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ABSTRACT

The Use of Games and Crowdsourcing for the
Fabrication-aware Design of Residential Buildings

Anton Savov

State-of-the-art participatory design acknowledges the true, ill-defined nature of
design problems, taking into account stakeholders’ values and preferences. However,
it overburdens the architect, who has to synthesize far more constraints into a one-
of-a-kind design. Generative Design promises to equip architects with great power
to standardize and systemize the design process. However, the common trap of gen-
erative design is trying to treat architecture simply as a tame problem. In this work,
I investigate the use of games and crowdsourcing in architecture through two sets
of explorative questions. First, if everyone can participate in the network-enabled
creation of the built environment, what role will they play? And what tools will they
need to enable them? And second, if anyone can use digital fabrication to build any
building, how will we design it? What design paradigms will govern this process?
I present a map of design paradigms that lie at the intersections of Participatory
Design, Generative Design, Game Design, and Crowd Wisdom. In four case studies,
I explore techniques to employ the practices from the four fields in the service of
architecture. Generative Design can lower the difficulty of the challenge to design
by automating a large portion of the work. A newly formulated, unified taxonomy
of generative design across the disciplines of architecture, computer science, and
computer games builds the base for the use of algorithms in the case studies. The
work introduces Playable Voxel-Shape Grammars, a new type of generative tech-
nique. It enables Game Design to guide participants through a series of challenges,
effectively increasing their skills by helping them understand the underlying princi-
ples of the design task at hand. The use of crowdsourcing in architecture can mean
thousands of architects creating content for a generative design system, to expand
and open up its design space. Crowdsourcing can also be about millions of people
online creating designs that an architect or a homeowner can refer to increase their
understanding of the complex issues at hand in a given design project and for bet-
ter decision making. At the same time, game design in architecture helps find the
balance between algorithmically exploring pre-defined design alternatives and open-
ended, free creativity. The research reveals a layered structure of entry points for
crowd-contributed content as well as the granular nature of authorship among four
different roles: non-expert stakeholders, architects, the crowd, and the tool-makers.

Keywords: crowdsourcing, games, residential buildings, fabrication-aware, par-
ticipation, generative design, voxel shape grammars, Minecraft
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Preface: Personal statement and
experience in the field

Figure 1 – Project Avocado. Image credits: the author.

I grew up in Bulgaria in a family of architects, and I am educated as an ar-
chitect. This very focused professional environment exposed me to the production
of architecture from early on. I was hand-drafting as early as ten years old and
took on CAD and BIM during high school. I had a passion for creating virtual
representations of fictional realities. Another strong interest of mine was computer
programming, mainly focusing on graphic interfaces and 3D simulated worlds.

During my architectural education in Sofia, I found the applications of program-
ming in architecture fascinating. Architects were trying to design buildings with
Genetic Algorithms and Cellular Automata in the 2000s. Architects could make
their own tools to simulate natural processes. Algorithmic and systems thinking
influenced my architectural projects from early on. I realized that it could give the
architect a means to manage the complexity of diverse inhabitants’ preferences. I
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CHAPTER 0. PREFACE

felt urged to use these algorithmic methods to design alternatives to homogeneous,
repetitive buildings. This was probably triggered by the socialistic “same for all”
panel housing shaping the cities of Bulgaria before and during my childhood.

During my master’s studies at the Städelschule Architecture Class in Frankfurt,
I explored the application of scripting in design. I linked it in real-time to online
databases such as Flickr, Twitter, and Google Search. The Web 2.0 phenomena of
user-generated content influenced my goals and ideals for democratizing architecture.

After I completed my master’s studies at the Städelschule, I had the opportu-
nity to work in the inspiring, hacker-like environment at the engineering office of
Bollinger+Grohmann. There, my computational design skills could be utilized for
the design process in practice. Being a part of an engineering office, interfacing
between disciplines and between tools was a daily activity. Simultaneously, through
my teaching at Städelschule Architecture Class, I played with new digital tools and
design techniques. However, in all the optimization algorithms and simulations I
ran in that period, I felt something was missing — namely, the direct input of the
end-user of the product we were creating. The inhabitants, although many of them
with access to technology, in the form of smartphones and laptops, and skills to cre-
atively use it, equal to or more advanced than mine, were rarely part of the design
process.

This led me to try concepts at a small scale, producing interactive digital-physical
installations such as Project Avocado (2012) (Figure 1) and Box in a Cloud (2013).
Both projects focused on the spatial organization of residential units following user-
defined parameters. The feedback I got from participants in those projects reassured
me that they could understand the basic underlying principles of architecture beyond
colors and decorations. Furthermore, I encountered a motivating and inspiring desire
for participation and co-creation — for being a part of something larger.

Encouraged by this feedback, I began this Ph.D. thesis in 2015. I felt confident
that the architectural concepts from the 1960s-70s to develop technology and sci-
entific methods to achieve a more explicit and more democratic design process are
realizable today. I believed these ideas had not become a reality simply because the
needed technology did not exist back then. The insights I gained from developing the
case studies for this dissertation challenged my belief. I realized that it’s precisely
the advances in technology today that make it easy to see how those concepts were
flawed. However, I also realized that there is a potential for architectural innovation
not solely in the algorithmic nature of computers but in them offering new media
for communication.

At the core of my research presented here has been how to apply technology
to boost participation and creative collaboration to the extreme. How architects,
inhabitants, thousands of third-party contributors, and algorithms can use the inter-
active medium of computer models to work together on a design problem. Everyone
from the position and skills of their role in the process.

Anton Savov, Frankfurt, 15 October 2021
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Chapter 1

Introduction

“Technology is the answer, but what was the question?” (Cedric Price)

1.1 Background and Motivation

By the year 2050, we need to adapt our built environment to house billions of
additional people in cities worldwide, respond to the effects of climate change, as well
as meet the goals to contain them (Newswatch Times 2013; Opoku 2016; C. Smith
and Levermore 2008; Woetzel et al. 2014). But there are two other — technological
— pillars that by 2050 will define how the built environment will be created — that
my research steps on. Namely, network-enabled participation and ubiquitous digital
fabrication.

The first pillar supports the narrative that technology lowers the barrier to par-
ticipation and fosters collaboration (Rifkin 2015). The information revolution causes
ideological shifts that encourage decentralization and weaken the traditional author-
ity, creating a powerful force to reclaim the commons (Rifkin 2015; Roberts 2001).
A newly gained societal and economic awareness highlights value differences and
thus promotes conflict rather than harmony (Roberts 2001). At the same time, par-
ticipation’s power has dwindled over the last decades as it has been contained within
the algorithmically calculated consensus of the online platforms, turning them into
“a source of exploitation, cooptation, or enhanced neoliberal domination” (Kelty
2019, p.2). Open Design tries to counter this with its three dimensions of openness
— participation without permission, a low threshold of participation, and openly
licensed output (de Mul 2016). Architecture, although late to the network game, is
now also caught between using the online crowd as an unregulated resource of ben-
efit for the few or fostering its creative power for the common good (Parvin 2013;
Sanchez 2021). If everyone can participate in the network-enabled creation of the
built environment, what role will they play?

The second technological pillar amplifies our ability to shape our environment.
Our digital design models and BIM models are the fabrication instructions, the
structural simulation, the bill of quantities and materials, etc. This enables us to
bring about new buildings into the world faster, easier, and more precise than ever
before. And with robots and digital fabrication entering the discipline of architec-
ture, construction will accelerate even further (Figure 1.1 right) (Gramazio, Kohler,
Willmann, et al. 2014; Leder et al. 2019; Open Systems Lab 2019; Picon 2014;
Wagner, Alvarez, Kyjanek, et al. 2020). It is estimated that by 2050, facilities for

1



CHAPTER 1. INTRODUCTION

Figure 1.1 – Block by Block and Robotic Construction. Left: Block by Block a project by UN-
Habitat using Minecraft to engage local communities in the renovation of their public urban spaces.
Right: Entirely automated digital fabrication of a building using distributed robotics. Image credits:
Block by Block, Leder et al. 2019.

digital fabrication (FabLabs), doubling in number every year and a half, will reach a
billion, covering every part of the world and enabling “anybody [to] make (almost)
anything locally, while using knowledge that is shared globally” (N. Gershenfeld,
A. Gershenfeld and Cutcher-Gershenfeld 2017, 2018). The democratization of digi-
tal fabrication reverses the approach for technological innovation from top-down to
bottom-up (de Mul 2016; N. Gershenfeld 2006, 2012). With such an empowered
crowd and ever-accelerating construction, new buildings become a shaping force of
the Anthropocene. They have a much more significant impact on society, ecosys-
tems, and even geology than ever before(Waters et al. 2016). Yet, buildings are just
printouts of a temporary state of an idea that keeps evolving in society’s collective
mind, in the crowd. I regard the collective formulation of the idea for a building as
more important than what gets built at the end. If anyone can use digital fabrication
to build any building, how will we design it? Who takes part, what tools are at their
disposal, and who are they in dialog with.

The questions of what roles network-enabled participants play in architecture
and how buildings are designed if anyone can build anything lead to much bigger
questions beyond this dissertation’s scope, yet worth listing to frame the work. In
2050, will most architects still design ’one-of-a-kind’ buildings in the hope of winning
a commission or a competition? Or will they be creating systems enabling others
to design? Will inhabitants immerse themselves in Virtual Reality only to pick the
floor finishes of their new homes? Or will they interactively explore qualitatively
different home designs until aware of how their home fits in their life, the city, and
nature? Will the networked crowd do design gigs in a race to the bottom? Or
will it collaboratively invent novel housing typologies and business models? Will
Architecture continue to ignore the middle of the bell curve, finding purpose in
working either only for the rich or the deprived (Habraken and Teicher 2000; Parvin
2013; Sanchez 2021)? Hopefully, in 2050, the billions of people who recently arrived
in cities worldwide will occupy the middle of the curve and not the extremes. Will
Architecture worsen the tragedy of the commons(Hardin 1968) or contribute to their
reconstruction?

2



1.2 Thesis Statement

Architects are skilled at discovering and codifying a project’s value system and
turning it into a physical artifact. Architecture helps figure out what to build and
also coordinates how to build it. It did that in Antiquity. It did that even after
Alberti drove a wedge between the two questions in the Renaissance (Carpo 2011).
It does this today. And it will still do it in 2050.

As such, Architecture sits at the interface between the realm of wicked problems
and the realm of tame problems (Lange 2016; Rittel and Webber 1973). Engineering
and construction deal predominantly with tame problems. They are well-defined,
solutions can be rated and optimized. A pitfall to avoid is considering the whole
design process as a tame problem. Architecture deals predominately with wicked
problems. They are ill-defined, there is no apparent problem definition, solutions
are not optimizable, nor objectively rate-able (Elezkurtaj and Franck 2002; Rittel
and Webber 1973). When dealing with wicked problems, the approach is to confront
stakeholders with potential solutions to get them to agree on a problem definition
and the criteria for acceptable solutions (Elezkurtaj and Franck 2002; Lange 2016).

Technological, cultural, economic, and social changes are causing wider recog-
nition and rise of wicked problems (Roberts 2001). Many processes are aiming to
become more inclusive of stakeholders’ values, opinions, and preferences (Hoskins
et al. 2012). Two main approaches to Architecture have emerged as a result of this
— participatory design practices and mass-customization in the form of building
configurators.

Current participatory design practices acknowledge the true nature of wicked
problems, taking into account stakeholders’ values and preferences. They incorpo-
rate this input by sandwiching the traditional design phases between a Phase Zero
and a Phase n+1 (Granath 2001; Hofmann 2018, 2019; Poplin 2012; Sanoff 1990,
2011; Simonsen and Robertson 2013). Block by Block (Figure 1.1 left) is a good
example. It was started in 2012 by the United Nations Human Settlements Pro-
gramme (UN-Habitat) in collaboration with Mojang, the company making the pop-
ular game Minecraft. The project aims to “empower communities to turn neglected
urban spaces into vibrant places that improve quality of life for all” (UN-Habitat
2015, 2016). Today it lists 30 projects across dozens of countries on its website1.
Out of its 12-step method, step 10 represents the entire traditional design process
with all its phases and challenges (Block by Block team 2021). The additional 11
steps, nine before and two after the architect’s job is usually done, ensure partic-
ipation2. Because of its open-ended nature, participatory design overburdens the
architect, who now has to synthesize far more constraints into a one-of-a-kind de-
sign and produce its construction drawings, following no system but a trial-and-error
process. Participatory design is not scalable because it lacks explicit methods and
means to encode expert knowledge. Furthermore, it often suffers from not being
able to reach a diverse group of representatives of the target group of stakeholders
— with participatory design workshops, especially on urban planning issues, often
attracting people of similar age and background (Knöll 2018).

Building configurators, on the other hand, continue a long tradition of encoding
expert knowledge into a design system, such as Durand’s parallel plates from the

1https://www.blockbyblock.org
2See chapter 2: Participatory Design for details.
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1800s or Gropius’ Baukasten im Grossen from the 1920s (Durand 2000; Gropius
1965). The novelty with a building configurator is that the design system is used
not by the architect but by the inhabitant directly. A building configurator can be as
simple as a cleverly made physical model, like the design toolbox by BARArchitekten
given to future inhabitants of Spreefeld Berlin to define the walls of their flats
from a set of predefined options (Figure 1.2 left) (Becker 2015). For decades, the
prefabricated single-family house industry has operated based on design catalogs
with thousands of standardized options. Parametric design has given it the ability
to morph countless in-between states between any two-floor plans as illustrated
by Mr+Mrs Homes3, a German startup for mass-customized houses (Figure 1.2
middle). Techniques for Generative Design4 promise to equip architects with an
even bigger power to standardize and systemize (Benros and Duarte 2009; Bianconi,
Filippucci and Buffi 2019; Dillenburger et al. 2009; Duarte 2005; A. S. Howe, Ishii
and Yoshida 2017; Jensen, Olofsson, et al. 2014; Jensen, Lidelöw and Olofsson
2015; Malmgren, Jensen and Olofsson 2011). Building configurators, and generative
design in general, integrate very well with digital fabrication. However, the common
trap of generative design is trying to treat architecture simply as a tame problem.
They cope with design complexity by reducing it to a finite number of floor plan
alternatives and predefining aesthetics by limiting the choice of material options and
geometrical expressions. This approach is not truly inclusive as it takes away the
power of stakeholders to meaningfully influence the outcome.

Figure 1.2 – Two types of tools for the non-experts. Left and middle: an architecture tool — all
outcomes predefined, single-user. Right: a science tool — explorative, collaborative. The number of
people and the amount of expertise encoded in the tool are very low on the left but super high on the
right. How to bring that to architecture? Image credits: BARArchitekten, Mr.&Mrs. Homes, Foldit.

Research gap

Participatory design practices and mass-customization in the form of building config-
urators frame the identified research gap in my work (Figure 1.3). Both approaches
are the two sides of the same coin, i.e., of solving wicked problems authoritatively.
Both are built around the central role of the experts: the one architect who will
process all stakeholders’ input into a design or who will come up with a standard-
ized design catalog. However, when dealing with wicked problems, interaction and
dialog between everyone involved are beneficial (Lange 2016; Rittel and Webber
1973; Roberts 2001). According to Majchrzak and Malhotra 2013, crowds cancel
out personal biases through the sheer interaction among the members of the crowd.

3https://www.mrmrshomes.de/
4See chapter 3: Generative Design for details.
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Therefore other disciplines have started exploring the two alternative strategies to
solving wicked problems — collaborative and competitive (Figure 11.1) — which
emerge, respectively, when power is dispersed and contested (Roberts 2001).

RESEARCH GAP
PARTICIPATORY 

DESIGN

GENERATIVE 

DESIGN 
incl. Building Configurators

CROWD WISDOM 
Crowdsourcing, Citizen 

Science, Mass Collaboration 

Authoritative Strategy Authoritative Strategy

Collaborative and Competitive Strategies

GAME DESIGN

Figure 1.3 – The research gap. Image credits: the author.

The collaborative/competitive approach to solving open problems has found ro-
bust application in Citizen Science5. In 2008, after years of failed attempts to
develop an algorithm that can simulate the folding of protein molecules, a group
of scientists at the University of Washington developed the video game Foldit (S.
Cooper, Khatib, et al. 2010). The player is presented with a protein molecule, and
their mission is to reshape it by connecting couples of atoms together (Figure 1.2
right). The player’s score increases as the energy required to keep the molecule in
its current shape drops, meaning it is closer to nature’s solution. Nature decides
who wins and who loses the game. Thousands of online players, driven by their de-
sire to win and simultaneously help find proteins that could potentially cure deadly
diseases, started to engage and understand the research aspects behind the game.
They read scientific papers and shared their progress on the protein puzzles with
each other. Foldit shows the potential of games to encode expert knowledge, provide
real-time feedback and automate or outsource onboarding to the needed skill level
so that anyone can contribute.

Reddit’s r/Place is another example of how tens of thousands of people can
collaborate and compete to produce a collective work of art (Figure 1.4) (Rappaz
et al. 2018). Reddit is an American social news aggregation, web content rating, and
discussion website. Registered members submit content to the site, such as links,
text posts, images, and videos. These are then voted up or down by other members.
On 1 April 2016, Reddit put online a white canvas of 1000 by 1000 pixels and gave
people 72 hours to paint something on it. Altogether, more than 250.000 people
took part. Every participant had the same 16 colors to choose from and could paint
only one pixel every five minutes. If you wanted to draw anything on the canvas, you
had to convince a large enough group of people to join your cause. Groups formed
around nation flags, famous works of art, and symbols of internet culture but also
more abstract ones such as The Corner of Blue or The Green Lattice6. People
started Reddit communities (subreddits) to communicate and coordinate what they

5I use the term Citizen Science in its meaning of projects where nonscientists contribute and
process scientific data. See chapter 4 for details.

6A descriptive video with time-lapse of Reddit’s r/Place: YouTube link.
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Figure 1.4 – Reddit r/Place. 250.000 participants, 72 hours, the underlying system is predefined, the
content evolved within it. Image credits: Reddit.

wanted to draw and how to defend it from being painted over by the other groups
(Vachher et al. 2020).

Thesis

How do Participatory Design and Generative Design change if we venture beyond
the paradigm of the authoritative approach? The two fields that r/Place and Foldit
draw from, Crowd Wisdom and Game Design, can provide the level of content
creation, options exploration, and automation of guidance and education that can
break participation and design computation out of their respective confines and
integrate them. Altogether these four fields build the landscape for my thesis, which
is given below:

Thesis: Architectural design knowledge can be encoded into generative game
worlds where every role — architects, stakeholders, and third-party participants —
can contribute, respective to their skills and interests, to creating schematic archi-
tectural designs.

Research questions

Given the thesis presented above, I have formulated the following research questions:

1. What design paradigms lie at the intersection of participatory design, genera-
tive design, crowdsourcing, and games?

2. What tools, tasks, and roles can be offered at this intersection for the creative
involvement of the various groups — architects, stakeholders, third-party con-
tributors?

An adequate approach at investigating the research questions would:
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• employ computational techniques for the encoding of expert knowledge that
have a low threshold of participation and can be set up and filled with content
from any architectural design expert;

• allow anyone to design while assisted by encoded expert knowledge and fab-
rication constraints, learning from what has been designed by others before
and resorting for help to experts (professionally trained or self-taught) when
needed;

• offer the opportunity to adjust the balance of power between architects, stake-
holders, and players so that the spectrum from authoritative towards collabo-
rative and competitive problem solving can be explored.

1.3 Methodology

The nature of the research work presented here is explorative. I begin with research
questions and aim to arrive at a set of take-aways, claims, and new hypotheses for
future work. I investigate the thesis by exploring the architectural design potential
at the intersection of Participatory Design, Generative Design, Game Design, and
Crowd Wisdom.

CROWD WISDOM
Crowdsourcing, Citizen

Science and Mass
Collaboration

GAME DESIGN
Game Mechanics and

Gamification

PARTICIPATORY
DESIGN

Architects, inhabitants &
other stakeholders

GENERATIVE
DESIGN
Algorithms

CROWD WISDOM
Crowdsourcing, Citizen

Science and Mass
Collaboration

GAME DESIGN
Game Mechanics and

Gamification

PARTICIPATORY
DESIGN

Architects, inhabitants &
other stakeholders

GENERATIVE
DESIGN
Algorithms

Figure 1.5 – A map of the fields investigated in this thesis. The four fields — on their own (left)
and as a Venn diagram (right). Image credits: the author.

When we intersect each of the four fields with the other three, we get the Venn
Diagram on Figure 1.5. I use it as a guiding map for critically assessing state-of-
the-art precedents and my projects.

Answering the research questions does not lend itself to simulation, logical de-
duction, or quantitative methods. It relies on the participation of many people in
various roles and therefore calls, mainly, for hands-on, project-based case studies. I
am using the case study method for qualitative research as its purpose is exploring,
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describing, and explaining phenomena embedded in their context and raising new
questions that cannot be answered affront (Creswell and Poth 2018; Groat and D.
Wang 2013; Wibranek 2021; R. K. Yin 2014). The case study method is a qualitative
research method that:

“...follows a strategic procedure for collecting, organizing, and interpret-
ing contextual information and generate insights into phenomena that
cannot be measured quantitatively. Its goals are developing a deep un-
derstanding of a phenomenon and generating research questions and hy-
potheses that can be further tested in quantitative research.” (Wibranek
2021)

The case studies focus on prototyping participatory design processes and fabri-
cating the results on a small scale. The case studies are set up either as research
projects or as teaching courses offered to architecture students at the Technical
University of Darmstadt.

1.3.1 Assumptions

Naturally, the question emerges: Is it possible to automate the construction of user-
generated designs using robots? In the spirit of working in ideal types, I will make
the strongest assumption possible: all construction is entirely automated, and it
is possible to digitally fabricate any structurally sound building design. This is
not logically possible, but I assume it to be true to avoid entangling myself in a
discussion about feasibility or efficiency. This allows me to focus on the research
questions concerning the balance of design power between the different roles and the
range of their tools and tasks. The applicability of my research findings beyond this
strong assumption can be insured by selecting generative design techniques that are
compatible with robotic construction and digital fabrication (See section 3.4).

1.3.2 Case Studies Structure

With automated construction as a premise, my method primarily consists of choos-
ing a suitable generative design technique and making it interactive. Yet, the work is
not just about technical infrastructure or tooling. It is about understanding the hu-
man agency of the different stakeholders, their behavior, and how it can be modified,
motivated, or challenged.

As various participant groups bring multiple skill levels and take on tasks with
varying difficulty, my case study projects provide progressively impactful design
tools for the various roles. The influence of game rules, mechanics, and the internal
economics of those tools is more important than the technical realization.

I have chosen the Flow Framework by the psychologist Mihaly Csikszentmihalyi
(Csikszentmihalyi 2008) to guide the design and assessment of the case studies.
It posits the existence of three states — boredom, anxiety, and flow — where a
participant might find themselves, depending on how their skills intersect with the
challenge of the task assigned to them (Figure 1.6).

It is more likely that non-experts participating in the design process will lack
the skills required to make design decisions and create designs. Similarly, architects
aiming to provide non-expert participants with a project-specific, computational or
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Figure 1.6 – The concept of Flow. Adapted from Csikszentmihalyi 2008. It posits the existence of
three states — boredom, anxiety and flow — where a participant might find themselves, depending on
how their skills intersect with the challenge of the task assigned to them. Image credits: the author.

parametric model to explore the design space systematically will rather lack the
needed computer skills. Both of these groups would fall in the Anxiety zone. The
case studies aim to research tools, roles, and design paradigms that bring them out
of there into the Flow Zone.
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Lower di culty 

through 

Generative Design

Increase skill 

through 

Game Design

Figure 1.7 – From Anxiety into Flow. Using the machine agency of Generative Design and Game
Design to respectively lower the difficulty of the challenge and increasing the skills of the partici-
pants. Image credits: the author.

The Flow framework allows me to consider the main characteristic of my cases
studies, namely interactive, participatory modeling as two separate vectors. Gener-
ative Design can lower the difficulty of the challenge by automating a large portion
of the work (Figure 1.7). And Game Design can guide participants through a se-
ries of challenges, effectively increasing their skills by helping them understand the
underlying principles of the design task at hand. The first vector aims to lower the
difficulty by employing assistive generative algorithms. The second vector seeks to
increase the skill by using game design strategies to automate information and task
flow to the participants.

As implied by the two vectors, generative design techniques provide architec-
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turally specific machine agency that forms the basis for interactivity, participation,
and game mechanics in this work. Therefore in both the literature review and the
case studies, the focus is on the field of Generative Design.

In response to the concepts of human agency and machine agency, the method
I am using within a project is to take a generative design technique and make it
interactive. More specifically, a project typically involves the following:

1. Machine Agency — Pick a procedural technique that lends itself well to
encode architectural design. Make the procedural system interactive by ex-
ploring suitable game designs and their integration into a 3D interactive mul-
tiuser software environment. Turn participation in finding a solution to the
non-expert tasks into an entertaining and rewarding experience. Adapt and
implement automated analysis, focusing on structural performance, environ-
mental performance, etc., to evaluate and post-process the player-generated
designs.

2. Human Agency — Create catalogs or tile-sets of design elements to inform
the generative design system. Ideally, the participating experts perform this
step. It involves analyzing precedents of low-rise, high-density housing to
extract programmatic elements, rules, and geometric shapes that make them
up. Ask people to create schematic architectural designs with the developed
design system. Observe how they use it and what they make with it.

1.3.3 Scope of Work

The research aims to produce new knowledge about tools, interactions, and roles at
the intersection of architecture, crowdsourcing, and game design. The aim is not to
arrive at a specific object, design system, or design for a specific building.

The method I propose concerns itself with new residential buildings in an urban
environment. Other architectural typologies are not considered. Although the ap-
proach could probably be used on renovation projects, this research focuses on new
designs and new constructions only.

The research encompasses case studies in digital environments involving actual
participants. I aim to use an existing multiuser, 3D game-like environment instead
of a custom software development from scratch.

The robotic production of small-scale models of the designs (scale 1:200) is used
to demonstrate the validity of findings beyond the assumption for ubiquitous digital
fabrication.

Subject of research

Architectural design as a service solves many problems and has many aspects. The
aspect of design explored in this dissertation is that of organizing the spaces of a
building, usually called spatial configuration or the layout problem. It is the task
performed in the very early design phases and consists of laying out the rough
proportions of the building and the relative position and orientation of rooms, zones,
and openings for connectivity.

This task entails design decisions that affect all stakeholders (problem owners)
instead of affecting only one of them. For example, the choice someone makes
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for which light switches they use at home is irrelevant for their neighbors or co-
citizens, the choice of which window detail they use is also of no concern to the
other stakeholder. On the other hand, the position, size, and proportion of windows
matter to their neighbors and co-citizens because of the views this opens or closes
and the influence this has on the privacy and intimacy of the inhabitants.

Figure 1.8 – The Paulson curve. The operation stage is taken into account. The curve shows the
diminishing ability to influence costs as project stages progress and the increasing cost of changes.
The curve is better known as the MacLeamy curve as Patrick Macleamy appropriated it in the early
2000s (Davis 2011). Boyd Paulson is a Professor in Civil Engineering at Stanford University. Patrick
MacLeamy is an American architect and the chairman of buildingSMART International. Previously,
he served as Chairman and CEO of HOK, a global architecture, engineering, and planning firm. Image
credits: Hendrickson 2008.

The design phases in focus in this work are feasibility study and schematic design.
Feasibility study and schematic design are the terms used in USA as defined by The
American Institute Of Architects (Fontan 2019). In the UK the terms are: 0.
Strategic Definition, 1. Preparation and Brief and 2. Concept Design (Sinclair et
al. 2013). In Germany the terms are formalized by the Ordinance on Architects’ and
Engineers’ Fees (HOAI) as LP1 Grundlagenermittlung and LP2 Vorplanung. These
design phases have the most substantial influence over the design cost, performance,
impact, etc. So the aim is to engage the stakeholders at that stage, when their input
will be practical and not costly (Figure 1.8).

The subject of research in this dissertation is the design process for creating
schematic designs, focusing on spatial configuration (See Figure 1.9) and massing,
i.e. the building’s envelope.

According to Michalek, Choudhary and Papalambros 2002, “spatial configuration
is concerned with finding feasible locations and dimensions for a set of interrelated
objects that meet all design requirements and maximize design quality in terms of
design preferences”. The problem of spatial configuration spans various disciplines
with areas of application that include component packing, route path planning,
process and facilities layout, VLSI integrated-circuit design, and architectural layout
(Michalek, Choudhary and Papalambros 2002).

Akin and Moustapha 2004 define architectural massing as “the act of compos-
ing and manipulating three-dimensional forms into a unified, coherent architectural
configuration”. Architectural massing is the phase of design where the architect
defines the building’s identity (Akin and Moustapha 2004). As such, architectural
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Figure 1.9 – Spatial configuration parameters. Image credits: the author.

massing, unlike spatial configuration, goes beyond the mere fulfilling of customer
needs into a field of artistic expression.

Object of research

To give me and the participants specific architectural references, the object of the re-
search is new residential buildings. More specifically, low-rise, high-density housing,
and single-family houses. Low-rise, high-density buildings are up to 8 floors high,
of diverse typologies, and often have mixed-use, share-friendly programs (ArchDaily
2015; Schramm 2008; Tomoko 2010). Several reasons make residential buildings
particularly relevant for research into methods for participatory and crowdsourced
designs.

First, residential buildings have high social and demographic relevance to the
growing population of cities and high real estate prices. This is especially true
today when we face a shortage of a billion homes worldwide (Newswatch Times
2013). Germany alone has a need of 1.5 million homes as of 2018 (Tichelmann et al.
2019).

Second, focusing on residential buildings ensures familiarity with the designed
building throughout all participating groups. A house or an apartment is something
that everyone is familiar with as they lived in at least one of them and had access
to the whole of it. On the other hand, a school or a hospital is not familiar in
its entirety to the general public because even if a person has been for prolonged
times in one such building, only a few (teachers, doctors) have experienced it in its
entirety.
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Third, there is an inherent conflict of interest with residential buildings that an
algorithm cannot solve. Namely, people want to live in independent houses but
often must live in higher-density environments for economic, social, and climate
sustainability reasons.

Fourth, there is a high degree of self-similarity between the spaces that make up
the whole residential building. An apartment is very similar to another apartment.
Therefore it is easier to make rules for structured problem modeling that are concise.

Fifth, one apartment (cluster of spaces that houses a person or family) is rela-
tively small compared to a whole building housing hundreds of people. Therefore it
offers an ample design space with many possible combinations in which these units
can be oriented and placed next to each other.

Finally, residential buildings have high organizational complexity due to their
large number of stakeholders (mostly inhabitants but also neighbors, municipality,
developers, etc.) This creates good conditions to explore the benefits and drawbacks
of a broader involvement.

Role types

The case studies consider various roles of participants. They are represented on
Figure 1.10 and defined below.

Figure 1.10 – Participant roles. Image credits: the author.

Inhabitants, i.e., Non-expert stakeholders The owners and the users of the
buildings. The Non-expert stakeholders are characterized mainly by the fact that
they will be living in the building. Compared to the crowd (of non-experts), they
have different interests. The development of communication technology and demo-
cratic processes is redefining the role of the non-expert stakeholder. From simply
a client who makes an order to the architect and provides a list of preferences, the
non-expert is becoming a produser (from producer and user), a content creator, a
maker (Kelty 2019).

Architects, i.e., Expert stakeholders Architects and engineers employed in the
project. They define how the problem and the search for solutions will be structured.
Over the last 50-70 years, the expert role of one who makes plans and designs is
being challenged, and a new definition of that role, as someone who enables others
to design, is being put forth (de Mul 2016; Lange 2016). According to Rittel, the
experts cannot maintain a position of neutrality (Lange 2016), just like the very
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definition of stakeholder means the pursuit of interest through the entity in which
the stake is being held.

The crowd Third-party contributors who help explore the design space. In the
case of games, those are players. The self-organizing crowd of enabled non-experts
and experts emerges then as a separate category of participants, acting not in their
capacity of a stakeholder but somewhat out of a desire for belonging to a cause or
community (Kelty 2019; Rifkin 2015).

Tool-makers The developers of the generative design tool and the framework for
structured problem definition and exploration. There is no distinction between the
facilitator and the expert stakeholder in the traditional design process and current
participatory design practices. Rittel defines the expert as a facilitator of argu-
mentative processes (Lange 2016). In my case studies, the toolmakers are me and,
sometimes, my collaborators and students.

1.4 Thesis Contributions

There is no practical precedence of how many non-experts enter architectural design.
Investigating the thesis and the hypothesis will increase the relevance of architectural
methodology to recent technological developments.

This dissertation’s contributions are:

1. A proposed Map of Design Paradigms at the intersection of Participatory
Design, Generative Design, Game Design and Crowd Wisdom (See Figure 6.2)
which reveals a significant research gap in architecture, as well as across all
disciplines (See Figure 6.3);

2. The introduction of a unified taxonomy of generative design across the disci-
plines of architecture, computer science, and computer games (See section 3.2);

3. The introduction of a new type of Shape Grammars, namely Playable Voxel
Shape Grammars (See section 8.3);

4. The identification of three use cases for games and crowdsourcing for schematic
architectural design (See Figure 11.20);

5. Systematizing various game mechanics according to the balance of control
between experts and non-experts over the design outcome of a crowdsourcing
design environment (See Figure 11.16).

1.5 Thesis Outline

Part 1: FOUNDATION presents a review of the state-of-the-art in the four rel-
evant fields: Participatory Design, Generative Design, Game Design and Crowd-
sourcing/Citizen Science. Four chapters present each field in detail, while the last
chapter in this part discusses the intersections between them. The emphasis is on
the systemic exploration of the variety of possible overlaps between the four fields
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Figure 1.11 – Thesis outline. The dissertation is organized in two parts. Part one reviews the state
of the art of the four fields of interest. Part two presents and discusses the case studies. Image credits:
the author.

to identify the research gap. chapter 3: Generative Design contains a unified taxon-
omy of generative design techniques across all domains. The chapter identifies four
generative design techniques suitable for creating crowdsourcing frameworks. These
are: (i) iso-surfacing algorithms; (ii) physically-based models; (iii) set grammars;
and (iv) case-based design.

Part 2: EXPLORATION presents the case study projects one after the other and
ends with a discussion from the perspective of the research questions. The case stud-
ies are Sensitive Assembly , 20.000 BLOCKS , Project Reptiles , and Rechteck2BIM .
section 8.3 introduces a novel extension to the class of generative techniques called
shape grammars. Playable voxel shape grammars evolved to form the basis of
the qualitative research projects that I have conducted in Minecraft using 20.000
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BLOCKS from 2015 to 2018.
Appendix A includes an interview with my collaborator, the game designer Ben

Buckton, illuminating in a conversational form some of the more abstract concepts
from the field of games such as game mechanics, gamification, and the subject of
game design.

Appendix B is, in essence, a guide on how to create a project using the Minecraft
environment of 20.000 BLOCKS that was given to participants in this case study.
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Figure 1.12 – Repeat of Figure 1.5. The four fields — on their own (left) and as a Venn diagram
(right). Image credits: the author.

In this part, I review state of the art in four distinct yet overlapping fields:
Participatory Design, Generative Design, Game Design and Crowdsourcing/Citizen
Science. The emphasis is on the systemic exploration of the variety of possible
overlaps between the four fields to identify the research gap (Figure 1.12). The four
chapters that follow present each field in detail, while the fifth chapter in this part
discusses the intersections between them.

As mentioned in section 1.3: Methodology, generative design techniques provide
architecturally specific machine agency that forms the basis for interactivity, partic-
ipation, and game mechanics in this work. Therefore the field of Generative Design
gets a more dominant position in the following review and analysis. This has two
purposes. First, I want to look at the full spectrum of generative design techniques
to identify the suitable ones that adapt well to human-in-the-loop, game design
practices, and highly concurrent co-creation. Second, I want to check for techniques
that might have been overlooked in previous work. Such a new find is the newly
emerging application of Marching Cubes and Wavefunction Collapse Algorithms in
procedural game worlds.
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Chapter 2

Participatory Design

This chapter introduces the fundamental concepts around participation and par-
ticipatory design. By introducing several participatory architectural and urban
projects, I argue that participatory design is an excellent platform for dealing with
wicked problems but, at its current mode of practice, is overwhelming for both the
experts and the non-experts. Furthermore, this chapter identifies the forms of input
and engagement that a participatory design procedure demands, such as formalizing
preferences definition, using games or game strategies as a medium for role-based
co-production, and evaluation via evolving criteria.

2.1 Wicked Problems

The workflows of architects

Many studies of the architectural design practice exist as well as multiple theories
of design have been put forth (Alexander 1964; Archea 1987; Brawne 2005; Cross
1982, 2011, 2013; Habraken 1987; Hays 1998; Johnson 2017; Lawson 2006a,b; Yaneva
2009). They are all different, just like no two architects would agree on a unified
theory of design practice. However, they all agree on “the celebrated intuitive leap,
that elusive but well-known moment when form and function seem to converge into
a meaningful whole” (Kalay and Carrara 1996, p.108).

Nevertheless, it is essential to gain an understanding of how architects work. By
understanding how experts create a design, we can start looking for answers to this
thesis’s questions: Can design problems be split into clearly defined independent
tasks? How can non-expert stakeholders be brought into the process? How can
non-expert, non-stakeholders be brought into the process?

Singh and Gu 2012 bring attention to the consensus that design is a co-evolutionary
process, i.e., the designer starts with an ill-defined problem. Their definitions of the
problem and solutions grow and mutually guide each other as they work.

Meniru, Rivard and Bédard 2003 conducted a study with eight designers re-
sponding to the same brief and documented how each designer navigated between
tasks such as Design brief, Site preparation, Building space, Building elements, and
the tools they used. Highly individual from designer to designer, all top-down, from
abstract to specific, use of multiple views (plans, section), all branched out to explore
alternatives and merged back features of the alternatives into the final design.

While the goal of a design problem is ill-defined and every architect approaches it
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differently, the architectural design process is composed of a varying series of goal-
oriented cognitive activities with clearly defined sub-goals (Afacan and Demirkan
2011; Cross 1982; Do 2002). Most of these activities are, in essence, the production
of a representational model (drawing, physical or 3D model, program description,
etc.) of either the current understanding of the problem or of the current conceived
possible solution.

The design problem commonly is expressed through two complementary con-
cepts: the design brief, i.e., a specification of the need characteristics of the build-
ing; and a set of aesthetic and phenomenological goals that define the experience
the building creates in its beholders, users, inhabitants, etc. (Elezkurtaj and Franck
2002).

The central place of the intuitive leap in design theory results from, or causes, the
inability for the design process to be formally modeled and explicitly represented.
The reasons for this are accounted for in detail in the study of wicked problems,
a concept developed in the 1970s by Horst Rittel and Melvin Weber (Rittel and
Webber 1973).

What are wicked problems

Models of planning based on an idea of efficiency or optimization were in crisis
already in the 1970s (Lange 2016; Rittel and Webber 1973). Problems of plan-
ning and design are “characterized by complexity, contradictions, and unforeseeable
consequences” (Lange 2016). According to Rittel, a designer’s work has a political
dimension since it results from the stakeholders’ and designer’s respective images of
how the world is and how it ought to be (Lange 2016).

According to Rittel and Webber 1973 wicked problems have the following char-
acteristics:

1. There is no definitive formulation of a wicked problem — problem formulations
exist only in the context of a conceived possible solution.

2. Wicked problems have no stopping rule — work on the solution stops either
when time or money runs out or when the designer finds the solution ’good
enough’ or ’the best I can do within the limits of the project.’

3. Solutions to wicked problems are not true-or-false, but good-or-bad, i.e., sub-
jectively and not objectively evaluated

4. There is no immediate and no ultimate test of a solution to a wicked problem

5. Every wicked problem is essentially unique, making every solution to a wicked
problem a one-shot operation

6. Wicked problems do not have a finite number of possible solutions

7. Every wicked problem can be considered to be a symptom of another problem

Nancy Charlotte Roberts, a Professor Emerita at the Naval Postgraduate School,
researching Design, Strategic Design, Wicked Problems, Terror Networks, and Or-
ganizational Studies, states that cultural, political, and technological changes give
more and more central place of wicked problems in planning (Roberts 2001). She
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distinguishes three types of problems. Type 1, simple problems, where stakeholders
agree on the problem and on the solution to be applied; type 2, complex problems,
where stakeholders agree on the problem but have no consensus on how to solve
it; and type 3, wicked problems, where there is no agreement either on the prob-
lem or on its solution (Roberts 2001). Roberts goes on to offer three strategies
for dealing with wicked problems based on the distribution and defiance of power:
Authoritative, Collaborative and Competitive (Figure 11.1).

In the case of the traditional design process where the figure of the architect
keeps all the power over the design (power is not dispersed), we have an Authori-
tative strategy. In Notes on the Synthesis of Form, Christopher Alexander argues
that the growing complexity of design problems leads to an increasing body of infor-
mation and specialist experience that needs to be taken into account when creating
designs (Alexander 1964). Since a single designer cannot process all this informa-
tion, design proposals are created out of a random selection of this information.
Furthermore, Alexander argues that traditions are being dissolved, and architects
cannot build upon their predecessors’ work anymore as they could do until the Re-
naissance. Which tasks the architect with creating “clearly conceived forms without
the possibility of trial and error over time” (Alexander 1964, p.4). “The intuitive
resolution of contemporary design problems”, Alexander writes, “simply lies beyond
a single individual’s integrative grasp”. I regard this as true today, as it was in the
1960s.

We can find the Collaborative strategy in the case of housing cooperatives (Bau-
gruppen, explained in the next section). The inhabitants are given the power to
influence the design (power is dispersed). Yet, they do not contest the authority of
the architect chosen by them to carry out the design.

It is challenging to point to a matching example at the scale of a building of
the third strategy, Competitive. At the urban scale, there are many precedents for
considering the city as the result of competition. As the American urban planner
and theorist, Kevin Lynch, puts it, the city “is the product of many builders who are
constantly modifying the structure for reasons of their own”(Lynch 1960). Probably
informal settlements can be a fitting illustration, where there is no central designer
figure, and everyone is competing for the limited resources of land, light, etc.

Models

According to Rittel, problems of design have an organizational character (Lange
2016). The architect who acknowledges planning as a wicked problem creates mod-
els of the project not as a solution but as a means for communication among the
stakeholders, thereby allowing the co-evolutionary process of defining the problem
and finding an acceptable solution to unravel (Lange 2016). Rittel focuses on two
aspects of the use of models. First, models force planners to structure the problem
and avoid decisions on a hunch, and second, the use of models as representations
of opinions draws out the potential conflicting viewpoints among the stakeholders,
which enriches everyone’s understanding of both problem and solution (Lange 2016).

Takeaways

The following summarizes the qualities of the design process that must be respected
to produce successful innovation in the field:
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Conflict?

Low Level of Conflict
Type 1: Simple Problems

Conflict Over Solutions
Type 2: Complex

Problems

Conflict Over Problem
and Solutions

Type 3: Wicked Problems
NO

YES

Power Dispersed? Authoritative
Strategies

NO

YES

Power Contested? Collaborative
Strategies

Competitive
Strategies

Figure 2.1 – The three strategies for solving wicked problems. Authoritative, Collaborative and
Competitive (Roberts 2001). Image credits: the author after Roberts 2001.

• Every building is a design prototype even if tried and tested construction
techniques are being used — Design is a co-evolution of problem and solution.
Still, architects lost the benefit of gradual evolution over time by building upon
their predecessors’ work (Alexander 1964).

• No agreed-upon sequence of tasks or a set of tools constitute the design pro-
cess. However, there exists a series of goal-oriented cognitive activities that
have clearly defined sub-goals. This potentially opens up the opportunity for
distributing them as tasks to multiple collaborators.

• Single authorship in architecture is less and less effective — overwhelming
expertise leads to random selection while often key decisions are taken in
early phase without enough information — encode expertise in algorithms
and process information through massive participation.

• Participation in design is inevitable and of growing importance, following cul-
tural, political, and technological changes in the last decades.

• When enlisting participants to contribute, use models to systematize design
expertise and opinions.

• When employing algorithmic approaches, wicked problems’ nature must be
acknowledged – it is a trap to treat them as tame.

• The intuitive leap must be allowed to happen
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2.2 Participation

As a procedure, participation is “a set of rules, techniques, and tactics for organizing
people, issues, and things in the service of collective and equitable decision-making,
getting things done, and or changing the way things go” (Kelty 2019).

Kelty 2019 offers a concise introduction to participation in his book The Partic-
ipant and introduces the following cognate terms of participation:

• The verbs: Participate, Democratize, Engage, Collaborate, Cooperate, In-
volve, Include.

• And the nouns: Participation, Engagement, Cooperation, Collaboration, In-
volvement, Inclusion.

Cohen, Uphoff, et al. 1977 present several dimensions for participation. The first
model has the dimensions Who?, What? and How?, where the What? dimension is
divided into decision-making, implementation, benefits, and evaluation. The same
authors in a later publication introduce two more dimensions on which participation
works: scope and empowerment (Figure 2.2) (Cohen and Uphoff 1980).

Figure 2.2 – The dimensions of participation. Left: accroding to tasks (Cohen, Uphoff, et al. 1977).
Right: according to scope and power (Cohen and Uphoff 1980) Image credits: Cohen, Uphoff, et al.
1977; Cohen and Uphoff 1980.

One more dimension of participation in public policies is presented by Arnstein
1969, which the author calls the Ladder Of Citizen Participation (Figure 2.3). The
Ladder can give a scale for measuring the empowerment axis introduced by Cohen
and Uphoff 1980. It also clarifies that empowerment represents the balance of control
between participants and facilitators/policymakers.
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Figure 2.3 – The Ladder of Citizen Participation. Image credits: Arnstein 1969.

2.3 Participatory Design

In my research, I define participatory design as:

Participatory Design: a procedure that enables the involvement of stakeholders
in the design and construction of a specific building or a city neighborhood.

Participatory design processes typically involve the roles of non-expert stake-
holders (inhabitants, neighbors, citizens, business owners, etc.) as well as expert
stakeholders (architects, engineers, urban planners, sociologists, etc.) (section 1.3.3).

Depending on the degree of empowerment and the scope of contribution, we could
argue that all design is participatory. After all, it requires the client to provide the
architect with a list of project requirements that influence the design outcome.

Unlike participatory art practices such as Relational Aesthetics where participa-
tion is a form of ad-hoc co-authorship with the artist to co-produce a work of art
(Bishop 2012), in participatory design practices, has the participants’ needs for their
future use of the outcome of the participatory process in sight (Cross 1971; Kelty
2019).

Most of the research and practice on participation is focused on public space and
public issues, with participants being citizens, policymakers, private partners, and
other actors (Arnstein 1969; Hamers et al. 2017; Kelty 2019). However, residential
buildings are rarely public. Instead, they are often privately, semi-privately, or col-
lectively owned. In reality, the participatory design practice for residential buildings
usually takes the form of cooperatives. Therefore the focus of this dissertation is
concerned with participatory design practices mainly for the production of private,
semi-private, or collective space. As this area has remained under-explored, case
studies from public practices are drawn in.

An overview of participatory design practices in Scandinavian countries reveals
that it moves from power-oriented to knowledge-oriented, sets focus on the process
rather than the object, and centers more and more around the customer than the
producer (Granath 2001).

Participation in design makes users able to take an active part in the inevitable
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redesign and management of the designed environment (Granath 2001).

2.4 Participatory Design and Wicked Problems

The political and organizational character of design problems is broadly acknowl-
edged in architecture (Lange 2016). In her research, Susanne Schindler, an architect,
and historian who focuses on the intersection of policy and design in housing, investi-
gates how policy, forms of ownership, and local regulation have a significant influence
on the design process and outcomes of cooperatives as well as participatory public
housing projects (Kockelkorn and Schindler 2019; Schindler 2017, 2020).

The design and construction of a building or a city is a wicked problem, and as
such, its solution depends on those that will define it, design it, erect it and use
it (Lange 2016; Rittel and Webber 1973). Participatory design promises that the
“involving in the design process those who will be affected by its outcome, may
provide a means for eliminating many potential problems at their source” (Cross
1971, p.6). According to Kelty 2019, p.1 the “power of participation, at its best,
is to reveal ethical intuitions, make sense of different collective forms of life, and
produce an experience beyond that of individual opinion, interest, or responsibility.”

Participatory design uses various models as an argumentative tool to negotiate
conflicts between the multiple stakeholders and construction capacities (Lange 2016).
According to Rittel, models offer themselves as a means of communication and
require that experts structure the problem and synthesize the models (Lange 2016).

2.5 Examples of Participatory Design

The rapid development of social and behavioral sciences, economics theory, and
information and communication technology since the 1950s has influenced and un-
derpinned participatory design projects the world over (Cross 1971; Kelty 2019;
Sanoff 1990, 2011; Simonsen and Robertson 2013). Three main characteristics of
participatory design practice that follow this development can be observed:

1. The formalization of inputs, process and outputs

2. Role-playing simulations

3. Content creation

The characteristics are not isolated in practice but often go hand in hand in the
same project.

2.5.1 The formalization of inputs, process, and outputs

The German phenomenon of Baugruppen, or housing cooperatives, is a group of
several private parties, usually families, that pull together resources to purchase a
plot of land, design a building that fits their preferences, and commission a contractor
to build it for them. As such, they avoid middle man fees in the traditional developer
model of housing construction and make sure they get an apartment responding to
their preferences (Florian Köhl 2012; May, Ullrich and Steiger 2017; Ring 2007).
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The Baugruppe project R50 in Berlin, designed and built between 2010 and
2013, by ifau and architects Jesko Fezer and Heide & von Beckerath (Figure 2.4), is
a fitting example. The efficient layout of the flats, as well as the careful consideration
of what shared rooms to have and where to place them, was developed jointly by
architects and users in an elaborate and laborious planning process (Sauerbrei 2015).
For this purpose, the architects asked the future residents in detail about their living
needs (Figure 2.5), discussed these with them, let them sketch apartment layouts,
and finally developed individually customized floor plans (Figure 2.6).

Figure 2.4 – The R50 project finished. Image credits: Heide & von Beckerath.

The provision of kits of buildings blocks for the stakeholders to arrange the
building in a process directed by the architects is another strategy for participatory
design. Figure 2.7 shows a floor plan layout kit for inhabitants prepared by BARAr-
chitekten for their project Spreefeld Berlin1 (Becker 2015). Such kits are great for
helping the inhabitants visualize the spaces of their future home and daily life in it.
However, the freedom they provide makes producing a feasible layout possible only
with the architect’s presence, guidance, and feedback. At the same time, they can
feel quite constraining to the inhabitants since all options are systematized.

The Baugruppe is an excellent illustration of the emerging formalization of the
participatory design of residential buildings, i.e., turning the otherwise very open-
ended process into one confined by a system. That system can concern mainly the
process, i.e., the way architects collect and document input from future inhabitants
as shown by the survey forms and adjacency graphs created in the R50 project
(Figure 2.5).

Additionally, that system can organize the layout and design of the building by
prescribing the geometry of its parts as in the design kit in the Spreefeld Berlin
project (Figure 2.7).

1http://www.bararchitekten.de/projects/sfb.html
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Figure 2.5 – Formalized participation in R50. Top row: Left, members of the R50 Baugruppe on
one of their research tours. Middle and Right, the forms that members of the R50 Baugruppe filled
out to document their preferences for their future flats. Bottom row: the surveys were used to create
diagrams for the organization of the flats and for the properties of the common spaces that are then
discussed with the whole group. Image credits: Heinemann 2011.
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Figure 2.6 – Open-ended participation in R50. Each resident was given a blank apartment layout
and asked to sketch options for its arrangement. These were taken into account by the architects for
the final layout. Image credits: Heinemann 2011.

Figure 2.7 –Design kits. The boundary of the building and its structural scheme is defined. Inhabitants
can place components out of a catalog of wet-room blocks, dividing walls as well as the facade panels
with solid wall, with a catalog of windows and balconies. A catalog of sample layouts is provided by
the architect in the book attached to the model. Image credits: the author; BARArchitekten.
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2.5.2 Role-playing simulations

The educational benefit of using games as behavioral, social, and economic simu-
lations has long been acknowledged (Dodig and Groat 2019; Jobs 1990; Tromba
2013). In the 1940s-60s, Buckminster Fuller drew on a metaphor of our world and
everything we do in it as a game. The World Game imagined a computer game
which would allow for the most intelligent distribution of resources (Fuller 1969).

Participation in the form of role-playing simulation games is much more com-
mon at the urban scale (Gaglione 2018; Mayer 2009; Tan 2014, 2017; Wynn 1985).
According to Tan 2014, p.133, a “number of visionary urban experiments include
elements of gaming, and point towards its promise as a generative method for cities.”

Wynn 1985 has used games in city planning. The problems are similar but
different than in the design of buildings. The approach Wynn took is Case Study
Simulations based on the case method of Harvard Business School (McNair and
Hersum 1954).

Games offer a good mix of top-down and bottom-up participation opportunities,
which corresponds well to the complexity of a city’s genesis (Tan 2014).

The architect Ekim Tan focuses on the shift from participation to self-organization
enabled through gaming and the collective intelligence of players (Tan 2014). A
continuation of the same line of research as Wynn 1985. Tan observes that games
can simulate the self-organizing mechanisms of cities while unlocking conversations,
conflicts, and their resolution by testing ideas and rules (Tan 2014).

At the same time, the direct correspondence between a game outcome and a
chosen city design in Tan’s work (Figure 2.9) shows the constraining influence that
the design of game components and rules, and by extension the facilitators, might
have if a game run is seen merely as a design generating process. Documenting
patterns over several games and the needed creative reinterpretation of the game
outcome must still find their place in the process.

Game simulations are also used at the building scale. An example of involving
a broader spectrum of stakeholders in the design process is how Susanne Hofmann
and her practice Baupiloten uses participation to define the project requirements
before design starts (Figure 2.10) (Hofmann 2018, 2019). Hofmann believes that
participation creates architectural quality by fostering invention, social cohesion,
and saving resources. The Baupiloten made a game for collaboratively developing
programmes for schools (Figure 2.11) (Hofmann 2018).

“Die Baupiloten works with communities to develop briefs regarding
desired spatial qualities and arrangements. The generic School Vision
Game tool – which the practice devised in cooperation with the Hans
Sauer Foundation, Munich – enables a school community to explore their
complex and divergent needs and creatively negotiate and develop a
shared pedagogical-spatial scenario, in 17 steps and 90 minutes. The
participants are guided through the game with the assistance of action
cards. This focuses the discussion on the essentials. Prejudice can be
dissolved, and seeming discrepancies and conflicts transformed into syn-
ergetic potential. The results of the game offer an effective analysis
of the future building’s spatial organisation, including its atmospheric
qualities.” (Hofmann 2018)
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Figure 2.8 – Play the City, components of the game. Image credits: Tan 2014.

Figure 2.9 – Play the City, game result and architectural interpretation. Image credits: Tan 2014.

Figure 2.10 – The Baupiloten Method. Left: The components of the method; Right: the Heinrich
Nordhoff High School after remodeling by the Baupiloten. Image credits: Hofmann 2018.
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Figure 2.11 – The Negotiating Game for School Development. Image credits: Baupiloten.

2.5.3 Users as content creators

The third, and probably most relevant, characteristic of participatory design prac-
tices is that the users of a building or an urban space are given a chance to co-design
it.

The basic means for this is to provide inhabitants with the media and tools that
an architect would use, e.g., a floor plan and a set of colored pencils, and ask them
to express an idea graphically. This can be seen on Figure 2.6, where the inhabitants
of the R50 Baugruppe project were asked to create options for the layout of their
apartments.

Expecting inhabitants to possess the skills and experience expected from an
architect perhaps stands in the way of genuine participation. Nevertheless, the
schematic drawings that non-specialists can produce serve to visualize and under-
stand limitations and tradeoffs. Furthermore, the user-created floor plans, shoebox
models, and other artifacts offer themselves for interpretation by the architects in
the final renditions of the design.

At the urban scale, according to McDaniel 2018 from the project Block by Block,
the act of co-creation is “improving community engagement in the public meeting
process, both across the board and for most underrepresented communities.”

Block by Block2, an initiative started in 2013 by UN-Habitat and Mojang, the
makers of the game Minecraft, and in the meantime already established its own
foundation. In Block by Block, Minecraft was used as the medium where locals can
model ideas for the rebuilding of their community spaces and virtually walk around
them and discuss (Figure 2.12). Block by Block utilizes a 12-step method for its
initiatives which includes (Block by Block team 2021):

1. The facilitators prepare the Minecraft model of the chosen site by

2. and select 30-60 locals as participants.

3. A 2-4 day workshop is organized where

4. participants are briefed about public space and design considerations,

5. walk in the area to observe and share reflections, then

6. participants are introduced to Minecraft basics and

7. a Minecraft modeling session in teams of 2-4 takes place to develop ideas
followed by

2https://www.blockbyblock.org
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8. a presentation in front of stakeholders, architects, and local policymakers.

9. A prioritization phase where participants and stakeholders collaborate to fine-
tunes the proposals.

10. A planning phase that uses the Minecraft models to inform cost-estimates and
professional design work,

11. A build phase to realize the project including again the local community and

12. finally, using the project to advocate for additional forward-thinking policies.

Figure 2.12 – Block by Block. Left: People Rebuilding Safe Parks In Johannesburg; Middle: the
locations where Block by Block was active; Right: the key central square and pond in Kirtipur, an
ancient, traditional settlement in the Kathmandu Valley region of Nepal in reality and as modeled in
Minecraft. Image credits: Joakim Formo/Ericsson; Block by Block.

Finally, the ultimate form of participation through user content creation, in both
design and construction, is the informal or non-planned settlement (Figure 2.13)
or the phenomena of self-built structures (Mees 2017). Dating from the dawn of
civilization, informal settlements engage the capacity of all inhabitants and citizens
over time to produce ever-evolving, organic organizations that reflect local culture,
local materials, and the relationship with natural conditions (Rudofsky 1964; Schaur
1991).

According to Eda Schaur, whenever human beings create a settlement without
a comprehensive plan, they can, within the constraints of their cultural and social
relationships, satisfy their needs and wishes and allow their settlements to develop as
an entity as a result of actions and reactions (Schaur 1991, p.18). Schaur describes a
process of self-organization that relies heavily on the ability of all people involved to
communicate directly. At the same time, studies by Robin Dunbar have shown that
the size of a cohesive group of people able to maintain stable social relationships
is around 150 members (Dunbar 1992). Dunbar’s proponents suggest that larger
groups are generally required to build their information exchange on more restrictive
rules, laws, and enforced norms to maintain stability and cohesion within the group.
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Figure 2.13 – Fès, a non-planned settlement in Morocco. Image credits: Georg Gerster.

2.6 Conclusion

Current participatory design practices acknowledge the true nature of wicked prob-
lems, taking into account stakeholders’ values and preferences. As seen above, they
incorporate this input by sandwiching the traditional design phases between a Phase
Zero and a Phase n+1 (Granath 2001; Hofmann 2018, 2019; Poplin 2012; Sanoff
1990, 2011; Simonsen and Robertson 2013).

Out of its 12-step method, step 10 represents the entire traditional design pro-
cess with all its phases and challenges (Block by Block team 2021). The additional
11 steps, nine before and two after the architect’s job is usually done, ensure par-
ticipation.

Participation, as seen in the work of Susanne Hoffmann and Block by Block,
requires the so-called Phase Zero. In my opinion, such examples show that the
strictly defined Design Stages (German: Leistungsphasen) might be outdated and
lead to an ever-increasing exclusion of the building user from the design process. It
also shows that participation is relevant at the very early stage, when the problem,
and not only the solution, needs to be defined.

Looking at participation in general, it is being standardized and formalized
through platforms, algorithms, and software, which takes away its edge as a mech-
anism to introduce collective and equitable decision-making Kelty 2019.

“But in the twenty-first century, participation is more often a formatted
procedure by which autonomous individuals attempt to reach calculated
consensus, or one in which they experience an attenuated, temporary
feeling of personal contribution that ends almost as soon as it begins.”
(Kelty 2019, p.1)

The threat of technology as a constraining chain is probably not yet as relevant in
a disciplinary-specific way. Instead, the opposite is true. Algorithmic assistance and
online platforms are much needed to enable experts and non-experts to overcome
three obstacles in participatory design.

First, experts must become tool-makers and develop tools and methods such as
games, survey forms, and model kits to stage a participatory design process. Very
little exchange of methods among architects can be observed in practice, leaving
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every architect to start from scratch should they want to stage a participatory design
process. Furthermore, the custom-developed tools are usually not well integrated
into the design workflow of the architectural practice, are often analog, and do not
produce representational design artifacts, leaving the architect with an extra effort
to develop yet more methods of input capture.

Second, generating content requires non-experts to possess expert skills or quickly
learn them, which is unrealistic in the few days a typical participatory workshop
lasts. The use of participation to develop project briefs is an effective way to make
sure the clients understand what they want and be able to express it and judge the
value of a proposed design. Yet it is often expected from participants to be design
experts. Otherwise, they are not given many options. While the components of a
project, whether programmatic units as in the case of Baupiloten, or building parts
as in the case of Spreefeld Berlin, are made explicit and tangible to the participating
future users of the building, the reason and expertise for combining them in a prac-
tical way that delivers a well-functioning and good-looking building is still reliant
on the participation of the architect and not made explicit. The expert knowledge
is hardly ever made explicit.

And third, the input from the participants in the form of requirements, discus-
sions, game outcomes, and design alternatives constitutes a diverse data set that an
algorithm cannot process. This leaves the need for a human expert, an architect, to
process and synthesize the results, which often comes to the limit of a single human’s
capabilities. Facing information overload, a design synthesis is either skipped as in
the work of Tan (Figure 2.9) or is based on a random, manageable selection of all
the inputs (Alexander 1964, p.4), rendering the participatory process mute.

The use of design systems and generative design techniques in combination with
automation in construction, reviewed in chapter 3, can potentially counter these
problems.
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Chapter 3

Generative Design

”The Machine is the architect’s tool — whether he likes it or not. Unless
he masters it, the Machine has mastered him.

The Machine? What is the Machine?

It is a factor Man has created out of his brain, in his own image —
to do highly specialized work, mechanically, automatically, tirelessly, and
cheaper than human beings could do it. Sometimes better.” (F. L. Wright
1927)

From the dawn of the industrial age, architects have tried to encode the design
process into rule-based systems of various levels of complexity. The primary purpose
of this chapter is to identify which generative design techniques are suitable to
explore my research questions.

First, it is interesting to explore which techniques can automate tasks that alle-
viate one of the core roles in the design process - expert and non-expert stakeholders
and third party contributors - from having to perform those tasks. Concerning this,
I look at which techniques can enable a given role to perform new, more challenging,
design tasks.

Second, despite advances in generative design, most design problems remain
computationally intractable. One of the goals of this work is to determine to what
extent it is possible to stage a human-algorithm collaboration to create architectural
designs. It is essential to investigate the potential for interactivity of the various
generative design techniques presently available.

Finally, of particular interest is the techniques’ potential for realizing the designs
it creates with technologies for construction automation, i.e., robotic construction.

With the advent of Computer Science and Information Theory in the 1960s,
much criticism of the lack of explicitness in the traditional design process emerged.
A never-ending yet ill-fated effort began. Namely to bring in the architectural
problems under the domain of formalizable, tame problems (Alexander, Ishikawa
and Silverstein 1977; Y. Friedman 1980; Kalay 2006).

In parallel, studies of the design process, and more specifically of the wicked
nature of design problems, most notably through the work of Horst Rittel(Lange
2016) have emerged. These are reviewed in more detail in section 2.1. Some of the
efforts to create design systems and design automation, such as the work by Nicholas
Negroponte and the Architecture Machine Group on Urban 5 (Negroponte 1970),
stayed true to the nature of what architecture and architects do. And lately, with
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the maturation of the Computer Science field, much more integrative approaches
have emerged to bring architecture and computation together (Johnson 2016).

The emerging man-machine co-creative approach, as well as the growing appre-
ciation of computers as communication platforms instead of merely using them as
autonomously running machines, relate to how Rittel perceived models as something
much more than representational devices.

3.1 Design Systems in Architecture

To use technology in ways enhancing creativity, others have aimed to encode the
design process into a scientific, objective methodology (Alexander, Ishikawa and
Silverstein 1977; Alexander 1964; Durand 2000; Y. Friedman 1980; Gropius 1965).

You can see this in the work of Jean Nicolas Louis Durand and Walter Gropius
Figure 3.1. Both looked for ways to standardize the accepted aesthetic look and
construction methods into modular systems.

Figure 3.1 – Design systems. Left: Combinatorial modular grid, Jean-Nicolas-Louis Durand, 1821,
Right: Baukasten im Grossen, Walter Gropius 1923. Image credits: Durand, Gropius.

Flatwriter by Yona Friedman

Yona Friedman was the first to try to democratize architecture by combining a
modular design system with non-expert participation via a fictional computer device
called the Flatwriter (See Figure 3.2) (Y. Friedman 1980). Using a keyboard, the
user - a future inhabitant of a block of flats - designs their habitat of choice, with each
key corresponding to a room type such as the kitchen or bathroom (See Figure 3.3).
Once the plan has been submitted, all participating users are informed of any change
in the flats around them should they want to adjust their layout.

The Flatwriter failed to become real. Firstly, because the technology to real-
ize it was not yet commonly available. Second, and most importantly, it failed
because the available configurable options were too constrained. The elements to
which architecture had been reduced — rooms of various basic shapes, kitchen and
bathroom equipment’s location, and apartment schemes — were too simplistic and
reductive. Such modularization could not offer the fine palette of spaces responding
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Figure 3.2 – Flatwriter by Yona Friedman. Image credits: Y. Friedman 1980.

Figure 3.3 – Design process in Flatwriter. Image credits: Y. Friedman 1980.
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to the client’s emotionally-rooted preferences that a high-skilled architect can offer.
It did not tap into the power of creative intuition. And third, it also had a built-in
problem with realizability. The more complex the organization became in response
to user preferences, the more complex the structure and infrastructure. Resolving
all the manufacturing conflicts would have required such an extensive analysis by
experts that the method would not justify its use.

Nevertheless, Flatwriter is the prototype that inspired generations of architects
who envisioned a more participatory way of creating buildings. And today, computer
games finally offer us a way to do this. After every player action, the game offers
us a fully simulated result. We can judge it by its properties. We can learn from it
and make it better iteratively.

The Generator Project by Cedric Price (Figure 3.4) is an example of using design
systems in architecture to respond to, or trigger, perceptual changes in the mind
and feelings of the inhabitants (Pertigkiozoglou 2017).
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Figure 3.4 – Generator. The Generator project by Cedric Price (top) and a prototype build based on
it by John Frazer (bottom). Image credits: Cedric Price, Frazer 1995.

Product Configurators

Here I present an overview of four existing strategies for encoding design content
into digital modeling environments.

I looked at: 147 online configurators, targeting architectural and interior design;
104 CAD & 3D software products; and several concepts for procedural generation of
design geometry. I sorted those into four strategies for encoding design content into
modeling environments: Implicit Modeling, Parametric configurators, Part Assembly
and Procedural Generation (Table 3.1).
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Table 3.1 – Strategies for encoding design content. The amount of control offered to the
experts and the non-experts in the four strategies for encoding design content into interactive modeling
environments. Assisted sculpting, proposed in this work, is included for comparison. Data sources:
Wikipedia 2019, cyLEDGE Media 2018. Image credits: the author.

Let’s look at the four existing strategies for encoding design content in detail.

First, the conventional, implicit architectural design process is represented by all
professional CAD or 3D modeling software. In this way of working, it is practically
impossible for the expert to create a design system, i.e., to encode their design ideas
into the modeling environment so that others can use them to create variations on
the same design idea. However, to create design content for our interactive design
system, it is beneficial to keep the experts in a 3D modeling environment that they
are already familiar with.

Second, encoding designs into parametric configurators emerged with the phe-
nomenon of Mass Customization. Mass Customization is a contemporary method in
the product industry that allows companies to provide individually-designed prod-
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Figure 3.5 – Online house configurator. The online configurator of the German startup Mr. And

Mrs. Homes allows customers to select floor and wall finishings as well as resize the house floor plan
to fit their site. Image credits: MR + MRS HOMES 2020.

ucts and services to customers at low production costs and in an industrialized
method of production (Pine 1993). Online configurators allow non-experts to par-
ticipate in the design process of their very own product. A classic example here
is the car configurator. The user can configure the final product by selecting from
limited options for colors and specifying its parts’ geometric parameters (size, sil-
houette curve). An example of a configurator in architecture is the startup Mr.
and Mrs. Homes (Figure 3.5). The creative control in this encoding strategy lies
with the designer, the expert, who creates the content. The user has limited means
to express their preferences and intents. Relevant for our approach is that users
don’t start from scratch and their actions have a traceable, high impact on the final
design.

The third is encoding design ideas as an iterative assembly process where the
users can configure the final product by arranging parts into a composition. Good
examples here are the configurator for Traumgarten playground equipment as well
as Lego toys (Figure 3.6). The most noteworthy characteristic in this strategy that
I aim to keep in my case studies is the high degree to which the users can express
themselves. Think of the fantastic creations players can create with Minecraft or
Lego. Another benefit is that the control over the final design is equally balanced
between the user who assembles and the designer who defines the shapes of the parts
and the rules for their combination beforehand. On the other side, this strategy for
encoding design can be challenging for the users as one player’s action (place a block
or a Lego piece) does not impact the modeled design, requiring thousands of clicks
to produce a result. This demands expert-level skills from the user to plan the
modeling process.

Fourth is encoding design ideas into procedural generation algorithms reviewed
in more detail in the following section.
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Figure 3.6 – Part Assembly. Left: Traumgarten configurator for the Winetoo playground system
(https://traumgarten.de/winnetoo/konfigurator/). Right: Lego pieces and possible builds. Im-
age credits: Traumgarten, Lego.

A Pattern Language

“Rittel raises the question of agency and politics when arguing that
in Alexander’s purely axiomatic approach the designer was reduced to
becoming a ”need fulfiller,” ”a kind of ‘reaction jar’ into which the needs
are poured as a kind of liquid and are crystallized into a design solution,”
thus turning him into a ”neutral and disengaged kind of being.”” From
Horst W. J. Rittel, ”Seminar 10: Conclusion” in The Universe of Design,
ed. Protzen and Harris, 135–145 (p. 139). Cited from Lange 2016.

Christopher Alexander’s Pattern Language is an idea of a design system that is
not geometrical in nature (Alexander, Ishikawa and Silverstein 1977). The patterns
in the language are not modules with absolute or adaptable dimensions that fit
together like the modules of the previous examples. Instead, the pattern language
presents a set of spatial arrangements at different scales that can be found repeating
at the architectural and the urban scale all over the world (See Figure 3.7). The 253
patterns were collected over eight years of observations in different world regions.
Alexander and his colleagues argued, “that towns and buildings will not be able to
become alive unless they are made by all the people in society, and unless these
people share a common pattern language, within which to make these buildings”
(Alexander, Ishikawa and Silverstein 1977).

As an example, Alexander presents Pattern 159, ”Light on two sides of every
room,” as follows: “When they have a choice, people will always gravitate to those
rooms which have light on two sides, and leave the rooms which are lit only from one
side unused and empty.” Combined with the ”window place” pattern, this creates
an inviting living room that you want to spend time in. The patterns show how the
way buildings look is not as important as the experience they create.

Designs that use the Pattern Language are as good as the architect creating
them. And this was a problem. There was nothing built in the language that
prevented you from making big mistakes, and that is why the algorithmic, modular
approach was taken on instead.

With the modular approach, if you abided by the few rules for combining the
modules, you always ended up with a well-functioning building. It was a recipe
to design, an algorithm. This kind of algorithmic quality was missing from the
Pattern Language. This is ironic because computer scientists were so inspired by
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Figure 3.7 – Examples from the Pattern Language. Image credits: Alexander, Ishikawa and Silver-
stein 1977.

Alexander’s pattern language that they defined software design patterns. And those
were a game-changer in programming.

3.2 Taxonomy of Generative Design in Architec-

ture. With a Review 1970-2020

This section proposes a taxonomy for the field of generative design (Figure 3.8) that
encompasses all techniques relevant for the computational creation of buildings.
Each technique is presented with a short overview and examples. The overview
helps identify:
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Figure 3.8 – Taxonomy of Generative Design in Architecture. See text for argumentation. Image
credits: the author.

• The distinct steps that every generative technique has: setup, initialize, run,
post-process, learn.

• Which techniques are better suited for the generation of buildings

• Which techniques are better suited to encode expert design knowledge

• Which combination of techniques show great potential and where that poten-
tial has not yet been explored in research.

3.2.1 Motivation

To stage a design process where individuals without prior training in architecture
and design can contribute, expert knowledge and skills must be provided in some
form either via the participation of experts or through automation. The review
presented in this section focuses on the second option, i.e., the techniques to encode
expert skills and knowledge in computational models.

Mountstephens and Teo 2020 state that “Generative Design systems produce
designs by algorithms and offer the potential for the exploration of vast design spaces,
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the fostering of creativity, the combination of objective and subjective requirements,
and the revolutionary integration of conceptual and detailed design phases”.

To systematically explore the potential for using generative design techniques as
an assistive method, one needs a map of the field of generative design.

The widely adopted ACM Computing Classification System by the Association
for Computing Machinery (ACM) (The 2012 ACM Computing Classification System
2012) is the de facto ontology for the computing field. However, since it encompasses
all concepts and methodologies related to computer science, it lacks the fine granu-
larity needed for a comprehensive overview of techniques specifically for generative
design.

The novel contribution of this survey is the inclusion of reviews and works from
architecture, engineering, computer science, and computer games. Previous studies
have focused only on one at most two of these fields. An example of the need for such
a cross-discipline review is, for example, the works by Nam and Le 2012 and Sobey,
Grudniewski and Savasta 2021 on generative techniques for generating layouts for
yachts. Both works are relevant for architects as they address the generation of
multi-story layouts under predefined constraints. However, they have been published
in Marine Engineering journals and remain largely unnoticed in the architectural
generative design field.

Even though surveys and reviews date back as far as 1975 (Mitchell 1975), I chose
to review all the literature and not only the recent developments. The reason is
that online databases’ new search possibilities could lead to discovering and putting
together a collection of works that reveals new patterns.

The goal of establishing a taxonomy of generative design techniques is twofold.
First, the terms in each category will be used to form the search phrases to source
the works for review. A simple search with the common keywords generative design
or procedural generation will not cover all works since many publications use in their
titles and abstracts only the terms defining the specific generative technique they
are presenting. Therefore to establish the search terms, I carried out an extensive
review of surveys attempting to cover all available generative techniques and isolate
their key terminology to use in the search.

Second, a taxonomy gives the possibility to argue for the potential of interactiv-
ity, or human-in-the-loop not only of individual works but also for the overarching
technique category they belong to, which will be explored in the next section.

Much of the work in generative design has aimed at automating design processes
to speed up the development of computer visualizations and game content creation.
However, this non-inclusive approach ignores the nature of design problems, namely
that they are wicked and require the involvement of stakeholders to formulate the
problem definition and the criteria for acceptable solutions. Therefore, it is of in-
terest for this review to uncover the areas in the generative design field with high
potential for the involvement of designers and non-designers.

Mountstephens and Teo 2020 distinguish among many purposes of generative
design three which are relevant here:

1. the automatic generation of a large number of designs,

2. the interactive generation of a large number of designs, and

3. the generation of fabrication-aware designs (additive manufacturing, prefab,
or other).
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3.2.2 Definitions

There is a lack of commonly accepted terminology in the field of generative design
spanning the domains of architecture, engineering design, games (Chakrabarti et al.
2011).

In Generative Design actual design content is generated by automatically
or interactively executed algorithmic descriptions of design procedures
(Caetano, Santos and A. Leitão 2020; Mountstephens and Teo 2020).

Generative Design is distinguished from Parametric and Algorithmic design, al-
beit overlaps in their definitions exist (Figure 3.9).

Figure 3.9 – Generative Design. According to Caetano, Santos and A. Leitão 2020 Generative Design
(GD) comprises of Algorithmic Design (AD) and some techniques from Parametric Design (PD). Image
credits: Caetano, Santos and A. Leitão 2020.

The first examples of a computer implementation of generative design techniques
in architecture are the work by Armour and Buffa 1963 on solving the facility layout
problem from 1963, the work by (Miller 1970) on computer-aided space planning
from 1970, and most notably (Negroponte 1970) from the Architecture Machine
Group (Figure 3.10).

(a) (b) (c)

Figure 3.10 – Early examples of generative design in planning and architecure. a) a character
matrix representing department locations for a facility layout produced using the generate-and-test
heuristic algorithm with simulation by Armour and Buffa 1963, b) a bubble relational diagram of the
departments of a branch bank in Southern California generated from an block diagonal matrix by
Miller 1970 and c) the station running URBAN 5 man-machine designing environment by Negroponte
1970 Image credits: Armour and Buffa 1963, Miller 1970, Negroponte 1970.
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In computer graphics and visualization and the game developing industry, the
more widely used term is Procedural Content Generation (PCG) instead of gener-
ative design. Togelius, Preuss, et al. 2010 define PCG as the automatic or semi-
automatic generation of game content. Of interest for this review are the techniques
used for the generation of 3D models and 2D or 2.5D building layouts of cities and
buildings. The simulation of urban growth of the city of Detroit by Tobler 1970 is
probably the first example of generative design in computer graphics (Figure 3.11).
The game Rogue is considered to be the pioneer in procedural generation in the
game industry (Barton and Loguidice 2009; Yannakakis and Togelius 2011). It
automatically generates dungeons for the player to explore.

(a) (b)

Figure 3.11 – Early examples of generative design in computer graphics and games. a) Simulation
of Urban Growth from Tobler 1970; b) A typical procedurally generated game level with three rooms
linked with corridors, the player’s character (the @ symbol) and an enemy (represented by the K ) from
the 1980 game Rogue (Barton and Loguidice 2009) Image credits: Tobler 1970, Barton and Loguidice
2009.

3.2.3 Existing surveys, classifications and taxonomies

Previous reviews of generative design techniques (Table 3.2) exist either as survey
for a specific problem (space planning, cities, virtual worlds) (G. Kelly and McCabe
2006; Liggett 2000; Lobos and Donath 2010; Meller and Gau 1996; Nisztuk and
Myszkowski 2018; Pérez-Gosende, Mula and Dı́az-Madroñero 2021; R. M. Smelik
et al. 2014), a specific technique (genetic, shape grammars) (Garcia 2017; Gu and
Behbahani 2018; Knight 1999; Togelius, Yannakakis, et al. 2010; Tyflopoulos et al.
2018; Watson and Perera 1997), a combination of a specific problem and a technique
(mostly surveys on space planning using genetic algorithm)(Calixto and Celani 2015;
Dutta and Sarthak 2011; Sharma and Singhal 2014), general surveys (Caetano,
Santos and A. Leitão 2020; Chakrabarti et al. 2011; Chase 2003; Ebert et al. 2002;
Grobman, Yezioro and Capeluto 2009; Lara-Cabrera, Cotta and Fernandez-Leiva
2013; Mitchell 1975; Mountstephens and Teo 2020; Singh and Gu 2012), as well as
notable sections in articles on original work or PhD and Master theses (Chau et al.
2004; Havemann 2005; Hoisl and Shea 2011; T. Kelly 2013; P. C. Merrell 2009;
Rodrigues 2014; Ruales 2017).

In some categories, such as grammar-based and simulation approaches, there is
a structural, and also cross-discipline, overlap among the various surveys. However,
it can be observed that there are many subtopics such as constraint-based modeling,
expert systems, or example-driven approaches where the lack of structural overlap
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Table 3.2 – Existing surveys and reviews of generative design techniques. Key: Field: A-
Architecture, CS-Computer Science, E-Engineering; Type: SA-standalone article, T-Section in a Thesis;
Focus: G-General, ST-specific technique, SP-specific problem. Image credits: the author.

Title Authors Year Field Type Focus Cited

Techniques of automated design in architecture: A survey
and evaluation

Mitchell 1975 A SA G 14

Case-based design: A review and analysis of building de-
sign applications

Watson et al. 1997 CS SA ST 114

Automated facilities layout: past, present and future Liggett 2000 A SA SP 263

A case base of Case-Based Design tools for architecture Heylighen et al. 2001 A SA ST 99

Revisiting the use of generative design tools in the early
stages of design education

Chase 2003 A SA G 3

Design, innovation and case-based reasoning Goel et al. 2005 CS SA ST 70

Generative mesh modeling Havemann 2005 CS T G 6

A Survey of Procedural Techniques for City Generation G. Kelly et al. 2006 CS SA G 136

Looking Back to the Future: An Updated Case Base of
Case-Based Design Tools for Architecture

Richter 2007 A SA ST 26

Computer-Based Form Generation in Architectural De-
sign — A Critical Review

Grobman et al. 2009 A SA G 24

The problem of space layout in architecture: A survey and
reflections

Lobos et al. 2010 A SA SP 48

Search-Based Procedural Content Generation Togelius, Yan-
nakakis, et al.

2010 CS SA ST 179

Search-Based Procedural Content Generation: A Taxon-
omy and Survey

Togelius, Yan-
nakakis, et al.

2011 CS SA ST 695

Computer-Based Design Synthesis Research: An
Overview

Chakrabarti et
al.

2011 E SA G 210

Towards an integrated generative design framework Singh et al. 2012 A SA G 149

Procedural content generation for games: A survey Hendrikx et al. 2013 CS SA G 499

Unwritten procedural modeling with the straight skeleton T. Kelly 2013 CS T G 6

A review of computational intelligence in RTS games Lara-Cabrera et
al.

2013 CS SA G 64

Genetic Algorithm and Hybrid Genetic Algorithm for
Space Allocation Problems - A Review

Sharma et al. 2014 CS SA SP, ST 11

A survey on procedural modelling for virtual worlds R. M. Smelik et
al.

2014 CS SA G 239

Automated Floor Plan Design: Generation, Simulation,
and Optimization

Rodrigues 2014 A T SP 12

Specifications for computer-aided conceptual building de-
sign

Bernal et al. 2015 A SA G 65

A literature review for space planning optimization using
an evolutionary algorithm approach: 1992-2014

Calixto et al. 2015 A SA SP, ST 22

A Panorama of Artificial and Computational Intelligence
in Games

Yannakakis
et al.

2015 CS SA G 176

Shape Grammars: A Key Generative Design Algorithm Gu et al. 2018 A SA ST 4

Usability of contemporary tools for the computational de-
sign of architectural objects: Review, features evaluation
and reflection

Nisztuk et al. 2018 A+CS SA SP 13

Computational design in architecture: Defining paramet-
ric, generative, and algorithmic design

Caetano et al. 2020 A SA G 28

Progress and challenges in generative product design: A
review of systems

Mountstephens
et al.

2020 CS SA G 1

shows the need for an overarching structure of the field of generative modeling
techniques across the disciplines that make use of them.

Mitchell 1975 is probably the first review ever.

Watson and Perera 1997 presents an overview of Case-based design applications
in building design.

Liggett 2000 focus on generative algorithms for the problem of space allocation,
i.e., generating layouts of buildings and present examples that use constraint-based,
genetic algorithm and simulation techniques.

The review by Chase 2003 presents the attributes of generative design concep-
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tually but is relatively non-technical and lacks specifics of the reviewed techniques
- pattern generation, parametric variation, and grammars.

Goel and Craw 2005 present eight factors that make design tasks challenging
for Case-Based Reasoning. Still, one could argue they apply for any generative
technique: breadth, stages, specification, complexity, collaboration, representation,
integration, creativity.

Havemann 2005 presents the advantages of generative techniques: make com-
plex models manageable; rely on sufficient hardware resources; are highly compact
to store and transmit; allow for model-based reconstruction; make the similarity
of modeling and programming explicit. He reviews several existing languages for
geometric (generative) modeling and examples of grammar-based modeling.

G. Kelly and McCabe 2006 present five techniques for procedural city modeling
- Grid Layout and Geometric Primitives, L-Systems, Agent-based, Template-based,
Split grammars. However, they illustrate with only one example per category. The
examples are evaluated on the following criteria: Realism; Scale; Variation; Input;
Efficiency; Control; Real-time. They also present several procedural techniques
which they state are not relevant for architecture or city generation but more for
modeling natural objects: fractals, tiling, Voronoi texture cells.

Grobman, Yezioro and Capeluto 2009 present several groups of techniques with
their advantages and disadvantages on Figure 3.12. Theirs is one of the rare surveys
that include expert systems for architectural design.

Lobos and Donath 2010 review academic architectural works and commercial
software dealing with the problem of space allocation (layout) in architecture. The
review is rather non-exhaustive, and examples seem arbitrarily picked out. The
authors define four categories of techniques: Expert Systems, Shape Grammar, Ge-
netic, Constraint-Based.

The review by Togelius, Yannakakis, et al. 2010 focuses on search-based strate-
gies of procedural content generation for games and presents mainly examples of
using the evolutionary algorithm for generating content. Their review gives a help-
ful classification of representation types for generated content (See the following
section).

Chakrabarti et al. 2011 present an overview of computer-based techniques for
design synthesis in three main categories: function-based synthesis, grammar-based
synthesis, and analogy-based design. Provides an overview of graph grammar mod-
eling software - GrGen, Design Compiler 43, GraphSynth - applied to engineering
problems but which might be relevant for architectural design. The focus of the pre-
sented examples is Engineering design, not architecture. However, the classification
is relevant, extends the ones in other studies, and furthers the aim of this survey to
source generative algorithms for architecture that were borrowed from other fields
but might have been overlooked in previous surveys.

Singh and Gu 2012 state that the main incentives for adopting generative design
in architecture are to use computational capabilities to support human designers and
(or) automate parts of the design process to explore larger design spaces, achieve
efficiency, cost reduction, optimization, accuracy, consistency. The authors distin-
guish five categories of generative design techniques: shape grammars, L-Systems,
cellular automata, genetic algorithms, and Swarm intelligence. However, the given
examples for Swarm intelligence are mostly related to work organization or the study
of social insects. The authors present a table with the suitability of each technique
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Figure 3.12 – Computer-based form generation. Main approaches according to Grobman, Yezioro
and Capeluto 2009 Image credits: Grobman, Yezioro and Capeluto 2009.

to different design phases and list problems for each method, the modes for user
intervention, and the challenges in the development of models using each method.

Hendrikx et al. 2013 present a Taxonomy of common methods for generation
game content (Figure 3.13). The methods are explained in the appendix to the
article. However, some groups, such as Image filtering, are not directly relevant for
the generation of artifacts of the built environment as the taxonomy of Hendrikx
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et al. 2013 is general, in a sense that it aims to include approaches for all kinds
of game content and behavior. Furthermore, the reasons behind the particular
taxonomy structure chosen by the authors are not given.

Figure 3.13 – Taxonomy of common methods for generating game content. Image credits:
Hendrikx et al. 2013.

T. Kelly 2013 lays procedural modeling techniques on the spectrum from fully
generic modeling (a programming language) to particular model instances (3D mesh
of a bunny). The author includes variations of grammars (string, graph, shape), L-
Systems, data flow programming (visual scripting, grasshopper), Simulation, com-
binatory modeling (model synthesis), and shape deformation.

Lara-Cabrera, Cotta and Fernandez-Leiva 2013 review computational intelli-
gence techniques in the development of real-time strategy (RTS) games where con-
tent generation is one of many problems or tasks solved by algorithms. Their review
suggests that for the task of PCG, mostly evolutionary approaches are used. In
contrast, the other techniques — case-based reasoning/reinforcement learning, AI
planning, influence maps, simulations, dynamic scripting, artificial neural networks,
and fuzzy bayesian — are used for tasks concerning the strategy formulation and
movement of opponents.

Sharma and Singhal 2014 focus on the problem of space allocation and review
only genetic algorithm examples, many of which are outside the field of architecture.

R. M. Smelik et al. 2014 point out procedural modeling’s data compression and
the reduced human intervention when creating content as the key factors that make
it attractive. However, they find that non-technical creative professionals have not
adopted procedural modeling techniques yet due to the poor controllability of most
procedural models and the difficulty of predicting results from rules and input pa-
rameters. The authors classify the procedural modeling techniques for virtual worlds
into six categories: stochastic, artificial intelligence, simulations, grammars, data-
driven, and computational geometry. They include not only academic works but
also ready-to-use software systems.

Rodrigues 2014 outlines six approaches to generating floor plans: Area assign-
ment, Area partitioning, Space allocation, Hierarchical construction, Conceptual
exploration, Design adaptation. The author presents a comparison of evolutionary
approaches (Figure 3.14).

Bernal, Haymaker and Eastman 2015 give an overview of areas, including design
generation, where computer-based assistance to designers makes sense and is or is
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Figure 3.14 – Comparison of evolutionary approaches to generative design. Image credits: Ro-
drigues 2014.

not developed (Figure 3.15).

Calixto and Celani 2015 present 31 papers using genetic algorithms to solve the
space planning problem. They observed six techniques to construct the layouts: half
plan, k-dimensional trees, shape grammars, blocking, one-to-one assignment, slice
tree structure. As well as four methods to evaluate solutions: Quadratic assignment
problem, interactive evaluation by human users, adjacency matrix, graph theory.

Yannakakis and Togelius 2015 give an overview of A.I. in games and divide
the field into six key methodology areas: evolutionary computation, reinforcement
learning, supervised learning, unsupervised learning, planning, and tree search. The
section on Procedural Content Generation is relevant for this study and points to
example works. Yannakakis and Togelius 2015 divide the techniques into dominant
and secondary or strong and weak. The authors use the diagram on Figure 3.16 to
denote the areas and target groups for which generative techniques are useful.

Gu and Behbahani 2018 offer a review of shape grammar applications and present
a chronology of shape grammars (Figure 3.17). They classify Generative Design algo-
rithms into three types replacement(grammars, L-Systems, parametric), evolution,
and agent interaction (cellular automata, swarm intelligence, space colonization).
The review distinguishes five types of grammar transformations: addition, subtrac-
tion, division or split, modification, and substitution. Addition, modification, and
substitution have been explored in my research presented here. The authors divide
control mechanisms into three general levels: internal (geometric, encoded in the
rules), external (human or algorithm), and parallel (most common - using labels
embedded in the shapes in the rules to give hints to an external agent).
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Figure 3.15 – Levels of algorithmic assistance on designer’s actions. White: human-based, light
grey: computer-aided, dark grey: computer-based, and black: computer-augmented. Image credits:
Bernal, Haymaker and Eastman 2015.

Figure 3.16 – Assistive generative techniques in games based on the tasks. The tasks are
performed by designers, players, AI researchers or game producers. Image credits: Yannakakis and
Togelius 2015.

The focus of the review by Nisztuk and Myszkowski 2018 is on techniques for
automation and optimization of solving the floor plan problem in architecture. The
study emphasizes the usability of the reviewed techniques in practice. It also includes
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Figure 3.17 – The evolution of Shape Grammars. Image credits: .

Gu and Behbahani 2018

a survey conducted by the authors with respondents being practicing architects
aiming to establish the degree to which computational design tools are used in
practice. Lists chronologically 18 research prototypes and five commercial software
which are not categorized or classified.

Caetano, Santos and A. Leitão 2020 define the terms Computational, Generative,
Parametric, and Algorithmic Design basing the definitions on an extensive literature
review.

Mountstephens and Teo 2020 review generative design systems “according to
their primary goal, generative method, the design phase they focus on, whether the
generation is automatic or interactive, the number of design options they generate,
and the types of design requirements involved in the generation process”. They list:
Shape Grammars, L-systems, Swarm Intelligence, Genetic Algorithms, Parametric
Modeling and Topology Optimization.

The review papers by Dutta and Sarthak 2011; Heylighen and H. Neuckermans
2001; Hsu and R. J. Krawczyk 2003; Meller and Gau 1996; Pérez-Gosende, Mula
and Dı́az-Madroñero 2021; Tyflopoulos et al. 2018; Watson and Perera 1997, as well
as the review sections by Chau et al. 2004; Hoisl and Shea 2011; P. C. Merrell 2009;
Ruales 2017, have not been summarized here as they do not add new information
about types of generative techniques. However, the works they presented have been
studied and, if relevant, included in the review.
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3.2.4 Methodology

I formed a search phrase for each category of generative design techniques introduced
in the review papers above. After a search in literature databases, the category was
included in the taxonomy if relevant works were found.

The method follows the guidelines by Levy and Ellis 2006 and is similar to the
method used by Larsen et al. 2019 for their review of mass-customization in the
housing industry.

1. Search phrases for each technique were formed based on the terms used in the
review papers for each technique and the terms used in the titles and abstract
of the cited works in the review papers. The phrases are listed in Table 3.3.
For example, for shape grammars the phrase is:

technique qualifier phrase = (shape-grammar* OR discursive-grammar*)

2. To narrow down papers to architecturally relevant ones a search phrase with
qualifying terms was added:

object qualifier phrase = (facade* OR layout* OR "space plan*" OR

floor$plan* OR city OR cities OR virtual-world* OR urban* OR house$

OR housing OR villa* OR game$ OR building*)

3. A search phrase that qualifies the results to the subject of generative design
was also compiled. The subject of generative design is concerned with one
or more of the concepts of generation and automation, it is computer-based,
computational or procedural and often uses algorithms. Therefore the subject
qualifier phrase is:

subject qualifier phrase = (procedural* OR comput* OR generat* OR

automat* OR algorithm*)

4. The final search phrase for each technique is:

technique qualifier phrase AND object qualifier phrase

AND subject qualifier phrase

5. For literature databases that support filtering by category, such as the Web of
Science, the categories were used to narrow the search.

6. The following databases were searched - Web of Science, CumInCAD, Google
Scholar, and Microsoft Academic. The software Publish or Perish1 was used
to manage and export searches in Google Scholar and Microsoft Academic.

7. All searches were combined into one list as some papers showed up in more
than one category.

8. Each publication was checked, and irrelevant ones were pruned.

9. I did a backward and forward search by collecting the papers that cited the
relevant works and the papers that they cited. Those two new lists were then
checked for relevant publications and added to the list of works.

1https://harzing.com/resources/publish-or-perish
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Table 3.3 – Search phrases for the identified generative techniques. Image credits: the author.

# CATEGORY SEARCH PHRASE RECORDS
FOUND
(WOS)

Generative Design (procedural* AND (model* OR

generat*) NOT ("procedural

justice" OR "procedural

language" OR "procedural

sedation" OR "procedural

fairness")) OR ("generative

design*" OR "generating

design*" OR "generative model*"

OR "generating model*") OR

(generat* NEAR/1 algorithm$)

OR (computer-generated) OR

(computational-design) OR

(computerized space planning)

746

A. Constructive - -

A.1. Computational Geome-
try

computational-geometr* 31

A.1.1. Fractals fractal* 78

A.1.2. Subdivision Algorithms subdivision OR treemap$ OR

voronoi OR halfplane* OR

half-plane*

140

A.1.2.1. Voronoi - -

A.1.2.2. Slicing Tree slic* NEAR/1 tree$ 2

A.1.2.3. K-D Trees k-d-tree$ 2

A.1.3. Parametric Modeling -

A.1.4. Generative Modeling
Languages

"generative modeling language"

OR "generative ML" OR Hyperfun

OR GENMOD OR PLaSM

1

A.1.5. Marching Cubes - -

A.2. Grammar-based grammar* 256

A.2.1. Symbolic Grammars - -

A.2.1.1. Formal String Gram-
mars

string-grammar* OR

formal-grammar*

5

A.2.1.2. L-Systems Lindenmayer-system* OR L-System* 10

A.2.1.2.1. Open L-Systems - -

A.2.1.3. Graph Grammars graph-grammar* 19

A.2.1.3.1. Boundary Solid Gram-
mars

solid-grammar* 0

A.2.2. Shape Grammars shape-grammar* OR

discursive-grammar*

68

A.2.2.2. Set Grammars - -

A.2.2.2.1. Split Grammars split-grammar* OR

split-shape-grammar* OR CGA

18

A.3. Constraint-based Constraint-Satisfaction

OR Constraint-based OR

Constraint-solving

122

Continued on next page
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Table 3.3 (continued)

# CATEGORY SEARCH PHRASE RECORDS
FOUND
(WOS)

A.3.1. Wave Function Collapse wave-function-collapse 1

A.4. Simulation Approaches (growth NEAR/2 simulat*) OR

(comput* AND morpho$gen*) OR

(behavio$ral-model* AND design)

93

A.4.1. Cellular Automata "cellular automata" 431

A.4.2. Agent-based agent-based OR multi-agent

OR swarm-intelligence

OR agent-model$ing OR

self-organization

674

A.4.3. Physically-based Mod-
els

physically-based 48

A.4.4. Monte Carlo Methods markov-chain-monte-carlo OR MCMC 37

A.4.5. Topology Optimization topolog* NEAR/2 optimiz* 67

A.5. Example-driven Algo-
rithms

((example-driven OR

example-based OR model-based

OR component-based OR

example-guided OR data-based OR

data-driven) NEAR/10 (synthes*

OR generat*)) OR model-synthesis

116

A.5.1. Model Synthesis model-synthesis -

A.5.2. Generative Machine
Learning

(neural-network$ OR

artificial-intelligence

OR deep-learning OR

machine-learning OR bayesian OR

(Probabilistic NEAR/2 Model*))

AND generat*

853

A.5.2.1. GAN Generative-Adversarial-Network$

OR GANs OR GAN

59

A.5.2.2. Bayesian Networks - -

A.6. Analogy-based Design analogy-based 3

A.6.1. Case-based Design case-based OR template-based OR

pattern-based

190

A.7. Reinforcement Learning reinforcement-learning 216

B. Generate-and-test - -

B.1. Search-based search-based OR Metaheuristic$ 227

B.1.1. Evolutionary Algo-
rithms

("genetic algorithm*" OR

"genetic programming") OR

(evolut* NEAR/2 (strateg* OR

algorithm* OR technique$ OR

programming OR design))

1943

B.1.2. Simulated Annealing simulated-annealing 191

B.1.3. Particle Swarm Opti-
mization

particle-swarm-optimization OR

PSO

366
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Criteria for inclusion

This research focuses on low-rise, high-density residential buildings. Therefore to
include a work in the techniques overview:

1. It must be generative, meaning that not humans but algorithms create the
design or parts of the design.

2. must be a computer implementation, not merely a concept or a manually used
system.

3. It must create a representation (plan, facade, or 3D model) of a building, a
building fragment (window, wall), or a city for use in architecture or computer
graphics (computer games). Products (including furniture), underground in-
frastructure (pipelines, sewers, etc.), generic shapes, computer games charac-
ters, text, textures, sound effects, music, terrain, landscapes, plants, and other
natural structures were ignored. Pure street layouts without buildings were
not included.

4. Reality reconstruction techniques, such as facade reconstruction from images
or 3D scans, were not included.

5. Content generated for use in Games was also included if it was architectural,
i.e., level designs or layouts or 3D models of buildings, dungeons, or cities.
Platformer levels like the levels for super Mario bros were not included.

6. Finally, to be included, a work must be serious, i.e., respond to a requirement
specifications for the generated buildings or cities.

3.2.5 Taxonomy introduction

The Taxonomy of Generative Design in Architecture is presented on Figure 3.8.
Taxonomies describe relationships between items, while classifications group the

items according to one or two attributes (Lalonde 2021). As seen in the overview of
existing surveys above, many classifications have been put forth which have informed
this taxonomy. Among them, there are multi-dimensional, or poly-hierarchical tax-
onomies - example by Togelius, Yannakakis, et al. 2011 which has the axes of: (i)
Online vs. Offline; (ii) Necessary vs. Optional Content; (iii) Random Seeds vs. Pa-
rameter Vectors; (iv) Stochastic vs. Deterministic Generation; (v) Constructive vs.
Generate-and-Test. My research’s focus gives the criteria to structure the taxonomy
and map the relationships between the techniques. My work aims to explore ways
to bring a user in the process, i.e., human-in-the-loop. Therefore it is essential to
group techniques based on the type of input needed during the development phase,
at the start of a generative loop, during the loop, and in the post-processing phase.
All these properties are determined by the specific algorithms used in each tech-
nique. Therefore the taxonomy presented here is organized by the algorithm used
to generate the results.

The potential for integrating participation from human co-designers, trained
professionals, and non-experts for each class of techniques will be discussed later.

The ranks typically used in a taxonomy are shown on Figure 3.18. Table 3.4
gives an overview of how I map these ranks in the Taxonomy of Generative Design
techniques presented here.
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Figure 3.18 – The taxonomy ranks. Source Wikipedia https://commons.wikimedia.org/wiki/

File:Biological_classification_L_Pengo_vflip.svg, Pengo, Public domain, via Wikimedia
Commons. Image credits: Wikimedia.

Table 3.4 – Taxonomy ranks with examples. Image credits: the author.

Latin English What

regio domain The domain of generative design

regnum kingdom One kingdom for Constructive techniques and one for Generate-
and-Test techniques.

phylum division A division is formed from classes of algorithms that consist
of similar steps, for example Grammar-based devision encom-
passes all algorithms that are rewriting systems.

classis class A Class is defined based on the type of data the algorithms run
on. For example Shape grammars introduced by Stiny and Gips
1971 and Symbolic Grammars are both rewriting algorithms
but the former runs on shapes while the latter on symbolic
representations (strings, graphs).

ordo order An Order is the particular technique for example Set Gram-
mars. Sometimes a suborder is also used as in the case of Split
Grammars.

familia family Family is the specific combination of algorithms - for exam-
ple Parametric models in combination with the Multi-objective
Genetic Algorithm.

genus genus A Genus is the specific family as described in a given paper by
its authors such as the Parametric models plus Multi-objective
Genetic Algorithm implementation in (Gerber and S.-H. E. Lin
2014).

species species Species encompass all designs that can be produced with the
same input parameters from a given algorithmic setup (Genus).
(not tracked here)

singulis individual Individuals are the particular instance of a design produced
with given input parameters. (not tracked here)

The Constructive and the Generate-and-test Kingdoms

Togelius, Yannakakis, et al. 2010 present a distinction of procedural content gener-
ation algorithms that is relevant to this work: Constructive vs. Generate-and-test.

A Constructive algorithm generates content once and makes sure it matches the
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requirements. The challenge in this type of techniques is making sure that the
content is correct or at least “good enough” as it is being constructed (Togelius,
Yannakakis, et al. 2010). Examples from this kingdom are shape grammars (Stiny
and Gips 1971) and simulation approaches such as cellular automata and topology
optimization.

A Generate-and-Test algorithm creates designs in a loop. It generates a candi-
date design and tests it against defined criteria or lets the user evaluate it, determin-
ing whether to keep the candidate or discard it partially or entirely. Examples are
all evolutionary algorithm approaches (Holland 1975) (Figure 3.19) and in general
all search-based approaches (Togelius, Yannakakis, et al. 2010).

Figure 3.19 – The steps in an evolutionary algorithm. Image credits: Harding 2014.

It is of importance to note that almost all Generate-and-Test approaches con-
tain at least one Constructive approach in their generating phase. This meta-level
of guiding a constructive algorithm, probably the reason for term meta-heuristics
denoting the techniques in this kingdom, presents the main advantages and the main
challenges of the kingdom. The challenge of this kingdom of techniques is making
sure the evaluation and selection process allows the exploration of the entire design
space and is transparent for the designer.

A.1. Computational geometry

The Computational geometry division includes all techniques that involve sequential
geometric operations and transformations such as extrusion, trimming, or construc-
tion of curves based on mathematically defined functions (de Berg et al. 1997).

The speed, the minimal required input, and the fact that they are often de-
terministic (de Berg et al. 1997). This makes them suitable for combining with
meta-heuristic techniques from the generate-and-test kingdom.

An essential feature of the techniques in this group is, even for noise algorithms,
that they are the opposite of heuristic, i.e., analytic in nature (de Berg et al. 1997).
That is not to say they are deterministic and not stochastic since they can be both
- noise is stochastic (relies on random numbers), Voronoi is deterministic (the same
set of points produces the same Voronoi tessellation). But both are analytic, i.e., the
noise algorithm doesn’t make empiric guesses but proceed to the next steps based
on a clearly defined analytical function.

Noise algorithms (Perlin 1985), and in general Pseudo-Random Number Gener-
ation (PRNG), are probably the most well-known representative of this division and
the earliest form of generative design techniques (Hendrikx et al. 2013). However, I
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have not included them in the taxonomy as they have little relevance to modeling
artifacts of the built environment and are more suited for modeling naturally oc-
curring objects and phenomena such as textures, terrain, and smoke (G. Kelly and
McCabe 2006).

Fractals, the other very popular mathematical generative technique, were intro-
duced by Benôıt Mandelbrot, regarded as the ’father of fractals’. Mandelbrot coined
the term fractal in 1975 (Mandelbrot 1977, 1982) from the Latin fractus meaning
broken (G. Kelly and McCabe 2006). Fractals are also not optimal for modeling
artifacts of the built environment as there is rarely such a strong self-similarity in it.
Hence they are superseded by the grammar-based approaches (G. Kelly and McCabe
2006). For example, the Koch snowflake fractal originally described by Koch 1904
with a mathematical equation can be represented as an L-System (Rani, Haq and
Sulaiman 2011). Unlike noise however, I have decided to include them as there are
examples of using fractals for generating buildings (Figure 3.20) (Ediz and Çağdaş
2007).

Figure 3.20 – Fractal-based form generation. Image credits: Ediz and Çağdaş 2007.

Subdivision algorithms such as slice tree structure, Voronoi, and other space-
filling methods also belong to computational geometry division (Knecht and Koenig
2010; R. M. Smelik et al. 2014). The Voronoi tessellation introduced by Voronoi
1908 is probably the most well-known and visually present subdivision algorithm,
as it became the symbol of the parametric and generative architectural design in
the 2000s and onwards. A detailed illustrated description of its workings is given
in (Aurenhammer 1991). Examples of the use of Voronoi tesselation for generat-
ing architectural design can be found in (Menges 2012) (Figure 3.23) as well as in
(Coates, Derix, et al. 2005; Harding and Derix 2011; Koltsova et al. 2011). In the
category of subdivision algorithms, (Otten 1982) introduced slicing trees and (Kado
1995) extended them (Figure 3.21). (Knecht and Koenig 2010) introduced k-d trees
(Figure 3.22). And (Damski and Gero 1997) introduce the use of half-planes to
generate floor plan layouts.

G. Kelly and McCabe 2006 present an example of Grid Layout and Geometric
Primitives in the case of the work by (Greuter, Parker, et al. 2003; Greuter, Stewart
and Leach 2004; Greuter, Stewart, Parker, et al. 2003) on computer-generated infi-
nite cities, which considering its generation pipeline, also belongs to computational
geometry (Figure 3.24).
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Figure 3.21 – Slice Tree Structure. The logic of Slice Tree Structure (left) as explained by Kado
1995. The best layout (middle) and the convergence of the Genetic Algorithm (right) for a layout
problem with 6 facilities (Kado 1995). The horizontal axis indicates the number of evaluations, the
vertical axis indicates the mean of the best individual scores. Smaller is better. Image credits: Kado
1995.

Figure 3.22 – K-d trees used to subdivide layouts. Image credits: Knecht and Koenig 2010.

Parametric modeling, or data-flow programming, is also here (T. Kelly 2013).
Parametric models or associative models are topologically set up, and the links
between the model’s components are made dependent on parameters. Parametric
modeling is very broad in relation to generative but offer an overlap (Figure 3.9)
(Caetano, Santos and A. Leitão 2020).

Havemann 2005; T. Kelly 2013 are the only ones among the reviews to include
general-purpose programming languages as a type of generative modeling technique.
The authors name various Generative modeling languages such as Open Inventor,
Generative Modeling language (Havemann 2005) (Figure 3.25), PLaSM (Paoluzzi,
Pascucci and Vicentino 1995), HyperFun or GENMOD (Snyder and Kajiya 1992).
These languages use mathematical approaches via parametric functions, and as such,
the technique fits under computational geometry. They are suitable for automating
the generation of specific designs and not for generic exploration of design spaces.
They require an expert to model the design and then translate it to code.
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Figure 3.23 – Computational Geometry used to subdivide form and layout. The example here
uses Voronoi. Image credits: Menges 2012.

Figure 3.24 – A custom pipeline of constructive geometric operations to model building mass-
ing. Image credits: Greuter, Parker, et al. 2003.

I have placed Marching cubes (Lorensen and Cline 1987) under computational
geometry.

A.2. Grammar-based

Grammar-based generative methods fall under the constructive, or purely procedu-
ral, types of algorithms (R. M. Smelik et al. 2014).

Grammar-based techniques stem from the formal string grammars introduced
by Chomsky 1959.

Grammars can be divided into parallel and sequential (Alfonseca and Ortega
1996; T. Kelly 2013; Stiny 1992) or into symbolic and shape-based (Chakrabarti
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Figure 3.25 – Generative Modeling Language. A gothic window created using the Generative
Modeling Language by Havemann 2005. Left, the code for style 1, top right steps, bottom right style
1 and style 8 of the windows generated in the work. Image credits: Havemann 2005.

et al. 2011; Krishnamurti 1993). It is easier to switch a sequential grammar into
a parallel as it requires changing the mode of computation. At the same time, it
is far more difficult to switch a grammar from symbolic into shape as it requires a
complete redefinition of the grammar. Therefore I have chosen to use the symbolic
vs. shape distinction in the taxonomy presented here. Symbolic grammars require
an extra post-processing step to produce design geometry as in the work with graph
grammars by J. H. Lee, Ostwald and Gu 2018 (Figure 3.26), while shape grammars
operate on geometry directly, such as the shape grammar developed for the houses
designed by the architect Alvaro Siza at Malagueira by Duarte 2001 (Figure 3.27).

Ilč́ık and Wimmer 2016 present an approach called symbolic shape grammar
which might appear to challenge the distinction into symbolic grammars and shape
grammars. However, the work of Ilč́ık and Wimmer 2016 in its essence is an exten-
sion of CGA-Shape by Müller, Wonka, et al. 2006 or a parametric shape grammar
modeled with a generative modeling language instead of geometry.

L-Systems belong to the symbolic, string-based grammars (Alfonseca and Ortega
1996; T. Kelly 2013; Parish and Müller 2001; Singh and Gu 2012). In 1996, Měch and
Prusinkiewicz 1996 presented the different types of L-Systems up until that moment
and introduced the Open L-Systems which has seen probably the most notable use
of L-Systems for generation of cities and buildings in the work of Parish and Müller
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Figure 3.26 – Justified plan graphs. Based on Space Syntax (Hillier 2007). Spatial interprerations
of justified plan graphs in the work by J. H. Lee, Ostwald and Gu 2018 on using graph grammars to
generate justified plan graphs for houses. Image credits: J. H. Lee, Ostwald and Gu 2018.

Figure 3.27 – Discursive Shape Grammars. Left, Partial tree diagram and right, four generated
designs, showing the derivation of the house designs produced with the discursive shape grammars by
Duarte 2001. Image credits: Duarte 2001.

2001. L-Systems are less suitable for modeling buildings than other grammar-based
approaches because “a building is not designed with a growth-like process in mind,
but a sequence of partitioning steps”(Wonka et al. 2003).

Graph grammars, introduced by Nagl 1976; Pfaltz and Rosenfeld 1969 belong to
symbolic (string) grammars according to Chakrabarti et al. 2011; Gu and Behbahani
2018; Pavlidis 1972 and to spatial grammars according to Krishnamurti 1993. How-
ever, the categorization of Krishnamurti 1993 is confusing as it lists string, set, and
graph grammars under spatial grammars and discusses shape grammars separately
with the distinction that “unlike the other spatial grammars, shape grammars oper-

65



CHAPTER 3. GENERATIVE DESIGN

Figure 3.28 – Split Grammars. The rules for a simple split grammar (left) and its result (right). Image
credits: Wonka et al. 2003.

ate directly on spatial forms”. This confirms the categorization of all other authors
that graph grammars are symbolic, which is where I have categorized as well.

Figure 3.29 – Boundary Solid Grammars. A production grammar rule on a solid body representation
as a graph (left) (J. A. Heisserman 1990) and a design of a Queen Anne house in the language of the
Boundary Solid Grammar by J. Heisserman 1994. Image credits: J. Heisserman 1994; J. A. Heisserman
1990.

Krishnamurti 1993 place the boundary solid grammars introduced by J. Heisser-
man 1994; J. Heisserman, Mattikalli and Callahan 2004; J. Heisserman and Wood-
bury 1993 (Figure 3.29) under graph grammars.

Shape grammars introduced by Stiny and Gips 1971 are considered the most
important algorithmic approach to design (Duarte 2001; R. M. Smelik et al. 2014).
Gu and Behbahani 2018 state that grammars, in particular shape grammars, are
very suitable for encoding design knowledge. Original shape grammars such as the
Palladian grammar (Stiny and Mitchell 1978) were challenging to implement in a
computer program due to the high complexity of interpreting the left-hand shape
(LHS) of the grammar rules. This, in turn, is caused by the fact that production
rules produced new sub-shapes unknown beforehand (J. P. McCormack and Cagan
2002, 2006; Stiny 1982). Set grammars, introduced by Stiny 1982, are a variation of
shape grammars where the vocabulary is finite and predefined, as are the spatial re-
lations between the shapes of the vocabulary which form the basis for the grammar
rules (Stiny 1980a, 1982). By having only rules that keep vocabulary shapes intact
and limiting the combinations between them, set grammars reduce the computa-
tional complexity of the problem of interpreting left-hand shape rules (Gips 1975;
Wonka et al. 2003). Each design in the language defined by a set grammar can be
taken apart into a set of parts that belong to the vocabulary set, while not the same
is true for a design produced with a shape grammar (Stiny 1982). Wonka et al.
2003 introduced Split Grammars for large urban environments, and facade gener-
ation in particular (Figure 3.28), focusing on fast computation and no dead-ends
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during the derivation (T. Kelly 2013). So far, they are the most practically relevant
implementation of shape grammars as shown by the success of the CityEngine soft-
ware which uses them, and the abundance of citations and publications that refer
to split grammars. Knight 2003 introduced parallel shape grammars. Stiny 1980b
introduced parametric shape grammars. Duarte 2001 proposes a four-step process
for developing a shape grammar based on an existing corpus. It includes rule infer-
ence, prototyping, reverse grammar, and testing. Wonka et al. 2003 state that Shape
grammars “are not suitable for automatic and semi-automatic modeling”. Chau et
al. 2004 give an overview of the recent applications of shape grammars (Figure 3.30)

Figure 3.30 – Applications of shape grammars. Image credits: Chau et al. 2004.

Hoisl and Shea 2011 present review of interpreters for shape grammars. Further-
more, they present an interpreter for set grammars that is a step toward providing a
general shape grammar interpreter within a familiar CAD environment (Chakrabarti
et al. 2011). Chakrabarti et al. 2011 state the following issues to all generative gram-
mars (they refer to a workshop presentation that was the basis for (McKay et al.
2012)): “(1) supporting designers to articulate grammars (i.e., vocabulary and rules)
in software implementations, (2) defining ways to evaluate implementations, includ-
ing identifying a set of benchmark problems, (3) better integration of generative
grammar implementations with other software, e.g., CAD and CAE and (4) more
methodological support for users in the process of defining a grammar since this
process can also lead to better understanding of a design problem.”

A big problem with shape grammars is the shape detection, i.e., finding a LHS
shape to trigger a rewriting rule (Chakrabarti et al. 2011; Jowers et al. 2010). Ad-
vanced algorithms have been applied to the problem (Chakrabarti et al. 2011; Chau
et al. 2004; Hoisl and Shea 2011; J. P. McCormack and Cagan 2002, 2006). The
voxel implementation of shape grammars presented in the 20.000 BLOCKS case
study in this work reduces the complexity through discretization (Savov and Tess-
mann 2017).

Another problem is the rule creation. Most examples use expert knowledge
encoding, i.e., the author of the grammar models the rules. However, the interface
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to do that is usually not suitable for any user as it requires programming or using
custom-made environments. (Yogev, A. A. Shapiro and Antonsson 2010) for learning
grammars rules by evolutionary optimization, but maybe not truly grammars while
(Orsborn, Cagan and Boatwright 2008) present a method to learn the grammar for
a car automatically from a corpus of vehicle examples.

Garcia 2017 classifies grammars according to design strategy into grid, subdivi-
sion and additive of which in the case of the voxel shape grammars adopted here
both grid and additive have been considered. Subdivision was not considered due
to the discrete quality of the voxel space.

A.3. Constraint-based modeling

Constraint-based approaches is another kind of constructive generative modeling
technique (Charman 1993; Liggett 2000; Lobos and Donath 2010; R. M. Smelik
et al. 2014). Constraint-based modeling techniques represent the generative task
as a Constraint Satisfaction Problem (CSP) which is defined by a set of variables
belonging to a finite domain of values and a set of constraints on these variables (Apt
2003; Mackworth 1977). A solution to CSP is an instantiation of the variables that
satisfies all constraints (Charman 1993). According to Lobos and Donath 2010,
p.146, the Constraint-Based Approach is similar to the architectural practice as
“design is a combinatorial problem in principle, i.e., a constraint-based search for
an overall optimal solution of a design problem”. CSP is mainly used to solve the
Facility Layout Problem, i.e., generate floor plans.

A recent, emerging example of the use of Constraint-based modeling that opens
up the technique to 3D application is the Wave Function collapse algorithm devel-
oped by Gumin 2016 (Karth and A. M. Smith 2017). Tigas and Hosmer 2021 show
its application in combination with Reinforcement learning for the generation of
building designs (Figure 3.31).

Figure 3.31 –Wave Function Collapse. Spatial Assembly using the Wave Function Collapse algorithm
and Reinforcement learning. Image credits: Tigas and Hosmer 2021.
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A.4. Simulation approaches

Simulation approaches are subset of the constructive approaches as the simulation
algorithm constructs one design artifact iteratively. ”Simulation approaches to pro-
cedural modeling involve the imitation of observed processes to approximate the in-
teractions within a model, and between the model and its environment.” (T. Kelly
2013). I include growth simulations, morphogenetic algorithms, and agent-based
approaches in this category. This category covers phenomena like self-organization
and self-assembly. L-Systems can also be considered growth simulation algorithms,
but they are in the grammar-based approaches with all other rewriting systems due
to their operation on strings.

T. Kelly 2013 places Cellular Automata under simulation approaches. Wolfram
1983 refers to (Schrandt and S. M. Ulam 1967; S. Ulam 1962; von Neumann 1951,
1966) to state that “cellular automata were originally introduced by von Neumann
and Ulam (under the name of cellular spaces)”. Cellular Automata are mostly used
for urban planning and simulation of city growth (Batty 2005). An example of 1-D
Cellular Automata used for generating architectural form is the competition entry
for the San Jose State University Museum of Art and Design (Figure 3.32) by Mike
Silver Architects (Silver 2006). Further examples of the use of CA in architecture
can be found in (Coates, Healy, et al. 1996; Herr and Kvan 2005, 2007; R. Krawczyk
2002a,b).

Figure 3.32 – Generating architectural form with 1-D Cellular Automata. Competition entry for
the San Jose State University Museum of Art and Design by Mike Silver Architects. Left: result, Right:
Interface of the Automason 1.0 software developed by Yee Peng Chia and Eric Maslowski used for the
design by Mike Silver Architects. Image credits: Silver 2006.

R. M. Smelik et al. 2014 place agent-based modeling under simulation approaches.
Swarm Intelligence, is used interchangeably with agent-based models by Singh and
Gu 2012 and exhibits properties of self-organization (Macy andWiller 2002; Reynolds
1987). An example is the procedural city modeling by Lechner et al. 2003.

T. Kelly 2013 places physical simulations also under simulation approaches.
Physically-based simulations use spring-based or force-based models to model build-
ing components and their relationships. Their aim is to find a stable layout state
automatically, such as in the work by Arvin and House 2002 (Figure 3.33) and
Michalek and Papalambros 2002.
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Figure 3.33 – Physically-based simulation. Sample results from the physically-based space planning
work by Arvin and House 2002 Image credits: Arvin and House 2002.

Figure 3.34 – Floor plan optimization using the Metropolis algorithm. Metropolis is a Markov
Chain Monte Carlo type of algorithm used in the work of P. Merrell, Schkufza and Koltun 2010. Image
credits: P. Merrell, Schkufza and Koltun 2010.

T. Kelly 2013; Lara-Cabrera, Cotta and Fernandez-Leiva 2013 placeMonte Carlo
methods such as Markov Chain Monte Carlo also under simulations. It was used in
(P. Merrell, Schkufza and Koltun 2010) to solve the floor plan layout (Figure 3.34).

Topology optimization saw a surge of attention and research with the advances
in Additive Manufacturing (Tyflopoulos et al. 2018). As a generative technique, it is
more relevant for mechanical engineering and not that much favored for architectural
design because the same inputs produce the same results, so anyone theoretically
can create forms with it, removing the aspect of individual, unique authorship that
is highly valued among architects (Dapogny et al. 2017). The work of Arata Isozaki
with engineer Matsuro Sasaki on the Florence Train station and Qatar Education
City Convention Center (Figure 3.35) is the most notable example of using topology
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optimization for architectural design (Sasaki, Itō and Isozaki 2007). Topology opti-
mization as an engineering design technique might lack the needed creative space.
Still, when combined with the concept of discrete design or digital materials, it
leaves enough room for interpretation of the purely static model into a composition
of design modules (Rossi and Tessmann 2017a). This makes the topology optimiza-
tion technique suitable to combine with discrete generative design techniques such
as set grammars or wave function collapse.

Figure 3.35 – Topology optimization. Architectural design using topology optimization as generative
design technique in the work of Arata Isozaki with engineer Matsuro Sasaki. Left: Florence Train
station competition entry. Right: Qatar Education City Convention Center. Image credits: Sasaki, Itō
and Isozaki 2007; Dapogny et al. 2017.

Figure 3.36 – Design interpretations of topologically optimized voxel fields. Using the discrete
modeling approach by Rossi and Tessmann 2017a, the same voxel field can have different design
expressions. Image credits: Rossi and Tessmann 2017a.

A.5. Example-driven

Another category of constructive techniques is example-driven algorithms or data-
driven algorithms. Here notable classes of techniques are the model synthesis and
supervised machine learning techniques such as GAN. T. Kelly 2013 calls this cat-
egory combinatory modeling referring to the property of this technique to combine
samples extracted from an example model into new, similar models. However, the
term might be confusing in regards to the term combinatorial design which is a
different technique, or not even a technique but a concept.

Even though Inverse procedural modeling is a set of approaches that use examples
to inform a generative algorithm (T. Kelly 2013; R. M. Smelik et al. 2014), it is not
included in this taxonomy. Inverse procedural modeling typically uses one of the
constructive techniques such as formal grammars and extracts its vocabulary and
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rules out of facade images as in the work by Ripperda and Brenner 2009. Another
example of data-driven approaches as R. M. Smelik et al. 2014 call this approach is
the work by (Müller, Zeng, et al. 2007), also on deriving shape grammar generative
model from facade images. Therefore, I consider inverse procedural modeling not
as a standalone generative technique but as a strategy for informing generative
algorithms.

This taxonomy aims to organize the variety of techniques based on the algo-
rithms used to generate a design. How a given algorithm is implemented or how
the necessary input data is sourced is not of concern. In the taxonomy presented
here, under example-driven will be included only techniques where the data step
is an integral part of the generative algorithm and not merely a configuration or
fine-tuning step.

There are genuinely example-driven or data-driven techniques that rely on ex-
tracting information from single examples such as the work on model synthesis by
P. Merrell 2007 or from datasets such as all supervised machine learning examples
like the Graph Neural Network (GNN) approach used for Graph2Plan (Figure 3.38)
by Hu et al. 2020.

Model synthesis stems from example-based texture synthesis (Wei et al. 2009)
and has been developed by P. Merrell 2007; P. Merrell and Manocha 2008; P. C.
Merrell 2009 (Figure 3.37).

Figure 3.37 – Model Syntesis. From the example model (left), a larger model (right) is automatically
created using model synthesis. Image credits: P. Merrell 2007..

The Wave Function Collapse (WFC) algorithm developed by Gumin 2016 can
also run as an example-based technique when one passes a seed texture to it (Karth
and A. M. Smith 2017). However, this automatic generation of the tiles needed for
the WFC algorithm is another case of inverse procedural modeling, and as such,
WFC is included under Constraint-based approaches.

A.6. Case-based Design

Case-based design, sometimes referred to as case-based reasoning or experts sys-
tems, is another example of generative design techniques (Chakrabarti et al. 2011;
Grobman 2008; Lobos and Donath 2010). Case-based design is “the process of creat-
ing a new design solution by adapting and/or combining previous design solutions”
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Figure 3.38 – Data-driven Generative Machine Learning. The graph neural network presented by
Hu et al. 2020 can generate floor plans based on a building boundary (a-b), as well as allow users to
specify room counts (c), room connectivity (d), and other layout graph edits (e). Image credits: Hu
et al. 2020.

(Watson and Perera 1997). Case-based design is based on the work of case-based rea-
soning pioneered by Kolodner 1992 which in turn is inspired by the work by Schank
on Dynamic Memory Theory (Schank and Abelson 1988) in the 1980s (Chakrabarti
et al. 2011; Heylighen and H. Neuckermans 2003). Case adaptation and case com-
bination are often performed using constraint solving techniques (A.3.) (Faltings
1996; I. Smith, Stalker and Lottaz 1996).

Chakrabarti et al. 2011 include case-based design in the larger group of Analogy-
based design. Analogy-based design differs from example-driven approaches. The
mapping of relations between objects characterizes the former while the latter is
concerned with extracting attributes of objects (Gentner 1983).

Case-based design, and analogy-based design in general, is closest to the inspiration-
based and experience-based approach that architects and designers traditionally use
in their work, combining general and instance knowledge (Chakrabarti et al. 2011;
Cross 1982; Richter 2007). This led to a lot of development of case-based design
tools in the 1990s (Grobman 2008; Heylighen and H. Neuckermans 2003).

The two reviews of case-based design in architecture, by Heylighen and H. Neuck-
ermans 2001 and Richter 2007, state that there is a noticeable shift from aiming to
automate design to aiming at developing assistive systems for architects.

IDIOM (I. Smith, Lottaz and Faltings 1995) on Figure 3.39 is CBD similar to
Homegrown (Green 2020).

Examples of computer implementation of generative case-based design are GPRS
(R. Oxman 1990)(Figure 3.40), CADRE (Dave et al. 1994; Hua, Fairings and I.
Smith 1996) (Figure 3.41) which represents cases as AutoCAD models and uses
Constraint satisfaction techniques to do the case adaptation (Faltings 1996), FA-
BEL (Börner et al. 1996), IDIOM (I. Smith, Lottaz and Faltings 1995; I. Smith,
Stalker and Lottaz 1996) (Figure 3.39 and Figure 3.42), SEED (Flemming 1994,
1999; Flemming and Aygen 2001; Flemming and Chien 1995; Flemming and Wood-
bury 1995), SL CB, which is based on SEED (J.-H. Lee 2002), DYNAMO (H. M. W.
Neuckermans 2007) where users contributed actively and also through their inter-
actions to the help the system get better. Further examples are found in (Afacan
and Demirkan 2011; Carrara, Kalay and Novembri 1994; Kalay and Carrara 1996;
Ketteler and Lenart 1992).

I explored the idea to represent cases as individual rooms instead of complete
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Figure 3.39 – Case-based Design (CBD), IDIOM. IDIOM, short for Interactive Design using In-

telligent Objects and Models, is a CBD system for composing building layouts (I. Smith, Lottaz and
Faltings 1995). Left: The object browser and the main design window of IDIOM. Right: Definition of
neighborhood relationships. Image credits: I. Smith, Lottaz and Faltings 1995.

designs, as seen in IDIOM, in the case study Combinatorial Design using 20.000
BLOCKS (subsection 8.4.4). And also the case-based player mission mode in Sen-
sitive Assembly (chapter 7).

A recent application of case-based design ideas, very similar to those in CADRE,
IDIOM, and FABEL’s SYN module, albeit not explicitly stated by the author, is
Homegrown (Green 2020) for selecting and placing the top matching apartment
layout from a library into a given apartment boundary (Figure 3.43).

Despite all promising qualities of the case-based approach to generative design
and of the good adoption of case-based reasoning in other fields, no convincing
breakthroughs in applying case-based design in architecture have been made since
the 1990s (Grobman 2008; Heylighen and H. Neuckermans 2001).

Probably the biggest obstacle for making case-based design tools work in practice
is building a large enough case base, following the representation and semantic
structure chosen by the developers (Heylighen and H. Neuckermans 2001; Richter
2007). Heylighen and H. Neuckermans 2001 already hint at crowdsourcing case
collection and processing and point out its educational benefits for the tool users
such as architecture students. Chakrabarti et al. 2011 name two further challenges,
automating the retrieval of fitting cases, which has seen promising progress, and
automatic adaptation of a selected case or cases to the current problem where the
high context-specificity of design problems proves challenging.

However, reinforcement learning (RL) might breathe new life in this field, as the
combination of case-based design and RL techniques helps overcome their weaknesses
Lara-Cabrera, Cotta and Fernandez-Leiva 2013. The combination achieves learning
through trial and error (RL) and past experience (Case-based design). As such,
it reduces the dimensionality curse of using RL in complex environments and the
knowledge acquisition problem of CBD (Wender and Watson 2014).

B.1. Search-based approaches

Search-based approaches, also called metaheuristics, are inspired by evolutionary
processes or simulation algorithms e.g., simple stochastic local search, simulated an-
nealing, and particle swarm optimization (Singh and Gu 2012; Togelius, Yannakakis,
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Figure 3.40 – Case-based design, GPRS. A configurator-like, case-based design tool called GPRS (A
Generative Prototype Refinement Shell) developed by R. Oxman 1990. Image credits: R. Oxman 1990.

Figure 3.41 – An example of case adaptation in CADRE. Left, floor plan retrieval and adaptation
(Dave et al. 1994), right adaptation of retrieved 3D model (Hua and Faltings 1993). Image credits:
Dave et al. 1994, Hua and Faltings 1993.

et al. 2011). Figure 3.44 created by (Dréo and Candan 2011) presents an overview
of the techniques in the field.

It is essential to clarify what is meant by search-based approaches here. Namely,
the search over the space of all possible design candidates that could be better or
worse solutions to the problem. In search-based approaches, the generated design
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Figure 3.42 – Case adaptation in IDIOM. In IDIOM cases are individual rooms from architectural
projects selected by architects that user can combine (left two images) and interactively adapt (right
two images) with the help of relevant constraints. Image credits: I. Smith, Stalker and Lottaz 1996.

Figure 3.43 – Contemporary case-based adaptation in practice. Homegrown is an inhouse tool
developed for architectural office Allford Hall Monaghan Morris by Green 2020. It fills apartment
outlines with the closest matching apartment layout from a library. Image credits: Green 2020.

candidates are graded on one or more real numbers, using a function that assigns
fitness (Togelius, Yannakakis, et al. 2010). The function does not simply reject
or accept the candidate design. It grades it with real numbers, which allows for
new design candidates to be generated that have better value than the previously
evaluated ones (Togelius, Yannakakis, et al. 2011).

A different meaning of searching for solving a problem is given by Russell and
Norvig 1995. Russell and Norvig 1995 define ”solving problems by searching” as
having a problem-solving agent that decides on the next action to take to arrive
at a desirable state. This concept of search can be applied to many of the itera-
tive approaches in the Constructive kingdom (A.), such as Constraint Satisfaction,
Grammars, Topology optimization, Reinforcement Learning, or Agent-based meth-
ods, where at each step of the generative process of one candidate design, the algo-
rithm must decide what its following action is. This search for the best next action
does not apply to the group of search-based techniques presented here. Instead, the
meaning of search among possible design candidates is used.

It is important to note that the search-based generative techniques are not gen-
erative on their own, but they aim to automate or assist search that otherwise a
designer will perform. Search-based techniques have a constructive component and
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Figure 3.44 – Search-based approaches. Classification of the differetn metaheuristic techniques
shown as an Euler Diagram by Dréo and Candan 2011. Image credits: Dréo and Candan 2011.

an evaluative component. In the case of evolutionary algorithms, the constructive
component is the procedure for mapping a genome (encoded design) to a phenotype
(design instance to be evaluated). The evaluative component is the fitness function.

Genetic Algorithms are meta-heuristics inspired by the evolutionary processes
and introduced by Holland 1975 (Grobman 2008; Mountstephens and Teo 2020;
Singh and Gu 2012). According to Menges 2012 “evolutionary computation is
understood as a relatively inefficient optimization process, but is beginning to be
recognized as being very effective in deriving unconsidered or hitherto unknown
possibilities while maintaining an overall performance level”. Under evolutionary
algorithms, I have included genetic algorithms, genetic programming, evolutionary
programming, evolutionary strategies, and others (Figure 3.45). Even though there
is a distinction among them (Yu and Gen 2010), in the sampled works, some authors
have misqualified the particular technique they are using (Calixto and Celani 2015).

Note on Artificial Intelligence

Artificial intelligence is a very broad term - it includes evolutionary algorithms (Yu
and Gen 2010), Reinforcement learning (Akizuki et al. 2020), GAN (Z. Wang, She
and T. E. Ward 2019), GNN (Hu et al. 2020). As each of these techniques has
a different approach to the actual genesis of the designs, it creates they would be
categorized under different categories. Evolutionary algorithms are included under
search-based approaches, data-driven techniques such as GAN and GNN under the
example-based algorithms, and Reinforcement learning under case-based reasoning
(Lara-Cabrera, Cotta and Fernandez-Leiva 2013). However, the general terms ar-
tificial intelligence, deep learning, and so on are included in the search phrases for
sourcing work examples since many authors use those in the titles instead of the
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Figure 3.45 – Types of evolutionary algorithms. As presented in the book Introduction to Evolu-

tionary Algorithms by Yu and Gen 2010. Image credits: Yu and Gen 2010.

specific technique they are employing.

Omitted techniques

Expert Systems, Rule-based reasoning and model-based reasoning Case-
based reasoning and by extension, case-based design is a technique used in Expert
systems together with rule-based reasoning and model-based reasoning (Chowdhary
2020, p.90). However, I have not included rule-based and model-based reasoning in
the taxonomy. Rule-based reasoning is not included as it overlaps with techniques
in A.1. Computational Geometry, A.2. Grammar-based, A.3. Constraint-based
and A.4. Simulation approaches. An example of model-based reasoning are design
patterns (Bhatta and Goel 2002; Goel and Bhatta 2004; Goel and Craw 2005)
and Christopher Alexander’s pattern language (Alexander, Ishikawa and Silverstein
1977). Case-based reasoning relies on a case base which contains complete solutions
and retrieves the most suitable one and modifies it (Heylighen and H. Neuckermans
2003). On the other hand, a catalog of patterns is a collection of partial, non-specific,
but generalized solutions that need to be retrieved and integrated (Heylighen 2000).
In their review, G. Kelly and McCabe 2006 refer to the model-based approach as
template-based generation and give the work on road networks generation by Sun
et al. 2002 as an example. However, I have not identified computer implementations
of model-based reasoning for the generation of buildings.

Besides case-based design, Knowledge-based expert systems that use functional
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modeling, ontology modeling, and rule-based modeling of procedural knowledge are
not included. They are well-represented in task planning, controlling, diagnosis, as
well as the more closely related field of mechanical engineering (Shang 2005). Nev-
ertheless, I couldn’t find relevant examples in the design of buildings. However, ad-
vances in digital fabrication, mass-customization, and industrial construction seem
to create new opportunities for revisiting those techniques for architectural design
(X. Yin et al. 2019).

Function-based Synthesis is a large field of research in mechanical engineering
and product design (Chakrabarti et al. 2011) with some key works by Umeda et al.
1996, Stone and Wood 1999, and Bohm, Vucovich and Stone 2008. However, after
a thorough keyword and backward, forward citations search, no works have been
identified that are relevant for modeling architectural artifacts.

3.2.6 Observations

Key observations:

• The distinct steps that every generative technique has are: setup, initialize,
run, post-process, learn.

• Set grammars, split grammars, Wave Function Collapse, Model Synthesis, as
well as Case-based design through their suitability to generate building design
and their ability to explicitly encode design intent are most suited for assistive
design systems (Table 3.5).

• Combination between a constructive and a generate-and-test technique (ge-
netic algorithm) are often seen. Combinations between two or more construc-
tive techniques rarely occur but show great potential.

• Several combinations of techniques that are not yet explored in architecture
but with great potential based on their geometric properties and strength and
weaknesses. WFC plus split grammars. WFC plus MC - applied in games but
not yet in architecture.

Steps in a generative technique

I propose to structure the use of generative design into the following distinct steps:

1. the development or setup step - the work and data needed to prepare the
algorithm for generating designs. In some techniques, this step consists of two
sub-steps. For example, data collection and training in the case of example-
driven generative techniques.

2. defining the initial conditions for the generative procedure - the work and data
needed to condition the algorithm for a run

3. the generative procedure or run step - some techniques have two sub-steps
here, for example, reproduction and selection in genetic algorithms.

4. the post-processing step - any work or data needed to transform the output
of the generative algorithm for further use.
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5. learn and improve - the step to analyze the outcome and figure out strategies
to improve the previous steps.

Different techniques focus on these steps differently. For example, the work by
Parish and Müller 2001 on procedurally generated cities has a significant emphasis on
the development step to define the L-System rules as well as in the initial condition
defining step, where the user needs to paint maps of density and terrain features.
Another example is the machine learning techniques used by Hu et al. 2020 which
require a significant amount of well-curated data in the development step. Yet, a
reasonably little information as to the initial condition to run.

The post-processing and the learn-and-improve step are not considered in the
subsequent techniques analysis. They are not truly part of the technique but are part
of its practical application. The post-process step contains manual tasks performed
mainly by the experts to make the outcome usable in their design process. For
example, 3D modeling if the outcome is a 2D layout. These tasks vary from expert
to expert and highly depend on the individual workflow and experience. In the
learning step, if present, the developer, with input from all other roles, evaluates
the outcome and learns how to improve the previous steps of the technique.

Techniques most suited for generating buildings

Table 3.5 summarizes the observations for each class of generative techniques in
regards to their suitability to generate buildings and encode design intent.

Suitability for generating building designs Techniques that are most suit-
able to generate building designs are Parametric modeling, Generative modeling
languages, Shape grammars, Wave Function Collapse, Model Synthesis, Case-based
Design, and Evolutionary Algorithms. As mentioned above, the suitability of Evo-
lutionary algorithms to generate buildings depends on the choice of Constructive
technique used in the genotype to phenotype mapping. Generative Machine Learn-
ing, while suited well for encoding design knowledge through the datasets that drive
it, produce fuzzy or high-level results and, as such, are not suited, simply on their
own, for the precision required from models of building designs.

Suitability for encoding design knowledge Techniques that are most able to
encode and reuse design knowledge and intent are Shape Grammars, Wave Function
Collapse, Model Synthesis, Generative Machine Learning, Case-based Design, and
Evolutionary Algorithms. In general, these are techniques that operate with one or
another form of database of designs. In contrast, most purely algorithmic techniques
do not easily lend themselves to encoding design knowledge. While able to generate
building designs with high precision and control, applying Parametric modeling and
Generative modeling languages often relies on an expert. This makes them less
suited for making design expertise available to others by explicitly encoding it in
the generative technique.

Vocabulary-, example- and data-based techniques most suitable for assis-
tive design tools Most suited for assistive design systems are the grammar-based
techniques operating on integral sets of shapes, i.e., vocabulary, such as set gram-
mars or split grammars, the methods using tile-sets such as Wave Function Collapse,
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Model Synthesis, as well as the techniques using templates such as case-based de-
sign. These techniques, as shown above, are suitable for the generation of building
designs. In addition, they can encode design intent explicitly.

Table 3.5 – Generative techniques rated on their suitability to generate buildings and encode
design intent. *-low to none; **-medium; ***-highly suitable. Image credits: the author.

# category suited for
buildings

can encode
expertise

A.1. computational geometry

A.1.1. fractals * *
A.1.2. subdivision algorithms ** *
A.1.3. parametric modelling *** **
A.1.4. generative modeling languages *** *
A.1.5. Marching Cubes ** **

A.2. grammar-based

A.2.1. symbolic grammars ** **
A.2.2. shape grammars *** ***

A.3. constraint-based modeling

A.3.1. Wave Function collapse *** ***

A.4. simulation approaches

A.4.1. cellular automata ** **
A.4.2. agent-based * **
A.4.3. physically-based models ** **
A.4.4. Monte Carlo methods * *
A.4.5. topology optimization ** *

A.5. example-driven algorithms

A.5.1. model synthesis *** ***
A.5.2. generative machine learning ** ***

A.6. analogy-based design

A.6.1. case-based design *** ***

A.7. reinforcement learning * **

B.1. search-based

B.1.1. evolutionary algorithms *** ***
B.1.2. simulated annealing * **
B.1.3. particle swarm optimization * **

Technique combinations (Families)

Pipelines vs. single technique The application of generative design in Com-
puter Science and for procedurally generated content for games papers tend to use
approaches where several techniques are chained in a pipeline to produce the fi-
nal result. The most frequent combinations are between a genetic algorithm and a
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constructive system, as in the work by (Jackson 2002) on evolving designs gener-
ated with an L-Systems. Another example is the work by Mahlmann, Togelius and
Yannakakis 2012 who used Genetic Algorithms to produce low-resolution versions
of maps that get post-processed using Cellular Automata. Another example is the
work by P. Merrell, Schkufza and Koltun 2010 who use a Bayesian Network to gen-
erate a building program, a Monte Carlo method (the Metropolis algorithm) to fit a
floor plan to the program, and computational geometry techniques to generate the
3D models of the houses. On the other hand, the application of generative design in
the field of architecture tends to focus only on one generative technique (Singh and
Gu 2012). Singh and Gu 2012 note that this biases the design in a constrained di-
rection. One possible explanation of this is the purpose of the developed technique.
In computer science, the aim is usually full automation of the time-consuming and
costly process of content creation (R. M. Smelik et al. 2014; Togelius, Yannakakis,
et al. 2011). In contrast, in architecture, the objective is assistive, inspiration-
inducing assistance in one step of the design process (Richter 2007; Singh and Gu
2012). Another related explanation is the object-oriented (result-oriented) thinking
of architects compared to the process-oriented thinking of computer scientists.

Combinations of techniques afford interactivity The layering of techniques
into generative pipelines has the potential to allow interaction. For example, Speller,
Whitney and Crawley 2007 state that “the combination of [Shape Grammars] for
managing the input and [Cellular Automata] for managing the output brings to-
gether the human intuitive approach (visualisation of the abstract) with a computa-
tional system that can generate large design solution spaces in a tractable manner.”

Combinations of techniques with unexplored potential While already used
in the game industry as shown by Wender and Watson 2014 the potential of com-
bining case-based reasoning with reinforcement learning for generative design has
not been explored in architecture yet. Another potential is identified in combin-
ing split grammars (Wonka et al. 2003) with Wave Function Collapse (Karth and
A. M. Smith 2017) as the rule selection mechanism. Further potential is identified
in the combination of tree-based subdivision algorithms in combination with tiling
techniques such as marching cubes (Savov, Winkler and Tessmann 2020) and Wave
Function Collapse, as the combination can resolve the homogeneity of the square
grid in WFC while enriching the otherwise too schematic layout resulting from Slice
tree structure (Kado 1995) or k-d trees (Knecht and Koenig 2010) techniques.

Variety of necessary human engagement

The challenge in generative design techniques is considering social and political
aspects (Heylighen and H. Neuckermans 2001). Even in the cases when that was
the aim of the authors, the inability to represent them as dimensional requirements
proves how challenging it is to reduce architectural design to quantitative constraints
(Heylighen and H. Neuckermans 2001).

The need to generate content for content-generation techniques Genera-
tive techniques in architecture or games are created usually for a specific application
or following a particular idea. The space of possible designs that such a specifically
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developed method produces is narrow if no post-processing step for interpreting the
outcomes occurs. This problem of sameness or boredom is exhibited by heavily
procedurally generated games such as No Man Sky, where all worlds feel the same
to players even if they look different. The gameplay suffers from this repetitiveness
(Kollar 2016). The need for higher diversity in the generated designs prompts for
larger vocabularies, larger rule sets, more samples — in general — more content for
the generative algorithm. For example, Wonka et al. 2003 state that 200 rules in
their initial version of Instant Architecture is not enough and that about 3000 rules
need to be created, requiring six months of architectural work, for the system to cre-
ate believable cities. This need for content generation is one potential application
of crowdsourcing explored in this work. Very promising generative techniques are
those using datasets, such as generative machine learning. However, unlike in com-
puter science, where popular datasets, like the MNIST, are being used by various
researchers, such datasets do not exist in architecture. Most likely due to the high
diversity of designs but also other reasons. Human input can be used to collect and
process the data required to build such datasets, where crowdsourcing and citizen
science have already proven to show results in other fields.

The need for human-driven guidance and content evaluation for genera-
tive techniques Another example of the sameness problem above is the famous
toothbrush generating system by architect Greg Lynn who asked the question “How
do you know when to stop generating new designs, since all toothbrushes look the
same after a while?”. Instead of generating more content for the algorithm, the ques-
tion points to an alternative solution, providing a reasonable evaluation of when a
design is fit for the problem at hand. As architecture deals with wicked, i.e., ill-
defined problems, a weakness of all generative techniques is taking into account
the social and political aspects of design since they cannot be reduced to dimen-
sional constraints or explicit rules. That necessitates the engagement of not only
the tool-maker and the architect but also of other stakeholders.

3.3 Human-in-the-loop Potential

The primary purpose of this review of generative design in architecture is to identify
the techniques that can be made interactive and be used to develop co-creation
environments where human actors and algorithms co-create designs.

Assessing the performance of a generative algorithm in terms of how good are
the designs it creates is hindered from the very nature of design, namely that it is
difficult to assess the quality of a design (Johnson 2016; Lange 2016; Mountstephens
and Teo 2020; Rittel and Webber 1973). This makes the human input a necessity
and the existence of multiple, equally acceptable design options (Mountstephens
and Teo 2020; Rittel and Webber 1973). ”Humans are required to evaluate multiple
options, even if they did not create them manually” (Mountstephens and Teo 2020;
Schulz et al. 2018).

In the past, present, and for the foreseeable future, Generative Design involves
humans, and the design work is shared between man and machine (Johnson 2016;
Lubart 2005; Mountstephens and Teo 2020).

The research conducted by Nicholas Negroponte and his department at MIT, The
Architecture Machine Group, is an early example of using models for communication
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between an architect and a computer (Negroponte 1970).
In this section, I explore the potential for a human actor to influence the design

outcome of a generative technique by applying decisions based on their system of
values. The property of various value systems to be non-quantifiable, not measur-
able, not comparable, and quite diverse across the stakeholders of a project is one
of the reasons why we speak of wicked problems in architecture (Lange 2016; Rittel
and Webber 1973). Trade-offs are a vital concept (Mountstephens and Teo 2020;
Schulz et al. 2018) and decisions when and what to trade off can be made following
a system of values.

Gero 1990 formulates the qualities of three types of designs (Figure 3.46): rou-
tine, innovative, and creative. Let us consider the state space of possible designs
as defined by the encoded knowledge of a given generative design system. What
is the chance we can leave that space and enter the creative one through human
engagement? What is the result of human interaction? Does it lead to the pro-
duction of routine design, the generation of innovative designs, or the creation of
creative(out-of-the-box) designs?

Figure 3.46 – The Space of possible designs. Routine Designs (left), Innovative Designs (middle)
and Creative Designs (right). Image credits: Gero 1990.

The potential for human-in-the-loop of each division of techniques depends mainly
on two things. The first one is the types of input needed to produce an outcome at
each step. And second, how easy or tedious it is for the different roles in a project
to provide this input. As defined in section 1.3.3, the four roles are: tool-makers,
expert stakeholders, non-expert stakeholders, and the crowd. A key involvement of
the expert roles is required in the setup and the run steps, and a key area of in-
volvement of the role of non-expert stakeholder is considered to be the init and run
steps.

Lubart 2005 presents a framework to think of human-computer collaboration:
Computer as a nanny, computer as a pen-pal, computer as a coach, and computer as
a colleague. According to Lubart 2005, the computer as a nanny uses the computer
to manage, i.e., shepherd the users, the computer as pen-pal is a communication
platform, computer as a coach is an expert system, and computer as a colleague is
a true collaboration. Based on this spectrum, I consider a generative technique to
have great potential for human-in-the-loop integration when we can use it as a coach
or a colleague. No user involvement or using the technique as a nanny or a pen-pal
will give a generative technique low potential for human-in-the-loop integration.

As illustrated on Table 3.6, I argue that:

1. Discretized inputs, as found in Marching Cubes, Split Grammars, Set Gram-
mars, or Wave Function Collapse, are more user-friendly for non-experts.

2. Constructive approaches offer a greater potential for taking diverse value sys-
tems of human actors than generate-and-test approaches.
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3. Out of the constructive approaches the grammar-based and constraint-based
ones offer the greater potential for engaging non-experts,

4. Case-based design is very suitable for engaging experts.

5. Computational geometry and simulation approaches tend to be driven mostly
by their developers and offer the least potential for being guided by experts
or non-experts.

Table 3.6 – Potential for human-in-the-loop. Image credits: the author.

3.3.1 Types of input representations

What input is required for a generative design technique to produce an output? And
how does input to the algorithm relate to its output?

The type of representation of the content operated on by an algorithm is an
essential means to distinguish between different techniques (Togelius, Yannakakis,
et al. 2011). According to Togelius, Yannakakis, et al. 2011 there are five types of
genotype to phenotype mapping on a spectrum from direct to very indirect. Since
genotype is, in essence, the representation needed by a constructive technique to
produce a design, the five types can be generalized for the various types of input
required by any technique to produce a design. Therefore, I have used the scale
of five representation types from Togelius, Yannakakis, et al. 2011, but gave them
more precise names and given examples as listed below:

1. cell states list – the most direct type of representation. The design space is
represented as a regular or irregular grid. Each cell in the grid must be assigned
a state (wall, free space, door, room type, facade element) for the technique to
produce a design. Examples here are the Marching cubes algorithm. A good
interactive example is the game Block’hood (Figure 3.49) (Sanchez 2015). A
tile-filling or grid-filling heuristic such as the Wave Function Collapse can be
employed to reduce the amount of information the user needs to provide. In
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my work, presented here, Sensitive Assembly (chapter 7) is a fitting example,
where players define the cell states of wall components by physically removing
blocks from the wall. This type of representation lends itself also very well for
the creation of physical user interfaces, as in the work by D. Anderson et al.
2000 using physical lego-like blocks with sensors to create building designs
(Figure 3.47).

2. object list – more indirectly. The design space can be continuous or discrete.
The algorithm needs a list of the positions, orientations, and dimensions of
walls or rooms to produce a design. The work by Arvin and House 1999
(Figure 3.33) is an example.

3. rules list – even more indirectly. The design space can be continuous or
discrete. The algorithm needs a catalog of different reusable patterns of walls
and free space and a list of rules guiding how they are to be arranged across the
design space. Shape grammars are here, for example, the Palladian Grammar
in Stiny and Mitchell 1978. Split shape grammar could also be considered in
this category.

4. requirements list – very indirectly, based on high-level requirements. The
algorithm needs a list of desirable properties (number of rooms, doors, area)
to generate a design. An example of this is the work by P. Merrell, Schkufza
and Koltun 2010 or case-based design precedents such as CADRE.

5. a number – most indirectly. All the algorithm needs to produce a design is
a random number seed. The Perlin noise algorithm is an example.

Figure 3.47 – Cell-based user input. This type of input representation is suitable not only for digital
input but also for using physical components for the user to interact with. The physical components
of a modeling system (a)-(c), their digital representation(d) as well as the generatively interpreted
representation(e). Image credits: D. Anderson et al. 2000.

The more direct the mapping between input and design is, the more predictable
it is for users how their actions influence the final result. As such, those kinds
of representations are very suitable for non-experts. However, more information is
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required in more direct mapping, i.e., the complete grid must be filled with cell
states. If a heuristic is not employed, but the human actor must assign cell states
manually to each cell, creating and editing a design can be tedious.

On the other hand, the more indirect or abstract the mapping between input and
design outcome is, the less predictable it is for the users how their actions influence
the design. However, an advantage is that the required information is compressed
down to a list of requirements and sometimes can be as little as a single seed number.

(R. Smelik et al. 2010) present a concept and a framework called declarative
modeling that integrates direct editing (2.) with procedurally generated content
based on meta specification (4.) (Figure 3.48).

Figure 3.48 – Requirements and objects lists input. A combination between the more abstract
requirements list input whichR. Smelik et al. 2010 call declarative modeling and the more direct object
list input. Image credits: R. Smelik et al. 2010.

Figure 3.49 – Block’hood by Jose Sanchez. Left: screenshot of the game, Right: an example of
the urban ecology concept around which the game is built. Image credits: Plethora-project.

The review by R. M. Smelik et al. 2014 focuses on interactive and intuitive
control. They list the following approaches: Sketch-based techniques, Visual editors,
Inverse Procedural Modeling. Furthermore, R. M. Smelik et al. 2014 state that “user
control issue is the reversibility of operations. Designers very often tend to (ab)use
do-undo combinations, in order to assess the net effect of a particular operation: if it
does not yield the desired result, they just backtrack. However, many PM methods
are not always reversible, and it is therefore not always possible to exactly restore
the previous model situation””(R. M. Smelik et al. 2014).
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3.3.2 Constructive vs. Generate-and-test

A Constructive generative technique aims to create a design once while ensuring
the result is an appropriate option (Togelius, Yannakakis, et al. 2010). Constructive
approaches can be as simple as taking a few points as input and producing a space
tessellation (Voronoi) or as elaborate as encoding design expertise within a grammar
or a neural network and using heuristics to arrive at a design.

In a constructive approach, human input can act either as the information source
or as the heuristic (Harding 2014, p.20). In a generate-and-test approach, on the
other hand, human input primarily aims to enhance the meta-heuristic (Harding
2014, p.36). In a constructive approach, at each step of the construction process,
the user potentially can interact and ”guide” the construction process to the next
step. This makes it more predictable what user actions lead to what results and
intuitively master the tool by using it.

Generate-and-test approaches generally offer a low possibility for user interven-
tion once fitness functions, genotypes, and termination conditions are defined (Singh
and Gu 2012). Generate-and-test techniques generate tens, hundreds, and thousands
of options and learn from their fitness values how to create better options in the next
iteration. This large number of designs that must be created makes it infeasible to
engage human actors in the generate sub-step for two reasons. First, the number
of designs generated within a population is prohibitively large, and the process will
be too time-consuming — better to have that automated. And second, the ability
of the algorithm to learn to generate better options in the next iteration is ren-
dered pointless from the fact that this learning must be passed on as instructions
or feedback to the human actors who would then be expected to follow it. This
also makes the human input pointless as it is prescribed, i.e., technically predictable
and automate-able. The ability of the generate-and-test algorithm to learn requires
the systematic exploration of diverse options and the automated application of the
learning in the next iteration.

So it remains only feasible to engage human actors in the test sub-step of a
generate-and-test approach. In the case of evolutionary algorithms, this approach
goes under the terms Interactive Evolutionary Computation (IEC) and, the more
popular, Interactive Genetic Algorithm (IGA) (Figure 3.51) (Brintrup, Ramsden
and Tiwari 2007). Both have been applied in fashion design (H. S. Kim and Cho
2000), the generation and texturing of 3D game environments (Yoon and K.-J. Kim
2012) and the generation of floor plans (Banerjee, Quiroz and Louis 2008; Brintrup,
Ramsden and Tiwari 2007; Quiroz et al. 2009). (Liapis, Yannakakis and Togelius
2012) present three types of evaluation (one automatic and two involving the user)
on Figure 3.50. The ones involving the user are interesting here. In the first one, the
user selection is direct, while in the second, the user selection influences the fitness
function. However, engaging humans in a generate-and-test technique by making
the test step interactive comes with the four main negatives.

1. the inability of human actors to evaluate a large number of designs due to
cognitive or physical exhaustion (Brintrup, Ramsden and Tiwari 2007).

2. the challenge to ensure proper learn-by-comparison for the meta-heuristic al-
gorithm if users rate on a binary scale (keep/reject) instead of a continuous
scale (Togelius, Yannakakis, et al. 2011).
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Figure 3.50 – Types of design evaluation. One automated and two involving the user - direct and
indirect. Image credits: Liapis, Yannakakis and Togelius 2012.

3. the inconsistency with which humans rate on a continuous scale. This is
due to fatigue; the influence from any quantitative rating presented to them;
the influence from any better or worse designs they have seen until now, not
remembering all previous design; the difficulty for a human to perceive minor
qualitative changes between designs as differences and assign a rating; or the
change in the implicit rating scale the user uses to rate as they are exposed to
more information during the rating process (Brintrup, Ramsden and Tiwari
2007).

4. if the user makes a new input, the result changes entirely, making it difficult
to intuitively ”learn” to use the tool from simply using it.

As one possible solution to fatigue, Brintrup, Ramsden and Tiwari 2007 propose
active intervention. This allows the user to modify a design to a far better qual-
itative state and reinsert it to speed up the convergence to a solution. Modifying
a design to make it better practically means the user can guide the process’s gen-
erate step with its corresponding constructive technique for genome-to-phenotype
mapping. Therefore the active intervention solution to human fatigue speaks in
favor of focusing on engaging human actors in constructive techniques instead of
the generate-and-test techniques.

In conclusion, constructive approaches are better suited for taking qualitative
human input into account through interaction than generate-and-test approaches.
In constructive techniques, the human actors can genuinely influence the outcome
with decisions based on their value systems. In contrast, the tool-maker already has
set up the evaluation system in a generate-and-test approach. Hence, it is a given
and, in a way, constraining.

Looking at the individual steps of a generative technique as defined in sec-
tion 3.2.6, generate-and-test techniques offer the following tasks for potential human
actors (Table 3.7). In the Setup step, the constructive technique for the genome-to-
phenotype mapping and the fitness functions must be chosen. These are so specific
that it is primarily the tool-maker who can perform them. In the initializing step,
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Figure 3.51 – Subjective and objective evaluation in Interactive Genetic Algorithms (IGA). Im-
age credits: Quiroz et al. 2009.

the initializing tasks of the particular constructive technique chosen for the gener-
ating step must be completed, potentially making the tasks here open for all four
roles (see the constructive techniques analysis below). In the run step, reproduction
is automated, but testing can be made interactive to all four roles, albeit not truly
suitable, as shown above.

Table 3.7 – Human-in-the-loop potential of Evolutionary Algorithms. Image credits: the author.
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3.3.3 Techniques with great potential for engaging non-experts

A.2. Grammar-based

In grammar-based generative techniques the tasks in each step are as follows (Fig-
ure 3.52).

1. In the setup step, an interpreter must be implemented, and the grammar
(vocabulary plus rules) needs to be defined. For symbolic grammars, also a
mapping between the grammar and the geometrical representations needs to
be created (usually a computational geometry technique) (Gips 1999; Stiny
1980b; Togelius, Shaker and Dormans 2016).

2. In the initial state step, the starting seed for the grammar needs to be defined
as well as any context that will influence the grammar derivation (Parish and
Müller 2001; Stiny 1980b)

3. in the run step, the grammar derivation or production takes place (Wonka et
al. 2003). Chase 2002 divides the derivation step into three sub-steps: select
a rule, select a part of the model to modify, determine the matching condition
to apply the rule (Figure 3.53).

Figure 3.52 – Tasks for the user in grammar-based techniques. Image credits: Chase 2002.

The user’s ability to influence the outcome of a shape grammar derivation is in
three levels: modify the grammar directly, alter the starting/initial shape, influence
the choice of the rule to be used in the next step either by attribute modification of
the vocabulary present in the current state or through direct rule selection (Wonka
et al. 2003). On Table 3.8 summarizes which of the roles could be engaged in which
steps of a grammar-based generative modeling technique.

On Figure 3.53, Chase 2002 presents the possible scenarios for using a shape
grammar interactively with two roles in mind, the developer and the designer. Sce-
narios 1, 2, and 3 are explored in the case studies presented in this dissertation,
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Table 3.8 – Human-in-the-loop potential of Grammar-based techniques. Image credits: the
author.

Figure 3.53 – Scenarios for user engagment in grammar-based generative techniques. The
different users (designer, developer, computer) can have various degrees of control over the four steps
in the development and application of a grammar. Image credits: Chase 2002.

where the distinction between 3 types of designer roles are made (expert stakehold-
ers, non-expert stakeholders, and the crowd).

Shape grammars offer benefits for the engagement of non-expert users. Gu and
Behbahani 2018 state that because “the design knowledge can be embedded into the
grammar, users of the grammar do not need to have disciplinary expertise in order
to generate a design.”

However, specifying shape grammars and deriving designs from them is not easily
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accessible to non-experts and experts alike. Chakrabarti et al. 2011 explain that “a
main roadblock to achieving wider impact, especially in conceptual design, has been
to support designers in the iterative development of a grammar, without having to
program it directly [...].”

Node-based editing, aka visual scripting, (Figure 3.54) makes rule specification
and rule selection easier by minimizing the need to define grammars in text form
(Patow 2012; Silva et al. 2013). However, it still requires specialized 3D modeling
software and computational design skills.

Figure 3.54 – Node-based shape grammar rules specification. Both examples are for the specifi-
cation of a facade grammar. Left: from Silva et al. 2013, right Patow 2012. Image credits: Silva et al.
2013; Patow 2012.

Figure 3.55 – Visual, drag-and-drop grammar rule editing. Image credits: Lipp, Wonka and Wim-
mer 2008.

Lipp, Wonka and Wimmer 2008 present a method for editing of the rule node in
a shape hierarchy with direct manipulation and drag-and-drop over the generated
3D model (Figure 3.55).

(Beneš et al. 2011) present a method that uses Open L-Systems and user-defined
wireframe guides to generate various types of objects (Figure 3.56). Each guide
hosts a defined procedural model and is linked to the other guides to ensure topo-
logical continuity of the outcome. However, designing the guides themselves, which
determines the design outcome, is still done entirely by the designer. The method
can be seen as a method to automate the adding of details to a schematic design
and offer little direct control over the workings of the procedural models running in
the individual guides, which is shown by the patchwork character and the rigidity
of the street layouts that the authors have generated (Figure 3.56 right).
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Figure 3.56 – Guided procedural generation using Open L-systems. a) A tree and its shape guides
(lower row) are generated, b) the guides are interactively edited, and c) some guides are erased and
edited individually. Image credits: Beneš et al. 2011.

Tching, Reis and Paio Jun-2016 tested five shape grammar interpreters and
concluded that their interfaces are unfamiliar, outdated, chaotic, and unintuitive.

Besides the explicitness of grammars, making any design knowledge encoded in
them accessible to any user, another significant benefit is the shift from focusing on
individual designs to languages of designs, making it possible to explore a design
problem (Stiny 1980a).

A.3. Constraint-based

Constraint Satisfaction is the assignment of a finite set of variables so that a finite set
of constraints are satisfied (Donath and Böhme 2008). In architectural design and
computer graphics, this often translates to arranging modules in space in relation to
one another such that any constraints on module adjacency and the composition’s
overall properties (volume, height, etc.) are satisfied (Donath and Böhme 2008;
Karth and A. M. Smith 2017).

The tasks in the individual steps in a constraint-based generative technique are:

1. Setup - the developer, maybe also the expert stakeholder, define the represen-
tation of the design problem as a set of variables, their states, and the possible
constraints

2. initiate - the constraints need to be defined. For example, in (Donath and
Böhme 2008) a constraint for a building’s setback is defined.

3. run - the variables must be set, i.e., in the case of wave function collapse, all
grid cells must be assigned a tile type (Karth and A. M. Smith 2017). Or, if
the variables are the rooms of a building represented as rectangles or boxes, a
composition must be created.

As shown on Table 3.9, given a suitable, intuitive, and assistive interface, the
init and run steps could be performed by all four roles. In contrast, the setup step is
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rather specific and expected to be carried out by the tool-maker, with the expert’s
involvement at most.

Three approaches can be observed in the stat-of-the-art. First, the user defines
a set of constraints, and then, again the user attempts to create such a variable
assignment to satisfy the constraints. That is seen in the work of (Donath and
Böhme 2008; Koile 1997). Second, the set of constraints is given by the user, but an
algorithm tries to create a composition of variable assignments that satisfy them.
And third, the set of constraints and all possible variable states are predefined in
the setup phase as a catalog by the tool-maker or the expert. The user simply
partially or completely instantiates a variable assignment. The third option is most
user-friendly for engaging non-experts and the crowd and has been explored in the
case study Project Reptiles . The second option has been explored in the game
Rechteck2BIM .

Table 3.9 – Human-in-the-loop potential of Constraint-based techniques. Image credits: the
author.

3.3.4 Techniques with great potential for engaging experts

A.6. Case-based Design

The potential tasks for human actors in the steps of a case-based generative tech-
nique are:

1. setup – first, pre-setup, a knowledge representation must be defined, which the
tool-maker must do. Then the case base must be filled with cases (buildings or
building elements) described and represented as per the chosen representation
format.

2. init step – the design problem at hand needs to be described in terms of the
tags, keywords, and other representation forms so that a search can be done.

3. run – in the pre-run, the retrieval is performed. This can be done automatically
by matching the initial step’s requirements or manually selecting a design or
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a mix of the two. And in the actual run step, the chosen one or more cases
are merged and adapted to the context and other specifics of the problem at
hand (R. E. Oxman 1992).

As shown on Table 3.10, due to most case-based systems aiming at being assistive
tools for experts and the highly specific methods for representing, retrieving, and
adapting cases, only domain experts can potentially be users (Figure 3.57). At the
most, the non-expert stakeholder could be brought in the problem specifying init
step.

Figure 3.57 – User interaction in Case-based design. Image credits: Gero 1990.
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Table 3.10 – Human-in-the-loop potential of Case-based Design techniques. Image credits: the
author.

3.3.5 Techniques with low potential for human-in-the-loop

Generative techniques with a lower potential for engaging human actors are also
better at running autonomously. Due to this, they are not able to accommodate
the human input needed to address the wicked part of an architectural problem, so
they will not be considered on their own in this work but only in combination with
the techniques from subsection 3.3.3.

A.1. Computational Geometry

The division Computational Geometry consists primarily of well-known algorithms
(Voronoi tessellation, Half-Plane Intersection, Kd-Trees) (de Berg et al. 1997) and
techniques that employ a set of programmatic instruction written as a general pro-
gramming language or as data-flow programming (visual scripting, parametric de-
sign). This means that the potential tasks for human actors in the individual steps
of a computational geometry generative technique, shown on Table 3.11, are:

1. setup – the implementation of a chosen algorithm. This requires particular
domain knowledge and coding skills, so it is usually performed by the tool-
maker and, in some cases, by an expert stakeholder.

2. init – setting up the parameters needed for the algorithm to produce the
geometry. The fact that the input is often minimal and simple, e.g., a set of
points in the case of Voronoi tessellation, makes it suitable to engage all four
roles

3. run – is more or less autonomous execution of the script, so there is little
opportunity for involving a human actor.

Zboinska 2015 is an example of interactive generative modeling using computa-
tional geometry techniques.
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Computational Geometry techniques offer control over the design outcome as
the algorithms are often non-heuristic. Therefore, human input cannot be employed
as a heuristic.

Computational Geometry techniques have been used in the case studies here only
as a complementary step to automate a task. For example, in the automatic wall,
window, and roof generating in the case of Rechteck2BIM . Or the use of Marching
Cubes in Project Reptiles .

Table 3.11 – Human-in-the-loop potential of Computational Geometry. Image credits: the
author.

A.4. Simulation Approaches

The primary mode of interaction in simulation approaches is for the user to introduce
disturbances in the simulated environment. The simulation integrates them in its
further growth and iterates itself into a new equilibrium state. An example is the
shifting between manual and automated operations in the cellular automata model of
Herr and Kvan 2007, used for the design of towers(Figure 3.58). Similarly, Vanegas
et al. 2009 present a method for interactive design of cities using behavioral modeling
through agents to generate the city layout and computational geometry approach
to generate the buildings (Figure 3.59).

According to Singh and Gu 2012 Cellular Automata is a purely bottom-up gen-
erative modeling technique, and it offers low user intervention once cell dimensions,
state rules, and initial states are defined. This applies in general to all other simu-
lation approaches, such as agent-based and physically-based ones.

The simulation-based approaches are the ones very often used in city-building
computer games such as SimCity and City Skylines where the user introduces new
conditions in the environment and the city simulation iterates over them to give
the player feedback on parameters such as urban density, economic prosperity or
population happiness.

As shown on Table 3.12, in simulation-based generative design techniques, the
tasks in the setup step are implementation of the simulation mechanisms and envi-
ronment representations, in the init step is the introduction of starting condition in
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Figure 3.58 – To guide the design outcome the user changes the environment condiditons in
simulation generative techniques. Bottom: a diagram illustrating the shifting of manual introduction
of new environment conditions by the user and the model’s reaction to it. Top: the resulting towers
produced from the cellular automata. Image credits: Herr and Kvan 2007.

the simulated environment. In the run step, this is the iterative introduction of new
conditions in the environment to guide the autonomous simulation mechanisms.

The problem is that all rules for the simulation are already encoded in the simu-
lation engine. Even if user interactions are allowed, they are within the mechanisms
and evaluations built in the system. And since the development of a simulation re-
quires highly specialized knowledge, it is often impossible for experts to participate
in the setup step.
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Figure 3.59 – Visually introduced disturbance in the environemnt. A designer can paint a new
highway (visible in the false color map in (b)) and let the simulation transform the city from a dense
downtown type (a) to a more widespread one (b). Image credits: Vanegas et al. 2009.

Table 3.12 – Human-in-the-loop potential of Simulation Approaches. Image credits: the author.

A.5. Example-driven

Example-driven techniques such as generative machine learning show great poten-
tial for engaging all roles in the setup step, i.e., the data/collection and training
step. However, the later steps require specialized knowledge of human actors to get
involved, and in the case of machine learning, models are often considered black-
boxed.

As shown on Table 3.13, the tasks in the setup the collection of example, e.g.,
compiling a labeled database of floor plans as in the work of Hu et al. 2020 and
the model training, in the init step, is the providing of a sample. The run step is
entirely autonomous, spitting out a prediction based on the trained model.

As projects like Galaxy Zoo show, the compiling and labeling of a database, i.e.,
the pre-setup step, can be successfully crowdsourced to non-experts (Raddick et al.
2010). However, the later steps are more or less closed off for the engagement of the
key roles. Hence the exclusion of this division of techniques from the case studies in
the dissertation.
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Table 3.13 – Human-in-the-loop potential of Example-driven techniques. Image credits: the
author.

3.3.6 Takeaways

In design, the designer’s intentions influence the designed artifact (J. McCormack,
Dorin and Innocent 2004). Since there is no algorithm to predict intentions, hu-
man participation will remain essential in all computer-assisted design processes, no
matter their level of autonomousness.

In general, interaction is easier to stage in the generate-and-test category since,
at the test step, the user can be engaged instead of algorithmic testing. The user
actions can be reject/keep (Togelius, Yannakakis, et al. 2011) and rank on a discrete
or continuous scale (Brintrup, Ramsden and Tiwari 2007). The user’s engagement
is to browse through a large set of design variations (see examples below). This can
create choice fatigue and other issues that (Brintrup, Ramsden and Tiwari 2007)
summarize in section 6 of their paper. So while many works have been published that
deal with interaction in the test step of a generate-and-test generative technique,
the challenge of this research is to stage interaction during the constructive flow
of a constructive generative technique. The hypothesis is that users will be more
included and that the problem’s true, wicked nature will be acknowledged better.

What we are interested in is also the correlation between the algorithm and the
generated model or the level of difficulty to predict the outcome by merely reading
the algorithmic description (Caetano, Santos and A. Leitão 2020). This is important
when the aim is to make the generative design techniques usable and user-friendly
for non-experts and architects with no prior experience in computational design.

Social and political aspects cannot be reduced to dimensional constraints. There-
fore they are challenging to model in all generative techniques. Can crowdsourcing
be used to counter this weakness of algorithms?

Types of interactions

One point of view to take is of course the types of interactions. The types of input
from human to drive the outcome, that I discuss in my case studies are:
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• direct physical or digital object manipulation (move, scale) - Rechteck2BIM ,
Sensitive Assembly ;

• set a cell/pixel/voxel to a state - Project Reptiles ;

• rule selection and placement - 20.000 BLOCKS ;

• edit modules(vocabulary) in a catalog - Project Reptiles , 20.000 BLOCKS ;

• retrieve similar designs based on current design state - Sensitive Assembly ,
Project Reptiles .

Further type of input, not taken into consideration:

• Input as image maps or hand-drawn sketches (de Villiers and Naicker 2006;
Parish and Müller 2001).

• Guides as polygon shapes modified by user in (Beneš et al. 2011).

• Control grammar rules in text form and split grammar rules in shape form
(Wonka et al. 2003).

Crowdsource the Weaknesses

Another perspective to take is which step’s tasks can be crowdsourced for each
technique?

Which is to say - where are the weak spots in all these generative algorithms,
and in which ones can crowdsourcing help? Knowledge acquisition in CBD is a weak
spot — how can crowdsourcing help?

For example, in shape grammars, the labor-intensive creation and specification
of grammars can be outsourced. It also makes sense to outsource the exploration
of the design language defined by a given grammar by opening the derivation step
for many participants and collecting the outcomes. Similarly, in the case of Wave
function collapse, designing the tileset as well as the generation of designs can be
outsourced.

3.4 Potential for Automation in Construction

The use of robotic processes in construction can be considered one of the strategies
to encode expertise. Skilled workers usually perform construction tasks. Those skills
are made available to non-trained participants by automating parts of the process.
Therefore a vital component of the hypothesis in this work is the integration of
construction constraints and specificities into the participatory design process.

This section reviews the precedents of robotic construction in architecture and
how they relate to the taxonomy of generative design techniques. The aim is to
identify generative design techniques with the highest potential for direct integra-
tion with an automated construction process. Two aspects can be automated: the
production of individual parts and the assembly of those parts.

After reviewing the state-of-the-art, I identify three main approaches to robotic
construction: design-agnostic fabrication, fabrication-aware computational geome-
try, and digital materials.
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The concepts of holistic and non-holistic sets of parts are relevant when consid-
ering construction (Sanchez 2021). Sanchez 2021 defines a holistic set as a set of
parts that constitute a whole that is fixed and unalterable. In contrast, according to
Sanchez, the non-holistic set consists of parts that can be combined in topologically
diverse ways, i.e., can produce multiple wholes due to the openness of the system
(Figure 3.60).

Figure 3.60 – Closed vs open Topologies. A jigsaw puzzle has a holistic set of pieces, i.e. there is
one way to correctly put them together. Lego blocks constitue a non-holistic set of pieces, i.e. there
are multiple correct ways to assemble them. Image credits: Sanchez 2021.

The digital material approach shows the highest potential for integration with
the generative design techniques most suitable for participatory design – grammar-
based and constraint-based. The case study Sensitive Assembly and some of the
case studies with the 20.000 BLOCKS framework use a basic version of the digital
materials approach.

3.4.1 Design-agnostic fabrication

With 3D model slicing or waffle techniques, almost any shape can be digitally fabri-
cated using a 3D printer, CNC mill, or laser cutter. This flexibility is powerful, but
we cannot apply construction constraints into the generative technique as the ac-
tual digital fabrication happens in a post-processing step. I call this design-agnostic
fabrication as the methods do not respect the specificity of the given design but are
generic (N. Gershenfeld 2012). And the FabLab movement was based on this ap-
proach (N. Gershenfeld 2012). This application of 3D printing and robotic milling is
considered analog, and not digital, fabrication (N. Gershenfeld, Carney, et al. 2015;
Retsin 2020).

3.4.2 Fabrication-aware computational geometry

Most examples of robotic construction are using parametric design and A.1. Com-
putational Geometry in general. Starting with the seminal example from Bonswetch
2006 of the Informed Wall (Figure 3.62), where every brick had a different rotation
on the Z-axis, all the way to the latest advances in robotic construction shown by
the work of Wagner, Alvarez, Groenewolt, et al. 2020; Wagner, Alvarez, Kyjanek,
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et al. 2020 for the BUGA wood Pavilion (Figure 3.63) by ICD Stuttgart, the typ-
ical approach is to define the fabrication method and then create the design from
a parametric model able to take all possible design states of the fabricated units
(Figure 3.64). Fabrication-aware Computational geometry can be thought of as the
production of a holistic set of digitally fabricated parts.

Figure 3.61 – Wikihouse. Wikihouse(Parvin 2013) is an example of fabrication-aware open design
aimed at distributed manufacturing using small scale, private CNC cutting machines. Image credits:
Parvin 2013.

Figure 3.62 – Informed Wall. A parametrically defined brick distribution and the robotically fabricated
physical artifact from the Informed Wall project by Bonswetch 2006. Image credits: Bonswetch 2006.

104



Figure 3.63 – The BUGA Wood Pavilion by ICD Stuttgart. A design that is a population of locally
differentiated components on a surface (left), a fabrication aware parametric model of a generic com-
ponent (middle) and snapshot of the robotic process of manufacturing of a specific component. Image
credits: Wagner, Alvarez, Kyjanek, et al. 2020.

Figure 3.64 – Modularization of a parametric model. An extract of the possibility space (left) of a
parametric model (middle) that is aware of the CNC production to be used in the final assembly (right)
of a house designed by Bianconi, Filippucci and Buffi 2019. Image credits: Bianconi, Filippucci and
Buffi 2019.

The work on robotically fabricated scale models of tower designs (Figure 3.65),
presented in Budig, Lim and Petrovic 2014, is a fitting architectural illustration of
the fabrication-aware computational geometry approach. Teams of students pro-
duced the tower designs during a design studio at the Future Cities Laboratory
(FCL), Singapore-ETH Centre for Global Environmental Sustainability (SEC). Each
tower design consists of housing units that are parametrically varied based on their
vertical position and relation to sun and city views. The units are then assembled
from sheet materials using the robot to cut, fold, place and glue the model pieces
together.

Figure 3.65 – Parametric fabrication-aware scaled model of towers. Left: Parametric model of
housing units; Second from left: unfolded wall surfaces; Third from left: the robotically fabricated
tower model; Right: the Future Cities Laboratory (FCL) with three robot stations at the Singapore-
ETH Centre. Image credits: Budig, Lim and Petrovic 2014.

My own project, Project Avocado (Figure 3.66), uses fabrication-aware compu-
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tational geometry as well.

Figure 3.66 – Project Avocado. Final installation (left), unfolded unit model (middle) and laser cut
modules(right). Image credits: the author.

Automated prefabrication of wooden frame houses (German: Holzrahmen Fertig-
bau), used by prefab house companies, also belongs to the fabrication-aware compu-
tational geometry approach (Vähä et al. 2013). However, it is more straightforward
as the house designs are less generative and more of a design system, in the type of
a product configurator (section 3.1).

3.4.3 Digital materials and discrete assemblies

Digital materials (Figure 3.67) are “reversibly assembled from a discrete set of parts
with a discrete set of relative positions and orientations” (N. Gershenfeld, Carney,
et al. 2015). The concept was first explored at the Center for Bits and Atoms led by
Neil Gershenfeld at MIT in a series of key doctoral and master theses (Cheung 2012;
W. K. Langford 2019; Popescu 2007; J. Ward 2010). Digital Materials entered the
discipline of Architecture under the term Discrete Design through the projects and
design studios led by Gilles Retsin (Figure 3.68) at the Bartlett (Retsin 2016) and
generative tools such as WASP developed by Andrea Rossi at the Digital Design
Unit in Darmstadt (Rossi and Tessmann 2018).

In digital materials, the design of the parts prescribes the freedoms of assembly
and is often corresponding to the design of the robots and robot actuators (Fig-
ure 3.69) (N. Gershenfeld, Carney, et al. 2015; Tessmann and Rossi 2019). The
digital materials approach allows for the use of much simpler and smaller robots,
that are easier to program and could even be retained as part of the structures they
assemble for subsequent reconfiguration (N. Gershenfeld, Carney, et al. 2015). Ex-
amples are the termite-inspired brick-placing robots by Petersen, Nagpal and Werfel
2011.

Digital materials constitute open topologies, i.e., are non-holistic sets of parts.
Digital materials and discrete assembly operate with modules of finite predefined

shapes. The geometry of parts, and the options for assembly it allows, define a design
language similar to the languages defined in a grammar-based generative approach
(Rossi and Tessmann 2017c,d, 2018). This makes digital materials very suitable
for combination with generative design techniques that use vocabulary catalogs and
combinatory rules such as set grammars, split grammars, marching cubes and wave
function collapse. Individual modules in a vocabulary set could be designed and
produced using the fabrication-aware computational geometry approach as seen in
the work of Retsin (Figure 3.68) (Retsin 2020).
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Figure 3.67 – Digital materials. A geometry of a part and the assembly of a sample digital material
from W. Langford, Ghassaei and N. Gershenfeld 2016. Image credits: W. Langford, Ghassaei and N.
Gershenfeld 2016.

Figure 3.68 – Discrete design. Four types of modules and possible discrete assemblies. Image credits:
Retsin 2020.

Figure 3.69 – Robotic discreet assemblies. The design of the parts and the design of the robotic
grippers to pick and place them are tightly integrated. Image credits: Tessmann and Rossi 2019.

The case study Sensitive Assembly (chapter 7) explores the use of the digital ma-
terials approach with two types of units. Each unit is defined using the fabrication-
aware computational geometry approach. The robotic process in 20.000 BLOCKS
also pertains to the digital materials approach.

3.5 Conclusion

This chapter reviewed architectural design systems and configurators and established
the degrees to which architectural expertise can be encoded in different methods. I
introduced a new Taxonomy of Generative Design in Architecture (Figure 3.8) and
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Figure 3.70 – The selected generative techniques. Image credits: the author.

discussed the potential to integrate human interaction and digital fabrication for
each class of techniques. When combining the takeaways from this analysis, four
techniques appear relevant to explore in my case studies. These are: (i) iso-surfacing
algorithms; (ii) physically-based models; (iii) set grammars; and (iv) case-based
design (Figure 3.70).
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Chapter 4

Crowd Wisdom: Crowdsourcing,
Citizen Science and Mass
Collaboration

Amazing things can happen when you put technology in the hands of the
many. (Apple, Inc.)

Figure 4.1 – ReCaptcha. Image credits: ReCaptcha.

The ideas that large, seemingly unorganized crowds of people acting on their
behalf in a real or virtual space might exhibit some kind of a higher order or intelli-
gence are not new at all. In the 18th century, Adam Smith argued the existence of
an invisible hand of the market being moved by individual self-interest and result-
ing in the best interest of society. The father of cybernetics, Norbert Wiener, saw
human behavior as patterns that encode messages to and from the environment,
other human beings or machines in a feedback loop (Wiener 1950). This uncovered
new insights into the studies of law, language, and society. Kevin Kelly, inspired
by the developments in communication technology in the late 20 century, theorized
of a Hive Mind, a self-organizing system of connected people and an ever-growing
number of machines as the future of politics and society (K. Kelly 1994). And Philip
Ball presented the concept of physics of society, or looking at people as particles in
a simulation governed by laws similar to the natural laws of physics, as the means
to model, predict and decide issues of city traffic, political and social phenomena
and other complex modes of human activity (Ball 2004).
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While all these ideas have been questioned and received well-argumented criti-
cism (Best and Kellner 1999), they have nevertheless helped individuals look at the
world in a new way and create new, working, applicable technologies.

The more recent development is the understanding that the capacity of crowds
for self-organization and complex decision-making can be intentionally tapped into
and enlisted to solve a specific problem. We have seen several examples of this. First,
navigation assistants like Waze get better with the continuous input from all drivers
using it. Furthermore, the rapid growth of sites like Wikipedia where human knowl-
edge is documented and organized by thousands of contributors. Cryptocurrencies,
such as Bitcoin, replace centralized institutional trust with the computational power
contributed by thousands of independent actors to a blockchain network. And last
but not least, revolutions started and rapidly spread via Twitter as in the Arab
Spring of 2011-2012. All the above are examples of using the decision power and
creativity of non-experts to solve a problem previously in the guarded domain of a
few chosen experts.

This chapter introduces the various forms and media that facilitate the coordi-
nated action of online crowds towards a defined goal.

4.1 Definitions

In section 2.3, I defined participatory design as a procedure that enables the involve-
ment of stakeholders in the design and construction of a specific building or a city
neighborhood. The engagement of the stakeholders is the critical distinction be-
tween participation and the concepts presented in this chapter. In the related and
sometimes overlapping domains of crowdsourcing, citizen science and mass collab-
oration, the engaged crowds of users, contributors, and players are not necessarily
stakeholders of the final product. They take part because of other reasons instead.

It’s worth noting that attempts to involve stakeholders at a massive scale have
also been made, such as in the case of E-Participation (Herrmann 2016). However,
those have failed so far due to the problem of not being able to reach all participants
with the relevant information on time as well as issues with communication and
coordination of the stakeholders’ interests at that scale (Herrmann 2016). Dunbar’s
number suggests that the natural, cognitive limit for groups of collaborating people
is around 150 members (Dunbar 1992).

4.1.1 Crowdsourcing

The term crowdsourcing is a combination of the words crowd and outsourcing. Jeff
Howe coined the term in 2006 and defined it as “the act of a company or institution
taking a function once performed by employees and outsourcing it to an undefined
(and generally large) network of people in the form of an open call” (J. Howe 2006).
Daren Brabham says that “Online communities,[...] are given the opportunity to
respond to crowdsourcing activities promoted by the organization, and they are
motivated to respond for a variety of reasons” (Brabham 2013). In its essence,
crowdsourcing is a business model (Brabham 2013).

As crowdsourcing gained popularity in research and as a business model, Estellés-
Arolas and González-Ladrón-de-Guevara 2012 set out to formulate an integrated
definition by reviewing more than 200 documents. Their definition:
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“Crowdsourcing is a type of participative online activity in which an in-
dividual, an institution, a non-profit organization, or company proposes
to a group of individuals of varying knowledge, heterogeneity, and num-
ber, via a flexible open call, the voluntary undertaking of a task. The
undertaking of the task, of variable complexity and modularity, and in
which the crowd should participate bringing their work, money, knowl-
edge and/or experience, always entails mutual benefit. The user will
receive the satisfaction of a given type of need, be it economic, social
recognition, self-esteem, or the development of individual skills, while
the crowdsourcer will obtain and utilize to their advantage that what
the user has brought to the venture, whose form will depend on the
type of activity undertaken.” (Estellés-Arolas and González-Ladrón-de-
Guevara 2012)

According to Leimeister 2012 there are three categories of crowdsourcing: crowd-
funding, crowdvoting and crowdcreation. Crowdfunding is how the Wikimedia foun-
dation1 funds itself or how Patreon2 allows content creators to get financed by their
followers. Often Kickstarter3 is considered crowdfunding but it is in essence a pre-
purchase platform. Crowdvoting is what websites like Amazon or the various app
stores use to rank items in their listings.

In my work, I am mostly focusing on crowdcreation which is when the crowd is
expected to deliver content, whether that is an idea, a design, or simply a tag for an
image (Leimeister 2012). Sanz-Blas, Tena-Monferrer and Sánchez-Garćıa 2015 split
crowdcreation into crowdwisdom and crowdproduction.

The most common form of crowdcreation is to ask the crowd to perform micro-
tasks that are part of a larger task relevant to the organization (Figure 4.2). The
anti-spambot program reCAPTCHA (Figure 4.1) digitized 13 million books and
articles, dating from 1851 till now, with 100 million daily uses (von Ahn 2011). It
achieved this by chopping the scanned images of book pages into words and showing
these words to internet users when they log into a website.

However, the micro-tasking model can be applied to well-defined problems where
the criteria for a good solution are clearly defined. For example, in engineering,
this approach can be applied. T. Fischer 2008, p.36 describes how the Sputnik
shock in the 1960s prompted NASA to rethink the way things are designed. They
started chopping engineering problems into small problems and solving those and
then assembling the thing back together. In architecture, which deals with wicked
problems, it is not immediately apparent how to chop the process of coming up with
a new design into micro-tasks.

Several works have described how the crowdsourcing framework is put into
practice (Gerth, Burnap and Papalambros 2012; Sanz-Blas, Tena-Monferrer and
Sánchez-Garćıa 2015; Schall 2012). An integrated version of these precedents con-
sists of the following seven steps (Figure 4.3):

1. choose a task, relevant for the organization,

1https://wikimediafoundation.org/ — The nonprofit Wikimedia Foundation provides the
essential infrastructure for free knowledge and hosts Wikipedia.

2https://www.patreon.com/ — Patreon is an American membership platform that provides
business tools for content creators to run a subscription service.

3https://www.kickstarter.com
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Figure 4.2 – Micro-task crowdsourcing model. Image credits: the author.

2. specify an open call,

3. contribute proposals for a solution,

4. evaluate proposals,

5. rank/sort proposals,

6. accept proposals as a solution,

7. apply the solution.
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Figure 4.3 – Steps in a crowdsourcing framework. Image credits: the author.

In a non-crowdsourcing scenario, all steps are performed internally by the experts
within the organization. In contrast, in a crowdsourcing scenario, some or all of steps
3 to 5 can take place online, publicly with the crowd’s engagement. As reCAPTCHA
shows, some of the steps from 3 to 5 can also be completed by an algorithm, making
use of the human computation only for tasks that are intractable for an algorithm.

Threadless is another commonly cited example of crowdsourcing that illustrates
how steps 3 to 5 are fully crowdsourced. Threadless is a T-Shirt company that runs
an online competition for T-Shirt designs. Users submit and vote on the designs in
a weekly cycle (Figure 4.4).

Lately, we’ve seen crowdsourcing be abused to reap value solely for the organiza-
tions using it, neglecting the motivations of the contributors and the value it brings
to them. We see this departure from clear mutual benefit most clearly in ReCaptcha,
which was one of the first crowdsourcing platforms and helped digitize 13 million
books and articles, but now is solely used to force us to train AI algorithms for
self-driving.
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Figure 4.4 – Threadless. Image credits: Threadless.

This shift in the meaning of crowdsourcing is the reason why people now prefer
the term open innovation. And in the context of science - citizen science.
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4.1.2 Citizen science

In 2008, Chris Anderson proclaimed that the vast amounts of data available to
scientists in recent years changed science from using models to define and test hy-
potheses to using statistical tools to find correlations in the data that explain the
studied phenomena (C. Anderson 2008). However, this shift towards data-based
science came with a new problem. Not all data can be collected automatically or
processed with an algorithm. As Cook 2011 points out, the solution for both is to
turn to the crowd:

“One reason for the sudden turn to crowd science is that it offers an
imaginative answer to a central problem of 21st-century science: too
much information.” (Cook 2011)

A precursor of the crowd’s involvement in gathering and processing data for
science are the projects from the early days of the internet, such as SETI@Home
(D. P. Anderson et al. 2002). SETI@Home did not require actions from users, just
for them to share the computing power of their computers over the internet, but this
created an opportunity to break down a computable problem into small distributable
tasks (D. P. Anderson et al. 2002).

Citizen Science is a broad term with two primary meanings (C. B. Cooper and
Lewenstein 2016; Eitzel et al. 2017). The phrase Citizen Science was used first by
Alan Irwin in his 1995 book of the same name to denote inclusion (in the sense
of broadening participation in science) as a way to align society’s interests and
science’s responsibilities (Eitzel et al. 2017; Irwin 1995). This reading of science
as being democratized is also known under terms like ’activist science’ or ’public
engagement’ (C. B. Cooper and Lewenstein 2016). The second meaning emerged
in 1996 from the work of ornithologist Rick Bonney and referred to projects where
nonscientists contribute scientific data (Bonney 1996; C. B. Cooper and Lewenstein
2016). This second meaning of Citizen Science as contributory is what I use in my
work.

Figure 4.5 – Galaxy Zoo. Image credits: Lintott et al. 2008.

Probably the Galaxy Zoo is the most often cited example of Citizen Science in
this sense. The project was started in 2007 by Chris Lintott after a student of his
manually completed the daunting task of categorizing 50,000 galaxy images only
for them to realize they would need to classify a million galaxies (Cook 2011). The
Galaxy Zoo was a website (Figure 4.5) where anyone, after completing a simple
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tutorial, could classify photos of galaxies taken by the Hubble telescope (Lintott
et al. 2008). Today the Galaxy Zoo has become the Zooniverse4 — a platform for
citizen science and lists close to a hundred active projects in fields as diverse as arts,
climate, and medicine.

The concept of human-directed computing narrows down further the aspect of
Citizen Science I am interested in. It describes the method of using distributed
human intelligence to carry out scientific tasks enhanced by algorithms in the data-
collecting step as well as the data-processing step (S. Cooper, Khatib, et al. 2010).
Seth Cooper used it when developing the well-known citizen science project Foldit.

Figure 4.6 – Foldit. Left: the game interface; Right: a snapshot from a forum discussion. Image
credits: Foldit.

In 2008, after years of failed attempts to develop an algorithm that can simulate
the folding of protein molecules, a group of scientists at the University of Washing-
ton developed the video game Foldit (S. Cooper, Khatib, et al. 2010). The player is
presented with a protein molecule, and their mission is to reshape it by connecting
couples of atoms together (Figure 4.6 left). The player’s score increases as the en-
ergy required to keep the molecule in its current shape drops, meaning it is closer
to nature’s solution. Nature decides who wins and who loses the game. Thousands
of online players, driven by their desire to win and simultaneously help find pro-
teins that could potentially cure deadly diseases, started to engage and understand
the research aspects behind the game. They read scientific papers and shared their
progress on the protein puzzles with each other (Figure 4.6 right). Foldit shows
the potential of games to encode expert knowledge, provide real-time feedback and
automate or outsource onboarding to the needed skill level so that anyone can con-
tribute.

4.1.3 Mass collaboration

Wikipedia is the prime example of how you could combine the power of collaboration
on a massive scale with a platform to create valuable content for everyone. To date,
there are over six million articles written in English on the user-generated online
encyclopedia, and it averages a monthly total of 7.6 billion views5. Growing and

4https://www.zooniverse.org/projects
5https://en.wikipedia.org/wiki/Wikipedia:Statistics — accessed 10.06.2021
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maintaining the knowledge base of Wikipedia has evolved into a multilayered process
with various roles (Figure 4.7) where mass collaboration is a leading concept. Other
examples of mass collaboration are considered to be open-source software, Massive
online open courses (MOOCs), crowdsourced science (Citizen Science), and even the
maker movement that emerged around FabLabs (R. B. Shapiro 2016).

Figure 4.7 – Wikipedia Content curation. Infographic, Mark Fidelman, 2010, flickr, CC BY-NC 2.0:
Link Image credits: Mark Fidelman.

Dillenbourg 1999 defines a situation of interaction between two or more people
as collaborative if “peers are more or less at the same level, can perform the same
actions, have a common goal and work together.” Furthermore, he distinguishes
collaboration from cooperation by stating that cooperation is a division of labor
on the task level, i.e., several people perform a set of tasks individually and then
assemble the partial results in the final output.

In their book Mass Collaboration and Education, Cress, Jeong and Moskaliuk
2016b point out that in a formal aspect, mass collaboration “is characterized by the
large number of people being (mass) involved in it, the digital tools they use (Web
2.0), and the digital products they create.”

The digital tools that make mass collaboration possible use the Internet as a
communication channel and interactive web pages as the media where the produc-
tion happens. These tools are characterized by their ability to make one user’s
modifications immediately visible to the others and so allow users to observe oth-
ers, share resources, coordinate work, and jointly create artifacts (Cress, Jeong and
Moskaliuk 2016b). They also allow the storage and interaction with large amounts
of data.

Unlike conventional digital tools where the user solves a problem they have, such
as writing a text document they need or creating a 3D model they need, in mass
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collaboration, participants create digital products that are of value not only for
themselves but for other users as well.

Examples of products created in mass collaboration environments include texts
with multiple authors such as the articles on Wikipedia, computer programs such as
the Linux core or interactive projects on Scratch, labeled datasets such as the photo
collection of galaxies categories via Galaxy Zoo, solutions to complex puzzles such
as the folded protein molecules in Foldit, works of art such has the collaboratively
painted canvas in Reddit’s r/Place.

Figure 4.8 – Reddit r/Place. Top: A contributor’s UI as they paint one pixel every five minutes;
Bottom left: the final state of the whole 1000x1000 pixel canvas; Bottom right: a fragment of the final
canvas state. Image credits: Reddit.

Reddit’s r/Place is another example of how tens of thousands of people can
collaborate and compete to produce a collective work of art (Figure 4.8) (Rappaz
et al. 2018). Reddit is an American social news aggregation, web content rating, and
discussion website. Registered members submit content to the site, such as links,
text posts, images, and videos. These are then voted up or down by other members.
On 1 April 2016, Reddit put online a white canvas of 1000 by 1000 pixels and gave
people 72 hours to paint something on it. Altogether, more than 250.000 people
took part. Every participant had the same 16 colors to choose from and could paint
only one pixel every five minutes. If you wanted to draw anything on the canvas, you
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had to convince a large enough group of people to join your cause. Groups formed
around nation flags, famous works of art, and symbols of internet culture but also
more abstract ones such as The Corner of Blue or The Green Lattice6. People
started Reddit communities (subreddits) to communicate and coordinate what they
wanted to draw and how to defend it from being painted over by the other groups
(Vachher et al. 2020).

Cress, Jeong and Moskaliuk 2016b note that even though a mass collaboration
environment might have a large number of users, a specific product of collaboration,
such as one Wikipedia article or one game programmed in Scratch, might be the
result of only several users working together. As an example, Kittur and Kraut
2008 registered an average number of about 50 authors per article in the English
Wikipedia. For comparison, Wikipedia has 130.000 monthly active users (MAU)
and close to 40 million users in total as of 1.10.2020 7.

An exciting mass collaboration project to do with architecture is Build the Earth
in Minecraft. If we look at the Build the Earth in Minecraft project initiated by
PippenFTS, we can see how a goal can be achieved with collaborative work via
a gaming platform. For the past few months, 200,000 players have been working
together to recreate the Earth on a one-to-one scale within a Minecraft map (See
Figure 4.10). It all started with a video shared on Youtube and Discord servers
where task forces could be formed quickly followed (See Figure 4.9). This is an
impressive achievement, but this project is quite simply a remodel! It lacks the
ambition to imagine what the world could be, what humans could be, what the
relationship between humans and nature could be. What architecture could be?
But it shows that the willpower and the technical infrastructure are there to create
something in a massively collaborative way.

A mass collaboration example from architecture is online forums where design
proposals are discussed. This is a mix of both crowdwisdom and crowdproduction.
Often next to the advice, contributors also provide alternative design solutions. A
concrete example is the German Hausbau-Forum where individuals share the design
for their single-family house, and forum members, experts, and other homeowners
comment and propose solutions (Figure 4.11).

I carried out an analysis of the forum activity, which confirmed the finding by
Cress, Jeong and Moskaliuk 2016b and Kittur and Kraut 2008 that only a tiny
portion of the crowd’s members are involved in a specific product of collaboration
— in the case of hausbau-forum, a single forum thread (Figure 4.12). The analy-
sis also shows that forum members can be classified in essentially three categories
(Figure 4.13): (1) the super experts who often post both text and images; (2) the
medium-level contributors, who have between 10 and 1000 contributions of which
every tenth with an image and (3) the consumers, who tend to have very few posts,
most likely about their own house.

Mass collaboration is an emerging and important topic in open source software
development, science, and education (Cress, Jeong and Moskaliuk 2016a). So far, not
many applications can be observed in other artistic, cultural, or business settings.
Because of its newness, especially concerning the creative disciplines, I see the need
for further research on the following topics:

1. theoretical consideration about mass collaboration in architecture,

6A descriptive video with time-lapse of Reddit’s r/Place: YouTube link.
7https://en.wikipedia.org/wiki/Special:Statistics
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Figure 4.9 – BuildTheEarth interactive map. A segment of the world map showing part of Europe
and the distributed remodel projects there, for the world 3361 in total as of 19.09.2020. Image credits:
BuildTheEarth.

Figure 4.10 – BuildTheEarth in Minecraft. Left: an image, Right a screenshot from the discord
server of the project used for communication and coordination of the project with 45,000 online members
and 230.000 total members as of 19.09.2020 Image credits: BuildTheEarth.

2. description of individual cases of mass collaboration in architecture and

3. specification and development of mass collaborative digital tools suitable for
design tasks.

In this dissertation, I mainly focus on the third.
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Figure 4.11 – Hausbau-forum. Image credits: www.hausbau-forum.de.

Figure 4.12 – Distribution of contributors per thread on hausbau-forum. Image credits: the
author.
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Figure 4.13 – Distribution of experts on hausbau-forum. Image credits: the author.
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4.1.4 Self-organization

Working in the paradigms of crowdsourcing, mass collaboration, or citizen science
means working with the idea of many agents contributing in parallel to the state of a
system. That makes self-organization relevant. Manuel De Landa in his book 1000
Years of Non-Linear History refers to three types of self-organization, “according
to the type (or absence) of energy flow through the system: (a) conservative (crys-
tallization, polymerization), (b) dispersive (solitons), end (c) dissipative (chemical
clocks)” (De Landa 2000, p.277).

Self-organization is a mechanic to deal with any bias embedded in a system. On
Wikipedia, a single-sided way of fact reporting or a contributor’s bias sorts itself out
by the diversity and engagement of the community. If an article lacks a key point
of view, someone might add it. If an article reports something false, someone might
check and correct it. Oeberst et al. 2016 prove in three case studies that bias exists
in Wikipedia articles. They found both individual bias in the form of hindsight bias
as well as in-group bias, where people perceive and represent the group they belong
to more favorably.

Regarding self-organization precedents in architecture, I would argue that the
phenomenon of architecture without architects (Rudofsky 1964; Schaur 1991), or
how informal settlements come to being is an example of stigmergic collaboration
on a massive scale (Elliott 2016). Stigmergy is a mechanism that uses traces left in
the environment for indirect coordination between agents (Marsh and Onof 2008).
A classic example is ants’ chemical trails left to communicate directions and more to
their group. In the case of informal settlements, we can argue that each successfully
erected building is a trace that influences the following designers and builders. And
we can confidently say that early society, even if they didn’t have a clearly defined
role labeled as the architect, had construction experts that led and contributed to
the collective architectural form built by the society.

4.1.5 Roles

Based on real-world stories, Eitzel et al. 2017 show how the “terminology used to
describe participants can potentially change the way they are treated or how they
feel about themselves and their participation in the activity.” Hutter et al. 2011
present a classification of the user groups found in a community (Figure 4.14).

An assembled group of people, treated as a group only by an organization, as
the people filling out ReCapthas, is not a crowd in the complete sense of the term.
The crowd members need to be aware of their belonging to the same higher level
undertaking. There also needs to be peer-to-peer interaction.

The American journalist James Surowiecki lists five elements required to form a
wise crowd in his book The Wisdom of Crowds (Surowiecki 2004):

1. Diversity of opinion, i.e., each person should have private information even if
it’s just an eccentric interpretation of the known facts.

2. Independence, making sure that people’s opinions aren’t determined by the
views of those around them.

3. Decentralization, i.e., people specializing and drawing on local knowledge.
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Figure 4.14 – Different User Types Identified in a Community. Image credits: Hutter et al. 2011.

4. Aggregation, provided by some mechanism for turning private judgments into
a collective decision.

5. Trust, given by each person trusting the collective group to be fair.

G. Fischer 2016 describes the progression of different roles that can be found in
rich ecologies of participation and collaboration, starting from unaware consumers
to meta-designers (Figure 4.15).

In addition, Eimler et al. 2016 have observed weaknesses of massive online open
courses that could be relevant for architectural projects as well. Namely, the high
dropout rate and low level of participation. They speculate that combining small
and large group interaction can increase engagement.
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Figure 4.15 – Types of participants. G. Fischer 2016 identified different roles in rich ecologies of
participation. Image credits: G. Fischer 2016.

4.1.6 Crowd wisdom vs. crowd stupidity

Unfortunately, crowdsourcing does not always result in wisdom. Sometimes we
get crowd stupidity (de Mul 2016). Lanier 2011 argues that the “hive mind” can
easily lead to mob rule, trolling, etc. Furthermore, Burnap et al. 2015 show that
the expectation for contributions averaging out to a form of collective expertise
within the crowd might not hold in engineering tasks. The authors propose that
models of crowd consensus must follow the uneven distribution of expertise among
contributors. However, their conclusions are based on a crowd simulation, not an
actual crowdsourced study.

A design by committee8 often does not result in the best product (Lanier 2011).
As Ratti and Claudel 2015 remind us, a horse designed by a committee is a camel.
Ratti and Claudel 2015 state that in creative tasks, there has to be some sort of
leadership. At the same time, it is a challenge to strike the right balance between
the creative power of participants and the leading role.

4.2 Architectural Competitions as Crowdsourc-

ing

Architectural competitions are the current form of open innovation in architecture,
but they are under scrutiny as an exploitative practice, as the quote below shows. :

“... the evidence is building and the case becoming clearer: The compe-
tition industry in the U.S. is having equally as bad or worse effects on the
conception of architecture than we already know it has on the business
of architecture. The old argument that competitions drive architectural
innovation is no longer credible. Developers, cultural institutions, and
government agencies have mastered the use of design competitions as

8Design by committee is a pejorative term for a project that has many designers involved but
no unifying plan or vision https://en.wikipedia.org/wiki/Design_by_committee.
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publicity campaigns. Their claims of searching for the best ideas is just
an alibi that unfortunately continues to seduce too many of our best
talents. These drawn out exercises also make very little practical sense
when it should be easy enough for clients to choose between architects...
by picking up a few monographs or even just looking at their websites.
The real justifications are simple. Developers and institutions gain fan-
tastic and relatively affordable publicity from the mad traveling circus
of design competitions. By helping them attract financing and donors,
we encourage the proliferation of these sham exercises where enormous
projects are fully rendered without contracts, necessary approvals, or
even clear programs.”(Brown 2014)

The difference between architectural competitions and Threadless, for example,
is in the number of times they go through the loop from an open call to a solution.
An architectural competition gives out the brief, collects the designs, and chooses
the winner. That is one iteration. In contrast, in Threadless, the brief doesn’t
change — make the coolest T-Shirt graphic — and there are weekly iterations of
the same brief. If one wants to participate, one can see the past weeks and what
got voted high, what failed, get a sense of the trends from all the submitted entries
and then begin designing.

Furthermore, there is no communication between the participants during the
creative phase in architectural competitions.

This quote written for the field of science applies to architecture:

“Science is, for the most part, a closed society organized into little fief-
doms of highly trained specialists, which means only a few minds engage
with any given problem. Before FoldIt, for example, a problem in pro-
tein folding was the exclusive province of a relatively small number of
experts — even though, it is now clear, there are real contributions to be
made by 13-year-old video gamers. The system is shaped in part by the
force of tradition, but the larger challenge is that most scientific data is
proprietary. A scientist works long and hard to generate original data,
and then expects to reap the reward in the form of publishing the first
research paper to describe some new phenomenon. She is not going to
want to share this data with others, particularly strangers, any more
than say, an investigative reporter would want to share his notes before
a story has been written. Harnessing 1,000 people requires sending your
data out into the world — something that science is loath to do. The
scientist’s interest in keeping things private and getting credit, in other
words, is directly opposed to society’s interest in tackling some problems
with a hive of the best minds.” (Cook 2011)

The economic interest of each participant is to win the competition. So they
don’t share. But that is a race to the bottom. A competition is crowdsourcing kind
of. And Arcbazar is pushing that to the limit 9 - race to the bottom10. The falling
prices and quality of services offered on platforms such as Fiverr and Upwork show

9https://youtu.be/RzsnZJWrIkw
10https://en.wikipedia.org/wiki/Race_to_the_bottom
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how the whole gig economy, in general, is a race to the bottom 11.
What if it was in the economic interest of every participant to get the best

possible project? We must develop a business model for architecture that rewards
architects when they share.

How smart is it for architects to every time invent the wheel? How many times
do you walk into a building, and you think you’ve already seen that building on
another site? But the architects of those buildings were not sharing information.

4.3 Conclusion

There are three axes of interest when looking at crowdsourcing models for crowd-
creation. The precedents listed in this chapter are plotted on these three axes on
Figure 4.16. The first one is the beneficiary axis. It follows the definition of (Brab-
ham 2013) that the benefit of a crowdsourced task must benefit the organization
that posts it as well as the contributors. An accurate crowdsourcing model will fall
somewhere in the middle on that axis.

The second axis is the mode of interaction between the contributors. It can be
predominantly competitive as in Threadless, primarily collaborative as in BuildTheEarth,
or a mix of the two as in r/Place. The mixed model appears to have the advantage
of establishing hierarchies that prevent the camel-horse-committee problem.

And the third axis is the goal clarity. It maps the precedents according to the
nature of the tackled problems. At the one end, we find tame problems that can be
chopped into microtasks. At this end, the goal for individual contribution is appar-
ent, and progress is measurable. On the other end, we have wicked problems where
stakeholders need to shape both the problem definition and the solution criteria.
An example is a Wikipedia article’s aim to encompass all points of view. Another
example is the discussion relating to the design of someone’s house on the Hausbau
forum. At this end of the axis, the goal for individual contribution is not clear, and
progress is therefore not measurable.

From the precedents in this chapter, we can observe that there are at least one
of the following features present in an online crowd wisdom platform:

1. coordination among participants is made non-optional either by limiting a
resource (as in the case of Reddit r/Place) or by having a process (as in the
case of Wikipedia contributing chains)

2. each contribution is evaluated or validated, either by a community(as in voting
on Threadless) or by an algorithm as in ReCaptcha,

3. the number of contributing users on a given challenge is small in relation to
the number of total users,

4. rarely there are flat hierarchies, so they are avoiding the camel-horse-committee
problem.

The ease of use of the provided tools and the ability for users to appropriate
them for purposes not yet imagined by the developer is vital in most crowdcreation
examples (Gürsimsek 2012; R. B. Shapiro 2016).

11https://news.ycombinator.com/item?id=19932360 and https://news.ycombinator.

com/item?id=17894111
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Figure 4.16 – Crowd wisdom precedents. Mapped on the beneficiary axis vs. the mode of
interaction axis (top) and on the beneficiary axis vs. the goal clarity axis (bottom) Image credits: the
author.

ReCAPTCHA and Foldit represent two strategies to achieve the engagement of
the crowd. reCAPTCHA’s purpose is online legitimation — book digitizing is just
a byproduct. Foldit engages the players directly with the problem of folding protein
chains and makes it more accessible and fun by embedding it in a game. The first
one is to hook human computation as a byproduct of an often repeated action of
immediate value, such as blocking spambots on the Internet. The other is, through
gamification, to create an experience for the participants that is entertaining on its
own. We need to distinguish between crowdsourcing meant as massive outsourcing,
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which is when we ask a lot of people to address the problem at hand directly,
and crowdsourcing in the meaning of devising a byproduct-based problem-solving
system. The second strategy might be more suitable for architectural problems
because of the complexity of the problems at hand in architectural design.

Sustaining the high volumes of participants needed for successful crowdsourcing
requires an engaging and rewarding experience for every participant with the help
of game design. There are several precedents for the gamifiying of architecture. In
Martin Wynn’s examples, a game is developed to understand the stakeholders’ in-
terests (Wynn 1985). Hence, the roles in the game strictly replicate those present in
a real-estate development and include investor, city regulator, neighbor, etc. Sim-
ilarly, UN-Habitat and Mojang used gaming environments such as Minecraft to
visualize designs for public squares in Kenya and include the local communities in
the process (BBC News 2012). Most recently, Jose Sanchez has used single-player
gaming environments as a tool for architects, allowing the exploration of an open-
ended design search-space (Sanchez 2013). The examples of gamification, as means
of user engagement, described above, are not focusing on a specific architectural ty-
pology, the use of robotics or the use of massive human computing and are, therefore,
distinguishable from the method I am proposing to develop.

Forms of collaboration fit the architectural design process, while cooperation, or
parallel tasking, do not. This relates to the nature of architectural design problems
being wicked, i.e., it is difficult to formulate a step-by-step solution to them, hence
not possible to split the work into sub-tasks.

Crowdsourcing bears one significant distinction to the architectural precedents
that sourced input from future inhabitants to produce a design. Participatory Design
employs a one-to-one relationship between the participant and architectural output.
In other words, one future inhabitant enters information for one residential unit,
most likely theirs, and as such, influences the overall design. Foldit and reCAPTCHA
establish a ratio of thousands, even millions, to one. One book is digitized by
hundreds of millions of users, each of them typing only a word. In the same way,
the same molecule is folded virtually tens of thousands of times, every time by a
different player.

Design as a process is an iteration between creation and evaluation until a time
limit, or another resource limit of the designer is reached. Possible approaches for
engaging the crowd in this two-step iterative model are three.

1. the crowd co-creates architectural designs — The crowd contributes to the cre-
ation/generation of designs that get automatically evaluated by an algorithm.
The algorithmic feedback informs the crowd to change their creation strategy.

2. the crowd evaluates architectural design — The designs are algorithmically
generated and presented to the crowd, who then evaluate them. This approach
is probably more suitable for the evaluation of the subjective aspects or in
Elezkurtaj’s definition of an ill-defined problem (Elezkurtaj and Franck 2002).

3. full crowd engagement - co-creation plus evaluation — The design creation
step and the analysis step are both open-end for input to the crowd. The
challenge here is finding where and how to plugin the computational power so
that it contributes and amplifies the crowd’s input.
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We also need to look at what could be crowdsourced in practice. Architectural
design as a service solves many problems and is multi-faceted. The aspect of design
explored in my dissertation is that of organizing the spaces of a building, usually
called space allocation. It is the task performed by an architect at the very early
phase of design. It consists of laying out the rough proportions of the building and
the relative position and orientation of rooms, zones, and openings.
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Chapter 5

Game Design: Game Mechanics
and Gamification

“You can look at games as very simple simulated learning environments.
They constantly tell you how well you are doing by how well you score.
The more you learn the underlying principles, the better you score.”.
(Steve Jobs 1990)

The quote by Steve Jobs above hints at what game mechanics are and the vast
opportunities they open for both game designers and players. In the game of Simcity
(Figure 5.1), for example, at any given moment, you have a city, however small that
might be at the beginning. You start with a house or two, but it’s a functioning
simulated city. Then you build more, you level up, and add more advanced buildings.
You end up developing whole industries.

Figure 5.1 – Simcity. The game Simcity 5, as well as all previous version in the series, present the
player with a challenge to run a city. The game simulates the city based on encoded principles of how
economy, population and industries influence the growth of a city. The better the player learns those
principles the higher score they can achieve. Image credits: Electronic Arts.

In my research, I am primarily interested in games for their iterative and inter-
active nature, which can automate learning and behavior guidance. Games achieve
this by staging challenges and experiences for the players. This is the subject of
game design. A secondary interest to the ideas presented in this dissertation are
games and game technologies as human-computer interfaces, games as representa-
tion medium, and games as a gathering place.
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5.1 What is a Game?

Picture puzzles and the Rubik’s cube are examples of toys that rely on the player’s
spatial reasoning. They are not games. On the other hand, Tetris is a game that
uses the player’s spatial reasoning by giving them a challenge and measuring their
progress. Jenga is an example of a game where players compete based on their
intuitive understanding of structural statics.

A game must be fun to play, and fun in a game is hard to achieve (Koster and W.
Wright 2013). In Juul 2005, Jesper Juul, a Danish game designer and an associate
professor at the Danish Design School, defines a game very specifically to distinguish
it from toys, play, and other related phenomena.

“A game is a rule-based formal system with a variable and quantifi-
able outcome, where different outcomes are assigned different values, the
player exerts effort to influence the outcome, the player feels attached
to the outcome, and the consequences of the activity are optional and
negotiable.” (Juul 2005)

Jesse Schell, a video game designer and a Professor Carnegie Mellon University’s
Entertainment Technology Center, offers a more concise and generic definition:

“A game is a problem-solving activity, approached with a playful atti-
tude” (Schell 2008, p.47).

Before arriving at this definition, Schell 2008 reviews multiple reports from the
literature and distills a list of 10 qualities that make a game a game: Games are
entered willfully; Games have goals; Games have conflict; Games have rules; Games
can be won and lost; Games are interactive; Games have a challenge; Games can
create their internal value; Games engage players; Games are closed, formal systems.

5.2 Why Games?

There is a broad range of reasons, within and beyond these qualities, for the interest
of architects in games and of game designers in architecture: real-time, interactive,
spatial (2D or 3D), easily accessible and ubiquitous, simulations, learning envi-
ronments, story-telling, rule-based, a mix of control and uncertainty, multi-player,
gathering places for collective exchange and experiences, representational medium,
capacity to span between real and virtual space, an algorithmic agency in opposition
or assistance to human player agency, create and communicate alternate realities,
role-playing, immersive, etc. (Borries 2007; Oosterhuis 2001; Oosterhuis and Feireiss
2006; Oosterhuis, Hubers, et al. 2003; Walz 2010).

Oosterhuis 2001 points to real-time interactiveness both online and in the actual
building via sensors as a way to stage architecture as a game that architects design
and inhabitants play. The need for rich and diverse architectural environments in
computer games and the aim to save production costs have pushed the development
of generative design techniques, aka procedural content generation (See chapter 3).
Liapis, Yannakakis and Togelius 2014 position computer games “as the ideal appli-
cation domain for computational creativity for the unique features they offer: being
highly interactive, dynamic, and content-intensive software applications”.
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J. T. Wunderlich and J. J. Wunderlich 2011 describe the use of the game Minecraft
for architecture. The authors present 21 case studies that “show that Minecraft can
be used for the creation of architectures and towns, where group harmony and sus-
tainability can be achieved collectively and individually through CrowdSourcing”
(J. T. Wunderlich and J. J. Wunderlich 2011).

Games are of interest to my research for two main reasons:

1. First, for their player base, i.e., lots of people already in a community with
similar in-game skills.

2. Second, the game mechanics that game design employs to challenge, guide,
and educate a player into completing a mission.

5.2.1 Player base as human computation resource

Project Discovery (Figure 5.2) is a fitting example from Citizen science for the first
reason. The project benefits from access to the players of a popular game by offering
them virtual in-game incentives for completing a task that has otherwise no link or
meaning in the main game.

Project Discovery is built within the game EVE Online. EVE online is a mass
multiplayer online (MMO) space exploration game with very tight-nit and devoted
player communities. As an example of this, in 2014, a 21-hour battle ensued in-
volving 7,548 gamers, and spaceships valued at 330,000USD were destroyed (Moore
2014).

When it launched in 2016, it helped scientists categorize the human protein atlas
by offering a special mission to the players of Eve-Online. Players carried out over
4.5 million classifications in the first two weeks of April 2016. In total, 44 thousand
players processed 183.165 microscope photos of protein molecules with the required
redundancy to reach a consensus (Peplow 2016). An algorithm cannot do this on
its own due to the photos’ complexity, making them hard to analyze with computer
vision.

Each player was rewarded with a badge and in-game currency, thus embedding
the Project Discovery mission in the game economy but not in the gameplay. The
project is currently in its third phase and engages the players to help understand
the novel coronavirus causing COVID-19 and find a vaccine against it.
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Figure 5.2 – Project Discovery. Bottom left: battle sample from the real game of EVE Online where
Project Discovery unfolds. Top and bottom right: the mission screens of Project Discovery. Image
credits: CCP.
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5.2.2 Game mechanics as automation of guidance and edu-
cation

A game mechanic is a mechanism with which players are allowed to affect the state
of the game environment to overcome a challenge or with which the game poses
a challenge and so triggers the players to act (Hunicke, LeBlanc and Zubek 2004;
Järvinen 2008; Sicart 2008) (See also Appendix A: Interview with the Game Designer
Ben Buckton). An example of the former is the mining in Minecraft, where the player
hits blocks with a tool to remove them from the environment and collect them as
materials. An example of the latter is the day and night cycle in Minecraft, which
forces the player to build shelter or craft weapons as monsters appear in the night.

Miguel Sicart, a Professor in game design at the IT University of Copenhagen,
states that “for any agent in a game, the mechanics is everything that affords agency
in the game world” (Sicart 2008). In his Ph.D., the game designer Aki Järvinen
defines mechanics as “means to guide the player into particular behavior by con-
straining the space of possible plans to attain goals” (Järvinen 2008, p.254).

Game mechanics are not the same as game rules. “Game mechanics are con-
cerned with the actual interaction with the game state, while rules provide the
possibility space where that interaction is possible, regulating as well the transition
between states” (Sicart 2008). “Rules are normative, while mechanics are perfor-
mative”(Sicart 2008).

Game designers are the architects of behavior, challenges, and experiences within
a game. They make the rules and set out the goals for players and also are respon-
sible for the game agency that the player would perceive as an opposing force (See
Appendix A: Interview with the Game Designer Ben Buckton).

The use of game mechanics and game design to create full-fledged games with
purposes other than entertainment is labeled Serious Games (Jefferies 2018; Strahringer
et al. 2017). Usually, the fun factor is used as a means for motivating people to
achieve goals relating to health, training, or social networks (Backlund et al. 2007;
Jefferies 2018; Knöll 2018; Nintendo WiiFit 2015; Schreiner 2008; Strahringer et al.
2017). An example of a serious game application in science is Foldit.

Examples of the use of games in this full-fledged capacity in architecture are the
game Block’hood by Jose Sanchez (Sanchez 2015) where one of the mechanics is to
place architectural program blocks to keep resources in balance and Space Fighter
by MVRDV (Maas 2007) which is a collection of mini-games with focus on the real
estate market exploring the main mechanic of location (absolute and relative) and
land as a scarce resource (Figure 5.3). They could be considered Serious Games
for their educational qualities. However, from the perspective of the production of
architectural design, they are not aiming to create designs for a specific project site
and brief.
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Figure 5.3 – Architectural games. Top: Spacefighter by MVRDV, Bottom: Block’hood by Jose
Sanchez Image credits: MVRDV, Plethora-Project.

5.2.3 Game Design vs. Gamification and Gamefulness

It is important to note that the often circulating term gamification is not a notion
connected with games as they are seen in my work. Gamification is using game
design elements in non-game contexts to motivate and increase user activity and
retention usually employed in interaction design and digital marketing (Deterding
et al. 2011; Nacke and Deterding 2017; Zichermann and Cunningham 2011). In
general, it means the use of game-like progression of rewards to manipulate user
behavior by giving points for doing the ’right’ thing (See Appendix A: Interview
with the Game Designer Ben Buckton).

Examples of gamification, shown on Figure 5.4, are the reputation system for user
contributions on the forum for programming questions Stack Overflow (Movshovitz-
Attias et al. 2013; Papoutsoglou, Kapitsaki and Angelis 2020), the mayorships and
badges awarded to people for checking into physical locations in Foursquare (Frith
2013) and the activity rings and challenges of the Apple Watch (Zhao et al. 2016).

Academia, as well industry, have criticized gamification, and the term has gained
a bad connotation (Deterding et al. 2011). Even forerunner of gamification like
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Figure 5.4 – Gamification examples. Left: Stack Overflow badges assigned to forum contributors,
Middle: Foursquare gave points out for frequent checkins in places (2009), Right: An Apple Watch

showing the activity rings. Badges are for longest streaks of closing them. Image credits: Stack Overflow,
Foursquare, Apple, Inc.

Foursquare has moved away from these practices (Wilken 2016). In 2014, Foursquare
packed some of the gamification features in a new companion app called Swarm and
refocused the original Foursquare app on local search, i.e., a city guide. Nevertheless,
game elements in a non-game context are still a research area with high potential,
creating the need for a new term without the baggage. Deterding et al. 2011 make
the case for gamefulness, introduced by McGonigal 2011 and seemingly accepted in
this field of research (Bell 2018) (Figure 5.5). Gamefulness is complementary but
different to playfulness.

The distinction between gamified processes and full-fledged games with serious
purpose can be very subtle (Seaborn and Fels 2015; UpsideLearning 2015, p.27),
and is explored in the case study Sensitive Assembly (chapter 7), which offer two
modes of play. The first aimed to gamify the activity of building a predefined wall
design, and the other, a game similar to Jenga, produced topologically optimized
structures as a byproduct of the game.
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Whole Parts

Playing

Toys

(Serious) games

Playful Design

Gameful Design
(Gamification)

Gaming

Figure 5.5 – Game, Gamification or Toy. The relative positioning of full-fledged Games (including
Serious Games), Gamefulness/Gamification, Playfulness and Toys according to Deterding et al. 2011.
The focus in my work is on the wholistic application of gaming, i.e. Games. The horizontal axis
represents the spectrum from full-fledged game to a single game design element (avatars, narrative,
feedback, reputation, economies, competition under explicit rules, time pressure, etc.). For a more
exhaustive list of game design elements see (Reeves and Read 2009). The vertical axis represents the
spectrum from unregulated, open play to goal-based gaming. Image credits: Deterding et al. 2011.

5.3 Conclusion

What makes games interesting for this research is their players and mechanics.
Algorithmic simulation of spatial reasoning and the classification or arrangement
of complex shapes is what humans excel at, while algorithms still fail to deliver
relevant results.

Exploring both research questions — roles, tasks, and tools as well as design
paradigms — requires going beyond gamification, i.e., making the existing design
process and tools more engaging. The goal in the case studies presented in the
following chapters is to employ game design and games as a new holistic design en-
vironment — one where people focus on achieving a game goal and, as a byproduct,
create design solutions.
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Chapter 6

Four Fields and Eleven
Intersections

The Venn Diagram on Figure 6.1 shows the four fields presented in the last four
chapters: Participatory Design, Generative Design Techniques, Game Design and
Crowd Wisdom. The two ellipses on the left represent the fields of human agency.
The two ellipses on the right represent the fields of machine agency or automation.
Figure 6.2 enables the exploration of the first research question by presenting the
design paradigms that emerge in the 11 intersections between these four fields. The
state-of-the-art precedents, as well as my case studies, to be found in each intersec-
tion are mapped on Figure 6.3. Each case study offers an entry to explore the roles,
tools, and tasks that concern the second research question. The lack of precedents
in six intersections clearly outlined the research gap.

HUMAN AGENCY
(PARTICIPATION)

MACHINE AGENCY
(AUTOMATION)

CROWD WISDOM
Crowdsourcing, Citizen

Science and Mass
Collaboration

GAME DESIGN
Game Mechanics and

Gamification

ABCD

AB

ABCABD

ACDBCD

CD

BCAD

ACBD

A B

CD

PARTICIPATORY
DESIGN

Architects, inhabitants &
other stakeholders

GENERATIVE
DESIGN
Algorithms

Figure 6.1 – Intersections of the four fields. Image credits: the author.
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Figure 6.2 – Map of Design Paradigms. The design paradigms at the intersections of the four
fields, their descriptions and the identified research gap. Image credits: the author.
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Figure 6.3 – Precedents and own case studies. The projects to be found in each respective design
paradigm at the intersections of the four fields. The identified research gap is marked in thick black
line. Image credits: the author.
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CHAPTER 6. FOUR FIELDS AND ELEVEN INTERSECTIONS

6.1 The Four Fields

In Participatory Design (marked A on Figure 6.2) we have stakeholders creating
designs in an open-ended manner with examples such as cooperatives like the Berlin
Baugruppe R50 (See chapter 2). Another example is Block by Block. Even though
Block by Block uses the game Minecraft, it does not use game design elements but
simply the game technology for a meeting and modeling space. Hence it is considered
a pure participatory project.

InGenerative Design (B), we have architectural designs created using algorithmic
descriptions of design procedures. There are a plethora of state-of-the-art examples
for this category, such as the Split Grammars used to generate buildings and cities
in CityEngine (See chapter 3).

In Game Design (C), we have a game or an environment with elements of game
design with the purpose of creating an architectural design. There are plenty of
games with architectural topic such as SimCity, Block’hood, Spacefighter (See chap-
ter 5).

And, fourth, in Crowd Wisdom (D), we would have an organized crowd of non-
stakeholders creating architectural designs in an open-ended manner. An example
here would be Community Builds such as the impressive 200,000 players project
Build the Earth in Minecraft (See chapter 4). Similar to Block by Block, Build the
Earth in Minecraft does not use any game design elements, but rather the open
game world of Minecraft as a technology allowing easy modeling, collaboration, and
communication. So it is a pure mass collaboration project.

In summary, we have precedents for all four fields in their pure state.

6.2 Six Double Intersections

At the intersection of Participatory Design and Generative Design (AB), we have
configurators of all kinds where stakeholders create architectural designs using al-
gorithmic descriptions of design procedures. Examples here abound — Yona Fried-
man’s Flatwriter or the model box by BARArchitekten for the project Spreefeld
Berlin (Figure 2.7). From non-architectural domains, one can look at many mass-
customized products for a reference (Pine 1993).

Between Generative Design and Game Design (BC), we find games or envi-
ronments with elements of game design with the purpose of creating architectural
designs using algorithmic descriptions of design procedures. An example would be
the game Townscaper by Oscar Stalberg as well as the game Katamari Damacy
(??).

Mixing Participatory Design with Game Design (AC), we get stakeholders cre-
ating architectural designs within a game or an environment with elements of game
design. All role-playing simulations such as the projects by Ekim Tan’s Play the
City (Figure 2.8) or Baupiloten’s School Vision Game (Figure 2.11) are examples
of this category.

At the crossing of Game Design and Crowd Wisdom (CD), we get an organized
crowd of non-stakeholders creating architectural designs within a game or an en-
vironment with elements of game design. There are no architectural precedents in
this category. However, I have identified examples from other disciplines by general-
izing the category’s description. By substituting ’create architectural designs’ with
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Figure 6.4 – Examples of Generative Design and Game Design. Left: In Townscaper by Oskar
Stalberg the player creates mediavel towns by adding or removing coloured blocks. A generative
algortihm take care that the each new town element has contextually correct shape. The algorithm is a
combination of Wave Function Collapse and Marching cubes similar to the Model Synthesis approach
presented by P. Merrell 2007. Right: Katamari Damacy is a game with a procedural game mechanic.
In the game the player needs to roll a ball, which like a snowball, absorbs objects from the environment
that fit the current size of the ball. As the player progresses and the ball gets bigger it can absorb larger
and larger objects. Image credits: Stalberg; Namco.

’solve a domain-specific problem’, the description becomes ’an organized crowd of
non-stakeholders solving a domain-specific problem within a game or an environment
with elements of game design’. Project Discovery is an example of this. I present
two case studies here. The early explorations with 20.000 BLOCKS, under the title
The Platform Game as well as the project Sensitive Assembly in its Jenga mode.

At the intersection of Generative Design and Crowd Wisdom (BD), we find an
organized crowd of non-stakeholders creating architectural designs using algorith-
mic descriptions of design procedures. The category is being explored only as of
recently, with projects such as CraftAssist (Figure 6.5). In CraftAssist, a recently
published project by the A.I. group at Facebook, researchers gave Minecraft players
the simple task to “build a house of 4x4 blocks” and recorded 2500 unique designs
(See Figure 6.5) (Gray et al. 2019; Srinet et al. 2020). Designing a house is an
extremely wicked problem. Everyone will approach it differently. But we can learn
from this multitude of ideas if we collect them. The team used this large variety of
designs to train an AI bot to build a house in the game for you.

When the stakeholder is not involved, since Participatory Design is missing here,
the interests of the stakeholders are not represented as a driver in the generative de-
sign. The motivation of the third-party contributors drops, or the crowd starts hack-
ing and guiding the system into open-ended explorations. Picbreeder (Figure 6.6)
is an example from the non-architectural domain. In Picbreeder people were shown
an image and eight ways it could evolve and asked to pick an option they like. A
person will get tired after several images, so they give their progress to the following
user. This, in effect, resulted in collaborative guidance of the generative algorithm
(Secretan, Beato, D Ambrosio, et al. 2008).

And finally, by mixing Participatory Design with Crowd Wisdom (AD), we get
stakeholders and a crowd of non-stakeholders creating architectural designs in an
open-ended manner. Examples here are the traditional architectural competitions
and online forums such as Hausbau-forum. This category relies primarily on com-
munication technology to deliver successful projects, and the architectural domain
lags significantly behind other disciplines. It is worth mentioning the advanced use
of community discussion spaces and carefully orchestrated creative constraints of
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Figure 6.5 – CraftAssist by Facebook AI Research. Image credits: Gray et al. 2019.

Figure 6.6 – Picbreeder. Left: the interface for the user to select and evolve images. Right, examples
of images evolved with Picbreeder. Image credits: Secretan, Beato, D’Ambrosio, et al. 2011.

Reddit’s project r/Place as well as the intricate curating system for Wikipedia’s
content (Figure 4.7).

To summarize, five crossings have architectural precedents, one — Game De-
sign and Crowd Wisdom — is considered a research gap in architecture but has a
precedent in other fields (Project Discovery).

6.3 Four Triple Intersections

At the intersection of Generative Design, Game Design and Crowd Wisdom (BCD),
we have a crowd of non-stakeholders creating architectural designs within a game or
an environment with elements of game design using algorithmic descriptions of de-
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sign procedures. There are no architectural precedents. However, the game Foldit is
a precedent from the field of molecular biology. First, Foldit assigns points to play-
ers as feedback for how well they have folded the protein molecule (Game Design).
Second, thousands of players play it and communicate with each other by sharing
tips and even partially completed levels (Citizen Science). And third, each player
can use a set of automatic tools such as the Shake and the Wiggle tools to algorith-
mically seek better molecule backbone and sidechain positions (Generative Design)
(Foldit Wiki Contributors 2021). My project Sensitive Assembly, more specifically
the Sunlight mode is a study I conducted to explore this category.

At the triangle of Participatory Design, Generative Design and Crowdsourcing,
Citizen Science and Mass Collaboration (ABD), we find stakeholders and a crowd of
non-stakeholders create architectural designs using algorithmic descriptions of design
procedures. Neither architectural nor non-architectural precedents exist. I present
the Project Reptiles (chapter 9) as an initial exploration of what this category might
bring.

Crossing Participatory Design, Generative Design and Game Design (ABC), we
have stakeholders create architectural designs within a game or an environment with
elements of game design using algorithmic descriptions of design procedures. Neither
architectural nor non-architectural precedents exist.

And last, at the intersection of Participatory Design, Game Design and Crowd
Wisdom (ACD), we have stakeholders and a crowd of non-stakeholders creating
architectural designs within a game or an environment with elements of game design.
Again no architectural precedents exist, but the gamified computer science forum
Stack Overflow is an example from another domain.

Altogether, all four three-field intersections have no architectural precedents.
Fortunately, two have precedents in other fields (Foldit, Stack overflow).

6.4 The Core Intersection of All Four Fields

The ultimate intersection of all four fields Participatory Design, Generative Design,
Game Design and Crowd Wisdom (ABCD) gets us to stakeholders and a crowd of
non-stakeholders creating architectural designs within a game or an environment
with elements of game design using algorithmic descriptions of design procedures.
Neither architectural nor non-architectural precedents exist. I present three own
projects in this category. Two projects with the 20.000 BLOCKS framework in
Minecraft (Combinatorial Design and Play-Design-Build, see chapter 8) as well as
the case study Rechteck2BIM (See chapter 10).
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Part II

EXPLORATION
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Figure 6.7 – The four case studies. Image credits: the author.

In this part, I present four case studies (Figure 6.7) that are the result of my
work and student work I have supervised. The Exploration part concludes with the
Discussion and Conclusion chapters.

Taken together, the case studies aim to explore the first research question: What
design paradigms lie at the intersection of participatory design, generative design,
crowdsourcing, and games? As such, the case studies are positioned in four of the
six intersections defined as the research gap on Figure 6.3.

On its own, each case study explores one or more aspects of the second research
question. Namely: What roles, tools, and tasks can be offered at this intersection for
the creative involvement of the various groups — architects, stakeholders, third-party
contributors?

Each case study is presented in its own chapter following a shared structure.

1. Design Paradigm — introduces the object of the participatory design and
positions the case study on the map of four fields.

2. Implementation and Setup — describes the technical setup of the software
and physical prototypes used in the case study.

3. Machine Agency — elaborates on the tools available to participants in the
case studies. What are the used generative technique and game mechanics, i.e.,
the agency of the game opposing the player? The “Machine Agency” section
of the case study 20.000 BLOCKS introduces Playable Voxel-Shape Gram-
mars. This generative technique from the class of shape grammars, mixed
with game design, slowly took shape as the projects using 20.000 BLOCKS
were developed.

4. Human Agency — documents the involvement of people in the case study,
i.e., which roles are involved, what tasks are crowdsourced from who to whom,
and the game design around which the players interact with the prototypes.

5. Take-aways — present the key learnings from the respective case study.
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Chapter 7

Sensitive Assembly

“All models are wrong, but some are useful.” (George Box 1979)

Figure 7.1 – The installation Sensitive Assembly. At NODE Digital Art Festival in Frankfurt,
Germany, April 2015. Image credits: Oliver Tessmann.

7.1 Design Paradigm

Sensitive Assembly is an interactive installation and game presented at NODE15
Festival Digital Art in Frankfurt in 2015. The project was led and almost exclusively
developed by me at the Digital Design Unit of TU Darmstadt. It is a prototype for
interactive engagement in designing and assembling structures made out of identical
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BCD
Architectural designs are created,
using design-generating algorithmic
procedures,
within a game or an environment
with elements of game design,
engaging a crowd of non-
stakeholders with an open call.

DESIGN PARADIGM AND
PRECEDENTS

CROWD WISDOM
Crowdsourcing, Citizen
Science and Mass
Collaboration

RESEARCH GAP
ARCHITECTURE

GAME DESIGN
Game Mechanics and

Gamification

Precedent (Non-Architecture)
Precedent (Non-Architecture) in the Research Gap

Precedent (Architecture)RESEARCH GAP
ALL DOMAINS

ABCD

ABCABD

ACDBCD

CD

AB

BCAD

ACBD

A B

CD

Own Case Studies

PARTICIPATORY
DESIGN

Architects, inhabitants &
other stakeholders

GENERATIVE
DESIGN
Algorithms

CASE STUDY
SENSITIVE ASSEMBLY

Project Discovery
Sensitive Assembly
(Jenga play mode)

n/a

Foldit
Sensitive Assembly
(Sunlight play mode)

n/a

CD
Architectural designs are created,
within a game or an environment
with elements of game design,
engaging a crowd of non-
stakeholders with an open call.

Figure 7.2 – The case study Sensitive Assembly on the map of design paradigms. The Sunlight
play mode responds to design paradigm BCD (Generative Design + Game Design + Crowd Wisdom).
At the same time, the Jenga play mode falls under design paradigm CD (Game Design + Crowd
Wisdom). Image credits: the author.

small-scale elements. This process can generate structurally optimal designs for
porous walls while remaining entertaining and engaging even for people outside
the fields of architecture and civil engineering. Here, players unwittingly become
designers of architecture and structure.

Turn-based game rules make the wall assembly a participatory and open-ended
process. The use of lightweight building blocks enables participants to easily place
and remove them (Figure 7.1). As in the famous tower-building game Jenga, where
the game blocks of a tower are removed one by one, in Sensitive Assembly , players
take turns removing blocks from a wall. Depending on the game mode, either
a predefined façade composition must be recreated, or the gameplay results in a
materially optimized structure that supports the top row of blocks.

The installation uses 3D scanning, structural simulation, and a state-prediction
algorithm to aid the participants in near real-time in their decisions at each turn.
Instead of solutions, algorithms could provide different bits of relevant information
and assist in the design process. The main goal of participants in Sensitive Assem-
bly is to generate and assemble structurally plausible façade designs with various
opening configurations. Sensitive Assembly creates a motivating game experience
that spans the digital and the physical world. Reasons for gamifying the assembly
of block-made walls are to leave decision-making solely, and in this case literally, in
the hands of humans.

Each game starts with a wall that is then perforated step by step and captured in
real-time with a Microsoft Kinect 3D sensor. After each turn, the digital 3D model
is automatically regenerated and updated in Rhino, thus presenting the newest

148



openings there. Then a simple structural analysis is conducted. The results of this
analysis are, in turn, projected onto the wall as points of light in false colors, giving
the players an indication of which blocks are relevant for the supporting structure
and which can be removed. Therefore, augmented reality becomes an assistant in
constructing and building.

Figure 7.2 shows the position of the case study Sensitive Assembly on the map
of design paradigms within the four fields investigated in this work. Sensitive As-
sembly is designed as a game where players create and build wall designs, so it
falls within the Game Design field (C). The case study does not address a specific
project brief and, as such, does not have stakeholders, i.e., falls outside of the field
Participatory Design (A). As a game, it engages third-party contributors in creating
wall designs and, therefore, belongs to the field of Crowd Wisdom (D). The Sunlight
play mode of Sensitive Assembly uses generative algorithms procedurally generate
player missions from predefined wall designs, i.e., this particular mode belongs to
the field of Generative Design (B) as well. The Jenga play mode does not utilize
generative algorithms. The attributes listed above place the Sunlight play mode of
Sensitive Assembly in the design paradigm BCD: A crowd of non-stakeholders cre-
ates architectural designs within a game or an environment with elements of game
design using algorithmic descriptions of design procedures. At the same time, the
Jenga play mode of Sensitive Assembly falls under design paradigm CD: An orga-
nized crowd of non-stakeholders creates architectural designs within a game or an
environment with elements of game design.

7.2 Implementation and Setup
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Figure 7.3 – Sensitive Assembly plan. Image credits: the author.

7.2.1 Physical setup

The plan of the setup of Sensitive Assembly can be seen on Figure 7.3. The instal-
lation consists of cardboard building blocks, a wall frame with a projection base, a
sensing system, projection, and display facilities, as well as hardware and software
that computationally link these elements (Figure 7.4).
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Figure 7.4 – The components of the Sensitive Assembly set-up. Image credits: the author.

Wall and wall blocks

The aim for the material system of the wall is to use the concept of digital materials,
namely being “reversibly assembled from a discrete set of parts with a discrete set
of relative positions and orientations” (N. Gershenfeld, Carney, et al. 2015). The
material system of blocks described below is flexible and affords a variety of additive
or subtractive assembly sequences (Figure 7.5).

Figure 7.5 – A sequence of subtractive wall operations. From a fully closed wall until the wall
collapses. Image credits: the author.

The first step was to develop a physical building block that could be stacked
vertically and horizontally to make a wall-like grid. The grid-based approach al-
lowed us to approximate a façade design into hollow and solid areas in the grid. An
important factor was that the grid could take multiple states differentiated by the
presence or lack of a block, thus allowing for many wall designs within the same sys-
tem. Another requirement was that the grid was a statically indeterminate system,
opening gameplay possibilities.
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In the game Jenga (Figure 7.6), each block rests on three other, load-bearing
blocks. This static indeterminacy makes it possible to remove blocks with no load-
bearing effect. In Sensitive Assembly , this principle is translated to a wall made of
cardboard modules placed on top of and next to each other without any adhesive.
The static indeterminacy in Sensitive Assembly comes from the two notches and
two protrusions in the blocks’ design that allow blocks to interlock. A block is not
only supported by its lower neighboring blocks but is also able to span distances
that significantly exceed the block size, supported by lateral neighbors (Figure 7.5).

Figure 7.6 – The game Jenga consists of 54 blocks. The game starts with all blocks arranged in
a tower of 18 rows of three blocks, each oriented in alternating directions. Players take turns taking
a block out of the tower and placing it on top, paying attention not to knock the tower down. The
last player able to make a successful turn before the tower collapses wins the game. Image credits: the
author.

Figure 7.7 – The wall is made from interlocking blocks. Notches and knobs distribute the forces
across all neighboring elements of every block. Left – schematic front view, and right – structural axial
model. Image credits: the author.

Such a construction creates a statically indeterminate system that allows chang-
ing the force distribution within the wall (Matheson 1971). Removing one or several
blocks does not cause an immediate collapse of the wall or parts of it. Instead,
it leads to an activation of the lateral notches and knobs that become alternative
supports. The structural ambiguity and redundancy require the tactile player expe-
rience in judging structural stability and are, hence, prerequisites for the formulation
of game rules.
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Fast and easy production of the individual blocks became an important aspect
due to the large number of grid cells required to reach a grid resolution allowing
the wanted creative freedom. We worked with a grid size of 20 x 8 = 160 blocks.
The building blocks of the wall are made from two elements of laser-cut cardboard
that can be easily assembled by hand in three steps as shown on Figure 7.9. The
friction of the chosen material was high enough to allow for sound construction and
low enough to allow for easy removal.

The blocks are designed to be easy to remove from the wall, simplifying the
interaction of the participants with it. The four sides of the block that interface
with neighboring blocks have slender notches. The fifth side, facing the Kinect 3D
sensor, is completely closed for optimal detection. The sixth side, facing the players,
is partly open for easier grabbing and pulling (Figure 7.10). It features a rotated
square cap used as a projection surface during play.

Figure 7.8 – The wall block design. Image credits: the author.

Figure 7.9 – The assembly sequence of a wall block. Two parts are lasercut from cardboard, then
folded and dove-tailed into each other. Image credits: the author.

Vertical timber pillars on both sides of the wall frame the blocks and withstand
the horizontal thrust in the system. An inaccessible white platform behind the wall
acts as an anti-tilt counterweight. It is also used as a projection surface for the
virtual wall shadow. Players stand in the front of the wall and look from the side
or over it to see the projected shadow.

Equipment

The installation Sensitive Assembly consists of the following elements (Figure 7.4
and Figure 7.3):
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Figure 7.10 – Grip and pull. The design of the blocks allows the easy gripping and pulling of blocks
out of the wall. Image credits: the author.

1. A wall made from cardboard blocks arranged in horizontal rows.

2. A counterweight platform to project the virtual shadow on.

3. Two Microsoft Kinect devices, positioned at the wall axis on the opposite
side of players so they can capture the wall states unobstructed. This Kinect
constantly scans the wall to reconstruct its current state in a digital 3D model.
The second Microsoft Kinect is to record the changing states of the wall during
gameplay and feed these data into a machine-learning algorithm that seeks to
predict the behavior of the wall.

4. Three LCD projectors used in the projection mapping setup. Two projectors
displayed the instructions to players and the feedback on structural stability
for each block. They were both mapped on the player-facing side of the wall
from different angles. This creates redundancy to make up for any occlusions
occurring from the players blocking one or the other projection beams. The
third projector displayed the simulated wall shadow on the wall side opposite
the players.

5. A webcam that captures the backside of the wall.

6. A screen that displays the webcam image of the current wall and the images
of the prediction algorithm showing the expected future state of the wall.

7. A computer to manage the data capture from the Kinect and the webcam,
compute the digital models and control the projection mapping.

8. A TV screen that showed the current feed of the webcam a photo taken during
previous gameplays that best predicted the next wall states.

7.3 Machine Agency

7.3.1 Assistive systems

Central to the approach is the well-known concept of feedback. Sensitive Assembly
expands the feedback loop beyond the digital realm, integrating it with the phys-
ical making — the assembly and disassembly. To aid the players’ decision which
block to remove next, Sensitive Assembly uses reality augmenting projection map-
ping to overlay non-apparent structural information onto the wall blocks. Matching
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the computational structural evaluation to the perceived structural stability of the
physical block grid was essential to create a smooth player experience.

There are essentially two technological means to augment the reality perception
of players. The first is projection mapping, where an LCD projector projects digital
information onto physical objects of interest. And second, Mixed Reality (Aug-
mented or Virtual), where the player wears a headset with an active display that
overlays digital information onto their vision. In Sensitive Assembly , the higher
number and flux of participants is an essential generative factor. Therefore, we
wanted to minimize the prerequisites for participation. The first strategy, with pro-
jection mapping, seemed more suitable, as it does away with the need for players to
put on a headset. It also ensures everyone in the installation’s vicinity can see what
the players see for maximum engagement.

Simulation-based feedback

While people play, two Microsoft Kinect sensors and a webcam constantly observe
the wall (Figure 7.11). A Grasshopper definition handled the geometrical recon-
struction and various simulations.

The first Kinect sensor is linked to Grasshopper and used to generate a digital
3D model of the wall. The Kinect returns an array of points mapping the Kinect-
facing surfaces of each block. Once a player removes a block from the wall, the
change is also present in the point cloud of the sensor and leads to an update of
the digital model. The point cloud is read by Quokka1, an add-on for Grasshopper.
The Grasshopper definition then sorts out the missing blocks using a grid of boxes
by counting the point cloud points within each box. If the number goes lower than
a given threshold, the corresponding block is counted as missing.

We observed that sometimes a block, while present in reality, would not be
reconstructed in the digital model because of the calibration of the Kinect point
cloud reinterpretation. That missing-block bug occurred most often when a large
span was hanging down away from the strictly orthogonal rows and columns of
the wall matrix (Figure 7.26). In most games, besides during the final stage, this
did not affect much the output of the structural simulation because of the sheer
number of present and correctly detected blocks. However, improving the precision
of block recognition can help to distribute even more correct information to players
— especially towards the end of the games when there are very few blocks left in
the wall.

Based on the reconstructed wall topology, an axis model is generated and ana-
lyzed with Millipede2, an add-on for McNeel Grasshopper by Sawako Kaijima and
Panagiotis Michalatos. The model is used to simulate and analyze the structural
capacity of the current wall configuration. I chose the metric Y rotation — rotation
around the Y-axis, i.e., perpendicular to the wall plane — as the metric to display
to the players (Figure 7.12). Among other available metrics such as displacement,
stress or momentum, the feedback from the Y rotation metric proved to be closest to
the tacit experience of players, hence most intuitive to understand. The determined
structural deformation from the analysis model, measured for each block, is then
mapped to a color gradient. The resulting false-color dot grid is sent to Processing

1https://www.food4rhino.com/en/app/quokka
2https://www.grasshopper3d.com/group/millipede
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Figure 7.11 – Wall state reconstruction. Top-left: the Kinect facing side of the wall (photo:
Christian Leicher), Top-right: Player interacting with the augmented wall. Bottom: Kinect point cloud
data, including a player, and its reinterpretation as a block wall and a structural model. Image credits:
the author.

via UDP for projection onto the wall.
The false-color dot grid is projected onto the wall and guides the players. Blocks

colored in red have higher deformation,i.e., they are needed for the structural in-
tegrity of the wall, and green blocks can be taken away (Figure 7.13). The front
projection mapping illuminated only small areas of the blocks (Figure 7.1). The rest
of the wall surface was not cast with light. Thus, the wall received a media skin re-
vealing its invisible structural capacity as a diagrammatic infographic (Figure 7.14).
The augmentation supported the players’ intuitive understanding of the structural
behavior of the wall.

The last step in Grasshopper calculates the wall’s shadow from an imaginary
light source. The grid of boxes is transformed into a mesh, and a shadow outline is
generated on the XY plane using a virtual light source represented by a 3D vector.
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Figure 7.12 – Structural analysis. Deformation simulation is running in real-time in Millipede,
an add-on developed by Sawapan for McNeel Grasshopper: Top: the simulated deformation is shown
to illustrate the relevance of choosing Y Rotation as the feedback metric. Lower row — three steps
showing various amounts of missing blocks and the comparative structural deformation of the present
blocks. Image credits: the author.

The shadow outline is prepared as a list of points and sent to Processing via UDP.

A custom-developed Processing sketch managed the game logic for the various
game modes and the projection mapping. Using the User Datagram Protocol (UDP)
with gHowl (add-on for McNeel Grasshopper) and the UDP library for Processing,
I set up a bi-directional real-time link between Grasshopper and Processing.

The Keystone library for Processing handled the projection mapping allowing a
perspective distortion of the projected image for flat projection surfaces.

The geometry received from Grasshopper (structural color coding and shadow)
is rendered onto a Keystone surface in the liquid crystal display (LCD) projector
screens (Figure 7.13). The Keystone surface has four corner handles, which we could
use to match its perspective correction to the actual artifact of the wall and shadow
plate.

The process described above is shown on the flow chart on Figure 7.15. A full
feedback loop runs nearly in real-time, although it has a slight lag of 10–40 seconds
due to its many computational and transformational steps.

Prediction and machine learning

The second feedback mechanism in Sensitive Assembly predicts the near future
states of the wall structure. Figure 7.16 shows a snapshot that demonstrates the
finding of both similar states during different games and accurate prediction of
collapses.

Stig Anton Nielsen developed the prediction algorithm for his doctoral work at
the Chalmers University of Technology in Gothenburg. The algorithm combines
cluster analysis and sequential data mining to detect temporal re-occurrences in
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Figure 7.13 – Projection mapping textures. The wall and shadow images are transformed to
match the perspective correction resulting from the falling angle of the projection. Left: Virtual
model for debugging purposes; middle: two front projections; and right: the shadow projection. This
augmentation subsystem also acted as a game user interface (UI), displaying scores, missions, and other
gameplay-related information over the lower portion of the wall. Image credits: the author.

Figure 7.14 – Wall sides. Left: The wall shape and its projected infographics on the front. Right:
On the backside the wall’s shape is very much perceived as an architectural design. Image credits: the
author.

massive flows of data (Cabanes and Bennani 2010). This kind of machine learning
enables the machine to predict future states once it detects sequences of events
similar to previous occurrences. After numerous games have been scanned, the
algorithm recognizes specific perforation patterns in the wall that had caused the
wall to fall in previous games. Based on this past information and the interpretation
of repetitive patterns, the algorithm predicts the future behavior of the perforated
wall.
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Figure 7.15 – The flowchart of the feedback loop. Green items show events in the real world.
Gray ones are digital model steps. On the left are the steps of the program running on computer A and
facilitating the structural simulation augmentation and the gameplay interface. On the right are the
steps of the prediction algorithm running on computer B. Image credits: the author.

Figure 7.16 – Collapse prediction feedback. Images on the monitor show both the current state of
the wall in the bottom half, and the next five ’moves’ from the prediction on the top half. The predicted
images run in continuous loop, until another prediction is found. If no valid prediction is found the top
half is blank. Image credits: Stig Anton Nielsen.
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The algorithm analyses the wall’s porosity, edge contours, and structural coher-
ence. Increasing porosity, together with longer horizontal (stressing) edges, increases
collapse probability. The algorithm uses the image material recorded in past games
to represent the future behavior of the structure using images of actual wall states
from the past so that the information is presented in a way that is understandable
for humans.

The prediction must capture both data and a representation, which can be re-
trieved and displayed to the player when necessary. The Kinect sensor was used to
capture data, and a webcam was used to capture the representation. The Kinect
captures 3D point cloud data from each step of the game, but before using the data
for the algorithm, features were extracted by looking at the internal relations of the
3D points. These features — edginess, porosity and coherency — are not directly
structural analysis, but they are designed to characterize the structural state of the
wall (Figure 7.17). Edginess looks at the distribution of edges in the structure,
porosity looks at the distribution of small holes, and the coherency describes longer
stretches of continuous matter in the structure.

Figure 7.17 – Edginess, porosity and coherency. A prototype mock-up of the installation, where
relevant features were designed for extraction. The left image shows an image of the structure, and
the other two images (middle and right) visualize the different features: edginess, porosity and co-
herency. Image credits: Stig Anton Nielsen.

The algorithm is not so much concerned with the actual structural integrity of
the wall. Instead, it develops its own understanding through this feature space
and the sequence of states. After experiencing and remembering previous games, it
becomes able to compare the current game to prior games. Obviously, all the games
are different, but they have similar sequences after discretizing irrelevant features.
For example, the start of the game P may be similar to the games A, B, and C,
while the end of game P is similar to games I, J, and K. When P is at its start, the
system will use start sequences from games A, B or C to predict the continuation,
while at the end of game P, the system will use sequences from the games I, J or
K for prediction. If the current game P is sufficiently unique, no prediction will be
shown, but data and representation from game P are still recorded and used for
predictions in the following games.

Initially, the predictive representation did not give helpful information. However,
after a day of training on numerous games of the type Jenga, it could be observed
that the system predicted collapses with an accuracy of just a few moves ahead.
The system was also very reliable in retrieving similar games from the database.

In contrast with the structural analysis through Millipede, the prediction algo-
rithm is not re-creating an additional digital representation of the wall to simulate
its behavior but instead analyses patterns over time. As the notches in the building
blocks led to a relatively complex structural behavior, the shortcomings of the struc-
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tural analysis were balanced by the prediction. However, unlike the static model,
which provided feedback from the first game, more games were needed to train the
algorithm and improve its precision before it began being useful.

7.3.2 Browsing of player-created wall designs

Every wall state is recorded during the gameplay, and the resulting dataset can be
made searchable. The dataset-browsing functionality is implemented in Rhino/Grasshopper
and requires the user to be in the role of an expert. However, with a custom-
developed user-friendly interface that doesn’t require specialized software to run,
anyone — expert or non-expert — could potentially use the browsing mode to find
designs according to given criteria.

The user looking for a specific design can search either by specifying a range of
blocks the wall must have (Figure 7.18) or by passing a rough design (Figure 7.19).
The returned results are sorted by structural performance, with the most stable
designs shown on top. The two search functions can be combined in a complex
search.

The search-by-blocks functionality can be helpful when limited material supply
or material budget is available. That way, the person looking for a design can control
the final costs. They can specify the minimum and the maximum number of blocks
in the wall and the maximum number of blocks in the top row.

The search-by-design option is more powerful. In this mode, the person looking
for a design can roughly sketch where they prefer to open the wall or where they
want to have the wall closed. Generating a wall pattern from the sketched outlines
is easily possible by simply voxelizing the wall outline and removing the voxels that
fall in an area specified by the user as a wall opening. However, the user-generated
designs can be helpful as a source of inspiration, offering a moment of surprise as
they would not always follow the most efficient or the most optimal way to distribute
the wall blocks into the wanted facade pattern.

Furthermore, there is the added benefit that the search results have already
existed in reality, and as such, they are validated for their real-world performance and
feasibility. The search results are sorted with the most structurally sound designs
first. Suppose the user is looking for a facade with a rectangular window. In that
case, they might get suggested a facade with an arc window as a structurally stable
option that satisfies their criteria.

The 21.000 recorded designs during the NODE exhibition constitute a proof-of-
principle dataset. The designs are somewhat rudimentary with their resolution of 20
by 8 blocks, yet the search method can be applied on datasets with more complex
designs.
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Figure 7.18 – Searching by a number of blocks. The expert user looking for a suitable wall design
can specify an upper and lower limit. The top three most stable designs that contain the wanted number
of blocks are returned. The top 3 row shows the most stable designs with a block count between 20
and 81. The middle and bottom rows show the top 3 most stable designs with 105 and 145 blocks.
There are a total of 21844 designs to search from. Image credits: the author.

Figure 7.19 – Searching by design. The user can sketch a facade design by specifying the outlines
of wanted openings and areas that must remain closed. Various costs can be assigned for calculating
the difference between designs. A difference of +1 block and a difference of -1 block can have different
costs. Each row shows the search sketch on the left and the top three most fitting designs next to
it. Image credits: the author.
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7.4 Human Agency

Human agency in Sensitive Assembly is constituted mainly by the visitors of the
NODE Art Festival. As players interact with the installation, they are in the role
of third-party contributors, i.e., the crowd.

The exhibition visitors played two game modes described in the previous section:
Sunlight mode and Jenga mode.

In the span of seven days, more than 100 participants played about 50 games,
consisting of more than 21,000 wall states.

While people were playing, we tracked whether they stayed for an entire game or
just a few moves, whether they played alone or collaboratively, and to what extent
they used the projection mapping feedback for structure and shadow, respectively.

An additional mode of engagement, that of an architect using the browsing tool
to instantiate wall states from the database, was not tested in a user study. It was
used to develop the concept of autocomplete that was later tested in the Project
Reptiles case study.

7.4.1 Game design

Using the physical setup and the two feedback mechanisms as a framework allowed
the development of several game modes.

The game modes’ main requirement was to let the players become unwitting
façade designers and engineers.

Two main approaches are possible:

1. Additive — starting with zero blocks and following a set of rules to add blocks
until a design emerges iteratively;

2. Subtractive — starting with a fully closed wall and following a set of rules to
remove blocks one by one until a design emerges.

Quick in-house tests showed that the subtractive approach was more engaging for
potential players because the wall is present on site all the time, drawing attention
and inducing curiosity. An additional engaging feature of this approach is that the
wall collapses in an effective and entertaining way after a critical number of blocks
are removed.

All participants were briefly instructed on site what the game rules of the current
game mode were.

We distinguish two main aspects of participant involvement:

1. Collaborative assembly – where the design solution is known but is to be built
using non-specialized labor;

2. Collaborative design – where the design solution is unknown beforehand but
must comply with the given material and environmental constraints.

Collaborative assembly — Sunlight play mode

The Sunlight play mode aims to involve participants in the assembly process of a
façade. The game mode is built on one of the architectural functions of a wall,
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namely, as a sunlight filter. The overall game goal here was to subtract wall blocks
corresponding to the desired insolation from a given light source (virtual sun) (Fig-
ure 7.20).

The Sunlight play mode works with predefined façade designs, which vary in
how they challenge the grid structure. Some, for example, a regularly perforated
façade, are more stable, while others, such as a set of random openings or ribbon
window façade, are less stable (Figure 7.21 left). We used this difficulty parameter
to introduce progressing game levels.

Figure 7.20 – Instructions for the Sunlight play mode. Image credits: the author.

The game rules of the Sunlight play mode are formed around a single player
interacting with the wall. A predefined façade design (Figure 7.21 right) with mul-
tiple openings was split into single-block missions: the first beginning from a solid
wall, and the last resulting in the predefined design. Each mission consisted of a
random block automatically removed in the digital model. Light falls through this
new aperture, and the simulated wall shadow gets perforated. This new shadow
shape is projected onto the platform. The player must guess which block to remove
from the physical wall to match its perforation to the digitally generated shadow
projection.

The Processing sketch then checks whether the list of missing blocks contains the
box number given as a mission to the player. If so, a success message is displayed,
the player’s score increases, and the next mission is given.

Collaborative design — Jenga play mode

The well-known game Jenga is the inspiration for the collaborative design play
mode. To turn players into co-designers, we needed an objective design evaluation
criterion, which was both computable and tactile. Structural performance emerged
as an excellent measurable parameter for such a criterion. Two or more players take
turns in removing blocks from the wall, which increases its porosity and makes it
less and less stable (Figure 7.22). The game ends when the top row of the wall
collapses. The winner is the last person to successfully remove a block from the wall
(Figure 7.23). The idea of this arcade mode was to let players decide which block
to remove hence turning them into co-designers.

In this game mode, the overlaid representation of the digitally calculated struc-
tural performance aided the players in deciding where to draw a block. The wall
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Figure 7.21 – Sunlight play mode. Left: Three difficulty levels from the single player mode. Right:
A snapshot from a game – the mission target is the blue rectangle in the shadow. Image credits: the
author.

Figure 7.22 – Instructions for the Jenga play mode. Image credits: the author.

Figure 7.23 – Jenga play mode. Left and middle: Two players playing against each other. Right: The
game is over when the top row of blocks collapses usually leading to the whole wall shattering. Image
credits: Oliver Tessmann.
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itself and the feel of each block were also giving vital tactile information to the users
whether the block was structurally important or not. The predicted wall state,
shown on the external monitor, was either warning the players of an impending
collapse or reassuring them that no collapse would occur within a reasonable time-
frame. With the information from the prediction, the structural representation, and
the physical ’feel’ of the elements in the wall, the players could improve decisions
and adjust their level of caution for each modification they made to the wall.

7.5 Takeaways

The following takeaways are based on digitally recorded wall states, observations on
site, and informal conversations with the players.

7.5.1 Takeaway 1: Challenges vs. Instructions

. The Jenga play mode was better in engagement than the Sunlight play mode.
This is most likely due to the players experiencing a challenge they need to solve
versus being given step-by-step instructions. Also, the much faster game pace and
the social component added to the game when people played against or with each
other contributed to making the Jenga play mode more popular. The two players
acted as rivals, usually at the start of the game. Towards the end, when the moves
became more and more challenging, the players often switched to a collaborator
mode – discussing together which blocks are safer to remove (Figure 7.24).

Figure 7.24 – Competition and collaboration. Rival players acting as collaborators and discussing
which block is the safest to remove next in the Jenga play mode. Image credits: Oliver Tessmann.

166



Figure 7.25 – Fuzziness in the player created designs. A search-by-design for the predefined facade
designs from difficulty level 1 (top row) and difficulty level 3 (bottom row) offered as game missions to
players in the Sunlight play mode. The top 3 results show the inevitability of fuzziness. Image credits:
the author.

7.5.2 Takeaway 2: Embrace fuzziness

In the Sunlight play mode, players were asked to assemble predefined wall designs.
The sequence of blocks to remove given to players was not always structurally com-
patible with the predefined facade design. It led to fuzziness in the outlines of the
assembled wall openings (Figure 7.25). Sometimes the game asked the player to
remove a block, which led to another block falling as well. On other occasions,
the player pulled the wrong block. While structurally compromising, this fuzziness
could hold potential for design expression and design inspiration. And as such, it
should be embraced and encouraged instead of prevented.

Figure 7.26 – Topological optimization games. Left: An extreme result from a post and beam
game type; and right: an ’Arch’ game type in progress. Image credits: the author.
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7.5.3 Takeaway 3: Design as a byproduct of play

When players pursue a goal that has a meaning for the posed game challenge, they
are immersed in the game experience. For example, in the Jenga play mode, various
structurally optimal designs emerged in multiple games (Figure 7.26). Those could
be categorized into structural typologies such as post and beam constructions and
arches. When asked after the end of the game, the players often expressed that
they did not intend to form such a textbook structural example. The first couple
of moves in the game were decisive for developing the structural typology. If the
first blocks were removed from the sides of the wall, a post and beam type, similar
to concrete highway bridges, emerged (Figure 7.26 left). Blocks removed from the
center of the wall at the start of a game led to structural arcs (Figure 7.26 right).

Towards the end of a typical game, the wall states were not intended or premed-
itated by the players but emerged purely as a byproduct of them trying to win at
the posed game challenge. Nevertheless, they bear architectural qualities relevant
to a given design context. Producing these designs and their architectural qualities
required only players’ onboarding to the needed skills to play the game. No special
architectural knowledge needs to be communicated. The collection of such byprod-
uct design and the subsequent search based on particular architectural qualities can
be a significant source of design solutions or inspiration.

7.5.4 Take-away 4: Design Autocomplete

The ability of expert users to search in a database of designs that had already existed
momentarily in the real world holds a great promise for relevant design assistance.
Especially the search-by-design mode can be very powerful in letting the user provide
a simple sketch that is then autocompleted with an editable, real-world validated
design.

7.5.5 Conclusion

Sensitive Assembly demonstrated that the engagement of festival visitors in a wall
design and assembly process was successful. The augmentation provided a helpful
information layer for the shadow-filter game modes, while it remained mainly in the
background during the Jenga-like arcade mode. The gamification of the method led
to entertaining engagement and showed that people preferred fast-paced, collabo-
rative gameplay. After being taught for a day, the prediction algorithm was very
precise towards the end of each game when prediction mattered the most. However,
the players rarely used the prediction because it was displayed on a TV screen, not
on the wall itself, causing players to forget about it when they were in flow.

The case study outcomes showed high potential in further investigating collabo-
rative building challenges.

The straightforward design and assembly process prototyped with Sensitive As-
sembly could be applied successfully for prototyping façades or feature walls. The
inclusion of generative design search and basic comparative markers for performance,
such as shadow casting and statics, allows for a quick turnover of prototyping cy-
cles. The method can be applied both in an office setting, used by designers and
architects, and in an extended environment where a group of non-experts can also
be involved.
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The linking of game design, reality augmentation, and machine learning can
facilitate an assembly process that is easily transportable and requires less expert
knowledge.

Converging machine sensing and computation with human interaction offers a
promising strategy in architectural design, participatory processes, and the engage-
ment of non-experts in the process of becoming. Speculation on real-world case
scenarios could be the automated placement using robots of a solid envelope and
the local community’s subsequent removal of wall blocks until they create a porosity
pattern providing the wanted sunlight effects and visual connectivity. Increased ac-
cess to a broad range of low-priced sensors and a novel generation of robots equipped
with sensors that allow for man-machine cooperation will provide new strategies for
materializing.
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Chapter 8

20.000 BLOCKS

Figure 8.1 – 20.000 BLOCKS, framework illustration. Image credits: the author.
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Figure 8.2 – The projects in 20.000 BLOCKS on the map of Design Paradigm. Image credits:
the author.

8.1 Design Paradigm

The case study 20.000 BLOCKS comprises a set of custom-built digital tools and
several projects realized within this framework (Figure 8.1). The case study com-
bines a user-friendly game environment, multiplayer gaming, participatory gener-
ative design techniques, performance feedback from specialized parametric design
tools, and robotic fabrication (Figure 8.3). 20.000 BLOCKS uses the concept of
playable voxel-shape grammars to enable and guide anyone to design a building in
Minecraft and have a model of it assembled by a 6-axis robot arm, effectively span-
ning the digital and the physical worlds. The research project was led by me and
run at the Digital Design Unit (DDU) at Technische Universität Darmstadt from
2015 to 2018. It centered around the question:

Can gameplay mechanics guide groups of non-experts throughout the
collaborative creation of architectural designs?

A major finding of the case study is the mechanisms for calibrating the balance of
influence on the resulting designs between the Experts and the Players.

For a meaningful inclusion of the non-architect in the design process, the archi-
tectural expert knowledge needs to be partially encoded into an agile, open, and
generative rule-based system. This requires a modeling environment that combines
the ease and popularity of computer games with the control and evaluation tools
of Computer-Aided Architectural Design (CAAD) software. The case study 20.000
BLOCKS presents such a system with three key components:

1. Guiding rules — based on playable, voxel-shape grammars and employed to
direct the participants towards feasible design solutions.
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Figure 8.3 – The main algorithmic components of the 20.000 BLOCKS framework. Partici-
patory design is augmented with game mechanics, automated structural analysis and robotic fabrica-
tion. Image credits: the author.

2. Verification routine — to automatically process the resulting designs on key
parameters and performances.

3. Fast feedback — to keep the players aware of what they are creating, allowing
for decision corrections to happen in short cycles.

Tuning the three components — the guiding rules, the verification routines, and
the feedback — influences the outcome of the designs created by participants.

8.2 Implementation and Setup

The 20.000 BLOCKS technical framework aims to facilitate the prototyping and
testing of various building designs in short cycles by online communities. Games
are accessible to people of all ages and backgrounds and can process large amounts
of data input from many players. Hence the approach seeks to crowdsource within
a game environment, mainly focusing on online multiplayer games. On the other
hand, automated verification routines are needed to test the reliability of many
architectural designs created by the non-trained crowd. Parametric design software
takes input from specialists and can do advanced performance analysis and control
robotic fabrication.

Therefore at the core of the technical realization of 20.000 BLOCKS includes a
modification of the game Minecraft to support the definition of playable voxel-shape
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Figure 8.4 – 20.000 BLOCKS Game and Robot shown at CEBIT 2017. Image credits: Futurium,
Rottmann 2017.

grammars. In more detail, the framework consists of:

• a modified version of Minecraft using the ComputerCraft MOD and own cus-
tom scripts, written in Lua.

• a custom mod for Minecraft that implements commands for getting, export-
ing, and placing blocks in the Minecraft world to facilitate the exchange with
Grasshopper

• a set of Grasshopper components and scripts to read and write 3D data to and
from Minecraft worlds

• a pick and place robot routine in Grasshopper using the add-ons Scorpion and
later Robots to build models that were imported from Minecraft

• a WEBGL visualizer that runs natively in a web browser to visualize models
created by players in 20.000 BLOCKS Minecraft world

• a set of sample analysis routines implemented in Grasshopper for analyzing:
statics, vistas, etc.

• command-line python scripts that can read from and write 3D data to a
Minecraft world
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for real-time link between the game and structural or environmental verification done in Grasshopper,
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Minecraft

20.000 BLOCKS uses Minecraft, a game with simple graphics and rules. In Minecraft,
players build and demolish cubes of 1x1x1 meters. In 2015, when 20.000 BLOCKS
started, more than 40 million people played it (T. Warren 2016). As of May 2020,
Minecraft has 126 million monthly active players (Chiang 2020).

Minecraft is a sandbox game where players can choose on their own which goals
and adventures to pursue. The game consists of a 3D procedurally generated world
where materials are spread for the players to mine. Players can combine various
materials to craft new objects such as pick-axes, wooden planks, buckets, doors,
etc. Each Minecraft world can be loaded on a server and made available for online
access to other players offering multiplayer functionality. Minecraft’s rich catalog of
materials and objects, plus the ability for in-game scripting, allows the creation of
custom maps where the map creator can define a goal or an adventure. The project
20.000 BLOCKS uses such a custom-made map to define game rules that guide
groups of players to create architectural designs.

Minecraft is a good choice for this research because of its abstract, non-photorealistic,
voxel world. Fröst and P. Warren 2000 conclude that “low-detail of sketch-like real-
time 3D models often promotes creativity and discussion.” Michalatos 2016 confirms
this, stating that “the more elaborate and specialized the ontology, the less suitable
the software becomes for the early stages of design where ambiguity can be more
productive.”
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Minecraft’s block size of 1 meter offers a suitable resolution for mass-modeling
architectural concepts from the scale of a room up to urban planning. Finer de-
tails such as fenestration or furniture are challenging to model in Minecraft but also
irrelevant to this research. Instead, the focus is on investigating modes of player
engagement to produce schematic architectural designs. In addition, the granular-
ity of Minecraft’s world space but also of the players’ actions facilitates concurrent
editing from multiple players (Michalatos 2016). Furthermore, the size of a player’s
Minecraft avatar in relation to the shapes they model creates an immersive percep-
tion for a one-to-one architectural scale.

I also needed a way to record, document, and observe the creation of designs by
participants. The ultimate granular model, according to Michalatos 2016 is the one
where “every single click is registered in a database with a timestamp attached to
it.”

The games Half-life and Second Life have been used to conduct similar case
studies in architecture (Fröst 2003; Gürsimsek 2012; Segard, Moleta and Moloney
2013). However, these precedents are targeted mostly at architects and focus entirely
on the design’s shape, ignoring functional organization. Furthermore, the worlds of
Half-life and Second Life lack the constraints and the regularities of the Minecraft
world - a coarse 3D voxel grid, resource system, world-editing mechanics — which
are beneficial for my research.

Minecraft has four game modes: survival, creative, adventure, and spectator.
Survival is the default game mode where players need to scout the world, collect
materials, craft tools, and survive hunger and encounters with enemies. 20.000
BLOCKS requires a custom-defined game logic and does not use this mode. Cre-
ative is the mode where players have unlimited health and resources and can fly.
The impressive Minecraft builds, familiar from the media, are created in this mode.
20.000 BLOCKS uses this mode for the participants in the role of Experts allowing
them to create catalogs of elements for the players to assemble into designs. Adven-
ture mode allows strict control over what parts of the world and which materials
players can break, collect and place. This makes it suitable to stage the player ex-
perience in 20.000 BLOCKS . By default 20.000 BLOCKS participants are put in
Adventure mode and can only use the materials, catalog elements, and tools defined
by the experts who created the particular 20.000 BLOCKS project. The spectator
mode was used for taking screenshots or time-lapse videos when a game was in
progress.

Minecraft modifications for 20.000 BLOCKS

20.000 BLOCKS changes the rules of the Minecraft world by letting players in the
role of Experts create games within the game. Experts can design their catalogs of
elements and define the rules for their placement, and the rewards players get when
placing them.

The space of a 20.000 BLOCKS game is shown on Figure 8.6. It consists of a
spawn area, a building zone, and a catalog area.

20.000 BLOCKS uses a Minecraft mod called ComputerCraft, which allows the
development and running of scripts that can interact with the Minecraft world and
the state and positions of players in it. The scripts are written in the program-
ming language Lua. The playable, voxel-shape grammar and game logic for creating
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Figure 8.6 – The layout of a 20.000 BLOCKS game space in Minecraft. The spawn zone
contains the computer running the 20.000 BLOCKS scripts and players end up in it upon joining the
server. They need to step on the blue pad (bottom left) to start or join a game. A game usually begins
as an empty grid of activator blocks (bottom middle) where player can build the key shapes from the
catalog in order to place a desired catalog module. The catalog area (bottom right) consist of slots
with a white area to model the key shape and a gray area to model the replacing shape. Image credits:
the author.

Figure 8.7 – Screenshots of 20.000 BLOCKS running on a ComputerCraft computer in
Minecraft. The ComputerCraft mod enabled the easy and iterative prototyping of game logic and
voxel-shape grammar logic for 20.000 BLOCKS . The mod adds in-game computers that can run Lua
scripts intercting with the game world and the players. Image credits: the author.

resource economies are implemented in Lua scripts. Figure 8.7 shows the Computer-
Craft computer block and its command console running the main 20.000 BLOCKS
script.

A custom-developed Minecraft mod, written in Java, was needed to facilitate
the import and export of geometry from a 20.000 BLOCKS Minecraft world to
Grasshopper. Its sole functionality was exporting the 3D model of the world within
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a given region defined by the coordinates of its two corners.
20.000 BLOCKS uses the Minecraft trading system to let players decide what

resources to buy with their rewards and, as such, exercise choice on what to build
next. The trading system is provided by the villager non-player characters (Fig-
ure 8.8). For example, for building an element from the catalog, a player can receive
one emerald as a reward. They can trade emeralds for various building materials
or special items such as water (Figure 8.9). Besides facilitating a game economy,
Villagers served a secondary, more architectural purpose. To trade with a villager,
players need to walk up to them. This incentivized players to build walkable struc-
tures so they could walk back to the place where the villager resides.

Figure 8.8 – Villagers are used in 20.000 BLOCKS as material shops. The bottom part of the
left image shows a player next to a villager in the process of trading. The left screenshot also shows a
structure in progress built by the player to reach the red platform flying on top. The Villager trading
system lets players get new materials in exchange for emeralds or other items received during the game
(right). As players need regular access to villagers, they create structures walkable from the ground
upwards and back. Image credits: the author.

Figure 8.9 – Balancing the material costs in the Platfrom game. The consideration when deciding
what costs what for the players in the villager trade shop. Image credits: the author.

To make it as easy as possible to get started with 20.000 BLOCKS , all re-
quired mods to run 20.000 BLOCKS in Minecraft were packed in a Modpack and
distributed over TechnicLauncher, the standard platform for Minecraft customiza-
tions. A detailed list of instructions on setting up the Minecraft components of
20.000 BLOCKS is provided in Appendix B: Getting Started with 20.000 BLOCKS
in Minecraft.

Computational feedback and verification routines

At the heart of the project lies a real-time link between the online Minecraft server
and analysis routines in the parametric design software Grasshopper (??). I used
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Figure 8.10 – Structural verification of Minecraft shapes in real-time. The block marked in
magenta is a new secondary mission for the players. A player builds the gate in Minecraft (top left).
The tracking pymclevel script (bottom left) captures the modified world and passes the new blocks
coordinates to Grasshopper. Grasshopper creates a Millipede structural model and determines the blocks
with maximum deformation. If the deformation is more than a specified threshold, Grasshopper sends
a command over SSH to the Minecraft server to change the material of the block to magenta. Image
credits: the author.

the open-source Python library pymclevel by Vierra 2014 to get geometry from
Minecraft to Rhino/Grasshopper, which is then reconstructed in a format suitable
for structural performance evaluation via the add-on Millipede by Sawako and Pana-
giotis 2014. The results from this analysis are fed back to the Minecraft server, either
by creating new blocks or changing the material/color of existing ones. For this, I
developed my own Grasshopper components that can send commands to the server
over SSH protocol1.

Along with the shape grammar, this information is used to help to guide the
players’ actions in the game world to create ’viable’ structures.

Achievement system and progress feedback

Experts can use the achievement system to define goals and rewards to have players
engaged and aware of what to do next and how well they are progressing in a given
20.000 BLOCKS game. Achievements can be of the following kinds:

• reach a specified location marked in a special material,

• build N copies of a particular element from the catalog,

• build a combination of two elements next to each other,

• collect X amount of points,

• support a structurally weak spot.

Rewards can be either points or material blocks and items.
20.000 BLOCKS can provide on-the-fly feedback to the players in several ways:

posting messages to the in-game chat, using scoreboards, showing particle effects,
and changing the material of blocks in the game world.

1https://unix.stackexchange.com/questions/13953/sending-text-input-to-a-detached-screen
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In the chat console, messages are displayed to inform players what to do when
they join the server. While playing, if a player successfully builds a new element
out of the vocabulary, a message tells everyone (Figure 8.11). Goal achievements
are also broadcast in this fashion.

Figure 8.11 – Minecraft systems used for player feedback in 20.000 BLOCKS. The game chat is
used to communicate to players on their’s and other players’ progress. Customizable scoreboards, right
part of the left screenshot, can track players progress in points on a chosen metric. Scoreboards can
also track the highest achievement on a given metric to incentive players to beat the record as shown
on the right screenshot. Image credits: the author.

Scoreboards can be defined by the participants in the Expert role. They track
the points that players have received, for example, for building a particular element
of the catalog (Figure 8.11). Scoreboards can also track the top score on a given
metric to incentivize players to beat it. For example, in the IBA GAME project,
scoreboards were used to track how green, dense, tall, and diverse the neighborhood
the players are building is.

Particle effects are used to visually attract players to critical positions in the
game world. The most important of these is to inform a player that the system is
verifying a newly built vocabulary element.

Figure 8.12 – Shape activation in 20.000 BLOCKS. Two screenshots take a second apart. The
left one shows a player activating a key shape from the catalog and the particle effect letting them
know that the shape detection is in progress. The right screenshot shows the placed element from the
catalog and the green particle effect for success. Image credits: the author.

Changing the material of a block in the game world can be a means to give a
location-based mission to players. One example is having players aim to step on a
platform of a given material to collect points or win the game (Figure 8.8). The
players are then incentivized to build their way to this platform.

Additionally, after running a verification routine, a structurally weak spot could
be marked in Minecraft and turned into an optional, secondary mission. This would
award them extra points for resolving the structural problem (Figure 8.10).
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Robotic process

Figure 8.13 – The robotic process in 20.000 BLOCKS. A close up photo of the robot gripper
placing a block. Image credits: Rui Nong 2018.

I developed a pick-and-place robotic process for 20.000 BLOCKS (Figure 8.13).
The process served as a proof-of-concept that player-created designs, when defined
with playable, voxel-shape grammars, would require very little post-processing to be
automatically assembled. This made the design system fabrication-aware.

The robot fabrication process produced models of the player-created design on
a scale of 1:100 or 1:50. The models had a twofold purpose. First, it is used to
verify the stability and constructability of a game result. The second purpose of the
models is to visually and materially represent the player-created designs as a form
of feedback for both Players and Experts.

The full robot setup (Figure 8.14 and Figure 8.15) is conceptualized as an exhi-
bition installation where all components of the process are exposed and labeled for
maximum educational benefit of the visitors (Figure 8.16). The robot setup was ex-
hibited together with 20.000 BLOCKS play stations on several occasions such as the
fair CEBIT (Figure 8.17) and info events of the Technical University of Darmstadt
(Figure 8.18).

The assembly routine is shown on Figure 8.19. It starts by feeding the point
information for each Minecraft block to a Universal Robots UR10 robot arm. It
grabs wooden cubes with a vacuum gripper (Figure 8.20 and Figure 8.21), pushes
them into the glue and positions them on the correct spot according to the digital
model (Figure 8.22). The block dispenser consists of a vibrating tray that feeds
blocks into a slide where the robot picks each cube. The glue station consists of a
vertically positioned syringe. It is squeezed by a spindle rotated by a stepper motor
controlled with an Arduino board.
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Figure 8.14 – The plan and side view of the latest iteration of the robot process setup in
20.000 BLOCKS. Image credits: the author.

The path planning and robot control is done in Grasshopper with the add-on
Robots by Soler 2021 (Figure 8.23). The signals needed to control the Arduino
board for dispensing glue are also sent via Robots and the UR10 robot controller.
A laser sensor is used to check whether the robot has grabbed a block successfully.
On the rare occasion when there is no block at the gripper, the process stops and
waits for the human operator. This avoids faulty builds with missing blocks.

If a cube is cantilevering, the robot places supporting, non-glued cubes under-
neath it (Figure 8.24). These are removed by shaking the model after it is finished
(Figure 8.25). To distinguish between supporting blocks and model blocks, we used
blocks in two colors, natural wood and black.
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Figure 8.15 – The robot setup. Image credits: Tabita Cargnel 2016.

BUILDING PLATFORM

BLOCKS DISPENSERUR10 ROBOT ARM

GLUE STATION

Figure 8.16 – The components of the robot process. Image credits: Rui Nong 2018.
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Figure 8.17 – The 20.000 BLOCKS robot installation at CEBIT 2017. Image credits: Futurium,
Rottmann 2017.

Figure 8.18 – The robot setup of 20.000 BLOCKS installed at an info event of Technical
University Darmstadt. Four play stations are seen in the background. Image credits: Tabita Cargnel
2016.
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Figure 8.19 – The sequence of robot actions in the pick-and-place routine used to build the
models in 20.000 BLOCKS. Image credits: Rui Nong 2018.

Figure 8.20 – The robot gripper and the three types of cubes used to produce the robotically
assembled models in 20.000 BLOCKS. Natural wood 1cm and 2cm big and black 1cm. Image
credits: the author.
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Figure 8.21 – The components making up the custom-designed suction gripper in 20.000
BLOCKS. Image credits: the author.

Figure 8.22 – Close-up photos of the robot process components. Left: the robot picking up a
cube from the slide of the block dispenser. Right: the robot dipping the cube ont the glue-dispensing
syringe. Image credits: Rui Nong 2018.

Figure 8.23 – The simulation of the path planning using the Robots add-on for Grasshopper.
Left: pick position, Middle: glue position, Right: place position. The paths for the whole model are
shown in blue-green color. Image credits: the author.
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Figure 8.24 – The robotic fabrication process in 20.000 BLOCKS. From left to right: cubes in a
vibration tray are falling into a slide from where the robot picks them up one by one; applying a glue
drop to the bottom, left and front sides of the cube, if the cube is from the model; placing the cube in
the model; shaking off the the supporting cubes. Image credits: Jörg Hartmann 2016.

Figure 8.25 – Models produced by the robot. Left: removing of the supporting cubes of a finished
model. Right a set of test models assembled by the robot. Image credits: the author, Rui Nong.
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Online visualizer

Figure 8.26 – The online visualizer set to campaign view. Showing the designs created by player
Lee 20kb in the IBA GAME . Image credits: the author.

Figure 8.27 – The design view of the online visualizer. Showing a design from the IBA GAME

campaign created by three players and with a height of 26 meters. Image credits: the author.

The purpose of the visualizer is to enable anyone to browse the player-created
designs within a given 20.000 BLOCKS project even if they do not own a copy of
Minecraft or access to Grasshopper. The visualizer runs in a browser using WebGL
technology to display 3D models. The visualizer is realized using the game engine
Unity. The recorded designs for a project can be viewed in three modes: campaign
view, design view, and element view.

The campaign view displays all designs created in the given project as a matrix
(Figure 8.26). The user can filter out designs created by the same player in this
view.

The design view lets the user browse a specific design created in that project
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Figure 8.28 – The element view of the online visualizer. Showing an element from the type Green
Roof House from a design created by the players Lee 20kb and quantx. Image credits: the author.

(Figure 8.27). The user can see which players created it and how well the design
performed on the project-specific metrics.

The element view lets the user zoom in further into a single catalog element
placed in the design. The element title and the player who placed the element are
named.

8.3 Machine Agency — Playable Voxel-Shape Gram-

mars

B

D

Playable

Voxel shape grammars

CPlayers Game mechanics

Game designers A

Figure 8.29 – Components of the playable, voxel-shape grammars. The novel generative tech-
nique enables the exploration of the intersection between the four fields. Image credits: the author.
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In this section, I introduce a novel technique, namely playable, voxel-shape gram-
mars. It facilitates the exploration of both main research questions in this work.
First, it enables the testing of the design paradigms at the intersection of participa-
tory design, generative design, game design and crowd wisdom (Figure 8.29). And
second, the technique allows prototyping and exploring various design tools and
tasks for both expert and non-expert user roles.

The case study 20.000 BLOCKS applies playable, voxel-shape grammars at the
scale of a building and the urban scale. It shows that the technique has an en-
abling effect upon both experts and non-experts by letting them interactively and
immersively explore design options and learn by making.

At its core, playable, voxel-shape grammars is a generative design technique from
the family of shape grammars, extended with game mechanics as possible grammar
rules. Its implementation in a 3D game environment enables third-party contribu-
tors and stakeholders acting as players to create architectural designs by combining
elements from a predefined vocabulary. At the same time, expert stakeholders, i.e.,
architects, can freely specify the elements of the vocabulary, the combination rules,
and guiding game mechanics with no required programming or other special skills.

The use of a vocabulary to facilitate the encoding of architectural design prin-
ciples emerged early on in the process of my work and has evolved over several
implementations and test iterations. It borrows from the principles used in the var-
ious design systems reviewed in section 3.1. Stiny 1980a defines vocabulary in the
context of design as “a limited set of shapes, no two of which are similar.” The
shape grammar generative formalism can create rules-based design systems around
vocabularies and, as such, capture design intentions and expert knowledge. See
subsection 3.3.3 for detailed account on Shape Grammars state-of-the-art.

Figure 8.30 – Voxel shapes in the language defined by the voxel-shape grammar shown in
Figure 8.35. As experienced by players using the grammar in Minecraft. In the foreground, an
activation state for rule 1. Image credits: the author.

This section presents:

• a definition of playable, voxel-shape grammars (subsection 8.3.2);

• three types of guiding mechanisms that experts could use to control the play-
driven generative process (subsection 8.3.4).
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8.3.1 Problems with shape grammars

Figure 8.31 – Steps in the development and application of a grammar. Image credits: Chase
2002.

Shape grammars have been successfully used to encode aspects of expert archi-
tectural knowledge, and thus help their users, primarily designers, to explore a large
set of design solutions or quickly generate two-dimensional representations of designs
with desired formal qualities (Chase 2002; Duarte 2001; Müller, Wonka, et al. 2006;
Stiny and Mitchell 1978; Stiny and Gips 1971). The application of shape grammars
consists of mainly two activities (Figure 8.31):

1. Specification — designing the grammar, which consists of shapes and rules;

2. Derivation — iterating multiple times through the rules to generate designs.

The second activity maintains the usefulness of shape grammars as a design
tool, subject to their implementation as automated systems run by a computer
(Ruiz-Montiel et al. 2013). There are three main challenges in using them as design
tools:

1. shape grammars are difficult to implement as an automated computational
design technique (J. P. McCormack and Cagan 2002, 2006);

2. shape grammars are difficult to specify in a computer environment (Chase
2010; Gips 1999);

3. computer-automated derivation of designs from shape grammars is difficult to
explore and control (Wonka et al. 2003).
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Implementation problem

The implementation problem stems from the high computational complexity in
matching the currently created shapes in the derived composition with the left-
hand shapes from the grammar rules (J. P. McCormack and Cagan 2006; Wonka
et al. 2003; Wortmann and Stouffs 2018). The more rules are aggregated into a
derived design, the more computationally expensive it becomes to determine which
grammar rules to apply next.

Symbolic grammars such as L-Systems (Parish and Müller 2001) and Graph
Grammars (J. Heisserman 1994), as well as a symbolic representation of Shape
Grammars as in Split Grammars (Wonka et al. 2003) and CGA (Müller, Wonka,
et al. 2006), solve the matching by representing grammar systems in a machine-
readable format. However, they lose the ability for shape grammar specification
in a graphic, human-friendly way as in the original, albeit manual, specification of
shape grammars (Stiny and Mitchell 1978; Stiny and Gips 1971).

Set grammars, first defined by Stiny 1982, are a candidate solution that is both
human- and machine-friendly. Set grammars are a variation of shape grammars
where the vocabulary is finite and predefined, as are the spatial relations between
the shapes of the vocabulary, which form the basis for the grammar rules (Stiny
1980a, 1982). Set Grammars have a lower complexity in the rule-matching step
as they do not have scalar shifts and partial shapes (Figure 8.32). An example
of computer implementation of set grammars is the work by Andrea Rossi on the
Grasshopper add-on WASP for discrete design (Rossi and Tessmann 2017d, 2018).
However, Rossi’s implementation still requires professional 3D modeling software
(Rhino) to specify the vocabulary and a symbolic specification of the rules as strings.
This makes it unsuitable for this research.

Specification problem

An essential aspect of a successful shape grammar implementation is that the users
can model the shapes and rules themselves. Usually, shape grammars have been
defined in a closed, expert coding environment with an interface defined solely for
the shape grammar (Chase 2010; Gips 1999). Therefore, a potential new user of the
shape grammar cannot rely on computer skills they already have and must learn
new, advanced ones.

The use of generic, accessible, and easy-to-use 3D-modeling environments to
implement shape grammars has not been well explored. The following 21-year-old
quote from Knight 1999 states the problem rather well, and unfortunately, not much
has happened since then to address it:

Currently, though, few computer implementations are practicable for
students or practitioners. Most do not have interfaces that make them
easy for nonprogrammers to use. More efforts have gone to computa-
tional problems than to interface ones. Implementations of simple, re-
stricted grammars that are visual and require only graphic, nonsymbolic,
nonnumerical input are needed. (Knight 1999)

Furthermore, shape grammars have been mostly vector-based (Stiny 1980b;
Woodbury 2016), and the shapes generated with grammars are only notational
graphs or abstract 2D compositions (Duarte 2005; Martin 2006; Stiny and Mitchell

192



Figure 8.32 – Combinatorial design with shape grammars. Four examples of a set grammar by
Stiny 1980a. The geometry of the replacing rule in all four is the same. The variation in the languages
is achieved by varying the location of the label (the dot) in the right-hand shape in the rule. Image
credits: Stiny 1980a.

1978). I argue that this makes them too abstract for the non-expert and requires
drafting or 3D modeling skills to specify them.

Playable, voxel-shape grammars, on the other hand, allow the specification of
the vocabulary as well as the replacing rules of the grammar entirely graphically,
i.e., geometrically, in any voxel-space 3D environment. section 8.2 provides details
on the implementation in the game of Minecraft used in my work.

Derivation problem

Most existing research on shape grammars uses a manual approach to derive designs
from a shape grammar (J. P. McCormack and Cagan 2002, 2006; Stiny 1982). But,
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as Ruiz-Montiel et al. 2013 state, “pencil-and-paper execution might be tedious and
therefore useless for the sake of discovering many new solutions.”

Only few precedents use computer-automation approach to the derivation phase
(Gips 1999; Müller, Wonka, et al. 2006; Ruiz-Montiel et al. 2013; Wonka et al. 2003).
However, they often aim to fully automate the derivation process and leave little,
mostly global control, to the designer. The user cannot influence the result while
the process runs and is directly presented with an outcome. Togelius, Yannakakis,
et al. 2011 call this a generate-and-test approach to generative design. The user is
presented with candidate solutions to evaluate or rank. However this leads to choice
fatigue and inconsistent selection (Brintrup, Ramsden and Tiwari 2007; Togelius,
Yannakakis, et al. 2011).

As I argued in section 3.3, a constructive approach is preferable in generative
design workflows where human participation is desired. The constructive approach
consists of making sure a design is good as it is being constructed (Togelius, Yan-
nakakis, et al. 2011).

The playable voxel-shape grammars method uses a combination of game design
and feedback mechanisms to facilitate a navigable derivation process using the con-
structive approach.

Precedents

The use of shape grammars in voxel space has only been previously explored on two
occasions. Crumley, Marais and Gain 2012 presented an extension to shape gram-
mars called voxel-space shape grammars, in which the shapes and rules are defined
in vector form and only the generated shapes — after the iteration is complete —
are voxelized in a post-processing step. A more appropriate naming for their method
would be voxelized, vector-shape grammars. Therefore, our method is still novel, as
the entire grammar is defined and iterated in voxel space.

S. Friedman and Stamos 2013 introduce the notion of a voxel grammar in their
work on procedural tree generation. However, their grammar definition is not visual
but numerical, and as such, lacks many of the advantages of the original shape
grammar formalism, which “allows for algorithms to be defined directly in terms
of [...] shapes” (Stiny 1980b). Our implementation here suggests that the entire
voxel-shape grammar (shapes and rules) is defined in a visual, user-friendly way.

8.3.2 Definition

Voxel shape

Stiny 1980b defines a vector shape as follows:

A shape is a limited arrangement of straight lines defined in a cartesian
coordinate system with real axes and an associated euclidean metric.

Similarly, let us define voxel shape as a limited arrangement of voxels in a discrete
voxel grid and an associated euclidian metric (Figure 8.33).

A voxel-shape will define all further terms we find in Introduction to Shape and
Shape Grammars by Stiny 1980b but for the discrete voxel space instead of contin-
uous cartesian vector space. For example, a scale operation on a voxel shape needs
to have an integer number for the scale factor — for example, 2x — to turn one
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Figure 8.33 – A shape and a voxel shape. A vector shape as defined by Stiny 1980b and a voxel
shape as defined in this research. Image credits: the author.

voxel into a cube of eight voxels: 2 x 2 x 2. Rotations would go only in 90-degree
increments and so on. A less strict definition, allowing real number scale factors and
rotation angles, is also possible. Still, it would need a post-processing voxel detail-
ing routine, such as marching cubes (Lorensen and Cline 1987), and thus introduce
unnecessary complexity for the current purposes of the technique (Crumley, Marais
and Gain 2012).

The original shape grammars formalism uses vector shapes that are simple rep-
resentations of architectural elements such as walls. Because of its 3D nature, the
proposed voxel-shape grammar could be used to represent both elements (walls,
slabs) as well as massing volumes of a building’s or city’s elements.

An essential aspect of shape grammars is the labeled shape, consisting of a shape
and symbols, used as a matching mask for the grammar rules. The marker symbols
in vector space shapes are notational. In our voxel shapes, we use voxels with unique
attributes for markers (Figure 8.33).

Voxel-shape grammars

A shape grammar is defined by rules and an initial shape and is, in essence, a
language of shapes. Shape grammar rules consist of a left-hand shape that needs
to be matched for the rule to trigger and a right-hand shape, also called replacing
shape (Figure 8.34).

In voxel-shape grammars I call the left-hand shape a key, and the right-hand
shape an element (Figure 8.35). For a voxel shape to serve as a key, it must contain
at least one marker voxel.

Having vocabulary shapes and replacing rules defined entirely in voxels has a
twofold benefit. First, it requires no symbolic representation to specify a grammar
which makes it user-friendly. Second, matching shapes to determine which rules are
triggered takes place in the discretized voxel place and, as such, has lower compu-
tational complexity than a generic, continuous space, vector-based shape grammar.
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Figure 8.34 – Shape grammar specification. The original graphic specification of shape grammars
as it appeared in Introduction to Shape and Shape Grammars by Stiny 1980b. Image credits: Stiny
1980b.

Playable voxel-shape grammars

Voxel-shape grammars, as defined so far, would solve the Implementation and Spec-
ification problem yet still have the Derivation problem of shape grammars as de-
scribed in subsection 8.3.1.

I introduce game mechanics as a component of the grammar rules to increase a
designer’s influence over the grammar derivation process. In effect, this means two
things. First, a player can trigger specific rules by modeling a key shape and placing
the marker voxels themselves. And second, the position of the player can be used
as a marker symbol too, i.e., as part of the left-hand side of a rule Figure 8.36.

Game design helps control player actions and is facilitated by guidance mecha-
nisms. The grammar author encodes their design intentions and expert knowledge
by defining the guiding mechanisms. They can incentivize a player to trigger a spe-
cific grammar rule as it gives them the ability to place new voxel materials or unlock
new rules from the grammar. It can also incentivize a player to reach, i.e., build
themselves and access to, a particular position in the voxel world as it rewards them
with new abilities as well (Figure 8.37). A well-defined guiding mechanism would
be integrated into the game mechanics and would, in essence, provide a desirable
advantage to the players for their next moves.

Differing from shape grammars, where the generation is automated, and each
iteration step produces the conditions for the following, playable voxel-shape gram-
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Figure 8.35 – Voxel-shape grammar specification. A voxel-space 3D version of the 2D vector-shape
grammar from Figure 8.34. Both vocabulary shapes (elements) and replacing rules are defined entirely
in voxels. The bottom row shows some of the shapes in the language defined by Rules 1 and 2. Image
credits: the author.

mars require that a player initiate all, or at least some, iterations. This makes a
conscious choice, i.e., design decisions, essential for the exploration process.

197



CHAPTER 8. 20.000 BLOCKS

Figure 8.36 – Playable voxel-shape grammar specification. Left — rules, right — initial shape,
bottom row — step-by-step derivation of the grammar. Besides the voxels’ state, the rules take into
account also the player’s position. Image credits: the author.

Figure 8.37 – Game mechanics implemented with playable voxel-shape grammars. A guiding
mechanism provides a desirable advantage to the players for their next moves and thus could influence
their decisions. Image credits: the author.
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8.3.3 Features of the rule system

Types of markers

I define two types of marker voxels:

1. the activator block — on which a player steps to activate the detection of a
masking shape they had built around it (Figure 8.36);

2. the extension block — which is a marker that replaces the activator block
upon successful detection.

Some of the grammar rules require the extension block in their masking shapes.
That means some shapes in the grammar act as seeds, for example Rule 2 on Fig-
ure 8.38, and others as extensions, for example rules 3–6 on Figure 8.38. The
extension block ensures that structures grow out of themselves coherently instead
of populating the design space with too many scattered, independent structures.

Key shapes

Player-placed voxels, i.e., resources, are in essence the material with which the
player draws or models the key shape to trigger a specific rule. For example, in
IBA GAME , I used two resources that encode a set of meta-design features into the
voxel shapes:

1. an urban resource — shapes are more solid, with vertically proportioned win-
dows and enclosed;

2. a green resource — shapes are lighter, with horizontally proportioned windows
and more open (Figure 8.39).

When using either type of the two resources to build the same key shape, the
player would expect the same type of resulting shape, with the same meaning during
the derivation process but with different design qualities.

Grid-enforcing rules vs. freely spaced ones

When designing the playable voxel-shape grammar, the expert needs to make sure
that all rules are spatially compatible with each other. Incompatibility would mean
that the replacing shape of the rule triggered last destroys the integrity of shapes
created with previously triggered rules.

One strategy I enforced in the rules is growth in predefined steps. The markers
were always placed in a shape according to a grid of 9 x 9 x 8 voxels (Figure 8.40).

Another strategy, which avoids the rigidity of using a grid, is for the shapes to
come with the markers in a position that allows for the making of stepped structures
and more spatially diverse designs. To avoid too many unwanted overlaps, new
structures only grow from existing ones (seeds) to allow us to detect rule adjacency
(Figure 8.41).
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Figure 8.38 – An example of a voxel-shape grammar at the urban scale. It enable players to
place pre-designed buildings. Rules 1 and 2 can be triggered anywhere in the voxel grid by modeling
there key shapes. Rules 3–6 require the existence of a House produced with Rule 2 as it contains the
extension block needed to trigger them. For more see the section on IBA GAME . Image credits: the
author.
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Figure 8.39 – Two resources that describe a set of metadesign features of the voxel-shapes in
the grammar. Left: the green resource and the house associated with it. Right: an urban resource
with its house variation. Image credits: the author.

Figure 8.40 – Design variations based on shape orientation. The HOUSE RULE (rule 2 from Fig-
ure 8.38) in the urban scale grammar. The underlying grid of 9x9 voxels is visible on the ground. Image
credits: the author.
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Figure 8.41 – A schematic design for a residential building created with a 6-rule voxel-shape
grammar. The blue voxels are the marker voxels needed to trigger a specific rule. Note how the
replacing shape in each rule contains new marker voxels. This constrains players to create designs that
grow out from a seed shape. Image credits: the author.
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8.3.4 Game mechanics: features of the guidance mecha-
nisms

The term playable in the name of the playable, voxel-shape grammars technique is
facilitated in the form of an economy. If a player has access to the resources and the
territory needed to create a key shape, they could trigger a grammar rule and gain
the rewards given by the rule. Game design can be used as a generative force and
at the same time as a control mechanism over the outcome. Control mechanisms
are a means to guarantee feasible designs (Ruiz-Montiel et al. 2013).

I developed three types of guidance mechanisms to enable designers to encode
design intentions into a playable voxel-shape grammar : a quantitative game-goal
system; limiting choice with the shape design; and performance-based feedback.

Quantitative guidance mechanism

We used a soft goal system that qualitatively guided the growth as players chose
different goals. For example, in IBA GAME , we defined four server-wide goals:
collect as many as possible green points, build the most buildings, build the tallest
structure, build as many different buildings as possible (Figure 8.86). Each voxel-
shape rule in the grammar rewards the player differently on all four metrics.

An example of a goal given to the players is to build up to a certain height,
e.g., 30 blocks. At the same time, their initial resources allow them to build only 12
blocks high. Each player can create a shape out of the vocabulary for which they get
rewarded with additional 12 blocks of material. However, the shape is designed to
consume 10 of their blocks yet is just one block high. That means that the maximum
height the player can reach now is 15 blocks. Players can combine the shapes from
the vocabulary to form the best strategy to reach the height of 30 blocks and win.
They can also interact with the other players by building together or stealing their
achievements.

Another type of goal, for example, could be to build a certain number of a given
vocabulary shape with the constraint that, again, the material needed for them is
initially insufficient.

Limiting choice with the shape’s design

If players pursue a soft goal such as height, they will aim to build as high as possible
with as little effort and expense as possible. To prevent the stacking of the same
shape on top of itself, a shape can be designed so that players cannot model the key
shape that triggers the same rule on top of it (Figure 8.42).

Performative guidance mechanism

Additional game mechanics can be created by evaluating the performance of the
designs created by players. This does not require extra steps or skills from the
players. I developed a pipeline that exports the voxel model to Grasshopper every
time a rule is activated. Then it runs an analysis routine on it, and reports back the
results to the players by color-coding certain blocks of the structure. Figure 8.10 in
section 8.2 shows an example based on structural performance.
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Figure 8.42 – Limiting player choices with design. Left: With a rule that allows users to stack
the same house over itself, the most efficient way for a player to increase their height score is to stack
them up. Right: If the voxel shape, by design, prevents direct stacking but allows crisscrossing, the
design outcomes are qualitatively different. In the foreground are given the respective shape designs.
The key shapes for triggering the rule that produced them are the combinations of one blue block and
three blocks with purple house symbols. Image credits: the author.

8.3.5 Application scenarios

I developed and used the concept of playable voxel-shape grammars in the project
20.000 BLOCKS . My implementation consists of a Minecraft server with the Com-
puterCraft mod and a set of custom scripts that drive rule detection, player/goal
tracking, and exporting results. See section 8.2 for further details. I explored the
use of playable voxel-shape grammars at two scales: building and urban.

At the building scale, the shapes in the grammar could represent physical ele-
ments of a building, such as walls and slabs, the massing of the volume of a room, or
a fragment of a building representing its architectural syntax. The rules represent
the logic for those elements to aggregate next to each other to form a building. This
approach was applied in the following 20.000 BLOCKS projects: Platform Game,
Play-Design-Build, and Combinatorial Design.

At the urban scale, the shapes in the grammar represent pre-designed whole
buildings (or mass models of buildings), and the rules represent the possibilities for
these buildings to exist next to each other in a city. This approach was applied in
the IBA GAME , a game created for IBA Heidelberg using 20.000 BLOCKS , where
players can create small neighborhoods.

8.3.6 Contribution to the field of generative design

With Playable, Voxel-Shape Grammars I offer an extension of the shape grammar
formalism, most specifically of set grammars. Unlike generic shape grammars spec-
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ified with vector shapes, playable, voxel-shape grammars are specified entirely in
voxel space. This makes them easier to specify and implement in a computational
model.

Furthermore, playable, voxel-shape grammars open the generative process to hu-
man agency. Grammar designers can add direct participation and guiding mech-
anisms to the otherwise purely algorithmic grammar derivation process by using
game mechanics in the grammar rules. The aspect of playability allows the archi-
tects, specifying the grammars, to steer the resulting architectural designs while
keeping the player focused only on the game mission and not on the artifact they
are creating.

Playable, voxel-shape grammars are a form of encoding architectural knowledge
that enables twofold crowdsourcing. First, it makes architectural knowledge avail-
able to non-experts to create designs. At the same time, it allows an expert, i.e., an
architect, to expand the design space by creating a new grammar.

The technique can be used for the generation of schematic architectural designs.
I target use scenarios in the early design phase, when all stakeholders explore the
relationship between the project elements informally and loosely, often in massing
models.
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Figure 8.43 – Taxonomy extension. The Taxonomy of Generative Design in Architecture, introduced
in section 3.2, extended with the Playable voxel-shape grammars. Image credits: the author.

As defined in this section, the Playable voxel shape grammars are an extension to
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the shape grammars formalism, more specifically the Set Grammars (Figure 8.43).
With the Playable voxel-shape grammars technique, architects can encode architec-
tural logic and principles in the grammars and easily modify them. The grammars
are volumetric and thus open to immediate interpretation and analysis for their
architectural potential without further transformation or translation steps.

Furthermore, the method allows for the integration of design and fabrication. An
additional benefit of using voxel-shape grammars instead of vector-shape grammars
is the ability of embedding material specification rules in the grammar by varying
voxel material (Michalatos 2016; Rossi and Tessmann 2017c; Stiny and Gips 1971).

8.4 Human Agency

The 20.000 BLOCKS case study engaged people in three of the four roles: experts,
crowd, and tool-makers. The role of the non-expert stakeholder was not addressed.

The first role is that of the Tool-makers or Facilitators. As researchers, this is
the role that a few collaborators and I took. The role is to develop the technology
that others can use to create games that generate designs.

The second role is the Experts, whose knowledge is encoded a specific 20.000
BLOCKS that they create. These are the people setting and modifying the vocabu-
lary and defining the goal. The game industry analogy would be of a Level designer
who is in charge of creating the challenges within a game. Experts can edit the
catalog to express the design ideas they would like to explore. Furthermore, they
can change the game design by defining player achievements, goals and tuning the
economy of resources distributed to players. Experts can also provide verification
routines in Grasshopper and link them to the Minecraft world. They post-process
the player-created designs to detail them further and digitally fabricate them. Lastly,
experts have access to search tools to browse through all player-created designs and
observe patterns or use them to autocomplete their sketched-out designs.

Players are the third role. The experience of the players is tightly controlled.
The Organizers decide which materials they can place and break and where they
can walk. The players are given a goal but insufficient resources to achieve it. To
progress, players build shapes out of Minecraft blocks, choosing from an architectural
vocabulary defined by the Experts. Players are rewarded with resources for creating
one of the shapes. While players compete to reach the goal, a building emerges out
of the shapes that they have built.

The description of each project that follows presents how the architect’s role
defined its architectural and game design features and the modes of engagement for
the players.

Figure 8.44 shows the hierarchical structure of the case study 20.000 BLOCKS .
The technological framework enables the specification of various projects that are
mini-games with their game pieces and economies. Each project, or 20.000 BLOCKS
game, produces an architectural design when played. Each gameplay delivers a
different design alternative recorded for later post-processing and analysis.
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Figure 8.44 – Structure of the case study 20.000 BLOCKS. The case study is organized into
projects created with the framework. Some projects are created within the same overarching brief or
topic. Each project is a game defined by the experts. When played, these games produce designs
created by the players. Image credits: the author.

8.4.1 Platform Game

Figure 8.45 – Results from Platfrom game. Top: Two game results from a game with hard
vocabulary and one main goal. Bottom : Two screenshots from gameplay with hard vocabulary and
secondary goals, marked in gold. Image credits: the author.

The Platform game is the first project realized with the framework 20.000
BLOCKS and, in essence, served as prototyping ground for many of the framework
features used in the later projects. The game designer Ben Buckton and I developed
the project intuitively and iteratively. We would implement a feature, playtest it
with a group of players in informal play sessions and either keep it, modify it or
drop it. The project followed a technological evolution as well, since the game logic
was first implemented using command blocks (Figure 8.47) in vanilla (unmodded)
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Figure 8.46 – Platform game screenshots. Left: The Spawn zone of the Platform game with
players waiting for the next game to start.The spawn zone is the area where players end up upon joining
the 20.000 BLOCKS Minecraft server and wait to be teleported to the building area. Right: a game
has just started and players are building the first platforms. Image credits: the author.

Minecraft and then reimplemented in Lua scripts using the ComputerCraft mod,
which allowed more developing freedom (Figure 8.7).

Figure 8.47 – The game logic in an early-version 20.000 BLOCKS world. The logic was
implement using command blocks (left) which can execute a single instruction (right). By placing
command blocks in sequence one can create loops, if conditions and more complex routines. Image
credits: the author.

The goal of the Platform game is to be the first player to reach the platform
flying at the height of 50 meters above the starting island (Figure 8.48). The island
with dimensions 20x20 blocks floats in the middle of an abyss with the size of 40x40
blocks. Players started with limited materials and had to build elements out of a
catalog of architectural shapes to get in-game currency. They can exchange the
currency (emeralds) for building materials. If a player did not use the materials,
they had to build a recognizable shape from the catalog they ran out of resources
and could not progress in the game.

The aim is for a game to last approximately 20 minutes, after which the result
is saved, and the building area is reset. The results had less architectural potential
if the game design was not balanced well. For example, if the players received too
many resources at the start of the game, they would build one straight column all
the way up to the goal and finish the game in seconds (Figure 8.51 right).

Soft vocabulary

We conducted the first tests with a visual catalog of architectural elements, i.e.,
soft vocabulary. The players were shown the catalog with elements such as rooms,
terraces, etc. (Figure 8.49) and given the task to replicate them in the Minecraft
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Figure 8.48 – Initial state of the Platform game. The players begin on the island and have to
reach the platform in red flying above it. Image credits: the author.

world. Players were given limited materials at the start and promised a resupply
if they successfully built an element of the catalog. A player could build anywhere
within the confined building site in Minecraft. They would then come to the Or-
ganizers, who would visually verify if the created element matches the catalog and
award the player the corresponding points and resources. This happened verbally
in the game chat. The goal was also soft — get the highest number of points. Each
element in the catalog brought different points to the player who built them, based
on the element’s complexity.

Figure 8.49 – The soft vocabulary. Initially we used a visual catalog, including three variations of
platforms, three bridges, two gardens and two pools. Image credits: the author.

Figure 8.50 shows a typical result from a game with the soft vocabulary. The
outcomes were rather fuzzy designs as all the aspects of the system — the guiding
rules, the verification process, and the feedback — were negotiable between the
player and the organizers. Another hindrance, we noticed, was that the elements in
the vocabulary were too numerous and too complex to be remembered by players
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Figure 8.50 – A typical result from a game session using the soft vocabulary. It is difficult
to isolate the individual vocabulary shapes that the player had replicated as they modified them while
building and organically connected them together into one fuzzy structure. Image credits: the author.

easily. This required the players to refer to the vocabulary too often, breaking their
flow of play. Furthermore, it was also slow — a game was marked as completed when
the confined building site was filled up, which took around two hours. Therefore,
we looked for ways to make the rules stricter by automating them.

Hard vocabulary

The guiding rules of the hard vocabulary method we tested were based on three
automated routines:

1. Detection routine: The elements that players build to gain rewards are recog-
nized automatically by the game logic. We described one element — a platform
of 5x5 blocks — in code using Minecraft’s programming language and com-
mand blocks (??). The player places an activator block (blue diamond) and
positions their character on top of it to activate the detection routine (??).
Only exact copies of the catalog structures will be recognized and rewarded,
thus reducing the fuzziness of the design solutions.

2. Trading: The resources for building need to be purchased from Non-Player
Characters (NPCs) — a Minecraft villager — in exchange for emeralds, gained
when successfully building an element from the vocabulary. Villagers can be
summoned only at the ground level. This ensures that the structure being
created can be walked up and down (Figure 8.8).

3. Goal detection: We defined the main goal, achievable within 15–20 minutes
that gives a clear end to each session (Figure 8.8). This limits the time for
creating a design and delivers multiple player-created designs under the same
conditions. Reaching the goal automatically triggers a save of the built struc-
ture, resetting the game. When we noticed that game plays resulted in self-
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similar linear structures (Figure 8.45 top row) we introduced a set of secondary
goals (Figure 8.51 left) as incentives to break the linearity of the gameplay and
create spatially richer designs (Figure 8.45 bottom row).

The game loops of the Platform game with and without secondary goals are
shown on Figure 8.52.

Figure 8.51 – Secondary goals. Left: the secondary goals are shown in yellow (gold) material. Each
gold block rewards the player who first steps on it with points after which it turns black and is not
active. Right: When the players have too many resources at start that are not incentivized to build
any of the shapes in the catalog since they can finish the game right away by jump-building a column
underneath themselves. Image credits: the author.
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Figure 8.52 – Game loops. With and without intermediate goals. Image credits: the author.

At this stage of the project, many structures built by the players had cantilevers
that would not sustain the force of gravity. To unlock the true architectural potential
of mass participation, we need a set of evaluations that relate, and possibly rate,
a shape on its performance as an architectural structure in the real world. Most
of the game outcomes were verified postfactum using Grasshopper/Millipede. The
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results prompted us to change the elements in the vocabulary until the play results
had less problematic overhangs (Figure 8.53).

Figure 8.53 – Structural simluation of game results. A player-created structure (left) and its
simulated deformation after analysis in Grasshopper with Millipede (right). Image credits: the author.

The feedback from the game actions was printed automatically to the game chat
(Figure 8.11) and kept the players informed of what to do in the game, who scored
a new point by building a 5x5 platform and when the game was over, being saved
and reset. This proved very useful and successful in keeping the players aware.

Modifiable vocabulary

The latest iteration of the guiding gameplay mechanics implements a vocabulary of
predefined design elements that follows combinatorial rules (Figure 8.54). This uses
the concept of playable voxel shape grammar.

It has all the three main principles of the Hard Vocabulary variation used in
the Platform Game, with the difference being that detectable structures are not
described in code but are built on dedicated slots next to the building platform as a
visual catalog. This allows us to modify and prototype the vocabulary much faster.
It furthermore allowed us to separate the roles of Organizer and Expert without
needing to teach Minecraft scripting.

The fact that the vocabulary consisted of more than one element softened the
play outcomes. Therefore, we tried a system where the trigger blocks were placed
automatically with the vocabulary element and not by the players. We called this
new notion Grammar because it meant the Experts could define which of the el-
ements could be built upon each other, thus opening or limiting choices for the
players.

We didn’t use the game chat as extensively as in the hard-vocabulary approach
and relied on players orienting themselves in the game world. This proved confusing
for most people.
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Figure 8.54 – The grammar from the intro game in Play-Design-Build. Left: A schematic
design for a residential building created using a voxel-shape grammar with 6 rules in 20.000 BLOCKS .
The concept of “free build” allows for players to define structure using the grammar (in grey blocks)
and also fill the gaps with stairs, enclosing structures etc (seen here in white blocks). The project
Quinta Monroy by Elemental and architect Alejandro Aravena (right) is a suitable reference as it also
combines a basic structure predefined by the architect and freely build infills by the inhabitants. Middle
row: the shape grammar. Bottom row: two more in game screenshots from games with the same
grammar. Image credits: the author.

213



CHAPTER 8. 20.000 BLOCKS

8.4.2 Play-Design-Build

Figure 8.55 – The 20.000 BLOCKS team and workshop participants at SmartGeometry 2016.
Image credits: the author.

Figure 8.56 – The 20.000 BLOCKS setup at SmartGeometry 2016. With a four-way game
terminal and a robot arm. Image credits: the author.
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20.000 BLOCKS: Play-Design-Build is the title of a cluster(workshop) at Smart-
Geometry 2016 in Gothenburg that I and the game designer Ben Buckton lead
together (Figure 8.55 and Figure 8.56). The cluster explored the question: Can
gameplay guide non-experts through the creation of collaborative architecture de-
signs?

The cluster introduced participants to the complete cycle of the 20.000 BLOCKS
framework (Figure 8.57). We moved from architectural vocabulary and game me-
chanics defined in Minecraft, through geometry being imported and post-processed
in Rhino/Grasshopper (Figure 8.58), to a digitally fabricated scale model created
with a robot arm.

Eight architects and engineers, divided into three teams, used our implemen-
tation of playable voxel-shape grammars and defined components of the buildings
within the grammar (Figure 8.41). The participants were provided with an example
game map, with a grammar consisting of 6 rules shown on Figure 8.54. The three
projects are titled: Would you mind Yona Friedman?, How High and Bridging. Each
project had up to 16 shape rules and was played by attendees of the conference. The
three projects yielded around 50 player-created designs.

Figure 8.57 – Photos from the 20.000 BLOCKS cluster at SmartGeometry 2016. Left: project
discussion between the participants. Middle: the robot setup with the four-way game terminal in the
background. Right: A model built by the robot is being cleaned up from the support blocks. Image
credits: Jörg Hartmann, the author, Andrea Quartara.

Figure 8.58 – Isovist analysis. A model created by players in Minecraft in the project How High is
imported and analyzed in Grasshopper. Image credits: Quartara, Emmanuelli, Montnemery, the author.

Would You Mind Yona Friedman?

The project Would You Mind Yona Friedman was created by Marios Messios and
Max Rudolph (Figure 8.59). The interesting exploration in this project is the change
of scale. The authors chose to map the size of one Minecraft clock to 10 meters in-
stead of the standard 1 meter. The topic of the project is a megastructure over the
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Figure 8.59 – A 20.000 BLOCKS game map titled WOULD YOU MIND YONA FRIEDMAN?.
Created by Marios Messios and Max Rudolph during our cluster at SmartGeometry 2016. Image credits:
Messios, Rudolph.

city of Paris, inspired by the work of Yona Friedman (??). The catalog of vocabu-
lary and grammar rules reflected this change of scale as well (Figure 8.61). Using
different materials, the authors represented different residential unit typologies or
units of the building’s infrastructure. This allowed for rather small elements in the
vocabulary and rules that created branching structures. The game design created
an open-ended challenge. Players needed to build elements from the vocabulary
catalog to collect game currency (emeralds) to buy additional building materials
(Figure 8.62). There was no overarching game goal, and players could build in
vertical and horizontal directions and stop when they felt their structure was fin-
ished. The project authors post-processed two of the game results (Figure 8.63)
into schematic designs (Figure 8.64) on which they carried out a structural analysis
using the live-link to Grasshopper (Figure 8.65). The design created by two players
was sent to the robot for assembly (Figure 8.66). One of the design alternatives was
rendered as an architectural speculation (Figure 8.60 and Figure 8.67).
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Figure 8.60 – Architectural rendering. An architect’s rendition of a player-created schematic design
in the 20.000 BLOCKS project WOULD YOU MIND YONA FRIEDMAN?. Image credits: Messios,
Rudolph.
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Figure 8.61 – The vocabulary and replacing rules in Would you mind Yona Friedman?. The
project used a scale of 1 block = 1 meters instead of 1 meter. Image credits: Messios, Rudolph.
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Figure 8.62 – A typical game progression in the project Would you Mind Yona Friedman?. Image
credits: Messios, Rudolph.

Figure 8.63 – In-game screenshot from the two selected game results. The left one is created by
two players, the right one by six. The grammar rules produced structures that appear to have grown
out from predefined points in the city. Image credits: Messios, Rudolph.
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2 x 6 x

infrastructure housing portals scaffolding

Figure 8.64 – Programmatic composition of the two game results. Image credits: Messios,
Rudolph.

wireframe stress concentration points stress field

Figure 8.65 – Structural analysis of the two game results. Image credits: Messios, Rudolph.

Figure 8.66 – Model photo. A model built by the robot of the design variant from Would you mind

Yona Friedman? created by two players being assembled by the robot arm (left) and the final model
(right). Image credits: the author.

Andrea Quartara
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Figure 8.67 – Architectural rendering. A player-created design of a megastructure hanging over
Paris in Would you mind Yona Friedman?. Image credits: Messios, Rudolph.
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How High

Figure 8.68 – A 20.000 BLOCKS game map titled HOW HIGH. Created by Andrea Quartara,
Marc Emmanuelli and Ulrik Montnemery during the cluster at SmartGeometry 2016. The area where
the vocabulary is defined is shown in front. The goal for player is to be the first to build 5 housing
units (the brown material). Image credits: Quartara, Emmanuelli, Montnemery.

The project How High was created by Andrea Quartara, Marc Emmanuelli,
and Ulrik Montnemery. Their team followed an achievement-based game design.
The first player who builds five housing units wins the game. The player journey
to victory was controlled with the playable voxel-shape grammar (Figure 8.69). It
required the placing of infrastructural elements first to collect the needed materials as
well as unlock the grammar keys to place a housing unit (Figure 8.70). The evolution
of the grammar rules was evident and easy to follow in this project (Figure 8.71).
The authors went through several cycles, which begin with defining vocabulary
shapes, rewards, and grammar rules. Then they played the game and checked
whether the game design is balanced, i.e., if it is not too easy to build a housing
unit or too tedious to create the required infrastructural units, is the game economy
creating a challenging yet rewarding player experience. The authors selected one
of the player-created designs to post-process. They ran a structural analysis using
the live-link to Grasshopper (Figure 8.72) and built a physical model of it with the
robot (Figure 8.73).

221



CHAPTER 8. 20.000 BLOCKS

Figure 8.69 – The grammar in the 20.000 BLOCKS project How High. It consisted of 3 rules.
One for horizontal connectivity, one for vertical connectivity (stairs), and one for housing units. Image
credits: Quartara, Emmanuelli, Montnemery.

Figure 8.70 – A game sequence. Image credits: Quartara, Emmanuelli, Montnemery.
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Figure 8.71 – Grammar evolution. Screenshots of designs created with various iterations of the
grammar rules and vocabulary of the project How High. The evolution of grammar rules and vocabulary
shapes goes always through several cycles of define-play-review. Image credits: the author.

Figure 8.72 – Structural analysis of one on the player created designs in the How High
project. Image credits: Quartara, Emmanuelli, Montnemery.
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Figure 8.73 – Model photo. A robotically built model of a player-created design from the project
How High. Image credits: the author.
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Bridging

Figure 8.74 – The 20.000 BLOCKS project Bridging. It lets players collaborate in two competing
teams to create bridge-like residential buildings over linear obstacles such as railways. Image credits:
Gösta, Eliasson, Choudhury.

Bridging is a project from the 20.000 BLOCKS cluster at SmartGeometry 2016
designed by Alexander Gösta, Samuel Eliasson, and Ashris Choudhury. The archi-
tectural goal of the project is to create an alternative design for inhabitable bridges
over a river, a railway, or a highway (Figure 8.74). The game design combines both
competitive and collaborative strategies. The players in Bridging are split into two
teams, each starting on a platform on the opposing sides of a dividing wall (Fig-
ure 8.75). The first team to build a bridge from their platform to the middle of the
wall ridge wins the game. The grammar consisted of elements that incorporated a
living unit and allowed either forward, sideways or upward aggregation (Figure 8.76).
A typical game progression is shown on Figure 8.77. Figure 8.78 shows two designs
created by players. The project authors selected one player-created design to post-
process and analyze (Figure 8.79). Figure 8.80 shows the physical model of the
chosen design, built by the robot.
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Figure 8.75 – Game result from the Bridging game. Image credits: Jörg Hartmann.

Figure 8.76 – The vocabulary from the project Bridging. Image credits: Gösta, Eliasson, Choudhury.
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Figure 8.77 – Vocabulary-based game rewards. Players are incentivized to guide the growth process
of the design towards achieving high score. Image credits: Gösta, Eliasson, Choudhury.

Figure 8.78 – Two designs created by players of the Bridging game. Parts of the vocabulary
catalog area is visible in the background. Image credits: the author.
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Figure 8.79 – Structural analysis of a player-created design in the project Bridging. It reveals the
areas with highest rotational deformation (left) as well as simulates the deformation under self-weight
(right). Image credits: Gösta, Eliasson, Choudhury.

Figure 8.80 – Model photo. A robotically built, physical model of a player-created design from the
Bridging game. Image credits: Eliasson.
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8.4.3 IBA GAME

Figure 8.81 – IBA GAME poster. Image credits: the author.

In IBA GAME , players create hundreds of small neighborhoods to form a new
city quarter. The city quarter is at the grounds of the former Patrick Henry Village
(PHV) — located west of the city center of the German city of Heidelberg. The
IBA GAME was developed for IBA Heidelberg between August 2016 and March
2017.

Context

The PHV is a 100-hectare area, used by the U.S. Army until 2013 (Figure 8.82). Its
most characteristic feature is the rows of barracks that housed the army officers.

Attracted by information about the Platform game that I posted online, the
mayor of Heidelberg, Eckart Würzner, saw an opportunity to engage the younger
citizens in the ongoing participatory design process for the PHV.

IBA Heidelberg approached us to create a game targeting 10-17 year-olds. IBAs
— the International Building Exhibitions — are one of Germany’s most influen-
tial and innovative urban development instruments in Germany, going back to the
beginning of the 20th century.

The game, IBA GAME , joined an extensive program for Planning Phase Zero
of the PHV focussing on knowledge-based urbanism. The program had the world-
renowned architectural offices of MVRDV, Carlo Ratti Associatti, ASTOC, Ramboll
Liveable Cities Lab and Bohn&Viljoen produce four visions for the neighborhood.
A series of citizen forums meant to bring the architects into dialog with the locals
(Figure 8.83). Finally, the architectural office KCAP, taking into account the four
visions and the citizen input, produced a dynamic master plan for the future of the
PHV (Figure 8.84).

Citizens interested in playing the IBA GAME could do so at each of the three
citizen forums as well as anytime from their home computer (Figure 8.85). We also
held play sessions at the TU Darmstadt.

229



CHAPTER 8. 20.000 BLOCKS

Figure 8.82 – Aerial photo of the Patrick Henry Village. Image credits: Stadt Heidelberg, Kai
Sommer, 2010.

Our game’s purpose was two-fold. First, it attracted the younger generation that
would otherwise not go to the citizen forum discussion. The younger kids had to
”bring” their parents, which further increased the discussion attendance.

However, the second purpose is didactically even more important. The game
design of IBA GAME did not envision clear winners. Instead, each player could
choose to play for one out of four metrics: greenness, height, program diversity,
and density (Figure 8.86). In the game, the players experience the trade-offs that
maximizing one or another of the metrics would require. Hence the game developed
a greater awareness among the participants and the architects alike that a partici-
patory design process does not simply mean collecting a wish list of preferences but
is an iterative process of establishing priorities and making trade-offs.

This unique context confirmed the practical relevance of the new modes of staging
participatory design processes to be found in the intersection of crowdsourcing, game
design, and generative design.

In the IBA GAME project, a team of architecture students, a game designer, a
game artist, and I were in the role of experts as well as tool-makers, i.e., we created
the content and the rules of the game not only the game implementation.

Game description

Upon joining the IBA GAME server, players are teleported to a tutorial area (Fig-
ure 8.88) that introduces them to the context of the game and the game rules.

Three hundred square build zones make up the territory of the new city quarter
(Figure 8.87). Each game that players play fills up one of them. A game starts as
an empty zone with 7x7 slots, where players can place buildings. They create a new
neighborhood by building houses and extending them with various functions such
as rooms, gardens, businesses, etc.
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Figure 8.83 – The participatory process for Planning Phase Zero of PHV. Top: A workspace
prepared for discussion with the citizens. Bottom: Architect Winy Mass from MVRDV explaining to
the audience his vision for the Patrick Henry Village. Image credits: IBA Heidelberg, Christian Buck,
2017.

The game is based on the 20.000 BLOCKS framework and features a voxel-shape
grammar of 40 buildings of six types: houses; housing extensions; businesses; science
and tech spaces; gathering spaces; and public plazas (Figure 8.38). Each building
type has variations for both the URBAN and the NATURE resources. If players
bridge between two buildings, they get four varieties of TECH & SCIENCE SPACES
depending on the orientation and resource they use. If players extend a corner of
a building, they create GATHERING PLACES. There are eight varieties, and one
can create other buildings on their roofs. A double extension creates BUSINESSES.
There are eight varieties of businesses.

IBA GAME had 140 players who played it 820 times. The shape grammar rules
went through about ten significant revisions in the course of development.
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Figure 8.84 – The dynamic masterplan for PHV by KCAP. Left: A rendering from Carlo Ratti’s
vision for the PHV. Right: The IBA Heidleberg team, the invited architects and the IBA GAME team
in front of the big model of KCAP’s dynamic masterplan for PHV. Image credits: Carlo Ratti Associati,
IBA Heidelberg, Christian Buck 2016.

Figure 8.85 – Photos from IBA GAME play sessions. Image credits: IBA Heildeberg, Christian
Buck, DDU, Tabita Cargnel, 2016.

Vocabulary evolution

Over a month, we tested several iterations (Figure 8.90) and approaches to creating
a vocabulary at the urban scale for IBA GAME . Figure 8.89 shows the principle
that proved helpful in practice when designing a new vocabulary iteration. First,
one starts testing the vocabulary as 2D plates to make sure the city territory can be
covered well, then moves to 3D wireframing to set up the rules of vertical stacking
and then fleshes out the elements in the last stage. The needed corrections could be
implemented at each stage without throwing out too much work.
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Figure 8.86 – Neighborhoods created by players in IBA GAME. The four samples here represent
the diversity of outcomes depending on which of the four metrics the players decided to prioritize:
greenness, height, program diversity, and density. Image credits: the author.

Figure 8.87 – The Patrick Henry village divided into neighborhoods in the IBA GAME. Image
credits: Marios Messios.

Game design

The grammar principle that found ground in our playtesting was treating houses as
units a player can place anywhere on the board. Players could extend a house with
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Figure 8.88 – IBA GAME tutorial area. Left IBA GAME takes place in Heidelberg. Right players
entering the game. Image credits: the author.

Figure 8.89 – The three stages of developing a new vocabulary iteration. Left: land-blocking,
each element is modeled as 2D plates. Middle: wireframing to establish vertical stacking rules. Right:
flesh out the elements to give them architectural details. Image credits: Ben Buckton.

private spaces (Figure 8.91), but also complement it with commercial and public
functions (Figure 8.92). This ensured coherence of the urban designs and avoided
fragmentation. Each typology of elements received its own color: housing (white),
business (blue), tech and science (pink) and entertainment (yellow) (Figure 8.38).
The territory of the Patrick Henry Village was divided into square neighborhoods
in a grid. Players could play the neighborhoods one by one and fill out the whole
settlement. For each neighborhood, four parameters help players understand the
quality of what they are designing: Height, Density, Greenness, Variety.
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Figure 8.90 – Grammar and vocabulary evolution. Each row shows a selected iteration from the
evolution of the shape grammar used in IBA GAME . Working with generic architectural fragments,
shown in the top and the second row, proved too complex for players. The more intuitive approach
was to treat elements as means to block out the city’s territory (lower two versions). Image credits: the
author, Messios, Rudolph.
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Figure 8.91 – A grammar logic for extending a house. Image credits: Max Rudolph.

Figure 8.92 – The grammar logic for extending the buildings in IBA GAME. Image credits: Max
Rudolph.
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8.4.4 Combinatorial Design

Combinatorial Design is a Student Course I thought in the winter term of 2017-
2018 at the TU Darmstadt. A total of 12 students worked in four teams. Students
worked at the intersection of Architecture and Game Design to explore the design
problem of density. The design goal is to achieve a design with the highest occupied
volume providing the highest possible quality of life (Figure 8.93). Students decide
how quality of life is defined for their project.

Figure 8.93 – Pareto front of residential designs. On a chart where density is represented as the
X-axis and quality of life as the Y-axis, there is a line where no higher density can be achieved for a given
quality of life. This is the Pareto front. While the front extremes are well explored in architecture with
single-family housing urban sprawl and residential high-rises, the middle is less known and probably rich
in interesting residential models. Combinatorial design aims to create games that enable the exploration
of design in the middle. Image credits: the author.

Students begin with an existing building and use its organizational logic to create
alternative designs with higher or lower density. The reference must be an existing
residential building with the following qualities:

• low rise - max 7-8 floors

• high density

• mostly residential function

• orthogonal designs (no curves) for compatibility with the voxel space

• existing buildings only - no-unrealized projects

Students were introduced to the concept of shape grammars — collections of
visually defined, geometric rules used to automate the generation of formal rep-
resentations of designs for buildings and cities. Each team extracts the essential
elements of an existing building and models them as a shape grammar in Minecraft.
Students document the combinations that other players create using these elements
and compare them to the original building (Figure 8.94).
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Figure 8.94 – The method of the course Combinatorial Design. At the core is the fine-tuning of
game design (shape grammar, score system and game economy) until the game produces design with
desired density and qualities. Image credits: the author.

Each project represents the spatial organization of a residential building as an
economy of occupied spaces in a discrete 3D matrix (Figure 8.97) and the accessi-
bility of these spaces to the ground, the sun, and other aspects (Figure 8.98). The
design constraints are encoded as combinatorial and shape rules in the grammar.
An example is given on Figure 8.96. In Habitat 67, having a garden is a design
constraint. It is encoded in a shape grammar so that the garden’s minimum space
is marked as occupied when an element is placed. An important question is at
what compromise for the quality of living is higher density possible, and can it be
measured? Each project transformed the rules governing its economy into game
mechanics.

The students received as an example the analysis of the Habitat 67 building in
Montreal by Moshe Safdie (Figure 8.95). A grammar defined in 20.000 BLOCKS
based on the building’s complex spatial organization was also given to students.

Figure 8.95 – Habitat 67 in 20.000 BLOCKS. The building Habitat 67 in Montreal by architect
Moshe Safdie - left in reality and right, as recreated with a playable voxel shape grammar in Minecraft
using 20.000 BLOCKS . Image credits: n.n..
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Figure 8.96 – A residential unit from Habitat 67. Remodeled as a game piece in 20.000 BLOCKS

that includes the four levels of air above the garden present in the original building. As such the game
piece occupies 6 slots in the 3D matrix - two for the unit and 4 for the garden. Image credits: Mingquan
Ding.

Figure 8.97 –Density as score. By counting the cells a design occupies it can be assigned a measurable
score for density. Image credits: Mingquan Ding.
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Figure 8.98 – Access rule. Density is not all that matters for quality of living. For example, a very
densely packed design might result in a unit without access to sunlight or even to the street. Four units
are placed in the example on the left, but only two have access to the ground. The players can freely
build access routes to improve the design quality, as shown on the right. Image credits: Mingquan Ding.

Figure 8.99 – Designs from the Habitat67-inspired grammar. Image credits: Mingquan Ding.
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The Carve

The project The Carve was developed by Annabell Schneider and Lukas Stöckli.
The architectural reference (Figure 8.100) they chose is an apartment building on
the waterfront in Oslo named The Carve designed by the Norwegian architectural
office A-Lab.

Figure 8.100 – The Crave. Top: the reference building The Carve. Bottom: Replication and Variation
using playable voxel-shape grammars in 20.000 BLOCKS . Image credits: A-Lab, Schneider, Stöckli.

The building analysis and the design goals lead to the grammar rules on Fig-
ure 8.101. On the ground, players place foundation units. The apartment units
can be placed only on the foundation units, not directly on the ground. Apartment
units have windows on one side and a terrace on the other. Airspace was reserved
on both window and garden sides to ensure enough sunlight inside the rooms.

There are shared terraces between the buildings for the units inside the courtyard.
The authors called them collaborative terraces, and they are an essential part of the
gameplay. Players are given the points for placing an apartment only if it is within
four cells from a collaborative terrace, thus ensuring designs that are interconnected
and form communities (Figure 8.102 left).

The other important aspect of the game’s design is the direction change. Only
two orientations for the flats are possible in the original building — east and west.
To give the structure more chances to grow in a space, it’s possible to place the units
in every direction. And players are rewarded for direction change with extra points,
which ensures designs that are porous and let sunlight and views inside (Figure 8.102
right).

The authors decided to half the scale of the Minecraft representation to make
gameplay easier and faster, i.e., 2 meters in the original building equal one block
in Minecraft. The grammar development went through several iterations (Fig-
ure 8.103).

The final shape grammar, shown on Figure 8.104, consisted of four elements:
foundation, terrace, connection, and apartment. A screenshot of the catalog as
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foundation unit

collaborative
terrace units

connecting unit

terracewindow

Isometry
apartment unit

Apartment unit

Structural isometry
with needed air spaces

Figure 8.101 – The organizational principle encoded in the grammar. Image credits: Schneider,
Stöckli.

Each direction change
will give + 10 points

+ 10 points

+ 10 points

+ 5 points

+ 0 points

+ 0 points

+ 5 points

+ 5 points

+ 5 points

+ 5 points

+ 5 points

+ 0 points

+ 0 points

+ 0 points

Collaborative Terrace, + 10 points

Figure 8.102 – Game mechanics. Left: the collaborative terraces game mechanic. Only apartments
within four cells of a shared terrace element will bring points to players. Right: the orientation change
game mechanic. Players get 10 extra points for changing the orientation of apartments. Image credits:
Schneider, Stöckli.

modeled in Minecraft is shown on Figure 8.105, and the whole game area is shown
on Figure 8.106. Although relatively simple, the grammar allows the creation of
visually and spatially rich designs (Figure 8.107).

Eight game results were collected, analyzed, and plotted on the Density vs.
Quality chart on Figure 8.108. The authors used the Collaborative Terraces points to
measure the building’s community life quality. The players contributing the designs
were categorized into Beginners, Hobby, or Professional Gamers (Figure 8.109).
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Figure 8.103 – Iterations from the grammar development of The Carve. Image credits: Schneider,
Stöckli.
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Figure 8.104 – The elements in the grammar of The Carve with their keys and activator
blocks. Image credits: Schneider, Stöckli.
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Figure 8.105 – A top view of the catalog area in Minecraft. Image credits: Schneider, Stöckli.

Figure 8.106 – The game area. With the catalog in the front, the building zone in the far back and
the spawn area with game logic computer on the left. Image credits: Schneider, Stöckli.
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Figure 8.107 – Variety of player-created design in The Carve. Image credits: Schneider, Stöckli.

de
ns

ity

collaborative
terraces

Utopia

0102
03

07
04 05

08

06

Figure 8.108 – Pareto Front. The 8 designs created by players in The Carve, plotted according to
their score on Collaborative Terraces and their Density. Image credits: Schneider, Stöckli.
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Density: 16%
Collaborative terraces: 85
Orientation changes: 00
Time to play: 15 Minutes
Who played: Player 01
Level of skills: Hobby-gamer

Density: 19%
Collaborative terraces: 35
Orientation changes: 20
Time to play: 15 Minutes
Who played: Player 02
Level of skills: Beginner

Density: 24%
Collaborative terraces: 25
Orientation changes: 00
Time to play: 15 MInutes
Who played: Player 03
Level of skills: Professional
gamer

Density: 61%
Collaborative terraces: 35
Orientation changes: 20
Time to play: 15 Minutes
Who played: Player 04
Level of skills: Hobby-gamer

Density: 65%
Collaborative terraces: 85
Orientation changes: 00
Time to play: 15 Minutes
Who played: Player 05
Level of skills: Hobby-gamer

Density: 32%
Collaborative terraces: 205
Orientation changes: 60
Time to play: 15 minutes
Who played: Player 06
Level of skills: Member of
the project team

Density: 24%
Collaborative terraces: 260
Orientation changes: 120
Time to play: 15 Minutes
Who played: Two players,
player 06 and player 08
Level of skills: Member of
the project team

Density: 55%
Collaborative terraces: 40
Orientation changes: 00
Time to play: 15 Minutes
Who played: Player 07
Level of skills: Member of
the seminar

Figure 8.109 – The eight designs created by players in The Carve. Image credits: Schneider,
Stöckli.
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Juvika

Figure 8.110 – Juvika. The reference building Space Blocks in Hanoi and a game result from the
20.000 BLOCKS project Juvika. Image credits: Kazuhiro Kojima, Schäfer, Abu-salha, Mayer.

The project Juvika was developed by Julia Schäfer, Viola Abu-salha and Alexan-
der Kay Mayer. The reference they chose is the Space Blocks building in Hanoi,
Vietnam, by architect Kazuhiro Kojima from 2003 (Figure 8.110).

The project follows the linear organizational logic of the reference building, which
has a length of 80 meters (Figure 8.111). Two other characteristic features of the
build are turned into game mechanics. First, the building is oriented inwards and
has multistory voids, which result in a rule not to block three cells of air next to each
element (Figure 8.112). Second, stairs with various topologies connect the rooms of
one apartment arranged around the multistory voids. Players are required to freely
build the stairs to provide access to the rooms above ground (Figure 8.113).

The grammar reflects these mechanics and consists of four main elements: a
common space, an apartment, and two spaces with vertical voids (Figure 8.114).
Players get rewarded for placing elements next to each other or on top of each other
(Figure 8.115). The point distribution incentivizes players to place apartments on
or next to voids to increase density. At the same time, it discourages them from
placing vertical voids on top of or next to each other to provide feasible apartment
topologies.

A total of 18 designs were collected, analyzed and plotted on a chart comparing
density vs total quality (Figure 8.116). The total quality is calculated with

G = P − |Q− 50| − |D − 50|+ 0.5 ∗K,

where G = the Total Quality,

P = the Points acquired in the game,

Q = the sum of voids and common spaces placed in the game,

D = the relative density,

K = the complexity, i.e. the total number of occupied cells.

All 18 designs and their total quality points are given on Figure 8.117.
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STARTHERE

FILL SPACE

Figure 8.111 – The game field of Juvika. It reflects the linear composition of the reference build-
ing. Image credits: Schäfer, Abu-salha, Mayer.

Figure 8.112 – The vertical voids rule in the grammar of Juvika. It ensures the inner spatial quality
of the game results is similar to the reference building. Image credits: Kazuhiro Kojima, Schäfer, Abu-
salha, Mayer.
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Figure 8.113 – The stairs game mechanic in Juvika. It lets players freely build stairs with the
resources they win in the game to ensure the topologically diverse vertical communication present in
the reference building. Image credits: Kazuhiro Kojima, Schäfer, Abu-salha, Mayer.

Key1 | Element 1
Commonspace

Key3 | Element 3
VerticalvoidA

Key2 | Element 2
Apartment

Key4 | Element 4
VerticalvoidB

Figure 8.114 – The shape grammar in Juvika. Image credits: Schäfer, Abu-salha, Mayer.
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NEXT TO ON TOP OF
Figure 8.115 – The point system in Juvika. It incentivizes players to increase density and build
feasible apartment topologies. Image credits: Schäfer, Abu-salha, Mayer.
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Figure 8.116 – Density vs Quality. The 18 designs created by players in Juvika are plotted according
to their density and total quality. Image credits: Schäfer, Abu-salha, Mayer.
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Dichte:64%
Quatlität: 36%
Punkte: 15

Spieler: Nao

Gesamtpunktzahl: 4,89

Dichte:44%
Quatlität: 56%
Punkte: 7

Spieler: Kay

Gesamtpunktzahl: 11,72

Dichte:26%
Quatlität: 74%
Punkte: 31

Spieler: Nao

Gesamtpunktzahl: 9,42

Dichte:47%
Quatlität: 53%
Punkte: 5

Figure 8.117 – All 18 designs collected in Juvika. Image credits: Schäfer, Abu-salha, Mayer.
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Inakasa

Figure 8.118 – Inakasa. Left: the original Inakasa building in Las Palmas de Gran Canaria. Right:
a photo collage of the Minecraft version of the building, created in the 20.000 BLOCKS project In-

akasa. Image credits: Acosta, Mart́ın, Sajak, Markgraf.

The project Inakasa is developed by Julia Sajak and Moritz Markgraf. The
reference they chose is the INAKASA building in Las Palmas de Gran Canaria from
2005 by architects Alexis López Acosta and Xavier Iván Dı́az Mart́ın (Figure 8.118).
The building is a perimeter block development with an inner courtyard. It has a
mixed program, with offices on the ground and first floor and 34 apartments on the
upper four floors. The sloped opening connecting the courtyard to the street, and
the sloped roof topology, require a level of abstraction when recreating them in the
orthogonal world of Minecraft.

The shape grammar that the authors specified after analyzing the building is
organized in enclosing elements instead of spaces which makes it very compact in
comparison to other 20.000 BLOCKS projects (Figure 8.119). The sizes of the
vocabulary elements are in the closest integer values to the apartments’ components
derived in the analysis (Figure 8.120). The first family of element combinations
provides platforms and access for the apartments and starts with placing a Pavilion
element (Figure 8.121). The Access element is used for both horizontal and vertical
connectivity. Players can mine the blue material from the floor and place it in
the form of stairs as they see fit (Figure 8.122). The second family of element
combinations enables the laying out of the apartments and needs a Pavilion element
as the base (Figure 8.123).

The game design incentivizes players to build apartments in a perimeter block
typology, providing them with loggias as in the reference building. A price of an
element is determined by the difference between the resource blocks a player needs
to place to form the activation key and the resource blocks they get in return. All
elements bring four blocks, but some require 2 or 3 to be created. The access element
is the cheapest, incentivizing players to build more of it and making it attractive to
create perimeter block building typologies. The element that is a must, the pavilion,
is the most expensive. But players need to place it anyway to build more rewarding
elements and complete the goal. The windows are also the most expensive facade
element, loggia and door being cheaper to encourage the desired apartment typology
- loggias and many rooms.

The team worked iteratively to create a non-architect-friendly grammar and
game design that produced buildings similar to the original. They tested three
iterations of the grammar in a total of 13 games with 2-3 players, each bringing
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them closer to the desired outcome. The first phase proved complex for people
to remember and follow the combinatorial sequences, so the team created a player
guide and a key catalog closer to the building zone (Figure 8.124). The second phase
focused on finding the suitable game duration and balancing the rewards system.
The team tested 15, 20, and 30 minutes game length, settling on the last one as
optimal (Figure 8.125). The third phase explored the combinatorial possibilities
(Figure 8.126).

Figure 8.119 – Inakasa Grammar. A screenshot of the catalog area of the final version of the shape
grammar in Inakasa. Image credits: Sajak, Markgraf.

sleeping

TYPICAL APARTMENT LAYOUTS
APARTMENT COMPONENTS

BREAKDOWN

living

bath/kitchen
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3,
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3,
00

3,00
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Figure 8.120 – The breakdown of apartment components in the Inakasa building. All apartments
in the building have a loggia and this requirement is transferred in the game design as well. Image credits:
Sajak, Markgraf.
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Pavillion

key

key

Access Element

Combinations

Figure 8.121 – Grammar combinations 1. The Pavillion and the Access element from the Inakasa

grammar provide the base for creating apartments. Image credits: Sajak, Markgraf.

Figure 8.122 – Material sourcing for free building. The blue floor of the Access element can be
mined by players in the game and subsequently placed to form stairs as needed. Image credits: Sajak,
Markgraf.

Combinations

keykey

key key

Window ElementWall Element

Door Element Loggia Element

Figure 8.123 – Grammar combinations 2. The apartment components can be combined in various
ways to create the linear and L-shaped apartments observed in the original building and provide them
with loggias. Image credits: Sajak, Markgraf.
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Figure 8.124 – Grammar iteration 1. The first phase of developing the grammar uncovered means
to improve its comprehensibility for non-architects. Image credits: Sajak, Markgraf.

Figure 8.125 – Grammar iteration 2. The second phase of developing the grammar focused on
balancing the game design to incentivize player to create perimeter block developments and loggias.
The game duration of 30 minutes was also determined by playtesting. Image credits: Sajak, Markgraf.

Figure 8.126 – Grammar iteration 3. The combinatorial possibilities of the grammar are explored in
the third, final phase of developing the grammar. Image credits: Sajak, Markgraf.
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The Mountain

Figure 8.127 – The Mountain. The Mountain Dwelling (top row) by PLOT (later BIG) is the reference
building for the 20.000 BLOCKS project The Mountain (bottom row). Image credits: PLOT, Anjadini,
Krzywik, Diduch.

The project The Mountain is developed by Shilla Anjadini, Timotheus Krzy-
wik, and Tadeusz Diduch. The reference building is the Mountain Dwellings by
PLOT, later restructured into Bjarke Ingels Group (BIG) from 2003. The building
features 80 apartments arranged in a terrace-like manner to form a stepped slope
(Figure 8.127). Underneath the apartment levels, there are parking levels.

The shape grammar is derived from the analysis of the building’s floor plan of
the residential levels and their vertical organization (Figure 8.128). The parking
levels are not included in the grammar. The team broke down the building into four
elements: Apartment, Garden, Stairs, and Corridor (Figure 8.129). The catalog in
20.000 BLOCKS featured all four possible orientations of each element, opening up
the combinatorial possibilities for design (Figure 8.130).

The goal of the game is to reach the highest points. Players start with 50 points
and have 10 minutes to complete a game. Corridor and Stair elements cost 2 points
(Figure 8.131). If connected via Corridors and Stairs to the street level, apartments
bring three points. Otherwise, they give one point. Gardens bring the three points.
One point is taken away if something is placed on top of them, and another point
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is taken away if an element is placed in front of them (Figure 8.132). The three
sample calculations in a sequence on Figure 8.133 show how denser buildings do not
always result in a higher score.

The team advised players to spend their initial budget of 50 points on the ac-
cess elements first and then dock the residential units and gardens (Figure 8.134).
Four game results, created in these two phases, are shown on Figure 8.135 and
Figure 8.136.

RESIDENTIAL LEVELS

ACCESS LEVEL 1

ACCESS LEVEL 2

PARKING LEVELS

Figure 8.128 – Building analysis. Left: a top view of the Mountain Dwellings building. Right: a
section of the building showing the terrace-like organization. Image credits: PLOT, Anjadini, Krzywik,
Diduch.

STAIRSAPARTMENT

CORRIDORGARDEN

Figure 8.129 – Building elements. Image credits: Anjadini, Krzywik, Diduch.
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GARDEN STRAIGHT

APARTMENT

KEY
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ELEMENT

ELEMENT

CORRIDOR
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Figure 8.130 – The vocabulary catalog in The Mountain with its activation keys. Image credits:
Anjadini, Krzywik, Diduch.

POINTS PLACED POINTS ONE
CONDITION
FULFILLED

POINTS ALL
CONDITIONS
FULFILLED

ELEMENT

- 2

- 2

+1

+1

-

-
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+2

-

-

+2
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Figure 8.131 – The reward system in The Mountain. It incentivizes high density by giving points
for each added apartment. At the same time it rewards players for equipping the apartments with
open-air, sun-lit gardens. Image credits: Anjadini, Krzywik, Diduch.

Figure 8.132 – Placement rules. If gardens are not blocked on top and on the front they bring the
most points. Image credits: Anjadini, Krzywik, Diduch.
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1x Apartment +2
with access

1x Garden +3
free top & front

TOTAL 5

2x Apartments +4
with access

1x Garden (red) +3
free top & front

1x Garden (blue) +2
free front

TOTAL 9

2x Apartments +4
with access

1x Apartment +1
no access

1x Garden (red) +3
free top & front

1x Garden (blue) +1
blocked

TOTAL 9

Figure 8.133 – A sample game sequence and the points it brings to the player. The second
step gives the same points although the third one is denser, i.e. has more apartments. Image credits:
Anjadini, Krzywik, Diduch.
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3x CORRIDORS
1x STAIRS

+3x APARTMENTS

PHASE 1 PHASE 2

Figure 8.134 – The two game phases in The Mountain. Players build the elements ensuring access
first and later add the apartments onto them. Image credits: Anjadini, Krzywik, Diduch.
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RESULT 2RESULT 1

26x Corridors
14x Stairs

32x Apartments
32x Gardens

42x Corridors
8x Stairs

23x Apartments
23x Gardens

Figure 8.135 – Designs 1 nad 2 from The Mountain game. Image credits: Anjadini, Krzywik,
Diduch.
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RESULT 3 RESULT 4

30x Corridors
9x Stairs

33x Apartments
33x Gardens

20x Corridors
11x Stairs

26x Apartments
26x Gardens

Figure 8.136 – Designs 3 nad 4 from The Mountain game. Image credits: Anjadini, Krzywik,
Diduch.
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8.5 Take-aways

With the framework 20.000 BLOCKS , architectural experts can encode their design
knowledge into custom-developed multiplayer game design in Minecraft. Non-expert
players are constrained and guided by these game mechanics, enabling them to create
unique architectural results. The 3D environment of Minecraft immerses the players
in the gameplay and increases motivation and engagement. The game mechanics
are built around three components: guiding rules, verification routines, and fast
feedback. The framework employs a real-time link between the game Minecraft
and Grasshopper. The framework offers robotic fabrication to prove the viability of
player-created designs, where the digital results are brought to reality at 1:100 scale.

SOFT
VOCABULARY

PLAYER

ARCHITECT

MID

HIGH

LOW

TOOL-MAKER

HARD-CODED
VOCABULARY
+ FREE BUILD

MODIFIABLE
VOCABULARY

MODIFIABLE
VOCABULARY
+ FREE BUILD

Figure 8.137 – Vocabulary types explored in 20.000 BLOCKS. The ability of the different roles
to influence the final architectural design outcome depending on the type of vocabulary used. Image
credits: the author.

The three vocabulary types — soft, hard-coded and modifiable — were put
through online playtesting. The hard vocabulary was additionally tested at events
at the Digital Design Unit (DDU) at TU Darmstadt with university students, as
well as at Invent the World (ITW) with 7–10-year-old kids. The modifiable hard
vocabulary was tested in Play-Design-Build and Combinatorial design. The two
projects also tested how other architects, acting as Experts, could use the modifiable
vocabulary to define the use-case and the design expression for the projects.

The method proposed with 20.000 BLOCKS relies on players using the Minecraft
map to model grammars and generate structures. Currently the 20.000 BLOCKS
modpack has more than 2000 plays and 330 downloads2. In various projects and
prototypes, around 20 different maps were created. Each with a different vocabulary
catalog and game rules defined a playable voxel-shape grammar.

Possible applications I see for the method of game-to-CAD-to-Robot transfer of
geometry are:

• In the research field, new forms of architecture could be explored that transgress

2https://www.technicpack.net/modpack/20000-blocks.861360, accessed 2.10.2020
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established typologies. This is helped by engaging the unbiased minds of the
non-experts.

• In the practice, a specific design task could be crowdsourced, tapping into
the decision-making power of inhabitants, neighbors, and investors by defining
the corresponding in-game rules and providing suitable background evaluation
algorithms.

8.5.1 Features of the voxel-shapes

Design The abstracted modeling environment with a voxel size of 1 x 1 x 1 m
could be limiting. However, since the aim is to generate schematic architectural
designs, this level of abstractness works in our favor.

Walkability An essential requirement to achieve an immersive experience in the
generative phase, i.e., in the play phase, is that the resulting structures be walkable
for players to reach the newly added markers. Otherwise, the iteration process is
blocked. That means that in both urban or building scales, all possible sequences
of the grammar’s shape rules need to create a walkable combination when placed.

Furthermore, the size of a player’s Minecraft avatar in relation to the voxel shapes
they model — and subsequently iterate through in the game world — creates an
immersive perception for a one-to-one architectural scale.

Color Coding The possible further grammar growth points need to be very clearly
visible to the player while in play. Therefore, the textures of the marker voxels and
the building blocks need to be different. Furthermore, with larger sets of rules, such
as in IBA GAME , where we used six types of rules with 2–4 variations each, a color
coding of the kinds of rules helps the player learn the grammar faster.

The ideal scenario to test the method in practice is the massing out of an archi-
tectural concept, such as defining the rough placement and orientation of rooms in
a building or determining the location and infrastructure of buildings in an urban
design scheme.

Key findings:

1. Harder rules are better than soft ones in delivering a feasible architectural
design.

2. If the rules become too hard, the players no longer feel part of the design and,
as such, are unmotivated to play.

3. If the rules are too soft, the resulting structures become too chaotic. This
makes them difficult to verify and construct. In addition, players find those
designs confusing to navigate and play through.

4. Robotic fabrication is possible but currently too slow to provide meaningful
feedback.

5. An easily modifiable vocabulary allows other architects to participate as ex-
perts, opening our method to more possible applications.
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6. Clear, non-architectural, time-bound goals make participation more accessible
and entertaining than tasks where players need to understand the spatial and
architectural qualities of the game elements they are building.

8.5.2 Takeaway 1: Gradient of control

The case study 20.000 BLOCKS reveals that calibrating to what extent do Ex-
perts and Players have control over the design outcomes of the games is an ongoing
challenge and primary focus of this research.

As Brabham 2013 states, for a well-functioning crowdsourcing model, the locus
of control regarding the creative production of goods must exist between the or-
ganization and the crowd. If the locus of control is closer or more prominent in
the community, such as in the case of open-source software or Wikipedia, or if the
power is mainly in the organization’s hands, such as when a company wants the
community to merely vote for the color of a product, we are not seeing an actual
crowdsourcing model (Brabham 2013).

Therefore, I consider the balance of control that players and experts had when
analyzing the results. I imagine it on a gradient scale of soft to hard, where the soft
end of the spectrum gives more control to Players and the hard end of the spectrum,
more control to the Experts (Figure 8.138). Finding the right balance between hard
and soft requires constant testing. We can calibrate the balance better with every
project iteration and every game played.

The type of vocabulary — soft, hard-coded, or modifiable — influences the degree
to which different roles can influence the outcome as well and affects the balance
between them (Figure 8.137).
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Figure 8.138 – Gradient from soft to hard. Each tool empowers players or transfers an expert’s
will differently. It also comes with a certain cost in effort to implement. Image credits: the author.

8.5.3 Takeaway 2: Robot process slow

From all 57 game results, we selected, post-processed, and robotically manufactured
five models. The robotic process is too slow to keep up with the digital iterations.
The speed is 200 blocks per hour, and an average design requires 1200 to 2000 placed
blocks to build, i.e., 6–10 hours per model. This includes both the model blocks as
well as the supporting blocks. As the research focuses on game design as a guiding
instrument, the models’ analysis is secondary.

8.5.4 Takeaway 3: Need for automated post-processing

The ability to involve a team of experts in the making and testing of the architec-
tural vocabulary holds the potential for feasible and well-performing solutions. To
make this viable, the architectural field’s main hurdle is developing post-processing
routines that can quickly turn player-generated designs into CAD models for further
specification.
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8.5.5 Takeaway 4: Design system

We also developed an in-house design style guide to regulate, across our team, how
and when sections of a shape rule could overlap with another (Figure 8.139). This
saved the work of having to try all combinations separately.

HOUSE

roof deck
level

pitched
roof

extendable
horizontally

13

5

activate blocks
for vertical
extensions

BUSINESS
SOLID

extendable
horizontally

firstfloor

not accessible
rooftop

accessible
rooftop

7
20

20

activate blocks
for vertical
extensions

TECH/SCIENCE
ADDONS

17blocks max
height

firstfloor

accessible
rooftop

17

7

23

activate blocks
for vertical
extensions

samehere

Figure 8.139 – Design style guide. An extract from the design style guide for the urban scale grammar
of IBA GAME , which was developed and shared within our team. Image credits: Marios Messios.

8.5.6 Future work

The research could benefit from the following future developments:

• A way to implement the grammar logic entirely on the server-side so that
players can participate with a Vanilla (unmodified) Minecraft client. The
need to download and use a customized Minecraft version reduces the number
of potential players.

• A generative visualizer, which could simulate a game being played so that a
designer can capture some of the most common conflict/bugs in advance, like
mismatching shapes and broken walkability, without having to play the game
over and over again.

• The collected player-created designs can be made available through a graphical
search interface, similar to the one described in chapter 7: Sensitive Assembly.

• The collected data (grammar definitions plus the generated shapes) can be
used to train a machine-learning algorithm to generate either grammar sets or
schematic designs.
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Project Reptiles

Figure 9.1 – A tileset from Project Reptiles in use. Image credits: Roger Winkler.
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Figure 9.2 – Project Reptiles on the map of design paradigms. Image credits: the author.

9.1 Design Paradigm

Project Reptiles is a case study comprising of a custom-made tile-based building
configurator (Figure 9.1) tested in a series of workshops with architectural students
and online, non-architect participants. The digital tools at the core of the case
study were implemented by Roger Winkler under my guidance throughout a series
of student courses, culminating in his master thesis at the Digital Design Unit of the
Technical University of Darmstadt. Semi-structured interviews with architectural
offices and mock design competition, part of Roger Winkler’s master thesis, complete
the case study.

Project Reptiles uses an iso-surfacing, tile-based generative algorithm to create
designs. The project involves the architects in the role of stakeholders in creating
both tilesets and designs. It also engages the crowd in creating designs. No game de-
sign or game mechanics are employed in the project. As such, Project Reptiles falls
under the ABD design paradigm (Figure 9.2) where, architectural designs are cre-
ated by stakeholders in an open-ended manner, using design-generating algorithmic
procedures, engaging a crowd of non-stakeholders with an open call.

With Project Reptiles , I explore how the barrier to participation of both experts
and non-experts can be lowered through algorithmic assistance. For non-experts,
the focus is on enabling the visual expression of their ideas and preferences. The
hypothesis is that a generative system proposing near-complete designs will be ben-
eficial. At the same time, for experts, i.e., architects, the focus is on maintaining
design freedom when using such a generative system without requiring additional
computational design skills or knowledge in programming.

Csikszentmihalyi’s idea of Flow — having the right match of skills and difficulty
— presents a framework to visualize the means of lowering these barriers (Csik-
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szentmihalyi 2008). According to Csikszentmihalyi, a high level of skills and low
difficulty would trigger boredom (Figure 9.3). On the opposite side, a low level of
skills and high difficulty would trigger anxiety.

FLO
W

DIFFICULTYLOW HIGH

SKILL

LOW

HIGH

BOREDOM

ANXIETY

Lower di culty 

through 

Generative Design

Increase skill 

through 

Game Design

Figure 9.3 – Flow through assistive algorithms. Project Reptiles explores how assistive algorithms
can lower the difficulty in producing designs for non-experts and in keeping design freedom when working
with generative systems for experts. Image credits: the author.

While Sensitive Assembly and 20.000 BLOCKS explored the educational benefits
of game design in increasing the participants’ skill levels, the aim of Project Reptiles
is to explore the degree to which assistive algorithms can lower the difficulty for
both experts and non-experts without requiring a change in skill.

The Project Reptiles case study builds the base to:

• Introduce assisted sculpting, a strategy for encoding design content into partic-
ipatory computational design systems that uses iso-surfacing and constraint-
solving.

• Describe the technical implementation of an assisted sculpting digital environ-
ment with potential applications in creating massing models and schematic
designs.

• Reflect on how architects can use thousands of crowdsourced designs created
by non-experts.

9.2 Implementation and Setup

The computational design system is implemented in Grasshopper. It is an interactive
voxel field where users can click to activate or deactivate a voxel. It is inspired by the
game Brick Block, which is the source of the initial tileset in this case study (Stalberg
2016). The initial iso-surfacing ruleset distinguishes solely between spaces enclosed
by or outside the modeled object. The tileset that implements this simple rule is
topologically identical to the tileset used in the Marching Cubes (MC) algorithm,
which has 256 tiles. When rotated, mirrored, and inverted variations are excluded,
this number goes down to 15 unique tiles. In architecture, however, up-facing and
down-facing surfaces are different, i.e., the lower surface of an overhanging room
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is not the same as the upper surface of a flat roof. Therefore, the tileset can be
reduced to no less than 53 unique tiles, 15 of which can be considered as the basic
shapes that define a design family (Figure 9.4).

Figure 9.4 – Brick Block tileset. The 15 basic shapes in the Brick Block tileset. Image credits: Roger
Winkler.

The implementation includes an interactive sculpting mode and a tileset editing
environment for Rhino, allowing an architect to represent a new design family by
modeling a new tileset and instantly sculpting something with it (Figure 9.5).

Figure 9.5 – Example tileset modeled by an architecture student. Assisted sculpting environment
and the tileset editor in Rhino/Grasshopper. The screenshot shows a design variation using a tileset
inspired by the Flex House by Evolution Design. Image credits: Roger Winkler.
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Sculpting mode

Blocks are placed and deleted by pressing the left or right mouse button at the
corresponding position on the sculpture. The system calculates the ratio of areas
accessible from the ground floor for an imaginary person walking in the designed
building. The blue button activates the preview of accessible and inaccessible areas
(Figure 9.6).

Figure 9.6 – User interface in the sculpting mode. Image credits: Roger Winkler.

By pressing CTRL+D, the user can switch to a second mode, wherein the tile
that is currently being pointed at is highlighted. The corresponding catalog index
is shown in the information panel, which helps transition to tile editing mode. By
activating the pink button (R), a random shape is generated that can also be edited
so that users do not have to start from scratch.

Tileset editor

The tileset editing mode supports the expert while designing a tileset that rep-
resents a design idea they have in mind (Figure 9.7). The following features are
implemented:

• navigate through the tileset (arrows, left/right)

• turn on/off the display of the reference surrounding tiles (control + D) — this
helps the designer match a tile’s side edges with the tiles that could go next
to it.

• switch to the sculpting mode (tab)

To update the edited tiles for the sculpting mode, the user must click on the
Update button in Grasshopper. The info panel in the top left shows him the state
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Figure 9.7 – User interface in the tileset editing mode. Image credits: Roger Winkler.

of the surroundings and the current tile number. For the system to calculate the
accessibility and the current floor area in the sculpting mode, the user has to model
on two different layers — a 3D model, shown in red, and a walkable surface, shown
in blue. The editor automatically generates the rotated and mirrored variations of
the tiles. The architect controls the order in which tiles are rotated and mirrored,
adds constraints for each unique tile for a specific design case (i.e., different window
on the north facade only), and defines locations for specific tiles (i.e., separate tileset
for ground floor).

Site-specific online configurator

After implementing the sculpting mode of Project Reptiles in Rhino as described
above, Roger Winkler implemented it in the Unity game engine as well (Figure 9.8).
This allowed the creation of a WebGL-based online building configurator for a spe-
cific site in Frankfurt (Figure 9.9). The user can show or hide the urban context
with the Environment button in the configurator. This is helpful, for example, if a
neighboring building hides a part of the design during the modeling process.

The maximum building volume has the size of 24 x 11 x 5 blocks for a total of
1375. A block is a cube with a side of 4 meters. Users can add blocks with the left
mouse button and remove them with the right one.

To make the design process as fast as possible for the user, two different modeling
tools were developed and implemented: Voxel Brush Size and Presets (Figure 9.10).
The Voxel Brush Size users can increase or decrease the number of blocks edited with
a single mouse click. With the help of the presets, users can either fill the site with
blocks entirely and subtract what is needed, place a block-perimeter development
and again subtract or add as required, or delete the current designs and start from
scratch.

Quantitative information about the current configuration created by the user
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supports them in creating design proposals.
First, if a block’s distance to the facade is more than two blocks in all four

cardinal directions, it is colored in red (Figure 9.11 left). This indicates that the
block will not receive sufficient daylight. The user can activate a transparent mode
to reveal internal red blocks hidden by other building parts.

The second feedback function calculates the number of inhabitants so that the
user can develop a feeling for the scale of the design. Since residential buildings
of different typologies have different occupant densities, the number of occupants
is determined using a database of actual buildings as a reference. The database of
buildings is represented as a three-dimensional space where the axes are the area of
the site, the building’s ground area, and the total floor area. Any design created
in the online configurator can be positioned in the space, and the three closest
reference projects are determined in real-time (Figure 9.11 right). The average
occupant density of these projects, together with the floor area of the user’s design,
is enough to estimate the potential number of occupants.

The online configurator records each design state linked to a session id. In
addition, the users are given the option to submit a design they have created, adding
a short comment with the submission. All user submissions and intermediate states
of the model are recorded as a binary string for later reconstruction and search
(Figure 9.12).

Figure 9.8 – Online configurator. The WebGL-based site-specific online configurator in Project

Reptiles developed in Unity. Image credits: Roger Winkler.
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Figure 9.9 – Site 3D model. An actual site was used to crowdsource designs for the second phase of
Project Reptiles. The site is on Hanauer Landstrasse 200 in Frankfurt am Main. Image credits: Roger
Winkler.
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Figure 9.10 – Tools avaialbe to the user in Project Reptiles. Image credits: Roger Winkler.
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Figure 9.11 – Design metrics. Left: the configurator marks in red the blocks that do not get sufficient
daylight. Right: the estimate for number of inhabitants is based on a database with actual reference
projects. Image credits: Roger Winkler.
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Figure 9.12 – Data representation. Left: The recorded binary string for a design with the optional
user-provided text comment. Right: reconstruction of the same design in 3D. Image credits: Roger
Winkler.
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Data filtering tools

Two data browsing modes helped explore the potential of the collected crowdsourced
designs to assist an architect in proposing a schematic design for a given site.

The first one is search by parameters. It is similar to the filter function when
searching for a flight on travel portals (Figure 9.13) or optioneering interfaces for
browsing of computer-generated massing models in computational design software
(Figure 9.14). The user can narrow down the crowdsourced designs by their total
floor area and then sift through them one by one to find a fit (Figure 9.15).

The second mode is Autocomplete and is more powerful in its assistive poten-
tial. Similar to autocompletion in search engines (Figure 9.16), the user can give a
schematic massing as a 3D search phrase, and the algorithm sorts the crowdsourced
designs by similarity Figure 9.17. The formula for calculating the distance between
two designs is shown on Figure 9.18. It operates on the assumption that a design
having the same amount of blocks but placed elsewhere would be more desirable
than a design missing these blocks entirely.

Figure 9.13 – Flights filtering interface. Image credits: Opodo.
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Figure 9.14 – Spacemaker Optioneering Interface. Image credits: Spacemaker.

Figure 9.15 – Project Reptiles filtering interface. Image credits: Roger Winkler.
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Figure 9.16 – Google autocomplete. Image credits: Google, Inc.

Figure 9.17 – Autocomplete in Project Reptiles. Image credits: Roger Winkler.
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Figure 9.18 – Similarity metric. The formula for calculating the distance between the 3D search
phrase and the crowdsourcing designs. Image credits: Roger Winkler.
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9.3 Machine Agency

As described in chapter 3: Generative Design, a purely automated generation process
is most often opaque and non-iterable. The user cannot influence the result while
the process runs but is simply presented with an outcome.On the other hand, for
a non-expert, it is not easy to advance in a design task if not assisted by a system
that offers a considerable influence on the design, a kind of automated intelligence
where expertise is encoded. The idea is similar to a driver-assistance system that is
not an autopilot driving the car on its own but supports the driver in each of their
actions while driving.

This approach could allow easy involvement of the non-expert via point-and-click
actions. The user can sculpt the composition of the final product into a voxel grid
while the configurator takes care of the correct selection of tiles. This gives the user
a traceable, high-impact interaction - click only once to add volume to the building,
and this volume is added with windows, roof, and walls matching perfectly to the
rest of the building’s envelope. In that aspect iso-surfacing, is used to assist the
non-expert while modeling (Figure 9.19).

Iso-surfacing works similarly to how two drops of water lying on a surface merge
into one drop if close enough to each other. This is different from how two Lego
pieces placed next to each other remain two separate parts. The Marching Cubes
(MC) algorithm works in the way described above (Figure 9.20). It creates closed
iso-surfaces from a scalar field mapped to a voxel grid which makes it suitable for
our approach (Lorensen and Cline 1987).

The method proposed here, Assisted Sculpting, uses a combination of iso-surfacing
and constraint-solving to let experts encode architectural designs into interactive
modeling environments. Project Reptiles , similar to Brick Block by Oskar Stalberg
(Figure 9.21), uses the core functionality of the Marching Cubes (MC) algorithm
to automatically create architectural structures from the iso-surfaces it generates
based on a scalar field which the user can modify.

The expert models the tiles using the MC tileset as a topological base and defines
constraints for their placement similar to the rules in the WFC algorithm. The WFC
algorithm takes care of design variability, the MC algorithm takes care of turning a
simple point and click action into a coherent building geometry.

The case study Project Reptiles consists of two phases:

1. Crowdsourcing of tileset designs

(a) Develop an application for assisted sculpting with a tileset editor.

(b) Ask architects to model existing designs with it and document the extent
to which the given design was encoded as a tileset.

2. Crowdsourcing of building designs

(a) Develop a web-based online configurator for massing studies of a building
on a specific site.

(b) Crowdsource alternative designs with an open call.

(c) Conduct a mock competition with architectural students for the same
site, providing half of them access to the crowdsourced designs and tools
to browse and filter them.
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Figure 9.19 – Marching cubes logic on architectural tilesets. The aggregation of tiles in assisted
sculpting creates unibody designs instead of part assemblies due to the iso-surfacing algorithm behind
it. Image credits: Roger Winkler.
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Figure 9.20 – Marching squares. The components of the Marching Cubes Algorithm in 2D (known as
Marching Squares): a 2D matrix, a tileset, a ruleset and possible results. Image credits: Roger Winkler.
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Figure 9.21 – Brick Block. The browser-based game Brick Block by Oskar Stalberg uses a custom
tiles set for the marching cubes algorithm to enable the interactive generation of building envelopes
(Stalberg 2016). Image credits: Oskar Stalberg.

Figure 9.22 – Design options. Variations of an architectural reference created using the iso-surface
tilesets method. The tileset is based on Villa Savoye by Le Corbusier. Image credits: Roger Winkler.
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9.4 Human Agency

9.4.1 Crowdsourcing the design of tilesets

The goal of crowdsourcing the tileset design is to determine to what extent architect
can maintain their creative freedom when using the constraint-based generative
design technique that forms the basis for the Assisted Sculpting approach.

Setup

We conducted two workshops with architecture students. In both workshops, the
participants had six hours to work on their tilesets (Figure 9.23).

Figure 9.23 – Tilesets catalog. The tilesets created by workshop participants mapped onto a voxelized
version of the Stanford Bunny. Image credits: Roger Winkler.

In the first workshop, the focus was on creating massing models of buildings.
Students were asked to decompose an architectural reference, such as the Villa
Savoye by Le Corbusier, into tilesets (Figure 9.22). The second workshop focused
on solving the space allocation of a schematic design for a building. Students were
asked to model access elements such as ramps and stairs into tilesets.

We advised the participants to model the 15 key tiles first, which provides two
main advantages:

1. The surrounding conditions for all other tiles are given by the first 15. Un-
expected problems during the modeling process, where the surfaces of two
adjacent tiles do not match, could be prevented.

2. These 15 tiles are needed to build the first simple volumes (Figure 9.4).

In the workshop, students were supported by implementing new features to
match the needs of their projects. For example, we introduced a rule that two
different wall tiles must alternate on subsequent floors to support the continuously
curved façade found in the Flex House (Figure 9.5). To avoid starting from scratch,
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we introduced a random shape generator. Another feature was developed to include
elements (points, curves, surfaces) in the tileset that were post-processed to generate
structures beyond the voxel grid, such as the ramps within the Fun Palace project.
Furthermore, the continuity of accessible areas could be achieved with tilesets in the
second workshop (Figure 9.24).

The degree to which the tileset replicated the original design was documented
as follows. The architect observed a geometric rule characteristic of the design
of the building in question. For example, the first floor in Villa Savoye is made
up of elements that are piloti, and the house has the typical modernist ribbon
windows (Figure 9.22). We checked whether these geometrical design rules could be
successfully recreated in our design system.

Figure 9.24 – Connectivity tileset. Structure created by a workshop participant with the first 15
tiles. Image credits: Roger Winkler.

Findings

Key findings from the Tileset crowdsourcing phase:

• In general, the observed geometric rules in a given design could be successfully
remodeled as tilesets. However, the method is limited to largely orthogonal
designs.

• Rules and tiles were more easily defined and added into the script when par-
ticipants worked with existing buildings as reference.

• When the participants focused on infrastructural typologies without explicit
references, this was more difficult, i.e., a clear idea of the designer is a prereq-
uisite for modeling the tileset.

• Workshop participants were often overwhelmed by the many dependencies
between the tiles when starting to model. To help with that, we showed them
the 15 critical tiles to begin from.
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• Introducing a random shape generator made it easier for the participants to
understand the logic of the iso-surfacing algorithm and, therefore, start mod-
eling new tilesets.

9.4.2 Crowdsourcing the design of buildings

Setup

The second phase in Project Reptiles aims to explore the potential for crowdsourced
designs to augment the abilities of architects when proposing schematic designs for
a specific site. The crowdsourcing phase used a very simple tileset focusing more on
the envelope variations than on the detailed facade design. The project by Oswald
Mathias Ungers for the Roosevelt Island Housing competition from 1975 shown
on Figure 9.25 is the conceptual reference. The second phase included a user study
where architectural students participated in a mock competition to design a building
for a plot in Frankfurt.

The process begins with an open call to the online crowd to configure designs
in the online configurator. The online configurator gives feedback on quantifiable
parameters. To truly tap into the online crowd’s imagination and creativity, the
aim is to take their focus away from the mere optimization of the number of inhab-
itants and their access to daylight. Therefore the users are shown illustrations and
atmospheric representations of urban living, such as views of the skyline, green roof
terraces, gatherings of people around the dinner table, etc.

Participants are recruited using ads in social media (Figure 9.27). More than
3.500 people saw the ads, of whom 943 watched the promotional video, and 73
started the configurator. We recorded a total of 155 design sessions, resulting in
more than 9.000 design states and 35 submitted designs (Figure 9.28).

With the crowdsourcing completed, ten architectural students are given 8 hours
to propose three design options for the site in Frankfurt (Figure 9.29). Half of
the architects, the control group, design using techniques they are familiar with
(Figure 9.26). The other half, the test group, are given access to the crowdsourced
designs and are introduced to the database browsing tools and the autocomplete
function.

The 30 proposals from both control and test group are anonymized, standardized
and mixed together (Figure 9.30). Each project included a physical model in sty-
rofoam (Figure 9.31), the same key perspective, a section, a site plan (Figure 9.32)
and a short text description. Subsequently a mock jury ranked all designs in three
phases (Figure 9.33). The ranked designs are given on Table 9.1.

Findings

Three main factors influenced the quality of proposals from the crowdsourcing step:

1. the profile of the participants,

2. the number of participants and

3. the feedback given by the configurator.

It can be noted that the greater the diversity and number of participants in the
crowdsourcing step phase, the greater is also the range of suggestions submitted.
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Figure 9.25 – Project by Oswald Mathias Ungers for the Roosevelt Island Housing competition,
1975. Image credits: Ungers.

In this context, intrinsic and extrinsic motivations for the specific project are addi-
tional influencing factors. For example, a significantly higher design quality can be
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Design

Crowdsourcing Design

Jury

Test group
Control group

Figure 9.26 – User study setup. Image credits: the author.

Figure 9.27 – Project Reptiles ad on Facebook. Image credits: Roger Winkler.

expected if the configurator is used in an architectural office to collect ideas.
Furthermore, the quality of the feedback in the configurator directly influences

the quality of the design proposals submitted. The case study gave feedback on the
number of inhabitants and access to daylight. It would be interesting to quantify
other qualities, such as how many blocks would directly see the skyline, the river,
or the lake.

The tileset used in the 3D representation is also a kind of feedback. The user
study used one tileset of the many crowdsourced in the first phase. A more diverse
selection of tilesets and switching between them would allow the user to respond
more specifically to the design task.

The factors that influenced the design process of the architectural students who
worked with the collected results were:

1. the number of participants,

2. the search tool and

3. the quality of the submitted proposals from crowdsourcing.

The profile of the people participating in the workshop had a significant impact
on the overall design process and results. Practicing architects with experience in
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Figure 9.28 – Crowdsourced designs. A fraction of the more than 9.000 collected design states in
the crowdsourcing step. Image credits: Roger Winkler.

residential projects and dealing with competition guidelines could probably judge
and process the submitted design proposals much better.

In addition, the control and test groups each had the same amount of time to
complete the task. However, since the participants in the test group first had to
familiarize themselves with the search tool and the submitted designs, they had less
time for the actual design process. It could be advantageous to introduce the search
tool to the test group first and then have both groups start working on the task.
This way, both the test and the control groups would have the same amount of time
to develop design ideas.

The feedback provided to the crowdsourcing participants would also have been
of interest to the test group in the search tool. Thus, it would not only contribute
to the understanding of the submitted designs but could also influence what the
architect designs.

The mock competition resulted in almost all designs produced with the help of
the crowdsourced design being dismissed at the first or second round. Only one
made it to the final round and got second place.

The jury’s composition was very homogeneous, with all members being architects
from the academic environment with a similar academic focus. A more diverse jury
would benefit the evaluation of the results.

Another influencing factor was the choice of evaluation criteria provided to the
jury. Ideally, the evaluation criteria should be aligned with the feedback given to
the crowd and the design requirements for the workshop participants so that a
completely transparent evaluation process would emerge. This was not considered
in the execution of the process in this work.
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Figure 9.29 – Photos from the mock design competition. Image credits: Roger Winkler.

The designs created by the test group, influenced by the crowdsourced designs,
appear to be wild and less orderly. Therefore, most of them can be distinguished
from the designs of the control group. The noise can result from a mismatch in the
evaluation criteria provided in the three steps or from the computational augmenta-
tion of the design process. This might have led the jury to exclude such designs, even
if they had been good according to quantitative and qualitative criteria. Possibly,
the aesthetic senses are not used to this kind of semi-algorithmic order.
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Figure 9.30 – Normalization step. All 30 entries are normalized before the mock jury ranks them. Im-
age credits: Roger Winkler.

Figure 9.31 – Model photos. The photos of the models on the left are from the test group, on the
right from the control group. Image credits: Roger Winkler.
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Figure 9.32 – Site plans. The site plans on the left are from the test group, on the right from the
control group. Image credits: Roger Winkler.

Figure 9.33 – Photo from the ranking process. Image credits: Roger Winkler.
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Design by the test group
Design by the control group

1

1

Excluded
10 10100 2620 6 1 finalist
18 10100 1850 10 2 finalist
08 10100 2380 6 3 finalist
01 10600 2070 9 4 finalist
20 10400 2160 6 5 finalist
04 11900 2400 5 6 finalist
24 10800 3000 5 6 finalist
06 9700 2270 9 8 finalist
13 10000 2230 5 9 finalist
03 10000 2048 6 10 2nd round
30 9500 2000 5 10 2nd round
25 9700 2500 25 10 2nd round
17 7000 948 10 10 2nd round
22 7900 2400 5 10 2nd round
12 13000 2640 5 10 2nd round
09 12400 3000 9 10 2nd round
27 10400 1400 12 10 2nd round
19 10100 2110 6 10 2nd round
15 9700 2324 6 11 1st round
28 9800 2436 6 11 1st round
05 9900 2048 6 11 1st round
16 9500 1968 6 11 1st round
11 5200 1726 3 11 1st round
29 8500 2760 8 11 1st round
07 9200 3050 5 11 1st round
02 10800 2300 6 11 1st round
26 9600 1730 10 11 1st round
14 7200 2450 6 11 1st round
23 9500 1810 6 11 1st round
21 10900 2220 5 11 1st round

Number Area Groundfloor Area Floors Place

Table 9.1 – Ranking. The ranking of the designs submitted in the mock competition after the mock
jury. Image credits: Roger Winkler.
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9.5 Take-aways

The Project Reptiles case study introduces the concept of assisted sculpting which
uses a combination of iso-surfacing and constraint-solving to help non-experts in
exploring design options. Design tasks such as massing models and schematic space
allocation were tested, the former being more successful. The user studies show that
assisted sculpting is easy for non-experts and could bring them into a creative flow
state. At the same time, the tileset editing mode offers a balanced creative challenge
for architects making full use of their expert skills and knowledge. Users cannot edit
the procedural algorithm. However, an interface for experts is provided to define
the elements with which these procedural protocols operate.

A potential use case scenario for the approach presented with Project Reptiles is
prefab and industrial construction. For example, a manufacturer of prefab houses
(Fertigbau) would have a standard set of details and measurements that could be
procedurally described and encoded into a tileset. That would ensure that all au-
tomatically generated designs based on the user’s changes in the program would be
compliant with the manufacturing process of the prefab company.

Project Reptiles reveals the following three principles in lowering the difficulty
of a design challenge for both experts and non-experts:

1. Don’t let users start from scratch — lowers the difficulty to start.

2. Give users a set of tools that have traceable, high impact on the design via
simple actions — lowers the difficulty to express an idea.

3. Give users feedback to help them judge the value of what they have created
— lowers the difficulty to decide which action to take next.

The feedback provided to users at all phases of the crowdsourcing pipeline must
be based on the same parameters to avoid noise.

As an outlook, different input techniques can be explored. Since the only input
needed for our method is a scalar field, there are various options available to stage
the interactions that generate these fields. It can be done via a point-and-click as
presented in this work. It can also be based on attractor logic, structural stress or
other performance-driven analysis, partially automated tile placement, etc. Adding
more quantitative feedback, such as solar analysis or cost estimates, could lower the
challenge for the user in deciding what change to the design to make next. A similar
effect can be pursued by staging the modeling experience like a game. This would
also enable the exploration of the collaborative qualities of the computational design
system and involve as many non-experts as possible.
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Rechteck2BIM
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Figure 10.1 – Rechteck2BIM on the four fields map. The case study Rechteck2BIM explores the
design paradigm at the intersection of all four investigated fields. Image credits: the author.

10.1 Design Paradigm

One of the most basic tasks for an architect is floor plan design. A survey with
architects conducted by Nisztuk and Myszkowski 2018 reveals that the generation
of functional layouts is one of the tasks architects would like to have automated the
most (Nisztuk and Myszkowski 2018). Much work has been done in computationally
generating residential layouts (Duarte 2005; Green 2020; Hu et al. 2020; P. Merrell,
Schkufza and Koltun 2010; Stiny and Mitchell 1978; Zawidzki and Szklarski 2020).
However, this state-of-the-art requires that generated designs are post-processed
manually to give them the desired design expression.
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When designing a new building, architects alternate between various media.
They use the floor plans and sections to establish a functional relationship between
the internal spaces of the building, as well as between the building and its context.
Facades, digital 3D models, and physical models are used to find and represent
the design expression of the building. Design expression is characterized by the
raster pattern and layout of windows, facade cladding, the geometrical features
where facade surfaces meet (corners, roof to wall, wall to the ground, etc.), and the
materiality of the building.

Much work has been done in computationally generating residential layouts
(Duarte 2005; Green 2020; Hu et al. 2020; P. Merrell, Schkufza and Koltun 2010;
Stiny and Mitchell 1978; Zawidzki and Szklarski 2020). However, this state-of-the-
art requires that generated designs are post-processed manually to give them the
desired design expression. Some works have tried to automate the transfer of design
quality from a small sample model to larger, automatically generated models such
as Model Synthesis by Merrell and Wave-function Collapse (Karth and A. M. Smith
2017; Khokhlov, Koh and Huang 2019; P. Merrell 2007; P. Merrell and Manocha
2008, 2009; Tigas and Hosmer 2021). The approach was presented in the previous
case study — Project Reptiles (See chapter 9). However, this work does not allow
the designers to intuitively control the generated layouts’ properties.

In the case study Rechteck2BIM I explore how the tasks performed by architects
and homeowners when laying out the schematic floor plan for a new single-family
house could be crowdsourced from the role typically carrying them out to another
role.

Rechteck2BIM is a series of digital prototypes around this goal. The prototypes
create a dynamic, real-time link between a user-friendly interface to create a floor
plan layout and a detailed 3D BIM model to produce drawings and cost estimates.
The procedurally-generated 3D model allows to run various analytics on the floor
plan and provide feedback to the user.

The Rechteck2BIM case study employs techniques from all four fields of interest
in this work: Participatory Design, Generative Design, Game Design, and Crowd
wisdom. As such it is positioned within the design paradigm right at the core in-
tersection ABCD (Figure 10.1). The paradigm postulates that architectural designs
are created by stakeholders in an open-ended manner, using design-generating algo-
rithmic procedures within a game or an environment with elements of game design,
engaging a crowd of non-stakeholders with an open call.

10.2 Implementation and Setup

The Rechteck2BIM case study is set up as a series of prototypes structured in two
main topics: generating design and computationally analyzing and sorting designs.

The Rechteck2BIM case study contains the largest number of prototypes from
all case studies and presents the highest diversity in terms of means to implement
them. The design-generating prototypes were implemented mainly in the game
engine Unity. When special geometrical processing or generation was needed, the
Unity prototype interfaced with Grasshopper. The Grasshopper model was also used
to automatically generate a BIM model by sending the geometry to ArchiCAD. All
prototypes for floor plan analysis were implemented in Grasshopper.
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10.3 Machine Agency

Rechteck2BIM explores three approaches for user input, each picking a different
generative technique from the taxonomy introduced in section 3.2 and making it
interactive: simulation-based, constraint-based, and case-based. As all approaches
concerned the user with abstract 2D shapes representing the rooms in a floor plan
layout, I developed a pipeline to procedurally turn a composition of rectangles into
a 3D model of a house. Additionally, computational analysis of floor plans was
explored with architectural students in courses taught by me at the TU Darmstadt
and my prototypes.

10.3.1 Interactive Floor Plan Generation

Simulation-based floor plan configurator

Figure 10.2 – Spring-based prototype for Rechteck2BIM. Image credits: the author.

The first approach uses a spring-based simulation to let the user create a floor
plan (Figure 10.2). The user can move around rectangles representing the wanted
rooms, snap together, and see a 3D house model defined by the rectangle composi-
tion. The rectangles are connected with springs if they represent rooms that need
to be connected or adjacent in the house layout. The implementation builds on the
doctoral work of Arvin 2004 described by Arvin and House 1999, 2002 and shown
on Figure 10.3. The spring-based approach proved difficult for the user to control
as it reevaluated all room positions after each interaction. This is especially true
for more complex room programs with more than 5-7 rooms where the spring forces
are far from equilibrium in most of the wanted manual arrangements (Figure 10.4).
Synchronizing two consecutive floor plans in multistory houses becomes practically
incomprehensible.

The spring-based prototype served as the base to develop the procedural 3D
model generator as shown on Figure 10.5.

Constraint-based floor plan game

The second approach is a rule-based game that assigns the user points for placing
rooms next to each other in an architecturally meaningful way. The game was
implemented for Android devices under my supervision by five bachelor students in
computer science.

Instead of forcing the room arrangement with physically-based simulation, the
constraint-based game prototyped a method to measure fitness for a floor plan based
on how close it meets desired qualities. I defined five game mechanics.
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1. adjacency mechanic — rewards preferred adjacency between two rooms (Fig-
ure 10.7)

2. separation mechanic — rewards preferred separation of two rooms (Figure 10.8)

3. daylight mechanic — incentivizes providing daylight access for a room that
requires it(Figure 10.9)

4. footprint mechanic — aims for minimizing the total area occupied by all rooms
(Figure 10.10)

5. stairs mechanic — incentivizes plcing stairs in suitable rooms (Figure 10.11)

The game shows the points achieved in each category and a total score (Fig-
ure 10.6). A game mission is defined by describing the brief for a new house as a list
of rooms and their preferred adjacencies, exposure to daylight, etc. Multiple games
can be played with the same brief as a challenge. The game mechanics offer the
user an engaging, playful way to try hundreds of options for arranging a given set
of rooms into a floor plan quickly.

Translating the constraints to game mechanics gives the user a feeling of control
and choice. The ability to guide the rectangles towards a wanted arrangement is
better than the spring-based prototype. The feedback from the game mechanics
creates a predictable, learnable challenge to maximize the points for a room compo-
sition. The stairs mechanic allowed the configuration of multistory floor plans. The
resulting layouts are shape compositions used to generate a 3D model and a BIM
model.

However, describing a well-crafted coherent floor plan as a set of constraints is
a task of high computational complexity (Liggett 2000; Z. Lin and Yingjie 2019;
Pérez-Gosende, Mula and Dı́az-Madroñero 2021). Often, users can find an arrange-
ment that gives maximum points yet has gaps between the rooms; the outlines of
upper floors have large overhangs or are architecturally problematic in other ways.
Fine-tuning the rules and adding additional game mechanics built around a floor
plan’s performance can help to constrain the outcomes to architecturally meaningful
layouts.

The constraint-based approach holds the highest potential for crowdsourcing
novel floor plan solutions from the three tested methods. A robust filtering system
based on computational floor plan analysis is needed to sort through them.

Case-based floor plan configurator

The third approach to allowing a user to define a design by describing the compo-
nents of its architectural program is case-based. It relies on a large enough database
of floor plans with good architectural quality. A search algorithm lets the user find
the floor plans that best match their preferences and the site constraints.

The goal is to allow the user to define her preferences visually and have imme-
diate feedback on the consequences of her choices. Two alternatives for the visual
definition of preferences were prototyped: a comparison-based and a symbol-based.

Meizi Ren explored the comparison-based alternative in her student work su-
pervised by me. Ren builds upon research by Jansen, Coolen and Goetgeluk 2011
stating that specific dwelling characteristics can be better described with the use of
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floor plan images instead of text. The user needs to define her priorities according
to six floor plan attributes such as the size of the master bedroom or the size of the
living room (Figure 10.13). In the priority assessment, the importance of every two
attributes is determined by showing two similar floor plans, distinguished only by
those two attributes (Figure 10.14). A short description helps people to understand
the implications of their choice. Participants are asked to pick one of the two floor
plans. There are 16 questions for the priority assessment resulting from all possible
attribute couplings (Figure 10.15). Every question presents at least one original floor
plan available on the real estate market. Around 50 people completed the online
survey (Figure 10.16). After the user completes the questionnaire, their results are
mapped to an idealized floor plan histogram (Figure 10.17). The histogram allows
to calculate a rank for every floor plan in the database (Figure 10.18). The user can
then see a sorted list of top matches and an image of the floor plan (Figure 10.19).
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Figure 10.3 – A spring-based simulation approach to floor plan generation. Various stages as
described by Arvin and House 2002. a,b: initial states, a has an extra interior objective for room 3,
c,d,e: stages of the autonomous topological resolution. f,g,h: user manipulated resolutions with various
gravity and alignment constraints turned on. Image credits: (Arvin and House 2002).
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Figure 10.4 – 3D model generated from room arrangement. A more complex room program
loaded in the spring-based configurator as a mobile app and the realtime view of a floor plan and 3D
model on the desktop screen. Image credits: the author.

Figure 10.5 – Prototype of a simulation-based floor plan configurator from the case study
Rechteck2BIM. Left: The user defines the rooms and their arrangement. Room connectivity is
shown with white lines. Right: A 3D (top) and a BIM (bottom) model are automatically generated to
provide feedback to the user. Sample feedback includes total area, cost estimate, the house’s looks,
the sun’s shine in the morning, etc. Image credits: the author.
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Figure 10.6 – Constraint-based floor plan game prototype. It uses five game mechanics to give
the player feedback on how close is the composition they have created to the wanted layout features.
The top of the game screen shows the points for each game mechanic separately and a total game
score. Image credits: the author.

Figure 10.7 – Adjacency mechanic. The adjacency game mechanic gives a point if the player slides
together two rooms that preferably must be next to each other in the floor plan. For example master
bedroom and master bathroom. Image credits: the author.

Figure 10.8 – Separattion mechanic. The separation game mechanic gives a point if the player
slides two rooms apart if they need to be non-adjacent in the floor plan. For example bedroom must
be away from an elevator shaft. Image credits: the author.
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Figure 10.9 – Daylight mechanic. The daylight game mechanic gives a point if the player leaves
free at least one side of a room that requires daylight. For example a living room. Image credits: the
author.

Figure 10.10 – Footprint mechanic. The closer the bounding box area of all rooms is to the sum of
the areas of the room the more points does the footprint game mechanic give the player. Image credits:
the author.

Figure 10.11 – Stairs mechanic. The stairs game mechanic gives a point if the player places the
stairs in a room that is suitable. For example stairs are ok in a foyer or a living room but not in a
bathroom. Image credits: the author.

Figure 10.12 – Case-based floor plan suggesting tool. Image credits: Roger Winkler.
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69

Attributesof Floor Plan CorrespondingDemand Measurable Criteria
A Luxurymaster bedroom

(withmorespace&individual toilet)
Privacy and convenientof the hosts WC includedor

Area of master bedroom≥15m2

≥15m2

Private WC included

B Comfort of second bedroom
(double bed included)

Bedroom for grown-upChild/
Guestroom

Area of second bedroom≥9m2

≥9m2 <9m2

C Existenceof third bedroom
/independentfunctionalroom

Rooms for each familymembers/
Interests(reading,watching films,
painting)

Three independent rooms(including
bedrooms,study.etc)

Minimum5m2for each one

E Luxuryliving room Gatherring of friendsor family Area ≥ 18m2(independent)
≥ 25m2(combinedwithdining area)

≥18m2

<9m2
≥25m2

Attributesof Floor Plan CorrespondingDemand Measurable Criteria
D Independent largedining area Formal familymeal/inviting friendsto

diner
A dining roomor an area withobvious

boundaries≥6m2

≥6m2

<9m2

≥6m2

F Large ormore balcony Outdoor relaxation/ sunshine
/interest of flowers and plants

Numberof balconyandterrace≥2
orTotalarea≥10m2

≥18m2

≥10m2

Figure 10.13 – Floor plan attributes. The six floor plan attributes which the user can express a
preference for and priority as well. Image credits: Meizi Ren.

Figure 10.14 – Sample question. An example from the visual questionnaire. Question 4 aims
to establish whether the user will prefer a larger master bedroom over a larger living room or vice
versa. Image credits: Meizi Ren.
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Figure 10.15 – Attribute-ranking matrix. All possible comparisons between the six floor plan at-
tributes A-F result in 15 questions to establish the user’s prioritization of their preferences. The 16th
questions establishes whether the user prefers an open or closed kitchen (K1-K2). Image credits: Meizi
Ren.

Figure 10.16 – Survey resutls. Around 50 people responded to the open call to complete the online
survey with the visual questionnaire. Image credits: Meizi Ren.
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Figure 10.17 – Respondent histogram. Left: the matrix to map answers to attributes. Right: a
histogram from the answers of participant Nr. 2 from the 50 who took the online survey. Image credits:
Meizi Ren.
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Figure 10.18 – Floor plan matching. Left: the attributes mask of floor plan 1 multiplied by the
preference histogram of participant Nr. 2 gives a score of 50. Right: floor plan 4, with a score of 140,
is a better match for the same user. Image credits: Meizi Ren.

Weight for
Participant Nr. 2 10 30 20 0 50 40 20 0 Grade

Floorplan4 1 1 1 1 1 140
Floorplan3 1 1 1 1 1 100
Floorplan11 1 1 1 1 90
Floorplan15 1 1 1 1 90
Floorplan8 1 1 1 1 80
Floorplan10 1 1 1 1 80
Floorplan12 1 1 1 1 80
Floorplan5 1 1 1 60
Floorplan7 1 1 1 1 60
Floorplan9 1 1 1 1 60
Floorplan1 1 1 1 50
Floorplan13 1 1 1 1 50
Floorplan16 1 1 1 50
Floorplan2 1 1 1 40
Floorplan14 1 1 1 1 40
Floorplan6 1 1 1 30

Figure 10.19 – Top matches. Left: the sorted list of floor plans according to their match with
particiapnt Nr.2. Right: the top choice, floor plan nr. 4. Image credits: Meizi Ren.
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The case-based prototype is developed as a software product prototype by me
in collaboration with Roger Winkler. The user pulls cards representing the wanted
room onto a canvas (Figure 10.12). The relative size and position of the cards define
the requirements of the architectural program. The requirements are program are
represented as a graph (Figure 10.20). The search algorithm uses graph edit distance
(Sanfeliu and Fu 1983) to sort the floor plans in the database and presents the
closest matches to the user in near real-time. The user can review the matches and,
if needed, add or change information to the card configuration on the canvas.

Figure 10.20 – Graph-similarity matching. In the case-based prototype for search of matching floor
plans the user preferences are represented as a graph. Using graph edit distance as similarity measure
the closest graphs of floor plans in the database are found and their graphical representation shown to
the user. Image credits: the author.

Feedback from users and architects reveals that, of the three approaches to user
input, the case-based approach is the closest to the current way the market for
architectural services operates. It is also most suited to be used by a prospective
inhabitant as the tasks for the users address rather pragmatic aspects of floor plan
design. The approach is especially useful when the user’s choice is limited to a finite
set of floor plan designs.

Procedural 3D model generator

Figure 10.21 – Procedural 3D model generation. Image credits: the author.

I implemented a procedural 3D model generator in Grasshopper to produce a
detailed 3D model from a schematic composition of rectangles (Figure 10.21). It
automatically generates walls around the rectangles, positions doors based on the
needed connection between rooms, places windows, generates the roof shape that
fits the boundary, etc. Using an existing addon for McNeel Grasshopper to connect
to Graphisoft ArchiCAD, I transform the 3D model into ArchiCAD objects such
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as walls, doors, and windows to generate a Building Information Modelling (BIM)
model. The BIM model is used for cost estimates (Figure 10.22).

Figure 10.22 – Automated BIM model generation. Image credits: the author.

10.3.2 Computational floor plan analysis

Feedback to the user based on automated computational analysis of the design
solution is important in all approaches presented in this work. It is one of the
means to encode expert knowledge and make it available to non-experts. However, I
would argue that it is much more important in the approach used in Rechteck2BIM
for two main reasons:

1. Expert stakeholders cannot iteratively fine-tune the generative system by en-
coding project-specific expert knowledge in it like in the vocabulary-based
approaches of 20.000 BLOCKS and Project Reptiles .

2. Non-experts edit an abstract representation of floor plan qualities and are
presented with a design that is supposed to satisfy them. Their ability to judge
whether this is true is relatively low, so they need the assistance of automated
computational analysis to understand the consequences of the changes they
make to the input over the outcome.

I have explored the integration of automated computational floor plan analysis
in several student courses and my prototypes.

A Thousand Floor Plans

The course A Thousand Floor Plans looked at techniques to compare and sort
thousands of variations of residential floor plans for the same design brief. The
course explores apps and app making as a potential new task for the architect. The
course took place at the DDU in TU Darmstadt in the winter term of 2016/2017.
It was taught by me and the tutors Roger Winkler and Felix Dannecker.

Twenty architecture students worked in 8 teams. Each team of students was
asked to sort a large set of floor plans based on one or more criteria such as views,
energy, daylight, orientation, water, costs and time, spatial organization, etc. They
developed a Grasshopper tool for architects to navigate the set of designs.

Students start with thousands of design options for the same house represented
as floor plans. Which criteria can you use to sort them? Is there a best one? How
can we empower an architect to choose one of the thousand options for their clients?
And most importantly, how could we empower the homeowner to choose one design
for their house?
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Figure 10.23 – Computational floor plan analysis. How would you choose from a Thousand Floor
Plans? Image credits: the author.

Students also created a visual concept for a mobile app targeted at homeowners
browsing through thousands of floor plans. The main challenge is to consider strate-
gies for translating the numerical results of an analysis routine into experiences from
daily life which the homeowners can relate to. For example having a sunspot on the
breakfast table with my morning coffee in the kitchen.

The students produced the following six projects.

CHASELIGHT by Mariona Carrion, Morgane Hamel, and Louise Hamot. The
app aims to empower homeowners to find the best floor plan where they can enjoy
their daily activities, such as drinking coffee, with suitable levels of daylight (Fig-
ure 10.24). Daylight is measured in intensities (luxes), but how can you explain it
to a non-expert? Different activities need different light ambiances. Users select the
activity, and the app links this activity to a range of suitable light intensities. Users
see a floor plan with every room painted in a different color. The darker ones are
the rooms where it is less suitable to do the action and vice versa for the lighter
ones. If they want to know more about a floor plan, they can click on one room
and see exactly where they can carry out these activities and when. It’s then in the
user’s hands to say if the floor plan suits them or not.

COSY HOME by Jörg Hartmann, Stefanie Joachim and Max Sand. The team
used the Grasshopper add-on Honeybee to determine the thermal comfort of in-
dividual rooms in the floor plan (Figure 10.25). The parameters for analysis are
the project’s location, the energy consumption based on the façade structure, and
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Figure 10.24 – CHASELIGHT App concept. Image credits: Carrion, Hamel, Hamot.

the façade opening to determine the comfort. The app concept uses the analysis
procedure to show the three most suitable floor plans for the user. The results are
displayed in color for comparison purposes.

ENERGETIC ASSESSMENT by Luisa Ruffertshöfer, Marc Ritz and Gerrit
Walser. The students considered renewable energy as the main focus of contempo-
rary sustainable assessments. The results from their survey confirmed this is one of
the most critical aspects for inhabitants as well. With the ENERGETIC ASSESS-
MENT app, people can compare various floor plans on how much energy they could
provide through solar systems in a whole year (Figure 10.26). The app calculates
the kWh production per m2 of roof surface for the heat and the electric gain through
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Figure 10.25 – COSY app concept. The app evaluates the thermal comfort of the rooms in a floor
plan and presents the user with the top matches to their preferences. Illustrations by Jörg Hartmann,
Stefanie Joachim and Max Sand. Image credits: Hartmann, Joachim, Sand.

Figure 10.26 – ENERGETIC ASSESSMENT App logic. The app compares house designs based on
the amount of solar energy they can farm, which depend on their location, orientation and roof shape.
Image credits: Ruffertshöfer, Ritz, Walser.

a solar system. The Grasshopper add-on Ladybug handles these calculations and
their technical aspects.

SAVING MONEY by Ana Sophie Sánchez Wurm and Ana Baraibar Jiménez.
The students decided to compare floor plans based on the household’s consumption
of electricity (Figure 10.27). Expenses, as well as potential gain from the rooftop
solar panels, are taken into account. The results depend on the number and ages

311



CHAPTER 10. RECHTECK2BIM

Figure 10.27 – SAVING MONEY app concept. Image credits: Wurm, Jiménez.

of inhabitants, the location, the area of the house, and its orientation. The users
define the appliances and their time at home to determine artificial lighting and
heating/cooling needs. The floor plan alternatives are presented rated by the amount
of savings compared to the current electricity bill of the user.

COSTINATOR by Nicole Klumb and Maximilian Pfaff The authors found out
that the building costs for a house are of high importance for the homeowners
through a survey. The create an app concept that compares floor plans based
on the costs of construction (Figure 10.28). To keep the app as user-friendly as
possible, it only calculates the construction costs for the shell. The estimate is
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Figure 10.28 – COSTINATOR app concept. It uses the Baukostenindex (German for Construction
Costs Index) to help the user find a floor plan based on their preference for budget, area, and construction
quality. Image credits: Klumb, Pfaff.

based on a model used by the German Baukostenindex (BKI) with defines three
quality levels of construction (low, medium, and high) for the five main element
categories (foundation, outer walls, slabs, roof, and inner walls). The user can filter
and sort the alternative designs based on the budget and total area settings.

Figure 10.29 – VIEWSPOTS app concept. The app uses the isovist analysis to form a visual con-
nectivity footprint for the user and each floor plan and match them. Image credits: Helbig, Vehrenberg.

VIEWSPOTS by Anjuscha Helbig and Philipp Vehrenberg. ViewSPOTS is an
app that helps people find a floor plan based on their view-related preferences (Fig-
ure 10.29). It analyzes the view connections to the outside and the visual connec-
tions between the different rooms in the inside of the house (Figure 10.30). A grid
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Figure 10.30 – VIEWSPOTS logic. The app determines the direct and indirect internal and external
views from every spot in the houses. Image credits: Helbig, Vehrenberg.

Figure 10.31 – Visual connectivity footprint. The visual connectivity footprint in VIEWSPOTS
captures the qualitative differences between open plans (top) and plans with separate rooms (bot-
tom). Image credits: Helbig, Vehrenberg.
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of many points analyzes the entire floor plan and creates a visual connectivity foot-
print (Figure 10.31). The diagram displays the percentage of internal views among
the rooms and the external views of each room separately. A heat map is generated
from the exterior views, giving an overall impression of the number of building en-
velope openings. The visual connectivity footprint captures the difference in spatial
quality between open-plan houses and houses with separate rooms. Each person has
different needs and requirements for their own living spaces. The app helps users
find a floor plan that best suits their needs based on their personal view connectivity
footprint.

Cultural influences on floor plans
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Figure 10.32 – Control value (CV) justified graph analysis. The CV parameter represents how
isolated a room is. Lower value means more isolated. The clear separation between the CV value of
the hallway in German houses (right) means there is a star-like organization of the spaces. At the
same time the smooth blend of CV parameters of all rooms in Japanese houses (left) shows that the
organization is more linear. Image credits: Rui Zhi.

The layout of spaces hosting the various daily and nightly activities and the
connectivity between depends on the individual lifestyle of the inhabitants. However,
it also has a cultural bias. Considering the topological differences can assist in
generating and searching for matching floor plans.

The student Rui Zhi used space syntax analysis to compare the floor plans of
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15 German (Figure 10.34) and 15 Japanese freestanding single-family houses (Fig-
ure 10.35) with area between 100 and 150 m2. For each house, Rui Zhi calculated
total depth (TD), mean depth (MD), real relative asymmetry (RRA), control value
(CV), and the level distance of a single room. The parameters are calculated from
the justified graph used in Space Syntax (Hillier 2007). The calculation method is
described by Ostwald and Dawes 2018.

The comparison shows that Japanese houses are more linear in their organization
than German ones, which are more star-like, with the hallway acting as a connection
hub. This can be seen when comparing the CV parameter for the individual rooms
in both groups (Figure 10.32).

The analysis also cross-referenced the CV values with the RRA parameter, a
measure of depth (Figure 10.33). The results show the rooms in German houses
are relatively polarized, especially the isolated bedrooms and the shallow hallways
right beside the entrance doors. This shows a clear functional division. On the
other hand, in Japanese houses, rooms are blended without apparent single-purpose
zones. At the same time, the main rooms in Japan have a higher CV, which means
they are more accessible and pleasantly designed despite the functional overlap.
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Figure 10.33 – Real relative asymmetry (RRA) analysis. Image credits: Rui Zhi.
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Figure 10.34 – German house. Image credits: Rui Zhi.
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Figure 10.35 – Japanese house. Image credits: Rui Zhi.
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10.4 Human Agency

The case study explores the program-first type of tasks for the users. That is that
users create and guide a design towards a wanted state by defining the components
of its architectural program. The users cannot directly edit the geometry of the
architectural shapes.

The design paradigm of Rechteck2BIM suggests that stakeholders, both non-
expert and expert, i.e., inhabitants and architects, perform two main tasks:

1. put together home layouts from programmatic units that represent the rooms
in a single-family house and

2. browse and select floor plans ranked based on a specific performance indicator
such as energy consumption, solar exposure, etc.

It is important to understand which performance indicators are most important
for the non-expert stakeholders, i.e., homeowners. Therefore the students creating
the prototypes for computational analysis were asked to survey homeowners to nar-
row down the focus on the essential aspects to analyze (Figure 10.36). The results
showed that (Figure 10.37).
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Figure 10.36 – The survey in 1000 Plans. Image credits: Helbig, Vehrenberg.
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What criteria plays the biggest role when you plan a home?
House’s Yearly daylight gain
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Total Construction Cost
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1750 350 525 700
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Figure 10.37 – Survey resutls. 234 respondents. Image credits: the author.
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10.5 Take-aways

The primary source of findings is my observations of people interacting with the
prototypes and conversations with industry experts (architects and prefab hous-
ing manufacturers) and non-experts (representatives of the inhabitants’ group and
people who played the game prototypes).

Potential use case scenarios for the technology illustrated with the prototypes
described above are:

1. Crowdsourcing floor plans for a given brief to the crowd. Architects, designing
for a client, use the search functionality to browse submitted designs.

2. Configuring one’s own house.

3. Configure one’s own house together with an architect.

Architects feel more constrained because the designs are too defined. In conver-
sations with architects, it becomes clear that they find problematic two things:

1. showing one or more floor plan layout alternatives to the inhabitant before
they have come in conversation with the architect.

2. having to choose and adapt a ready floor plan layout for their clients instead
of gradually deriving it from the client’s and site’s constraints.

Furthermore, unlike in the approaches from 20.000 BLOCKS and Project Rep-
tiles , which worked with a vocabulary of shapes as input for the algorithms, here
the generative technique is based on computational geometry and is not adjustable
through geometric modeling but coding. Non-expert stakeholders, such as inhabi-
tants and the crowd, can more easily define the initial input with a set of preferences.
However, they have more difficulties editing the result iteratively as the mapping
between the programmatic input, and the procedurally generated 3D model is too
opaque/abstract.

An open question that arises here is: How much info can we get from the home-
owner, and what will be the variety of designs? Will that be limitless or very
limited?

The need for extensive feedback on the house’s performance is close to the prag-
matism that drives non-experts when building their new home. Future homeowners
can better understand what they want and adapt their preferences from their future
homes if provided with feedback as they explore options for layouts.

321



Chapter 11

Discussion
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Figure 11.1 – Repeat of Figure 6.2. The Map of Design Paradigms shows the design paradigms
at the intersections of the four fields, their descriptions and the identified research gap. Image credits:
the author.

I began this work with the thesis that:

Architectural design knowledge can be encoded into generative game worlds where
every role — architects, stakeholders, and third-party participants — can contribute,
respective to their skills and interests, to creating schematic architectural designs.

The thesis is explored in two research questions at the intersection of Partic-
ipatory Design, Generative Design, Game Design, and Crowd Wisdom. The first
research question aims to unpack the possible frameworks or constructs under which
this mass contribution occurs. The four case studies are used to explore the design
paradigms that lie at the intersection of participatory design, generative design,
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Figure 11.2 – Operational use of the design paradigms map. The IBA GAME example illustrates
how the map allows to systematicaly expore participatory design paradigms outside of the zone of
today’s state-of-the-art praxtices. The meta description of the zones serves to specify the modes of
engagement of human and machine agency. Image credits: the author.

crowdsourcing, and games. The second research question calls for prototyping of
the roles, tools, and tasks that can be offered at this intersection for the creative
involvement of the various groups — architects, stakeholders, third-party contribu-
tors.

11.1 Design paradigms

In response to the first research question, I defined the design paradigms in chapter 6
by systematically intersecting the essential feature of each of the four fields. As
Figure 11.1 shows, each design paradigm is the result of a formulaic combination of
the properties of the four fields. Within this meta-definition, many possible design
processes exist.

To illustrate how this map can be used, I want to bring attention to the main
difference between participatory design as it is practiced today and the paradigms
lying in these new territories (Figure 11.2). The IBA GAME , developed as part of
the 20.000 BLOCKS case study, provides the opportunity for a direct comparison
between the two approaches.

In the case of IBA Heidelberg ’s participatory process for the Patrick Henry Vil-
lage, a stellar set of architects was commissioned — KCAP, MVRDV, Carlo Ratti
Associati, ASTOC, and Ramboll Liveable Cities Lab. After three citizen forums,
they produced four visions and one dynamic master plan for the new city quarters.
In a participatory design, the stakeholders debate on a list of wants that the ar-
chitects then process into a design. In this collaborative brief-writing, it is difficult
for the non-expert stakeholders to visualize and understand the trade-offs when we
satisfy one or another preference. The decision for making the trade-offs lies with
the architect. As such, the authoritative strategy for dealing with wicked problems
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Figure 11.3 – Distinction between popular uses of Minecraft in Architecture and the 20.000
BLOCKS. Baukraft (Bauhaus Spirit 2016) and Frankfurt 2099 (Deutsches Architekturmuseum (DAM)
2021) are examples how game worlds are used merely as widespread 3D modeling software. In contrast,
IBA GAME , and all projects in the 20.000 BLOCKS case study, make use of game design, generative
design and engage the stakeholders in a conversation or collaboration instead of in a competition
mode. Image credits: the author.

(See ) is leading here.
A collaborative, or a competitive strategy, entails that the power,i.e. the creative

agency, is dispersed and often contested (Roberts 2001). To systematically explore
these strategies we can refer to the map on Figure 11.2 which provides a meta de-
scription of the tools that populate each intersection. The game we developed for
IBA Heidelberg, IBA GAME , follows this specification. In IBA GAME , players of
all ages created neighborhoods in the new Patrick Henry Village by placing buildings
and public spaces. They could see how parameters such as height, program diversity,
and density interplay with one another. All player-created neighborhoods are acces-
sible online for browsing. When we engage everyone through a game, the trade-offs
of various parameters can be made tangible so that stakeholders understand the
problem better.

Figure 11.3 shows one more way to use the Design Paradigm Maps. We can
clearly see that common uses of Minecraft in architecture are not using the full
potential that games and generative design offer. In Baukraft, a competition for
the redesign of Gropiusstadt in Berlin (Bauhaus Spirit 2016) and Frankfurt 2099
(Deutsches Architekturmuseum (DAM) 2021), a competition for visionary urban
scenarios for the city of Frankfurt, Minecraft is not used as a game but simply as
a 3D modeling software that many young people know how to use. Each of the
competitions provides a Minecraft map for the participants to download from a
website. They can then use Minecraft in Creative mode, i.e., as a 3D environment
to build with unlimited resources. No means of automated or human feedback is
provided to participants. Neither is there any machine agency such as a generative
algorithm or game mechanics. Both Baukraft and Frankfurt 2099 are organized as
a conventional architectural competition. As discussed in chapter 4, architectural
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competitions are in the pure Crowdsourcing field (D).

As a result of the awareness that the Map of Design Paradigms brought upon,
in IBA GAME , I tested the use of Game Mechanics and Generative algorithms.
Therefore, in 20.000 BLOCKS , participants do not model their ideas block by block
but can also use predefined modules that they combine to achieve a specific game
goal.

11.2 Tools, tasks and roles

HUMAN AGENCY
(PARTICIPATION)

MACHINE AGENCY
(AUTOMATION)

CROWD WISDOM
Crowdsourcing, Citizen

Science and Mass
Collaboration

GAME DESIGN
Game Mechanics and
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ACDBCD

CD
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ACBD

PARTICIPATORY
DESIGN

Architects, inhabitants &
other stakeholders

GENERATIVE
DESIGN
Algorithms

A B

CD

Figure 11.4 – New zones of human-machine interaction. Image credits: the author.

The second research question explores tools, tasks, and roles. In effect, it is
concerned with the human agency in a given design paradigm. Human agency is
represented by the two fields on the left of Figure 11.1 — Participatory Design and
Crowd Wisdom. At the same time, Machine Agency is represented by the two fields
on the right — Generative Design and Game Design.

Exploring the design paradigms lying at the central zones of the Map on Fig-
ure 11.4 requires the staging of human-machine interaction in novel ways. The case
studies and the literature review revealed that finding the right balance of power
between the two agencies is an ever-present challenge. There is no universal solu-
tion, and the choice where the balance lands depends on the subject and goals of
the respective project. However, it is essential to identify the various levels at which
this balance can be tuned. The following section introduces a three-tier hierarchy
of human-machine interaction that emerged throughout the case studies.

The three levels of engagement guide the exploration of how the human agency
can be employed in the novel design paradigms. I formulate three scenarios for
crowdsourcing in architecture by identifying similarities of task re-distribution among
the four case studies.
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New modes of human agency in the design process also require us to find new
ways of thinking about authorship. Traditionally the lead architect is considered
the author of a design. However, in a design process where architects do not design
buildings but rather systems for design in the form of games and where stakeholders
and third-party contributors alike produce designs, it is clear that single authorship
is not the case anymore. The question of authorship is explored in the last section
of this chapter.

11.3 Hierarchy of human-machine interaction

Marching Cubes

Playable, voxel-shape grammars + 

pick-and-place robotic process

Tileset

Vocabulary

Game mechanics

Vocabulary

Grammar

Level 1

Level 2

Level 3

20.000 BLOCKS Project Reptiles

Generative Techniques*

* Playable, Fabrication-aware

Design Platforms

Designs

Figure 11.5 – Three levels of crowdsourcing. Generative techniques, design platforms and de-
signs. Image credits: the author.

The proposed hierarchy of human-machine interaction is based on two observa-
tions.
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First, feedback from architects using the prototypes in the Rechteck2BIM case
study reveals that they feel creatively disconnected when dealing only with aspects
of the building’s architectural program, while the generative system takes control of
shape. The ability for architects to modify the design outcomes of the generative
system is crucial for them actually using it. In that sense, the architect designs a
system from design, not a building directly. This has an added positive side effect.
As a new catalog or tileset is created, it can be reused in later projects, effectively
crowdsourcing the parts library of the generative system.

The concept of using components with shared combinatorial rules is akin to
the idea of product platforms from the product manufacturing and the automotive
industry. Product platforms emerged with the phenomena of mass-customization
and are beginning to find applications also in construction (Jensen, Lidelöw and
Olofsson 2015). Meyer and Lehnerd 1997, p.11 define a product platform as “a set
of subsystems and interfaces developed to form a common structure from which a
stream of derivative products can be efficiently developed and produced.” Drawing
on the analogy to product platforms, I here define design platforms as follows.

A design platform is a set of design vocabulary, syntax rules, and game me-
chanics from which designs for buildings can be created.

Not all three — vocabulary, grammar, and game mechanics — need to be present
in a design platform. A platform can be as simple as a vocabulary of shapes that
fit together, such as lego.

The second observation comes mainly from systemizing the 20.000 BLOCKS
case study hierarchy as shown on Figure 8.44. The case study 20.000 BLOCKS
is organized into projects created with the framework. Some projects are done
within the same overarching brief or topic. Each project is a game defined by the
experts. When played, these games produce designs created by the players. A similar
approach is possible with the tileset approach used in Project Reptiles . Architects
could use the tile editor to define catalogs of tiles on their own, giving the designs
a bespoke design expression.

Given these two observations, I identify three levels at which human agency can
be sought in a crowdsourced design process:

1. A human-in-the-loop generative technique is the lowest level of crowdsourc-
ing. It can be playable if game mechanics are the means to ensure human
agency. It is fabrication-aware if coupled with an automated process for man-
ufacturing the design outcomes.

2. Design platforms are based on such a generative system and include de-
sign vocabulary, grammar, and game mechanics defined by the experts. The
platforms contain components that carry architectural meaning.

3. Designs — the highest level of crowdsourcing — are the result of interacting
with the generative technique through a specific design platform.

A parallel to the Lego system can be made. At level 3, a kid builds a lego toy;
at level 2, the available shapes of Lego pieces are defined by the designers; level 1 is
the knobs and other joinery features on the blocks that allow the assembly plus the
injection molding process used to manufacture each piece from plastic. However,

327



CHAPTER 11. DISCUSSION

Lego is modular because the design fragments used in the design process and the
parts a design is built with are the same.

Wikihouse, as another example, crowdsources the design and the production
(Parvin 2013). Its design system, as well as the fabrication method, is predefined.
In the Wikihouse example, the only level at which user freedom is provided, i.e.,
crowdsourcing could happen, is the level of Designs.

However, in architecture, it is needed that fabrication and design are negotiated
on a less literal transformation. As explored with Project Reptiles , the iso-surfacing
generative technique delivers this feature. It works similarly to how two drops of
water lying on a surface merge into one drop if close enough to each other, and
opposed to how two Lego pieces placed next to each other remain two separate
parts.

The idea of design platforms becomes central to the hierarchy of human-machine
interaction as it opens up new possibilities of fine-tuning the balance of power be-
tween human and machine agency. The two aspects that define how design platforms
can be specified are the Generative Technique which defines vocabulary and gram-
mar, and the Game Design which defines the interactions and guides contributors
towards the desired design outcome.

11.3.1 Generative technique

The use of generative techniques and game design is a means to frame the design
process as crowdsourced combinatorial exploration and fabrication of parts making
up buildings. The idea is not new, neither to architecture nor to nature. According
to N. Gershenfeld 2006 genes are a generative system creating life designs out of
four amino acids. Language is generative as well. Gershenfeld reminds us that all
masterpieces are written in a language of words from the dictionary. One does not
invent new words to write a novel.

A common feature across all case studies is the use of a generative technique to
encode design principles and constraints. This allows the definition of a generative
alphabet of architectural elements. Architects can design tilesets or vocabularies,
and anyone can create buildings out of them.

As mentioned in section 1.3: Methodology, generative design techniques provide
architecturally specific machine agency that forms the basis for interactivity, partic-
ipation, and game mechanics in this work. Therefore the field of Generative Design
gets a more dominant position in this research than the other three fields. This
allowed identifying techniques that fit well with developing game mechanics or mass
collaboration that previous work might have overlooked. An example of such a
technique is the newly emerging application of Marching Cubes in procedural game
worlds used in the Project Reptiles case study. Furthermore, it enabled the system-
atic formulation of a novel, playable generative design technique as a suborder of
shape grammars — playable voxel shape-grammars(Figure 11.6).

The automatic generation of designs disconnects both expert and non-expert
users from the process. Therefore, the particular generative technique of choice
must support interaction. As described in chapter 3, I determined several suitable
generative techniques (Figure 11.7) which are explored in the case studies: shape
grammars, iso-surfacing algorithms, case-based design, and physically-based simu-
lations.
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Figure 11.6 – A repeat of Figure 8.43. The Taxonomy of Generative Design in Architecture,
introduced in section 3.2, extended with the Playable voxel-shape grammars. Image credits: the author.

A purely visual proof that the chosen techniques allowed a high degree of freedom
for both the architects and the non-expert participant to define and configure design
is shown on Figure 11.8 for set shape grammars and Figure 11.9 for iso-surfacing
algorithms. Both were tested at the scale of a building and the scale of the city.

Shape-first vs Program-first

The generative techniques available to the participants can be categorized accord-
ing to how they influence the design outcome. For example, 20.000 BLOCKS and
Rechteck2BIM occupy the ABCD design paradigm. However, the tasks of the dif-
ferent roles cannot be more different. While the grammar-based approach of 20.000
BLOCKS is straightforward and concerns the users with a vocabulary of shapes
and their possible combinations, Rechteck2BIM expects a more indirect input in
the form of programmatic units (living room, kitchen, etc.) and a much stronger
dependence on the received automated feedback. 20.000 BLOCKS uses a shape-first
approach and Rechteck2BIM , a program-first approach (Figure 11.10).

These two approaches relate to the two main paradigms of design that have
emerged as reiterated by Kalay and Carrara 1996. In the first, architects start with
a set of forms that they combine, modify and adapt until the desired formal and
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functional qualities of the building are achieved (Alexander, Ishikawa and Silver-
stein 1977; Alexander 1964; Archea 1987). In the second, architects start with the
building’s functional program, represented as goals and constraints, and set out to
find a form that will support it (Figure 11.11). Kalay points to the work by Nobel
laureate Herbert Simon, together with Allen Newell and John Shaw, on the Gen-
eral Problem Solver in the 1905s as the theoretical background of the program-first
approach (Newell, Shaw and H. A. Simon 1959; H. Simon 1979).

In the shape-first approach, the users create the geometry of a building while
the machine agency provides an automated evaluation of critical building program-
matic parameters. The user input is a combination of adjacent shapes from a pre-
defined vocabulary. The items of the architectural program(rooms, zones, etc.) and
their geometric representations are treated as predefined parts, i.e., a vocabulary of
shapes. A shape in the context of this work means a geometry that carries archi-
tectural meaning, e.g., an apartment or a part of a room or few stairs is a shape
(see Figure 11.12). The shape-first approach is explored in 20.000 BLOCKS (p.171),
Sensitive Assembly (p.147), and Project Reptiles (p.267). The newly introduced by
me playable voxel-shape grammars(section 8.3) is a shape-first generative technique.
At the same time, Project Reptiles ’s use of iso-surfacing algothms is a good exam-
ple that the shape-first approach carries accross various gnerative techniques and
various modeling environments.

In the program-first approach, users set the parametric relationships between the
items of the architectural program. The composition, i.e. the spatial configuration is
then interpreted by a procedural algorithm into a 3D design (see Figure 11.13). The
result is computationally analyzed to provide feedback to the user. This approach
treats architectural program items more abstractly. The idea is for the experts
and stakeholders to define conditions that the placement of items should fulfill but

Case-Based 

Design
Set Grammars

Iso-surfacing 

Algorithms

Physically-based 

Models

Wonka et al 2003 Stalberg 2016 Arvin et al 2002Green et al 2020

Figure 11.7 – The explored generative techniques per case study. Image credits: the author.
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Figure 11.8 – Designs created within 20.000 BLOCKS. The generative technique used here is the
newly introduced in this work playable, voxel-shape grammars. Diversity stems from the user-created
vocabularies, grammars and game mechanics. Image credits: the author.

Figure 11.9 – Designs created within Project Reptiles. The generative techniques used here is the
iso-surfacing algorithm Marching Cubes. The diversity stems from user-created tilesets. Image credits:
the author.

leave the actual arrangement open to the users. If a condition is fulfilled, reward
the player. If not - then also fine but let them know. This happens in a software
environment with game-like features – scorekeeping, goals, easy to play, difficult to
master — see chapter 5: Game Design. Rechteck2BIM (p.295) is the case study
where I mainly explored this approach.
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Figure 11.10 – Shape-first vs program-first. Shape-first tasks and tools revolve around the building’s
geometry, while program-first tasks and tools tackle the building’s program. Image credits: Schneider
and Stöckli, the author.

Figure 11.11 – An example of the Program-first approach in real practice. Client requirements
are turned into a bubble diagram, which is used to generate a floor plan, which in turn is used to create
the 3D model. Image credits: P. Merrell, Schkufza and Koltun 2010.

Figure 11.12 – Shape-first generative techniques. Users create the geometry of a building while
the machine agency provides an automated evaluation of critical building programmatic parameters.
Left: an example of a shape vocabulary from 20.000 BLOCKS . Right: an example of tile-based shape
vocabulary from Project Reptiles. Image credits: the author, Winkler.
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Figure 11.13 – Program-first generative technique. Prototype of a simulation-based floor plan
configurator from the case study Rechteck2BIM. Left: The user defines the rooms and their arrange-
ment. Room connectivity is shown with white lines. Right: A 3D (top) and a BIM (bottom) model
are automatically generated to provide feedback to the user. Sample feedback includes total area, cost
estimate, the house’s looks, the sun’s shine in the morning, etc. Image credits: the author.

The actual design process is integrative and requires both program and shape
to be defined and synchronized. However, choosing a shape-first or program-first
generative technique for a prototype lets me be explicit about the subject of tasks
and tools provided to the participants. Shape-first tasks and tools revolve around
the building’s geometry, while program-first tasks and tools tackle the building’s
program. As such, a prototype can be developed with one or the other approach in
any of the intersections on the Map of Design Paradigms (Figure 6.2).

The shape-first approach allows architectural expertise to be modeled into a
design platform by an architect without programming knowledge. On the other
hand, the program-first approach relies on architectural knowledge being encoded
into algorithms, which requires special skills to author, so not every architect can
contribute, i.e., less crowdsourcing potential.

The shape-first approach expects non-expert participants to choose the shape to
place next and where to place it. Since shapes carry architectural meaning, picking
and placing them requires an understanding of the repercussions. On the other
hand, the program-first approach tasks users to set the relationships between the
building’s elements while an algorithm produces the actual shape. This can reduce
the player input only to straightforward actions. However, relationships between
units of the architectural program can be pretty abstract for the non-expert.

In short, shape-first tends to give more control to non-experts but requires skills
they might not have, while program-first provides more power to experts but might
be abstract for non-experts.

Fabrication-aware designs

Digital materials and discrete assemblies, as discussed in section 3.4 and explored
with Sensitive Assembly and 20.000 BLOCKS , hold the highest potential for ensur-
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Figure 11.14 – Digital Materials. Left: A sample digital material from W. Langford, Ghassaei and
N. Gershenfeld 2016. Middle: A wall block being removed from Sensitive Assembly . Right: A close up
photo of the robot gripper placing a block in 20.000 BLOCKS . Image credits: W. Langford, Ghassaei
and N. Gershenfeld 2016, the author, Rui Nong.

ing manufacturability of models produced through a playable generative technique.
This comes from the use of vocabularies or tilesets in these techniques that map
nicely to the physical parts of a digital material(N. Gershenfeld, Carney, et al. 2015;
W. Langford, Ghassaei and N. Gershenfeld 2016; Rossi and Tessmann 2017b,c,
2018).

Gramazio, Kohler and Willmann 2014 point out that with the introduction of
robotic fabrication to the architectural practice “the modern division between in-
tellectual work and manual production, between design and realisation, is being
rendered obsolete”. Therefore the design paradigms that I explore in the case stud-
ies allow the fabrication method to be chosen in advance so that the design explo-
ration is within its constraints and possibilities. This was illustrated by embedding
a robotic assembly process in 20.000 BLOCKS .

The proof of principle is carried out on a 1:100 scale since, according to Budig,
Lim and Petrovic 2014, a physical model is enough for this exploration, i.e., a 1:1
prototyping is not needed at the beginning.

In Sensitive Assembly , players interact directly with the digital material, i.e., the
cardboard cubes from which the wall is made, producing a wall design as they play.
In 20.000 BLOCKS models, created by players in the Minecraft component of the
framework, are post-processed and fabricated from wooden cubes by a robot. At
a speed of 100 blocks/minute, an average model takes 8-12 hours to manufacture.
This meant that construction automation was not yet entirely a part of the design
process. One thing to explore in the future is ideas on how to connect the robot
to the gameplay in a meaningful way, whereby digital models created by players
are automatically output to a digital fabrication machine (robot, 3D printer, CNC
cutter, etc.) for construction.

The case studies Sensitive Assembly and 20.000 BLOCKS helped verify that
digital materials enable the fabrication awareness of a crowdsourced, game-based
design framework. After that, I decided to exclude the robot from future case
studies because it proved slow and expensive to produce a model. Engaging people
under unexplored design paradigms is the priority, so I focused on the generative,
participatory, and game features instead.

11.3.2 Game design

All projects were successful in generating the expected design results. However, it
was clear that participant engagement is where many improvements can be made.
One of the aims of game design is to incentivize the players to stay in the digital
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environment and create. Game design makes sure that any user action is (i) in-
centivized by a goal, (ii) can lead to new challenges posed by the game or other
users, and (iii) triggers feedback on the player’s progress. In the use of games in
architecture, players who are more engaged create more design options with better
quality. In addition, good game design creates a feeling of immersion, the state of
flow. Immersion enhances engagement (Dede 2009). Dede 2009 defines immersion
as “the subjective impression that one is participating in a comprehensive, realistic
experience.”

Two main strategies of using game design to engage participants in the design
process are explored in this work — the byproduct strategy and the direct engage-
ment strategy.

Direct engagement vs. byproduct

Figure 11.15 – Direct engagement vs byproduct. In the byproduct strategy (top), the game goal
and game mechanics are not related to the architectural design. Secondary need to be introduced to
break players away from optimization-driven gameplay. In the direct engagement strategy (bottom),
the design of the building is a conscious task of the player. Various metrics visualize the architectural
tradeoffs between game actions. Image credits: the author.

In the byproduct strategy, the game goal and game mechanics are not related to
the architectural design. In 20.000 BLOCKS , for example, the players’ experience
is tightly controlled. The Experts decide which blocks they can place and break
and where they can walk. The players are given a goal but insufficient resources to
achieve it. To progress, players build shapes out of Minecraft blocks, choosing from
architectural elements defined by the Experts. Players are rewarded with resources
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for creating one of the shapes. While players compete to reach the goal, a building
emerges out of the shapes that they have built.

The byproduct strategy is excellent for design tasks with clear problem solutions
subject to optimization. We observed a similar result in the project Sensitive Assem-
bly where topologically optimized wall designs emerged as a byproduct of players’
actions. In that case, it is most likely that an algorithm can be written to perform
the task faster and better. However, the benefit of using games is in introducing
serendipity to otherwise optimizable problems, such as shortest path, as can be seen
on Figure 11.15. We introduce incentives to move away from optimized solutions,
such as the gold platforms and the expensive water item.

As pointed out in the problem statement, architectural design is a wicked problem
with no clear solution. We need to keep the participating stakeholders focused on
the design challenge for them to be able to form an understanding of the criteria for
good designs.

Therefore in the direct engagement strategy, the game mechanics are such that
the design of the building is a conscious activity of the player. This is the main
principle in the project Rechteck2BIM , where the space allocation for rooms in a
floor plan is represented as 2D game mechanics.

This approach has high educational potential, suitable for understanding the
tradeoffs in a design. We introduce measurements to visualize tradeoffs, such as the
five subscores in the Rechteck game (Figure 11.15 right).
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Figure 11.16 – The gradient of control. This diagram is extendable. Any new tool can be plotted
on it in relation to how strong it moves the design outcomes to one or the other end of the spectrum
when applied. Note that in a given prototype, it is the combination of tools that determines where the
design outcomes tend towards. Image credits: the author.

The case study 20.000 BLOCKS reveals that calibrating to what extent do
Experts and Players have control over the design outcomes of the games is an ongoing
challenge and the main focus of this research.

As Brabham 2013 states, for a well-functioning crowdsourcing model, the locus of
control regarding the creative production of goods must be between the organization
and the crowd. If the locus of control is closer to the community, such as in the case
of open-source software or Wikipedia, or if the power is mainly in the organization’s
hands, such as when a company enlists the community to merely vote for the color
of a product, we are not seeing an actual crowdsourcing model (Brabham 2013).

Therefore, I consider the balance of control that players and experts had when
analyzing the results. Tools are the means for participants to affect the design
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outcome, i.e., exercise control. And game mechanics are the means to match tools
to tasks and vice versa automatically. Therefore I imagine game mechanics on
a gradient scale of hard to soft, where the hard end of the spectrum gives more
control to the Experts and the soft end of the spectrum, more power to the Players
(Figure 11.16).

At the very extreme on the hard end, we can find pure generative techniques that
aim to describe all design aspects in a system. Designs produced by tools and game
mechanics from this end of the spectrum will be more likely to be combinatorially
computable (Figure 11.17). As the literature review shows, this treats design as a
tame problem and ignores its true, ill-defined nature.

At the other extreme, the soft end, we find open game worlds such as Second
Life, where there is no underlying grid, no voxel, or different organizing structures.
Freeform modeling and any means for players to self-organize, such as chats and fo-
rums, are in this end. Secondary-goal game mechanics, also at this end of the spec-
trum, used in design can introduce a level of controlled serendipity (Figure 11.17)
as discussed in the byproduct game design strategy.

The type of vocabulary — soft, hard-coded, or modifiable — influences the degree
to which different roles can influence the outcome and affects the balance between
them.

Each feature of a generative technique, each game mechanic, each means of com-
munication between participants, and each category of computational feedback can
be positioned on this spectrum according to how it influences the design outcomes.
Combining these variables into a design paradigm defines how open or rigid the
design space will be.

Finding the right balance between hard and soft requires constant testing. The
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Figure 11.18 – Goal types on the gradient of control. Image credits: the author.

aim for the game designer will be to create a game that offers a heterogeneous design
space (Figure 11.18). A rigid design space will not capture the creativity of players.
On the other hand, a fuzzy design space captures players’ imagination in a form
that is challenging for the experts to use in further project stages. We can calibrate
the balance better with every project iteration and every game played.

11.4 Three scenarios for the use of crowdsourcing

in architecture

It is essential to acknowledge that problems of schematic architectural design are
wicked problems, not tame ones. As such, it is not possible to chop the problem-
solving process into micro tasks that can be distributed to the online crowd like Re-
Captcha did (von Ahn 2011). Instead, architects and stakeholders typically perform
tasks that depend on each other’s outcomes. So we need concurrency of execution
and means of exchange and feedback between the participants. A strategy similar
to the one used in the protein folding chain Foldit is more fitting for applications
of games and crowdsourcing in architecture. In Foldit, players contribute a fully-
fledged solution to the protein puzzle, and others can learn from it and extend it to
an alternative one (S. Cooper, Baker, et al. 2010).

At the start of this work I identified four main relevant roles of participants:
the inhabitants (non-expert stakeholders), the architects (expert stakeholders), the
crowd (third-party contributors), and the tool-makers. Within the novel design
paradigms explored in this work, the set of tasks performed by the four different
roles is expanded by new ones (Figure 11.19).

It is obvious that one of the uses of games and crowdsourcing in architecture is

338



play to create

define game missions

design game mechanics

create procedural content

Figure 11.19 – Roles with new tasks. Image credits: the author.

to ask the crowd to create designs. Tasks traditionally performed by expert roles,
architect and tool-maker, are crowdsourced to non-experts, inhabitants, and crowd.
This must happen within a framework to ensure the designs respond to the given
project brief and are architecturally and structurally feasible.

However, it is the feeding of content into that framework where novel and unex-
pected possibilities for crowdsourcing occurs. Furthermore, and much more impor-
tantly, the architect’s role, traditionally considered a single agency, can now be seen
as a collective role that allows for novel ways of task assignment.

In the four case studies, I identified three main scenarios for the use of crowd-
sourcing (Figure 11.20).

1. Unsupervised phase-zero—here crowdsourcing serves to enable non-expert
stakeholders to formulate their preferences prioritize them without the need
for synchronous engagement of an architect.

2. Crowd-optioneering — here, similar to the heavily algorithmic optioneering
in generative design, crowdsourcing enables design iteration to cover a given,
non-algorithmically explorable design space.

3. Crowdsourced design platforms — here, crowdsourcing enables the ex-
pansion of the design space of a playable generative design technique.
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Figure 11.20 – Three crowdsourcing scenarios. Image credits: the author.

11.4.1 Scenario 1: Unsupervised phase-zero

In today’s typical early design stage workflow, the architect will create design alter-
natives and then present them to the stakeholders. The stakeholders’ priorities are
established in these discussions, and the project’s tradeoffs become apparent. This
is done to formulate the project brief as precisely as possible. This includes the
stakeholders’ preferences and their prioritization. This is the activity that is most
participatory at the moment. As laid out in chapter 2, it is often called Phase-Zero,
and we can think of it as collaborative brief-writing.

This scenario is illustrated with the IBA GAME from the 20.000 BLOCKS case
study. Here, communicating and visualizing the complex relationships between the
parameters driving the project, typically performed by the architect, is crowdsourced
to the inhabitants and the crowd. The crowd and the non-expert stakeholders cre-
ate designs in a game format so that the non-expert stakeholders can understand
the tradeoffs of the project. At the urban scale, this scenario is not necessarily
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new, as the work of Ekim Tan on Playing the City shows (See Figure 2.8 in chap-
ter 2). The novel application I introduce here is at the scale of the building as in
the Rechteck game from the Rechteck2BIM case study. The game asks the player
to arrange rooms given a particular preference for their adjacency and size. Points
are assigned to fulfilled adjacency requirements, minimizing footprint, and others.
As players attempt to fulfill all of their choices, conflicting requirements become
apparent. The architect does not have to be involved in the stakeholders’ journey to
self-awareness regarding the project’s requirements. They can complete this jour-
ney having themselves, the crowd, the generative system, and its feedback as the
available resources.

11.4.2 Scenario 2: Crowd-optioneering

Another task the architect performs in the design process is evaluating different
options to solve a specific problem. Lately, at least in the computational design
field, when this activity is done with the help of algorithms, it is called optioneer-
ing. According to Autodesk 2021, optioneering “can be used to explore a design
space quickly when you might not know what metrics you want to optimize for
yet.” Architects create multiple design variations for their personal, i.e., internal
use. They use these designs to understand the problem space and iteratively form
an idea for the direction they would like to take the architectural design. Option-
eering interfaces enable architects to browse computer-generated massing models in
computational design software such as Spacemaker (Figure 9.14). The speed gained
by the algorithmic generation and human exploration reduces the explored design
space.

Creating options can be crowdsourced to the non-expert stakeholder or the third
party contributor, i.e., the crowd. The expert then can filter, reuse, mix and ex-
tend these crowd-created design variations. Special tools are needed for that as
the prototyped ones in Sensitive Assembly for filtering player-created wall designs
(Figure 7.19) and the one in Project Reptiles for autocompleting massing models
(Figure 9.17).

The reintroduction of human agency in the generation phase leads to increased
explored design space. The individual peculiarities of each contributor and other
serendipitous events and choices increase the diversity of design and are not encod-
able in an algorithm.

This scenario might seem very similar to the first scenario. However, the focus is
different. Unlike scenario 1, there is no need for direct feedback to the contributors.
The purpose is to collect the data, e.g., the designs they create and make it available
to the architect. Despite the subtle difference, in an overall application of crowd-
sourcing in the design, the same crowdsourcing platform can allow both scenarios
to happen, making double use of the crowd’s input.

11.4.3 Scenario 3: Crowdsourcing design platforms

The third significant task to crowdsource that I explored in my case studies is mod-
ifying the generative system to fit a design expression by defining design platforms.
I find this the most intriguing scenario of all three because it allows the productiza-
tion of architectural expertise. This can open up a plethora of new design workflows
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and business models.

A generative system with a large enough design space can enable non-expert
stakeholders and the crowd to create project-specific designs. If the design space is
too narrow, i.e., only a limited set of options can be generated by the system. The
crowd creating the designs feels constrained and unable to express their genuine
design intent. They begin adapting their preferences to the possibilities of the
generative system. As P. Merrell 2007 points out, “A procedural modeling technique
that can only model a specific type of object often has limited value, because as soon
as a significantly different object is needed, the technique must be reprogrammed.”

Currently, as discussed in detail in section 3.2, the creation of content for a gen-
erative system is done in a proprietary modeling environment explicitly developed
for this purpose. Examples are the CityEngine that uses the Split Grammars ap-
proach from Wonka et al. 2003 or the various shape grammar interpreters such as
the general 2D grammar interpreter by Trescak, Esteva and Rodriguez 2009, or the
MALAG interpreter by Correia, Duarte and A. M. Leitão 2010.

In a typical workflow today, the tool-maker will carry out that work. However,
“3D artists will find that creating a new example model is often easier than adjusting
an existing procedural modeling technique to suit their needs.”(P. Merrell 2007).

In my case studies, I explored how the task of seeding a generative design tech-
nique with project-specific design content is crowdsourced to a large group of archi-
tects or anyone else with the ability to think up 3D combinatorial systems. Each
contributor contributes vocabularies, grammars, and game mechanics that the gen-
erative algorithm can use to generate designs. The contribution can be holistic or
start by modifying a catalog submitted by another contributor.

This scenario was prototyped using the playable voxel shape grammars in 20.000
BLOCKS and the marching cubes tilesets in Project Reptiles . In 20.000 BLOCKS ,
game creators can model the vocabulary and the rules visually directly in the
Minecraft world, requiring very little previous knowledge in 3D modeling. In Project
Reptiles , experts can model a tileset that carries their design expression and intent
in Rhino. In both ways, the underlying generative system does not need to be mod-
ified by the content creators, thus opening the possibility for widening the design
space by crowdsourcing various catalogs of elements that inform the system.

In the end, all platforms taken together increases significantly the design space
the generative system can cover. A task too big if left simply to the tool-maker.
Not just because of the time it would take a single person to model multiple diverse
catalogs, but also because creative thinking and creative insights are largely repeti-
tive if left to the same author. We need various authors for a true diversity of ideas
encoded as catalogs.

It is important to note that for scenarios 1 and 2 to be meaningfully applied, a
generative system extendable through design platforms as described in scenario 3
will be needed.

As an outlook, the ability to automatically derive tilesets from example designs
can further increase the accessibility and application of the third scenario for using
crowdsourcing in architecture. In the case studies presented here, architects had to
model the elements of a design platform individually. While much more straightfor-
ward than reprogramming a generative algorithm, this still requires developing new
skills. The work by (P. Merrell 2007) on Model Synthesis shows strategies to derive
tilesets out of holistic models created by the contributors as a sampling source.
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Figure 11.21 – Granular authorship in r/Place. Left: A contributor’s UI as they paint one pixel
every five minutes. Right: a fragment of the final state of the r/Place canvas after 72 hours. Image
credits: Reddit.

11.5 Granular authorship

The ill-defined nature of design problems makes the authorship question in archi-
tectural design important. Had design problems been tame instead of wicked, we
could hand authorship over to a method that the professional community has widely
accepted. For example, authorship is much less relevant in the case of a structural
analysis of a building since it is done following an industry-wide accepted proce-
dure, i.e., FEM, graphic statics, or others. However, there is no calculable solution
to design problems. The challenge in front of the author, or authors, of an ar-
chitectural project is to stage a platform where conflicts between the stakeholders’
understanding of the problem can emerge. The solution is less relevant than the
need for stakeholders to agree on a shared problem definition.

Traditionally the lead architect is considered the author of a design. However,
given the three scenarios for crowdsourcing tasks of architectural design discussed
above, we can envision new, much less authoritative, modes of human agency in the
design process. Roberts 2001 states that in the current times of increasing aware-
ness and technological augmentation of all aspects in life, the go-to Authoritative
strategy for dealing with wicked problems loses its power ( Figure 11.22). Except for
project teams and architectural competitions, the alternative strategies, collabora-
tive and competitive, are relatively unexplored in architecture. The rPlace project
by Reddit shows the engaging and creative power of staging a simultaneously com-
petitive and collaborative design environment (Figure 11.21). A single person could
not create anything independently due to the limit to paint one pixel every five
minutes. Participants are forced to act in coordination.

Post-occupancy building extensions are probably the most common form of
shared authorship in architecture. A strong recent example of this is the project
Quinta Monroy by Elemental and the architect Alejandro Aravena (Figure 11.23
right). The architect provided a predefined architectural form that is half a house
covering the essential habitable functions. As inhabitants’ lives unfolded in the new
settlement, they filled the intentionally left gap with rooms of their choice.

The uses of games and crowdsourcing presented in this work can enable such
co-authorship to occur already during the design phase. The mix between architect-
defined design vocabulary and freely built shapes by the players in 20.000 BLOCKS

343



CHAPTER 11. DISCUSSION

Conflict?

Low Level of Conflict
Type 1: Simple Problems

Conflict Over Solutions
Type 2: Complex

Problems

Conflict Over Problem
and Solutions

Type 3: Wicked Problems
NO

YES

Power Dispersed? Authoritative
Strategies

NO

YES

Power Contested? Collaborative
Strategies

Competitive
Strategies

Figure 11.22 – A repeat of Figure 11.1. The three strategies for solving wicked problems —
Authoritative, Collaborative and Competitive (Roberts 2001). Image credits: the author after Roberts
2001.

Figure 11.23 – Granular authorship in architecture. Similar to the project Quinta Monroy by
Elemental (right), the combination of predefined architectural forms and free-built spaces in 20.000

BLOCKS (left) results in granular authorship. White material is placed by players, gray material comes
from the architect-defined shape grammar. Image credits: the author, Elemental.

is an example of how this can be staged (Figure 11.23 left).

According to Michalatos 2016, granular data structures of the 3D models, such as
the one used in Minecraft, i.e., 20.000 BLOCKS or the ones used in Project Reptiles ,
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Figure 11.24 – Granular authorship in IBA GAME. Left: A player placing a building element.
Right: A design of a neighborhood with the three players that created it listed. Image credits: the
author.

inherently supports concurrent authorship (Figure 11.24). Michalatos speculates
further that tracking of every singular user action that creates and changes the
design can enable new explorative and generative design techniques.

The ability to track the provenance of contribution to a design leads to a shared
intellectual property of the architectural product, which opens up opportunities for
new business models in the design profession. Multiuser or multiplayer participatory
environments enable the stepwise distribution of the finite resources that architec-
ture deals such as space, views, exposure to sunlight or shade. This granular form
authorship could eventually lead to granular ownership over the same resources be-
ing allotted in the design process.
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Chapter 12

Conclusion

12.1 Summary

In this work, I explored the use of games and crowdsourcing for the schematic
architectural design of residential buildings. This research steps on two technological
pillars — network-enabled participation and ubiquitous digital fabrication — that by
2050 will define how the built environment will be created. My research investigates
exploratively two sets of questions. First, if everyone can participate in the network-
enabled creation of the built environment, what role will they play? And second, if
anyone can use digital fabrication to build any building, what paradigms will govern
the design process? The research questions concern the balance of design power
between different roles and the range of their tools and tasks. To avoid entangling
myself in a discussion about feasibility or efficiency, I begin with the premise that all
construction is entirely automated, making it is possible to fabricate any structurally
sound building design digitally.

I identified a research gap at the intersection of the four fields that pertain to
the research questions: Participatory Design, Generative Design, Game Design and
Crowd Wisdom. State-of-the-art participatory design practices acknowledge the
actual, ill-defined nature of design problems, taking stakeholders’ values and pref-
erences into account. However, it overburdens the architect, who has to synthesize
more constraints into a one-of-a-kind design. Generative Design promises to equip
architects with great power to standardize and systemize the design process. How-
ever, the common trap of generative design is treating architecture simply as a tame
problem. Game Design and Crowd Wisdom, as observed in Citizen Science and
crowdsourcing platforms such as ReCaptcha and Foldit, hold the potential to pro-
vide the level of content creation, options exploration, and automation of guidance
that can break participation and design computation out of their respective confines
and integrate them.

In the presented four case studies — Sensitive Assembly , 20.000 BLOCKS ,
Project Reptiles , and Rechteck2BIM— I explored various techniques to employ the
practices from the four fields in service of architecture. In response to the first re-
search question, which paradigm will govern the design process, I propose a Map of
Design Paradigms that prescribes how to build tools at the intersections of the four
fields. The exploration of the second research question revealed a layered structure
of entry points for crowd-contributed content and the granular nature of authorship
among the four different roles — inhabitants, architects, the crowd, and tool-makers.
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In my research, prototypical models and processes were developed and investi-
gated to provide architects with crowdsourcing as a new tool in the design process.
When developing the projects in the case studies, many decisions to pursue this
goal were taken intuitively. Others were based on feedback from the users of the
developed tools and prototypes. Even though I always intended to include architects
as designers using the generative tools I developed for crowdsourcing, a significant
finding is that tooling needs to be developed so architects can contribute to the
generative system’s design. I called this the crowdsourcing of design platforms.

The approaches presented in this work are well suited to solve problems of the
spatial and programmatic organization of a building. As the creation process hap-
pens entirely in a digital medium, it can be easily integrated with tools and machines
used in the later stages of design, specification (BIM), and construction (Construc-
tion Robotics).
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Figure 12.1 – A repeat of Figure 1.7. Image credits: the author.

The main challenge I perceived in creating the conditions for crowdsourcing
within a digital environment is illustrated on Figure 12.1. It is to move a participant
with a particular set of skills from the zone of anxiety into the zone of flow. The
challenge is exacerbated by the fact that this transition needs to be automated to
scale participation up. It cannot happen under the guidance of an expert user. On
the one hand, I employed algorithms to assist the participants, i.e., make the task
easier. On the other hand, the game design helped slowly bring participants up to
a sufficient skill level to take on the often challenging task of participation.

12.2 Relevance for the architectural discipline

There are views on architecture that present it as a communication system of de-
sign principles and drafted building manuals such as Alberti’s understanding of the
architect as the single project Master (Carpo 2011, p.23). Such a definition of ar-
chitecture explains and secures the architect’s role as a mediator for large groups of
clients. Developing participatory computational design systems for a wider profes-
sional community of architects is a key enabler to explore the benefits of massively-
collaborative creative design search and discovery (Aish 2016).
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At the same time, people, in general, excel at spatial reasoning and creativity, i.e.,
the ability to use and hack design systems to express themselves (S. Cooper 2014).
Opening up the design process to non-experts could help scale up architecture’s
inclusivity, innovate on architectural typologies and business models and find a
much-needed revalidation of the discipline by creating value for the middle of the
bell curve (Bryson 2017).
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Figure 12.2 – Three crowdsourcing scenarios. Image credits: the author.

The use of crowdsourcing in architecture can mean that thousands of architects
can create content to inform a generative design system, thus expanding its de-
sign space, opening it up, and softening its deterministic qualities (Figure 12.2). I
explored this idea with the creation of shape catalogs and tilesets in the projects
20.000 BLOCKS (section 8.3) and Project Reptiles (chapter 9).

Crowdsourcing can also be about millions of non-experts creating designs so
that an architect equipped with computational tools can browse and find patterns
for inspiration or use them to autocomplete a design they have started sketching
out. I explored this in Project Reptiles (chapter 9), IBA GAME (subsection 8.4.3),
Rechteck2BIM (chapter 10) and Sensitive Assembly (chapter 7). Or crowdsourcing
can mean that the stakeholders can browse through options generated by the crowd
to increase their understanding of the complex issues at hand in a given design
project and establish a common language of discussion. I explored this in 20.000
BLOCKS , more specifically IBA GAME (subsection 8.4.3).

At the same time, the adoption of game design in architecture can be about
finding the balance between exploring algorithmically pre-defined design alterna-
tives and open-ended design. I explored this in the 20.000 BLOCKS projects such
as the Platform game (subsection 8.4.1). Games can also provide an immersive
environment where conflicts between stakeholders’ interests can be simulated and
explored. I explored this in the 20.000 BLOCKS projects (section 8.3). And, games
can be about providing self-reinforcing mechanisms of motivation of participants for
finding designs that an algorithm would be incapable of generating. I explored this
in Sensitive Assembly (chapter 7), the 20.000 BLOCKS projects (section 8.3) and
Rechteck2BIM (chapter 10).

12.3 Thesis contributions

There is no practical precedence of how the multitude of non-experts enters archi-
tectural design. This dissertation’s contributions:
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• A proposed Map of Design Paradigms at the intersection of Participatory
Design, Generative Design, Game Design and Crowd Wisdom (See Figure 6.2)
which reveals a significant research gap in architecture, as well as across all
disciplines (See Figure 6.3);

• The introduction of a unified taxonomy of generative design across the disci-
plines of architecture, computer science, and computer games (See section 3.2);

• The introduction of a new type of Shape Grammars, namely Playable Voxel
Shape Grammars (See section 8.3);

• The identification of three use cases for games and crowdsourcing for schematic
architectural design (See Figure 11.20);

• Systematizing various game mechanics according to the balance of control
between experts and non-experts over the design outcome of a crowdsourcing
design environment (See Figure 11.16).

12.4 Future Work

With respect to the first research question, which design paradigms exist at the
intersection of the four fields, some of the paradigms are not explored in this work.
The two areas in the research gap that remain to be explored in the future:

1. the intersection of participatory design, generative design, and game design,
excluding the participation of the crowd (ABC) and

2. the intersection of participatory design, game design, and crowd wisdom, ex-
cluding generative design (ACD).

Concerning the second research question, the roles of the crowd can be explored
in much greater depth. However, primarily reasons of the technical implementation
prevented me from doing so in this work. Implementing a well-working, fool-proof
online digital application requires resources, expertise, and time that neither I nor
the people I had the pleasure to work with possessed.

The 20.000 BLOCKS framework technically supported a mix between collabora-
tion and competition, but the games created with it mainly focused on single-player
or competitive mechanics. This was because a Minecraft server with the 20.000
BLOCKS framework could have about 4-6 players simultaneously, which is insuffi-
cient for group dynamics to emerge. Modifying Minecraft to suit the needs of 20.000
BLOCKS required users to install it from the Technic Launcher which requires ad-
vanced skills. A better experience in the programming language JAVA could have
allowed the distribution of 20.000 BLOCKS via the vanilla Minecraft, using the
Minecraft protocol as the research by Gray et al. 2019 did.

Furthermore, given sufficient resources to manufacture physical prototypes, in-
tegrating automated construction processes in the crowdsourcing framework can be
revisited. This would require close collaboration with construction experts and de-
veloping a prototypical product platform that enables a diversity of designs to be
defined in the form of fabrication-aware vocabularies, grammars, and tilesets.
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12.5 Outlook

Several recurring topics specific to the discipline of architecture reemerged within
the research presented here. The shape-first vs. program-first, the additive vs. sub-
tractive, master architect vs. granular authorship, automation vs. augmentation,
crowd wisdom vs. crowd stupidity debates have defined many aspects of architec-
tural discourse in the past and the present. My work does not offer a resolution but
a platform for these debates to continue in a new medium and with new tools.

If the design process is sometimes considered a black box, holding the secret of
the master architect, the approach I present can help peek into this black box and
increase the discipline’s understanding of it. Tracking the provenance of design con-
tributions, concurrent authorship, and the hierarchy of human-machine interaction
can make many intuitive processes in the profession more explicit.

At first, this will be interesting for researchers but later for practitioners too,
since it can open up possibilities for new business models that use the granular data
of projects and the crowd as a designer. The regulatory framework that defines the
fee structure for architects, for example, in Germany today, has not seen significant
changes since the 19th century (1871). The newly emerged split between planning
and construction that started with Alberti in the 15th century resulted in more
and more free architects or artistic architects (Künstlerarchitekten), which began
working for an honorarium that is a percentage of the construction cost. And to
this day, this is the business model of architects. In his book Who Owns the future?,
Jaron Lanier suggests how we can reward contributions to code and content with
micropayments similar to how royalties used to work in the music industry (Lanier
2013). In the future, architects will partner up with their clients and build business
models into the designs.

Ultimately, the integration of participation and computation by crowd wisdom
and game design can revisit a paradigm of architectural production that has been
long lost. The paradigm of cumulative design evolution and self-organization within
an ever adapting hierarchical system that can be observed in informal settlements
like the Logone-Birni in Cameroun (Figure 12.3 left) (Rudofsky 1964; Schaur 1991).
More specifically, if the pixel canvas of r/Place is a map of the territory we want
to build something on, what is the size and type of the grid, what does one place
in each cell, how do neighboring cells merge to create a continuous space or disjoin
into distinct dwellings? What digital tools are given to participants to organize
themselves and create? Who will be given the status of an architectural expert,
and what degree of influence will they have compared to the other roles within the
crowd?

Novel architectural business models might not go the way of Google, Amazon,
and Facebook. Architecture is physical, it is personal, and it is local. It is one of the
few disciplines where, as Neil Gershenfeld would put it, going from bits to atom is
essential for the digital to permeate it (N. Gershenfeld 2012). The strong connection
between ideas and materiality in Architecture removes the strong gravitational force
of software and data that centralized other disciplines. The architecture will most
likely end up with a much more distributed solution to network-enabled participation
and digital fabrication. For example, the Grasshopper community, which is linked to
the parametric design movement, shows that we can open ourselves to each other and
create platforms for exchange within the discipline of architecture. This trend needs
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Figure 12.3 – Self-organization. Left: the village Logone-Birni in Cameroun, thousands of participants
across multiple generations to evolve a system and the content (Rudofsky 1964). Right: Reddit r/Place,
250.000 participants, 72 hours, the underlying system is predefined, content evolved within it. Image
credits: Rudofsky 1964, Reddit.

to continue until the exchange platform engages not only architects and engineers
but also everyone else.

Technology lowers the barrier to participation and fosters collaboration. Network-
enabled participation and ubiquitous digital fabrication will enable us all to shape
the environment around us. With the proper thought and technological frameworks
that allow us to tune the design paradigms under which this happens, we can tackle
the significant challenges of this century: housing billions of additional people in
cities worldwide, responding to the effects of climate change and creating buildings
that help reverse them.
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Appendix A

Interview with the Game Designer
Ben Buckton

Ben Buckton is a game designer born in Australia. Currently, he lives in Frankfurt,
and work sees him commute to Prague, where he is the Content and Player Experi-
ence Designer for the game Factorio. Between 2012 and 2019, he was a partner at,
Invent The World, Australia, offering game-based courses for kids focusing on tech-
nology and play. Since 2014, Ben has organized community events for Indie game
developers in Frankfurt. In 2015, I approached Ben to collaborate on the project
20.000 BLOCKS in Minecraft. Here we discuss the more abstract concepts from
the field of games, such as game mechanics, gamification, and the subject of game
design. These are important for the game design in the four case studies. A more
academic definition can be found in chapter 5.

Frankfurt, 24 May 2019

Figure A.1 – Game examples. Left: Dwarf Fortress; Right: Subnautica. Image sources:
http://www.bay12games.com/dwarves/screens/dwf5.html, accessed, 10. July, 2019; https://
steamcommunity.com/sharedfiles/filedetails/?id=1798035536, accessed: 10 July, 2019. Im-
age credits: Bay12Games; Sophon Relaxs.

Anton Hi Ben, thank you for taking the time for this interview. The first question
I wanna ask you is what are some of your favorite games? I remember you
once showed me how to play the game Dwarf Fortress (Figure A.1 left). We
also did a project together using Minecraft.

Ben I’d say the most important thing about a game for me is that it has some
challenge and the player experiences something interesting. Dwarf Fortress is,
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of course, a good example. Minecraft lets people create their own story, but
I think as a good game, I would say Minecraft is not a good game. I would
say Minecraft is a good platform for creating games or for storytelling. A very
good game gives a player the feeling of discovery and being able to choose
their own path. I would say a good game would be Subnautica1 (Figure A.1
right). That’s an exploration game. There’s no on-boarding. The player is put
in an environment where they’re playing a character who is not very skilled
in that environment. They don’t know what’s going on and then the player
and the character are both learning together. You get put in situations that
are uncomfortable for the character and they are also uncomfortable for you
as the player. You feel something when you play this game in the true sense
of discovering how the game works. Some of this is also in Dwarf Fortress as
well. You learn by failing, you learn by overstepping your boundaries and the
game has a soft border, so it lets you overstep it. This is what I would call a
good game. Title-wise, there’s many, but I would say this is what I love most
about games.

Anton Is that what you look for in a good game — the player can make a discovery?

Ben Yes. And make the choices for themselves.

Anton What is a game?

Ben Any experience where you have some sort of goal, there is a challenge to
overcome and there is a set of tools that are given by the designer. That’s a
very broad description, I guess, of what a game is. It has to be interactive
and that is where, as a designer, I think of interaction as the tools that are
given to overcome any particular challenge in a game. If there’s no challenge,
it’s not a game. If there’s no tools to overcome the challenge, it’s not a game.
A movie is not a game. Because there’s no tools. There’s a challenge, and it
gets overcome regardless of what you do in your seat watching it. There’s no
tools. But there was a challenge. There’s some conflict.

Anton And toys would be then the opposite. Toys are tools and there’s no challenge
posed. You need to invent your own challenges.

Ben Exactly. That would be my distinction of toys and games.

Anton When you talk about a designer you mean a game designer and that relates
to what you do. What does a game designer do?

Ben Well, I would say it’s designing this experience that the player has. I guess
a lot of designers might answer this question with: “Well, the game designer
writes the narrative of the player rather than the character.” But I would
probably see it more that the designer is creating the challenges and the tools
to solve the challenges. And, of course if you design those two things together,
so it’s interesting to use this tool to solve this problem, then you have an
interesting experience. Sometimes if those things are designed separately, it
can also result in a good outcome. For example, in Dwarf Fortress, which is a
sandbox game2 , there is a set of tools and there’s a set of challenges. They’re

1Subnautica is a game by Unknown Worlds from 2019 and brief description.
2Sandbox game is a game where the player has the ability to create, modify, or destroy their

environment, i.e. a game that includes some form of a game creation system. The term alludes to
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not really designed to counter each other, it just happens that the players
figure out how to counter those challenges with those tools.

Anton There is a concept which is very difficult to explain to someone who’s outside
the games industry — ’Game Mechanic’. What is a game mechanic? Can you
give a couple of examples?

Ben It’s hard to say if the game mechanic is the tool or is that the conflict or is it
the interface between the two? I would probably call the mechanics the things
that the player doesn’t directly interact with and the tools are the interfaces to
the mechanics. You can for example have a mechanic of driving a car but you
only expose the steering wheel to the player, not the pedals. So, car driving
and the car physics are part of the car mechanic but the steering wheel is the
tool that’s given to the player to overcome the challenge of driving through an
obstacle course.

Anton Does Minecraft have game mechanics?

Ben (pauses) Maybe yes. It definitely has simulation-based mechanics. There’s
not so much that the player interacts with directly. Creature AI is a game
mechanic.

Anton Or maybe the day/night cycle.

Ben Day/night cycle is a good game mechanic. It’s something a player can’t really
affect. It’s interesting to think of it in this way. There’s definitely some
mechanics in Minecraft, but as a sandbox game, they’re very disconnected
from the player, so the game world will just do its thing without you regardless.
Whereas if you think about something like the game Quake (or Doom)3, or any
first-person shooter game, where nothing happens unless the player interacts
with it. If you stay in one room, then the enemies in the other room just don’t
exist. They don’t interact with each other.

Anton Can we think of the game mechanics as the game agency, the automated
force that acts against or in support of the player?

Ben Yes, I guess, the mechanics are the individual parts of the machine that is
creating the conflict for the player.

Anton Earlier, you mentioned that in a game, on the one hand, there are the
players who can make choices and take actions, and that gives them the sense
of control over the game, and on the other hand there are the tools or the
agency of the game given by the game designer, which assigns rewards to these
actions and constrains players in their choices. And that gives game designers

a child’s sandbox where the child can create and destroy with no given objective. While open world
and sandbox are sometimes used interchangeably, the terms refer to different concepts and are not
synonymous. Source: Wikipedia: https://en.wikipedia.org/wiki/Sandbox_game, accessed 10
July 2019

3Quake is a first-person shooter video game developed by id Software and first published in
1996. Doom, also by id Software, is considered one of the pioneering first-person shooter games,
introducing to IBM-compatible computers features such as 3D graphics, third-dimension spatial-
ity, networked multiplayer gameplay, and support for player-created modifications with the Doom
WAD format. Since its debut in 1993, over 10 million copies of games in the Doom series have been
sold; the series has spawned numerous sequels, novels, comic books, board games, and film adap-
tations. Source https://en.wikipedia.org/wiki/Doom_(franchise), accessed 11 June 2021
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a sense of control over the player’s experience. What is the importance of the
balance between this choice and agency? Are there any best practices that
you encounter of how this can be measured by something other than the game
becoming a hit? Can it be tuned or balanced?

Ben I think this is definitely one of the unmeasurables. There’s this saying that
good design is invisible. So when players are happy and they feel like they’ve
been given a lot of choices, quite often that is not true, but they just feel like
that. There are a lot of successful games with that structure, but there are
also a lot of successful games where the player has complete knowledge
of the mechanics — nothing is hidden from them or they have access to a
wiki. I think the player definitely needs some agency. If they feel they are
railroaded, just on a path, clicking the button, some people might say it’s not
a game. A recent example that came up is Metal Gear Solid 4 4, which is a
third-person shooter game, but realistically it doesn’t matter what you do.
It’s basically almost a movie. There are so many cut scenes. There’s lots of
gameplay but none of your choices really affect the outcome in the
end. Whereas you have the branching story of a game like Dragon Age, or
any other RPG5 game, where your choices do matter and the game designers
have just accommodated for the player making many different choices. You
feel you’ve made choices because you heard from a friend that they went a
different way. And then you have the kind of meta choices. For example,
the game Subnautica is designed without a map. You don’t know how to
navigate in the environment. It’s an underwater environment. However, you
can just go on the internet and download a map. That is not a choice the game
gives you, whether you want a map or not. But if you take that meta choice,
you’ve effectively broken the designed experience for yourself. So, I would
group them into these three categories of choices. And I think it’s important
that you consider all of them. Best practices-wise, you can always consider
what the player will do to ruin their own fun and try to limit that. If there is
a button that gives them one coin and they can press it once per hour, they
will press it once per hour and they will say that your game is boring. If you
take that away, they will engage with the rest of the mechanics. People always
take the path of least resistance. So, as a game designer, you need to know
what that path is and ask yourself, ’Is it fun?’. And if it’s not, you need to
modify the path by making things harder or easier.

Anton We’ve collaborated on few game prototypes where players had to co-create
architectural designs. What were the challenges with using games in that
context from the perspective of a game designer?

Ben I think the challenges here were that anything that’s generated in game design
rather than handmade, brings you to this situation where everything is unique,

4Metal Gear Solid 4: Guns of the Patriots is a 2008 action-adventure game developed by
Kojima Productions and published by Konami for the PlayStation 3 console. Source: https://

en.wikipedia.org/wiki/Metal_Gear_Solid_4:_Guns_of_the_Patriots, accessed 11 June 2021
5A role-playing game (RPG) is a game in which players assume the roles of characters in a

fictional setting. Players take responsibility for acting out these roles within a narrative, either
through literal acting or through a process of structured decision-making regarding character de-
velopment. Source: https://en.wikipedia.org/wiki/Role-playing_game, accessed 11 June
2021
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but because everything is unique, nothing is unique. There’s no pattern, just a
field of random noise. We see this in a lot of other games which have generated
content — most of the time the content is uninteresting. But every now and
then someone posts a screenshot and says: “I found this planet in the middle
of nowhere where if you go to this coordinate and you look in that direction,
there’s this amazing location that looks perfect, as if it was handcrafted.” But
then that’s out of 14 billion different locations, so. . .

Anton You’re actually touching upon a very important aspect that surfaces not
only in procedurally generated worlds but also in participatory design, where
the world is created by a crowd of people. We are always running into this
issue that the results look aesthetically and compositionally weak — they’re
like noise, because pretty much all evens out. It’s full entropy.

Ben I think you have this diagram of full entropy and of full control and neither is
good, right?

Figure A.2 – Centralized vs decentralized control. Image credits: the author.

Anton Yes, at the one end, we have the bottom-up approach, the little agents,
whether they are algorithms or people, which create design, and at the other
end is the single figure of a designer, the author, almost like a dictator that
says, “This is how it should be” (Figure A.2). Could games be a medium to

358



navigate this path?

Ben Most definitely. I think we have examples in game design of total chaos, like a
game where the player is dropped into a system that is complete anarchy and
they need to just figure out what to do.

Figure A.3 – Unbalanced vs balanced games. Left: A typical procedurally generated game level with
three rooms linked with corridors, the player’s character (the @ symbol) and an enemy (represented
by the K ) from the 1980 game Rogue; Right: A screenshot from FarmVille, 2009, by ZYNGA. Image
credits: Barton and Loguidice 2009; ZYNGA.

Anton What would be a game that does that?

Ben Older Rogue-like6 games were just like this (Figure A.3 left). Every time you
load the game, it’s randomized. You might move one step and a creature
kills you that’s invisible and is 10 times more powerful than you. And there’s
nothing you can do so you restart the game. Generally in all the Rogue-likes
the idea of game balance is not considered. It’s supposed to be hard and
unfair. If you play 10 games, in one of those 10, you’ll have a run that is at
your skill level. There’s this idea that, as a game designer, you have to balance
your game for players of low, medium and high skill. There’s always someone
who can beat your game every time. There’s always someone who can never
beat your game. And if you don’t balance this, you leave it up to the whims
of fate. Then actually if a player is persistent they will have that perfect run
through the game where everything is just hard enough to challenge them,
but, at the same time, just easy enough so they can beat everything. The
eureka moment for a game designer is if they intentionally design something
like this where a player has that experience. It’s almost like a flow state.
And making something that gives this feeling to enough people in the market,
enough different people, is The Holy Grail. People want that and we see this
with a lot of free-to-play play games, such as Farmville (Figure A.3 right)
and Candy Crush, where the game designers do a lot of data-driven design.
These games try to abstract and narrow down what it is that makes people go
into this state and find an algorithm that makes the levels hard enough and
easy enough so that everyone is just constantly hooked. I don’t consider that
particularly valuable, but, I would say, that is the best example of achieving

6Roguelike is a subgenre of role-playing video game characterized by a dungeon crawl through
procedurally generated levels, turn-based gameplay, tile-based graphics, and permanent death
of the player character. Most roguelikes are based on a high fantasy narrative, reflecting their
influence from tabletop role playing games such as Dungeons & Dragons. Source: wikipedia:
https://en.wikipedia.org/wiki/Roguelike, accessed, 10 July 2019
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the goal of every player having an optimal, procedurally generated, experience.

Anton Mihaly Csikszentmihalyi who is a psychologist, has a very good diagram to
depict the state of flow. The X-axis represents the difficulty of the challenge
and the Y-axis the skill level. If the challenge is too high and the skills are too
low, you’re in anxiety. And if the challenge is too low and your skills are too
high, you’re bored. There’s this diagonal area which is the flow (Figure A.4).
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Figure A.4 – The concept of Flow. Adapted from Csikszentmihalyi 2008. Image credits: the author.

Ben Yes, it’s interesting to think with this idea that you can design your game to
fit in this pipe. If you give the player the opportunity to play optimally, it
leads them to anxiety or boredom. If it’s the fastest way for them to reach the
goal, they’ll take that way. Doesn’t matter if they’re having fun or not.

Anton Games are considered part of the entertainment industry. However, I believe
they will affect or are affecting the non-entertainment industries in the near
future and in the long run. What are your thoughts on that?

Ben I definitely think that this mindset that people currently have, that games
are entertainment and entertainment is not productive, will change. I think
there’s a lot of resistance to this idea. If you’re not at work, on the grind stone,
making dollars, making the economy better, that thing that is stopping you
from doing that, is the opposite of productive. But I think people are much
more productive when they are engaged and I think at the moment, that is
not a value that is measured by our economy. And therefore, the value of
happy people, of people playing games, being motivated and engaged in their
work is just not measurable in a dollar value yet. I think once people realize
that there is an inherent value there that is immeasurable, we will see more
and more people pushing towards integrating games as a way to engage people
into normal life. We’ve seen there was obviously a big boom with gamification,
which I don’t consider the same as games. . .

Anton Gameful is a term that emerged in the literature as a reaction to gamifica-
tion7.

Ben Gameful is a good way to put it. While gamification is more about the psy-

7See chapter 5
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chology and controlling people’s engagement through psychological rewards,
gameful approaches are basically removing the risk of trying, the risk of failure
and we already see that this is a better way to go and that is becoming more
and more important. Just last night I was talking with a bunch of engineers
about using Virtual Reality to train firefighters because you can’t send them
into a fire without skills. Because they won’t learn, they will die, right? And
I think in a lot of ways, what is currently holding us back as a society, is that
people don’t want to fail, they don’t want to be liable for someone else’s failure
and games give us a way of trying, of putting yourself in a situation where
you basically know that you can’t win because you have no skills and you can
find out how and you can try through iteration. That’s the strength that I see
we’re going to get out of games in the future, especially with education, with
on-the-job training. Hell, even with relationships. I think in terms of social
interactions, people can get a lot out of games.

Anton Now that we’re talking, I remember that gameful was actually introduced
as a term to balance the bad connotations of gamification on one side, where
it almost feels like manipulation and, on the other side, the concept of playful
where it’s not taken seriously.

Ben Yes. I think that’s really the two ends of the spectrum. And play is actually
the important thing because play is pretend. Playful means pretend. It’s not
real, the consequences aren’t there. But if you take playful and you make it a
simulation, this can become a way to experience something real without the
consequences and still get something out of it. As long as people understand
that it’s serious.

Anton Looking at the non-entertainment industries and how they can benefit from
games, I have a more particular question. Who do you think can benefit the
most if we consider games as a medium to design and to create architecture?

Ben Here I’m a bit split. Maybe it comes back to this immeasurable thing. You
know, there’s this saying: In the economy, if you find a need, you fill a need.
You find a need that someone has and you invent something to fill it. The
lack of design thinking in the world at the moment is, I think, causing a lot
of solutions to be based on just how much money does it cost and how much
can people pay for it? And design is immeasurable. Unfortunately, today,
the word design just means it’s expensive. It doesn’t mean that the user
experience was considered. While actually design is about thinking about the
user. The answer to the question “What is the experience of the person using
this thing?” is, I think, where you see good design. Well, you don’t see it,
because it’s invisible. But if it’s a good design, the person using it just has a
good experience and doesn’t know why. I’ve gone off track a little bit, but I
think teaching game design teaches design thinking. And, in my experience,
architecture is the design thinking element of Engineering, right? It’s easy to
build a house that doesn’t fall down but it’s much harder to think about the
people in the house and how they are going to use this space. Game design
is interactive so you can really teach design thinking and make people think
about psychology and about the physical space all at the same time. And I
think that is analogous to architecture in my mind as a non-architect.
(laughs)
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You can tell I have a positive outlook and I think that’s a big thing. A lot of
people have this negative idea, this kind of feeling that nothing has come out
of games yet, therefore nothing will. We’ve been through several hype cycles
with gameful hybridization or transdisciplinary projects and sure, we’ve had a
lot of ups and downs. But I think the game industry as a whole is just going
to get more and more diverse. We will see game design everywhere.

Anton A great sentence to end on! Thank you!
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Appendix B

Getting Started with 20.000
BLOCKS in Minecraft

Figure B.1 – 20.000 BLOCKS. Image credits: the author.

This manual helps you get started using the Minecraft components of 20.000
BLOCKS. It was provided to participants in the various 20.000 BLOCKS projects
described in this dissertation.

B.1 SETUP IN 5 STEPS

To run 20.000 BLOCKS you need to:

• Have your own Minecraft Java Edition,
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• Install TechnicLauncher (requires Java) which is used to play customMinecraft
modpacks.

• Install the 20.000 BLOCKS custom modpack in TechnicLauncher.

If you already have installed both Minecraft and TechnicLauncher, proceed with
STEP 4.

STEP 1: Install Minecraft

1. To run 20.000 BLOCKS, you need to own Minecraft Java Edition for Windows,
Mac or Linux. Buy and download it here: https://www.minecraft.net/

en-us/download

2. Install and run Minecraft at least once.

STEP 2: Install Java

On macOS (tested on macOS Catalina 10.15.4)

1. To run TechnicLauncher you need to install the Java for Mac OS X Version 8.
DO NOT INSTALL NEWER VERSIONS such as Java SE 11 or Java SE 14,
they will not work with TechnicLauncher.

2. You need Java JRE (Java runtime Engine), not Java JDK (Java development
kit). At the time of this writing the latest update to version 8 is Java JRE 8
update 241.

3. Go to: https://www.java.com/en/download/mac_download.jsp

4. Download the Java JRE 8 and install it.

On Windows

- not tested yet

STEP 3: Install the Technic Launcher

1. Go to: https://www.technicpack.net/download

2. Select and download the appropriate version for your operating system (Win-
dows, Mac, Linux)

3. On macOS you will end up with a TechnicLauncher.jar file

4. Double-click on the TechnicLauncher.jar file to run it and give the permissions
to Java to access the folder it is in

5. Once it runs it will ask you to install. Use the STANDARD INSTALL and
click Install.

6. It will download the needed files from the net and install itself.
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Figure B.2 – Install Technic Launcher. Image credits: the author.

7. Then it will ask you for your Mojang account. This is your account for
Minecraft. Enter it.

Figure B.3 – Log in with Mojang account. Image credits: the author.

8. Now you should see the home screen of TechnicLauncher

9. Proceed with adding the 20.000 BLOCKS modpack
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Figure B.4 – Home screen of Technic Launcher. Image credits: the author.

STEP 4: Add the 20.000 BLOCKS Modpack

1. Open up the Technic Pack Launcher by double-clicking the TechnicLaucher.jar
(on macOS)

2. Select the MODPACKS Tab in the TechnicLauncher home screen.

3. Search for the 20.000 BLOCKS modpack by typing 20.000 BLOCKS in the
search field.

4. Once you have found the 20.000 BLOCKS modpack, click on the Install button.

5. It will take a while for the modpack to download. You will know it is complete
when a Play button replaces the Install button.
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Figure B.5 – Modpacks screen. Image credits: the author.

STEP 5: Run the 20.000 BLOCKS Modpack

1. Open up the Technic Pack Launcher by double-clicking the TechnicLaucher.jar

2. Go to MODPACKS and choose 20.000 BLOCKS.

3. Press Play

4. It will take a while for the modpack to load. You will know it is complete
when the Mojang logo is gone and replaced with the Minecraft Main Menu.

5. Great! You are all set. Proceed to creating and playing in 20.000 BLOCKS
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Figure B.6 – Minecraft home screen. Image credits: the author.

B.2 Get going with 20.000 BLOCKS

To follow these instructions you need to have set up 20.000 BLOCKS properly.
The main principle behind 20.000 BLOCKS combinatorial logic is that you can

build a complex shape and a much more simple matching key. If the player models
the key during a game and activates it by standing on it, then it gets replaced by
the corresponding shape. This is powerful! (need image here)

Create a new World

1. Open the 20.000 BLOCKS Modpack from TechnicLauncher.

2. In the Minecraft Main Menu click on Singleplayer

3. In the next window click on Create New World

4. Give your world a name and set the game mode to Creative.

Optional: Create a superflat world (Recommended)

The default World settings will create a classic, nature-like Minecraft world with
random distribution of grass, water, forests, etc. If you want to create a flat world
with the white or gray grid textures do the following.

1. When you are creating the new world, click on “More World Options. . . ”

2. Set Generate Structures to OFF, keep Allow Cheats to ON
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Figure B.7 – Create a new world. Image credits: the author.

Figure B.8 – Classic, nature-like world in Minecraft. Image credits: the author.

3. set World Type to Superflat and then click on Customize.

4. Click on Presets

5. In the text field paste:

(a) for the white grid world: 3;55*minecraft:sandstone;1;

(b) for the gray grid world: 3;55*minecraft:snow;1;
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Figure B.9 – Superflat world with white grid. Image credits: the author.

Figure B.10 – Superflat world with gray grid. Image credits: the author.

Tip: To create custom presets you can use this superflat world preset generator:
http://www.minecraft101.net/superflat/

6. Click on Use this Preset.

7. Click Done

8. Click Create New World to start

9. Once you are in the world press Escape, click on Options. . . and then set
Difficulty to Peaceful

370

http://www.minecraft101.net/superflat/


Figure B.11 – World settings. Image credits: the author.

Figure B.12 – Set the diffculty level to peaceful. Image credits: the author.

Build a Command Computer to run 20.000 BLOCKS

1. Press ‘e’ to open inventory.

2. Click on the Compass.

3. Search for ‘Command Computer’.

4. Click on the command computer and move it to your hotbar.

5. Press Esc to close the inventory.

6. Place the Command Computer using the Right Mouse button. Hint: Destroy
items with the Left Mouse button.

7. Disable commandBlock output with the following command:

/gamerule commandBlockOutput false
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Figure B.13 – Command computer in the inventory. Image credits: the author.

Figure B.14 – A placed command computer. Image credits: the author.

Install the 20.000 BLOCKS on the Command Computer

1. Right click on the Command Computer to open its Terminal. You see Fig-
ure B.15.

2. Run the following commands to install the game scripts (you need to be con-
nected to the internet for this to work):

pastebin get VbZ5tvq9 update

Tip: on macOS the shortcut for pasting in the terminal of a ComputerCraft
computer is CTRL+V, not CMD+V as usual for macOS.
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Figure B.15 – CraftOS home screen. Image credits: the author.

Tip: on macOS if shortcuts such as paste (CTRL+V) or select all (CMD+A)
don’t work, pressing OPTION+SHIFT (ALT+SHIFT) once might solve the prob-
lem.

Figure B.16 – Load the 20.000 BLOCKS scripts from Pastebin. Image credits: the author.

3. Then run update

All game scripts from the current stable version should download to the computer
and the computer will reboot.
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Figure B.17 – Update scripts. Image credits: the author.

Tip: if the update command or later the play command hangs, press and hold
CTRL+T to terminate the program.

Editing the project settings (Catalog size, grid size, etc.)

• Run edit project settings

Figure B.18 – 20.000 BLOCKS project settings. Image credits: the author.

There are four values that can to be changed.

1. The first one gridcell size means the size of your element, i.e. 9 means the
maximal size of your element is 9*9 blocks.

2. The second one gridcell count means the size of your buildzone (the number
of cells along each axis).

3. The last two values catalog slotcount define the size of your catalog. X
means the number of elements along the x axis, and z means the number of
elements along the z axis.
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After changing, press ctrl choose Save and press Enter, then press ctrl choose
Exit and press Enter.

• Run play to start the game with the new settings

Figure B.19 – The zones in the game area. Image credits: the author.

Figure B.20 – Start the game. Image credits: the author.

Game components generation

It will take about 45 seconds to place all of the required game components.
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Figure B.21 – A freshly started game script with the buildzone. Image credits: the author.

Build and Test the Catalog

Place a simple test element in one of the slots in the catalog. Be sure to remove
the Obsidian block only from the catalog slots that you intend to use. The script is
designed to ignore any slot which still has the Obsidian block in the center.

The white area is for the Key (what the player must build) and the gray area
for the element, which will be generated when player places and activates the key
in the Play Area later.

Once you have made this, go back to the Play Area and build the Key Shape.
Stand on the Activator Block and then the element will be generated around where
the Activator Block was.
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Figure B.22 – The catalogue building area. Image credits: the author.

Open to LAN

You can open your game to others on the network. Press escape and click the Open
to lan option. If you want other players to only build in the Play Area then set
the gamemode to Adventure. Keep cheats enabled only if you trust those you are
inviting to your server. If you would like to have help building vocabulary then set
the gamemode to Creative.

Reset Play Area

1. Go to the computer and enter it

2. Press and hold CTRL + T

3. The running script will terminate

4. Run play.lua true

5. The game will start again and the play area will be cleaned

B.3 Tips for the Catalog

1. You can use any blocks in your creations.

2. Only place new Detector Blocks in line with the existing Detection Grid

3. In the Element Zone of each slot, place the smallest amount of blocks to prove
that the elements vocabulary will fit together before decorating. Framework
-> Massing Model -> Facades is a good way to build, testing many times
between each step.
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4. Barrier block (11.24.2017 updated)

• What is a barrier block ?

A barrier block displays as a red box with a slash through it. They are visible
only when you hold one in your hand, otherwise they stay invisible. You can imagine
them as solid air: they are transparent to light and they has solid volume, so you
can place them, break them but you can not go through them.

• How to get barrier blocks?

Barrier blocks are not in the inventory. To get them or give them to your group
members, you need to be an op and use the following command:

/give <name> barrier

<name> is your name or your group member’s name in Minecraft. Using the
first letter + “tab” can save you time for entering names. If you do not get barrier
block in your hand, press “E” to find it in your survival inventory which is at the
lower right corner.

• How is barrier block useful in 20.000 BLOCKS?

When the element does not replace all the blocks of the key which generated it,
the barrier block is very useful to “delete” the key, to make sure the buildzone is
clean.

For example, in Figure B.23 and Figure B.24 the key still exists after it was
detected. As a result, we want the element while the key is no longer useful.

Figure B.23 – Key. Image credits: the author.
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Figure B.24 – Element is placed but key remains. Image credits: the author.

Figure B.25 – An element with barrier blocks to erase its key. Image credits: the author.

In this case, barrier blocks can be placed into the catalog, to replace the key
with air, so as it is shown in Figure B.25 and Figure B.26, the key disappears after
being detected.

5. Fill command
/fill X1 Y1 Z1 X2 Y2 Z2 Blockname

In Minecraft X,Y,Z is used to locate a player or a block. X(red axis) and Z(blue
axis) is horizontal, Y(green axis) is vertical. This command is to fill the blocks from
(X1,Y1,Z1) to (X2, Y2, Z2) with a new block, no matter if they are occupied or not.

You can try the following command and see how it works.
/fill ~ ~ ~ ~4 ~ ~-4 snow

˜ (tilde) means your current location. In the command above, the first ˜ means
your X, the second one your Y and the third - your Z. The fourth value ˜4 means
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Figure B.26 – The same element placed, the is removed upon placing. Image credits: the
author.

your X plus 4. The sixth value ˜-4 means your Z minus 4. It counts your current
location as beginning so a cube of 5x5x1 blocks is filled.

If you want to replace a certain type of blocks with a new type, the replace option
is quite useful.

/fill X1 Y1 Z1 X2 Y2 Z2 <newblock name> <newblock typenumber> replace

<oldblock name>

• Press F3 and point at any block, the name of the block will be shown in the
top right corner.

You can try the following commands and see how it works.
/fill ~ ~ ~ ~7 ~1 ~7 minecraft:stained hardened clay 1 replace air

/fill ~ ~ ~ ~4 ~ ~4 minecraft:gold block 0

replace minecraft:stained hardened clay

• Use the Tab key for autocompletion of a material’s name as you type.

• The new type number (in this case 0 and 1) is always needed, you can google
the one you need or find it in Minecraft Wiki or Minecraftinfo.

B.3.1 Making your catalog as compact as possible

The smallest Area that your catalog takes up the faster the game loads and runs.
Here are few tips to move things around so you reduce the area of the catalog.

B.3.2 Swapping catalog elements from one slot to another

1. First update your game by typing the following three command in the com-
puter:
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(a) delete setup 2 5 (in case it already exists)

(b) pastebin get FcGRrZgr setup 2 5

(c) setup 2 5

2. Then run the game once typing “play”.

3. When it loads hold CTRL-T to stop it

4. Go to your catalog area and you should see numbers for each slot

Figure B.27 – Slot number. Slot #6. Image credits: the author.

5. Note the numbers of two slots you want to swap. In this example 6 and 14

6. Then go back to the computer and type:
swap slots <number of slot 1> <number of slot 2>

Done

Reducing the number of slots in the catalog

In the example the catalog has 4x5 slots but only 2x3 are used. It will speed up the
game if we change that in the settings

1. Go to the computer and type: edit settings

2. The settings file will open. Scroll to find the “catalogue slot count” and change
it to your desired values. In the example here we are changing from x=4 and
z=5 to x=2 and z=3
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Figure B.28 – Another slot number. Slot #14. Image credits: the author.

Figure B.29 – Swap slots 6 and 14. Image credits: the author.

3. press CTRL key and choose SAVE and press ENTER
4. press CTRL key and choose EXIT and press ENTER then press ESC to close

the computer console
5. Run your game again with “play”
6. You will notice a thin, one-block-wide gap where the new border of the active

catalog is drawn
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Figure B.30 – Catalog settings. Image credits: the author.

Figure B.31 – The border of the new catalog area. Image credits: the author.

B.4 Changing the game rules

B.4.1 Setting the items that players get at the start of a
game

1. Check which items you want to give to players at the start of a game. Usu-
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ally those are the materials which you used to define the key shapes in your
catalog. Go to the key area and with F3 toggle the display of debug info,
point to a material and note its name and variant: in the example the name
is “stained hardened clay” and the variant is “cyan”.

Figure B.32 – Use the Debug info mode to see material names. Image credits: the author.

2. Find the number corresponding to the variant from the minecraft.gamepedia.com.
In this example “cyan” is 9

3. Go to the command computer and type “edit starting items” (NB: the game
must have been started at least once before for that file to exist. If you haven’t
started it then use “play” to do so)

4. By default the starting items are two materials giving 16 blocks each (the
left picture below). Edit the file with the material information you collected
in steps 1. and 2. In the example we change the first material name from
“wool” to “stained hardened clay” and the variant from 0 to 9 (the picture on
the right). We also delete the information for the second item including the
separating commas and enclosing curly brackets.

5. Then press CTRL and choose “Save”. Press CTRL again and choose “Exit”

6. Run the game with “play” and go to a portal to test if the items you are given
at the start are those you need.

384



Figure B.33 – Online list of Minecraft materials. Image credits: Minecraft Gamepedia.

Figure B.34 – Edit starting items. Image credits: the author.
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Figure B.35 – Default starting items settings. Image credits: the author.

Figure B.36 – Modified starting items settings. Image credits: the author.
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B.5 Playing

B.5.1 Starting a game as a player

1. Go to one of the active portals on the side of the computer. The portals are
the 9 squares on the ground (3x3). If a portal is active it will be represented
with blue activator blocks.

2. Step on the portal and you will be:

(a) automatically teleported to its corresponding buildzone,

(b) changed to adventure mode

(c) and given the starting items defined for this game.

Figure B.37 – A portal to start a new game. Image credits: the author.

B.5.2 Returning to the spawn area from a game in progress

Throw the egg which is named “HOMECOMER” on the ground in front of you.
You will be automatically teleported back to the spawn area.
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Figure B.38 – The Homecomer. Image credits: the author.

B.6 Setting up a your own 20.000 BLOCKS Server

B.6.1 Installing the Server Files

The first step is to visit the Minecraft forge website and download the Latest
Minecraft Forge Installer package for Minecraft 1.8.9. This link will take you di-
rectly to the suitable versions: https://files.minecraftforge.net/maven/net/
minecraftforge/forge/index_1.8.9.html

It does not matter where you download the file. Once it is finished, run the
installer file.

Select “Install Server” and choose a folder using the button with the three dots.
Then click OK.
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Figure B.39 – Forge installation. Image credits: the author.

Once it is complete, navigate to the folder where you installed the server and
run the minecraft forge.jar file. The server will run but then immediately close.

A new file, called EULA.txt, should have appeared in the folder. Open it and
change the word “true” to “false” to agree to the Minecraft End User License Agree-
ment.

Once again, run the minecraft forge.jar file. The server will start up this time,
and many more files will be placed in your server folder.

A new window will open:

Figure B.40 – Server console. Image credits: the author.

This is the server console.
The first thing you should do is type the command:
/op [username]
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Replacing [username] with the Minecraft account name you want to give Oper-
ator and Admin privileges.

NOTE: DO NOT GIVE UNTRUSTED ACCOUNTS THESE PRIVILEGES!
Now type the following command to turn off the server:
/stop

Next we want to install the 20kb Modpack on your new server. Download the
Modpack from TechnicLauncher, or if you already have the modpack installed on
your computer, you can take it from your Technic Launcher folder. The mods folder
in the modpack archive contains the following files:

Figure B.41 – Mod jar files. Image credits: the author.

Copy these files into the /mods folder of your server.

B.6.2 Server Settings

Now we want to configure your server. In the server folder find and open the
server.properties file in any common text editor software (Notepad, etc.).

There are a lot of setting here but we want to make the following changes:

• Spawn-protection = 0

• Gamemode = 2

• Difficulty = 0
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• Spawn-monsters = false

• Pvp = false

• Generate-structures = false

• Enable-command-block =true

• Max-players = 5

• Motd = Your greeting message

You can increase the number of max players, however it is important to remember
that Minecraft uses some extra resources just to keep player slots open. Setting this
to a high number will make your server run slow, even when very few players are
actually playing.

You can also set a whitelist here, to allow you to control who is able to join your
server. Change the following setting if you want a whitelist:

• Whitelist = true

To add players to the whitelist use the following command from either an Oper-
ator in game, or the Server Console:

/whitelist add [username]

B.6.3 Choose a World Type

You now have a few options on how you want your world to look.

Use the demo world

If you have downloaded our demo world, you can use it on the server. First make
sure your server is off by using this command:

/stop

Then navigate the the /world folder of your server, and delete all the contents.
Now copy the contents of the demo world folder into your /world folder of your

server.
Start your server and you will see the demo world is running.

Use a Survival World

A survival world is a very picturesque place, and can make a good home for your
20.000 BLOCKS players.

By default your server will create a survival world.
Explore your world and find a place where you wish to set up your 20.000

BLOCKS Computer as was shown above.
Be aware that some blocks which have special effects and textures in 20.000

BLOCKS will spawn naturally in a Survival world. This means that some areas of
the world will look quite strange.
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Use a Flat world

To use a flatworld, make the following changes to your server.properties file:

• level-type=FLAT

• level-name=flatworld

• generator-settings=3;1*minecraft\:bedrock,4*minecraft\:sandstone;0;

Then navigate to your server folder and delete the /world folder. When you start
the server, a new folder called /flatworld will be created.

The Generator Settings option allows you to customize what your flatworld is
made of. Visit this website to create your own style: http://www.minecraft101.
net/superflat/

B.6.4 Joining your server

If you are joining the server from the same computer, you can access it by Adding
a Server from the Minecraft Multiplayer server menu like so:

Figure B.42 – Joining a server. Image credits: the author.

If you are joining from a different computer then you will need to know the IP
address of the server, and use that address instead of “localhost”.

Finding your IP address is different on every server type. Consult a search engine
to discover the best way to find your IP address.

B.6.5 Inviting others to Join your 20.000 BLOCKS server

20.000 BLOCKS is designed for multiplayer! Here are some tips and tricks for having
others in your server.

What info you need to send to people who want to join your server

• IP address

• This Manual how to install and setup 20.000 BLOCKS
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B.6.6 Understanding Game Modes

Minecraft has 4 different game modes. They each have different uses in 20.000
BLOCKS. You can change a player’s gamemode using these commands:

/gamemode survival [playername]

/gamemode creative [playername]

/gamemode spectator [playername]

/gamemode adventure [playername]

Adventure

Adventure mode players are bound by strict block placement and breaking rules,
which are the foundation of 20.000 BLOCKS game logic.

This game mode will be used by the majority of your players. Any player you
want to be building in the Campaign area and not modifying the Catalog should be
in Adventure mode. New players joining your server will be set to Adventure mode
by default.

Creative

This game mode is best used when building and testing your Catalog. Creative
mode users have unlimited blocks of all types, can fly and instantly destroy (not
gather) blocks they hit.

Creative mode users are also invincible, except to other Creative mode users who
are carrying swords.

It is inadvisable to grant untrusted players Creative mode status.

Spectator

This mode is good for making videos or taking screenshots of your creations. Spec-
tators can fly through walls and track players, but cannot interact with the game
world.

Spectator mode can also be an effective way to control unwanted or destructive
players, as they can do no damage while in this game mode.

Spectators are also unable to communicate with other players through text chat.

Survival

Survival gamemode is the main way to play vanilla Minecraft. We do not recommend
using 20.000 BLOCKS in this gamemode as it allows players to circumvent much of
the special game logic that 20.000 BLOCKS is built around.

B.6.7 Teleporting Players

If players become lost any Operator player may teleport them back using this com-
mand:
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/tp [player from] [player to]

Or you can give absolute coordinates:
/tp [player] X Y Z

If you yourself become lost, you can return to the world spawn by using this
command:

/kill [player]

B.6.8 Setting the World Spawn

If you have selected a location for your Buildzone that is not near the default spawn
area, you can set it by using this command:

/setworldspawn

You can also set a player’s individual spawnpoint using this command
/spawnpoint [player]

Which will set their spawn to their current location.

B.6.9 Dealing with “those” Players

If players become destructive or unruly, it is always better to first request that they
stop, and warn them of possible consequences first. Escalate slowly and try to deal
with these players as nicely as possible. If they do not listen you can kick them with
this simple command:

/kick [player] [reason]

This does not tend to be very effective, as they may immediately rejoin the
server.

The best way is instead to set them to spectator mode, which mutes their text
chat and stops them damaging any blocks. Let them cool off and change them back
if they agree to settle down.

/gamemode spectator [username]

If these players repeatedly break the rules, it is better to ban them with this
command:

/ban [player] [reason]

Remember that it is commonly communicated through Youtube and other in-
fluences that it is “ok to grief players if you don’t get caught”. The Minecraft
community culture includes a lot of “pranking” which borders on terrorism. This
does not excuse these actions and we suggest that on your servers you maintain a
“No Griefing, No Trolling, No Pranking” policy.

B.7 Taking screenshots

B.7.1 How to take a screenshot in Minecraft and where to
find it?

Press “F2” to take a screenshot in game. You can also try press “F1” to hide user
interface before taking a screenshot. Or try press “F5” to have a nice group photo.

The screenshots are automatically saved in the “screenshots” folder within the
20000-blocks directory. Press “Esc” in the game and go to “options”==>”resource
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packs”==>”open resource folder”, then the “resourcepacks folder” under the 20000-
blocks folder is opened.

B.7.2 How to take a screenshot with the same viewpoint?

• Find your certain point and press “F3” to show the debug screen.

• At the top left you can see your location (XYZ) and which direction you are
facing (Facing) and remember these five numbers.

Figure B.43 – Using the Debug info view mode to get location and orientation coordinates.
Image credits: the author.

• Use the following command to teleport back to your chosen point:

/tp <name> X Y Z Facing1 Facing2

If you want to teleport yourself, you do not need to enter <name>. Press “/”
and then press “UP” you can get the last commands you just used.
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Figure B.44 – Teleport to predefined location and view angles. Image credits: the author.

B.7.3 How to take screenshots with the same viewpoint on
a series of objects?

• If you want to take screenshots for each element in your catalog with the same
perspective, first you need to find the reference blocks, which should be in
relatively certain position for each element. For example the detect block in
the key can be the reference block.

• Jump on a reference block and remember your X1 Y1 Z1.

Figure B.45 – Relative positions. Image credits: the author.

• Go to your chosen screenshot point and remember your X2 Y2 Z2 and Facing
angles.
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Figure B.46 – Adjusted relative position. Image credits: the author.

• Jump on the reference block of the element you want to take photo, press
“Space” two times to fly up just one block, then use the following command:

/tp <name> ~X ~Y ~Z Facing1 Facing2

(X=X2-X1, Y=Y2-Y1, Z=Z1-Z2. ˜ means the current location in game)

Figure B.47 – Teleport command with relative coordinates. Image credits: the author.

Then the player is teleported to the screenshot point (and also flying) of the
element.

• Repeating the steps for each element, and takes screenshots for them all.
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B.7.4 Making high-res axonometric screenshots using the
Mineshot mod

Figure B.48 – Axonometric screen shot. Image credits: the author.

Mineshot adds a build-in orthographic camera, which allows you to create nice
high-res isometric screenshots directly in-game (singleplayer only).

Link to get the 1.8.9 version of the mod and instructions how to use it: http://
www.minecraftforum.net/forums/mapping-and-modding-java-edition/minecraft-mods/

1282034-mineshot-1-7-high-resolution-screenshot-capturing

How to install the Mineshot mod:

1. Download Minecraft Forge(for version 1.8.9) http://file-minecraft.com/

minecraft-forge-api-minecraft/

2. Right click, Run as Administrator and press OK to install Forge. (You can
skip this step if you’ve installed Minecraft Forge)

3. Download Mineshot(for version 1.8.9) http://www.minecraftforum.net/forums/
mapping-and-modding-java-edition/minecraft-mods/1282034-mineshot-1-7-high-resolution-

4. Go to folder . . . \.technic\modpacks\20000-blocks\mods. Put the jar file of
Mineshot Mod into mods folder.

5. Run 20,000 Blocks and go to “Mod Options” in the main menu, select Mineshot
in the mod list and click on “Config”, change the capturing size to fit your
screen resolution.

6. Use F9 to save screenshot with Mineshot or use F2 to save normal screenshot.

Try following to get perfect isometric screenshots:
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• Numpad 5: Switch between perspective and axonometric projection

• Ctrl + Numpad 5: Switch between fixed and free camera

• Numpad 4/ 6: Rotate left/ right

• Numpad 8/ 2: Rotate up/ down

• Numpad 7/ 1/ 3: Top view/ Front view/ Side view

• Plus/Minus: Zoom in/Zoom out
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Estellés-Arolas, E. and F. González-Ladrón-de-Guevara (2012), “Towards an In-
tegrated Crowdsourcing Definition”, in: Journal of Information Science 38.2,
pp. 189–200 (cit. on pp. 110, 111).

Faltings, B. (Jan. 1, 1996), “Working Group in Model-Based Design and Reasoning.
Part II: Design”, in: AI Communications 9.2, pp. 65–73 (cit. on p. 73).

Fischer, G. (2016), “Exploring, Understanding, and Designing Innovative Socio-
Technical Environments for Fostering and Supporting Mass Collaboration”, in:
Mass Collaboration and Education, pp. 43–63 (cit. on pp. 123, 124).

Fischer, T. (2008), “Designing ( Tools ( for Designing ( Tools ( For ...))))”, PhD
thesis, University of Kassel (cit. on p. 111).

Flemming, U. (July 1, 1994), “Case-Based Design in the SEED System”, in: Au-
tomation in Construction, Special Issue: Knowledge-based, Computer-aided Ar-
chitectural Design 3.2, pp. 123–133 (cit. on p. 73).

Flemming, U. (1999), SEED-Layout Tutorial (cit. on p. 73).
Flemming, U. and Z. Aygen (Aug. 1, 2001), “A Hybrid Representation of Architec-

tural Precedents”, in: Automation in Construction, Design Representation 10.6,
pp. 687–699 (cit. on p. 73).

Flemming, U. and S.-F. Chien (1995), “Schematic Layout Design in SEED Environ-
ment”, in: Journal of Architectural Engineering 1.4, pp. 162–169 (cit. on p. 73).

Flemming, U. and R. Woodbury (Dec. 1, 1995), “Software Environment to Support
Early Phases in Building Design (SEED): Overview”, in: Journal of Architectural
Engineering 1.4, pp. 147–152 (cit. on p. 73).

419



BIBLIOGRAPHY

Frazer, J. (1995), An Evolutionary Architecture, London: Architectural Association
(cit. on p. 39).

Friedman, S. and I. Stamos (2013), “Automatic Procedural Modeling of Tree Struc-
tures in Point Clouds Using Wavelets”, in: Proceedings - 2013 International Con-
ference on 3D Vision, 3DV 2013, pp. 215–222 (cit. on p. 194).

Friedman, Y. (1980), Toward a Scientific Architecture, Cambridge MA: MIT Press,
181 pp. (cit. on pp. 35–37).

Frith, J. (May 1, 2013), “Turning Life into a Game: Foursquare, Gamification, and
Personal Mobility”, in: Mobile Media & Communication 1.2, pp. 248–262 (cit. on
p. 135).
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