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Abstract: This paper aims at further advancing the knowledge about the cyclic behavior of FRP
strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from
a numerical model based on concepts of based on fracture mechanics and already presented and
validated by the authors in previous works. Particularly, it assumes that fracture processes leading
to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this
assumption (and having clear both its advantages acnd shortcomings), the results of a parametric
analysis are presented with the aim of investigating the role of both the mechanical properties
of the interface bond–slip law and a relevant geometric quantity such as the bond length. The
obtained results show the influence of the interface bond–slip law and FRP bond length on the
resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves
generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those
parameters, the results indicate general trends that can be helpful to drive further investigation, both
experimental and numerical in nature.
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1. Introduction

In the fields of civil and structural engineering, the use of Fiber-Reinforced Polymers
(FRPs) has become very common as a strengthening technique for underperforming or
damaged existing structures [1]. In fact, several mechanical models can be found in the
international literature, which allow for properly designing FRP strengthening of concrete
members in either under-designed or degraded structures [2]. Furthermore, recently
released codes and guidelines have further consolidated the practice of adopting these FRP
systems in practical applications [3,4].

Nevertheless, some issues are still open regarding the cracking processes that result in
the debonding of Externally Bonded (EB) FRP strips [5]. Although several studies, both
experimental [6,7] and theoretical [8,9] in nature, have been carried out with the aim to
understand the bond behavior of FRP strips glued to concrete, the main knowledge gained
on that subject is restricted to the case of static loads and monotonic actions. Consequently,
current code provisions do not explicitly take into account the effect of cyclic actions on the
possible development of FRP-to-concrete debonding [3,4].

However, FRP strips are very often employed in the structural strengthening of RC
members subjected to either seismic shaking or traffic loads, which are clearly cyclic in
nature, though they generally result in a significantly different response in terms of the
number of cycles leading to failure.

In spite of this, many fewer studies are currently available in the literature about FRP
strips glued to quasi-brittle materials such as concrete and subjected to cyclic actions. Some
of them observed the cyclic response under wide amplitude oscillations hence, the low
number of cycles needed for debonding: this behavior is likely to occur under earthquake-
induced actions and can be approached as a low-cycle fatigue problem [10]. Conversely,
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other researchers investigated the response under cycles of smaller amplitude [11,12],
which is the case for FRP strips employed in strengthening bridges and other structures
subjected to traffic loads.

As a matter of fact, the available studies mainly report empirical observations from
experimental tests, with few modelling developments and no consistent design-oriented
formulations.

Conversely, on the modelling side, an analytical expression was proposed for a bond–
slip model aimed at simulating the response observed both in monotonic and cyclic tests
executed on aramid carbon and polyacetal FRP strips glued to concrete [13]. Particularly,
the bond–slip law under consideration recalls the Popovics stress–strain law for concrete
in compression, which, consistent with the empirical nature of the work, needs to be
calibrated experimentally.

The influence of the strain-rate effect, albeit under monotonical actions, has been
investigated by considering both a local concrete damage model [14] and the foundations
of fracture mechanics including the well-known Duvaut–Lions overstress viscoplastic
approach [15].

As for the cyclic behavior, the potential of simulating the resulting Cohesive Zone
Models (CZM) is discussed in the literature [16] and a recent model has been proposed by
following this general approach [17].

On the one hand, a coupled damage-plasticity model, based on a bilinear elastic-
softening bond–slip law, has been proposed [18]. On the other hand, a model based
on fracture mechanics concepts was formulated with the aim to simulate by assuming
two alternative bond–slip laws (namely, linear-exponential and bilinear) [19]: the model
was validated with respect to some relevant experimental results available in the liter-
ature [13,20] and the elastic-exponential bond–slip law demonstrated a slightly higher
accuracy in simulating the considered experimental evidence.

A first parametric analysis carried out by means of the model in question highlighted
the importance of the role that mechanical parameters play in the resulting cyclic response.
Particularly, it pointed out that, unlike in the case of monotonic loading processes, bond
length controls the resulting cyclic response, also in the cases of bond lengths longer than
the so-called “effective” transfer length determined for monotonic loading [21].

Furthermore, a numerical investigation on the influence of the shape of the assumed
bond–slip law on the resulting cyclic response of FRP-to-concrete was conducted by em-
ploying the model in consideration [22], which pointed out some peculiar aspects of
the cyclic response that do not follow well-established relationships determined under
monotonic actions.

This paper details further developments made by exploiting the simulation capabilities
of the aforementioned model. After a short summary of the main assumptions and the final
equation which it is based upon, a wide parametric analysis is presented with the aim to
show how the properties of the FRP strip and the other relevant parameters influence the
resulting S-N curve [23], which is generally considered for describing the fatigue behavior
of the considered FRP-to-concrete joints.

Therefore, Section 2 outlines the main assumptions on which the theoretical model is
based and mentions the key aspects of the numerical procedure implemented with the aim
to run an incremental-iterative analysis tool. Section 3 presents the main relevant quantities
and summarizes the most significant results of a parametric analysis carried out for the
purpose of understanding the fatigue behavior of FRP-to-concrete joints. This section also
shows the resulting S-N curves for FRP-to-concrete joints characterized by particularly
meaningful combinations of the relevant engineering parameters (i.e., fracture energy of
the interface, specific axial stiffness of the composite strip and bond length of the joint).
As a final result, a possible correlation between the two parameters that characterize the
S-N curves and the aforementioned engineering parameters was found. Finally, Section
5 states the main findings of this study and introduces potential future development of
the present research line. The numerical code implemented as part of the present study
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is available to readers as Supplementary Materials, it can be found in Open Access on
Zenodo (10.5281/zenodo.5773837).

2. Outline of the Numerical Model

This section outlines the main assumptions, some analytical details and the essential
information about numerical implementation and validation of a theoretical model for-
mulated for simulating the cyclic response of FRP strips glued to a quasi-brittle material
(hereafter referred to as “concrete” for the sake of brevity) subjected to cyclic actions.

2.1. Fundamental Assumptions

The model formulation is based on the following assumptions, which are widely
accepted in the scientific literature:

- The cracking (debonding) process develops in pure “mode II” throughout the FRP-to-
concrete interface;

- The bond–slip law consists of a first linear-elastic branch followed by a softening one
intended to simulate the effect of the debonding process;

- An exponential expression is assumed for the post-elastic softening branch of the
bond–slip law;

- The concrete substrate is assumed to be behave as a rigid body.

2.2. Main Equations

Figure 1 describes the FRP-to-concrete joint under consideration and provides a
schematic of both the equilibrium and compatibility conditions of the generic infinitesimal
segment of the FRP as resulting from the four main assumptions listed in Section 2.1.
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The equilibrium condition can be mathematically expressed as follows:

dσf (z)
dz

+
τ(z)

t f
= 0, (1)

where σf(z) is the axial stress in the transversal section of the FRP (supposed uniform across
the width bf and the thickness tf) and τ(z) is the value of the interface bond stress at the
point of abscissa z.

Moreover, the compatibility condition, schematically depicted in Figure 1, can be
written as follows:

ε f =
ds(z)

dz
, (2)

where εf(z) and s(z) are the axial strain of the FRP section and the relative interface displace-
ment (hereafter referred to as “slip”) at the generic section of abscissa z.
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Equations (1) and (2) can be easily linked to each other by introducing the relationship
that represents the linear elastic behavior of the FRP strip:

σf (z) = E f ε f (3)

where Ef is the Young modulus of the FRP strip.
Therefore, from Equations (1)–(3), the following differential equation can be obtained:

d2s(z)
dz2 +

τ(z)
E f t f

= 0. (4)

The second assumption listed in Section 2.1 implies that the bond–slip law, namely
the relationship between τ(z) and the corresponding s(z), can be mathematically written as
follows: {

τ(z) = −kes(z) if s(z) ≤ se

τ(z) = −τ0e−β(s[z]−se) if s(z) > se
(5)

where ke is the stiffness of the pre-peak elastic branch, τ0 is the maximum bond shear
strength, se = τ0/ke is the corresponding elastic slip value, and β is the parameter that
controls the shape of the post-peak exponential branch of the τ-s law.

Figure 2 shows what a typical bond–slip law assumed in the present study looks
like. In addition to the already defined parameters involved in the expression of the
bond–slip law (Equation (5)), the dashed line represents the unloading–reloading branch
that is relevant in the case of cyclic actions. The area beneath the bond–slip curve has
a clear mechanical meaning, as it represents the fracture energy GI I

F , namely the energy
needed for opening a fracture (in mode II, under the current assumptions). A closed-form
expression can be easily obtained for GI I

F by integrating the expression of the bond–slip
law in Equation (5):

GI I
F =

∫ ∞

0
|τ(s)|ds =

kes2
e

2
·
(

1 +
2

βse

)
. (6)
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Figure 2. Typical bond–slip law.

Furthermore, Figure 2 also highlights that the stiffness k of the unloading–reloading
branch of the bond–slip law can either be equal to ke or lower than that, as a result of
some damage effect depending by the crack-opening slip scr and work spent in the fracture
process. Further details about the relationship between k, wsl, scr and s are omitted herein
as they were discussed in a previous paper [19].

2.3. Numerical Implementation and Experimental Validation

A finite difference numerical procedure was developed and implemented with the
aim to solve the equations reported in Section 2.2. The solution scheme as well as the
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incremental process implemented for simulating the application of cyclic actions (which,
in principle, can be implemented either in force or displacement control) are described in
detail in a previously published paper [19].

The numerical procedure was validated with respect to the results reported in two
different experimental campaigns reported in the literature [13,20]; details about this double
validation are reported, respectively, in two previously published works [19,21].

3. Parametric Analysis
3.1. Parametric Field

A wide parametric analysis can be executed by means of the mechanical model
outlined in Section 2 with the aim of investigating the possible correlations between the
parameters describing the FRP-to-concrete joint (namely, the bond–slip law, the axial
stiffness of the FRP strip and the bond length) and the resulting cyclic response.

It is worth highlighting that, although the bond–slip law expressed by Equation (5)
is defined by a minimal set of three parameters (i.e., se, ke and β), in this study, only
one parameter is considered for describing the bond length behavior. Specifically, the
mechanical properties of the adhesive interface are described by the related value of the
fracture energy GI I

F (hereafter simply denoted as GF since debonding only develops in
mode II, as stated by the second assumption listed in Section 2.1). Conversely, the values
of se and ke are set to typical values for FRP-to-concrete joints (namely, se = 0.02 mm and
ke = 200 N/mm3) and kept constant throughout the parametric analysis. This choice is
motivated by the fact that the present study focuses on the low-cycle fatigue response,
which implies that a significant portion of the FRP-to-concrete interface is expected to
respond in the post-elastic branch: this makes the value of GF, which controls the ultimate
capacity of the system, more relevant than the parameters controlling only the elastic
branch of the bond–slip law.

That said, the analyses presented in this study are based on assuming the three main
parameters and the corresponding fields listed below:

- Fracture energy GF ranging between 0.6 and 1.0 N/mm;
- Specific axial stiffness Eftf ranging between 60 and 140 kN/mm;
- Bond length L ranging between 100 and 300 mm.

3.2. Definition of the Related Dependent Parameters

The definition of the cyclic protocol adopted in this study is based on the theoretical
value of the strength Fmon of the FRP-to-concrete joints under monotonic action, which can
be determined by means of the following well-known equation:

Fmon =
√

2GFEptp · bp. (7)

Then, an equal-amplitude force cyclic protocol can be defined by introducing the
following expressions of the minimum (Fmin) and maximum (Fmax) forces F that are applied
to the loaded end of the FRP-to-concrete joint (Figure 1):

Fmin =
Fmon

2
− ∆F, Fmax =

Fmon

2
+ ∆F. (8)

In the present study, which specifically targets the issue of low-cycle fatigue, the value
∆F ranges between 0.30 Fmon and 0.45 Fmon. More specifically, the present parametric study
considers four values of ∆F (namely, 0.30, 0.35, 0.40 and 0.45).

Therefore, it is worth highlighting that each FRP-to-concrete joints considered in the
analyses was subjected to cyclic forces whose values depend on the corresponding strength
Fmon it would have attained under monotonic actions.
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3.3. Typical Behavior of FRP-to-Concrete Joints

With the aim to show the main features of the cyclic response of FRP-to-concrete
adhesive joints, Figure 3 shows four diagrams representing the cyclic response of the
system in terms of the applied force F and resulting end slip sL (Figure 1). Specifically, it
refers to the case of GF = 0.60 N/mm and intermediate values of the other two parameters
(Eptp = 100 kN/mm and L = 200 mm). The four diagrams show the response of the system
under cycles of increasing amplitude: as expected, the number of cycles that lead the
system to failure is higher in the case of cycles of narrower amplitude, whereas it tends to
reduce significantly as the amplitude of cycles becomes wider.
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Figure 3. Load–slip curve (L = 200 mm, GF = 0.60 N/mm).

Similar considerations can be drawn from Figure 4, which refers to the case of a higher
value of GF (1.00 N/mm) and the same values of the other two relevant parameters.
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Figure 4. Load–slip curve (L = 200 mm, GF = 1.00 N/mm).

Comparing Figures 3 and 4 might lead to a seemingly counterintuitive conclusion, as
the system with higher GF (1.00 N/mm in Figure 4) results in a lower number of cycles to
failure than the system with lower GF (0.60 N/mm in Figure 3).

However, it should be noted that each FRP-to-concrete sample analyzed in this study
is loaded by different forces that are a function of GF itself (and, in fact, are as high as the
square root of GF), which results in a different response of the system under consideration.
It is reasonable to expect that a higher GF will lead to a higher number of cycles to failure if
the same forces are applied to the system under consideration, but the latter is not the case
in the present study.

It is well-known that in the case of monotonic loads, the ultimate capacity Fmon is
determined by Equation (7), provided that the bond length L is longer than the effective
so-called transfer length Leff, the mechanical meaning of which is widely discussed in the
scientific literature [2].

Conversely, in the case of cyclic actions, the results represented in Figures 3 and 4
(as well as preliminary insights presented in a previous study [22]) have shown that the
number of cycles to failure is also affected by the ratio L/Leff. Since Leff also depends on
the bond–slip law properties [4,24], it is easy to understand that the cases analyzed in
Figures 3 and 4 have different values of L/Leff and the reason for the difference observed
in terms of number of cycles to failure could be related to this parameter, which was not
explicitly defined in the parametric analysis.

The relevance of the L/Leff ratio in controlling the cyclic behavior of FRP-to-concrete
joints will clearly emerge from the in-depth discussion of the results obtained as part of the
whole parametric analysis, which is proposed in the following section.

4. Discussion

The simulated structural behavior of the systems under consideration can be inter-
preted as part of the theory of fatigue [23], as the well-known Wöhler curve (also known as
the S-N curve) can be obtained by elaborating on the results obtained from the numerical
analysis under cyclic actions described in Section 3. Specifically, the amplitude of the cyclic
action protocol ∆F and the resulting number of cycles to failure N can be derived from each
one of the analyses run as part of this study.

Figure 5 shows three diagrams reporting the force amplitude ratio (2∆F/Fmon) on the y-
axis and the cycle reversals (2N) on the x-axis, which is one of the possible ways to represent
the results of cyclic tests, in view of their interpretation in terms of S-N curves. Specifically,
Figure 5 refers to the case of lower GF (0.60 N/mm) and the three diagrams clearly show
the influence of bond length L. Similarly, Figure 6 refers to the case of GF = 0.80 N/mm
and Figure 7 to GF = 1.0.
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The reported results confirm the “conjecture” put forward at the end of Section 3, as
they clearly demonstrate the relevant role played by the bond length L. Specifically, if one
considers that in the case under consideration, L is generally longer than Leff (the value of
which is slightly variable depending on what specific expression is assumed to compute
it [13]), the figures highlight that in the case of longer bond lengths, the system can exhibit
a higher number of cycles at debonding.

Moreover, the three graphs presented in Figure 5 refer to three different values of the
specific axial stiffness Eftf chosen from those within the range of variation of this parameter,
as defined in Section 3.1. The comparison among the three graphs clearly shows that the
number of cycles to debonding tends to decrease in the case of stiffer strips. In fact, stiffer
strips (namely, higher values of Eftf) result in longer Leff values, and this can be easily
understood by keeping in mind the physical meaning of the latter [2].

The three graphs in Figure 6, referring to the case of GF = 0.80 N/mm, confirm the
previously highlighted trends of variation in the number of cycles to debonding. Moreover,
if compared to Figure 5 (GF = 0.60 N/mm), they show the reduction in number of cycles
observed for higher values of GF (and correspondingly larger applied forces).

Similar considerations arise by analyzing Figure 7, whose three graphs refer to the
case of GF = 1.00 N/mm.

Figure 8 focuses on showcasing the role of Ettf in the case of intermediate values
assigned to the other two parameters (GF and L), within the definitions of the present
parametric study. It clearly confirms that, for the same bond length L, stiffer strips (which,
among other things, mean longer effective transfer length values Leff) result in a lower
number of cycles at failure.
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The graphs plotted in Figures 5–8 clearly show that the series of points obtained for
each set of values of the triplet (GF, Eftf, L) and the variable values of the amplitude ratio
2∆F/Fmon are almost aligned in the adopted log-log plane. Thus, they can be represented
by the well-known power-expression for relating the amplitude parameter (2∆F/Fmon in
the present study) and the corresponding number of cycle reversals 2N:

2∆F
Fmon

= a · (2N)b. (9)
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where the constants a and b control the position and slope, respectively, in the aforemen-
tioned log-log representation.

Therefore, a couple of values (a, b) can be derived by interpolating the series of points
(2N, 2∆F/Fmon) obtained for each system described by the triplet (GF, Eftf, L) and represented
in the aforementioned log-log plane. Moreover, for each system, a conventional value
of the effective transfer length Leff is defined herein as twice the “critical” bond length L,
which was determined in a previously published study where a bilinear bond-slip law was
assumed [24]. The present formulation is based on an elastic-exponential bond–slip law,
which clearly leads to longer transfer lengths.

Figure 9 represents the correlation between the obtained values of both the factor a
and the exponent b (y-axis, on the left and on the right, respectively) determined for each
one of the systems under consideration and the corresponding L/Leff ratios.
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As can be seen, the L/Leff ratio plays a significant role in controlling the position and
slope of the resulting S-N curves for all the systems analyzed in the present parametric
study. Particularly, it is apparent that the variation in both a and b becomes less pronounced
as the value of the L/Leff ratio grows. In addition, two reference asymptotic values were
determined to be in the order of a≈0.50 and b≈0.05 throughout the whole parametric field
explored in the present study in terms of GF (60–140 kN/mm) and Eftf (60–140 kN/mm).

Conversely, lower values of a and higher values of b are achieved for bond lengths L
shorter than the reference transfer length Leff, which implies leftward-shifted and possibly
steeper S-N curves, leading to a shorter “fatigue life” for shorter bond lengths, as clearly
shown by the curves represented in Figures 5–7.

5. Conclusions

This paper further clarifies some aspects of the cyclic response of FRP strips glued
to concrete. Starting from a numerical model formulated, implemented and validated in
previous work, the results of a parametric analysis were reported and discussed with the
aim to understand the influence of the main relevant parameters (e.g., fracture energy
of the interface, FRP axial stiffness, and bond length) on the resulting cyclic behavior of
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the structural joint under consideration, the latter being described in terms of S-N curves,
widely adopted in the theory of fatigue.

- As expected, the force amplitude ∆F controls the number of cycles leading to debond-
ing in the analyzed systems: the relationship between the amplitude ratio 2∆F/Fmon
and the number of cycle reversals 2N is well-described by S-N curves that are close to
straight segments in the usually adopted log-log plane;

- Therefore, two parameters (the factor a and the exponent b) were determined for each
series of numerical simulations carried out for given values of GF, Eftf and L and
variable values of the ratio 2∆F/Fmon;

- The results reported clearly show the essential role played by the bond length L,
especially in the case of a “short” bond length, that is to say, values of L lower than
the effective bond length leading to maximum strength under monotonic loads;

- Far from being considered as the final study on this subject, the results give an idea of
the actual order of magnitude of the parameters controlling the S-N curves and the
correlation between them and the bond length.

It is worth highlighting that the validity of the results is limited to the case of low-cycle
fatigue, which is relevant for applications of FRP-to-concrete joints for seismic strength-
ening of concrete members. Therefore, further validations of the model and parametric
analyses are needed to validate the model in the case of low-amplitude (and high number
of) cycles, which is the case for members subjected, for instance, to traffic loads.

Supplementary Materials: The Matlab code implemented as part of the present study is available to
Readers in Open Access https://doi.org/10.5281/zenodo.5773837.

Author Contributions: Conceptualization, E.M.; methodology, E.M. and A.C.; software, E.M.; vali-
dation, E.M. and A.C.; formal analysis, E.M. and A.C.; investigation, E.M. and A.C.; resources, E.M.;
data curation, E.M.; writing—original draft preparation, E.M.; writing—review and editing, E.M.
and A.C.; visualization, E.M. and A.C.; supervision, E.M.; project administration, E.M.; funding
acquisition, E.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their

important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [CrossRef]
2. Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. FRP Strengthened RC Structures; John Wiley & Sons, Ltd.: Chichester, UK, 2001.
3. ACI. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI-2R-08; ACI:

Farmington Hills, MI, USA, 2008.
4. CNR. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures, CNR-DT200/2013;

Consiglio Nazionale delle Ricerche: Rome, Italy, 2013.
5. Kang, T.H.-K.; Howell, J.; Kim, S.; Lee, D.J. A state-of-the-art review on debonding failures of FRP laminates externally adhered

to concrete. Int. J. Concr. Struct. Mater. 2012, 6, 123–134. [CrossRef]
6. Chajes, M.; Finch, W.; Januska, T.; Thomson, T. Bond and force transfer of composite material plates bonded to concrete. Struct. J.

1996, 93, 208–217.
7. Czaderski, C.; Martinelli, E.; Michels, J.; Motavalli, M. Effect of curing conditions on strength development in an epoxy resin for

structural strengthening. Compos. Part B Eng. 2012, 43, 398–410. [CrossRef]
8. Cornetti, P.; Carpinteri, A. Modelling the FRP-concrete delamination by means of an exponential softening law. Eng. Struct. 2011,

33, 1988–2001. [CrossRef]
9. Caggiano, A.; Martinelli, E.; Faella, C. A fully-analytical approach for modelling the response of FRP plates bonded to a brittle

substrate. Int. J. Solids Struct. 2012, 49, 2291–2300. [CrossRef]

https://doi.org/10.5281/zenodo.5773837
http://doi.org/10.1016/j.conbuildmat.2010.04.062
http://doi.org/10.1007/s40069-012-0012-1
http://doi.org/10.1016/j.compositesb.2011.07.006
http://doi.org/10.1016/j.engstruct.2011.02.036
http://doi.org/10.1016/j.ijsolstr.2012.04.029


Materials 2021, 14, 7753 14 of 14

10. Nigro, E.; Di Ludovico, M.; Bilotta, A. Experimental investigation of FRP-concrete debonding under cyclic actions. J. Mater. Civ.
Eng. 2011, 23, 360–371. [CrossRef]

11. Yun, Y.; Wu, Y.-F.; Tang, W.C. Performance of FRP bonding systems under fatigue loading. Eng. Struct. 2008, 30, 3129–3140.
[CrossRef]

12. Carloni, C.; Subramaniam, K.V.; Savoia, M.; Mazzotti, C. Experimental determination of FRP-concrete cohesive interface
properties under fatigue loading. Compos. Struct. 2012, 94, 1288–1296. [CrossRef]

13. Ko, H.; Sato, Y. Bond stress-slip relationship between FRP sheet and concrete under cyclic load. ASCE J. Compos. Constr. 2007, 11,
246–419. [CrossRef]

14. Li, X.; Chen, J.F.; Lu, Y.; Yang, Z. Modelling static and dynamic FRP-concrete bond behaviour using a local concrete damage
model. Adv. Struct. Eng. 2015, 18, 45–58. [CrossRef]

15. Caggiano, A.; Martinelli, E.; Said Schicchi, D.; Etse, G. A modified Duvaut-Lions zero-thickness interface model for simulating
the rate-dependent bond behavior of FRP-concrete joints. Compos. Part B Eng. 2018, 149, 260–267. [CrossRef]

16. Kuma, M.; Roth, S. General remarks on cyclic cohesive zone models. Int. J. Fract. 2015, 196, 147–167.
17. Bocciarelli, M. A new cohesive law for the simulation of crack propagation under cyclic loading. Application to steel- and

concrete-FRP bonded interface. Theor. Appl. Fract. Mech. 2016, 114, 102992. [CrossRef]
18. Carrara, P.; De Lorenzis, L. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces. J. Mech. Phys.

Solids 2015, 85, 33–53. [CrossRef]
19. Martinelli, E.; Caggiano, A. A unified theoretical model for the monotonic and cyclic response of FRP strips glued to concrete.

Polymers 2014, 6, 370–381. [CrossRef]
20. Zhou, H.; Fernando, D.; Chen, G.; Kitipornchai, S. The quasi-static cyclic behaviour of CFRP-to-concrete bonded joints: An

experimental study and a damage plasticity model. Eng. Struct. 2017, 153, 43–56. [CrossRef]
21. Martinelli, E.; Caggiano, A. Numerical simulation of the fatigue behaviour of FRP strips glued to a brittle substrate. In Proceedings

of the FraMCoS-9—9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA,
28 May–1 June 2016; Saouma, V., Bolander, J., Landis, E., Eds.; [CrossRef]

22. Martinelli, E.; Zhou, H.; Fernando, D. Cyclic Response of FRP-to-Concrete Adhesive Joints: Effect of the Shape of Bond-Slip Model.
In Proceedings of the SMAR 2017—Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures,
Zürich, Switzerland, 13–15 September 2017; Available online: https://data.smar-conferences.org/SMAR_2017_Proceedings/
papers/170.pdf (accessed on 1 June 2021).

23. Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998.
24. Martinelli, E. Closed-form solution procedure for simulating debonding in FRP strips glued to a generic substrate material. Fibers

2021, 9, 22. [CrossRef]

http://doi.org/10.1061/(ASCE)MT.1943-5533.0000173
http://doi.org/10.1016/j.engstruct.2008.04.026
http://doi.org/10.1016/j.compstruct.2011.10.026
http://doi.org/10.1061/(ASCE)1090-0268(2007)11:4(419)
http://doi.org/10.1260/1369-4332.18.1.45
http://doi.org/10.1016/j.compositesb.2018.05.010
http://doi.org/10.1016/j.tafmec.2021.102992
http://doi.org/10.1016/j.jmps.2015.09.002
http://doi.org/10.3390/polym6020370
http://doi.org/10.1016/j.engstruct.2017.10.007
http://doi.org/10.21012/FC9.215
https://data.smar-conferences.org/SMAR_2017_Proceedings/papers/170.pdf
https://data.smar-conferences.org/SMAR_2017_Proceedings/papers/170.pdf
http://doi.org/10.3390/fib9040022

	Introduction 
	Outline of the Numerical Model 
	Fundamental Assumptions 
	Main Equations 
	Numerical Implementation and Experimental Validation 

	Parametric Analysis 
	Parametric Field 
	Definition of the Related Dependent Parameters 
	Typical Behavior of FRP-to-Concrete Joints 

	Discussion 
	Conclusions 
	References

