕𝑈/𝜕𝑟𝑖 calculates the force f𝑖 acting on the 𝑖th atom with
mass 𝑚𝑖, and the atomic momentum is p𝑖. The step-by-step numerical integration of above equations can
be performed with Verlet algorithm[136, 137]. The potential energy 𝑈 in Eq.2.7 is usually expressed as
the sum of the non-bonded and intramolecular potentials as:

𝑈 = 𝑈non−bonded + 𝑈intramolecular (2.3)

The non-bonded interactions between atoms, 𝑈non−bonded, is traditionally split into 1-body, 2-body, 3-body,
and higher order terms. The 1-body term represents an externally applied potential field or the effect of a
wall, which is usually not presented in periodic simulations of bulk systems. The Lennard-Jones potential
is the most commonly used form for the 2-body pair interactions between particle 𝑖 and 𝑗:

𝑈𝑖𝑗 = 4𝜀𝑖𝑗

[︃(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂12

−
(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂6
]︃

(2.4)
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where 𝜀𝑖𝑗 and 𝜎𝑖𝑗 are the Lennard-Jones interaction parameters between the atoms 𝑖 and 𝑗; 𝑟𝑖𝑗 is the
distance between them. Moreover, three-body (and higher order) interactions are usually neglected. If
electrostatic charges are present, the appropriate Coulomb potential 𝑈Coulomb is added as:

𝑈Coulomb =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
(2.5)

where 𝑞𝑖 and 𝑞𝑗 are charges of atom 𝑖 and 𝑗, and 𝜀0 is the vacuum permittivity. For the intramolecular
bonded interactions, the simplest molecular model include following terms:

𝑈intramolecular = 𝑈bond + 𝑈angle + 𝑈torsion (2.6)

where the bond-potential 𝑈bonds controls adjacent pairs of atoms in a molecule; the angle-potential 𝑈angle

involve three atom coordinates; and the torsion potential 𝑈torsion are defined in terms of three connected
bonds, hence four atomic coordinates.

2.3 Dissipative-Particle-Dynamics Simulation

Dissipative particle dynamics is a coarse-grained particle-based simulation technique[10]:

1. Unlike the MD simulation, the DPD simulation involves potentials of a form independent of the
physical system. Hence, the relation of natural DPD length and time scales to physical units needs to
be established, i.e., mapping process[135].

2. Like the MD simulation, the motion of the DPD particles is governed by classical equations of motion.
However, these forces on the DPD particles are not solely given by conservative interactions. The force
𝑓𝑖 acting on a DPD bead 𝑖 consists of pairwise contributions of a conservative force F𝐶𝑖𝑗 , a dissipative
force F𝐷𝑖𝑗 , and a random force F𝑅𝑖𝑗 as[10, 135]:

f𝑖 =
∑︁

𝑖𝑗

(F𝐶𝑖𝑗 + F𝐷𝑖𝑗 + F𝑅𝑖𝑗) (2.7)

The dissipative force F𝐷𝑖𝑗 = −𝜂𝑤𝐷(𝑟𝑖𝑗)(e𝑖𝑗v𝑖𝑗)e𝑖𝑗 and the random force F𝑅𝑖𝑗 = 𝜎𝑤𝑅(𝑟𝑖𝑗)𝜉𝑖𝑗∆𝑡−0.5e𝑖𝑗 act
together as a thermostat, where 𝜂 and 𝜎 are the friction parameter and the noise amplitude with 𝜂 =
𝜎2/2𝑘𝐵𝑇 ; r𝑖𝑗 = r𝑖− r𝑗 , 𝑟𝑖𝑗 = |r𝑖𝑗 |, and e𝑖𝑗 = r𝑖𝑗/𝑟𝑖𝑗; 𝑤𝐷(𝑟𝑖𝑗) and 𝑤𝑅(𝑟𝑖𝑗) represent the 𝑟-dependent weight
function for the dissipative and random forces, respectively; 𝜉𝑖𝑗 is a Gaussian random number with zero
mean for each interaction pairs of beads at each timestep ∆𝑡. It is noted that 𝑤𝐷(𝑟𝑖𝑗) = [𝑤𝑅(𝑟𝑖𝑗)]

2 and
𝜎 = 3 are used in the general DPD work. The non-bonded conservative force F𝐶𝑖𝑗 = 𝛼𝑖𝑗(1 − 𝑟𝑖𝑗/𝑟𝑐)e𝑖𝑗
(𝑟𝑖𝑗 < 𝑟𝑐) is purely repulsive and it is defined by the repulsion parameter 𝛼𝑖𝑗 . In general, the repulsion
parameter between different species A and B, 𝛼𝐴𝐵, has been related to their Flory-Huggins parameter 𝜒𝐴𝐵

as[10]:

𝛼𝐴𝐵 = 𝛼𝐴𝐴 + 3.27𝜒𝐴𝐵 (2.8)
Following Groot and Warren’s suggestion for a system with a number density of 3𝑟−3

𝑐 , the non-bonded
repulsion of like interactions is expressed as 𝛼𝐴𝐴 = 𝛼𝐵𝐵 = 25 𝑘𝐵𝑇𝑟

−1
𝑐 (as used in Section 3.1 and 3.2),
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where 𝑟𝑐 is the cutoff distance of the conservative non-bonded force F𝐶𝑖𝑗 . In order to match the realistic
systems, the parameters used in DPD simulations such as repulsion parameters, the bead volume, and bead
mass can be obtained from the mapping process (as shown in Section 3.3).

2.4 Mutual communications between Simulation and Machine Learning

2.4.1 Forward Evaluation of the Structure-Property Relationships

Generally speaking, machine learning can be divided into supervised learning, semi-supervised learning,
unsupervised learning, and reinforcement learning[26]. The supervised learning aims to find a function
that predict unknown properties from known inputs, which can be further divided into two categories as
“classification” and “regression” algorithms. Typical classification algorithms are Gradient Boosting[138]
and Random Forest[139] algorithms. We use them to predict the compatibilization efficiency of graft
copolymer in immiscible homopolymer blends (Section 3.2). Common regression algorithms are neural
networks[140], Gaussian process regression[141], and support vector machines[142]. In this thesis, we
use the deep-neural-network to characterize the state of lipid membranes (intact and disrupted) immersed
in ethanolic disinfectants (Section 3.3). It is worth mentioning that there are two excellent review on these
algorithms[26, 143]. We start with a brief introduction of two important terminologies in ML, namely,
data split and optimization of hyperparameters.
Data split: In principle, a ML model can memorize every data point with the given data set, and thus result
in unrealistic high accuracy if we use the trained ML model to predict properties of the given data set. In
order to evaluate the real prediction accuracy, the trained ML model must be tested on a new data that have
not been used for the training process. Hence, we need to split the obtained simulation results at the first
step into “training” and “testing” dataset (Figure 2.1 (a)). More exactly, the size of training and testing can
be evaluated with the learning curve approach, which has been well implemented on ML packages (e.g.,
Scikit-learn[144] and PyTorch[145]). Usually, there is a plateau when we plot the learning curve score
versus the training data size (Figure 2.1 (a)). However, it should be noted that hyperparameters (see the
next paragraph) of applied ML models are not optimized at this step. Hence, It is common practice to split
the simulation results into 70% training and 30% testing set in the first step[146]. This split (70% training
and 30% testing set) needs to be rechecked by the aforementioned learning curve after the optimization of
hyperparameters.
Optimization of hyperparameters: In ML, a hyperparameter is a parameter whose value controls the
inner learning (training) and prediction process[147, 148]. Maybe a good example to understand the
hyperparameters from the view of simulation is: the timestep or any thermostat parameters (e.g., tem-
perature/pressure damping parameters), which should be carefully and reasonably chosen to obtain
correct simulation results, are “hyperparameters” in simulation. In contrast, the temperature and pressure
themselves are not “hyperparameters”. Also, the fitting parameters like 𝑎 and 𝑏 in a linear regression
𝑦 = 𝑎 · 𝑥+ 𝑏 are not hyperparameters (linear regression also belongs to ML algorithms[149]). Different ML
algorithms require different hyperparameters. Given the optimized hyperparameters, the ML algorithm
can build the final prediction model.
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Figure 2.1: Schematic illustration of (a) data split and (b) the optimization of hyperparameters in machine
learning.

In this thesis, the optimization of hyperparameters is based on the score of the determination coefficient (𝑅2)
obtained from the cross-validation grid search method (Figure 2.1(b)). As we mentioned previously, the ML
model can represent well ‘the given data in principle. A typical overfitted model (the green line) is shown
in Figure 2.1 (b.2). It matches too well with the training data and is likely to have a higher inaccuracy on
the testing data or any other related data than a regular fitting (the red line). This overfitting phenomenon
is prevented by the “cross-validation” process between training data and testing data in the aforementioned
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cross-validation grid search optimization process. This method defines a search space, whose dimensions
are represented by the targeted hyperparameters and whose scales are determined by the values of these
hyperparameters. Consequently, each point in this space is a combination of the hyperparameters with
specified values and stands for a model configuration[148]. The search then calculates the scores of 𝑅2 for
all the points in the search space and provides the optimum value. The 𝑅2, which measures the proportion
of the variation of one variable that can be predicted by other variables, is mathematically described as
follows:

𝑅2 = 1−
∑︀𝑝

𝑖=1(𝑦𝑖 − 𝑓𝑖)
2

∑︀𝑝
𝑖=1(𝑦𝑖 − 𝑦)2

(2.9)

where yi and f i represent the “real” results in the data set and the predicted values from ML models,
respectively; p is the number of data points in the search space. During this process, the loss function of
ML models regarding the training data is minimized to improve the prediction accuracy on training data
(Figure 2.1 (b.1)). The loss function is usually defied as the residual between the “real” results and ML
predictions. It can be summarized as: (1) the simulation results are first divided into two parts, one as the
training set and one as the testing set; (2) the training set is used to train several ML models by minimizing
the loss function. (3) each model is evaluated on the testing set by the cross-validation to select the model
with the best 𝑅2. The minimization of the loss function will be discussed in details in the next Section with
gradient boosting algorithm.
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• Classification process

In this section, the gradient boosting (GB) algorithm is used to predict the interfacial tension 𝛾 of immiscible
homopolymer blends with the addition of graft copolymers. The entire DPD model results contain several
predictors: three predictors related to molecular architectures (Figure 2.2 (a)), namely the number of graft
side chains (ns), the length of each graft side chain (ls) and the backbone (lb); and the repulsion parameter
𝛼𝐴𝐵, which is related to the chemical difference of the two polymers (Figure 2.2 (b)). These descriptors
are initially considered as influencing the interfacial tension of systems.

Figure 2.2: (a) Schematic illustration of the molecular architectures for one regular graft copolymer with
31 a type beads in the backbone and 12 b type beads in 3 side chains. The blue and red
represent the type a and b beads in the copolymer compatibilizers, respectively. (b) Schematic
illustration of the chemical details that is related to the repulsion parameter 𝛼𝐴𝐵 in dissipative-
particle-dynamic simulation. This repulsion parameter 𝛼𝐴𝐵 is related to the Flory–Huggins
𝜒𝐴𝐵 parameters as 𝛼𝐴𝐵 = 25 + 3.27𝜒𝐴𝐵 in the general systems.

In an empirical way (Figure 2.3), we first need to assemble these descriptors into a descriptors-ensemble
𝑃 . Then, we need to find a function to predict the interfacial tension based on 𝑃 . One example of this
approach is the process that we derive manually the power-law function to predict the interfacial tension
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of linear block copolymers in Section 3.1. However, this approach is laborious and may not be accurate for
graft copolymers, which are complex with more architecture descriptors.

Figure 2.3: Flow chart of an empirical fitting process.

The compatibilization efficiency of graft copolymers can be investigated more robust by the assistance of
ML algorithms. Here, the GB mode, which gives the best prediction accuracy in section 3.2, is illustrated as
an example. The GB model builds its estimators sequentially. The estimator is where the ML does one split
(classification) progress based on the input data, and “sequentially” means that the 𝑛𝑡ℎ estimations are
built by considering the results of previous estimators (Figure 2.4 (a)). A simple but basic example is like:
1) suppose there is a system with a true value of 10, and the first estimator of GB model predicts 5, the
loss (residuals) between true and prediction is then 10− 5 = 5; 2) this loss value of 5 is used further as
the optimization target for the next estimator, and if the second estimator makes a prediction as 3, the
combination of these two estimators predicts 5 + 3 = 8, and so on. The schematic illustration of the GB
model is shown in Figure 2.4 (a). The average of all simulated interfacial tension values is set to be the
prediction of the initial estimator as 𝛾init. The loss Lossinit between this prediction 𝛾init and the actual 𝛾
are calculated as Lossinit = 𝛾 − 𝛾init. The first estimator is then built by separating the descriptors as a
ensemble set 𝑃 (called as “classification” in ML), to minimize the loss Loss1(𝑃 ). As shown in Figure 2.4
(b)), given descriptors could be separated into different ensembles. For example, we can separate the
interfacial tension of graft copolymers based on their backbone length in the first estimator, and say that,
graft copolymers with more than 31 beads in their backbone have the same interfacial tension value as
0.5 and others have 2. Of course, the predicted interfacial tension value ℎ1(𝑃 ) of such classification is
not accurate. The GB algorithm compares all ℎ1(𝑃 ) from all possible classifications, and chooses the best
one that provides the lowest value of Loss1(𝑃 ) in the first estimator. The loss function in the ML model is
therefore minimized as shown in Figure 2.4 (c), and can be mathematically described as:

Loss𝑛(𝑃 ) = 𝛾 − (𝜈 · Loss𝑛−1 + 𝛾𝑛−1 + ℎ𝑛(𝑃 )) (2.10)

𝛾𝑛 = 𝛾𝑛−1 + argminℎ𝑛(𝑃 )(Loss𝑛(𝑃 )) (2.11)
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where 𝑛 represents the current number of the decision tree. The learning rate 𝜈 (∼ 0 − 1) reduces the
contribution of each estimator on the final prediction to prevent overfitting and improve the prediction
accuracy. It is worth mentioning that the learning rate 𝜈 and the number of descriptors used for the
classification process are typical hyperparameters. More details can be found in Section 3.2. Actually,
except the classification process, the GB algorithm is roughly similar to the energy minimization process
with the gradient descent approach used in the simulation.

Figure 2.4: Flow chart of (a) the gradient boosting (GB) model, and its (b) classification process and
minimization process of the loss function.
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• Regression process

There are many thermodynamic properties (Figure 2.5 (a)), such as the area per lipid and the orientational
order of lipid tails, to describe lipid membranes. However, these parameters are usually calculated by
averaging over the simulation time or the number of data points. This simple average process may result in
information losts. Moreover, these properties are not necessary to have a one-to-one correlation with the
state of the whole lipid membrane since they are “specific” properties. For example, the area per lipid is
more related to the behavior of lipid head groups but ignores most contributions from lipid tails. On the
other hand, visual inspection of all simulation profiles is not practical due to the time-consuming, especially
in the case of large number of simulation systems.
The deep neural network (DNN) can be used to map all particle coordinates, which we collected during
the simulation, to state variables, which quantitatively represent the membrane being intact or disrupted
(Figure 2.5 (b) and (c)). In the training process, we only use the intact and ruptured states of pure
membrane containing one type of lipid molecules to label the trained models. The “label” (intact or
disrupted) means how we pre-name the output of trained models depending on different membrane states.
Then, we combine these trained models to predict the integrity of all pure and mixed membranes with
various ethanol concentrations, and characterize the intact-to-ruptured transition point. As depicted in
Figure 2.5 (b), the DNN is a standard feed-forward network composed of fully-connected layers, in which
the data flows from the input layer through the hidden layers towards the output layer. Each layer has
a certain number of nodes, called neurons, which store information about the importance of the input
and associations between the importance of combinations of inputs. The “fully-connected” means that
each neuron is connected to all other neurons of the previous an following layers. In all layers, linear
operations (regression) are applied to the input data. Recall the GB model, in which we try to minimize
the loss function by doing different classifications in each estimator. Similarly, the build of different layers
(regression) also aims to get the minimal loss function in the DNN model. The training process is stopped
when a reasonably low value of the loss function is reached, and it does not decrease significantly in further
runs. To prevent overfitting and to improve generalization error, the dropout technique, which randomly
drops out neurons (and their connections) during training, is implemented in our DNN model with a
dropout rate of 0.2. This dropout rate indicates that there are 20% neurons that are randomly deactivated
in each hidden layer. More details can be found in Section 3.3. Furthermore, the expression “deep” in deep
neural network is one example of nomenclature that may confuse simulation experts. Some people call
their neural networks with one or two fully connected hidden layer as deep learning. This misrepresents
the purpose of deep-learning algorithms that can not be achieved with the number of neural network layers
less than three.
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Figure 2.5: (a) Schematic illustration of the traditional thermodynamic properties of lipid membranes.
Schematic representation of the (b) training and (c) predicting processes of the state of
membrane by using deep-neural-network (DNN). The Cartesian coordinates of lipids are fed
as input data to the DNN model. The loss function of DNN model is minimized in the hidden
layers.
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2.4.2 Inverse Design of Structure by Using Genetic Algorithm

In the previous section, We have discussed the approaches to directly evaluate the structure-property
relationship based on the generated data from simulations. It is worth mentioning that the process to
“generate data” in simulations can also be optimized. In the traditional way, we can screen all possible
candidates to produce the target material with high performance on a desired property. However, this
approach consumes plenty of computational resources. The second approach (Figure 2.6) is to initially
select a few candidates and then run simulations on them. Based on the first round of simulations, we do the
analysis (or inspired from the literature) to select/guess new candidates with possibly higher performance.
This approach is more efficient but possibly needs to repeat the manual screening process for many times.

Figure 2.6: Flow chart of the molecular dynamics (MD) simulation with manual screening.

This repeated manual screening process was replaced by the genetic algorithm (GA). The framework
between simulation and GA can automatically inversely design the structure of optimal candidate based
on our target property, i.e., thermal conductivity. The general idea of GA is to mimic the evolutionary
biological selection process to optimize the properties of systems. In this work, the fitness assessment
(evaluation of properties) of the GA is conducted via MD simulations. We employ a mapping scheme of
polymer sequences to binary genomes in which “0” and “1” represent a polypropylene (PE) monomer and
a polyethylene (PP) monomer, respectively, as illustrated in Figure 2.7. An automated protocol performs
these fitness evaluations of 30 candidates (MD simulations) simultaneously. After determining the fitness
score, a new population with a distribution biased towards higher fitness-score members compared with the
previous population is generated by performing three genetic operations, namely, selection, crossover, and
mutation (Figure 2.7). Roulette wheel selection is used to select the parents for generating new candidates
in the next generation. The crossover operation combines the selected parents to produce new offspring.
Since stronger (with high performance) individuals are being selected more often, there is a tendency that
the newly generated individuals may become very similar after several generations. The diversity of the
population may decline, resulting in the population stagnation. Mutation is a mechanism to inject diversity
into the population and to avoid stagnation. These three operations are iterated until the target properties
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are achieved, or the maximum number of generations is reached. In more detail, the selected parents are
combined via the uniform crossover with a probability of 0.8, in which the child genes are obtained by
mixing “father’s” genes with “mother’s” genes at a probability of 0.8. Subsequently, point mutations at a
rate of 0.01 per gene are applied to the new candidate in the next generation. For instance, a PP monomer
has a probability of 0.01 to be changed into a PE monomer during the point mutation procedure.

Figure 2.7: Flow chart of the automatic molecular-dynamics-based genetic algorithm (GA) used in this
work: Genome mapping; Genetic operations; Evolution processes.

It should be noted that the standard GA, used in artificial intelligence or economics community[150], might
reach hundreds to thousands of generations, with each generation composed of a population of tens of
individuals (constant through the course of GA). This is too “expensive” for molecular simulation, especially
for polymer investigations with chemical details. Accordingly, we use the single candidate elitism[150], in
which the candidate with the highest fitness score (highest thermal conductivity 𝑘) is cloned to the next
generation without any modification. Also, we storage results of all MD simulations in the GA dataset to
minimize the number of MD simulations required. The simulation results are reused when a candidate
generated from genetic operations is found to repeat from prior generations.
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3 Results

3.1 Optimization of Compatibilization Efficiency of Linear Block Copolymers
in Immiscible Homopolymer Blends

Reproduced with permission from Zhou et al. [Macromolecules 2021, 54, 20, 9551–9564] Copyright 2021
American Chemical Society.
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ABSTRACT: We study the compatibilizing effect of copolymers of
different architectures on the interface between two incompatible
polymer phases by dissipative particle dynamics. Three base polymer
systems are investigated, namely weakly incompatible (interspecies
repulsion parameter of the dissipative particle dynamics interaction
αAB: 25 < αAB < 30), intermediate-incompatible (30 ≤ αAB < 40), and
strongly incompatible systems (αAB ≥ 40). We find that the
compatibilization efficiency of all regular block copolymers in strongly
incompatible systems can be predicted by a power-law function, which
contains the Flory−Huggins interaction parameter, the areal
concentration, and the mean block length of the compatibilizer.
Regular multiblock copolymers have better compatibilization perform-
ance compared to the symmetric diblock copolymers at the same areal
concentration. This is because smaller amounts of the multiblock copolymer are required to saturate a given interfacial area. For
unsymmetric diblock copolymers in strongly incompatible systems, we find additionally that the length of the shortest block is a
more important determinant for the compatibilization efficiency than the ratio of block lengths. Our work reveals the involved
mechanisms of the compatibilization process, and it provides a promising route to predict the compatibilization efficiency of
differently structured copolymer additives in the respective polymer blends.

■ INTRODUCTION

Blending the existing polymers is one process to produce new
materials with low cost and specific properties.1,2 However,
most combinations of homopolymers are immiscible and have
high interfacial tension. The most effective way to control the
interfacial tension of immiscible blends is by adding
compatibilizers.3−5 The compatibilization efficiency is defined
as the scaled quantity 1

0
−γ

γ
, where γ0 is the interfacial tension

of the uncompatibilized homopolymer blend and γ is the
interfacial tension of the homopolymer blend in the presence
of a compatibilizer. It reaches from 0 (compatibilizer does not
reduce the interfacial tension) to −1 (compatibilizer removes
the interfacial tension completely). Block copolymers,3,6−9

random copolymers,10−12 comb/brush copolymers,13−16 Janus
nanorods,17−19 and copolymer-grafted nanoparticles20−22 have
been investigated as compatibilizers in recent years.
Several models have been developed to quantitatively

predict the interfacial tension of monodisperse uncompatibi-
lized homopolymer blends as a function of chain lengths,
temperature, and the Flory−Huggins interaction parameter
based on self-consistent field (SCF) theory.23−25 For the
compatibilization efficiency of block copolymers, Noolandi and
Hong26 have developed a theoretical model based on SCF
theory and demonstrated that at low concentrations the
interfacial tension decreases linearly with the concentration of

copolymers. Meenakshisundaram et al.27 have found by
molecular dynamics simulations that regular multiblock
copolymers with different number of blocks exhibit different
compatibilization efficiencies. However, there is still no simple
and general quantitative description to predict the compatibi-
lization efficiency of copolymers by considering the realistic
chemical details, even for the most common copolymers−
symmetric diblock copolymers. On the other hand, Ryu et al.6

have investigated the number of direct contacts from unlike
beads at the interface in the compatibilized systems. They
attributed the reduction of interfacial tension by the addition
of compatibilizers to the decreasing number of unfavorable
contacts. The ratio between chain extension, parallel and
perpendicular to the interface, has also been proven to be
significantly correlated with the compatibilization efficiency of
copolymers.6,10,19,28 However, relationships between the
interfacial tension and the above parameters are restricted to
selected types of copolymers only, mainly symmetric diblocks.
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It is, therefore, desirable to find one critical parameter, which
can be used to universally correlate the variation of interfacial
tension with the molecular architecture of many different
copolymer additives.
In this work, we employ a relatively cheap computer

simulation method, dissipative particle dynamics (DPD),29

which, if carefully parameterized, is able to provide meaningful
microscopic and mesoscopic interfacial properties of homo-
polymer blends in the presence of compatibilizers.8,30−32

Moreover, the parameters used in DPD simulations such as
repulsion parameters α, the bead volume Vi, and bead mass mi
can be obtained from atomistic molecular dynamics (MD)
simulations30,33,34 or quantum-chemical methods like the
conductor-like screening model for real solvents (COSMO-
RS),35 which incorporate chemical details. This provides a way
to quantify the model and allows realistic modeling.
Here, we first investigate by DPD simulations the interfacial

properties of uncompatibilized homopolymer blend systems as
references and we study how the chain lengths, chain-length
ratio, volume-fraction ratio, and the unlike DPD repulsion
parameter α influence their interfacial tensions. Second, we
calculate the compatibilization efficiency of symmetric diblock
copolymers and regular multiblock copolymers. From these,
we derive a phenomenological analytical model. Third, we
attempt to understand this theoretical model in terms of
density distributions, chain conformations, and unfavorable
contact of the homopolymer blend. We lastly investigate
unsymmetric diblock copolymers to find the decisive factor,
which influences their compatibilization efficiency.

■ SIMULATION DETAILS
Dissipative particle dynamics (DPD) is a coarse-grained
particle-based simulation technique.29 The force f i acting on
a DPD bead i consists of pairwise contributions of a
conservative force, Fij

C, a dissipative force, Fij
D, and a random

force, Fij
R

f F F F( )i
ij

ij ij ij
C D R∑= + +

(1)

The dissipative force Fij
D = −ηwD(rij)(eijvij)eij and the random

force Fij
R = σwR(rij)ξijΔt−0.5eij act together as a thermostat,

where η and σ are the friction parameter and the noise
amplitude with η = σ2/2kBT; rij = ri − rj, rij = |rij|, and eij = rij/
rij; wD(rij) and wR(rij) represent the r-dependent weight
function for the dissipative and random forces, respectively;
ξij is a Gaussian random number with zero mean for each
interaction pairs of beads at each timestep Δt. It is noted that
wD(rij) = [wR(rij)]

2 and σ = 3 are used in this work. The
nonbonded conservative force Fij

C = αij (1 − rij/rc)eij(rij < rc) is
purely repulsive and it is defined by the repulsion parameter αij.
The repulsion parameter between different species A and B,
αAB, can be related to their Flory−Huggins parameter χAB as

29

3.27AB AA ABα α χ= + (2)

Following Groot and Warren’s suggestion for a system with a
density of 3rc

−3, we set the nonbonded repulsion of like
interactions to αAA = αBB = 25kBTrc

−1, where rc is the cutoff
distance of the conservative nonbonded force Fij

C. We use a
bead-spring model for the bonded interactions in polymer
chains. Bonded interactions along the chains use a harmonic
force Fij

S = −Crij on top of the nonbonded interactions. A
spring constant of C = 4.0kBTrc

−2 is chosen following previous

DPD studies of copolymers.36 The cutoff distance (rc), bead
mass (m), and energy (ϵ = kBT) are chosen as reduced units of
length, mass, and energy. If necessary, mapping of the cutoff
distance (rc) and bead mass (m) is possible.17,30,33 Using them,

the reduced time unit is defined as t mr k T( / )c B= with an
integration step of Δt = 0.06t. For convenience, we will use
reduced units from here on.
A total of 162 000 beads are simulated in a box with Lx × Ly

× Lz = 30 × 30 × 60rc
3. In the initial configuration of

uncompatibilized homopolymer blends, the homopolymers A
and B are placed in the two halves of the simulation box, as
illustrated in Figure 1a. For the compatibilized system,

compatibilizers are added near the two interfaces. This speeds
up the interface formation without influencing the interfacial
thermodynamic properties.6 For clarity, beads of type A and B,
which are part of the compatibilizer molecules, are denoted a
and b, respectively. The DPD models for 3 series of
copolymers are illustrated in Figure 1: symmetric diblock
copolymers (Figure 1b), regular multiblock copolymers
(Figure 1c), and unsymmetric diblock copolymers (Figure
1d). For example, a4b4 denotes a diblock copolymer with four
A-type beads and four B-type beads. The evolution of the
interfacial tension and mean-squared radius of gyration Rg

2 of
systems with simulation time are monitored. The equilibration
is considered to have reached when their relative standard
deviations are within 5%. Starting from the initial state, at least
1 × 106 steps are required to guarantee equilibration for all
systems. The equilibrium is checked by the radius of gyration
and surface tension, as illustrated in Supporting Information
Figure S1. After equilibrium has been reached, data are
collected for another 2 × 106 steps. The trajectory is divided
into four blocks to calculate the standard deviation of

Figure 1. (a) Uncompatibilized system containing A/B blend (the
chain length of A and B is 60) with repulsion parameters αAA = αBB =
25 and αAB = 50. A total of 162 000 beads are simulated in a box with
Lx × Ly × Lz = 30 × 30 × 60rc

3. Pink and cyan represent A and B
beads, respectively. Models for the three series of copolymers: (b)
symmetric diblock copolymers; (c) regular multiblock copolymers;
and (d) unsymmetric diblock copolymers. Purple and green represent
type A and B beads in the copolymer compatibilizers and are denoted
a and b, respectively.
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properties such as interfacial tension. The interfacial tension γ
is derived from the pressure anisotropy8,27
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where Pxx, Pyy, and Pzz are the diagonal components of the
pressure tensor, and the z direction is the interface normal.

■ RESULTS AND DISCUSSION
Homopolymer Blends without Compatibilizers. We

present first the interfacial tension of uncompatibilized blends
of monodisperse homopolymers A and B with equal chain
lengths (lA = lB) and identical volume fractions ( fA = f B = 0.5).
The dependence of the interfacial tension γ on the repulsion
parameter αAB and chain length is shown in Figure 2. It can be

seen that γ increases with an increase in αAB from 30 to 50.
Qian et al.8 have demonstrated that an increase in the
repulsion parameter αAB enhances the interfacial tension γ and
decreases the number of unlike contacts, which results in a
narrower interface thickness. The variation of our bead density
distributions with repulsion parameter is consistent with
previous works8,18 (Supporting Information Figure S2).
Additionally, γ increases with the chain length until reaching
a plateau γ∞, as shown in Figure 2. This relationship has also
been observed in previous experimental37 and theoretical38,39

works. In our DPD model, the plateau chain length lplateau is
around 8−20 depending on αAB. Based on SCF calculations, a
simple expression relating γ to the interaction parameter χ =
(αAB − 25)/3.27 and chain lengths lA and lB is as follows
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Here, K is a constant value and s is the statistical segment with
Re
2 = nms

2, where Re
2 is the mean-squared end-to-end distance

and nm is the number of beads per chain.23,40 The constant
value K is selected as π2/12 and 2 ln 2 under different
approximations in reference from Broseta et al.23 and
Ermoshkin and Semenov,40 respectively. It should be noted
that Ermoshkin and Semenov derived their model to better
reproduce the properties of the strongly incompatible system,
and the value of their K is comparable to the other work41 with
the same aim. Qian et al.8 have assumed s as 1 in their DPD
simulation and found that the predicted interfacial tension
deviated with the calculated interfacial tension. This has also
been observed in our work by using s = 1, particularly in the
strongly incompatible systems (Supporting Information Figure
S3). Then, we have calculated the statistical segment length of
the homopolymer melt (the repulsion parameter is equal to 25
for each paired bead) and found the value smelt saturated
(∼0.96) for long chains. However, a significant deviation has
been observed between the simulated DPD results and
predicted results from eqs 4 and 5 using smelt. Since chain
extensions are influenced by the interface,19,42 we have defined
the interfacial statistical segment length sint and bulk statistical
segment length sbulk based on the center-of-mass of the chain in
the homopolymer blend systems. Homopolymer chains with
the center-of-mass ranging from z0 − 3 to z0 + 3 (z0 is the
center of interface) are used to calculate sint while other chains
are used to calculate sbulk. The calculated results have been
summarized in Table 1. We find that sint is higher than sbulk for

all homopolymer blends and both values increase with the
chain length and then saturate. Moreover, the repulsion
parameter αAB has a stronger influence on sint than on sbulk. We
have applied all statistical segment lengths into eqs 4 and 5 and
found that the predicted results based on sint of the long-chain
blend A120B120 agree well with the DPD simulation results,
particularly when K is selected as 2 ln 2 in reference from
Ermoshkin and Semenov40 (Figure 2). This can be explained
by the fact that the interfacial tension γ is more strongly
correlated with the homopolymer near the interface and the γ
∞ in eq 5 is obtained from the approximation of the infinite
chain length of the homopolymer. We have also investigated
the interfacial tension when the two homopolymers have
different chain lengths (lA ≠ lB) and volume fractions ( fA ≠ f B).
Both parameters have a negligible influence on the interfacial
tension of uncompatibilized blends (Supporting Information
Figure s2). Hence, we have fixed the volume fraction and the
chain length of homopolymers A and B as fA = f B and lA = lB =
lh in the remaining part of this work, where lh is the chain
length of the homopolymer.

Figure 2. Simulated interfacial tension results from DPD simulations
and predicted interfacial tension results versus 1/lA based on eqs 4

and 5 with K
12

2= π (Broseta et al.)23 and 2 ln2 (Ermoshkin and

Semenov)40 for A/B uncompatibilized homopolymer blends (lA = lB,
fA = f B). The interfacial statistical segment length sint of the A120B120
homopolymer blend (Table 1) has been used. The errors of interfacial
tension γ are smaller than the symbols sizes and are not shown here.

Table 1. Bulk Statistical Segment Length sbulk and Interfacial
Statistic Segment Length sint of Homopolymer Blends A6B6,
A12B12, A24B24, A60B60, A72B72, and A120B120 with the
Repulsion Parameter αAB = 30, 40 and 50

αAB = 30 αAB = 40 αAB = 50

sbulk sint sbulk sint sbulk sint

A6B6 0.887 0.966 0.888 0.973 0.887 0.985
A12B12 0.929 0.982 0.931 0.991 0.933 1.003
A24B24 0.942 0.994 0.944 1.009 0.941 1.018
A60B60 0.956 1.003 0.960 1.015 0.955 1.024
A72B72 0.957 1.004 0.954 1.013 0.959 1.027
A120B120 0.966 1.005 0.966 1.015 0.971 1.028
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To understand the variation of the interfacial tension, we
have evaluated the pair distribution functions gAB(r), which
represent the probability of finding a B-type bead at a distance
r away from an A-type bead. We show gAB(r) of the
uncompatibilized A60/B60 systems with different repulsion
parameters αAB as in Figure 3a. The magnitude of gAB(r)
decreases as αAB increases, indicating a decreasing number of
contacts between unlike beads. Moreover, there is a stronger
decrease of gAB(r) with αAB between αAB = 26 and αAB = 35
than between αAB = 40 and αAB = 50. To more quantitatively
examine the number of unfavorable contacts, we have
investigated the unlike coordination number cAB with αAB =
26, 27, 28, 30, 35, 40, and 50 in Figure 3b. cAB is defined as the
integral over gAB(r) from 0 to rc as cAB = ∫ 0

rc4πr2ρgAB(r) dr. We
find that the value of cAB decreases monotonically with
increasing αAB. In terms of the absolute magnitude, the
decrease in cAB from αAB = 26 to αAB = 30 is 0.015, whereas a
decrease of 0.07 is measured from αAB = 30 to αAB = 50, which
indicates saturation. On the basis of the decrease of cAB versus
αAB, we define three system types: weakly incompatible
systems (25 < αAB < 30), intermediate-incompatible systems
(30 ≤ αAB < 40), and strongly incompatible systems (αAB ≥
40). Moreover, we find that the interfacial tension can be well

fitted by the logarithmic function ln(cAB), as shown in Figure
3c. The resulting expression is γ = − 2.17 ln(cAB) − 7.47 with a
regression coefficient of R2 = 0.94. This implies that both the
interfacial tension of uncompatibilized A/B blends and the
unlike contacts between A and B beads strongly depends on
the strength of the repulsion between unlike polymers αAB.
The homopolymer A/B systems without compatibilizers are

taken as a reference for further investigations in this work. The
interfacial tension value of this system is used as a reference γ0.

After adding compatibilizers, the scaled result of ( )1
0

−γ
γ

represents the compatibilizer efficiency for the respective
blends system.

Symmetric Diblock Copolymers as Compatibilizers.
Symmetric diblock copolymers with two different chain lengths
(a4b4 and a12b12) have been added to reduce the interfacial
tension of the uncompatibilized blends for highly incompatible
blends (αAB ≥ 40). Since the copolymer molecules mainly
reside in the interfacial region, a volume-based concentration
has little meaning. Therefore, we use the concentration of
copolymer beads per interface area ϕ, which is defined as
follows

Figure 3. (a) Pair distribution functions gAB(r) and (b) the coordination number cAB between A and B homopolymer beads of the uncompatibilized
blends of A60/B60 (the chain length of A and B is equal to 60) with the repulsion parameter αAB = 26, 27, 28, 30, 35, 40, and 50. gAB(r) represents
the probability of finding a B-type bead at a distance r away from an A-type bead. cAB is defined as the integral of gAB(r) from 0 to rc. (c) Correlation
between the interfacial tension γ and the coordination number ln(cAB) of uncompatibilized blends of A60/B60 with the repulsion parameter αAB =
26, 27, 28, 30, 35, 40, and 50. The expression is γ = −2.17 ln(cAB) − 7.47 with a regression coefficient of R2 = 0.94. The errors of the interfacial
tension γ and cAB are smaller than the symbol sizes and are not shown here.
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n l
I
c c

cs
ϕ =

(6)

where nc is the number of chains of the compatibilizer at each
interface, lc is their chain length, and Ics is the cross-sectional
interfacial area of the simulation box Lx × Ly = 30 × 30rc

2. We
first fixed the homopolymer chain length at 60 and the
repulsion parameter αAB at 50. The interfacial tensions γ and γ0
have been calculated from eq 3. The dependence of γ/γ0 on ϕ
is shown in Figure 4a. It decreases with an increase of the

compatibilizer concentration ϕ. This tendency is more
noticeable for short diblock copolymers a4b4 than for the
longer a12b12. We define the areal concentration ϕ where the
interfacial tension becomes zero for the first time (γ/γ0 = 0) as
saturation concentration ϕsat, indicated by colored arrows in
Figure 4a. Further addition of compatibilizers beyond the
saturation concentration ϕsat is an inefficient use of
compatibilizers. The apparent negative interfacial tension
values are a finite-size artifact and do not occur in
experiments.27 In this work, we focus on the system with the
interfacial tension γ ≥ 0 to understand how to efficiently use
compatibilizers. Figure 4a shows that γ/γ0 is related to both ϕ
and lc. In addition, γ/γ0 = 1 is given in the case of no
compatibilizers. We thus attempt to fit the effects of ϕ and lc
on γ/γ0 by a power law

K l1 K K

0
1 c

2 3
γ
γ

ϕ= −
(7)

where K1, K2, and K3 are assumed to be related to χ in some
analogy to eq 4 for uncompatibilized homopolymer blends. To
obtain the expressions of K1, K2, and K3, four systems with αAB
= 40, 60, 70, and 80 have been investigated. The plots of γ/γ0
of these systems versus ϕ are summarized in Supporting
Information Figures S3−S6. From these results, it appears that
K2 and K3 are not independent but follows K3 = K2 − 0.7,
which can be used to convert the term (ϕK2lc

K3) into (ϕlc
−0.7)K2

in eq 7. For convenience, we define a new parameter

l n l
Ic

0.7 c c
0.3

cs
ϕΩ = =− and eq 7 becomes a 2-parameter expression
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where K1 = −1.05 × 10−2 χAB + 0.327 and K2 = 5.43 × 10−2χAB
+ 1.275 are obtained from Figure S9 in the Supporting

Information. Then, the value of ( ) l
K

K

sat
1

1/

c
0.7

1

2

ϕ = is evaluated

based on the term K1(ϕsatlc
−0.7)K2 = 1 for the symmetric diblock

copolymers. Detailed discussions about ϕsat follow in the next
section, which treats diblock and regular multiblock copoly-
mers together. Here, we investigate the connection of the
saturated interfacial area per diblock copolymer ∑ with the
copolymer chain length lc. Govorun and Erukhimovich43

proposed a theoretical model of ∑ based on the SCF method
derived from Leibler’s model44 for the diblock copolymers
adsorbed on the flat interface of the homopolymer blend when
the homopolymer chain length is long enough
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where v is the monomer volume and is equal to 1/3 in this
work. We have calculated the simulated ∑sim, statistical
segment length s of copolymers, the predicted ∑pre based on
the calculated s and ∑pre* by assuming s = 1 from eq 9 in Table
2. We find that ∑pre agrees well with ∑sim with a slight

deviation (∼1.7 to 2.7%) for systems with the addition of a3b3
and a12b12 with αAB = 50. Moreover, the deviation between
∑pre* with s = 1 and ∑sim is ∼8.4 to 9.3%, which is also in a
reasonable range. This indicates that the predicted model (eq
9) can be used for the rough estimation of the saturated
number of the diblock copolymer in the homopolymer blend
without running simulation, which has also been discussed in
the previous work.45

Figure 4 shows that eq 8 holds for both systems with short
copolymers as compatibilizers (length lc = 6 and 24) for long
(lh = 60) homopolymers. The previous studies8,10 have shown,
however, that the ratio of compatibilizer and homopolymer
chain lengths lc/lh can also influence the value of γ/γ0. To
investigate the influence of lc/lh on the consistency between
simulation results and predicted results given from eq 8, we
have investigated systems of symmetric diblock compatibilizers
of three different overall chain lengths (lc = 12, 48, and 96) at
αAB = 50 with homopolymer chain lengths of 12 and 24, i.e.,
A12/B12 (Figure 5a) and A24/B24 (Figure 5b). We observe that
simulation results are in line with the predicted results from eq

Figure 4. Interfacial-tension reduction γ/γ0 as a function of (a) areal
concentration of diblock compatibilizer ϕ, (b) parameter Ω = ϕlc

−0.7

for systems with the addition of a3b3 and a12b12 with αAB = 50 to a
blend of A60 and B60.The fitting curve is given by eq 8 as a function of
Ω. Solid points represent systems at ϕ ≤ ϕsat and open points are
systems at ϕ > ϕsat.

Table 2. Statistical Segment Length s, the Saturated Area
per Copolymer Molecule from Simulation ∑sim, the
Predicted ∑pre based on the Obtained s and ∑pre* by
Assuming s = 1 from eq 9 for a3b3 and a12b12 Diblock
Copolymers with αAB = 50 to a Homopolymer Blend of A60
and B60

s ∑sim ∑pre ∑pre*

a3b3 1.11 0.75 0.77 0.82
a24b24 1.20 1.21 1.23 1.31
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8, as long as lc/lh < 1. If the compatibilizer is much longer than
the matrix polymers, there is a slight deviation. Moreover,
Berezkin and Kudryavtsev46 have investigated the interfacial
converge of the symmetric diblock copolymers in the
homopolymer blend with lc/lh = 2 by performing DPD
simulations. The saturated value of Ω calculated using their
data in the case of αAB = 50 is ∼2.08 to 2.21, which is lower
than the value of 2.29 in this work. This implies a slight
deviation between the simulated and predicted results from eq
8 when again lc/lh > 1. We, therefore, conclude that eq 8 is
quite general for describing the reduction of the interfacial
tension γ/γ0 of homopolymer blends by symmetric diblock
copolymer compatibilizers.
To understand the underlying relationship between the

interfacial tension and the parameters lc and nc of diblock
copolymers in eq 8, we first considered the bead density
distributions. The density distributions of the a-block beads of
compatibilizers a3b3 and a12b12 at areal bead concentrations ϕ
= 1.33 (Figure 6a) and ϕ = 5.33 (Figure 6b) are illustrated. It

is observed that a3b3 assembles closer to the interface than the
longer a12b12 at both concentrations. This results in a higher
interfacial tension of a3b3 than that of a12b12 at the same areal
bead concentration ϕ. On the other hand, a12b12 can penetrate
deeper into the homopolymer region. Hence, the better
penetrating ability of a12b12 (γ/γ0 = 0.87, Figure 6b) results in a
larger reduction of the interfacial tension γ/γ0 for the same
number of chains nc = 200 compared to a3b3 (γ/γ0 = 0.92,
Figure 6a).
These findings are corroborated by eq 8. Because K1 > 0 and

K2 > 0, the compatibilizer efficiency of the copolymer( )1
0

−γ
γ

at a constant areal bead concentration ϕ exhibits a relationship
as follows.

l1
0

c
0.7γ

γ
− ∼ − −

(10)

This means that symmetric diblock copolymers with shorter
chain lengths lc have a higher compatibilizer efficiency. By
contrast, when keeping the number of compatibilizer
molecules nc constant, the relationship becomes

l1
0

c
0.3γ

γ
− ∼ −

(11)

This indicates that the symmetric diblock copolymers with
longer chain length lc exhibit a higher compatibilizer efficiency.
We can summarize this as recognizing that an individual
diblock copolymer molecule has a larger compatibilization
effect, and depends on the length. When one compares the
compatibilization effect for a given, constant amount of
compatibilizer material, one finds, however, that many short
molecules perform better than a few longer ones. These
relationships are related to the efficiency of copolymers in
preventing the unlike contacts of the two matrix polymers at
the interface. Our observations are consistent with the previous
studies for symmetrical diblock copolymers in experimental
works47,48 and computational work with SCF theory,23−25

Monte Carlo,49 and DPD methods.8 However, we also note
that there exist practical maximum and minimum weights for
block copolymers. Nam et al.47 found that block copolymers
with a large molecular weight beyond the micelle weight (Mm)
tend to form micelles in the bulk of the homopolymers rather
than congregate at the interface for the polystyrene−
polyisoprene blend system. Creton and Krammer50 reported
that block copolymers below the entanglement weight (Me)
cause interface failure when high tensile stress is applied to the
polystyrene−poly(2-vinylpyridine) blends. Hence, the critical
molecular weights of Mm and Me should be kept in mind when
applying the above conclusion to realistic systems.

Regular Multiblock Copolymers as Compatibilizers.
We will next discuss the compatibilization efficiency of
multiblock copolymers for homopolymer blends. We confine
the analysis to regular multiblock copolymers, which have
alternating blocks of equal lengths of A and B types. They all
have a total of 24 beads. In addition to the diblocks a12b12
already discussed, we study the tetrablocks (a6b6)2, hexablocks
(a4b4)3, and octablocks (a3b3)4. They differ in the number of
blocks and block granularity. Thus, it is interesting to find out
whether a generalized form of eq 8 is predictive also for these
structures. To this end, the dependence of γ/γ0 on the block

length ( )l l
nm

c

b
= has been investigated, where lc = 24 is the

Figure 5. Reduction of interfacial tension between (a) A12/B12 blends
and (b) A24/B24 blends by the addition of diblock compatibilizers of
different sizes: a6b6, a24b24, a48b48. The black curve is the prediction of
eq 8 with Ω = ϕlc

−0.7. It should be mentioned that γ0 in (a) and (b) are
different.

Figure 6. Density distribution of a-block beads (ρa) of the
compatibilizers in systems with (a) a3b3 and a12b12 at an areal
concentration ϕ = 1.33; and (b) a3b3 and a12b12 at an areal
concentration ϕ = 5.33.
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chain length of the copolymer and nb is the number of blocks
in the copolymer molecule. Figure 7a shows γ/γ0 of all five
multiblock systems (including the symmetric diblock copoly-
mers a3b3 and a12b12) as a function of their areal concentration
ϕ for the strongly incompatible (αAB = 50) matrix polymers
A60 and B60 in equal amounts. We find that γ/γ0 of these
multiblock systems decreases with increasing concentration
until saturation is reached. Below the saturation concentration
ϕsat, γ/γ0 exhibits a similar decrease for multiblock copolymer
compatibilizers as for diblock copolymers. We note that the
multiblock copolymers reduce the interfacial tension more
efficiently than diblock copolymers a12b12 with the same chain
length below ϕsat (Figure 7a). To understand the high
compatibilization efficiency of the multiblock copolymers, we
have calculated the average distance (⟨z⟩ − z0) of each
copolymer bead from the average interface position z0 as a
function of their index in the chain. As shown in Figure 8c,d,
each bead of (a3b3)4 is close to the interface but attempts to
reside in the favorable homopolymer domain. As a result, any
two neighboring blocks with the same block length 3 behave
similarly to the short symmetric diblock a3b3.

Hence, multiblock copolymers with block length lm could
possess similar compatibilization efficiency as the symmetric
diblock copolymer with the same block length. With this
assumption, the equation of interfacial tension for symmetric
multiblock copolymers can be estimated from eq 8 as follows

K l K l

K

1 ( ) 1 (2 )

1

K K

K
0

1 c
0.7

1 m
0.7

1

2 2

2

γ
γ

ϕ ϕ= − = − [ ]

= − Ω

− −

(12)

We show both the results predicted based on eq 12 and the
results from DPD simulations in Figure 7b. Simulation results
are in line with the predicted results despite a small shift. The
shift is observed for multiblock copolymers (a3b3)4 and
symmetric diblock copolymers a3b3 with the same mean
block length lm. (a3b3)4 reduces the interfacial tension more
efficiently than a3b3 when ϕ ≤ ϕsat. It is noted that the length
of copolymers should not be much longer than the matrix
polymers as the discussions for eq 8 in the previous section.
We also observe that copolymers with shorter block lengths
(lower lm) reach saturation ϕsat earlier but the maximum

Figure 7. Interfacial tension reduction γ/γ0 by regular multiblock copolymers as a function of (a) multiblock’s areal concentration ϕ and (b) the
parameter Ω (see eq 12) for A60/B60 polymer blends with αAB = 50. The fitting curve is given by eq 12. Solid points represent systems at ϕ ≤ ϕsat
and open points are systems at ϕ > ϕsat. (c) Snapshot of the interface of an A60/B60 blend in the presence of (a3b3)4 at ϕ = 5.33 in a box with Lx ×
Ly × Lz = 30 × 30 × 60rc

3. (d) Average distances (⟨z⟩ − z0) of the individual beads of the (a3b3)4 molecule from the interface position z0 (dashed
line), averaged over all copolymer molecules and all timesteps.
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overall reduction of γ/γ0 is smaller compared to (a4b4)3 (higher
lm) in Figure 7a.
Moreover, we find that γ/γ0 of the diblock copolymers a3b3

and a12b12 is reduced to 0 at ϕsat, whereas γ/γ0 of (a3b3)4 and
(a4b4)3 with a high number of blocks saturate at a nonzero
plateau (Figure 7a). Does the saturation ϕsat follow the same
mechanism for symmetric diblock copolymers and multiblock
copolymers? To answer this question, we calculate the bead
density distributions along the direction perpendicular to the
interface (z-axis) of the diblock copolymer a3b3 (ϕsat ∼ 8) and
regular multiblock copolymer (a3b3)4 (ϕsat ∼ 6.67), which have
the same block unit a3b3, at two concentrations ϕ = 5.33 and 8
(Figure 8). First, we observe that the peak height of density

distributions of (a3b3)4 beads is higher than that of a3b3 at both
areal concentrations. This indicates that the (a3b3)4 copolymer
tends to more compactly locate at the interface, resulting in a
lower value of ϕsat. Second, the shapes of the bead distributions
of the a- and b-block beads of (a3b3)4 are not symmetric about
the interface for the higher concentration ϕ = 8 (Figure 8c).
Some beads of (a3b3)4 are forced into the energetically
unfavorable phases and are surrounded by unlike beads, as
indicated by arrows in Figure 8c. Similar behavior has also
been observed for the tetrablock copolymer27 and graft
copolymer30 at the saturation plateau. In contrast, a- and b-
block beads of a3b3 distribute equally near the interface by
deforming the interface at ϕ = 8, which can be confirmed from

Figure 8. Bead-density distribution of (a) multiblock copolymers (a3b3)4 and (b) diblock copolymers a3b3 normal to the xy-interface along the z-
axis at a low concentration ϕ = 5.33; dashed line: a-block beads; dotted line: b-block beads; solid line: total. Bead-density distribution of (c)
multiblock copolymers (a3b3)4 and (d) diblock copolymers a3b3 normal to the xy-interface along the z-axis at a low concentration ϕ = 8.0. Arrows
indicate that some beads of (a3b3)4 are forced into the energetically unfavorable phases and are surrounded by unlike beads. Inset are snapshots of
the copolymer layers in a box with Lx × Ly × Lz = 30 × 30 × 60rc

3. Purple and green represent the a- and b-block beads in the copolymer
compatibilizers, respectively.
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the snapshots (Figure 8d). We can further conclude that
multiblock copolymers tend to form a second layer but diblock

copolymers prefer to deform the interface when the first layer
is almost saturated. The mechanisms involved in the saturation

Figure 9. (a) Squared radius of gyration Rg
2 and its components: (b) Rg,xy

2 parallel to the interface and (c) Rg,z
2 perpendicular to the interface for

copolymers a3b3 and (a3b3)4 as a function of their areal concentration ϕ. (d) Squared radius of gyration of single blocks Rg,mb
2 and its components.

(e) Rg,mb‑xy
2 parallel to the interface and (f) Rg,mb‑z

2 perpendicular to the interface for copolymers a3b3 and (a3b3)4 as a function of ϕ. The relationship
between interfacial tension and the anisometry ratios (g) Rg,z

2 /Rg,xy
2 and (h) Rg,mb‑z

2 /Rg,mb‑xy
2 . Solid symbols represent systems at ϕ ≤ ϕsat and open

points are systems at ϕ > ϕsat.
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of compatibilization efficiency are, thus, different for symmetric
diblock copolymers and multiblock copolymers.
We further investigate the difference between diblock

copolymers and multiblock copolymers in their chain
conformations, described by the squared radius of gyration
Rg

2 as

R
n l

r r
1

( )
i

n

j

l

j
i i

g
2

c c 1 1
cm

2
c c∑ ∑⟨ ⟩ = −

= = (13)

where rj
i is the coordinate of the jth bead in the ith copolymer

molecule and rcm
i is the coordinate of the center of mass of the

ith copolymer. To monitor the stretching of the copolymer
chain along the x, y, and z directions, the three components of
the squared radius of gyration Rg,x

2 , Rg,y
2 , and Rg,z

2 are calculated.
Rg,xy
2 = (Rg,x

2 + Rg,y
2 )/2 is the average of components Rg,x

2 and Rg,y
2 ,

which reflects the expansion of the copolymer chains parallel to
the interface. The calculated results are summarized in Figure

9. We find that Rg,xy
2 of the a3b3 copolymer is lower than that of

the (a3b3)4 copolymer at all ϕ (Figure 9b), whereas the values
of Rg,z

2 of a3b3 and (a3b3)4 overlap with each other below ϕsat
(Figure 9c). Compared with the symmetric diblock copolymer
a3b3, the multiblock copolymer (a3b3)4 is more expanded
parallel to the surface. At the same time, they have comparable
chain extensions in the z-direction. Additionally, we note that
the initial decrease of Rg

2 of (a3b3)4 with ϕ is caused by the
decrease of Rg,xy

2 , as in Figure 9b, when ϕ ≤ ϕsat, implying that
the conformation of the multiblock copolymers is compressed
quickly in the lateral direction, as ϕ increases. It is still unclear
how the individual block unit of the (a3b3)4 copolymer behaves
as compared to the a3b3 copolymer. Therefore, we have
calculated the Rg,mb

2 to indicate the block conformation as

R
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r r
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g
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2
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Figure 10. Reduction of the interfacial tension γ/γ0 as a function of the a-to-b ratio λ for systems containing unsymmetric diblock copolymers of
chain length (a) lc = 6, (b) lc = 12, and (c) lc = 24 at an areal concentration of ϕ = 5.33 in an A60/B60 blend with αAB = 50. Dashed lines
representing γ/γ0 of symmetric diblock copolymers are a guide to the eye. Snapshots are shown of systems with (d) ab11 and (e) a6b6 at ϕ = 5.33 in
a box with Lx × Ly × Lz = 30 × 30 × 60rc

3. The beads of B60 are not shown for clarity.
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where rk
g is the coordination of gth bead in the kth copolymer

block and rcm
k is the coordinate of the center of mass of the kth

block of the copolymer chain. We observe that the mean block
conformations Rg,mb

2 , Rg,mb‑xy
2 , and Rg,mb‑z

2 exhibit similar trends
for the copolymers (a3b3)4 and a3b3 alike, as ϕ increases.
However, the single block of (a3b3)4 is stretched more parallel
to the interface (higher Rg,mb‑xy

2 ) and more compressed
perpendicular to it (lower Rg,mb‑z

2 ) compared to the a3b3
copolymer. This is a consequence of a central block in
(a3b3)4 being pulled laterally by its neighbors on the chain, and
consequently, being hindered to expand as much perpendic-
ularly as the free block in an a3b3. To better understand the
competition of stretching of copolymers parallel and
perpendicular to the interface, we have plotted the interfacial
tension versus the ratios Rg,z

2 /Rg,xy
2 and Rg,mb‑z

2 /Rg,mb‑xy
2 in Figure

10g,h, respectively. We observe that the interfacial tension
decreases with both anisometry measures Rg,z

2 /Rg,xy
2 and Rg,mb‑z

2 /
Rg,mb‑xy
2 for both diblock and multiblock copolymers as long as

ϕ ≤ ϕsat. Beyond ϕsat, however, the anisometry of a3b3
copolymers tends to decreases, whereas that of the (a3b3)4
copolymers still increases, albeit at constant interfacial tension.
This implies again the different behaviors of the symmetric
diblock copolymers and regular multiblock copolymers after
reaching saturation. Moreover, it is noted that there is no
universal scaling relationship between the interfacial tension
and chain conformations as well as the unlike contacts for
different copolymer architectures. This can be further
confirmed by the unfavorable contact between A and B
homopolymers near the interface. In the compatibilized
systems, we define the pair distribution functions gAB(r) as
the probability of finding a B-type homopolymer bead at a
distance r away from an A-type homopolymer bead in the
region between z0 − 3 and z0 + 3. It is integrated from 0 to rc
to give the number of unlike neighbors cAB. We find that cAB
decreases with the areal concentration, but there is also no
simple universal relationship between interfacial tension and
the coordination number for compatibilized systems with
different copolymers (Supporting Information Figure S10).

Unsymmetric Diblock Copolymers as Compatibil-
izers. Until now, the discussions were focused on copolymers
with equal numbers of a-block and b-block beads (the a-to-b
ratio λ = 1). In practice, however, it is inevitable to also
produce unsymmetric diblock copolymers with λ ≠ 1. Thus, to
gain insight into the influence of λ on the interfacial properties,
we have investigated three unsymmetric diblock copolymers of
overall chain lengths lc = 6, 12, and 24. We denote a chain with
one a-block bead and 23 b-block beads, for example as ab23, in
the same notation as before. Figure 10a shows the variation of
γ/γ0 with λ for all three chain lengths at ϕ = 5.33. It is first
observed that ab5, ab11, and ab23, which contain only a single a-
block bead, have the highest γ/γ0 values. This observation can
be understood by considering the partitioning of the
copolymer into homopolymer regions. Since the b beads of
the copolymer prefer their energetically favorable B-phase
region, some copolymer chains with only a small number of a-
block beads will be dragged into the B homopolymer phase
(Figure 10d). Such a chain is not active in the reduction of
interfacial tension. Hence, it can be easily understood that
diblock copolymers with low λ perform worse in compatibi-
lization than more symmetric (high λ) diblock copolymers.
Therefore, for copolymers of all three chain lengths, γ/γ0
decreases with increasing λ until it reaches the optimum value
of symmetric diblock copolymers. This decrease, however,
becomes much weaker as the diblock copolymers become
longer. For diblock copolymers with lc = 24, the unsymmetric
diblock copolymers exhibit almost the same compatibilization
efficiency as the symmetric diblock copolymers, independent
of their block length ratio λ (Figure 10c). For diblock
copolymers with lc = 12, we find that compatibilization
becomes independent of the precise a-to-b ratio for 3

9
λ > in

Figure 10b. We may therefore conclude that, for the same
performance, one has more leeway in the block-length ratio
when the polymers are longer.
To shed some light on the details of this behavior, we report

γ/γ0 of the systems with compatibilizers of lc = 12 and 24 also
at higher concentrations ϕ = 8 and ϕ = 10.67, as in Figures 11

Figure 11. (a) Reduction of the interfacial tension γ/γ0 as a function of the a-to-b monomer ratio λ for systems containing diblock copolymers with
a total of 12 monomers in A60/B60 polymer blends with αAB = 50 at areal concentrations of ϕ = 8 and ϕ = 10.67. (b) and (c) Chain models of a3b9
and a6b6, respectively. The regions of initial decay and plateau are highlighted in beige and light-blue, respectively.
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and 12. In all cases, γ/γ0 initially decreases quickly with λ and
then reaches a plateau. For copolymers of lc = 12, the plateau
begins at around 3/9, for lc = 24 at 3

21
λ = . In both cases, the

length of the shorter block is equal to 3, i.e., a3b9 and a3b21.
This leads to the idea that the length of the shorter block is the
decisive factor for the compatibilization efficiency of
unsymmetric diblock copolymers. Long unsymmetric diblock
copolymers exhibit similar compatibilization efficiency as the
symmetric diblock copolymers, once the shortest block has
more than 3 monomers. If this condition is met, eq 8 can also
be used to estimate the compatibilization efficiency of
unsymmetric diblock copolymers. This number 3 is presum-
ably specific to the highly incompatible system treated by the
DPD of this work. However, we are led to believe that a lower
critical block length exists, which should also be true for other
systems.

■ CONCLUSIONS
In summary, we have compared the compatibilization
efficiency of symmetric diblock copolymers, regular multiblock
copolymers, and unsymmetric diblock copolymers in immis-
cible polymer blends. For symmetric diblock copolymers, a
power-law fit quantifies the variation of interfacial tension with
the number of compatibilizer chains, the chain length, and the
DPD interaction parameters. In good agreement with the
results from experiments47,48 and simulations,8,49 the power-
law fitting equation indicates that the interfacial tension
decreases and that the single long copolymers have better
compatibilization efficiency than short homopolymers. The
origin of the power-law function (eq 8) can be explained by
considering the compensation effect of the chain length and
number of chains of copolymers on the compatibilizer
efficiency. We then extended eqs 8−12 to indicate all regular
copolymers by considering multiblock copolymers as a
combination of several chains of symmetric diblock copoly-
mers at the interface. We observed that regular multiblock
copolymers can improve the interfacial tension more effectively
with an adequate mean block length, as compared to other

compatibilizers if their concentration per interfacial area is kept
constant.
We have evaluated the relationships between interfacial

tension and several parameters, i.e., the chain conformation of
copolymers and the number of unlike contacts. We find that
block copolymers, which expand stronger parallel to the
interface, also exhibit better compatibilization. The primary
molecular concept to explain compatibilization is that the
number of unlike contacts between A and B species at the
interface is reduced by the addition of compatibilizers. These
relationships are also observed for other compatibilizers, such
as the graft copolymers6,30 and Janus nanorods.19 Our present
study is restricted to linear block copolymers with DPD
methods. However, we believe that similar quantitative scaling
is also applicable for other compatibilizers with different
molecular architectures.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.macromol.1c01076.

Interfacial tension and structure relaxation process of
systems; density profiles of uncompatibilized blend;
simulated interfacial tension results and predicted
interfacial tension results; interfacial tension as a
function of length ratio of uncompatibilized homopol-
ymer blend; interfacial tension as a function of the areal
concentration of diblock compatibilizer for systems with
different repulsion parameters; two fitting parameters
versus Flory−Huggins parameter; correlation between
the coordination number and the concentration of
compatibilized systems (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Florian Müller-Plathe − Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische
Universität Darmstadt, 64287 Darmstadt, Germany;

Figure 12. (a) Reduction of the interfacial tension γ/γ0 as a function of the a-to-b monomer ratio λ for systems containing diblock copolymers with
a total of 24 monomers in A60/B60 polymer blends with αAB = 50 at areal concentrations of ϕ = 8 and ϕ = 10.67. (b) and (c) Chain models of a3b21
and a12b12, respectively. The regions of initial decay and plateau are highlighted in beige and light-blue, respectively.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c01076
Macromolecules 2021, 54, 9551−9564

9562

37



orcid.org/0000-0002-9111-7786; Email: f.mueller-
plathe@theo.chemie.tu-darmstadt.de

Authors
Tianhang Zhou − Eduard-Zintl-Institut für Anorganische und
Physikalische Chemie, Technische Universität Darmstadt,
64287 Darmstadt, Germany; orcid.org/0000-0002-
4007-9935

Jurek Schneider − Eduard-Zintl-Institut für Anorganische und
Physikalische Chemie, Technische Universität Darmstadt,
64287 Darmstadt, Germany; orcid.org/0000-0002-
0286-1678

Zhenghao Wu − Eduard-Zintl-Institut für Anorganische und
Physikalische Chemie, Technische Universität Darmstadt,
64287 Darmstadt, Germany; orcid.org/0000-0003-
2862-4432

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.macromol.1c01076

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to thank Covestro AG for funding this
work. They also thank Dr. José A. Gámez and Dr. Mandy
Gieler for helpful discussions on this research.

■ REFERENCES
(1) Cowie, J. M. G. Polymer Alloys and Blends: Thermodynamics
and Rheology. Polym. Int. 1991, 25, 130.
(2) Ougizawa, T.; Inoue, T. UCST and LCST Behavior in Polymer
Blends and Its Thermodynamic Interpretation. Polym. J. 1986, 18,
521−527.
(3) Utracki, L. A. Compatibilization of Polymer Blends. Can. J.
Chem. Eng. 2002, 80, 1008−1016.
(4) Macosko, C. W.; Guégan, P.; Khandpur, A. K.; Nakayama, A.;
Marechal, P.; Inoue, T. Compatibilizers for Melt Blending: Premade
Block Copolymers. Macromolecules 1996, 29, 5590−5598.
(5) Sundararaj, U.; Macosko, C. W. Drop Breakup and Coalescence
in Polymer Blends: The Effects of Concentration and Compatibiliza-
tion. Macromolecules 1995, 28, 2647−2657.
(6) Ryu, J. H.; Kim, Y.; Lee, W. B. Inhomogeneity of block
copolymers at the interface of an immiscible polymer blend. Phys. Rev.
E 2018, 97, 1−7.
(7) Ruzette, A.-V.; Leibler, L. Block copolymers in tomorrow’s
plastics. Nat. Mater. 2005, 4, 19−31.
(8) Qian, H.-J.; Lu, Z. Y.; Chen, L. J.; Li, Z. S.; Sun, C. C. Dissipative
particle dynamics study on the interfaces in incompatible AB
homopolymer blends and with their block copolymers. J. Chem.
Phys. 2005, 122, No. 184907.
(9) Eastwood, E. A.; Dadmun, M. D. Multiblock Copolymers in the
Compatibilization of Polystyrene and Poly(methyl methacrylate)
Blends: Role of Polymer Architecture. Macromolecules 2002, 35,
5069−5077.
(10) Sun, D.; Guo, H. Monte carlo studies on the interfacial
properties and interfacial structures of ternary symmetric blends with
gradient copolymers. J. Phys. Chem. B 2012, 116, 9512−9522.
(11) Gersappe, D.; Balazs, A. C. Random copolymers as effective
compatibilizing agents. Phys. Rev. E 1995, 52, 5061−5064.
(12) Dai, C.-A.; Dair, B. J.; Dai, K. H.; Ober, C. K.; Kramer, E. J.;
Hui, C.-Y.; Jelinski, L. W. Reinforcement of Polymer Interfaces with
Random Copolymers. Phys. Rev. Lett. 1994, 73, 2472−2475.
(13) Mah, A. H.; Laws, T.; Li, W.; Mei, H.; Brown, C. C.; Ievlev, A.;
Kumar, R.; Verduzco, R.; Stein, G. E. Entropic and Enthalpic Effects
in Thin Film Blends of Homopolymers and Bottlebrush Polymers.
Macromolecules 2019, 52, 1526−1535.

(14) Dong, W.; He, M.; Wang, H.; Ren, F.; Zhang, J.; Zhao, X.; Li,
Y. PLLA/ABS Blends Compatibilized by Reactive Comb Polymers:
Double Tg Depression and Significantly Improved Toughness. ACS
Sustainble Chem. Eng. 2015, 3, 2542−2550.
(15) Dong, W.; Wang, H.; He, M.; Ren, F.; Wu, T.; Zheng, Q.; Li, Y.
Synthesis of Reactive Comb Polymers and Their Applications as a
Highly Efficient Compatibilizer in Immiscible Polymer Blends. Ind.
Eng. Chem. Res. 2015, 54, 2081−2089.
(16) Gersappe, D.; Harm, P. K.; Irvine, D.; Balazs, A. C. Contrasting
the compatibilizing activity of comb and linear copolymers.
Macromolecules 1994, 27, 720−724.
(17) Li, Q.; Wang, L.; Lin, J.; Zhang, L. Distinctive phase separation
dynamics of polymer blends: Roles of Janus nanoparticles. Phys.
Chem. Chem. Phys. 2019, 21, 2651−2658.
(18) Zhou, Y.; Huang, M.; Lu, T.; Guo, H. Nanorods with Different
Surface Properties in Directing the Compatibilization Behavior and
the Morphological Transition of Immiscible Polymer Blends in Both
Shear and Shear-Free Conditions. Macromolecules 2018, 51, 3135−
3148.
(19) Zhou, C.; Luo, S. K.; Sun, Y.; Zhou, Y.; Qian, W. Dissipative
particle dynamics studies on the interfacial tension of A/B
homopolymer blends and the effect of Janus nanorods. J. Appl.
Polym. Sci. 2016, 133, 44098.
(20) Mural, P. K. S.; Rana, M. S.; Madras, G.; Bose, S. PE/PEO
blends compatibilized by PE brush immobilized on MWNTs:
improved interfacial and structural properties. RSC Adv. 2014, 4,
16250−16259.
(21) Estridge, C. E.; Jayaraman, A. Assembly of diblock copolymer
functionalized spherical nanoparticles as a function of copolymer
composition. J. Chem. Phys. 2014, 140, No. 144905.
(22) Walther, A.; Matussek, K.; Müller, A. H. E. Engineering
Nanostructured Polymer Blends with Controlled Nanoparticle
Location using Janus Particles. ACS Nano 2008, 2, 1167−1178.
(23) Broseta, D.; Fredrickson, G. H.; Helfand, E.; Leibler, L.
Molecular weight and polydispersity effects at polymer-polymer
interfaces. Macromolecules 1990, 23, 132−139.
(24) Helfand, E.; Tagami, Y. Theory of the Interface between
Immiscible Polymers. II. J. Chem. Phys. 1972, 56, 3592−3601.
(25) Helfand, E.; Tagami, Y. Theory of the interface between
immiscible polymers. J. Polym. Sci., Part B: Polym. Lett. 1971, 9, 741−
746.
(26) Noolandi, J.; Hong, K. M. Interfacial Properties of Immiscible
Homopolymer Blends in the Presence of Block Copolymers.
Macromolecules 1982, 15, 482−492.
(27) Meenakshisundaram, V.; Hung, J. H.; Patra, T. K.; Simmons, D.
S. Designing Sequence-Specific Copolymer Compatibilizers Using a
Molecular-Dynamics-Simulation-Based Genetic Algorithm. Macro-
molecules 2017, 50, 1155−1166.
(28) Wang, J.; Song, J.; Lu, Y.; Ruan, Y.; An, L. Phase behavior and
interfacial properties of diblock copolymer-homopolymer ternary
mixtures: Influence of volume fraction of copolymers and interaction
energy. Chin. J. Polym. Sci. 2017, 35, 874−886.
(29) Groot, R. D.; Warren, P. B. Dissipative particle dynamics:
Bridging the gap between atomistic and mesoscopic simulation. J.
Chem. Phys. 1997, 107, 4423−4435.
(30) Wang, J.; Li, Z.; Gu, X.; Feng, L.; Zhang, C.; Hu, G. A
dissipative particle dynamics study on the compatibilizing process of
immiscible polymer blends with graft copolymers. Polymer 2012, 53,
4448−4454.
(31) Luo, Z.; Jiang, J. Molecular dynamics and dissipative particle
dynamics simulations for the miscibility of poly(ethylene oxide)/
poly(vinyl chloride) blends. Polymer 2010, 51, 291−299.
(32) Maiti, A.; McGrother, S. Bead-bead interaction parameters in
dissipative particle dynamics: Relation to bead-size, solubility
parameter, and surface tension. J. Chem. Phys. 2004, 120, 1594−1601.
(33) Ju, S.-P.; Wang, Y.-C.; Huang, G.-J.; Chang, J.-W. Miscibility of
graphene and poly(methyl methacrylate) (PMMA): molecular
dynamics and dissipative particle dynamics simulations. RSC Adv.
2013, 3, 8298−8307.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c01076
Macromolecules 2021, 54, 9551−9564

9563

38



(34) Lee, W.-J.; Ju, S. P.; Wang, Y. C.; Chang, J. G. Modeling of
polyethylene and poly (L-lactide) polymer blends and diblock
copolymer: Chain length and volume fraction effects on structural
arrangement. J. Chem. Phys. 2007, 127, No. 064902.
(35) Alasiri, H.; Chapman, W. G. Dissipative particle dynamics
(DPD) study of the interfacial tension for alkane/water systems by
using COSMO-RS to calculate interaction parameters. J. Mol. Liq.
2017, 246, 131−139.
(36) Groot, R. D.; Madden, T. J. Dynamic simulation of diblock
copolymer microphase separation. J. Chem. Phys. 1998, 108, 8713−
8724.
(37) Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T. Interfacial
tension of immiscible polymer blends: temperature and molecular
weight dependence. Macromolecules 1988, 21, 2980−2987.
(38) Wu, D. T.; Fredrickson, G. H.; Carton, J. P.; Ajdari, A.; Leibler,
L. Distribution of chain ends at the surface of a polymer melt:
Compensation effects and surface tension. J. Polym. Sci., Part B: Polym.
Phys. 1995, 33, 2373−2389.
(39) Fredrickson, G. H.; Donley, J. P. Influence of broken
conformational symmetry on the surface enrichment of polymer
blends. J. Chem. Phys. 1992, 97, 8941−8946.
(40) Ermoshkin, A. V.; Semenov, A. N. Interfacial tension in binary
polymer mixtures. Macromolecules 1996, 29, 6294−6300.
(41) Tang, H.; Freed, K. F. Free energy functional expansion for
inhomogeneous polymer blends. J. Chem. Phys. 1991, 94, 1572−1583.
(42) Jacobs, T. D.; Junge, T.; Pastewka, L. Quantitative character-
ization of surface topography using spectral analysis. Surf. Topogr.
Metrol. Prop. 2017, 5, No. 013001.
(43) Govorun, E. N.; Erukhimovich, I. Emulsion stabilization by
diblock copolymers: Droplet curvature effect. Langmuir 1999, 15,
8392−8398.
(44) Leibler, L. Emulsifying effects of block copolymers in
incompatible polymer blends. Makromol. Chem. Macromol. Symp.
1988, 16, 1−17.
(45) Erukhimovich, I.; Govorun, E. N.; Litmanovich, A. D.
Stabilization of polymer blend structure by diblock copolymers.
Macromol. Theory Simul. 1998, 7, 233−239.
(46) Berezkin, A. V.; Kudryavtsev, Y. V. Simulation of end-coupling
reactions at a polymer-polymer interface: The mechanism of
interfacial roughness development. Macromolecules 2011, 44, 112−
121.
(47) Nam, K. H.; Cho, J. C.; Jo, W. H. Temperature and Molecular
Weight Effect of Styrene-Isoprene Diblock Copolymers on the
Interfacial Tension between Polystyrene and Polyisoprene. Polym. J.
1995, 27, 904−910.
(48) Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T. Compatibiliz-
ing Effect of Block Copolymers Added to the Polymer/Polymer
Interface. Macromolecules 1989, 22, 1449−1453.
(49) Werner, A.; Schmid, F.; Binder, K.; Müller, M. Diblock
copolymers at a homopolymer - Homopolymer interface: A Monte
Carlo simulation. Macromolecules 1996, 29, 8241−8248.
(50) Creton, C.; Kramer, E. J.; Hadziioannou, G. Critical molecular
weight for block copolymer reinforcement of interfaces in a two-phase
polymer blend. Macromolecules 1991, 24, 1846−1853.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.1c01076
Macromolecules 2021, 54, 9551−9564

9564

39



Supporting Information: The

compatibilization efficiency of additives in

homopolymer blends: A

dissipative-particle-dynamics study

Tianhang Zhou, Jurek Schneider, Zhenghao Wu, and Florian Müller-Plathe∗

Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität

Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany

E-mail: f.mueller-plathe@theo.chemie.tu-darmstadt.de

1

40



Figure S1: (a) Interfacial tension relaxation process for A6/B6, A60/B60, and A120/B120

uncompatibilized polymer blends and compatibilized A60/B60 blend with a12b12 and a3b3

copolymers (around φsat) with αAB = 50. (b) Structural relaxation process of ensemble-
averaged mean-square radius R2

g for the a12b12, a3b3, and (a3b3)4 copolymers in A60/B60

polymer blends around φsat with αAB = 50.
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Figure S2: Beads density distributions along z axis of uncompatibilized blend of A60/B60

(chain length of A and B equals to 60) with αAB = 30, 40 and 50. (b) and (c) show the
enlarged density distribution of the homopolymer A and B beads at the left interface and
right interface, respectively.

Figure S3: Simulated interfacial tension results from DPD simulations and predicted inter-
facial tension results versus 1/lA based on Eqs.4 and 5 with K=π2

12
(Broseta et al.)1 and

2 ln 2 (Ermoshkin and Semenov)2 for A/B uncompatibilized homopolymer blends (lA = lB,
fA = fB). The statistical segment length s = 1. The errors of interfacial tension γ are
smaller than the symbols sizes and not shown here.
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Figure S4: (a) Interfacial tension for αAB = 30, 40 and 50, fA = fB = 0.5 calculated
from Eq.4 versus the ratio of chain length lA/lB with chain length lB = 10, 20, 30 and 60.
(b) Interfacial tension for αAB = 30, 40 and 50, lA = lB = 60 versus the ratio of volume
concentration fA/fB with fA + fB = 1.

Figure S5: γ/γ0 as a function of (a) areal concentration of diblock compatibilizer φ (b)
parameter Ω for systems adding a4b4 and a12b12 with αAB = 50 to a blend of A60 and
B60.The fitting curve is given by the Eq.8 as a function of Ω. Only systems at φ ≤ φsat are
shown.
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Figure S6: γ/γ0 as a function of (a) areal concentration of diblock compatibilizer φ (b)
parameter Ω for systems adding a4b4 and a12b12 with αAB = 60 to a blend of A60 and
B60.The fitting curve is given by the Eq.8 as a function of Ω. Only systems at φ ≤ φsat are
shown.

Figure S7: γ/γ0 as a function of (a) areal concentration of diblock compatibilizer φ (b)
parameter Ω for systems adding a4b4 and a12b12 with αAB = 70 to a blend of A60 and
B60.The fitting curve is given by the Eq.8 as a function of Ω. Only systems at φ ≤ φsat are
shown.
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Figure S8: γ/γ0 as a function of (a) areal concentration of diblock compatibilizer φ (b)
parameter Ω for systems adding a4b4 and a12b12 with αAB = 80 to a blend of A60 and
B60.The fitting curve is given by the Eq.8 as a function of Ω. Only systems at φ ≤ φsat are
shown.

(a) (b)

Figure S9: Relationship for parameter (a) K1 with χAB as K1 = −1.05 × 10−2χAB + 0.327,
R2 = 0.98 and (b) K2 with χAB as K2 = 5.43 × 10−2χAB + 1.275, R2 = 0.96. χAB is the
Flory-Huggins parameter between different species A and B.
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Figure S10: Correlation of the the coordination number cAB and φ of compatibilized systems
with a3b3 and (a3b3)4 copolymers. cAB is defined as the integral over gAB(r) from 0 to rc as
cAB =

∫ rc
0

4πr2ρgAB(r) dr. Solid points represent systems at φ ≤ φsat and open points are
systems at φ > φsat.
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3.2 Optimization of Compatibilization Efficiency of Graft Copolymers in
Immiscible Homopolymer Blends

The Compatibilization Efficiency of Graft Copolymers in Incompatible Polymer Blends: Dissipative Particle
Dynamics Simulations Combined with Machine Learning.
Under review by Macromolecules on 21/04/2022
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3.3 Optimization of Disinfection Efficiency on Coronavirus Model Membranes

Reproduced with permission from Zhou et al. [J. Chem. Theory Comput. 2022, 18, 4, 2597–2615]
Copyright 2022 American Chemical Society.
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ABSTRACT: We have developed dissipative particle dynamics models for
pure dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine
(DOPC), and dimyristoylphosphatidylcholine (DMPC) as well as their
binary and ternary mixed membranes, as coronavirus model membranes. The
stabilities of pure and mixed membranes, surrounded by aqueous solutions
containing up to 70 mol % ethanol (alcoholic disinfectants), have been
investigated at room temperature. We found that aqueous solutions
containing 5−10 mol % ethanol already have a significant weakening effect
on the pure and mixed membranes. The magnitude of the effect depends on
the membrane composition and the ethanol concentration. Ethanol
permeabilizes the membrane, causing its lateral swelling and thickness
shrinking and reducing the orientational order of the hydrocarbon tail of the
bilayer. The free energy barrier for the permeation of ethanol in the bilayers
is considerably reduced by the ethanol uptake. The rupture-critical ethanol concentrations causing the membrane failure are 20.7,
27.5, and 31.7 mol % in the aqueous phase surrounding pure DMPC, DOPC, and DPPC membranes, respectively. Characterizing
the failure of lipid membranes by a machine-learning neural network framework, we found that all mixed binary and/or ternary
membranes disrupt when immersed in an aqueous solution containing a rupture-critical ethanol concentration, ranging from 20.7 to
31.7 mol %, depending on the composition of the membrane; the DPPC-rich membranes are more intact, while the DMPC-rich
membranes are least intact. Due to the tight packing of long, saturated hydrocarbon tails in DPPC, increasing the DPPC content of
the mixed membrane increases its stability against the disinfectant. At high DPPC concentrations, where the DOPC and DMPC
molecules are confined between the DPPC lipids, the ordered hydrocarbon tails of DPPC also induce order in the DOPC and
DMPC molecules and, hence, stabilize the membrane more. Our simulations on pure and mixed membranes of a diversity of
compositions reveal that a maximum ethanol concentration of 32 mol % (55 wt %) in the alcohol-based disinfectants is enough to
disintegrate any membrane composed of these three lipids.

■ INTRODUCTION
The infectious respiratory coronavirus disease 2019 (COVID-
19) caused by the 2019 novel coronavirus (2019-nCoV), also
known as SARS-CoV-2 and HcoV-19, has spread throughout
the whole world.1 The outer layer of the coronavirus envelope is
composed of the membrane (M), spike (S), and envelope (E)
proteins and the host-derived lipid bilayer, which gives the virus
its distinctive shape and structure and protects its RNA from the
surrounding environment.2−5

Recently, there has been rapid progress in the development of
safe and effective vaccines against the coronavirus and
development of potential therapies for SARS-CoV-2.6−9

However, still a considerable fraction of the world’s population
is unvaccinated, the new variants of the virus may spread, and
there is no established treatment for SARS-CoV-2 infection.
Washing one’s hands with soap and water or hand sanitizer that
contains at least 60−70 wt % alcohol (usually ethanol, n-
propanol, isopropyl alcohol, or a mixture of them) is still one
important way to prevent the spread of COVID-19 and other
corona viruses.10,11 Since the viral membrane acts as a barrier to

the penetration of small molecules through it, the deactivation of
the virus is primarily controlled by its membrane permeability to
alcohol. By using different techniques, investigators have studied
the alcohol-induced changes on various lipid bilayer sys-
tems.11−14 Concentrated alcohol solutions increase the area
per lipid molecule, accompanied by a decrease in the bilayer
thickness along with disordering and enhanced interdigitation of
lipid acyl chains.15,16 These changes cause a loss of membrane
integrity and make it permeable to the passage of alcohol
molecules, water, and other species, a process that eventually
leads to membrane rupture.17 In a recent study, we have
reported that the stability of the pure dipalmitoylphosphati-
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dylcholine (DPPC) membrane against alcoholic disinfectants
strongly depends on the phase of the membrane.15 We reliably
observed the disintegration of the DPPC membrane in its liquid
crystalline phase (323 K), at ethanol concentrations ≈15 mol %
in the aqueous phase surrounding the membrane, while its gel
phase (298 K) remained intact even at higher ethanol
concentrations (up to about 20 mol % examined).
Although the exact composition of the viral membrane is

unknown and presumably changes between individual virus
particles, we know at least that it contains a mixture of lipids that
mechanically anchor the S- and E-proteins. Among all lipid
types, phosphatidylcholines (PCs) are the most important lipid
components of living organisms. Specifically, they are the main
components of the endoplasmic reticulum Golgi intermediate
compartment (ERGIC), where coronaviruses are replicated and
assembled.18,19 Additionally, the lung, the primary organ
affected by the coronavirus, mostly uses dipalmitoylphosphati-
dylcholine (DPPC), i.e., one of the PCs, as the abundant
constituent of its surfactants.20 As well as PCs (∼50%), the
ERGIC of a mammalian cell contains smaller amounts of (∼15−
25%) phosphatidylethanolamines (PEs) and (∼10−15%)
phosphatidylinositols (PIs).21 The PCs-, PEs-, and PIs-
molecules have different head groups but the same hydrophobic
tails,21,22 which consist of saturated and/or unsaturated acyl
chains of various lengths. Previous experimental23−26 and
simulation15 reports show that the phase of the membrane,
which in turn depends on the hydrocarbon tail length and its
degree of saturation, is the main factor determining its stability.
Our results in this work also confirm such a trend for the
stabilities of membranes made up of PCs as well of PC mixtures
(see the section Membrane Failure). We have compared
experimental data27 on the phases (stabilities) of PC-, PE-,
and PI-membranes, of different hydrocarbon tail lengths with a
different number of unsaturated bonds, in Supporting
Information Figure S1. Based on these data, we would argue
that the lipid headgroup does not have a dominant role in the
stability of the membrane. Besides, our previous atomistic
simulation results show that the largest free-energy barrier for
the passage of small molecules is observed very close to the
center of the membrane at both low and high ethanol
concentrations.15 Its height depends on the membrane thick-
ness, i.e., the gap that a penetrant needs to cross.15 It has been
found experimentally28 that the thickness of the membrane
depends nearly linearly on the length of hydrocarbon tail. In
contrast, the type of the headgroup does not have a noticeable
influence on the membrane thickness, which is related to the
stability. The headgroup is found to act only as a secondary
barrier to membrane penetration, at low ethanol concentrations.
Thus, the type of headgroup determines how the first few
ethanol molecules partition into the membrane and their
accumulation around the headgroup region. At high ethanol
concentrations, penetration to the tail region causes a substantial
lateral swelling of the membrane, preceding its rupture.
Therefore, it is the hydrocarbon tails and their composition,
which ultimately controls the membrane stability. This argu-
ment is also in line with previous simulations29,30 of the stability
of membranes of pure palmitoyloleoylphosphatidylcholine
(POPC, PCs) and phosphatidylethanolamine (POPE, PEs) at
high ethanol concentrations. Due to the large number of lipid
constituents of ERGIC membranes (whose composition
resembles that of the viral coating membrane, since the viral
genome does not provide for lipid manufacture), we are forced
to only simulate a subset. However, the arguments above allow

us to reasonably justify simulating mixed-PC membranes as
coronavirus model membranes, to investigate their stability
against disinfectants. Hence, we selected three PCs with
different classes of hydrocarbon chains, namely dipalmitoyl-
phosphatidylcholine (DPPC, consisting of long saturated
hydrocarbon chains), dioleoylphosphatidylcholine (DOPC,
consisting of long unsaturated hydrocarbon chains), and
dimyristoylphosphatidylcholine (DMPC, consisting of short
saturated hydrocarbon chains) as the components of mixed lipid
bilayers. Besides, the coronavirus membrane anchors S-proteins,
which fuse with the host cell membrane and facilitate virus
entrance to the cell, as well as E- and M-proteins. The presence
of these proteins in the structure of the model membrane could
possibly influence its stability against damage by ethanol.
However, our recent atomistic study on the effect of the E-
protein on the stability of a mixed lipid bilayer, palmitoyl-
sphingomyelin (PSM) and POPC, immersed in ethanol−water
mixtures, has shown that the E-protein has a negligible effect on
the partitioning of water and ethanol from the aqueous phase to
the lipid phase of themembrane.31 In other words, the E-peptide
has no appreciable effect on ethanol-induced viral membrane
failure in the range of alcohol concentrations studied. Therefore,
in this study, we focus our attention on the stability of protein-
free DPPC-DMPC-DOPC mixed membranes, as models of the
coronavirus membrane, immersed in water−ethanol solutions as
disinfectants. It is worth mentioning that the stabilities of pure
and mixed membranes, immersed in pure water, have been
studied by several investigators.32,33 However, reports on the
stability of mixed membranes, immersed in aqueous solutions
containing alcohol, are scarce. This is particularly true at high
alcohol concentrations, i.e., common concentrations in alcohol-
based disinfectants, in which membrane disintegration becomes
an issue of importance.
Atomistic simulations for the compositionally complex lipid

mixtures are computationally expensive. Here, we employed a
relatively affordable computer simulation method, dissipative
particle dynamics (DPD), which, if carefully parametrized, can
provide meaningful results. The DPD interaction parameters
were chosen from the well developed four-to-one coarse-grained
(CG) mapping scheme of the MARTINI-like models,34,35 in
which four heavy atoms and their attached hydrogen atoms were
mapped to one DPD bead. To validate our DPD models, we
compared the structural and thermodynamic properties of lipid
membranes of different compositions, surrounded by purewater,
with those available from simulation and experiment. For the
ethanol-containing systems, we further examined these proper-
ties to capture the effect of ethanol on the membrane stability. In
addition to the elucidation of the mechanism of a disinfectant’s
influence on virus deactivation, we believe that the present study
provides insight into numerous other applications such as drug
delivery, anesthesia, and cryopreservation, where high concen-
trations of alcohols are used to modulate functions of biological
membranes. Comparing the DPD results with our previous
atomistic studies of coronavirus model membranes, we also
assess the predictive ability of DPD as a CGmodel, allowing the
achievement of longer time and length scales, which are
inaccessible by atomistic simulations.

■ SIMULATION DETAILS
Model. The DPD method has been well described in the

literature.36 For its details, we refer the reader to excellent
reviews in the literature.34,37 Here, we restrict ourselves to a brief
explanation of the method. The nonbonded conservative force
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between two DPD beads i and j, Fij
C = αij(1 − rij/rc)eij(rij < rc),

separated by a distance rij (eij is the corresponding unit vector), is
purely repulsive. The repulsion parameter αij controls the
magnitude of repulsion. The cutoff distance (rc), bead mass (m),
and thermal energy per one bead (kBT) are chosen as reduced
units of length, mass, and energy in DPD simulation. The
reduced time unit is defined accordingly as =t r m k T/cDPD B .
In this work, we have used the DPDmodel based on the four-

to-one mapping scheme of the MARTINI model.34,35 For water
at a reduced density ρ = 3, we map four water molecules into a
single DPD bead. The volume of four water molecules is 0.12
nm3. As a cube of volume rc

3 contains 3 water beads, the cutoff
distance corresponds to 0.71 nm. At 298 K, each ethanol
molecule has a volume of 0.097 nm3; therefore, the volume of
1.24 ethanol molecules (modeled as a single DPD bead)
corresponds to the volume of four water molecules. For the lipid
molecules, the volume of the DPD beads (see Figure 1)
corresponds to the volume of a single water bead. Setting the
DPD repulsion parameter for water, aww = 100, accurately
reproduces the compressibility of water at room temperature,
k−1 = 16.36,37 The repulsion strength between the similarly
charged beads of head groups was increased to compensate for
the electrostatic repulsion (αh1h1 = αh2h2 = 110).34 All other
repulsion parameters for beads of the same type, αii, were set to
100. The repulsion parameter for water−ethanol interaction,
102, was taken from the literature.34,37 All other repulsion
parameters between unlike beads, αij, were determined from the
Flory−Huggins χ-parameter, according to the following
expression by Li et al.34

χ α= ± Δ(0.277 0.002) (1)

where Δα = αij − αww. The Flory−Huggins χ-parameters
between water and hydrocarbons and between the lipid head
groups and hydrocarbons have been well discussed in the
literature.34,37 Li et al.34 reported that these parameters can well
describe the compressibility and bending rigidity of the real
membranes. In this work, somemodifications have beenmade to

the parameter set reported in the literature.34,37 The DPD
repulsion parameter αet for the ethanol-tail (hydrocarbon)
interaction was tuned, by scanning it over the range 104 to 110
(based on the reports in the literature),34,37 against the free
energy barrier for the passage of a single ethanol molecule across
the membrane, according to our previous atomistic simulation
results (see the section Validation of the Model for Ethanol-
Containing Systems).15 We have summarized the final DPD
repulsion parameters for interactions between all bead types in
Figure 1(f).
The DPD beads in phospholipids are connected by harmonic

bonds

= −U r k r r( )
1
2

( )b b 0
2

(2)

where Ub is the bond potential, and kb and r0 are the spring
constant and equilibrium bond length, respectively. The
bending angle potential, Uθ, is defined as

θ θ= [ − − ]θ θU r k( ) 1 cos( )0 (3)

where kθ is the force constant, and θ0 is the equilibrium angle.
We have reported the values of kb, r0, kθ, and θ0 in Table 1.

35,38 It
should be noted that hydrocarbon chains of DPPC and DOPC
are modeled by four connected tail beads, while those of DMPC
are modeled as three tail beads. In the case of DOPC, the
equilibrium 4-5-6 and 8-9-10 angles are set to 120° to mimic the
unsaturated hydrocarbon chains.35,38

In the ethanol-free systems, a total number of 1152 lipid
molecules were placed in the center of the xy plane of an xyz
periodic box. The dimensions of the simulation box along x and
y directions, Lx and Ly, were set according to the known area per
lipid molecule for the phospholipids.35,38 For the mixed
membranes, Lx and Ly were set based on the additivity of the
area per lipid for different components. We have tested different
initial values of Lx = Ly, around the calculated area per lipid, and
found that simulations of a constant number, N, of lipid
molecules at constant temperature, T, and constant pressure, P,
(the NPT ensemble) did not change the lateral dimensions of

Figure 1. Models of (a) DMPC (dimyristoylphosphatidylcholine), (b) DPPC (dipalmitoylphosphatidylcholine), (c) DOPC (dioleoylphosphati-
dylcholine), (d) water, and (e) ethanol in this work. Each bead has a mass and volume comparable to four realistic water molecules. (f) The DPD
repulsion parameters for all bead−bead interactions.
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the simulation box noticeably. The initial box size along the z
direction was fixed at 24 rc for all systems. The box size in our
simulations was beyond the limit to which finite size effects have
been reported to influence the properties studied.39 Three types
of systems, namely pure systems (DPPC, DOPC, and DOPC),
two-component systems (DPPC-DOPC, DPPC-DMPC, and
DMPC-DOPC), and three-component systems (DPPC-
DOPC-DMPC), were simulated. In all mixed-membrane
systems, the lipids were randomly placed in each leaflet.
Therefore, the compositions of both leaflets were the same,
but the leaflets were not symmetric (see Figure 2(a)). The
compositions of all ethanol-free lipid bilayers simulated in this
work are summarized in Figure 2(b). We have simulated the
afore-cited lipid bilayers, immersed initially in pure water, in the
NPT ensemble to obtain relaxed planar bilayers. To simulate a
tensionless membrane, the sizes of the simulation box in the
lateral (xy) and normal (z) directions were allowed to change
independently, by coupling them to a Berendsen barostat40,41

(the time constants for pressure couplings were 10 tdpd). The
lateral and normal components of the pressure were fixed at 89
kBT/rc

3, which is the same as that for bulk water at a reduced
density of 3. Simulations were done for 5 × 105 steps to achieve
equilibrium and for another 5 × 105 steps for data collection.
In the ethanol-containing systems, the number of water and

lipid molecules in the systemwas the same as that of the ethanol-

free systems, but ethanol molecules were added to the aqueous
phase to reach the desired concentration of ethanol in water.
According to the adopted mapping scheme, the mole fraction of
ethanol in the aqueous phase surrounding the membrane is
expressed as

= ·
· + ·x

n
n n
1.24

1.24 4ethanol
ethanol

ethanol water (4)

where nethanol and nwater are the number of DPD beads of ethanol
and water, respectively. The factors 1.24 and 4 in eq 4 account
for the fact that in our mapping one DPD bead represents 1.24
real ethanol molecules but 4 water molecules. Thus, the ethanol
mole fraction in this paper corresponds to the experimental mole
fraction, not to the mole fraction of DPD beads used. The latter
is much closer to the experimental volume fraction, since all
DPD beads have the same size. In contrast to the solvent phase,
no adjustment is necessary for the mole fractions describing the
lipid compositions of the membranes. We have summarized the
compositions of systems simulated in this work in Table 2.

Based on the mapping scheme adopted in this work,34 the
cutoff distance and the time step were 0.71 nm and 1.43 ps (0.01
tdpd), respectively. In order to compare our results with the

Table 1. Equilibrium Bond Lengths and Angles and Their
Corresponding Force Constants for DMPC
(Dimyristoylphosphatidylcholine), DPPC
(Dipalmitoylphosphatidylcholine), and DOPC
(Dioleoylphosphatidylcholine)

bond potential angle potential

type r0 (rc) kb (kBT/rc
2) type θ0 (deg) kθ (kBT)

h1 − h2 0.47 512 h2 − h3 − t 180 6
h2 − h3 0.47 512 h2 − h3 − h3 120 6
h3 − h3 0.31 512 h3 − t − t 180 6
h3 − t 0.59 512 t − t − ta 120, 180 6
t − t 0.59 512

aExcept for the 4-5-6 and 8-9-10 angles in DOPC, for which the
equilibrium t − t − t angle is 120°, the rest of the t − t − t equilibrium
angles are 180°.

Figure 2. (a) Schematic of the arrangement of lipid chains in each leaflet in a ternary membrane. Blue, green, and red colors represent DPPC
(dipalmitoylphosphatidylcholine), DMPC (dimyristoylphosphatidylcholine), and DOPC (dioleoylphosphatidylcholine) lipid molecules,
respectively. The compositions of both leaflets are the same, but the membrane is not symmetric. (b) Schematic illustration of systems simulated
in this work. The points represent compositions of the systems simulated in this work.

Table 2. Compositions of the Water−Ethanol Phase in the
Systems Simulated in This Work

mol % of ethanol wt % of ethanol

0.00 0.00
5.19 12.3
10.3 22.7
13.3 28.1
15.4 31.8
17.1 34.6
20.2 39.4
23.7 44.3
27.5 49.3
31.7 54.4
42.0 64.9
55.4 76.1
73.6 87.7
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reports in the literature, we use physical, rather than reduced
DPD, units from here on.
Analysis Method. We use four parameters, including the

area per lipid molecule, bilayer thickness, orientational order of
the hydrocarbon chain, and the bending modulus, to character-
ize the degree of molecular perturbation caused by the ethanol
disinfectant. Specifically, the area per lipid molecule, bilayer
thickness, and bending modulus are useful only for the
membranes that are still intact, i.e., without obvious holes.
The membrane thickness l is defined as the average distance
between the choline groups (h1 in Figure 1) in two leaflets and
the area per lipid, a, is defined as

= ·
a

L L

N
x y

(5)

where N is the number of lipid molecules in each leaflet. The
orientational order is defined in terms of the following second-
Legendre polynomial

θ= ⟨ − ⟩S 0.5 3 cos 12 (6)

where θ is the angle between a unit vector along the hydrocarbon
chain and the bilayer normal unit vector (z axis), and the
brackets denote ensemble average. Two hydrocarbon chains of
each lipid molecule (Figure 1(a)−(c)) are calculated separately
to the connection points (h3 groups). Goetz et al.

42 found that
the value of bending modulus, κ, deduced from the analysis of
the shape fluctuations of the bilayer membranes (in the
tensionless state), can be expressed as the following equation

κ = K l
48
A

2

(7)

where KA is the area compressibility. In order to calculate KA, we
measure fluctuations of the interfacial tension, γ. The area per
lipid molecule, a, is varied by modifying the lateral size in the
NVT ensemble (V being the volume). Then, KA can be obtained

as the zero-tension limit of the slope of the interfacial tension
versus (a − a0)/a0 as

42

γ = −K a a a( )/A 0 0 (8)

where a0 is the area per lipidmolecule in a tensionless membrane
(membrane immersed in the purewater). It should be noted that
this procedure for calculation of κ is only suitable for the
membranes with negligible spontaneous curvature.34 The
interfacial tension γ can be obtained from the pressure
anisotropy as

γ = − +L
P P P

2
1
2

( )z
zz xx yy

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (9)

where Pxx, Pyy, and Pzz are the diagonal components of the
pressure tensor.

■ RESULTS AND DISCUSSION
Validation of the Bilayer Models for Ethanol-Free

Systems. To validate the lipid bilayer model, immersed in
water, we have calculated the area per lipid molecule, a0, the
membrane thickness, l0, the orientation order of hydrocarbon
groups, S0, and the bending modulus, κ0. As summarized in
Table 3, our calculated a0 and l0 of DPPC, DMPC, and DOPC
are in good agreement with experiments43−46 at temperatures
close to 300 K. Poghosyan and Gharabekyan33 have investigated
the DPPC-DMPCmembranes of various compositions at 325 K
by performing atomistic simulations. Their observed trend of
decreasing a0 versus xDPPC is compatible with the trend found at
298 K here (see Table 3). For DPPC, closeness of value of S0 to 1
(S0 = 0.894) indicates that the bilayer is in the gel phase, in which
the hydrocarbon chains are in a highly ordered state (Figure
3(a)), while DMPC (S0 = 0.467) and DOPC (S0 = 0.426)
bilayers are in the fluid phase, as illustrated in Figure 3(b),(c)).
The deviations of bending moduli obtained in this work from
experimental values of DPPC (∼29% to 76%),47 DMPC
(∼−16%),48 and DOPC (∼−30% to −75%)47 can partly be

Table 3. Calculated Equilibrium Thermodynamic and Mechanical Properties of Lipid Bilayers, Compared with Previous
Simulations and Experimentsa

ratio this work 298 K previous simulations previous experiments

xDPPC xDMPC xDOPC
l0

(nm)
a0

(nm2) S0
κ0

(10−19J) l0 (nm) a0 (nm
2) κ0 (10

−19J) l0 (nm) a0 (nm
2)

κ0
(10−19J)

1 0 0 4.76 0.576 0.894 12.496 4.7143a 0.48743a 7.1−8.947a 4.3515a 0.5050a

0 1 0 3.52 0.651 0.467 0.471 3.5351a 0.59752,a 0.60651a 0.5648a 3.4753a 0.61653a

0 0 1 3.89 0.706 0.426 0.557 3.6744,a 3.7146a 0.72444,a 0.67445a 0.8−2.247a 3.8253a 0.69553a

0.25 0.75 0 3.57 0.647 0.476 0.454 0.7433b

0.5 0.5 0 4.38 0.627 0.556 0.851 0.7233b

0.75 0.25 0 4.53 0.601 0.636 5.24 0.7033b

0.333 0.333 0.333 4.12 0.671 0.516 0.62
aRepresents the reference value obtained at 298−303 K. bRrepresents the reference value obtained at 325 K.

Figure 3. Snapshots of the simulation box, indicating pure(a) DPPC (dipalmitoylphosphatidylcholine), (b) DOPC (dioleoylphosphatidylcholine),
and (c) DMPC (dimyristoylphosphatidylcholine) lipid bilayers. Blue, green, and red colors represent the hydrocarbon tails of DPPC, DMPC, and
DOPC lipids, respectively.
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due to the softness of DPD beads in our simulations and partly
due to experimental uncertainties in measuring the bending
modulus. Chaurasia et al.49 have compared several methods of
evaluating the bilayer bending modulus in simulations and
reported that the bending modulus of PC lipid membranes in

the fluid state (325 K) was within the range of κ0 ∼ (0.4−2.1) ×
10−19 J, which matches well with our calculated results (∼(0.4−
0.9) × 10−19 J) for PC membranes in the liquid phase at 298 K.
Because of the lack of experimental data, we cannot compare our
calculated bending moduli for mixed membranes with the

Figure 4. Two-dimensional plots of variation of (a) the area per lipid molecule and (b) the thickness of the bilayer as a function of composition for the
ethanol-free systems at 298 K. The color bars represent the area per lipid molecule and the membrane thickness in panels a and b, respectively. (c)
Δa0,mix = a0 − a0,ideal for mixed membranes. (d−f) Composition-dependence of the area per lipid molecule for DPPC (dipalmitoylphosphatidylcho-
line)-DMPC (dimyristoylphosphatidylcholine), DPPC-DOPC (dipalmitoylphosphatidylcholine), and DMPC-DOPC binary membranes. The
dashed lines indicate the ideal mixing behavior (see eq 10).
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experiment. Based on the agreement of our calculated values of
a0, l0, S0, and κ0, for membranes immersed in purewater, with the
corresponding experimental values, we conclude that our DPD
models are well parametrized against experimental measure-
ments.
Effect of Composition on the Properties of Mem-

branes in the Absence of Ethanol. Figure 4 depicts the

calculated values of a0 and l0 as a function of composition for
different membranes.
We found that the area per lipid molecule, a0, generally

decreases with increasing the mole fraction of DPPC (Figure
4(a)). The trend of the increase in a0 is a0(DOPC-dominated
bilayer) > a0(DMPC-dominated bilayer) > a0(DPPC-domi-
nated bilayer). The reverse is true for the bilayer thickness, i.e,

Figure 5. (a) Dependence of the orientational order parameter, S0, on the composition for DOPC (dipalmitoylphosphatidylcholine)-DMPC
(dimyristoylphosphatidylcholine)-DPPC (dioleoylphosphatidylcholine) ternary bilayers with xDOPC = xDMPC. (b−d) From top to bottom, snapshots
of the simulation box indicating mixed bilayers with (xDPPC, xDOPC, xDMPC) = (0.1, 0.45, 0.45), (0.5, 0.25, 0.25), and (0.9, 0.05, 0.05), respectively. Blue,
green, and red colors represent the hydrocarbon tails of DPPC, DMPC, and DOPC lipids, respectively. (e) Dependence of the orientational order of
mixed bilayers on the composition for bilayers immersed in pure water at 298 K.
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l0(DPPC-dominated bilayer) > l0(DOPC-dominated bilayer) >
l0(DMPC-dominated bilayer). We may conclude that in mixed
PC membranes, two factors determine the degree of packing of
hydrocarbon tails and, hence, the surface area per lipid
molecules: the hydrocarbon tail length and its degree of
saturation. Membranes consisting of longer hydrocarbon chains
(like DPPC) occupy less surface area per lipid molecule than
those consisting of shorter hydrocarbon tails (like DMPC). The
presence of unsaturated bonds in the hydrocarbon tail acts as a
defect for chain packing. Therefore, bilayers containing bends
due to unsaturated bonds in their hydrocarbon tails (like
DOPC) are less ordered and occupy a larger area per lipid
molecule than those with saturated hydrocarbon tails of the
same length (like DPPC). There is the same trend for the surface
area per lipid molecule in the mixed binary and ternary bilayers.
Mixed bilayers composed of DPPC (with its longer saturated
hydrocarbon tail) as the major component occupy less surface
area per lipid molecule than DMPC-rich (with shorter saturated
hydrocarbon tail) bilayers. The maximum surface area per lipid
molecule, however, belongs to mixed membranes with DOPC
(with a longer unsaturated hydrocarbon tail) as the major
component. As the hydrocarbon chain lengths in DOPC and
DMPC do not differ considerably, the existence of an
unsaturated bond in DOPC plays the dominant role in surface
area per lipid molecule and bilayer thickness. We have checked if
the parameters a0 and l0 for mixed membranes can be expressed
as the sum of contributions due to their constituents (ideal
mixing), i.e.,

∑=a x a
i

i i0,ideal ,0
(10)

and

∑=l x l
i

i i0,ideal ,0
(11)

in Figure 4. In eqs 10 and 11 xi is the mole fraction of the
component i, and subscript “ideal” stands for the ideal mixing.
We have quantified the excess areaΔa0,mix = a0− a0,ideal in Figure
4(c); the same is done for the excess thickness Δl0,mix = l0 −
l0,ideal, for which the results are reported in Figure S2 of the
Supporting Information. The close agreement between
calculated and predicted values indicates that in mixed
membranes the ideal mixing rule can be regarded as a fairly
good approximation for estimation of the area per lipid molecule
and the membrane thickness. Shown in Figure 4(d),(e) are the
area per lipid molecule of the binary membranes as a function of
composition and their deviations from ideality. This near-ideal
behavior of mixed membranes is in complete agreement with
experimental measurement on DMPC-DSP (distearoylphos-
phatidylcholine)54 and atomistic simulation results on DPPC-
DLPC (dilauroylphosphatidylcholine)55 membranes.
Another structural parameter to characterize the order of the

lipid chain in membranes is the orientational order parameter,
S0. S0 = 1 would indicate perfect alignment of the hydrocarbon
tails with the chain normal, whereas S0 = 0 corresponds to
random orientations. The correlation between S0 and xDPPC for
ternary lipid bilayers (in which xDMPC = xDOPC) is shown as an
example in Figure 5(a). We observe that S0 increases with
increasing the mole fraction of DPPC. Snapshots of three
ternary lipid bilayers with xDPPC = 0.1, 0.5, and 0.9 are shown in
Figure 5(b)−(d). At low DPPC mole fractions (Figure 5(b)),
the DPPC molecules are disordered by the DMPC and DOPC
molecules, resulting in a low value of S0. On the other hand, the

better ordered DPPC molecules induce ordering in the DOPC
and DMPC molecules at higher DPPC mole fractions (Figure
5(d)). This induced ordering effect is more evident for DMPC
than for DOPCmolecules. Figure 5(e) shows S0 as a function of
composition for mixed membranes of various compositions. We
found that S0 generally increases with the DPPC content.
Additionally, the DMPC-rich membranes are better ordered
than DOPC-rich membranes. This can be interpreted in terms
of a higher order of hydrocarbon chains in DMPC than those in
DOPC (see Table 3).
We have also examined the dependence of the bending

modulus κ0 on the composition of the lipid bilayer in Figure 6.

Our findings indicate that the bendingmodulus is more sensitive
to the composition than the order parameter, the area per lipid
molecule, and the membrane thickness. In this case, the DPPC-
rich (xDPPC > 0.7) membranes have much higher bending
moduli than the others. At the same time, increasing the DPPC
mole fraction in binary and/or ternary membranes to a regime
with xDPPC ∼ 0.7 has only a marginal effect on the bending
modulus, and a sharp increase in the bending modulus is seen at
xDPPC > 0.7. The bending modulus of lipid membranes with a
higher fraction of DPPC (xDPPC > 0.8) is much higher than those
with lower DPPC content. Our findings are indicative of the
diverse change in the structural properties of lipid bilayers with
varying compositions. Examination of the composition-depend-
ence of the bending modulus and its sharp transition at high
DPPC mole fractions may raise a question; would it be possible
to design a mixed membrane with tunable stability. This is
important for the investigation of the effect of ethanol on the
stability of membrane, to be discussed.

Validation of the Model for Ethanol-Containing
Systems. We have tuned the DPD repulsion parameter for
the ethanol-tail interaction against our recent atomistic
simulation results56 for the partitioning of ethanol between
the aqueous and membrane phases for DPPC immersed in
aqueous solutions containing ethanol. The experimental gel to
liquid crystalline phase transition temperature of DPPC is 315
K.57 To characterize the thermodynamic state of our DPPC
model, we have shown the temperature-dependence of the order
parameter in Figure S2. The sudden change in the order

Figure 6.Dependence of the bending modulus of mixed membranes on
the composition for membranes immersed in pure water at 298 K.
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parameter at T = 320 K is indicative of the gel to liquid
crystalline phase transition. We performed DPD simulations for
DPPC immersed in aqueous solutions containing 5 and 10 mol
% ethanol at 323 K. We have calculated the Gibbs free energy
(molar) profiles for translocation of ethanol molecules across
the membrane from the equilibrium density profiles, i.e.,

μ μ
ρ

ρ
Δ = − = −G z z k T

z
( ) ( ) (aqueous) ln

( )

(aqueous)i
ex

i
ex i

i
B

Ä
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (12)

where μi
ex is the excess chemical potential, i.e., the difference

between the chemical potential and that of an ideal gas, ρ is the
number density, kB is the Boltzmann constant, T is the
temperature, and μi

ex(aqueous) and ρi(aqueous) are the
chemical potential and the density in the aqueous phase
(surrounding the membrane), respectively. In eq 12, theΔG(z)
is the molar Gibbs free energy change for transferring a solute
molecule i (ethanol) from the bulk aqueous phase to a position
z. The free energy profiles for the permeation of ethanol

(calculated by scanning the DPD interaction parameter for
ethanol-tail, αet, between 104 and 110) through a DPPC bilayer
immersed in an aqueous solution containing 5 and 10 mol %
ethanol are shown in Figure 7(a). The repulsion parameter αet =
105 best predicts the calculated barrier heights from atomistic
simulations. While our previous atomistic simulations show that
ethanol introduces a big hole in an DPPC membrane immersed
in an aqueous solution containing (17.5 mol %) ethanol, the
present DPD simulations predict the DPPC membrane to
remain intact at similar ethanol concentrations of 17.7 mol %
(up to 1 μs). To search for the minimum ethanol concentration
in the aqueous phase necessary to cause membrane rupture, we
have simulated a number of systems in whichDPPC is immersed
in aqueous solutions containing 17 to 22 mol % ethanol. Our
DPD simulations confirm that the membrane undergoes rupture
at a slightly higher ethanol concentration (20.2 instead of 17.5
mol %) (see Figure 7). This is a second check for the agreement
of our DPD simulation results with atomistic simulation results.
Furthermore, in agreement with our atomistic simulation

Figure 7. (a) Free energy barrier for the permeation of ethanol in the DPPC (dipalmitoylphosphatidylcholine) lipid bilayer, immersed in an aqueous
solution containing ∼5 and 10 mol % ethanol, at 323 K. The position z = 0 corresponds to the center of the bilayer. The DPD repulsion parameter αet
for ethanol-tail (hydrocarbon) beads is varied from 104 to 110 to find the best match between barrier heights calculated from atomistic15 and DPD
simulations. (b) and (c) Snapshots (at 1 μs) of a DPPC lipid bilayer, surrounded in aqueous solutions containing (b) 17.7 mol % and (c) 20.2 mol %
ethanol, at 323 K. The blue and red spheres show head groups and tails, respectively. The water and ethanol molecules are not displayed for clarity.
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results, we found that the DPPC membrane remains intact at an
ethanol concentration of 15.4 mol % at 298 K. This is due to the

fact that the DPPC exists in the more intact gel phase at 298 K.
The tight packing of lipid molecules in DPPC is weakened in the

Figure 8. Snapshots (at 1 μs) of DPPC (dipalmitoylphosphatidylcholine) lipid bilayers, surrounded by (a) pure water and by (b) an aqueous solution
containing 15.4 mol % ethanol at 298 K. The blue and red spheres show head groups and tails, respectively. The water and ethanol molecules are not
displayed for clarity. Comparison of the number density profiles, calculated fromDPD (full curves) and atomistic (dashed curves) simulations, for (c)
ethanol and (d) water across the DPPC membrane surrounded by aqueous solutions containing 0, 5, 10, and 15 mol % ethanol at 298 K.

Figure 9. (a) Dependence of the ratio of surface area per lipid molecule for membranes surrounded by an aqueous solution containing 5mol % ethanol
to the corresponding value in the absence of ethanol (a/a0) on the composition of membrane. (b) The same as (a) for the membrane thickness. a0 and
l0 are the area per lipid and membrane thickness, respectively, in the ethanol-free systems.
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presence of 15.4 mol % ethanol (Figure 8(b)), but the
membrane remains intact. We show the number density profiles
for ethanol and water, partitioned between the aqueous and
membrane phases, in Figure 8(c),(d). We observed that
increasing the ethanol concentration in the aqueous phase
causes accumulation of both ethanol and water molecules near
the membrane head groups, and they penetrate further into the
region of the hydrocarbon-headgroup interface. This is in
complete agreement with the results of our previous atomistic
simulations. Because of the fact that the DPD beads are much
softer than the atomistic sites, we observe that water and ethanol
molecules are exchanged several times between the aqueous
phase and the membrane during the time scale of our
simulations.
Effect of Ethanol on the Structure of the Lipid Bilayer.

We have summarized the variation of the area per lipidmolecule,
a, and the membrane thickness, l, for mixed membranes
immersed in aqueous solutions containing 5 mol % ethanol and
compared them with the corresponding values for ethanol-free
water in Figure 9. We found ethanol uptake expands all pure and
mixed lipid bilayers laterally (Figure 9(a)) and shrinks them
vertically (Figure 9(b)). Among all membranes, the area per
lipid and the membrane thickness of DPPC-rich (xDPPC > 0.8)
membranes were not significantly affected by the presence of
ethanol. The largest changes of the area per lipid molecule and
the membrane thickness between membranes immersed in
water−ethanol solutions and in ethanol-free solutions are seen
for lipid bilayers with 0 < xDPPC < 0.8. This indicates that the
effect of ethanol on the stability of a membrane depends on its
composition. It is worth mentioning that all pure and mixed
membranes examined in this work, surrounded by an aqueous
solution containing 5mol % ethanol, are intact (based on a visual
inspection of the simulation and density profiles).

Membrane Failure. a. Characterization in Terms of Area
Per Lipid, Thickness, and Orientational Order. We have
searched for the rupture-critical ethanol concentration in the
aqueous phase, needed to cause the rupture of pure DPPC,
DMPC, and DOPCmembranes, immersed in such a solution. In
addition to the ethanol concentrations tabulated in Table 2, we
have simulated pure membranes, each immersed in 12 aqueous
solutions containing ethanol of varying concentrations from 20
to 32 mol %. Here, the membrane failure was characterized in
terms of visual observation of long-lived holes in the membrane.
The rupture-critical ethanol concentrations for membrane
failure at 298 K are 20.7, 27.5, and 31.7 mol % in the aqueous
phase surrounding pure DMPC, DOPC, and DPPC, respec-
tively. In order to establish a link between membrane stability
and the parameters (area per lipid molecule a, membrane
thickness l, and orientational order of hydrocarbon chains s)
discussed above, we have calculated the relative change of each
parameter upon transferring the pure membrane (DPPC,
DMPC, and DOPC) surrounded by water to an aqueous
solution containing ethanol of a given concentration. In Figure
10, we show the ratios of the area per lipid molecule, membrane
thickness, and orientational order of the hydrocarbon tail for
pure DPPC, DMPC, and DOPC membranes (immersed in
aqueous solutions containing ethanol) to the corresponding
value in the absence of ethanol. Because of the ambiguity in
calculating the area per lipid molecule and membrane thickness
for disrupted membranes, we have reported the ratios a/a0 and
l/l0 only for intact membranes (up to 1 μs simulation time) in
Figure 10(a),(b), but the ratio S/S0 (Figure 10(c)) was reported
for both intact and ruptured membranes. For all three
membranes, the a/a0 increases (by a factor up to ≈1.6 for
DPPC), and l/l0 decreases (by a factor≈0.6 for DPPC) with the
increasing ethanol concentration in the aqueous phase
surrounding the membrane. We have also shown the ratio of

Figure 10. Dependence of (a) area per lipid molecule, (b) membrane thickness, and (c) the orientational order parameter of pure DMPC
(dimyristoylphosphatidylcholine), DOPC (dioleoylphosphatidylcholine), and DPPC (dipalmitoylphosphatidylcholine) membranes on the ethanol
concentration in the aqueous phase surrounding the membrane. Open (panel c) and filled markers represent the ruptured and intact bilayers,
respectively. (d) Snapshots (at 1 μs) of DOPC lipid bilayers at 298 K, surrounded by aqueous solutions containing 24.4−26.7 mol % ethanol, i.e., close
to the rupture-critical ethanol concentration (27.5 mol %) needed for membrane rupture. The blue and red spheres show head groups and the lipid
tails, respectively.
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(a·l)/(a0·l0) as a function of the ethanol concentration (see
Supporting Information Figure S4). We found that the
membrane volume is less sensitive to the presence of ethanol
in the aqueous phase as compared to the surface area and the
membrane thickness. Larger fluctuations in the area per lipid
molecule and membrane thickness at high ethanol concen-
trations (which can be regarded as a signature of the stability-
failure transition) are the results of frequent opening and closing
of holes in the membrane, induced by ethanol. This indicates
that ethanol weakens the membrane by fluidizing it, which
increases the area per lipid molecule and decreases the
membrane thickness, and eventually introduces holes in the
membrane, leading to its rupture. The fluidizing effect of ethanol
on the membrane obviously decreases the orientational order of
the hydrocarbon tail (see Figure 10(d)). Compared to the ratios
a/a0 and l/l0, larger deviations are seen for the ratio S/S0 upon
transferring the membrane from pure water to water−ethanol
solutions. In this case, the ruptured states can be identified by
small values of S/S0 (close to zero), where S = 0 corresponds to
the complete random orientation of tails. However, no sharp
transition from the intact to the ruptured state, and vice versa, is
observed in terms of the orientational order parameter. In other
words, we cannot quantitatively predict the location of the phase
transition point based on the area per lipid molecule, the
membrane thickness, and the orientational order parameter. In
order to discriminate between intact and ruptured membranes,
we show snapshots (taken at 1 μs) of the structure of DOPC,
immersed in aqueous solutions whose ethanol concentration is
close to (but below) the rupture-critical ethanol concentration
needed to disrupt the membrane (Figure 10(d)). At the highest
ethanol concentrations, the membrane undulates, and even a
few lipid molecules are extracted from it. At 26.7 mol % ethanol
concentration (just below the phase transition point), the
membrane thickness is nonuniform, but it still remains intact
(up to 1 μs). Upon further increase of the ethanol concentration,
some parts of the membrane become thin enough to allow free
(barrierless) passage of ethanol across the membrane, i.e, a big
hole is formed in the membrane.
b. Ethanol Penetration: Partition Coefficient and Perme-

ation Dynamics. The partitioning of ethanol between the lipid
membrane and the aqueous phase can be characterized in terms
of the partition coefficient

=K
c
cp

ethanol
lipid

ethanol
aq

(13)

where cethanol
lipid and cethanol

aq are the equilibriummole concentrations
of ethanol in the lipid membrane and in the aqueous phase,
respectively. It is noted that cethanol

aq is defined as the equilibrium
ethanol concentration, which is different from the initial ethanol
concentration (before equilibrium). In order to calculate Kp, the
number of ethanol molecules in the lipid membrane (nethanol

lipid )
and aqueous phase (nethanol

aq ) and the respective volumes of these
two regions (Vlipid and Vaq) are computed. These parameters,
however, cannot be calculated unambiguously, especially at the
high ethanol concentrations, where the interface between the
regions becomes blurred. Terama et al.58 have calculated cethanol

aq

by assigning the ethanol molecules in the region away from the
membrane boundary to the aqueous phase (where the density
profiles almost converge to a constant value) and assigning the
rest of the ethanol molecules (bounded) to the membrane.
These ”bounded” ethanol molecules are partly influenced by the
membrane, although not completely partitioned into it. Inspired

by a recent work,59 we have adopted a method based on the
assumption that any deviations in the Gibbs free energy profiles
from the corresponding values in the aqueous phase (ΔGbulk ≈
0) must be due to interactions with the membrane. We have
partitioned the simulation along the z direction into a number of
bins of width 0.305 nm. The boundary between the lipid
membrane and aqueous phases is defined as the layer with
|ΔG(z) − ΔG(z)bulk| = 0.1 kJ/mol. The results for Kp of three
single-lipid membranes in the aqueous phases containing
ethanol of varying concentrations from 5 mol % to the
concentrations just before rupture are shown in Figure 11.

The partition coefficients of the pure membranes increase with
the increasing ethanol concentration in the aqueous phase
surrounding the membrane. This means that the amount of
ethanol in the membrane increases disproportionately with the
ethanol concentration in the aqueous phase. This is indicative of
a synergistic effect. Moreover, the values of the partition
coefficients close to the rupture points are nearly the same for
the three membranes.
To study the dynamics of the permeation of ethanol through

the membrane, we applied an external force to drag two selected
ethanol molecules through the membrane (z direction).60 We
used pure DPPC, DMPC, and DOPC membranes immersed in
pure water (where the membrane is stable) and in aqueous
solutions containing 20.7, 27.5, and 31.7 mol % ethanol
(corresponding to the state point at which the membrane
disrupts), respectively. For membranes in pure water, two
ethanol molecules were added to the aqueous phase for this
purpose. In ethanol-containing systems, two ethanol molecules
were selected near the box boundary. Simulations were
performed from the equilibrated systems (at 1 μs). Constant
external forces of equal magnitude but opposite directions were
imposed on the two ethanol molecules (Figure 12(a)). We tried
several drag forces with magnitude ranging from 0.58 to 17.4 pN
for all systems. No crossing event has been observed for the
DPPC membrane in pure water with an external force up to 5.8
pN within 143 ns. For DOPC and DMPC lipid membranes,
however, we have seen at least one crossing event with the same
force. For the DPPC membrane, increasing the external force, a
full cycle (an ethanol molecule traversing the entire box length
along the z direction) was observed at 8.8 pN within 143 ns.

Figure 11. Dependence of the partition coefficient Kp of pure DMPC
(dimyristoylphosphatidylcholine), DOPC (dioleoylphosphatidylcho-
line), and DPPC (dipalmitoylphosphatidylcholine) membranes on the
ethanol concentration, in the aqueous phase surrounding the
membrane, at 298 K.
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Hence, we have fixed the external force at 11.6 pN, to be able to
observe enough crossing events and also not so fast crossing the
membrane in the high ethanol concentration systems. As shown
in Figure 12(b), for membranes immersed in pure water, the
crossing period for DPPC is longer than those of DPMC and
DOPC, and the limitation of the crossing is due to the time spent
in the membrane. At high ethanol concentrations, however, the
crossing periods for all three membranes are comparable, and
crossing the membrane is as fast as crossing the aqueous phase.
In order to quantitatively describe the crossing behavior, we
have run 5 independent simulations for each system for a long
time (715 ns). The average velocity of ethanol molecules
crossing the lipid membrane is defined based on the average
time it takes them to cross the membrane. The results have been
summarized in Table 4. For all three membranes, the number of
crossing events and the crossing rate are similar when the
membranes are in the ruptured state.

c. Characterization in Terms of Machine-Learned State
Variables. We have further implemented a machine-learning
framework to characterize the failure of lipid membranes,
namely, MembraneNN. The key component of this framework
is a deep neural network (DNN), which is a nonlinear model
mapping the particle coordinates of a single lipid molecule to
state variables representing the order of this lipid molecule in the
membrane. As depicted in Figure 13, the DNN is a standard
feed-forward network composed of fully connected layers, in
which the data flows from the input layer through the hidden
layers toward the output layer. Each layer has a certain number
of nodes (below), called neurons, which store information about
the importance of the input and associations between the
importance of combinations of inputs. In all layers, linear
operations are applied to the input data dl

in, e.g.,
= ∑ +d w d bk n l kkl

inÙ
, where wkl and bk are the weights from

layer l to the output layer k and the bias produced at layer k,
respectively (Figure 13(b)). Additionally, the rectified linear
unit (ReLU) activation function

= =+x x xReLU( ) ( ) max(0, ) (14)

where x is the input to a neuron, is applied in intermediate layers
to break the linearity: =d dReLU( )k k

out Ù
.61 In the output layer,

the neurons are activated by a sigmoidal activation function to
produce two state variables in the range of 0 to 1. Two state
variables λ1 and λ2 are introduced to characterize the membrane
failure.We only label the data at two extreme states: λ1 = 1 and λ2
= 0 (representing an intact membrane) and λ1 = 0 and λ2 = 1
(representing a ruptured membrane); see Figure 14(a).
Overfitting is usually a serious problem in DNN models with
an increasing number of layers and neurons per layer. To prevent
overfitting and to improve the generalization error,62 the
dropout technique,63 which randomly drops out neurons (and
their connections) during training, is implemented in our DNN
model with a dropout rate of 0.2. This dropout rate indicates that
there are 20% neurons randomly deactivated in each hidden
layer. Another important element of the DNN is the loss
function. Essentially, the loss function defines properties that the
DNN attempts to optimize. Here, we use the mean square error
(MSE)

∑̃ = − ̃
=

y y
n

y yMSE( , )
1

( )
i

n

1

2

(15)

where n is the number of lipid molecules for training, and y and ỹ
are the manually labeled target state variables and state variables
predicted by the DNN (λ1 and λ2) for a single lipid molecule,
respectively.
The DNN model is built and trained using PyTorch64

(version 1.8.1). Hyperparameters, whose values are used to
control the learning process such as the number of layers and
neurons in each layer, are usually difficult to determine.65 In our
framework, we use a grid search to determine these parameters
in order to achieve efficiency and accuracy of our DNN. In the
production run, we choose the network architecture: 1 input
layer, 3 hidden layers, and 1 output layer with neurons in each
layer 30-90-90-90-2. The ADAM (adaptivemoment estimation)
optimizer66 with a learning rate of 0.001 is employed to train the
DNN model. During training, data are iteratively fed into the
network until a termination criterion is reached. Here, we stop
the training when a reasonably low value of the loss function is
reached, and it does not decrease significantly in further runs.

Figure 12. (a) Snapshots (at 1 μs) of the DPPC (dipalmitoylphos-
phatidylcholine) lipid bilayer, surrounded by pure water with the
addition of two ethanol molecules (purple colored spheres),
experiencing external forces along the z axis in different directions at
298 K. The blue and red spheres show head groups and lipid tails,
respectively, and the green spheres show water molecules. Tracking the
position of ethanol molecules experiencing external forces along the z
axis (11.6 pN) in pure DMPC (dimyristoylphosphatidylcholine),
DOPC (dioleoylphosphatidylcholine), and DPPC membranes sur-
rounded by (b) pure water and (c) aqueous solutions containing 20.7,
27.5, and 31.7 mol % ethanol, respectively, at 298 K.

Table 4. Number of Crossing Events within 715 ns and the
Average Velocity of Ethanol Molecules Crossing the Lipid
Membrane Experiencing an External Force of 11.6 pN at 298
Ka

system ethanol (mol %) ncross |vcross| (m/s)

DPPC in intact state 0 6 0.06
DMPC in intact state 0 14 0.10
DOPC in intact state 0 10 0.12
DPPC in ruptured state 31.7 17 0.41
DMPC in ruptured state 20.7 19 0.44
DOPC in ruptured state 27.5 18 0.43

aDMPC (dimyristoylphosphatidylcholine), DOPC (dioleoylphospha-
tidylcholine), and DPPC (dipalmitoylphosphatidylcholine) mem-
branes surrounded by aqueous solutions containing 20.7, 27.5, and
31.7 mol % are in the ruptured state.
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The workflow of MembraneNN is summarized here (Figure
14): The first step is to prepare the data for training and
prediction. It is basically the trajectories of lipid molecules
generated from the coarse-grained simulations of lipid
membranes with various ethanol concentrations. At each
ethanol concentration, particle coordinates of lipid molecules
from 40 trajectory frames at equilibrium are collected, which
means we have totally nmole ≈ 40 × 1000 ≈ 4 × 104 samples for

developing the DNNmodel for each type of lipid molecule. It is
noted that we move the center-of-mass position of the lipid
molecule to the Cartesian origin in order to make the
coordinates of a single lipid molecule translation-invariant for
training. As aforementioned, we only label the lipid molecules
(DPPC, DOPC, and DMPC) at the intact and ruptured states to
be (λ1 = 1, λ2 = 0) and (λ1 = 0, λ2 = 1), respectively. These
labeled data are used separately to develop the DNN models

Figure 13. (a) Schematic figure of the deep neural network model. The Cartesian coordinates of all particles in a single lipid molecule are fed as input
data to the network. The network has an output layer with two values, λ1 and λ2, that represent the intact and ruptured states of a single lipid molecule,
respectively. (b) Schematic figure for a single neuron.

Figure 14. Flowchart of the MembraneNN framework to characterize the failure of lipid membranes (MembraneNN) in this work. (a) Example of
traning data: snapshots of the intact and ruptured DMPC (dimyristoylphosphatidylcholine) lipid membranes (h1 head groups with blue color, h2 and
h3 head groups with red color, and lipid tails with cyan color). (b) Architecture of the DNN model. (c) Snapshots of DMPC lipid membranes in pure
water and in aqueous solutions containing 23.7 and 27.5 mol % ethanol (from top to bottom). The blue and red colors in the snapshots show head and
tail lipid groups, respectively. (d) Variation of state variables λ1 and λ2 for a DMPC bilayer, immersed in aqueous solutions containing various
concentrations of ethanol at 298 K. Open and filled markers represent the ruptured and intact bilayers, respectively, as determined by the visual
inspection.
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with 70% for training and 30% for testing, resulting in one DNN
model per lipid type. We use the trained models to predict state
variables (λ1 and λ2) for lipid molecules at various ethanol
concentrations (an example is shown in Figure 14(d)). The
integrity of the entire membrane is then defined as the averaged
state variables of all lipid molecules in the membrane at a given
alcohol concentration. We observe noticeable distributions of
the predicted state variables λ1 and λ2 of lipid molecules in an
intact membrane (see examples in Figure S6), although we
manually labeled all lipid molecules of an intact membrane to be
λ1 = 1 and λ2 = 0.
We employ the MembraneNN framework to predict the

integrity of all pure and mixed membranes. The intact-to-
ruptured transition point is determined via the procedure
described in the section Machined Learning Model of the
Supporting Information. The results are summarized in Table 5.
The rupture-critical ethanol concentration in the aqueous phase
surrounding the mixed membranes, composed of DMPC,
DOPC, and DPPC, varies between ≈20 mol % ethanol (for
DMPC dominated membranes) and ≈31 mol % ethanol (for
DPPC dominatedmembranes). It is lowest for pure DMPC (the
least robust membrane) and highest for pure DPPC (the most
resilient membrane).

We have checked whether there exists a correlation between
the characteristics of mixed membranes immersed in pure water
(always intact) and their stabilities against ethanol. In Figure 15,
we correlate the orientational order parameter for the hydro-
carbon tails and the bending modulus of mixed membranes,
immersed in water, with the rupture-critical ethanol concen-
tration in the aqueous phase, at which the membrane disrupts. A
general trend for stabilities in the presence of ethanol is seen; a
higher ethanol concentration in the aqueous phase is needed to
disrupt a more ordered (higher S0) and stiffer (higher κ0) mixed
membrane. The DPPC-rich membranes (xDPPC > 0.8), however,
do not follow the trend of stability of the other mixed
membranes; the values of both S0 and κ0 are much larger than
the corresponding values for membranes with xDPPC < 0.8. On
the other hand, an unusually high ethanol concentration in the
aqueous phase is needed to disrupt the DPPC-rich membranes.
The reason is that at T = 298 K, where we did our simulations,
the DPPC exists in the gel phase, but the DMPC and DOPC are
always in the fluid phase. This is in agreement with the reported
gel−liquid crystalline phase transition temperature of DPPC
(315 K),57 DMPC (297.25 K),67 and DOPC (256.65 K).57

Therefore, the hydrocarbon tails of the DPPC are much better
ordered than those of DOPC and DMPC, and hence, the DPPC

Table 5. Rupture-Critical Ethanol Concentration in the Aqueous Phase, Surrounding Lipid Membranesa

xDPPC xDMPC ethanol (mol %) xDPPC xDMPC ethanol (mol %) xDPPC xDMPC ethanol (mol %)

0.0 1.0 20.7 0.3 0.4 25.6 0.1 0.1 28.2
0.1 0.9 20.8 0.0 0.2 25.9 0.2 0.0 28.3
0.0 0.9 20.9 0.1 0.45 26.0 0.45 0.1 28.8
0.0 0.8 21.5 0.0 0.1 26.1 0.3 0.0 28.9
0.05 0.9 22.1 0.45 0.45 26.2 0.4 0.0 28.9
0.2 0.8 22.5 0.4 0.2 26.8 0.6 0.2 29.2
0.1 0.8 22.5 0.3 0.3 27.0 0.5 0.0 29.4
0.0 0.6 23.0 0.4 0.4 27.1 0.8 0.0 29.6
0.0 0.4 23.4 0.333 0.333 27.4 0.8 0.2 29.8
0.0 0.5 23.6 0.0 0.0 27.5 0.9 0.1 30.2
0.4 0.6 24.1 0.25 0.25 27.5 0.8 0.1 30.4
0.5 0.5 24.4 0.4 0.3 27.6 0.9 0.0 31.0
0.2 0.6 24.6 0.1 0.0 28.0 0.9 0.05 31.1
0.2 0.4 24.8 0.5 0.25 28.0 1.0 0.0 31.6
0.6 0.4 25.2 0.2 0.2 28.0
0.25 0.5 25.3 0.05 0.05 28.2

axDPPC and xDMPC indicate the mole fractions of DPPC (dipalmitoylphosphatidylcholine) and DMPC (dimyristoylphosphatidylcholine) in the
membrane, and the mole fraction of DOPC (dioleoylphosphatidylcholine) can be derived as xDOPC = 1 − xDPPC − xDMPC.

Figure 15. Correlation between (a) the orientational order parameter and (b) the bending modulus of membranes, immersed in pure water, and the
rupture-critical ethanol concentration (in the aqueous phase surrounding the membrane) at which the membrane disrupts.
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has a much higher bending modulus than the DMPC and
DPOC. However, when the surrounding solution contains
ethanol, it penetrates into the membrane and fluidizes it. Upon
increasing the ethanol concentration in the aqueous phase to
≈30 mol %, even the DPPC-rich membranes become weak
enough (as a result of ethanol penetration) to rupture.

■ CONCLUSIONS
We have developed DPD models of three lipids, DPPC
(dipalmitoylphosphatidylcholine), DOPC (dioleoylphosphati-
dylcholine), and DMPC (dimyristoylphosphatidylcholine), and
their neat, binary, and ternary mixed membranes as models of
the SARS-CoV-2 membrane, immersed in water and in water−
ethanol solutions (disinfectants) up to concentrations where the
membranes undergo rupture. It is worth noting that the
composition of the SARS-CoV-2 membrane is not known;
however, it is presumably composed of different phospholipids
stolen from its host, which anchor several membrane proteins.
Since our previous atomistic simulations31 revealed that the E-
peptide does not offer noticeable protection against the ethanol-
induced failure of the viral membrane, we have simulated mixed
membranes composed of DPPC, DMPC, and DOPC, as models
of the SARS-CoV-2 membrane without membrane proteins.
The molecular mechanisms of ethanol-induced weakening and
the impact of ethanol concentration on the deactivation
(membrane rupture) of SARS-CoV-2 have been investigated
in detail. We have found that two factors influence the
membrane stability: the lipid composition of the membrane
and the concentration of ethanol in the aqueous disinfectant
solution surrounding it. We looked at different properties,
including the area per lipid molecule, bilayer thickness,
orientational order of the lipid tails, bending modulus, and
ethanol permeability, and their dependence on membrane
composition and ethanol concentration.
Our DPD models for pure membranes were validated by

comparing their areas per lipid molecule and thicknesses against
experimental data and reported atomistic simulation results in
the literature. Based on the agreement of the calculated
properties for neat bilayers in pure water with experimental
and previous atomistic simulation reports, we conjecture that at
298 K (where we did our DPD simulations) the DPPC exists in
the gel phase, but the DMPC and DOPC exist in the fluid phase.
For mixed DPPC-PMPC-DOPC bilayers in pure water, we
found that structural properties depend on the length and the
degree of saturation of the hydrocarbon tail of the components.
Mixed bilayers composed of DPPC (with longer saturated
hydrocarbon tails) as the major constituent occupy less surface
area per lipid molecule than DMPC-rich (with shorter saturated
hydrocarbon tails) bilayers. However, the maximum surface area
per lipid molecule belongs to mixed bilayers dominated by
DOPC (with unsaturated bonds in the hydrocarbon tail).
Expectedly, the bilayer thickness depends inversely on the
surface area per lipid molecule, i.e., the DPPC-rich mixed
membranes are thicker than the DOPC- or DMPC-rich bilayers.
In the absence of ethanol, the variation of the surface area per
lipid a0 and the bilayer thickness l0 is about 20% between more
fluidic (DMPC and DOPC) and gel-like (DPPC) membranes.
Therefore, a0 and l0 cannot be usefully employed to predict the
stabilities of mixed bilayers of different compositions. The
orientational order of the hydrocarbon tail S0 is, however, a more
sensitive parameter in this respect; it varies by a factor of 2 from
DMPC/DOPC to DPPC. Interestingly, an even sharper
composition-dependent change is seen for the bending modulus

κ0. It varies by a factor of ≈26 from DMPC/DOPC to DPPC.
Another noticeable point is that while the values of a0 and l0 for
mixed membranes nearly follow an ideal mixing rule, the values
of S0 and κ0 do not. In terms of the bending modulus, a marked
region of stability is seen for DPPC-rich (xDPPC > 0.8)
membranes.
In complete agreement with our previous atomistic

simulations,15 we found that aqueous solutions containing 5−
10 mol % ethanol have a significant weakening effect on the neat
and mixed membranes. With increasing ethanol concentration
in the disinfectant solution, the ethanol uptake of the membrane
increases disproportionately: There is a synergistic effect, as the
ethanol already in the membrane fluidizes it and facilitates the
absorption of even more ethanol. The dissolution of ethanol in
the membrane causes lateral membrane swelling and the
shrinkage of its thickness. Obviously, the ethanol uptake reduces
the orientational order of the hydrocarbon tails of the lipids.
However, we cannot quantitatively predict the location of the
phase transition point based on the area per lipid molecule, the
membrane thickness, or the orientational order parameter.
Hence, we have further developed a machine-learning frame-
work to access the integrity of lipid membranes in place of visual
inspections. We found that the rupture-critical ethanol
concentrations needed to induce damage in the mixed
membranes vary between that for pure DMPC (the least robust
membrane) to that for pure DPPC (the most robust
membrane). At 30 mol % ethanol concentration, only DPPC-
rich membranes (xDPPC > 0.8) remain intact. This stabilizing
effect of DPPC can be correlated with a larger bending modulus
for membranes in pure water. The tight packing of DPPC
molecules, which forms a gel phase when pure, makes the bilayer
less permeable to ethanol. It also induces orientational order
among the DOPC and DMPC lipids at high DPPC
concentrations. Membrane failure can not only be identified
by human or machine inspection of its structure. Also the
relative transmembrane permeation rates of ethanol, calculated
by the nonequilibrium molecular dynamics, show a sudden
increase when the membrane develops holes, jumping by as
much as a factor of ≈7 for DPPC and a smaller factor of ≈4 for
DMPC and DOPC.
The least robust membrane studied in this work is pure

DMPC, which is punctured already by a disinfectant solution
containing ≈20 mol % (corresponding to ≈40 wt %) ethanol.
On the other hand, as the DPPC exists in the gel phase at room
temperature, it forms one of the most resilient membranes of the
coronavirus. Even such a robust membrane, however, fails in
aqueous disinfectant solutions containing more than≈32 mol %
(corresponding to ≈55 wt %) ethanol. Therefore, an ethanol
concentration below ≈20 mol % in the disinfectants is hardly
efficient in the deactivation of the coronavirus. On the other
hand, an ethanol concentration above ≈32 mol % in the
disinfectants will make the viral membrane dysfunctional,
regardless of which of the lipids studied here dominates in the
membrane.
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Dependence of Structure, Bending Rigidity, and Bilayer Interactions of
Dioleoylphosphatidylcholine Bilayers. Biophys. J. 2008, 94, 117−124.
(45) Kucerka, N.; Nagle, J. F.; Sachs, J. N.; Feller, S. E.; Pencer, J.;
Jackson, A.; Katsaras, J. Lipid bilayer structure determined by the
simultaneous analysis of neutron and X-ray scattering data. Biophys. J.
2008, 95, 2356−2367.
(46) Liu, Y.; Nagle, J. F. Diffuse scattering provides material
parameters and electron density profiles of biomembranes. Phys. Rev.
E 2004, 69, 40901.

(47) Lee, C. W.; Chiang, Y. L.; Liu, J. T.; Chen, Y. X.; Lee, C. H.;
Chen, Y. L.; Hwang, I. S. Emerging Roles of Air Gases in Lipid Bilayers.
Small 2018, 14, 1802133.
(48) Steltenkamp, S.; Müller, M. M.; Deserno, M.; Hennesthal, C.;
Steinem, C.; Janshoff, A. Mechanical Properties of Pore-Spanning Lipid
Bilayers Probed by Atomic Force Microscopy. Biophys. J. 2006, 91,
217−226.
(49) Chaurasia, A. K.; Rukangu, A. M.; Philen, M. K.; Seidel, G. D.;
Freeman, E. C. Evaluation of bending modulus of lipid bilayers using
undulation and orientation analysis. Phys. Rev. E 2018, 97, 032421.
(50) Schubert, T.; Schneck, E.; Tanaka, M. First order melting
transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase
membranes in molecular dynamics simulations with atomistic detail. J.
Chem. Phys. 2011, 135, 055105.
(51) Kucěrka, N.; Liu, Y.; Chu, N.; Petrache, H. I.; Tristram-Nagle, S.;
Nagle, J. F. Structure of Fully Hydrated Fluid Phase DMPC and DLPC
Lipid Bilayers Using X-Ray Scattering from Oriented Multilamellar
Arrays and from Unilamellar Vesicles. Biophys. J. 2005, 88, 2626−2637.
(52) Petrache, H. I.; Tristram-Nagle, S.; Nagle, J. F. Fluid phase
structure of EPC and DMPC bilayers. Chem. Phys. Lipids 1998, 95, 83−
94.
(53) Orsi, M.; Michel, J.; Essex, J. W. Coarse-grain modelling of
DMPC and DOPC lipid bilayers. J. Phys.: Condens. Matter 2010, 22,
155106.
(54) Sankaram, M. B.; Thompson, T. E. Deuterium Magnetic
Resonance Study of Phase Equilibria and Membrane Thickness in
Binary Phospholipid Mixed Bilayers. Biochemistry 1992, 31, 8258−
8268.
(55) de Joannis, J.; Jiang, Y.; Yin, F.; Kindt, J. T. Equilibrium
distributions of dipalmitoyl phosphatidylcholine and dilauroyl
phosphatidylcholine in a mixed lipid bilayer: Atomistic semigrand
canonical ensemble simulations. J. Phys. Chem. B 2006, 110, 25875−
25882.
(56) Eslami, H.; Gharibi, A.; Müller-Plathe, F. Mechanisms of
Nucleation and Solid−Solid-Phase Transitions in Triblock Janus
Assemblies. J. Chem. Theory Comput. 2021, 17, 1742−1754.
(57) Attwood, S. J.; Choi, Y.; Leonenko, Z. Preparation of DOPC and
DPPC supported planar lipid bilayers for atomic force microscopy and
atomic force spectroscopy. Int. J. Mol. Sci. 2013, 14, 3514−3539.
(58) Terama, E.; Ollila, O. H.; Salonen, E.; Rowat, A. C.; Trandum,
C.; Westh, P.; Patra, M.; Karttunen, M.; Vattulainen, I. Influence of
ethanol on lipid membranes: From lateral pressure profiles to dynamics
and partitioning. J. Phys. Chem. B 2008, 112, 4131−4139.
(59) Potter, T. D.; Barrett, E. L.; Miller, M. A. Automated Coarse-
Grained Mapping Algorithm for the Martini Force Field and
Benchmarks for Membrane−Water Partitioning. J. Chem. Theory
Comput. 2021, 17, 5777−5791.
(60) Müller, T. J.; Müller-Plathe, F. A comparison of sulfur mustard
and heptane penetrating a dipalmitoylphosphatidylcholine bilayer
membrane. J. Hazard. Mater. 2009, 168, 13−24.
(61) Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural
Networks. JMLRWorkshop and Conference Proceedings 2011, 315−323.
(62) Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of
machine learning; Adaptive computation and machine learning series;
MIT Press: Cambridge, MA, 2012.
(63) Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
Salakhutdinov, R. R. Improving neural networks by preventing co-
adaptation of feature detectors. 2012, arXiv:1207.0580. arXiv e-prints.
https://arxiv.org/abs/1207.0580 (accessed 2022-03-11).
(64) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan,
G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf,
A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.;
Steiner, B.; Fang, L.; Bai, J.; Chintala, S. In Advances in Neural
Information Processing Systems 32; Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran
Associates, Inc.: 2019; pp 8024−8035.
(65) LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015,
521, 436−444.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01120
J. Chem. Theory Comput. 2022, 18, 2597−2615

2614

66



(66) Kingma, D. P.; Ba, J. Adam: AMethod for Stochastic Optimization.
2017, arXiv:1412.6980. arXiv e-prints. https://arxiv.org/abs/1412.6980
(accessed 2022-03-11).
(67) Lewis, R. N.; Zhang, Y. P.; McElhaney, R. N. Calorimetric and
spectroscopic studies of the phase behavior and organization of lipid
bilayer model membranes composed of binary mixtures of
dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
Biochim. Biophys. Acta - Biomembr. 2005, 1668, 203−214.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01120
J. Chem. Theory Comput. 2022, 18, 2597−2615

2615

67



Supporting Information: How Ethanolic

Disinfectants Disintegrate Coronavirus Model

Membranes: A Dissipative-Particle-Dynamics

Simulation Study

Tianhang Zhou,† Zhenghao Wu,† Shubhadip Das,† Hossein Eslami,∗,†,‡ and

Florian Müller-Plathe †

†Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität

Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany

‡College of Sciences, Persian Gulf University, Boushehr 75168, Iran

E-mail: h.eslami@theo.chemie.tu-darmstadt.de

1

68



Dependence of the Phase of the Membrane on the Hydro-

carbon Tail Length and its Degree of Saturation

Figure S1 shows that the phase of the membrane depends on the hydrocarbon tail length

and its degree of saturation. In other words, the type of the head group does not have a

noticeable influence on the phase of the membrane.

Figure S1: Dependence of the phase of the phosphatidylcholines (PCs)-, phos-
phatidylethanolamines (PEs)-, and phosphatidylinositols (PIs)-membranes on the hydrocar-
bon tail length and its degree of saturation at room temperature. The data are taken from
the literature.1 The numbers in parenthesis are the length of the hydrocarbon tail and the
number of unsaturated bonds in the hydrocarbon tail of the lipid molecule. For example, the
dimyristoylphosphatidylcholin (DMPC), which is studied in this work, contains hydrocarbon
tails of length 14 and has no unsaturated bonds, is shown as PC (14:0). To our knowledge,
there is only one reported value in the literature on PI membranes. The arrows indicate the
three PCs studied in this work, namely, DMPC, dioleoylphosphatidylcholine (DOPC), and
dipalmitoylphosphatidylcholine (DPPC). Solid and open symbols represent saturated and
unsaturated lipids, respectively.
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Mixing of lipids

Figure S2: (a) ∆l0,mix = l0 − l0,ideal for mixed membranes. (b-c) Composition-dependence
of the membrane thickness for DPPC (dipalmitoylphosphatidylcholine) -DMPC (dimyris-
toylphosphatidylcholine), DPPC-DOPC (dipalmitoylphosphatidylcholine), and DMPC-
DOPC binary membranes. The dashed lines indicate ideal mixing behavior (see Eq. (11)
the main text).
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Phase transition of DPPC membrane with increasing tem-

perature

As shown in Figure S3, DPPC lipid membrane shows a clear gel to the liquid crystalline

phase transitions at 320 K. This is also also confirmed by the orientational order parameter

S0 = 0.512, which is closed to those of DOPC (S0 = 0.426) and DMPC (S0 = 0.467).

Figure S3: (a) Snapshots of DPPC (dipalmitoylphosphatidylcholine) lipid bilayers sur-
rounded by pure water at different temperatures. The blue and red spheres show head
groups and the lipid tails, respectively. (b) Temperature-dependence of the orientational
order parameter for DPPC immersed in pure water.
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Dependence of the volume of lipid membrane on the ethanol

concentration

As shown in Figure S4, ratio (a · l)/(a0 · l0) of DOPC and DMPC lipid membranes (liquid

phase) is higher than 1 while (a · l)/(a0 · l0) of DPPC membrane (gel phase) deviates a lot.

This indicates that the quasi-volume conservation of liquid phase.

Figure S4: Dependence of (a · l)/(a0 · l0) of pure DMPC (dimyristoylphosphatidylcholine),
DOPC (dioleoylphosphatidylcholine), and DPPC (dipalmitoylphosphatidylcholine) mem-
branes on the ethanol concentration.
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Machine learning model

Table S1: Hyperparameters of DNN

Hyperparameters Values

Batch size 100
Learning rate 0.001

Number of NN layers 5
Dropout rate 0.2

Activate function ReLU

Training and predicting of DNN

The training and testing datasets for developing DNN models in our MembraneNN frame-

work are summarized in the table below:

Table S2: The training and testing datasets for developing DNN models

Composition Alcohol Concentration Training datasets Testing datasets

DPPC 0 mol % 2.8× 104 molecules 1.2× 104 molecules
70 mol % 2.8× 104 molecules 1.2× 104 molecules

DMPC 0 mol % 2.8× 104 molecules 1.2× 104 molecules
70 mol % 2.8× 104 molecules 1.2× 104 molecules

DOPC 0 mol % 2.8× 104 molecules 1.2× 104 molecules
70 mol % 2.8× 104 molecules 1.2× 104 molecules

The trained DNN models using these pure membranes are used to predict state variables

for mixed membranes of various compositions.
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Loss function during training DNN

Figure S5: Loss functions of respective DNN models for DMPC (dimyristoylphosphatidyl-
choline, blue color), DOPC (dioleoylphosphatidylcholine, red color) and DPPC (dipalmi-
toylphosphatidylcholine, green color) lipid molecules. The hollow and filled symbols are
training and test loss values.

Figure S6: Probability density distribution of machine learned intact state variables for
DOPC (dioleoylphosphatidylcholine) lipid molecules at alcohol concentrations φ = 0.0 (blue),
φ = 0.4 (red) and φ = 0.9 (green).

The intact λ1 and ruptured λ2 state values of the DMPC single membrane are shown in

Figure S7. The crossing point (∼ 20.7 mol % ethanol) of the two curves fitted through λ1

and λ2 points, represents the stability-rupture transition in DMPC (see Figure S7). For the

DOPC and DPPC, the transition points are at ∼ 27.5 and 31.6 mol % ethanol (see Figures

S8 and S9), respectively. However, a close look at the transition regimes shown in Figure
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S7-S9, show that unlike the common phase transitions such as liquid-vapor2 or solid-liquid3,4

transitions, the intact-ruptured transition in membranes is not a sharp transition. From the

intact region to the ruptured state, the two parameters (λ1 and λ2) vary gradually. An

estimation of linear variations of λ1 and λ2 over the intact region and extrapolation to the

crossing point, represents well the transition points; 19.4, 28.1, and 30.3 mol %, for DMPC,

DOPC, and DPPC, respectively, which are very close to the transition points found as the

crossing points of λ1 and λ2 curves. This means that using the concentrations from Table 2

in the manuscript and subsequent extrapolation to the crossing point is enough to find the

stability-rupture transition quite accurately.
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Machine-learned state variables

Figure S7: Variation of state variables λ1 and λ2 for a DMPC (dimyristoylphosphatidyl-
choline) bilayer, immersed in aqueous solutions containing various concentrations of ethanol
at 298 K. Open and filled markers represent the ruptured and intact bilayers, respectively.
Snapshots corresponding to (λ1, λ2)=(0.9, 0.1), (0.56, 0.44), (0.48, 0.52), and (0.08, 0.92)
are shown in the figure. The blue and red colors in the snapshots show head and tail lipid
groups, respectively.
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Figure S8: Variation of parameters λ1 and λ2 for DOPC (dioleoylphosphatidylcholine) bi-
layer, immersed in aqueous solutions containing ethanol, with ethanol concentration at 298
K. Open and filled markers represent the disrupted and intact bilayers, respectively. Snap-
shots of simulation box corresponding to (λ1, λ2)=(0.89, 0.11), (0.49, 0.51), (0.48, 0.52), and
(0.13, 0.87) are shown in the figure. The blue and red colors in the snapshots show head and
tail lipid groups, respectively.
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Figure S9: Variation of parameters λ1 and λ2 for DPPC (dipalmitoylphosphatidylcholine)
bilayer, immersed in aqueous solutions containing ethanol, with ethanol concentration at
298 K. Open and filled markers represent the disrupted and intact bilayers, respectively.
Snapshots of simulation box corresponding to (λ1, λ2)=(0.98, 0.02), (0.51, 0.49), (0.47,
0.53), and (0.09, 0.91) are shown in the figure. The blue and red colors in the snapshots
show head and tail lipid groups, respectively.
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3.4 Optimization of Heat Transfer Efficiency of Copolymers from the
Perspective of Inverse Design

Reproduced with permission from Zhou et al. [J. Chem. Theory Comput. 2021, 17, 6, 3772–3782]
Copyright 2021 American Chemical Society.
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ABSTRACT: Polymer sequence engineering is emerging as a
potential tool to modulate material properties. Here, we employ a
combination of a genetic algorithm (GA) and atomistic molecular
dynamics (MD) simulation to design polyethylene−polypropylene
(PE−PP) copolymers with the aim of identifying a specific
sequence with high thermal conductivity. PE−PP copolymers with
various sequences at the same monomer ratio are found to have a
broad distribution of thermal conductivities. This indicates that the
monomer sequence has a crucial effect on thermal energy transport
of the copolymers. A non-periodic and non-intuitive optimal
sequence is indeed identified by the GA, which gives the highest
thermal conductivity compared with any regular block copolymers,
for example, diblock, triblock, and hexablock. In comparison to the bulk density, chain conformations, and vibrational density of
states, the monomer sequence has the strongest impact on the efficiency of thermal energy transport via inter- and intra-molecular
interactions. Our work highlights polymer sequence engineering as a promising approach for tuning the thermal conductivity of
copolymers, and it provides an example application of integrating atomistic MD modeling with the GA for computational material
design.

■ INTRODUCTION

The rapid development of modern industries in energy storage
and semiconductor fabrications demands advanced functional
materials. Block and random copolymers have emerged as
promising candidates because of their rich advantages,
including high ionic conductivity, convenient microdomain
tunability, and facile processability.1−8 However, the low
intrinsic thermal conductivity of polymeric materials limits
the heat dissipation during the operation. Consequently, the
generated heat may cause degradation and reduce the
reliability and performance of copolymeric products. Hence,
much effort has been directed toward understanding and
controlling the heat exchange in copolymeric materials.9−12

It is well known that alignment of polymer chains is one way
to enhance the thermal conductivity of pure polymeric
materials.13−16 For instance, ultra-drawn polyethylene nano-
fibers have a thermal conductivity of 104 W m−1 k−1, which is 3
orders higher than in the amorphous state.15 The spatial
arrangement of chains can be achieved via blending different
polymers. This approach has also been proved to increase the
thermal conductivity of polymeric materials.17,18 These studies
indicate that the thermal conductivity of polymeric materials
has an intimate relationship with the chain conformation. The
microscopic conformations in block copolymers can be tuned
by changing either the fraction or the sequence of monomers,

providing an opportunity to achieve a high thermal
conductivity in bulk polymers. For example, Wei and Luo
found that the thermal conductivity of polyethylene−
polypropylene (PE−PP) diblock copolymers can be tuned by
the block ratio.19 Moreover, the monomer sequence has
recently been reported to influence multiple material proper-
ties of block copolymers such as complex morphology,20 coil−
collapse transitions,21 and electrostatic interactions.22,23 Will a
specific monomer sequence of copolymers enable a maximum
thermal-conductive efficiency?
To answer this question, we first need strategies to efficiently

explore a huge number of possible sequences. For example, it is
2N permutations for a copolymer liquid of chain length N
which has only two types of monomers. Although several
sequence-defined polymers with limited chain length and
chemistries have been synthesized,20,24,25 it remains a challenge
for polymer chemists to synthesize routinely sequence-defined
polymers.26 In contrast, molecular dynamics (MD) simulation
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has been a valuable and powerful tool for studying various
properties of polymeric materials such as rheology,27

dynamics,28,29 and thermal energy transport.30−32 Advanced
machine-learning algorithms are being increasingly interlinked
with MD simulation to accelerate material design.33−37

Recently, Simmons and co-workers proposed a computational
framework by integrating the genetic algorithm (GA) with the
coarse-grained MD simulations to design polymeric materials
with target properties.38−40 Compared with the growing
prevalence of machine-learning material design frameworks,
which train models with the existing experimental or
simulation data and predict material properties interpolatively,
the use of MD simulation for fitness assessment in the GA
allows us to design target materials with properties well outside
the known materials. More recently, Patra et al. demonstrated
an optimization workflow connecting a Monte Carlo tree
search with MD simulations for inverse copolymer design in a
scalable and efficient way.41

In this work, we employ a combinational strategy, which
combines GA and atomistic MD simulations, to study the
sequence effect on the thermal conductivity of an example
system, a united-atom model of PE−PP copolymers. Here, the
atactic form of polypropylene chains is chosen. We conduct
non-equilibrium MD (NEMD) simulations to evaluate thermal
conductivities for a total of ∼600 different sequences of PE−
PP copolymers generated automatically by the GA algorithm.
This evolutionary algorithm successfully finds a non-periodic
and non-intuitive optimal sequence of PE−PP copolymers
with high thermal conductivity, which is better than any of the
PE and PP homopolymers and regular block copolymers, for
example, diblock, triblock, and hexablock. The conventional
statistical parameters to describe copolymers such as the mean
block length and monomer fraction are found to be insufficient
in predicting the thermal conductivity of PE−PP copolymers.
The correlations between thermal conductivity and chain
conformations of copolymers have been investigated. To gain
an insight into vibrational modes that are modified or initiated
by the varying sequence and their influence on the thermal
energy transfer of PE−PP copolymers, the vibrational density-
of-states (VDOS) at the monomer level has also been
analyzed.

■ METHODOLOGY
GA. The general idea of GA is to mimic the evolutionary

biological selection process with the aim of optimizing the
system’s properties. In standard GA, the initial population of
individuals is randomly selected.42 Each individual in the
population is then evaluated according to some problem-
specific fitness function. After determining the fitness score, a
new population with a distribution biased toward higher-
fitness-score members compared with the previous population
is generated by performing three genetic operations: selection,
crossover, and mutation. Figure 1 illustrates the implementa-
tion of GA operations in this work. First, the candidates with
higher-fitness scores are selected as parents to produce new
offspring (copolymer sequences). In practice, to simulate the
survival of the fittest, the candidates with higher-fitness scores
are selected with higher probabilities than those with lower-
fitness scores via fitness-proportional selection such as roulette
wheel selection. Second, the crossover operation combines the
selected parents to produce new offspring. Since stronger
(fitter) individuals are being selected more often, there is a
tendency that the newly generated individuals may become

very similar after several generations, and the diversity of the
population may decline. This could lead to population
stagnation. Mutation is a mechanism employed to inject
diversity into the population to avoid stagnation. These three
operations are iterated until the target properties are achieved
or the maximum number of generations is reached. In this
work, the fitness assessment of the GA is conducted via MD
simulations. We employ a mapping scheme of polymer
sequences to binary genomes in which “0” and “1” represent
a PE monomer and a PP monomer, respectively, as illustrated
in Figure 1. Each copolymer chain contains 30 monomers, with
each possible candidate mapped to a 30-gene binary genome.
The optimization of GA is initiated with a population of 30
randomly generated monomer sequences. The fitness score of
a single candidate is represented by the thermal conductivity of
the sequence-specific PE−PP copolymer melt measured by
NEMD simulations. These fitness evaluations of 30 candidates
(MD simulations) are performed simultaneously via an
automated protocol.
This automated protocol yields the computed thermal

conductivity k of a batch of PE−PP copolymer sequences. The
raw fitness score of each sequence is then defined as z = k. To
maintain consistent selection pressure, a linear scaling f(z) = az
+ b, where a and b are constants, is performed to normalize the
fitness scores f to span the interval from 0 to 1 within each
generation.42 Our GA utilizes the single candidate elitism,42 in
which the candidate with the highest-fitness score (highest
thermal conductivity k) is cloned to the next generation
without any modification. At the same time, other members of
the successor generation are generated by the standard GA:
after each generation, roulette wheel selection is used to select
the parents for generating new candidates in the next
generation. The selected parents are combined via the uniform
crossover with a probability of 0.8, in which the child genes are
obtained by mixing “father’s” genes with “mother’s” genes at a
probability of 0.8. Subsequently, point mutations at a rate of
0.01 per gene are applied to a new candidate in the next
generation. For instance, a PP monomer has a probability of
0.01 to be changed into a PE monomer during the point
mutation procedure.

Figure 1. Flow chart of the molecular-dynamics-based GA used in this
work: genome mapping; genetic operations; and evolution processes.
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In GAs such as this where the target of optimization is a
physical property measured through simulation, the speed-
determining step is frequently the fitness evaluation. In MD−
GA of this work, approximately 8 h of MD simulation on 40
CPUs is required to determine the fitness score (thermal
conductivity) of each copolymer sequence within reasonable
uncertainty bounds (±∼5.0%). A regular optimization using
the GA might reach hundreds to thousands of generations,
with each generation composed of a population of tens of
individuals (constant through the course of GA). Differently,
the results of all MD simulations are stored by the GA such
that the prediction is reused when a particular copolymer
sequence is found to repeat from prior generations in order to
minimize the number of MD simulations required in this work.
The thermal conductivity of the rediscovered copolymer
sequence is recalled from the database of prior generations
rather than running fresh MD simulations. The population size
of each generation is therefore variable in our GA, similar to
the prior work of Simmons et al..38 The copolymer sequences
rediscovered in each generation are accumulated, which
effectively increases the population size. The population size
as a function of generations is shown in Figure 2.

MD Simulations. The optimized potential for liquid
simulations-united atom force field is employed to describe
the interactions between PE and PP monomers (as
summarized in Table S1).43 Compared with the all-atom
model, previous studies showed that the united-atom model
reproduces thermal transport properties of polymeric fluids
more accurately.44 The chains of PE and PP homopolymers
and examples of regular and irregular PE−PP copolymers are
shown in Figure 3a−f, where hydrogen atoms are adsorbed by
carbon atoms. The number of repeat units in the polymer
chains is chosen to be 30 in all systems studied in this work.
The initial configuration of copolymers with chains of the same
monomer sequences is generated by Moltemplate.45 The total
number of united atoms in the system is kept to be ∼18000,
resulting in a cubic simulation box with the side length of ∼80
Å. An example snapshot of the diblock copolymer PE15PP15
system is shown in Figure 3g. All simulations are carried out
using the large-scale molecular/atom parallel simulator pack-
age under periodic boundary conditions.46 Initially, systems are
equilibrated in the NPT ensemble at T = 600 K and P = 1 bar
for 6 ns using the Nose−́Hoover thermostat and barostat with
the coupling times of 0.2 and 2.0 ps, respectively. A timestep of
2 fs is used in all simulations during equilibration. At this
temperature, PE and PP chains are relatively flexible, and the

structure relaxation is sufficiently achieved within the given
equilibration time. The relaxation process of radius of gyration
for an example copolymer system is shown in Figure S1 of
Supporting Information.
After equilibration, a non-equilibrium simulation follows to

calculate the thermal conductivity of the copolymers with a
timestep of 0.5 fs. Figure 4 shows a schematic of the NEMD
simulation method. Specifically, a constant energy per time is
added into and subtracted from the “hot” (heat source) and
“cold” (heat sink) regions. The heat source of thickness 10 Å is
positioned in the center and two heat sinks, each with
thickness of 5 Å, are set at two edges of the periodic simulation
box. The velocity rescaling method is used to maintain the
desired temperature of the heat source and sink. The thermal
conductivity of each copolymer sequence is calculated by
Fourier’s law: k = −J/(dT/dz), where J is the heat flux at the
steady state and dT/dz is the temperature gradient. 20 Å-wide
regions, which are used for calculating the temperature
gradient, are located in between the hot and cold regions.
The NEMD calculations performed at a constant volume using
the box dimension averaged over the last half period from the
equilibration step. One example of the temperature profile at
the steady state is shown in Figure 4b. The data collection run
of NEMD simulations is divided into three blocks, from each
of which a thermal conductivity value is computed. The
thermal conductivity of each copolymer sequence is averaged
over these values with their standard deviation taken as error
bars. More details about the simulation details can be found in
the Supporting Information.

Spectral Analysis. In order to better understand the
mechanisms of thermal energy transport in bulk copolymer

Figure 2. Actual population size (solid line) and the number of new
fitness evaluations (MD simulations) (dashed line) as a function of
generation index in the molecular-dynamics-based GA.

Figure 3. Schematics of polymer chain models with 30 monomers of
the (a) PE (polyethylene) homopolymer, (b) PP (polypropylene)
homopolymer, (c) regular diblock (PE15PP15) copolymer, (d) regular
decablock ((PE3PP3)5) copolymer, and (e,f) irregular copolymers
obtained from molecular-dynamics-based GA with PE contents (e)
53.3% and (f) 80%. (g) Snapshot of a regular diblock copolymer
PE15PP15 system at 600 K and 1 bar. The CH3, CH2, and CH united
atoms are shown in yellow, red, and blue colors, respectively.
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systems, the VDOS D(ω) has been analyzed, which is defined
as

D
k T

m v v( )
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d e ( ) (0)
i

i
i

i i
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∫∑ω τ τ= ⟨ · ⟩
−∞

+∞ ωτ
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where τ is the time and ω is the frequency. In this work, mi and
vi are the average mass and velocity at the center of mass of
monomers i, respectively. The Fourier transform of the velocity
auto-correlation function is proportional to the VDOS.47 In
order to analyze the thermal conductivity results, we calculate
the VDOS of all monomers in the polymer chain. The
velocities are collected every 20 MD steps (40 fs) for 1.0 ps
time blocks. A Gaussian convolution with a width of 1.6 THz
was applied to smooth the spikes in the VDOS.32

■ RESULTS AND DISCUSSION
We start by evaluating the performance of the MD−GA
strategy on designing high-thermal-conductive PE−PP copoly-
mers. As shown in Figure 5, the highest thermal conductivity of
the copolymer at each generation increases during the
evolution of MD−GA. GA optimization is terminated at the
20th generation, partially, because of the time constraint since
the MD simulation of the PE−PP united-atom model is
relatively expensive; more importantly, the improvement of the
highest thermal conductivity is found to be stagnant with
additional generations. We find that the thermal conductivity
of the optimal sequence obtained at the 20th generation is
enhanced about 7 and 45% compared with PE and PP
homopolymers, respectively. This indicates that our MD−GA
workflow is indeed able to identify the optimal sequence of
PE−PP block copolymers with high thermal conductivity. An
optimal sequence with k = 0.104 W m−1 K−1 is also shown in
the inset of Figure 5. It is noted that this sequence is evidently
non-periodic and non-intuitive. Specifically, this GA-optimized
sequence has a long block of PE located in the center and small
fractions of PP monomers near the ends of the chain. These
arrangements of blocks in this specific sequence balance the
thermal energy transfer via bonded and non-bonded
interactions, which enables it to reach a maximum efficiency.

The underlying physical origin of this sequence specificity in
thermal energy transfer in PE−PP copolymers is discussed in
detail in the following sections.
It has long been believed that the mean block length of

copolymers is a meaningful descriptor and predictor for their
properties. In order to understand the sequence specificity, we
first focus on the correlation between the mean block length of
all MD−GA generated copolymer sequences and their
calculated thermal conductivities. The mean block length lb
is defined as the arithmetic mean of the length of all PE and PP
blocks: lb = N/Nb, where N and Nb are the total number of
monomers and the number of blocks, respectively. Figure 6
depicts the thermal conductivity as a function of mean block
length lb of all sequences. Notably, the MD−GA strategy
generates copolymer sequences covering many different mean
block lengths lb ranging from ∼1.5 to ∼6. The thermal
conductivity generally increases when the mean block length is
within the regime of 1 < lb ≤ 2.8, and when lb > 2.8, the mean
block length seems not to affect the thermal conductivity

Figure 4. (a) Snapshot of a regular diblock copolymer PE15PP15 system under NEMD simulations. Regions of heat addition and subtraction are
labeled as “hot” and “cold”, respectively. (b) An example of the steady-state temperature profile along the direction of heat transfer (z) in the
NEMD simulation. The temperature gradient is calculated from the average of two absolute values.

Figure 5. Thermal conductivity of all copolymer sequences obtained
from the MD−GA strategy (black points) vs the generation index at T
= 600 K and P = 1 bar. The best copolymer candidates for each
generation are denoted with large black points. Blue and orange beads
represent PE and PP monomers, respectively. Light and dark dashed
lines are the thermal conductivity of PE and PP homopolymers. The
gray-squared symbols represent the mean fitness of the thermal
conductivity for various copolymer sequences at each generation.
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significantly. Furthermore, the variation of the thermal
conductivity is approximately 10−40% in copolymers with
the same lb. This broad distribution of thermal conductivity
therefore indicates that the mean block length alone is not a
good prediction for the thermal conductivity of PE−PP
copolymers. Additionally, we find that the optimal sequence
identified by the MD−GA strategy outperforms all regular
block copolymers, namely, hexablock ((PE5PP5)3), decablock
((PE3PP3)5), and alternating ((PE1PP1)15) copolymers, by at
least ∼15% on the thermal conductivity.
Another statistical parameter to describe block copolymers is

the monomer fraction. Therefore, we analyze the inter-
correlations between the monomer fraction, the mean block
length, and the thermal conductivity of all copolymer
sequences. Figure 7 shows the thermal conductivity of all
copolymer sequences as a function of the mean block length lb
and the PE monomer fraction λ, where λ is defined as the ratio

between the number of PE monomers and the total number of
monomers equal to 30 for a single copolymer chain. The dark
blue points in Figure 7 correspond to the regime of PE−PP
copolymers with high thermal conductivity; the lighter color
represents the lower thermal conductivity. We observe that the
thermal conductivity of PE−PP copolymers is enhanced with
the increase of both the mean block length and the PE
monomer fraction, while it reaches a high value in the vicinity
of lb ≈ 4 and λ ≈ 0.8, as shown in Figure 7a. However, a great
number of light color points are also found in PE−PP
copolymers with almost all mean block lengths and PE
monomer fractions in the three-dimensional plots, as shown in
Figure 7b. This indicates the uniqueness of the optimal
sequence, and it again demonstrates the effect of the monomer
sequence on the thermal energy transport of PE−PP
copolymers. The thermal conductivities presented above,
upon which the analyses are based, are measured at T = 600
K because the polymer structure can be equilibrated faster at
high temperatures. The thermal conductivities of several
typical regular, random, and optimal copolymer sequences
calculated at T = 300 K are shown in Figure S3. The general
trend of the thermal transport behavior of PE−PP copolymers
as a function of the mean block length lb or ethylene monomer
fraction λ is essentially the same at room temperature as that at
high temperatures. Most importantly, the optimal sequence is
still found to outperform any other copolymer sequences at
room temperature.
Previous studies suggest that thermal conductivity of

polymeric materials is closely correlated with chain con-
formations (e.g., radius of gyration).18,19,48−50 For example,
Luo and co-workers have extensively shown that an amorphous
polymer with more extended chains has a higher thermal
conductivity.18 We measure chain extensions in terms of radius
of gyration Rg to examine its possible relation with the
monomer sequence effect on copolymer thermal energy
transport. Figure 8a describes the correlation between the
thermal conductivity of copolymers with varying sequences
and the ensemble averaged mean-square radius of gyration
⟨R2⟩. Specifically, PE−PP copolymers with the same ⟨R2⟩ have
diverse thermal conductivities, variation of which is approx-
imately 25%. A linear fit is found to reasonably describe the

Figure 6. Thermal conductivity of all copolymer sequences obtained
from the MD−GA strategy (black points) vs mean block length (lb).
The best, worst, hexablock, decablock, and alternating copolymers are
highlighted in red, green, orange, brown, and pink color symbols,
respectively. All systems are at T = 600 K and P = 1 bar. Blue and
orange beads represent PE and PP monomers, respectively.

Figure 7. (a) Two-dimensional and (b) three-dimensional plots of the variation of thermal conductivities of copolymers from the MD−GA strategy
as a function of the PE monomer fraction λ and the mean block length lb at T = 600 K and P = 1 bar.
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relation between the thermal conductivity of various
copolymer sequences and their ⟨R2⟩. Furthermore, it is
evidently observed that a copolymer sequence with a high
thermal conductivity possesses a large ⟨R2⟩. However, the exact
relation between the monomer sequence and the chain
conformations in copolymers is still not comprehensively
understood,35 and it is out of the scope of this work.
We also consider the connection of material properties such

as the bulk density48 with the effect of monomer sequence
observed in thermal transport behaviors of PE−PP copoly-
mers. As a first approximation, Hands et al.51 proposed an
empirical prediction for the thermal conductivity of polymer
liquids above the glass-transition temperature: k ≈ ρ4/3. This
relation has been found to reasonably predict the thermal
conductivity of numerous polymer chemistries.50,52 Figure 8b
depicts the thermal conductivity of various copolymer
sequences as a function of their densities. As in the discussion
about chain conformations mentioned above, we also use a
linear equation to fit the relation between the bulk density and
thermal conductivity of PE−PP copolymers with various
sequences. Compared with the Hands model, the linear
equation performs similarly in describing their relation.
Moreover, we find that copolymers with high thermal

conductivity are found in the regime of higher bulk densities.
The intimate relation between the bulk density and the
thermal conductivity is generally valid in PE−PP copolymers,
albeit with variations of ∼25% in thermal conductivity among
copolymers of the same bulk density. Additionally, we analyze
the correlation between the radius of gyration, the bulk density,
the mean block length, and the thermal conductivity of all
copolymer sequences, as shown in Figure 8c. Specifically, the
bulk density and squared radius of gyration are observed to be
roughly in a linear correlation. The dark blue points, which
represent the copolymers with high thermal conductivities,
tend to cluster at the region of large density and radius of
gyration, regardless of the mean block length. The long tails of
light blue points at various mean block lengths once more
underline the monomer specificity of the thermal energy
transfer in PE−PP copolymers.
We further investigate the efficiency of thermal energy

transfer via bonded and non-bonded interaction by calculating
the VDOS. Milkus et al. used the VDOS to characterize the
variation of thermal conductivities due to chain stiffness and
chain lengths in polymer liquids.53 They found that, in
principle, the low-frequency VDOS corresponds to inter- and
intra-chain non-bonded interactions and the high-frequency

Figure 8. (a) Thermal conductivity of each copolymer obtained from MD-based GA (black points) vs mean-square radius (⟨Rg2⟩). The solid blue
line is the fit of average thermal conductivity of all copolymers ∼⟨Rg2⟩. (b) Thermal conductivity of each copolymer obtained from MD-based GA
(black points) vs the mass density (ρ). The solid blue line is the fit of average thermal conductivity of all copolymers ∼ρ. The solid purple line is the
fit of average thermal conductivity of all copolymers ∼ρ4/3. (c) Thermal conductivities of copolymers (color-coded) as a function of ⟨Rg2⟩, ρ, and
the mean block length lb. All systems are at T = 600 K and P = 1 bar.
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VDOS corresponds to bonded interactions. Recently, the
VDOS has also been used to investigate the variation of the
thermal conductivity of polymeric systems under external
strain fields.54 Here, the monomer VDOS profiles D(ω) of the
best and the worst copolymers (Figure 9a) have been
calculated from eq 1, where the average mass and velocity at
the center of mass of monomers have been used. The VDOS is
normalized so that the integral area of D(ω) is unity. We
separate VDOS into three frequency regions: low- (0−10
THz), middle- (10−25 THz), and high- (>25 THz) frequency
regions (Figure 9a). We notice that the VDOSs of two
sequence-specific copolymers are very similar except for small
derivations in low- and high-frequency regions. We calculated
the ratio of the respective regions in order to analyze the
contributions from the different frequency regions more
quantitatively via

D( )d 100%
i

i

,s

,e∫ ω ω ×
ω

ω

(2)

where ωi,s and ωi,e are the lower and upper frequencies of the
ith frequency region, respectively. Figure 9b shows the
percentage of contributions for five types of copolymers
including both regular block and sequence-specific copolymers.
The contributions of the low- and high-frequency vibrations in
the optimal sequence with a high thermal conductivity are
evidently larger compared with those for other copolymer
sequences. This implies that the copolymer with optimal
sequence exhibits high efficiencies of thermal energy transfer
via both bonded and non-bonded interactions. It is noted that
the middle-frequency VDOSs are vibrational modes that are
expected to be associated with the angular interaction.53 The
exact examination of the effect of the angular interaction on the
thermal energy transfer needs detailed spectral analysis, which
is not the focus of this study.

The detailed VDOS analysis illustrates the different
efficiencies of thermal energy transfer through bonded and
non-bonded interactions in PE−PP copolymers. We further
analyze the intermolecular distance to elucidate the mechanism
of thermal energy transfer through non-bonded interactions in
PE−PP copolymers with various monomer sequences. For
instance, the smaller intermolecular distance usually leads to
larger non-bonded interactions, enabling it to contribute more
to the thermal energy transfer. Indeed, a prior work of Wei and
Luo revealed that the replacement of PP monomers by PE
monomers results in increasing efficiency of the thermal energy
transfer through non-bonded interactions in PE−PP diblock
copolymer melts.19 To this end, we examine the intermolecular
radial distribution function g(r) to understand different
efficiencies of thermal energy transfer routes, particularly,
non-bonded interactions in the sequence-specific copolymers.
The intermolecular radial distribution function g(r) is defined
as the probability of finding a monomer (center of mass) in
different polymer chains at a distance r from a given monomer.
As seen in Figure 10a, we find that the distance between chains
in the copolymer with the optimal sequence is evidently
smaller than any other typical copolymer sequences, implying a
higher efficiency of thermal energy transfer via non-bonded
interactions. Additionally, the smaller intermolecular distance
of the decablock copolymer compared with that of hexablock
copolymer, as shown in Figure 10a, supports that the former
outperforms the latter in terms of thermal conductivity,
although they have the same 1:1 ratio of PE and PP
monomers. Furthermore, we investigate the coordination
number cinter, which is defined as the integral over g(r) from
0 to the position rp of the first peak of g(r) as

c r g r r4 ( ) d
r

inter
0

2
m

p∫ π ρ=
(3)

Figure 9. (a) Normalized VDOS of monomers of the best and worst copolymers at T = 600 K and P = 1 bar. D(ω) is calculated from the center of
mass and the average velocity of monomers. The schematic illustration shows the best and worst copolymer chains. (b) Percentage of contributions
from each frequency regions for the best, worst, hexablock, decablock, and alternating copolymers.
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where ρm is the number density of monomers. This
coordination number cinter is usually used to quantitatively
characterize the number of contacts between molecules. As
seen in Figure 10b, we find that this quantity is closely
correlated with the thermal conductivity of various copolymer
sequences. Specifically, the optimal sequence with a high
thermal conductivity has the highest cinter in comparison with
several typical regular block copolymers. The PMF UPMF(r)
can be computed via Boltzmann inversion of the radial
distribution functions55,56

U r k T g r( ) ln ( )PMF B= (4)

where kB is the Boltzmann constant. Even though it is not the
exact solution (only exact in infinitely dilute systems), the
PMF can serve to roughly measure the magnitude of non-
bonded interactions. The non-bonded forces f(r) are thus able
to be derived from the gradient of the PMFs: f(r) =
−dUPMF(r)/dr. As seen in Figure 10c, the magnitude of the

non-bonded forces f(r) is obviously more attractive in the
optimal sequence than in any other copolymer sequence,
consistent with its smaller intermolecular distance seen in
Figure 10a.

■ CONCLUSIONS

We employ a computational framework of a MD-based GA to
design PE−PP copolymers with high thermal conductivity.
The integration of atomistic MD simulation (united-atom
models) as fitness evaluation with the GA is reported, to our
knowledge, for the first time. Our results demonstrate that the
actual monomer sequence substantially affects the thermal
energy transfer in PE−PP copolymers. This is strongly
confirmed by the wide distribution of thermal conductivities
observed in PE−PP copolymers with either the same overall
monomer composition or the same mean block length. The
traditional descriptor of block copolymers, namely, mean block

Figure 10. (a) Intermolecular radial distribution functions g(r), (b) correlation between the coordination number cinter and the thermal
conductivity k, and (c) non-bonded force f(r) for the best, worst, hexablock, decablock, and alternating copolymers. The intermolecular radial
distribution function g(r) is defined as the probability of finding a monomer (center of mass) in different polymer chains at a distance r from a
given monomer. The coordination number cinter is defined as the integral g(r) from 0 to the position rp of the first peak of g(r). The non-bonded
force f(r) is derived from the gradient of the potential of mean force (PMF).
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length, is thus a poor predictor for the thermal conductivity of
PE−PP copolymers. An irregular optimal sequence identified
after 20 MD−GA generations outperforms any other
copolymer sequences on thermal energy transfer. This optimal
sequence is found at the PE monomer fraction λ ≈ 0.8 and
mean block length lb ≈ 4 through analyzing the correlation
between them and the thermal conductivity of all copolymer
sequences. It contains a segment of pure polyethylene (17
monomers) in the center, followed by two 6 and 7 monomer-
long segments which contain ethylene and propylene in equal
proportions and random order. We note in particular that the
thermal conductivity of the optimized sequence is higher than
that of pure PE homopolymer. To understand the underlying
physical origins of the sequence specificity, the radii of gyration
of all copolymer sequences are measured. The thermal
conductivity of PE−PP copolymers follows the radius of
gyration, which means that it is more likely to find a high
thermal conductivity for a PE−PP copolymer with a more
extended chain (larger ⟨Rg2⟩). The correlation between the
thermal conductivity and the bulk density of PE−PP
copolymers is similar to that of the radius of gyration.
However, a broad distribution of thermal conductivities is still
observed for copolymers with both similar ⟨R2⟩ and bulk
density.
The emerging physical picture is that the monomer

sequence (relative positions of these monomers) plays a
significant role in the heat transfer of PE−PP copolymers,
although there is a trade-off between the monomer
composition and the mean block length. Additionally, we
perform a detailed analysis of the VDOS to examine the
efficiencies of thermal energy transfer through different
molecular interactions, for example, bonded and non-bonded
interactions. It identifies three modes of thermal energy
transfer in polymer liquids: (i) high-frequency mode of bond
interactions, (ii) low-frequency mode of non-bonded inter-
actions, and (iii) intermediate-frequency mode of many-body
interactions such as angular interactions. Compared with
several typical block copolymers, the high thermal conductivity
of the optimal sequence is attributed to the optimized thermal
energy transfer via both (i) bonded and (ii) non-bonded
interactions. Additionally, we find that the higher efficiency of
thermal energy transfer through non-bonded interactions can
be explained by the shorter intermolecular distance, charac-
terized by the intermolecular radial distribution functions. The
enhancement of the thermal conductivity of the sequence-
specific PE−PP copolymer is not high in comparison with the
better homopolymer PE (≈8%). It is interesting though that
admixture of a small fraction of the worse-conducting PP can
further improve the better-conducting PE. Furthermore, the
genetic-algorithm-cum-molecular-dynamics method is able to
capture the subtle improvements. Gratifyingly, it seems
possible for the monomer sequence effect on thermal energy
transport to be turned toward practical applications using
novel monomer chemistries, for example, conjugated57 and
reactive groups,58 identified during the recent development of
polymeric materials with high thermal conductivity. Overall,
our work demonstrates that polymer sequence engineering is a
promising approach to modulate the thermal conductivity of
PE−PP copolymers, and we believe that the computational
framework of integrating atomistic MD simulation with the GA
has a significant potential for accelerating the design of
copolymeric materials.
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Force Fields

The OPLS force field is adopted to describe the interactions for polyethylene and polypropy-

lene homopolymers and copolymers, which includes bond, angle, dihedral, and non-bonded

interactions, as shown in Table S1

Table S1: OPLS-UA force field for Polyethylene and Polypropylene

Bond Interactions Ubond(r) = Kb(r − rb)2
Interaction Type Kb [kcal/mol/Å2] rb [Å]
All bonds 260.0 1.526
Angle Interactions Uangle(θ) = Kθ(θ − θ0)2

Interaction Type Kθ[kcal/mol/rad2] θ0 [rad]
CH3 − CH− CH3 63.0 1.946
CH2 − CH− CH3 63.0 1.962
CH2 − CH2 − CH2 63.0 1.962
CH2 − CH− CH2 63.0 1.962
CH2 − CH2 − CH3 63.0 1.962
CH− CH2 − CH 63.0 1.962

Dihedral Interactions Udihedral(θ) =
1
2

4∑
1

Ki[1 + cos(iφ)]

Interaction Type K1 [kcal/mol] K2 [kcal/mol] K3 [kcal/mol] K4 [kcal/mol]
CH2 − CH2 − CH2 − CH2 -3.40 1.25 -2.50 0.00
CH2 − CH2 − CH2 − CH3 -3.40 1.25 -2.50 0.00
CH− CH2 − CH2 − CH2 -3.40 1.25 -2.50 0.00
CH2 − CH− CH2 − CH2 -3.40 1.25 -2.50 0.00
CH− CH2 − CH− CH2 -2.50 1.25 3.10 0.00
CH− CH2 − CH− CH3 -2.50 1.25 3.10 0.00
CH3 − CH2 − CH− CH3 -2.50 1.25 3.10 0.00

Pair Interaction ULJ(r) = 4ε[(σ
r
)12 − (σ

r
)6] r < rC

Interaction Type ε [kcal/mol] σ [Å] rc [Å]
CH− CH 0.080 3.85 10
CH2 − CH2 0.118 3.905 10
CH3 − CH3 0.175 3.905 10

2
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Equilibrium simulation

Figure S1: Structural relaxation process of ensemble-averaged mean-square radius 〈R2
g〉 for

the system of hexablock copolymers.

NEMD simulation details

We conduct non-equilibrium simulation follows the equilibration step to calculate the ther-

mal conductivity of the copolymers with a timestep of 0.5 fs. The cumulative energy of

homopolymer polypropylene (PP) from the third calculation chunk (2 ns) in NEMD simula-

tion heat is shown in S2. It is observed that the system reaches the steady state. The heat

flux J is then calculated as J = (d(E/2)/dt).

Figure S2: The cumulative energy of homopolymer polypropylene (PP) from the NEMD
simulation in melt state.
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Comparison between amorphous and melts

The thermal conductivity of eleven copolymers (typical regular, random as well as the op-

timal copolymer sequences) at room temperature (T = 300 K) are examined and shown in

Figure S2. We find that the magnitude of thermal conductivity is different but the trend is

same at 300 K and 600 K: The general trend of the thermal transport behavior of PE-PP

copolymers as a function of mean block length lb or ethylene monomer fraction λ at room

temperature is essentially the same as that at high temperature.
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(a)

(b)

Figure S3: (a) The thermal conductivity of several typical regular, random as well as the
optimal copolymer sequences versus mean block length (lb). (b) The thermal conductivity
of several typical regular, random as well as the optimal copolymer sequences versus ethy-
lene monomer fraction (λ). Red and blue points represent systems in 300 K and 600 K,
respectively.
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4 Conclusion and Outlook

In this thesis, we first investigate the compatibilization efficiency of linear block copolymers (Section 3.1)
and graft copolymers (Section 3.2) in immiscible homopolymer blends by performing dissipative-particle-
dynamics (DPD) simulation. Compatibilizers play critical roles in polymer blending that is an essential
technology in the polymer processing industry. Our studies strengthen the idea that the compatibilization
efficiency of copolymers can be predicted based on their molecular architectures and chemical details. Then,
the global pandemic coronavirus outbreak significantly affects most humans’ life all over the world. We
investigate the ethanol concentration in alcoholic-based disinfectants sufficient to decompose coronavirus
model membranes (Section 3.3). I believe this work can help people optimize the efficiency of alcoholic
disinfectants, which satisfies the requirement of killing viruses. These works are based on the straightforward
machine-learning (ML) assisted evaluation of the detailed structure-composition-property-performance
relationships. The fourth work (section 3.4) arises from a simple question related to the thermal transfer
efficiency: is it possible to establish a framework to optimize the thermal conductivity in an automatic
and efficient manner? This question is answered by following the “inverse design” idea, and an optimum
copolymer candidate with high thermal conductivity is obtained from the framework combining the
molecular dynamics (MD) simulation and genetic algorithm (GA).

In Section 3.1, the compatibilization efficiency of symmetric diblock copolymers, unsymmetric diblock
copolymers, and regular multiblock copolymers is investigated in immiscible homopolymer blends with
different chemistries (the DPD repulsion parameter 𝛼𝐴𝐵 =28, 35, and 50). For symmetric diblock copoly-
mers, a power-law fit is used to quantify the variation of their compatibilization efficiency as a function of
the number of compatibilizer chains, the chain length, and the DPD repulsion parameters. This power-law
fitting equation has been validated with both experiments[49, 151] and simulations[65, 152]. The useful
findings can be further summarized as:

1. Low-molecular-weight symmetric diblock copolymers are better compatibilisers for a given cost, while
copolymers with higher weight are more appropriate to use with a constant number of copolymer
molecules.

2. Unsymmetric diblock copolymers exhibit similar compatibilization efficiency as symmetric diblock
copolymers, once their shortest blocks are beyond a certain number of monomers. In this work, the
critical ratio of the shortest block is ∼ 14%− 33% for different unsymmetric copolymers.

3. Regular multiblock copolymers show the highest compatibilization efficiency with an adequate mean
block length, as compared to other linear block copolymers.

In Section 3.2, we extend the target compatibilizers from linear block copolymers to graft copolymers,
which have more descriptors of their molecular architecture. An increase of the compatibilization efficiency
of graft copolymers with an increase in the areal concentration is evident. However, the diverse distribution
of the compatibilization efficiency at the same areal concentration indicates that the molecular structure has
a crucial effect on the interfacial properties of graft copolymers. Although many previous works[67, 153,
154] have investigated the compatibilization efficiency of graft copolymers in specific systems by keeping
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one or two architecture descriptors constant, it remains unclear how they influence the compatibilization
efficiency with the varying chemistries. Our work finds that:
4. As the blend changes from weakly incompatible to strongly incompatible, the number of side chains
of graft copolymers gradually dominates their compatibilization efficiency while the side chain length
becomes unimportant.

5. The side chain positions strongly influence the compatibilization efficiency of graft copolymers.
Mid-grafted copolymers (side chains distributed near the centre of the backbone) provide a high
compatibilization efficiency.

Establishing a predictive model, like the power-law fit for linear block copolymers, becomes much more
challenging now due to the structural complexity of the graft copolymers. Hence, the ML method is
introduced. The gradient boosting (GB) method provides the best accuracy. The post hoc descriptor
importance analysis shows that the number of grafted side chains more strongly correlates with the
compatibilizaton efficiency of graft copolymers than the backbone length and side chain length. Moreover,
the relative shape anisometry of copolymers, defined as the ratio of their gyration tensor elements in
directions normal and parallel to the interface, is strongly correlated with their compatibilization efficiency
for all copolymers in this thesis. When transferring above conclusions to realistic systems, it should be
noted that there exist practical maximum and minimum weights for block copolymers. For example,
Nam et al.[151] found that block copolymers with a high molecular weight beyond the micelle weight
(𝑀𝑚) tend to form micelles in the bulk of the homopolymers rather than congregate at the interface for
the polystyrene-polyisoprene blend system. Creton and Kramer[155] reported that block copolymers
below the entanglement weight (𝑀𝑒) cause interface failure when high tensile stress is applied to the
polystyrene/poly(2-vinylpyridine) blends. On the other hand, the optimum copolymer candidate with
the best compatibilization efficiency so far is evaluated only based on the interfacial tension. However,
several experiments[36, 50–52] have proven that the dynamical properties of copolymers, i.e., how fast
and how much of them can reach the interface during mixing, also influence their overall compatibilization
performance. These dynamical issues of compatibilizers will be addressed in our future work.
In section 3.3, the ethanol-induced weakening effect on a coronavirus model membrane is addressed
in detail. DPD models of three lipids, dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, and
dimyristoylphosphatidylcholine, and their neat, binary and ternary mixed membranes are investigated by
immersing them in water and in water-ethanol solutions (disinfectants) up to concentrations where the
membranes undergo rupture. The main findings could be summarized as:
1. An ethanol concentration above ≈ 32 mol % in the disinfectants, will make the viral membrane
dysfunctional, regardless of which of the lipids studied here dominates in the membrane.

2. An ethanol concentration below ≈ 20 mol% in the disinfectants, is hardly efficient in the deactivation
of coronavirus model membranes.

We observe that the dissolution of ethanol in the membrane causes lateral membrane swelling and the
shrinkage of its thickness. The ethanol uptake also reduces the orientational order of the hydrocarbon tails
of the lipids. However, we cannot quantitatively predict the location of the transition point from the intact
to the disrupted states of the membrane, based on the area per lipid molecule, the membrane thickness, or
the orientational order parameter of lipid tails. Hence, we further develope a machine-learning framework
to assess the integrity of lipid membranes in place of visual inspections. More importantly, this framework
shows a promising potential to be a simple and robust tool suitable for biological membranes to characterize
their states.
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In section 3.4, We employ a computational framework of a MD-based genetic algorithm to design polyethy-
lene–polypropylene (PE-PP) copolymers with high thermal conductivity. The integration of atomistic MD
simulation (united-atom models) as fitness evaluation with the genetic algorithm is reported, to our knowl-
edge, for the first time. An irregular optimal sequence identified after 20 MD-GA generations outperforms
any other copolymer sequences on thermal energy transfer. There are two main findings:
1. The actual monomer sequence substantially affects the thermal energy transfer in PE-PP copolymers.
2. The thermal conductivity of the optimized PE-PP copolymer is higher than that of both PE and PP
homopolymers.

The enhancement of the thermal conductivity of the optimized sequence-specific PE-PP copolymer is not
so high in comparison with the better of the homopolymers, PE (≈ 8%). It is interesting, though that
admixture of a small fraction of the worse-conducting PP can further improve the thermal transfer efficiency
of better-conducting PE. The emerging physical picture is that the monomer sequence (relative positions
of these monomers) plays a significant role in the heat transfer of PE-PP copolymers, although there is
a trade-off between the monomer composition and the mean block length. Additionally, we perform a
detailed analysis of the vibrational density of states to examine the efficiencies of thermal energy transfer
through different molecular interactions, e.g., bonded and non-bonded interactions. It identifies three
modes of thermal energy transfer in polymer liquids: (a) high-frequency mode of bond interactions, (b)
low-frequency mode of non-bonded interactions, and (c) intermediate-frequency mode of many-body
interactions such as angular interactions. Compared with several typical block copolymers, the high
thermal conductivity of the optimal sequence is attributed to the optimized thermal energy transfer via
both (a) bonded and (b) non-bonded interactions.
The examples studied allow some comments on the combination between machine learning and simulation.
Compared to the traditional technique for establishing an empirical predictive model (Section 3.1), ML
is often more robust when the underlying mechanisms that link the input and the output are unclear
or difficult to characterize (Section 3.2 and 3.3). However, this advantage also corresponds to one of
the major criticisms of ML algorithms, namely beaing black boxes. To achieve some interpretability and
visualization of ML models, a post hoc analysis and human deep thinking on the role of physical descriptors
are necessary. Furthermore, basic principles of different ML algorithms need to be clarified before using
them. For example, it is inappropriate to use neural networks only with two layers for characterizing a
complex structure-property relationship. The continuous quantities like phase transitions are also almost
impossible to be investigated by decision-tree-based ML algorithms (e.g., Random Forest). It has to be noted
that there seems to be a recent competition for the integration of ML into simulations and experiments. In
my opinion, this competition is a good phenomenon that can accelerate the development of new materials.
Nevertheless, it is valid only when we try to extract physical information from ML models and understand
their fundamental principles. In short, we need to keep in mind that machine learning is a powerful tool
that should be used appropriately based on our scientific target, rather than “I use machine learning because
so many people use”. I hope this thesis can give some inspirations to the new Master/Ph.D. students in
their brand-new scientific research.
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5 Annex: Optimization of Heat Transfer at the
Interface

Reproduced with permission from Zhou et al. [J. Phys. Chem. C 2021, 125, 25, 14149–14162] Copyright
2021 American Chemical Society. As the supporting document for the heat transfer.
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ABSTRACT: The molecular level mechanism of heat transport
across the interface between solid and liquid n-heneicosane and
monolayer graphene with three types of defects (single-vacancy,
multivacancy (MV), and Stone−Wales (SW) (SW1 and SW2 cases
are considered based on the orientation of the defects) has been
studied using nonequilibrium molecular dynamics simulations. The
influence of the alignment of an ideal crystal structure
(heneicosane molecules positioned perpendicular and parallel to
the graphene basal plane) and two heating modes (in the “heat-
matrix” mode, heat enters the defective graphene sheet from one
side of its basal plane and leaves from the other side, and in the
“heat-graphene” mode, the heat is entering from the heated
graphene layer to the cooled heneicosane from both sides of the
basal plane) on the thermal conductance has been examined. With an increase in the defect percentage (up to 9.0%), the thermal
conductance is found to be increasing for all types of defects under both heating modes. It is observed that both MV and SW2
defects in graphene result in the largest enhancement in the conductance under the heat-matrix mode, whereas the SW1 defect yields
maximum improvement under the heat-graphene mode. Spectral analysis indicates that the vibrational modes of all frequencies are
important for the interfacial heat transfer.

1. INTRODUCTION

Due to their high energy density and isothermal operation, latent
heat thermal energy storage units are popular to store excess
thermal energy. Solid−liquid phase change materials (PCMs)
find applications in the storage of solar energy which is
discontinuous in nature,1 passive cooling of electric devices,2

and waste heat recovery systems.3 Because of their high latent
heat, good thermal and chemical stability, insignificant or no
super cooling, nontoxicity, low vapor pressure, and low cost,
organic PCMs are promising candidates for energy storage
applications.4,5 The rate at which the thermal energy is stored
and released is directly proportional to the PCMs’ thermal
conductivity. So, materials having high thermal conductivity in
both liquid and solid phases are desirable for PCMs. However,
organic PCMs, inherently, have a low thermal conductivity.
Therefore, a lot of effort has been directed toward increasing the
thermal conductivity of PCMs.
To improve the thermal conductivity of a base material in

either the solid or liquid state, a common approach is to add
materials with high thermal conductivity as fillers. In the recent
past, due to their high thermal conductivity, carbon-based
nanoadditives, e.g., graphene and carbon nanotubes, have been
used as fillers, and they have demonstrated good performance in
enhancing the thermal conductivity of the nanocomposite.6−10

One of the important parameters that will significantly influence
the overall thermal conductivity of the nanocomposite is the
thermal boundary resistance between the host matrix and the
nanofillers. Furthermore, this is also a vital input variable in the
effective medium theory.11 Experimental investigation of
molecular level heat transfer characteristics across the interfaces
is challenging. Molecular dynamics (MD) simulation is one of
the computer simulation techniques that is well suited to study
themechanism of nanoscale interfacial heat transfer as well as for
evaluating the magnitude of thermal conductance.12−31 In our
recent article,23 we observed that the thermal conductance at the
interface between edge-on ideal crystal and single-layer
graphene is two times higher than that for the interface between
liquid heneicosane and graphene.
The graphene sheets are synthesized using techniques like

chemical vapor deposition (CVD), epitaxial growth,30 micro-
mechanical cleavage, electrochemical exfoliation, unzipping
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carbon nanotubes, and so forth.32 It is known that defects are
inevitable during the production process. Furthermore, to tailor
the properties of graphene, defects can be artificially generated
using ion/electron beam irradiation and purification.32 Various
types of defects such as vacancy,33 Stone−Wales,34 line,35

doping,36 and adatoms37 may occur in graphene. Molecular
dynamics studies suggest that defects considerably reduce the
thermal conductivity of graphene.32,38−40 At the same time, it is
important to know how these defects influence the heat transfer
at the interface between the graphene and matrix because this is
considered to be an important parameter governing the overall
thermal conductivity of the nanocomposite. Recently, a few
researchers have investigated the influence of vacancy defects on
the thermal conductance between defective graphene and a soft
matrix. For example, Liu et al.28 examined the sensitivity of two
modes of heating and vacancy defects on the thermal
conductance at the liquid octane−graphene interface. Li et
al.14 examined heat transfer across defective graphene (with
single-vacancy (SV), double-vacancy, Stone−Wales (SW), and
multivacancy (MV) defects)−epoxy interfaces under the heat-
matrix mode and found that SW and MV defects improve
interfacial heat transfer. However, it is not yet understood how
the interfacial thermal conductance will be influenced when the
graphene has defects and the alkane is in the solid state. Previous
works suggested that the introduction of defects into the
graphene sheet results in enhanced overlap between the
vibrational density of states (VDOS) of embedded graphene
and liquid matrix, which is attributed to the improved interfacial
thermal conductance.28,41,42 Nevertheless, it is still unclear that

how changes in the VDOS of graphene can be traced to the
defective regions or atoms in graphene. More studies are desired
to understand the physical mechanism of interfacial heat transfer
involving defective graphene in order to provide guidelines for
improving the overall thermal performance of nanocomposites
in different phases.
In this article, we have performed nonequilibrium molecular

dynamics simulations (NEMD) to examine the heat transfer
characteristics through the interface between heneicosane
(C21H44) in both solid and liquid phases and monolayer
defective graphene. The effects of three types of randomly
dispersed defects, viz., SV, MV, and SW, in graphene and two
modes of heating on the interfacial thermal conductance have
been investigated. To gain insight into which vibrational modes
are modified or initiated by defects and how they might
influence the thermal energy transfer across the interface, the
vibrational density-of-states and the spectral distribution of the
interfacial heat flux have been analyzed.

2. MOLECULAR MODEL AND SIMULATION DETAILS
Schematics of the constructed simulation systems are illustrated
in Figure 1. Heneicosane (C21H44) is selected as an n-alkane
since it is frequently used as a phase change material at room
temperature (melting point 313.55 K43). A past study from our
group showed that for the study of thermal transport properties
of alkanes the united atommodel gives better results over the all-
atom model.44 Therefore, heneicosane molecules are described
using a united atom model where CH3 and CH2 groups are
considered as single interactions sites. Themolecular interaction

Figure 1. Snapshots of the 9.0% SV defective single-layer graphene−heneicosane computational system with different phases and structures of
heneicosane: (a) parallel-aligned crystal system, (b) liquid system, (c) disordered solid system, and (d) perpendicular-aligned crystal system. The CH3
and CH2 units of a heneicosane molecule are shown in red and blue, respectively. The graphene layer is illustrated in pink.
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between heneicosane atoms is modeled with the NERD
potential45 (Table S1, Supporting Information). An all-atom
model is used to represent graphene, and the interactions among
carbon atoms are considered using the optimized Tersoff
potential46 (Table S2, Supporting Information). More informa-
tion about these two potentials and the interaction parameters
between graphene and heneicosane atoms is given in the
Supporting Information part I.
Similar to our previous work,23 to examine the influence of the

solid structure of heneicosane on the interfacial thermal
conductance, we construct three types of systems. These are
named as “parallel-aligned system”, “perpendicular-aligned
system”, and “disordered-solid system”. Heneicosane molecules
are aligned parallel to the graphene basal plane in the parallel-
aligned system (cf. Figure 1a). On the other hand, heneicosane
molecules are oriented perpendicular to the graphene basal
plane in the perpendicular-aligned system (cf. Figure 1d). The
thermal transport in n-alkanes in the solid state is examined by
considering an ideal-crystal model in an earlier work, where all
molecules are in favor of a particular direction.21 The lengths of
the simulation systems are summarized in the Supporting
Information part II.We use the LAMMPS package to perform all
simulations.47 The LJ interactions beyond a cutoff radius of 1.4
nm are neglected. During equilibration, periodic boundary
conditions are implemented in all three directions, and a time
step of 1 fs is used.
Schematics of three types of defects examined in this work are

illustrated in Figure 2. A missing single carbon atom in the

graphene lattice results in a single-vacancy (SV). The SV defect
is easily constructed in the graphene sheet by deleting a carbon
atom (Figure 2a). For fabricating the multivacancy (MV) defect
shown in Figure 2d, more than two carbon atoms are removed
from the graphene layer. The Stone−Wales (SW) defect does
not involve any addition or removal of atoms. One of the C−C
bonds is rotated by 90° about the center point of the bond to
form the SW defect, which is also known as the 5-7-7-5 defect.

Two types of orientations are considered for the SW defect in
graphene. In the first case only vertical C−C bonds are rotated
by 90°, which is called SW1 (Figure 2b). In the second case only
inclined C−C bonds are rotated by 90°, and this is known as
SW2 (Figure 2c). All defects are at a particular angle in the SW2
case. Note that all defects are randomly distributed in the
graphene sheet. The concentrations of SV and MV defects are
defined as28

N
N

1 defect

pristine
ϕ = −

(1)

whereNdefect andNpristine are the numbers of carbon atoms in the
defective and pristine graphene, respectively. The concen-
trations in the SW1 and SW2 cases are defined as

N
N

1
2 SW defect

pristine
ϕ = − ‐

(2)

where NSW‑defect is the number of SW defects in graphene. The
factor 2 in the numerator is to account for the fact that each SW
defect involves two carbon atoms. The defect concentration is
varied from 0 to 9.0% for all defects. Simulation systems are
made up of a pristine or defective graphene sheet sandwiched
between heneicosane nanofilms in the required phase as
illustrated in Figure 1. Ideal crystal systems are constructed by
positioning heneicosane molecules in an orthorhombic crystal
with lattice parameters given by Jouti et al. from X-ray
diffraction.48 As a first step, the systems are simulated in the
NPT ensemble for 2 ns with the Nose−́Hoover barostat (1 atm)
and thermostat (259 K) with coupling times of 5.0 and 1.0 ps,
respectively. After that, systems are equilibrated in the NVE
ensemble for 2 ns. The temperature of the parallel-aligned
system at 250 K and 1 atm is raised slowly from 250 to 400 K
with a rate of 10 K/ns. Then, for equilibration, the system is
simulated in the NPT ensemble for 2 ns and later in the NVE
ensemble for 2 ns. To construct the graphene-disordered solid
heneicosane systems, the liquid system, which is fabricated by
heating the parallel-aligned system, is cooled from 400 K and 1
atm to the desired temperature (250 K) and pressure (1 atm) in
the NPT ensemble with a rate of 2 K/ns. After that, the system is
simulated in the NVT ensemble for 15−20 ns. Finally, the
system is simulated for 2 ns in the NVE ensemble for
equilibration. Note that the structure of heneicosane in the
disordered systems is different between runs and is sensitive to
the cooling rate and the initial equilibrium configuration utilized
for the preparation of the system. So, three disordered systems
have been fabricated from different starting configurations.
Then, the conductance values obtained from three systems are
averaged to obtain the final value at the target temperature. Note
that, first, systems with lower percentage of defects are prepared
from pristine systems and equilibrated. After that systems with
higher percentage defects are constructed based on the obtained
lower percentage equilibrated systems to maintain the stability
of the defected graphene. Subsequently, they are equilibriated in
the NPT ensemble.
We perform nonequilibrium molecular dynamics (NEMD)

simulations on the equilibrated systems to evaluate the
interfacial thermal conductance. Liu et al.28 suggested that
heat transfer occurs in two modes in graphene-based nano-
composites (Figure S1 in the Supporting Information). In the
first mode, the energy is flowing from the side of heated
heneicosane molecules to the cooled ones on the other side
across the defective graphene. In the second mode, thermal

Figure 2. Schematic illustration of different types of defects in a
monolayer graphene: (a) SV, (b) SW1, (c) SW2, and (d) MV.
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energy migrates into or out of the graphene sheet at the same
time from both sides of its basal plane. Hence, we perform
NEMD simulations in two ways by following our previous
work23 (details are given in the Supporting Information part III).
The systems are simulated in the NVE ensemble. The velocity
rescaling method is used to maintain the heat source and heat
sink regions at the desired temperature. In the NEMD
simulations an integration time step of 0.2 fs is utilized. After
an initial transient time (6 ns), a constant heat flux is achieved,
and a steady-state temperature profile is established. Afterward,
the data are accumulated for 18 ns to evaluate the thermal
conductance. The collected data are subdivided into three
blocks, and from each a conductance value is calculated. From
these three values a standard deviation is calculated, which is
shown as an error bar.

3. SPECTRAL ANALYSIS OF INTERFACIAL THERMAL
ENERGY TRANSFER

We have performed two types of spectral analysis to gain an
insight into the mechanisms associated with heat transfer at the
heneicosane−graphene interfaces. As a part of the spectral
analysis, the vibrational density of states (VDOS) D(ω) is
evaluated. The VDOS is the Fourier transform of the ensemble
average of the atomic velocity autocorrelation function ⟨vi(τ)·
vi(0)⟩.

49 It is calculated as follows

D
k T

m v v( )
1

d e ( ) (0)
i

i
i

i i
B

∫∑ω τ τ= ⟨ · ⟩ωτ

−∞
+∞

(3)

where vi and mi are the velocity vector and mass of atom i,
respectively. ω is the frequency, and τ is time. A Gaussian
convolution with a width of 1.6 THz is applied to smooth the
spikes in the VDOS. The modulus of D(ω) is investigated
below. The VDOS of carbon atoms in the graphene sheet and
heneicosane united atoms in the first adsorption layer (this is
recognized as the first peak near graphene in the heneicosane
density profile) are used for the analysis of interfacial heat
transfer. To obtain the vibrational spectra, the velocities of the
designated heneicosane and graphene atoms are sampled every
20 fs for 0.8 ps blocks. The data are collected after the system
reaches equilibrium in the NVE ensemble. The production run
of 1 ns is utilized in the VDOS calculations. Furthermore, to
quantify the overlap of the VDOS of the two materials at the
interface an overlap factor (S) is evaluated50

S
D D

D D

( ) ( )d

( )d ( )d
0 g h

0 g 0 h

∫
∫ ∫

ω ω ω

ω ω ω ω
= ·

∞

∞ ∞
(4)

where Dg(ω) and Dh(ω) indicate the VDOS of graphene and of
the first adsorption layer of heneicosane molecules, respectively.
The decomposition of the interfacial heat flux in the spectral

domain is the second spectral analysis, which is defined as51
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where Fij is the total force exerted on a carbon atom i in the
graphene (g) due to the all united atoms of heneicosane (h) in
the first adsorption layer and vi is the velocity vector of carbon
atom i in graphene. indicates only the real part of the Fourier
transform of the force−velocity cross-correlation function ⟨Fij
(τ)·vi (0)⟩ is used, and A is the cross section of the system. To

calculate q(ω) the data were sampled every 20 fs for 0.8 ps in the
NEMD simulation with a production run of 6 ns.

4. RESULTS AND DISCUSSION
4.1. Interfacial Thermal Conductance. The interfacial

thermal conductance,G, is utilized to characterize the interfacial
heat transfer between two unlike substances

G
q
T

= Δ (6)

where q is the amount of heat flux flowing through the interface
andΔT is the temperature drop at the interface. To calculate the
temperature drop at the interface, the steady-state temperature
profile along the z-axis (heat flux direction) was evaluated during
the production run of the NEMD simulations. To describe the
temperature drop calculation procedure in detail, as an example,
steady-state temperature profiles along the heat-transport
direction (z) in the liquid heneicosane−monolayer graphene
with 9% SV defects at 400 K and 1 atm under both heating
modes are shown in Figure 3. The temperature distribution is
evaluated in bins of 0.2 nm thickness based on previous
works.52,53 Note that past works suggest that fine bins are not
recommended for calculating the temperature drop, and the bin
size should be selected in such way that a large enough number
of particles are presented in each bin so that the fluctuations in
the temperature profile in the interface region are not significant.
As expected, the temperature decreases toward the sink region
from the source region, and a temperature drop is noticeable at
the interface which is a characteristic of interfacial resistance to
the heat transfer. Masuduzzaman and Kim54 showed that the
temperature jump across the interface is sensitive to the

Figure 3.Temperature profiles along the z-axis in the 9.0% SV defective
graphene−liquid heneicosane system at 400 K and 1 atm under (a)
heat-matrix mode and (b) heat-graphene mode. The interface position
between graphene and heneicosane is indicated by vertical dash-dotted
lines. The temperature drops at the interface under heat-matrix and

heat-graphene mode are shown as T
2
H MΔ ‐ and ΔTH‑G, respectively.
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boundary position and the film thickness (channel width). They
observed that for large enough films, the interface position closer
to the solid surface gives results which are in good agreement
with the experimental values in comparison to the results
obtained by considering the boundary position far away from the
solid surface atoms. Therefore, for evaluating the temperature
drop the interface location is taken as the center point between
the average position of graphene atoms and the first peak

position in the atomic heneicosane density profile. A straight line
is fitted to the temperature profile in the bulk region, and the fit
line is extrapolated to the position of the interface to determine
the temperature of heneicosane at the interface. Additionally,
the temperature of the graphene is used as shown in Figure 3 for
evaluating the temperature drop.

4.2. Interfacial Thermal Conductance as a Function of
Defect Percentage. Variation of the thermal conductance at
the interface between a graphene sheet with four types of defects
(SV, MV, SW1, and SW2) and heneicosane in the liquid state

Figure 4. Variation of the interfacial thermal conductance between
parallel-aligned heneicosane crystal and monolayer graphene with SV,
SW1, SW2, andMV defects as a function of defect percentage under (a)
heat-matrix mode and (b) heat-graphene mode. Solid lines are a guide
to the eye.

Figure 5. Variation of the interfacial thermal conductance between
perpendicular-aligned heneicosane crystal and monolayer graphene
with SV, SW1, SW2, and MV defects as a function of defect percentage
under (a) heat-matrix mode and (b) heat-graphene mode. Solid lines
are a guide to the eye.

Figure 6. Variation of the interfacial thermal conductance between
liquid heneicosane and monolayer graphene with SV, SW1, SW2, and
MV defects as a function of defect percentage under (a) heat-matrix
mode and (b) heat-graphene mode. Solid lines are a guide to the eye.

Figure 7. Variation of the interfacial thermal conductance between
disordered solid heneicosane and monolayer graphene with SV, SW1,
SW2, andMV defects as a function of defect percentage under (a) heat-
matrix mode and (b) heat-graphene mode. Solid lines are a guide to the
eye.
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and in both solid states (perfect crystal and disordered solid
state) at various defect percentages under both heating modes
(heat-matrix and heat-graphene) is examined (Figures 4, 5, 6,

and 7). First, as expected, the thermal conductance under the
heat-matrix mode is observed to be 2 orders of magnitude higher
than under the heat-graphene mode regardless of the phase and

Figure 8. Values of interfacial thermal conductanceGg−m andGm−m under heat-matrix mode (a) between liquid heneicosane and monolayer graphene
with SV, SW1, SW2, and MV defects at 9.0% and (b) between parallel-aligned heneicosane and monolayer graphene with SV, SW1, SW2, and MV
defects at 9.0%. Dashed lines represent values of Gg−m and Gm−m for a system with a pristine graphene monolayer.

Figure 9.Density profiles of (a) liquid heneicosane at 400 K and 1 atm in contact with monolayer graphene with no defects (pristine), SV, SW1, SW2,
andMV defects at 9% and (b) parallel-aligned heneicosane at 250 K and 1 atm in contact with graphene with no defects (pristine), SV, SW1, SW2, and
MV defects.

Figure 10. For the liquid heneicosane system at 400 K and 1 atm: (a) vibrational densities of states in arbitrary units along in-plane and out-of-plane
directions for pristine graphene and graphene with 9.0% MV and SV defects, (b) vibrational densities of states along in-plane and out-of-plane
directions for graphene with 9.0% SW1 and SW2 defects, and (c) overall vibrational densities of states for heneicosanemolecules in the first adsorption
layer.
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structure of heneicosane for pristine graphene systems. Lower
values under the heat-graphenemode are due to the resistance to
“internal” heat transfer between the vibrational modes
(primarily between low-frequency vibrational modes and
medium- and high-frequency vibrational modes) within the
monolayer graphene.23 This has been discussed extensively in
previous works, which have examined the mode of heating effect
on the thermal conductance at graphene−liquid octane and
graphene−polymer interfaces.28,55With an increase in the defect
percentage, the conductance under the heat matrix mode is only
1 order of magnitude higher than that under the heat-graphene
mode for all types of defects. More details about this will be
given below. Second, among the interfaces of graphene with the
solid heneicosane the thermal conductance ordering is parallel-
aligned crystal > disordered > perpendicular-aligned. Moreover,
the conductance for the graphene−liquid interface is close to
that for the perpendicular-aligned system under the heat-matrix
mode. This has been qualitatively explained by the structure of
heneicosane in the interface region. The parallel-aligned crystal
system has the most number of heneicosane atoms in contact
with the graphene sheet, which results in the highest
conductance. On the other hand, the smallest number of
atoms is in contact with the graphene in the perpendicular-
aligned crystal system. This results in the lowest conductance.
The disordered solid state is crystalline with small domains. This
structure allows a sufficient number of atoms to be in contact
with graphene so as to have a thermal conductance higher than
that of the perpendicular-aligned system or the liquid. Third, for
each type of defect, the thermal conductance exhibits a tendency
to increase with the defect percentage in the examined range (up
to 9.0%) irrespective of the phase and structure of heneicosane

and the heating mode. Similar increasing tendencies have been
observed for graphene with SV defects and liquid octane
interfaces.56 Among the four types of defects, for heneicosane in
the liquid state and in all solid states, SW2 and MV defects most
enhance the thermal conductance under the heat-matrix mode
at high defect percentage. On the other hand, under the heat-
graphene mode, the SW1 defect shows the largest improvement
in conductance as compared to the three other defects at high
defect percentage. The highest improvement in the conductance
for parallel-aligned, perpendicular-aligned, disordered, and
liquid systems with 9.0% defects is 14.2, 19.9, 19.9, and 18.2%
in comparison with pristine graphene systems under the heat-
matrix mode whereas under the heat-graphene mode the major
enhancement is 512, 158, 275, and 513%, respectively. In the
absolute term, under the heat-matrix mode, for parallel-aligned
and disordered systems with defects themaximum improvement
in thermal conductance is ∼40 MW/m2 K over the pristine
systems whereas the highest enhancement of ∼30 MW/m2 K is
noticed for perpendicular-aligned and liquid systems. However,
the lowest increment in conductance is noticed for perpendic-
ular-aligned system with SV defects. The maximum increase in
the conductance for defective graphene over defect-free
graphene under the heat-graphene mode is close to 30, 36, 8,
and 14 MW/m2K for parallel-aligned, disordered, perpendicu-
lar-aligned, and liquid systems, respectively.
In total, it can be concluded that all defects in graphene

enhance the interfacial thermal energy transfer, and the amount
of increment in conductance with defects depends on the type of
defect, heating mode, and phase and orientation of heneicosane.
The intermolecular interaction between graphene and

heneicosane as well as between different heneicosane molecules

Figure 11.Overlap factor for liquid heneicosane systems under the heat-matrix mode at 400 K and 1 atm (a) between the total vibrational densities of
states of heneicosane and out-of-plane vibrational densities of states of pristine and 9.0% defective graphene and (b) between the in-plane and out-of-
plane vibrational densities of states of pristine and 9.0% defective graphene.

Figure 12. (a) Schematic illustration of monolayer graphene with seven SV defects concentrated in the central region. (b) In-plane VDOS of a
graphene with seven SV defects embedded in liquid heneicosane at 400 K and 1 atm.
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is treated using the LJ potential in our molecular model. This
means that the heat is transferred across the interface by means
of LJ interactions. As discussed in our previous paper,23 when
the distance between heneicosane molecules that are separated
by the monolayer graphene is less than the LJ cutoff radius, heat
flows across the interface via two channels under the heat-matrix
mode. In first channel, the heat enters the graphene from the
matrix and then exits the graphene to the other side matrix. In
second channel, the heat is directly transferred from matrix to
matrix without first entering the graphene between heneicosane
molecules on both sides. We have adopted the same approach as
in our previous paper23 to quantify the matrix-to-matrix energy
transfer, and the thermal conductance calculated in this way is
referred to asGm−m. ThenGg−m is obtained asGg−m =G−Gm−m,
where G is the thermal conductance obtained under normal
heat-matrix mode simulations. The values of Gg−m and Gm−m for
systems with four types of defects (SV, MV, SW1, and SW2) at
9.0% in graphene and heneicosane in the liquid (Figure 8a) and
parallel-aligned solid state (Figure 8b) are examined. We
observe that Gg−m and Gm−m are higher for liquid heneicosane
systems with defective graphene as compared to a system with
no defects. This implies that the introduction of defects
improves both matrix-to-matrix and graphene-to-matrix path-
ways. The enhancement in Gm−m is more noticeable for the MV
defect. However, for the solid system, the magnitude of Gm−m is
similar for all systems (Perpendicular-aligned and disordered

systems results are not shown here). This indicates that the
enhancement in interfacial conductance mainly stems from an
increase in graphene-to-matrix transfer.
Density distributions of heneicosane atoms in liquid (Figure

9a) and parallel-aligned (Figure 9b) systems are calculated by
dividing the simulation system into slabs with a thickness of 0.02
Å along the z-direction. For liquid heneicosane (Figure 9a),
density curves situate closer to the graphene in systems with
defects, especially for the MV defect. This is because the MV
defect is large enough for heneicosane to go through the
graphene over the simulation time (Figure S3, Supporting
Information). This is attributed to be the cause for the highest
Gm−m for a liquid systemwith aMV defect (Figure 8a) because it
reduces the distance between liquid heneicosane molecules
separated by the defective graphene layer.23 As for the solid
heneicosane systems (Figure 9b), atoms vibrate around their
mean positions, density distributions look similar irrespective of
the defect type, and the distance between heneicosane
molecules, which are located on both sides of the defective
graphene layer, is changed insignificantly, which is believed to be
reason for the minimal variation in Gm−m (Figure 8b).

4.3. Vibrational Density of States Analysis. The
vibrational spectral analysis is done to gain an insight into the
mechanism of thermal energy transfer at defective graphene−
heneicosane interfaces. The profiles of in-plane and out-of-plane
vibrational densities of states (VDOS) for pristine graphene,

Figure 13. Directionally resolved normalized cumulative spectral heat flux (q(ω)) at the interface between parallel-aligned heneicosane crystal and
9.0% defective graphene under heat-matrix and heat-graphenemodes when the graphene has defect type (a) SW1, (b) SW2, (c)MV, and (d) SV. Here,
the q(ω) is calculated from graphene to heneicosane. The heat-matrix mode and heat-graphene mode are abbreviated as HM and HG in the figures,
respectively.
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graphene with four types of defects at 9%, and overall VDOS of
the first adsorption layer heneicosane atoms in the liquid
heneicosane−graphene systems are shown in Figure 10. As
expected, the pristine graphene VDOS is dominated by the
middle- (15−40 THz) and high-frequency ranges (>40 THz).
On the contrary, the vibrational spectra of heneicosane in the
vicinity of the pristine graphene occupy the low- and middle-
frequency ranges. The overlap between the VDOS of two
different materials has been examined to qualitatively under-
stand which vibrational modes are important for the interfacial
heat transfer.14,16,28,30,42,57−59 The overlap between the vibra-
tional spectra of graphene and liquid heneicosane happens
predominantly in the low- and middle-frequency ranges. This
indicates that heat transfer at the interface is mainly carried by
the coupling between the low-frequency vibrations of graphene
and heneicosane, which is in line with past works.16,42,55 The
VDOS of heneicosane in crystal and disordered solid states also
exhibit similar characteristics and frequency ranges (Figures
S4−S6, Supporting Information). The VDOS of liquid
heneicosane in the vicinity of defective graphene show new
vibrational modes with higher frequencies than formed
heneicosane in contact with pristine graphene VDOS for all
types of defects. At the same time the graphene out-of-plane
vibrations in the low-frequency region are enhanced, and the in-
plane vibrations in the high-frequency range are suppressed
considerably for SV, SW1, and SW2 defects as compared to the
neat graphene. In contrast, for the MV defect the decrement in

the in-plane vibrations is not significant in the high-frequency
region. For the SV defect, this is attributed to the structurally less
rigid graphene in the in-plane direction due to the deletion of
atoms.28 Thus, both graphene and heneicosane VDOS change
with the introduction of defects. In order to quantify the overlap
between two VDOS, the overlap factor (S) is evaluated, which
indicates the phonon−phonon coupling at the interface. The
overlap factor between the VDOS of heneicosane and defective
graphene can be used to explain the thermal conductance results
under the heat-matrix mode. As illustrated in Figure 11a, the
SW2 defective graphene system shows the highest overlap in
comparison to other defective systems. This indicates a better
thermal coupling between low-frequency vibrations of heneico-
sane and SW2 defective graphene which results in higher heat
transfer across the interface and a larger thermal conductance
value. Namsani and Singh42 have also noticed similar
observations for defective graphene/liquid gold systems under
the heat-matrix mode. Note that for the other three systems, the
overlap factor characteristics also suggest the same conclusion
(Figures S7−S9, Supporting Information).
The thermal energy is injected into the graphene sheet under

the heat-graphene mode. This means energy is added into all
vibrational modes simultaneously. In agreement with past
studies,14,16,28,30,60 a pristine graphene sheet exhibits consid-
erably more high- and medium-frequency vibrations than low-
frequency vibrations (Figure 10). In addition, the VDOS of
graphene in the plane is dominated by high-frequency

Figure 14.Directionally resolved normalized cumulative spectral heat flux (q(ω)) at the interface between perpendicular-aligned heneicosane crystal
and 9.0% defective graphene under heat-matrix and heat-graphene modes when the graphene has defect type (a) SW1, (b) SW2, (c)MV, and (d) SV.
Here, the q(ω) is calculated from graphene to heneicosane. The heat-matrix mode and heat-graphene mode are abbreviated as HM and HG in the
figures, respectively.
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vibrational modes whereas the out-of-plane vibrational modes
occupy the low- and middle-frequency regions. Therefore, most
of the injected energy will be added to the middle- and high-
frequency vibrations. Earlier works28,55 have indicated that the
energy associated with middle- and high-frequency vibrations of
the graphene should first be converted into lower-frequency
vibrations before it can be transferred to the heneicosane
molecules under the heat-graphene mode. It is believed that this
process of “internal” resistance to the transfer of heat within
graphene between the high-frequency vibrations and the low-
frequency vibrations is the cause for the low interfacial thermal
conductance under the heat-graphene mode in comparison with
the heat-matrix mode.28,55 Furthermore, the overlap factor
between the in-plane and out-of-pane VDOS of defective
graphene can be used to discuss conductance results under the
heat-graphene mode. It is observed that the overlap factor for
systems with defects is higher than that for pristine graphene
systems (Figure 11b). This implies better thermal coupling
between the in-plane and out-of-plane vibrational modes and
less resistance to internal heat transfer. We believe this is the
reason for the enhancement of thermal conductance with
defects under the heat-graphene mode. The largest improve-
ment in the conductance is for the SW defective liquid system
under the heat-graphene mode (Figure. 6b) which can be
attributed to the larger overlap factor. Hong et al.61 also
suggested that the defects in graphene can improve the coupling
between the in-plane and out-of-plane vibrations inside the
graphene and observed higher thermal conductance at the

graphene/phosphorene interface with defects under the heat-
graphene mode.
However, it is still unclear how changes in the VDOS of

graphene are locally related to the defects. Are the vibrations of
graphene atoms far away from the defects influenced by the
defects? In order to clarify this issue, we simulated a liquid
heneicosane-defective graphene system, where all SV defects
(seven defects are considered as an example) are concentrated in
the middle part of the sheet as illustrated in Figure 12a. We
defined the region within a radius of 14.0 Å from the center as a
defective region (shown in red in Figure 12a) and the rest of the
region as a normal region (green in Figure 12a). It is observed
that the in-plane VDOS of atoms in the defective region shows
lowermagnitude than for atoms in the normal region in the high-
frequency region (Figure 12b). This trend is similar to the
VDOS of all atoms (Figure 10). It can be inferred that the
introduction of defects locally influences the vibrations of atoms
in the vicinity of defects. Similar observations have been noticed
for graphene with SW1, SW2, and MV defects (Figure S10,
Supporting Information).

4.4. Spectral Heat Flux Analysis. The spectral heat flux
q(ω) is calculated using eq 5 to gain further insight into which
frequency type and range of vibrations are crucial for heat
transfer at the interface. The frequency-dependent heat flux
q(ω) is normalized with respect to the highest value of q(ω), and
a running average of q(ω) versus frequency is analyzed to
quantitatively understand which frequency vibrations make
dominant contributions to the interfacial heat transfer

Figure 15. Directionally resolved normalized cumulative spectral heat flux (q(ω)) at the interface between liquid heneicosane and 9.0% defective
graphene under heat-matrix and heat-graphene modes when the graphene has defect type (a) SW1, (b) SW2, (c) MV, and (d) SV. Here, the q(ω) is
calculated from graphene to heneicosane. The heat-matrix mode and heat-graphene mode are abbreviated as HM and HG in the figures, respectively.
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(calculation details are given in the Supporting Information part
V). Figures 13, 14, 15, and 16 show spectrally mapped heat flux
that is resolved along in-plane and out-of-plane directions for all
states of heneicosane and graphene with four types of defects at
9.0%. Among the four types of defects, systems with larger
contribution from out-of-plane vibrational modes to the total
spectral heat flux exhibit larger thermal conductance values
under the heat-matrix mode for heneicosane in the liquid state
and in all solid states. This seems to be related to the enhanced
overlap between the vibrations of heneicosane and the out-of-
plane vibrations of defective graphene in the low- and
midfrequency regions. We, therefore, anticipate that the
augmentation of out-of-plane vibrations in graphene by means
of defects could facilitate enhanced heat transfer across the
interfaces under the heat-matrix mode. Note that our previous
study also suggested that pristine graphene systems, in which the
out-of-plane vibrations make dominant contribution, exhibited
large thermal conductance under the heat-matrix mode. In
liquid systems the out-of-plane vibrational modes always
contribute more to the interfacial heat transfer than the in-
plane vibrational modes under both heating modes regardless of
the defect type (Figure 15). In contrast, a few systems with SW1
and SV defects and heneicosane in the solid state (Figures 13a,
13d, 14a, 16a, and 16d) show that the in-plane vibrations make
more contribution to the total heat transfer over the out-of-plane
vibrations. This could be attributed to the improved thermal
coupling between the in-plane and out-of-plane vibrations inside

the graphene with the introduction of a particular type of defect.
Moreover, the advantage of the in-plane cumulative q(ω) under
the heat-graphene mode is much higher than under the heat-
matrix mode for heneicosane in both liquid and solid states and
graphene with SW1, SW2, and SV defects (Figures 13−15a, b,
and d). This indicates that the in-plane vibrational modes
contribute more to the total heat flux under the heat-graphene
mode than the under the heat-matrix mode. Therefore, it can be
implied that the energy added into the in-plane vibrations is less
unfavorably transferred to the heneicosane in these systems. The
profiles of in-plane VDOS of graphene with SW1, SW2, and SV
defects show that the high-frequency range vibrations are
significantly suppressed for heneicosane in the liquid state and in
all solid states (Figures 10 and Figures S4−S6). This causes
more heat to be injected into the low- and middle-frequency
vibrations. This is believed to be the reason for in-plane
vibrations making more contribution to the total heat flux than
the out-of-plane vibrations. On the other hand, for MV defective
graphene the in-plane VDOS has similar characteristics to
pristine graphene with a noticeable peak in the high-frequency
range. Therefore, more energy is injected into the high-
frequency vibrations, and it first must be transferred to slow
and out-of-plane vibrations internally inside the graphene before
passing through the interface. This results in a reduced
contribution to the interfacial heat transfer by the in-plane
vibrations. Finally, from VDOS profiles it is well understood that
the overlap between the VDOS of graphene and heneicosane

Figure 16. Directionally resolved normalized cumulative spectral heat flux (q(ω)) at the interface between disordered solid heneicosane and 9.0%
defective graphene under heat-matrix and heat-graphene modes when the graphene has defect type (a) SW1, (b) SW2, (c) MV, and (d) SV. Here, the
q(ω) is calculated from graphene to heneicosane. The heat-matrix mode and heat-graphene mode are abbreviated as HM and HG in the figures,
respectively.
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does not exist beyond the maximum frequency of heneicosane
ωmax,H. Nevertheless, it is evident from the normalized
cumulative q(ω) that interfacial heat transfer still occurs in the
high-frequency range. This shows that other passages, namely
surface modes, could enable the flow of heat at the interface.51,62

In summary, we notice that, in contrast to pristine graphene
systems, for some type of defects the in-plane vibrational modes
make greater contribution (up to 55% for the parallel-aligned
system with SW1 defect under the heat-graphene mode) than
the out-of-plane vibrational modes to the total heat transfer at
the interfaces under both heating modes.

5. CONCLUSIONS
Nonequilibrium molecular dynamic simulations have been
performed to examine the thermal energy transfer across the
interface between monolayer graphene with three types of
defects and heneicosane in solid and liquid states. The thermal
conductance at the interface between defective graphene and
heneicosane in both solid and liquid phases is found to be
increasing with an increase in the defect percent in the tested
range (up to 9%) for all types of defects. The enhancement in the
thermal conductance is found to be sensitive to the type of
defect, heneicosane phase and structure, and heating mode. The
maximum improvement of∼41MW/m2 K is noticed for the 9%
SW1 defective parallel-aligned heneicosane crystal system.
Furthermore, we have clearly demonstrated that the changes
in the VDOS of graphene with defects can be traced to the
defective region. Our previous work illustrates that in pristine
graphene systems the advantage of out-of-plane vibrations
contribution to the interfacial heat transfer is obvious for
heneicosane in the liquid and in all solids under both heating
modes. In contrast to this, a considerable amount of the heat (up
to 55%) is transferred by graphene in-plane vibrational modes
for a few cases, which can be attributed to the defects in
graphene. Our work suggests a potential way, that is, by
introducing defects, to improve the interfacial heat transfer in
nanocomposites. Note that the interfacial thermal conductance
obtained under the heat-matrix mode, which is 1 or 2 orders of
magnitude larger than the value evaluated under the heat
graphene-mode, is to be utilized for calculating the effective
thermal conductivity of the graphene-based alkane nano-
composites from the effective medium theory.55 Moreover, we
anticipate that the study of heat transfer in systems where the
heat is injected into the solid nanoparticles finds application in
thermal therapy methods.63,64
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S2 

I. Force field parameters 

Table S1. The NERD potential parameters for n-heneicosane48. 
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68.19 K, V3 = 701.32 K 

 

Table S2. Optimized Tersoff potential parameters for graphene49 

A = 1393.6 eV B = 430.0 eV 

1  = 3.4879 Å-1 2  = 2.2119 Å-1 

3  = 0.0000 Å-1 n = 0.72751 

c = 38049.0   = 1.5724×10-7 

d = 4.3484 h = -0.930 

R = 1.95 Å D = 0.15 Å 
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The potential considers bond stretching, bond bending and torsional motion for 

intramolecular interactions. The Lennard-Jones (LJ) potential is used to treat the intermolecular 

interaction between united atoms  

12 6

( ) 4
r r

V r 
 

    
= −    

     

         (S1) 

where the distance between two united atoms is given by r. The size and energy parameters for 

CH2 and CH3 units are 
2CH = 0.393 and 

3CH = 0.391 nm and 
2CH Bk = 45.8 K and 

3CH Bk

= 104 K, respectively. An all-atom model is used to represent graphene and the interactions 

among carbon atoms is considered using the optimized Tersoff potential47 (Table S2, 

Supporting information). The LJ potential is utilized to treat the interaction between graphene 

and heneicosane atoms. The energy and size parameters for carbon atoms are C Bk = 27.7 K 

and C  = 0.383 nm.48 The LJ parameters between unlike atoms is obtained by using the 

Lorenz-Berthelot mixing rules  

and
2

ii jj

ij ii jj ij

 
   

+
= =                                                           (S2) 

II. Detail information of systems  

The parallel-aligned systems have a cross section of Lx × Ly = 5.27 × 5.62 nm2 and the 

non-defective graphene layer has 1092 carbon atoms. The cross section of 

perpendicular-aligned systems is Lx × Ly = 5.22 × 5.87 nm2 and the non-defective graphene is 

composed of 1176 carbons. The lengths of systems along x-axis are in the range of 5.19 to 5.31 

nm and along y-axis are in the range 5.58 to 5.90 nm for disordered solid and liquid systems. 

These lengths are sensitive to the original sizes of the parent system, which they are fabricated. 

The lengths of crystal systems along the x- and y- axis are chosen in such a manner that the 

lowest lattice mismatch occurs between graphene and the perfect heneicosane crystal. The 

lengths of systems along the z axis are in the range of 15.1 to 22.1 nm depending on the phase 
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and structure of heneicosane. 

 

III. Simulations 

 

 

Figure S1. Schematic illustration of two modes of heat transport in nanocomposites dispersed 

with graphene viz., heat-matrix mode and heat-graphene mode. The heat transfer direction is 

indicated by red arrows.  

 

To simulate the heat-matrix mode, a constant amount of energy per time is added into the source 

region and subtracted from the sink region, which are positioned in side heneicosane at the end 

of the system (Figure. 3). In this manner a heat flux with constant magnitude is introduced in 

the system along z-direction. The simulations conducted in this way are referred to as “heat-

matrix mode”. To mimic the heat-graphene mode, a constant amount of energy per time is 

added to the graphene and a half of that magnitude is subtracted from each of two sink regions, 

which are situated at the two ends of the simulation system in heneicosane. This case is hereafter 

named as “heat-graphene mode”. The width of the source and sink regions in the matrix is 5 Å. 
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Additionally, the heneicosane atoms in two regions, which are beyond the heat source and sink 

regions, having a width of 7 Å on two ends of the system are frozen (Figure. 3). This procedure 

guarantees that all heat had to pass through the graphene. Furthermore, the simulation system 

length along z-axis has been elongated by 10 nm of vacuum, which efficiently isolates periodic 

images of the particles from each of them. In NEMD simulations, under the heat-matrix mode, 

a temperature gradient is introduced in the system by keeping the source region at T +T and 

the sink region at T  ̶ T , where T is the system equilibrium temperature. The temperature of 

the graphene is maintained at T and both heat sink regions are kept at T  ̶ T under the heat-

graphene mode. A T  of 50 and 25 K is used in all heat-matrix and heat-graphene 

simulations, respectively. 
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Figure S2. Snapshots of 9.0 % SV defective monolayer graphene-liquid heneicosane system 

under (a) heat-matrix mode and (b) heat-graphene mode. Heat source and heat sink region 

are labeled as "hot" and “cold”, respectively. The NEMD simulations have been performed 

for both modes.  
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Figure S3. Snapshots illustrating the process of a single liquid heneicosane molecule moving 

through a MV defective in the monolayer graphene: (a) before crossing and (b) during crossing. 

The crossing heneicosane molecule is shown with larger beads for clarity. The CH3 and CH2 

units of heneicosane molecules are shown in the red and blue color, respectively. 
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IV. VDOS profiles and overlap factor 

 

  

 

Figure S4. For parallel-aligned heneicosane crystal system at 250 K and 1 atm (a) VDOS 

profiles in arbitrary units along in-plane and out-of-plane directions for pristine graphene and 

graphene with 9.0 % SV and MV defects (b) VDOS profiles along in-plane and out-of-plane 

direction for graphene with 9.0 % SW1 and SW2 defects (c) overall VDOS for heneicosane 

molecules in the first adsorption layer   
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Figure S5. For perpendicular-aligned heneicosane crystal system at 250 K and 1 atm (a) 

VDOS profiles in arbitrary units along in-plane and out-of-plane directions for pristine 

graphene and graphene with 9.0 % SV and MV defects (b) VDOS profiles along in-plane and 

out-of-plane direction for graphene with 9.0 % SW1 and SW2 defects (c) overall VDOS for 

heneicosane molecules in the first adsorption layer   
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Figure S6. For disordered solid heneicosane system at 250 K and 1 atm (a) VDOS profiles in 

arbitrary units along in-plane and out-of-plane directions for pristine graphene and graphene 

with 9.0 % SV and MV defects (b) VDOS profiles along in-plane and out-of-plane direction 

for graphene with 9.0 % SW1 and SW2 defects (c) overall VDOS for heneicosane molecules 

in the first adsorption layer   
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Figure S7. The overlap factor for parallel-aligned heneicosane crystal systems under heat-

matrix mode at 250 K and 1 atm (a) between the total VDOS of heneicosane and out-of-plane 

VDOS of pristine and 9.0 % defective graphene (b) between the in-plane and out-of-plane 

VDOS of pristine and 9.0 % defective graphene.    

 

  

Figure S8. The overlap factor for perpendicular-aligned heneicosane crystal systems under 

heat-matrix mode at 250 K and 1 atm (a) between the total VDOS of heneicosane and out-

of-plane VDOS of pristine and 9.0 % defective graphene (b) between the in-plane and out-

of-plane VDOS of pristine and 9.0 % defective graphene.    
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Figure S9. The overlap factor for disordered solid heneicosane systems under heat-matrix mode 

at 250 K and 1 atm (a) between the total VDOS of heneicosane and out-of-plane VDOS of 

pristine and 9.0 % defective graphene (b) between the in-plane and out-of-plane VDOS of 

pristine and 9.0 % defective graphene.    

 

 

 

137



S13 

Figure S10. Schematic illustration of monolayer graphene with different types of accumulative 

defects in the central region at the initial condition (a) MV, (b) SW1, (c) SW2. In-plane VDOS 

of a graphene with (d) MV, (e) SW1, (f) SW2 defects embedded in liquid heneicosane at 400 

K and 1 atm. The inset shows the defective graphene where heneicosane molecules are not 

shown for clarity. 

 

V. Spectral heat flux and VDOS 

It should be noted that the output forces and velocities has three components along Cartesian 

coordinates. The components along x- and y-axis describe transverse or in-plane mode 

contributions to total VDOS and total spectral heat flux. The in-plane VDOS and in-plane 

spectral heat flux are calculated as follows 

( ) ( ) ( ), ,in-plane

1
0i

i xy i xy ii
B

D m d e v v
k T

  
+

−
=                                 (S3) 
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( ) ( ) ( ), ,in-plane ,

2
0i

xy ij xy ij h i g
q d e F v

A

  
+

  −
=                                (S4) 

Similarly, the components along z-axis describe longitudinal or out-of-plane mode 

contributions to total VDOS and total spectral heat flux. The out-of-plane VDOS and out-of-

plane spectral heat flux are calculated as follows  

( ) ( ) ( ), ,out-of-plane

1
0i

i z i z ii
B

D m d e v v
k T

  
+

−
=                                (S5) 

( ) ( ) ( ), ,out-of-plane ,

2
0i

z ij z ij h i g
q d e F v

A

  
+

  −
=                               (S6) 

As expected, the summation of in-plane and out-of-plane spectrally resolved heat flux gives the 

total spectral heat flux. ( ) ( ) ( )
total in-plane out-of-plane

q q q  = + . Normalized cumulative heat flux 

is calculated as follows 

Normalized cumulative ( )
( )

( )
0

total
0

i

i

q
q d

q


 






= 


                               (S7) 

where i = in-plane, out-of-plane, total 
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V. Spectral heat flux plots for pristine graphene 

 

 

Figure S11. Directional decomposition of the normalized cumulative spectral heat flux at the 

interface between pristine graphene and parallel-aligned heneicosane crystal when the system 

is under (a) heat-matrix mode and (b) heat-graphene mode. Here, q(ω) is calculated from 

graphene to heneicosane.    
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Figure S12. Directional decomposition of the normalized cumulative spectral heat flux at the 

interface between pristine graphene and disordered solid heneicosane when the the system is 

under (a) heat-matrix mode and (b) heat-graphene mode. Here, q(ω) is calculated from 

graphene to heneicosane.  
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Figure S13. Directional decomposition of the normalized cumulative spectral heat flux at the 

interface between pristine graphene and perpendicular-aligned heneicosane crystal when the 

the system is under (a) heat-matrix mode and (b) heat-graphene mode. Here, q(ω) is 

calculated from graphene to heneicosane.  
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Figure S14. Directional decomposition of the normalized cumulative spectral heat flux at the 

interface between pristine graphene and liquid heneicosane when the the system is under (a) 

heat-matrix mode and (b) heat-graphene mode. Here, q(ω) is calculated from graphene to 

heneicosane.  
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