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ABSTRACT

With increasing digitization, models are not only used during the design phase but throughout the life cycle of
systems. Especially the use of models as soft sensors during operation offers opportunities in cost saving, easy data
acquisition and therefore additional functionality of systems. Soft sensors are models of components that use easily
accessible auxiliary quantities to estimate target quantities that are difficult to measure. Networks of soft sensors are
the prerequisite for redundant data acquisition in a system and thus encourage the occurrence of data-induced
conflicts, i.e., inconsistent values from different soft sensors, which may result from: (i) the breakdown or defect of a
measuring sensor, (ii) model uncertainties of the soft sensors, (iii) change of component characteristics, e.g. due to
wear. The resolution of these conflicts either leads to greater confidence in the model-based system quantities or
allows the detection of changing components characteristics. Hence soft sensor networks can be used to detect wear
in system components.

Wear in pumps and valves leads to a change in the flow rate and the inner leakage. Therefore, the detection of wear
with soft sensors requires the detection of small changes in the system flow rates. In the full paper an analysis of the
influence of small flow rate variations on redundant soft sensor outputs is carried out. For this, small flow rate
variations are implemented on a test bench for positive displacement pumps. Furthermore, a systematic analysis of
parameter and data uncertainties and their propagation in models for positive displacement pumps is carried out. The
resulting flow rates and the measurement uncertainties from the models of the pump and the throttle valve of the test
bench are compared and discussed with respect to data induced conflicts and the detection of wear.

Powered by TCPDF (www.tcpdf.org)



 

4th International Rotating Equipment Conference 2019, Wiesbaden                Paper No. 66        Page 3 

 

1 INTRODUCTION 

Positive displacement pumps are widely used in 
different technical applications. Especially 
eccentric screw pumps are prone to wear due to 
small gaps, their design material and their 
application with contaminated fluids. Particles may 
be trapped between rotor and the elastomeric 
stator. Therefore, the pump characteristics may 
change due to wear and, consequently, the service 
life of these pumps is low. Following this case, it is 
advised to use predictive maintenance with fault 
diagnosis, i.e. wear detection to ensure the 
operation and functionality. Wear in pumps leads to 
a change in the flow rate and the inner leakage. 
Therefore, the detection of wear requires the 
detection of small changes in the systems flow 
rates. The method for wear detection outlined in 
this paper is based on redundant estimation of the 
flow rate for a system consisting of a displacement 
pump prone to wear and a valve. The characteristic 
of the valve is assumed to stay constant.  

The flow rate is estimated by soft-sensors based on 
easily accessible auxiliary quantities like pressure, 
temperature and rotating speed. This ensures the 
usability of the method for future pump applications 
due to inexpensive measurements. 

2 LITERATURE OVERVIEW 

Wear in fluid systems is due to solid contamination 
of the fluid. The contamination is due to the 
application or caused by, and leads to erosion and 
3-body abrasion. The results on the fluid system 
are increased gap sizes. Due to the nature of fluid 
systems, particles are propagated through the 
system. [1]. Wear in fluid systems is drift-like and is 
therefore be classified as an incipient fault until the 
system fails in an abrupt fault [2]. 

During the life cycle of a fluid component several 
measures should be implemented to counteract 
wear. In the design phase the focus is on 
preventive measures. That includes proper 
implementation of particle filters but also designing 
the system to minimize wear e.g. with software 
support [3] [4] or design rules [1]. During operation 
of the fluid system, wear can be detected in the 
early stages with fluid condition monitoring, i.e. by 
counting particles [5]. For detecting later stages of 
wear a fault diagnosis system needs to be 
considered. Typically, the system then has already 
undergone some changes due to wear. In some 
pump applications with heavily contaminated fluids, 
e.g. for wastewater, this late detection is 
unavoidable. 
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Figure 1: Comparison of (i) wear on impeller which 
reduces impeller diameter and (ii) wear on sealing 
surface pairs, which leads to internal leakage [6]. 

The result of wear on the pump characteristics 
depends on the pump type, c.f. Figure 1. In 
centrifugal pumps the wear mainly reduces the 
diameter of the impeller, leading to a characteristics 
of a smaller pump of the same type. A different 
effect occurs, when wear widens the gap between 
sealing surface pairs. This leads to an internal 
leakage flow from high to low pressure zones which 
is proportional to the clearance and approximately 
constant over the pump flow range [6]. In pressure 
controlled systems, both types of wear change the 
systems flow rate. 

There is a vast literature on fault diagnosis systems 
and predictive maintenance to recognize a 
changing flow rate. A survey of methods for fault 
diagnosis systems can be found in [2]. Fault 
diagnosis methods generally consist of a dynamic 
process model which is used to generate features. 
The chronological sequence of features and the 
difference of these features to features in normal 
operation lead to symptoms which are used for a 
diagnosis of faults. In this paper a new low cost 
approach for the detection of wear is presented. 
The symptoms are conflicting flow rate outputs of 
two soft sensors. 

Soft sensors are not entirely distinguishable from 

the models used in fault diagnosis systems. Soft 

sensor is a compound of the words “software” and 

“sensor” and represents a system that uses easily 

accessible auxiliary quantities to estimate unknown 

target quantities. For this purpose, models that 

describe the relation between measured and 

unknown quantities are needed [7], [8], [9]. 
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The origin of soft sensors lies in the process 

industry where, motivated by huge plant sizes, 

rough environmental conditions for measuring 

equipment and high costs of machine downtime, 

soft sensors relying on data driven models were 

developed. They are used mainly to back-up 

measuring devices, to replace hardware sensors, 

to estimate system variables for condition 

monitoring and controlling as well as detecting 

failure [10], [11], [12]. 

In fluid systems, soft sensors are mainly used to 
replace the volume flow measurement, since flow 
metering entails high costs and flow control being 
the most important control strategy in industrial 
applications [13]. Against this background Ahonen 
[14] and Leonow et. al. [15] present soft sensor 
approaches that are based on physical and 
empirical models of single centrifugal pump units 
representing the following pump characteristics:  -

𝐻 characteristic,  -  characteristic or  -

𝐼 characteristic, where   is the volume flow rate, 𝐻 

is the pressure head,   is the power consumption 
and 𝐼 is the stator current of the electric drive of the 
pumps. Yong-feng et. al. [16] describe a method to 
estimate the volume flow rate of a gear pump, 
depending on the load pressure, rotational speed 
and varying viscosity of the hydraulic oil. Their 
experimental analysis shows, that their soft sensor 
can achieve an accuracy of ±2 % concerning the 
relative error. Beside the scientific publications, sof 
sensors have already entered the centrifugal pump 
industry where different pump manufacturers 
developed customized soft sensor solutions for 
their pumps [17], [18], [24].  

A relatively new approach is the implementation of 
soft sensor networks. Networks of soft sensors are 
the prerequisite for redundant data acquisition in a 
system and thus encourage the occurrence of data-
induced conflicts, i.e., inconsistent values from 
different soft sensors. The resolution of these 
conflicts either leads to greater confidence in the 
model-based system quantities or allows the 
detection of changing components characteristics. 
Hence soft sensor networks can be used to detect 
wear in system components [19], [20]. 

3 METHOD 

With increasing digitization, standard solutions like 
OPC UA [21] allow for easy information transfer 
between components and therefore are the 
foundation for soft sensor networks. Combining the 
output of several soft sensors for fluid components 
in a soft sensor network leads to redundant 
calculations of the flow rate. This redundancy 
allows the occurrence of data-induced conflicts, i.e. 
inconsistent values from different soft sensors, 
which carry information. 

The fluid system under consideration consists of a 
positive displacement pump, i.e. a eccentric screw 
pump, and a valve as hydraulic resistance (c.f. 
Figure 2). Both components are modelled and their 
flow rates are calculated from pressure, 
temperature and rotational speed measurements 
(c.f. section 3.1). The occurrence of data induced 
conflicts between these models allows for the 
detection of changing component characteristics. 
Hence, soft sensor networks can be used to detect 
wear in system components. The case investigated 
in this paper is the wear of the pump with constant 
system resistance. Due to greater gaps and 
missing press fit, hydraulic resistance like valves or 
heat exchangers are less prone to wear. 
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Figure 2: Soft-sensor network for wear detection in 
positive displacement pumps. The flow rate output 
of two soft-sensors is compared. 

In a pressure controlled fluid system, wear in 
pumps has an effect on the flow rates (c.f. Figure 
1). Consequently, for the efficient validation of the 
wear detection method, wear can be simulated by 
bypass flows [22]. Therefore, for the validation of 
the method, a test-bench for simulating wear in the 
pump with a bypass flow was built (c.f. section 3.3). 
The validation is carried out in a two step process: 
(i) First the bypass is closed and the models are 
calibrated for constant resistance at different 
rotational speeds of the pump. This represents the 
components behavior without wear. (ii) Secondly, 
wear is simulated by opening the bypass at 
different degrees of opening for constant rotational 
speeds of the pump and constant resistance. 

3.1 MODELS AND UNCERTAINTIES 

For the flow calculations a type independent model 
for positive displacement pumps is used [23]. The 
flow   is determined by the geometric volume      

and the rotational speed   minus the gap losses  L. 

           −  L (1) 
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The gap losses are modelled by  

 L+ ≔ 
 L

      
1/3
 𝐿∆𝑝+ ∆ +

𝑚  
(2) 

where 

∆ +  
∆      

2/3

 2 
. 

(3) 

Measured quantities are the rotational speed   and 

pressure difference Δ . The fluid density   and 
kinematic viscosity   are derived from a calibration 
curve via temperature measurements. The 
parameters 𝐿∆𝑝+ and 𝑚 are fitted in a calibration 

process, i.e. linear least squares, with no bypass 
flows. 

Considering the valve, the well known 𝐾 -Model is 
used 

𝐾        √
∆ 

∆ 0

 0
 

 

(4) 

where ∆ 0 ≔ 1 bar and  0 ≔ 1000 kg/m3 . The 
density is the measured fluid density   in the pump. 

The fitted parameters and the corresponding 
parameter uncertainties can be found in Table 1. 
Fitting was done with a robust nonlinear least 
squares method. 

 

Table 1: Model parameters and uncertainties (in unit and 
as percentage) for pump and valve model. 

Parameter Unit Value Uncert. Uncert.  in % 

     l 0.0723 - - 

𝐿∆𝑝+ - 3.68 ⋅ 10−19  7.88 ⋅ 10−18  2141 

𝑚 - 1.99 0.95 48 

𝐾  l

min
 

13.56 0.12 0.88 

 

3.2 DATA INDUCED CONFLICT 

By comparing data of different sensors that 
measure the same quantity, conflicts may emerge. 
This can be promoted by targeted redundancy. The 
data induced conflicts carry information since there 
must be a cause for the conflict. The data induced 
conflict can be attributed to: (i) sensor break down, 
(ii) soft-sensor uncertainty or (iii) component 

characteristics change. The classification can be 
made by looking at the time history of the sensor 
data and the uncertainty quantification of the soft-
sensor.   

A sensor breakdown is usually identified by sudden 
changes or interrupts. In case (i) the system needs 
maintenance. Case (ii) cannot be avoided since 
uncertainty is inevitable. This case can be identified 
by knowing the uncertainties of the soft-sensors. If 
the uncertainties of two soft-sensors overlap, the 
conflict is due to sensor uncertainty. Case (iii) is the 
most valuable case for this paper since system 
change can be identified. It occurs, when the cases 
(i) and (ii) can be excluded. [19] 

3.3 TEST SETUP 

The schematics for the test bench for the simulation 
of pump wear can be seen in Figure 3. The 
eccentric screw drive pump under consideration 
has a geometric volume of      0.0723 l and is 

driven by an asynchronous motor with 18 kW . The 
resistance of the system is mainly determined by 
the main ball valve. The bypass flow is controlled 
with an electric ball valve. All measured points were 
approached from lower degrees of opening to avoid 
mechanical play in the valves. 

A torque meter with built-in speed sensor measures 
the rotational speed of the pump. The volume flow 
rate    in after the valve is measured with a screw 
type flow meter. Pressures are measured with 
piezo resistive sensors and temperatures are 
measured with Pt100 resistance thermometers.  

The oil was Shell Tellus 10. The temperature of the 
oil during experiments was held at 30° ± 1° C. The 
temperature was measured with a temperature 
sensor before and after the pump and the results 
were averaged for the determination of oil density 
and viscosity. 

4 RESULTS 

The soft sensor network was tested for the 
rotational speeds 100 rpm to 600 rpm for the pump 
in steps of 100 rpm. In Figure 4 the computed and 
measured flow rates are shown for 200 rpm and 
500 rpm as a function of the volumetric inefficiency 
𝜀   , defined as 

𝜀   ∶ 1 − 𝜂    
    
      

. 
(5) 

The volumetric inefficiency indicates the wear 
condition in the pump. 
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Figure 3: Circuit diagram and test bench for simulating wear in pumps and valves via bypass flow. 

For both rotational speeds, the computed flow rate 
of the soft sensor for the pump       does not 

change. This is due to the pump soft sensors lack 
of knowledge, that the pump is worn, i.e. is 
bypassed. When opening the bypass, the flow rate 
for the valve soft sensor        decreases. The 
valves soft sensor observes the drop in the flow 
rate due to the pump delivering less fluid. 
Therefore, the pressure difference over the valve is 
lower than before and by equation (4) a lower flow 
rate is determined. 

Besides the obvious difference in flow rate between 
different rotational speeds, the uncertainty of the 
soft sensors varies between speeds. For the case 
of 500 rpm, the error bars for both soft sensors 
barely can be seen behind the markers. For 200 
rpms the errors for the valves soft sensor are larger, 
indicating a larger relative error. However, in both 
cases the uncertainties of the valves soft sensor 
include the measured flow rate     . Hence, the 
soft sensor for the valve predicts the measured flow 
rate. 

4.1 UNCERTAINTY ANALYSIS 

The true flow rate      is measured for validation 
purposes, thus the deviation of the computed flow 
rate        from the true value, i.e. relative error 𝑒r   

𝑒r   
      −     

    
  

can be given. The valve soft sensor predicts the 
flow rate with a relative error of 2% for 200 rpm and 
with an relative error of less than 1% for 500 rpm. 

However, in an application the true flow rate is not 
known and therefore the relative error is not 
relevant. To assess whether the soft sensors are 
useful for determining the true flow rate and 
detecting wear, the uncertainty of the soft sensors 
has to be determined.  

As is well known, the uncertainty describes an 
interval around the computed value        or       

which contains estimates that can be reasonably 
attributed to the true value. The uncertainties for 
the flow rate outputs of the soft-sensors        and 

      are determined via uncertainty propagation. 

Uncertainties of fitted parameters are considered 
as systematic errors in the error propagation.  

The resulting uncertainty for the valve soft sensor 
is about 8% for 200 rpms and 1.7% for 500 rpms 
and a volumetric inefficiency of 20%. 
Consequently, the soft sensor for the valve can 
detect smaller relative fluctuations for higher flow 
rates. 

Comparing the parameters and uncertainties of 
Table 1 with the uncertainties in Figure 4 leads to 
the question why, despite the large parameter 
uncertainties, the pumps soft-sensor has a lower 
total uncertainty. This is mainly due to the loss term 
 L ≈ 0, since gapless eccentric screw pumps are 
modeled. Thus only the uncertainty of the valve soft 
sensor is of interest here. 

The contributions to the uncertainty of the valves 
soft sensor can be found in Table 2. The total 
uncertainty is mostly due to the systematic 
uncertainty, since fluctuations decrease due to long 
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measurement times. The order of magnitude of the 
systematic error of the valve soft-sensor is nearly 
constant between different pump speeds. This can 
mainly be contributed to an increase of the 
uncertainty for 𝐾  with increasing rotational speed 
and a decrease of error for the pump sensors. This 
inverse relation is due to the use of equation (4) 
both for parametrization and the calculation of the 
flow rate.  

With regard to cost efficiency, the uncertainty of the 
soft sensor can be easily reduced by using a lower 
systematic error for the pressure sensor after the 
valve, i.e. hydraulic resistance. Other options are a 
variable parameter 𝐾  for the valve during 
calibration and a refinement of the valve model. 

  

4.2 VALIDATION 

As the results indicate, the soft sensor network 
shows data induced conflicts between        and 

     . Where the errors of the two soft sensor 

outputs do not overlap (c.f. Figure 4) a data induced 
conflict of type (iii) occurs.  

Table 2: Contributions to uncertainty of valve soft-sensor, 
including contributions of different inputs to the 
uncertainty in flow rate output. 

 

The data induced conflict is the result of pump 
characteristics changes. In the results, the size of 
the data induced conflict increases with increasing 
volumetric inefficiency, caused by the bypass flow, 
i.e. the simulated wear. 

Hence, the soft sensor network under 
consideration can be used to detect wear in the 
pump. However, to find wear in an early stage, the 
approach is limited to operating ranges where the 
uncertainty of the valve model is low, i.e. high 
rotating speeds of the pump. 
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Figure 4: Comparison of soft-sensor outputs with 
measured flow rate for two different rotation 
speeds for the pump. Some uncertainty-bars 
vanish behind markers. 

5 CONCLUSIONS 

The soft sensor for the valve is capable of 
determining the measured flow rate with high 
accuracy. The relative error lies within errors known 
from the literature [16]. The uncertainty of the soft 
sensor limits the flow rate prediction to the 
uncertainty band and the uncertainty is mainly 
influenced by the fitted parameter for the valve 
model and the pressure sensors. To decrease the 
uncertainty, the pressure sensor after the hydraulic 
resistance should be changed for a sensor with 
higher accuracy. 

 contribution to uncertainty in l/min 

 200 rpm  500 rpm  

total uncert. 0.84 0.55 

system. uncert. 0.84 0.55 

stat. uncert. 0.00 0.01 

𝐾  0.10 0.25 

   in 0.22 0.09 

       -0.52 -0.22 

  0.00 0.00 
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The soft sensor network is capable to determine 
wear and its extent in eccentric screw pumps via 
data induced conflicts with a relatively simple 
model for the systems resistance. The 
determination of the uncertainty is important to 
classify unavoidable data-induced conflicts in 
redundant data acquisition. The approach is more 
powerful at high rotating speeds due to the 
uncertainty having less influence at higher flow 
rates. 

In future investigations wear of the system 
resistance, i.e. valve should be taken into 
consideration. To link wear and the simulated wear 
the bypass approach and worn components should 
be compared. 
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