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Abstract

The Begriff Trusted Computing Base (TCB) beschreibt den Teil eines IT-Systems, der fiir
die Durchsetzung einer bestimmten Sicherheitseigentschaft des Systems verantwortlich
ist. Um ein vertrauenswiirdiges System entwickeln zu konnen, muss die TCB so sicher
wie moglich sein. Dies 143t sich erreichen, indem die Anzahl, Grof3e und Komplexitét der
Systembestandteile, die Teil der TCB sind, reduziert wird und indem gehéartete Kompo-
nente als TCB eingesetzt werden. Im schlechtesten Fall umspannt die TCB das gesamte
IT-System. Im besten Fall besteht die TCB nur aus einem gehérteten Root of Trust, wie
beispielsweise einem Hardware Security Module (HSM). Ein solches besonders sicheres
HSM mit vielen Fahigkeiten ist das Trusted Platform Module.

Diese Arbeit demonstriert, wie die TCB eines Systems grof3tenteils oder sogar aus-
schlieflich auf ein TPM reduziert werden kann, um eine Vielzahl von Sicherheitsvorgaben,
insbesondere fiir Eingebettete Systeme zu realisieren. Die betrachteten Szenarien beinhal-
ten Vorgaben zur Absicherung von gerategespeicherten Daten auch wéahrend Updates der
Firmware, der Durchsetzung von Firmwareproduktlinien zur Laufzeit, der Absicherung von
Bezahlidentitdten in Plug-and-Charge-Kontrollgeréten, der Aufzeichung von Auditinfor-
mationen {iber Attestationsdaten und ein generisches rollenbasiertes Zugriffsmanagement.
Um diese Losungen analysieren zu kénnen, wird der Begriff der TCB um eine weitere
Dimensionen erweitert, die den Lebenszyklus des Gerits umfasst. Aufierdem wird ein
Ansatz zur Konstruktion solcher Systeme basierend auf einem formalen Rahmenwerk
prasentiert.

Diese Szenarien zeigen auf, dass selbst komplexe Sicherheitsvorgaben in kleinen und
damit starken TCBs umgesetzt werden konnen. Die Herangehensweise zur Umsetzung
solcher Vorgaben kann héufig durch einen Entwicklungsprozess basierend auf formalen
Methoden oder durch additiv funktionales Entwickeln geleitet werden, bei dem das
Basissystem in jedem Schritt um weitere Funktionalitdten erweitert wird. In allen Féllen
kann ein System mit starken Sicherheitseigenschaften erzielt werden.







Abstract

The Trusted Computing Base (TCB) describes the part of an IT system that is responsible
for enforcing a certain security property of the system. In order to engineer a trustworthy
system, the TCB must be as secure as possible. This can be achieved by reducing the
number, size and complexity of components that are part of the TCB and by using hardened
components as part of the TCB. Worst case scenario is for the TCB to span the complete IT
system. Best case is for the TCB to be reduced to only a strengthened Root of Trust such as
a Hardware Security Module (HSM). One such very secure HSMs with many capabilities
is the Trusted Platform Module (TPM).

This thesis demonstrates how the TCB of a system can be largely or even solely reduced
to the TPM for a variety of security policies, especially in the embedded domain. The
examined scenarios include the policies for securing of device resident data at rest also
during firmware updates, the enforcement of firmware product lines at runtime, the
securing of payment credentials in Plug and Charge controllers, the recording of audit
trails over attestation data and a very generic role-based access management. In order to
allow evaluating these different solutions, the notion of a dynamic lifecycle dimension for
a TCB is introduced. Furthermore, an approach towards engineering such systems based
on a formal framework is presented.

These scenarios provide evidence for the potential to enforce even complex security
policies in small and thus strong TCBs. The approach for implementing those policies can
often be inspired by a formal methods based engineering process or by means of additive
functional engineering, where a base system is expanded by increased functionality in
each step. In either case, a trustworthy system with high assurance capabilities can be
achieved.
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1 Introduction

Today almost all electric systems in automotive industry, production system and civil
infrastructure are based on IT systems. The security of these IT systems is essential for
their correct operation whilst their impact on the overall systems’ safety is increasing.
Evolving technologies such as autonomous driving, Industry 4.0 and digitalized critical
infrastructure clearly illustrate the significance.

The security of any IT system directly results from the trustworthiness of its underlying
components. In order to constitute a trustworthy system, one relies on the so-called Trusted
Computing Base (TCB). This term originates from the Trusted Computer System Evaluation
Criteria (TCSEC) also known as the Orange Book[35] and refers to the hardware, firmware
and software of this system, that are critical for its trustworthiness / security. The TCB is
responsible for executing and enforcing a security policy that the main application code —
running on top of the TCB - cannot circumvent. In order to design a TCB, a single or a set
of Roots of Trust (RoT) can be used. The term RoT originates from the Trusted Computing
Group (TCG). It refers to those components of a TCB that need to be trusted without
being verifiable as opposed to those that can be verified.

However, the term TCB — as opposed to the term RoT — is not an unambiguous dif-
ferentiating element. The term TCB usually describes the computing basis for a certain
system layer or functionality and a corresponding security policy. As such, the RoT can
be referred to as a TCB for the RoT-related functionalities and security properties of the
system. The complete platform can also be referred to as TCB for the overall system’s
functionality, if the security policy extends up to the highest layers of application logic.

The term Trusted Computing was introduced by the Trusted Computing Platform
Alliance and its successor, the TCG [92, 120]. It refers to a set of technologies that can be
used to establish a (larger) TCB on a platform in order to enable a trustworthy platform
design. These technologies include different RoTs — such as the TPMs (see Section 2.4) — as
well as protocols and infrastructure elements necessary to establish trustworthy systems.

In an ideal scenario, the TCB for a security policy will only consist of its minimal but
strong RoTs. The further the TCB can be reduced towards its RoT, the smaller the part of
the platform that can be subject to an attack. This implies an increased level of security
for the platform.




1.1 Motivation

In order to implement a strong Trusted Computing Base (TCB), one of the main goals is to
reduce its size and complexity and to ensure it is based on hardened system components.
For any given security policy, this can be achieved by different means and the TCB for
different security policies of a system may vary accordingly. This general idea can be
demonstrated in these two following simple examples.

The first example is the security policy for file access permissions. In order to only allow
access to certain files by the authorized application the TCB consists of the vfs file system
modules of the OS kernel, the main CPU hardware, the hard disk controller, the hard disk
itself as well as the firmwares of all these components and the connections between them.
Furthermore, all other parts of the system with access to these components are part of
the TCB, e.g. other drivers being executed in the same authorization area. One means to
reduce the TCB of such systems is to enable hard disk encryption with a key stored on the
main CPU or entered by the user. In these system, the hard disk, the hard disk controller
and all affected connections are removed from the TCB; hence the TCB is accordingly
reduced.

The second example is the authentication of an embedded device using a cryptographic
signature. The security policy states that only the specific device must be able to perform
signature operations and that the cryptographic key must not readable to entities outside
of the device. In a simple implementation, a cryptographic key is stored on the hard
disk. The application loads the key into memory and calculates the signature. In this
implementation the TCB consists of two parts, the TCB for file storage from the previous
paragraph as well as the application using the key. This simple implementation represents
the worst case because the TCB covers the whole device.

The security in these examples can be increased by reducing the size of the respective
TCBs. This reduction can be achieved by using Hardware Security Modules (HSMs), such
as embedded smartcards, secure elements or Trusted Platform Modules (TPMs). In an
implementation like this, the cryptographic key is stored on the HSM and the signature
operation is performed by the HSM. The cryptographic key will never be known outside
the HSM and the HSM ensures the absolute confidentiality of this key. Hence, the TCB
would only include the HSM instead of the whole device. The trustworthiness of this
device regarding this security policy would thus be higher.

This thesis investigates and implements possibilities to reduce and strengthen the TCB
of devices for a certain set of security policies. These policies target (i) the selective
confidentiality of data based on device attributes, (ii) the confidentiality of data during
firmware updates, (iii) the protection of remotely provided credentials, (iv) the storage
of integrity audit logs and (v) implementation of a dynamic role-based access control.
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Figure 1.1: Trusted Computing Base Examples

In order to differentiate these approaches with respect to their security strength a new
notion of TCB using a second lifecycle based dimension is introduced. In order to create
links between different security policies and steer TCB design a formal decision making
process model is introduced.

1.2 Research Goals

This thesis demonstrates that it is feasible to design a trustworthy platform implementing
a multitude of security policies based on Trusted Computing technologies and the TPM.

The first contribution is the introduction of a broader understanding for “TCBs”. The
concept of a TCB is extended by a second dimension that represents the different phases
in a device’s lifecycle. This is necessary in order to differentiate the improvements made
by the presented technological solutions.

The second contribution is the application of this notion of TCB to set of use cases
and security policies where the TCB shall be reduced. This extended notion of TCB
helps to analyze the current state of the art and to illustrate the advancement through
reduction that can be applied to these security policies when applying Trusted Computing
technologies.

These applications stem from a variety of use cases. Two are seemingly simple standard
tasks (1. and 2.), one use case demonstrates the challenges when integrating with an
existing communication standard (3.) and two use case demonstrates a completely new




kind of application (4. and 5.). The security policies to implement in these scenarios are:

1. Selective Confidentiality of Data and Code based on Device Attributes The ability to
define the specific variation of a device attribute — i.e. product line number — during
the boot of the platform to selectively decrypt data and code.

2. Protection of Device Resident Data bound to Firmware enabling Updates The ability to
protect device resident data — data that remains stored on the device even during
updates — notwithstanding firmware updates.

3. Secure Credential usage in Plug and Charge The ability to protect provisioning and con-
tract credentials in an ISO 15118 scenario, including import and remote deployment
of such credentials.

4. Offline Integrity Audit Logs The ability to determine the software status of a platform
without a synchronous connection — i.e. unidirectionally or at a later point in time.

5. Role-based access management The ability to enforce advanced role systems on cryp-
tographic primitives in a trust gateway device, including ability of rights delegation
and revocation in an automotive context.

As third contribution, this thesis shows that a formal framework and engineering process
can be constructed for designing trustworthy platforms. This engineering process supports
Trusted Computing based TCBs for a wide range of capabilities. It supports the notions of
authenticity, confidentiality and trust and is applicable to systems of devices and protocols.
It enables abstraction and refinement, composition and decomposition and embeds them
in a systematic process for engineering.

1.3 Outline

Chapter 2 gives an introduction to TCBs and introduce the extension of the TCB to a
dynamic lifecycle-based dimension. It then investigates candidates for TCBs and evaluate
the usage of TPMs as TCB. Then a basic introduction into TPMs is provided in Section 2.4.
Chapter 3 through Chapter 7 provides technological solutions based on TPMs to implement
strong TCBs for the aforementioned security policies. Chapter 8 briefly introduces the
formal framework and engineering process that allows the design and implementation of
TCBs. Chapter 9 concludes this thesis and gives an outlook to future works.
%




2 Background and Approach

2.1 The Trusted Computing Base (TCB)

The term Trusted Computing Base (TCB) can be tracked back to the Orange Book[35]. It
describes

the totality of protection mechanisms within it [the system], including hard-
ware, firmware, and software, the combination of which is responsible for
enforcing a computer security policy.

Thus, the TCB denotes that part of the system that forms the basis to enforce a security
policy. A typical system implements a variety of security policies and each security policy
may rely on a different TCB. The authors of the Orange Book further explain that

the ability of a trusted computing base to enforce correctly a unified security
policy depends on the correctness of the mechanisms within the trusted com-
puting base, the protection of those mechanisms to ensure their correctness,
and the correct input of parameters related to the security policy.

An even earlier mention of the term TCB originates from [108]. The author argues that

generally speaking, small, simple and localized mechanisms are easier to get
correct, and more easily to be shown correct, than large, complex, or diffuse
ones. The first task in the design of a secure system, therefore, is to find a
way of structuring it so that its security mechanisms are localized as much as
possible, and are as small and as simple as possible.

He argues that a Domain Separation Mechanism is required to divide the system into
TCB and non-TCB domains. He also argues that physical separation is one of the best
means to do so. These and other definitions and approaches to a systematic view on TCB
vs non-TCB of a system are static instead of dynamic. They only focus on the structural
aspects at a snapshot point in time, i.e. they either neglect certain points in time of the
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Figure 2.1: Classic Trusted Computing Bases

device lifecycle (such as production or setup) or they view the totality of functions over
the complete lifecycle and neglect differences of solutions during certain steps of a device
lifecycle.

2.2 A second dimension for TCBs

The described typical view of TCBs is spatial. This however does not take into account
that a device goes through different phases over its lifetime. A device will be produced,
provisioned, used, re-provisioned, re-configured, decomissioned, refurbished, etc. The
TCB may (and usually will) differ between many of these phases. Figure 2.1 shows the
TCB boundaries for the phases production vs usage for the example given in Section 1.1.

In order to grasp the size and thus the security of the TCB of a given system throughout
its complete lifecycle, a different illustration can be used though. Figure 2.2 demonstrates
a two-dimensional way to illustrate the TCB of a system over its lifetime. The y-axis
describes the spacial relations, similarly to previous illustrations. The x-axis describes the
different phases during the systems lifetime.

Using this method it is easier to compare different solutions regarding their overall TCB
concerning the complete lifetime of a system. The smaller the area of the system, the
smaller the TCB and the higher the assurance for the security policy. Furthermore, it is
possible to assess the trustworthiness of different components and lifecycle steps. In this
example, we can see that the TCB impact of the HSM is only half as large as that of the
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Figure 2.2: Trusted Computing Base over Device Lifecycle

remainder of the device. Also the runtime phase was weighted at three quarters of the
overall lifetime impact in contrast to the production and deployment phases.

auth device

| conf kp,., | |correct device since challenge

Figure 2.3: Relating Security Policies

The advantages of this approach become even more apparent when looking at the
security policy of device authentication. This security policy is dependent on the confi-
dentiality of the private key and the authenticity of the nonce origin. This means that no
relay attack for the nonce is performed. Figure 2.4 illustrates this approach. Chapter 8
provides a formal framework for these kinds of reasoning.

Based on this, the comparison between a non-HSM system and an HSM regarding
the authentication based on the confidentiality of the private key becomes even more
apparent. Figure 2.4 shows this vast difference. The reason is that a successful attack on
a non-HSM system at any point in the past will break the device authentication forever.
In contrast a successful attack on an HSM based system in the past does not affect a
current authentication attempt, i.e. a device can recover from a previous attack whilst the
non-HSM system cannot. This became very apparent during the heartbleed recovery times
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Figure 2.4: Trusted Computing Base for Authentication

[24] where non-HSM systems required invalidation of certificates and reprovisioning of
new private keys whilst HSM systems only required an update of the openssl software
libraries.

2.3 HSMs as TCBs

Arguably the best means for separation of two domains is the introduction of a second
physical entity. By using a separate physical entity for execution of the TCB it is well-
separated from the rest of the system. This entity can then excute and enforce the security
policy but as few non-security policy related tasks as possible. These kinds of elements
are often referred to as Hardware Security Modules (HSM) or Secure Elements (SE). Also
several Trusted Execution Environments (TEE) and other CPU extensions claim to support
this mode of operation for security policies. All of these approaches differ immensely in
their functional richness as well as their security guarantees.

Figure 2.5 gives a qualitative overview of the functional richness on the y axis and the
security assurance on the x axis. For the purpose of the works presented in this thesis,
a security assurance level in the class of smart cards is desired. To start of a physical or
spacial segregation between the TCB and the rest of the system is provided. Secondly,
the TCB element is equipped with security measures against diverse attacks, such as
voltage glitch detectors, photo resistors, etc. The latter is asserted by the vendor and by
Common Criteria certification. Solutions such as segregation through CPU virtualization
or TrustZone do not provide these assurances.
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A special case are programmable SmartCards, often referred to as JavaCards — following
the name of the application API of these SmartCards. Whilst their base OS and hardware
usually provide a very high security assurance, the applets are oftentimes not as highly
assured. If the applets would also undergo security certification, the resulting systems
would turn out very expensive. Even more so, as it needs to be done for each JavaCard
applet and version separately. It can also be argued that the availability of a Turing-
Complete interface poses a security problem to begin with.

Regular SmartCards — providing a certified PKCS11 applet — do provide a security
certification and are usually cheap, but they are very limited in their functionalities. Given
these requirements against functionality, assurance and cost, the TPM is the only suitable
candidate. It offers high assurance whilst providing suitable functionalities to implement
the desired security policies as a TCB.

2.4 Trusted Platform Modules 2.0

The Trusted Platform Module (TPM) is a specification by the Trusted Computing Group de-
scribing a security coprocessor that is oftentimes implemented a separate chip or firmware
implementation of a secure compartment. It features the capabilities of securely storing
cryptographic credentials as well as a secure execution environment for cryptographic
operations for said credentials. The second iteration of the TPM, namely the TPM 2.0
Library Specification [128], has been released by the Trusted Computing Group (TCG)
in October 2014. It provides a catalog of functionalities that can be used to build TPMs




for different platforms. This includes support for cryptographic algorithms, which can be
chosen from the TCG’s Algorithm Registry [60]. This registry is updated regularly in order
to provide and extend cryptographic agility. The TPM supports asymmetric algorithms
such as RSA and ECC but also symmetric algorithms such as AES, hash based HMACs, and
hash functions such as SHA1 or SHA2. The TPM also supports special features such as
measured boot where hash values of each component of the boot chain are calculated
and stored in so called Platform Configuration Registers (PCR) enabling the verification of
the platform state, i.e., the integrity of the firmware. This enables the concept of sealing
where access to keys is only possible when the platform state is trustworthy. Another
feature is called enhanced authorization which allows the forming of arbitrary policy
statements to use the TPM. The TPM also includes non-volatile memory (NV-RAM) where
counters, bitmaps, and even extended PCR can be stored. Additional features are outlined
in [32]. In addition, the realization of a TPM is very flexible, realizable both as a dedicated
hardware chip as well as a firmware TPM. A dedicated hardware TPM provides a shielded
location for key storage and usage which makes it very hard to extract, copy or duplicate
the keys from the TPM. It is also possible to generate keys inside the TPM and enforce
that keys never leave the TPM. Since the TPM itself is very resource constraint especially
with respect to its internal flash memory, keys can also be stored as encrypted key objects
in the flash of the host processor and are only decrypted within the TPM. Keys can also
be generated outside of the TPM and then be imported. These import key blobs can be
encrypted as well, such that no attacker can intercept or duplicate them during transit. It
is important to note that the keys used for decrypting these import blobs are so-called
restricted decryption keys of the TPM (aka. storage keys), which cannot be used for general
purpose decryption. In June 2015, the TPM 2.0 was approved by ISO as successor to TPM
1.2 in ISO/IEC 11889:2015 [126].

2.4.1 TPM 2.0 Cryptographic Capabilities

First and foremost, a TPM serves as a cryptographic module to a system. Its purpose is
not to accelerate cryptographic operations, but to improve security. A such the TPM can
securely create and store cryptographic keys and provides an execution environment for
cryptographic operations.

In order to work with a cryptographic key, the TPM offers a set of commands. Those
relevant to this thesis are:

* TPM2_CreatePrimary: This command is used to create a key from the TPM’s
internal seeds. These keys are the top-level objects in a TPM key hierarchy. The
most prominent of these keys are the Storage Root Key (SRK) and the Endorsement

10



Key (EK). The SRK is used as encrypting storage key for all other keys of a typical
TPM enabled system. The EK is used to assess the originality of a TPM.

* TPM2_Create: This command is used to create all kinds of objects for the TPM. This
includes cryptographic keys usable for authenticating to external entities. During
creation, an (enhanced authorization) policy can be provided that restricts usage of
the created object.

* TPM2_Sign: This command calculates a signature using a private key created
via TPM2_Create. These signatures can be used for authenticating a device or for
asserting data integrity and origin.

* TPM2 Unseal: In order to retrieve the content of an encrypted, sealed object, the
TPM2 Unseal command can be used. If the object was created or imported with a
certain usage policy, this policy needs to be fulfilled for usage. This is done using
so-called policy sessions.

* TPM2_Import: This command imports an external TPM key object into the TPM.
This key object is a TPM data structure and thus contains key attributes as well as
an optional policy. The key object is encrypted, such that it can be imported without
the host CPU ever gaining access to the private portion.

A cryptographic key in the TPM can be associated with a fine-grained usage policy (cf.
Section 2.4.3) as well as a set of basic key attributes. The most important attributes are:

* sign: The key can be used for signing data.

* decrypt: The key can be used to decrypt data.

* restricted: If a key is a restricted signing key it can be used by the TPM to attest
TPM data structures. If a key is a restricted decrypt key it can be used to decrypt
TPM data structures, e.g. during TPM2_ Load or TPM2 Import.

2.4.2 TPM 2.0 NV Index storage

Besides offering cryptographic keys, the TPM also offers some of its internal flash as user-
defined storage, so-called NV indices. These indices can (similarly to keys) be associated
with a policy (cf. Section 2.4.3) as well as a set of attributes. Those attributes used
throughout this thesis are:

* ordinary: An NV index of type ordinary can be used by the user as a general purpose
storage area for reading and writing of arbitrary data.

* counter: An NV index of type counter is a 64-Bit unsigned integer value that can
only ever be incremented and never decremented or arbitrarily written to. The
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initial value of such a counter NV index is the highest counter value ever recorded
on such a TPM. Thus even the deletion and re-creation of such a counter NV index
does not decrement its value.

In order to interact with the TPM’s NV index interface, the following commands are
used throughout this thesis:

* TPM2_ NV _DefineIndex: This command creates a new NV-Index.

* TPM2_NV_Write: This command allows the writing of data to an NV-Index of type
ordinary. Note that after the first NV_Write operation the NV_Written bit of the
NV-Index is set.

* TPM2_NV_Read: This command is used to read data from an NV-Index.

* TPM2 NV _Increment: This command is used to increment an NV-Index of type
counter.

2.4.3 Enhanced Authorization

With Enhanced Authorization, any object that requires authorization can either be au-
thorized using a secret value assigned during creation (similar to TPM 1.2) or using a
policy scheme. Enhanced Authorization consists of a set of policy elements that are each
represented via a TPM command. Currently, eighteen different policy elements exist that
can be concatenated to achieve a logical and in arbitrary order and unlimited number.
Two of these policy elements — PolicyOr and PolicyAuthorize — act as logical or. Due to
implementation requirements, policy statements are, however, neither commutative nor
distributive. Once defined they need to be used in the exact same order. In this paper, we
use the following notation: Policyup. := PolicyXi() A PolicyXs() A. .. PolicyX,,() where
Policyq. is the “name” for this policy, such that it can be referred to from other places
and PolicyX;() describes the n concatenated TPM2 Policy commands that are required
to fulfill this policy.

* TPM2_StartAuthSession: In order to fulfill any authorization policy, the application
needs to start a policy session using the TPM2_StartAuthSession command. Then the
actual policy statements are subsequently satisfied by invoking the corresponding
TPM commands.

* TPM2_PolicyOR: This command represents an OR-clause in a policy statement. Up
to eight sub-policy branches are unified in such an OR-clause. The OR-clauses can
however be stacked in order to allow for more branches.
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e TPM2_PolicyNV: This command is used to compare an NV index content to a
reference value. The possible comparison operations are equal, less than, greater
than, etc.

e TPM2_PolicyNVWritten: This command checks whether an NV index has been
written before or if it has never been written before as determined the “written”
attribute of the NV index.

* TPM2_PolicySigned: This command requests that a TPM generated nonce has been
signed by a referenced public key and thus ensures authorization and freshness of
authorization for this policy session.

* TPM2_PolicyPCR: This policy statement ensures that the Platform Configuration
Registers (PCRs) have a certain value. The PCRs are used to represent the integrity
state of a platform by recording its booted software and configurations.

* TPM2_PolicyAuthorize: This command allows the activation of policies after the
definition of an object. In order to achieve this, a public key is registered with a
policy. This policy element then acts as a placeholder for any other policy branch
that is signed with the corresponding private key.

Given the complicated workflow and calculation of policy digest values, the TCG has
defined a declarative language to represent TPM policies as JSON strings [129]. These are
easier to work with when using a TPM Software Stack than evaluating policies manually.

2.4.4 TPM 2.0 Other Commands
Other commands used in this thesis include the following:

* TPM2_ActivateCredential: This command is part of the TPM credential deployment
capabilities. A credential provider can encrypt a certificate with a key known to
reside on the TPM and denote a certain additional key inside the encrypted data.
The TPM decrypts the data and verifies that the denoted key is known and only
then returns the credential data back to the user. This way, the credential provider
is guaranteed assurance that credential usage is only possible if the denoted key is
known to the same TPM and has the reported properties.

* TPM2_EvictControl: Since the TPM only has limited persistent internal memory,
objects are usually stored externally, encrypted with a TPM-resident key. Any object
can be made persistent inside the TPM on request by the owner. The TPM2 -
EvictControl command is used to store an object persistently in the TPM or to delete
an object from persistent storage.

* TPM2_Clear: This command is used to clear a TPM e.g. during a refurbishment
process. All keys are deleted or invalidated except for the primary keys used in the
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endorsement hierarchy. Similarly, all owner based NV index values are deleted and
the initial counter value for NV counter indices are set back to 0.

2.4.5 TPM 2.0 Software Stack

Accompanying the TPM specifications, the TCG has engaged in the specification of a TPM
Software Stack (TSS) 2.0 for this new generation of TPMs [133]. It consists of multiple
Application Programming Interfaces (APIs) for different application scenarios. A so-called
Feature Level API has been published [130] with an accompanying specification for a
JSON based policy language [129]. It targets high-level application in the Desktop and
Server domain. For lower-level applications, such as embedded applications, the so-called
Enhanced System API specification (ESYS) [132] was released in conjunction with the
TPM Command Transmission Interface (TCTI) [122] for IPC module abstraction. The
ESYS API and TCTI were designed such that embedded applications can access TPM 2.0
functionalities whilst minimizing requirements against the platforms. As such, they do
not require persistent storage and only link against basic cryptographic code.
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3 Firmware Update and Device Resident
Data

A security policy for device resident data is that this data must not be accessible outside of
the device. This obviously includes the prevention of direct readout via a designated port
or directly from the storage medium. It should also include the prevention of illegitimate
software replacement whilst allowing regular software updates. In order to implement this
with a minimal TCB the TPM 2.0 can be used. This chapter builds upon my contributions
to and reuses text from [48] which include the complete general approach, the complete
realization concept and some implementation contributions.

3.1 Background on Firmware Updates and Data Encryption

The idea of encrypting data at rest to protect against attacks is nothing new. cryptse-
tup/LUKS [42], Bitlocker [84] or even TrueCrypt [18] have implemented this feature
for a very long time for Desktop machines. For embedded machines this becomes more
challenging though, since there is no external source — the user — to provide the volume
key or a volume key encryption key to the system (and only that system) during boot.
Thus, a different source for securing this key is needed — an HSM or TPM. They provide a
storage that is bound, e.g. soldered, into the correct platform and cannot be extracted
from the system.

The second challenge to increase the security of such an embedded system is that
attackers could pretty easily replace the original software with a software of their own
that then dumps the volume key from the connected HSM. As solution, TPM 1.2 [61, 62,
63] introduced so-called sealing. Here, an encrypted secret is stored together with a
set of reference PCR values that represent the original (and trustworthy) device firmware.
Only if the PCR integrity values recorded during boot match those reference PCR values
will the TPM release the volume key to the system. Bitlocker [84] and tpm-luks! implement

Thttps://github.com/shpedoikal/tpm-luks
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this feature as well. However, these approaches do not account for typical firmware update
schemes of embedded devices.

Firmware upgrades are a necessity of all software based systems to fix bugs and vulner-
abilities. During such a software upgrade, not all data stored on a device shall be replaced
by the incoming firmware upgrade. The two categories of data not included in a software
upgrade are large unchanged data sets and data created on the device during operation.
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Figure 3.1: Trusted Computing Base for Firmware Update with TPM 1.2

The requirements that come along with this is that consecutive software versions need
to have access to this data, while it needs to be stored inaccessible to malicious firmware
images. Also this data must become inaccessible to old versions of the firmware after an
upgrade in order to prevent so called “downgrade attacks”. In a downgrade attack, an
attacker installs an outdated version of the firmware that has known vulnerabilities in
order to exploit them. Such attacks have for example been used for breaking the first
generation of PlayStation Portable [139].

The classic realization of sealing, as employed by TPM 1.2 [61, 62, 63] is illustrated in
Figure 3.1. The lifecycle axis shows 4 phases of the device’s phases that are relevant to
the presented solution. It starts with the devices boot, followed by a longer runtime phase.
Then an update phase occurs that also includes another boot, followed by the runtime
phase with the next version of the firmware. The system model axis includes the TPM, the
firmware’s OS kernel and the userland of applications.

Such a solution comes with a set of drawbacks, because they do not allow the updating
of referenced PCR values from the sealed blobs. This would have to be done by allowing
the updater to reseal the data for the state after upgrading, which requires the upgrade

16



module to be privileged. This is reflected in the bump to the TCB during the update
phase in Figure 3.1a. Furthermore, it was not possible to disallow usage of the old seal
for accessing the data. This is reflected by including the complete system in the TCB in
Figure 3.1b.

With the framework for “Enhanced Authorization” (EA) in TPM 2.0, it is possible to
achieve this use case respecting the circumstances and requirements outlined above. In
the following, the set of requirements is listed, the concept described, and a prototypical
implementation outlined.

3.2 Requirements for Firmware Updates with Device Resident
Data

The requirements for securing large data sets and personal information during a firmware
upgrade can be summarized as follows:

1. Provide confidentiality of vendor’s intellectual property and user data.

2. Only allow original manufacturer firmware to read / write data.

3. Prevent access by old firmware after an upgrade to new firmware.

4. Do not require a special update mode, where the updater component has access to
the data unsealing credentials.

3.3 Concept for Firmware Updates with Device Resident Data

The concept for providing these requirements can be divided into three phases: Provision-
ing, Firmware Upgrade, and Firmware Usage.

Provisioning

After provisioning of the device, the very first thing should be the definition of an NV
index that represents the device’s currently required minimal firmware version. This has
to be done first, in order to ensure that the NV index is initialized with a value of 0 (read
Zero), cf. Section 2.4.2 for details. This counter is initialized as a single 64 bit unsigned
integer value and then incremented once in order to be readable:

NWersion :==TPM2 NV _DefineSpace(counter)
TPM2 NV _Increment(NVyersion)
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The vendor intellectual property and user data is stored in an encrypted container or
partition on the devices flash that is stored separate from the firmware binaries. The key
to this encrypted container is then sealed with the TPM to the following policy:

Policyseq; := TPMQ_PolicyAuthorize(Kp“b )

Manu

This policy allow the manufacturer as the owner of K ﬂ;ﬁm to issue new policies in the
future for accessing the stored data. For the initial firmware of version v1, the manufacturer

will provide the following policy:

Sig (Kpmv [TPM2_PolicyPCR(Firmware,1)A

Manu>’
TPM2_PolicyNV (N Vyersion < v1)])
The PCRs that represent the integer state of Firmware,; may be used until the nv index
NVyersion that represents the currently required minimal version exceeds the value of v1.

Policyseq :=TPM2_PolicyAuthorize (K‘Wb

Manu’

[TPM?2_PolicyPCR(Firmware,; )\
TPM2 _Policy NV (NWersion < vl)] )

Note that the signed policy cannot be part of those components of the firmware that
is measured into the representing PCRs. The reason is that this would lead to a cyclic
relation that cannot be fulfilled.

Firmware Upgrade

Whenever a firmware upgrade is issued by the manufacturer, it will be accompanied by a
newly signed policy, that (similar to the original policy) grants access to the encrypted
container based on the PCR representation of that firmware. This access again is only
granted until the NV index representing the minimum required version exceeds this
firmware’s version:

Sig (Kpm} [TPM2_PolicyPCR(Firmware,) A

Manu’

TPM2_PolicyNV (N Vyersion < v2)])
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This leads to Policygeq being:

Policyseq; :=TPM2_PolicyAuthorize (Kp"b

Manu’

[TPM2_PolicyPCR(Firmware, )

TPM2_PolicyNV (N Vyersion < v1)]
V[T PM2_PolicyPCR(Firmware,)A

TPM2_PolicyNV (N Vyersion < v2)])

During the update process, the updater mode stores the firmware including its policy
on the device’s flash drive. However, it does not require access to the encrypted container.

A similar concept with TPM 1.2 would have required that the updater mode would have
required access to the encrypted container and to reseal the secret, or the manufacturer
would have to have known the secret and bind it for the new PCR values. This is one of
the main benefits of this TPM 2.0 based approach.

Firmware Runtime

Whenever a legitimate firmware version starts, it can unseal the necessary data and
read/write to these storage areas. In order to invalidate access by outdated firmware
versions, during each start, the firmware will check the currently stored minimal required
firmware version inside the TPM counter and increment it to its own firmware version.
This invalidates the usage of PolicyAuthorize branches for previous firmware versions,
since they require a lower value for the NVi ;0 counter. Firmware should only perform
this increment when it successfully completed its self test and started up correctly, since a
recovery of the previous version is impossible afterwards. Instead the issuing of a new
firmware version would be required. Of course a manufacturer may choose to issue a
certain recovery firmware version, or multiple such version by, e.g., encoding those as the
odd version vs. regular firmware as even versions.
Incrementing of the NV counter is denoted as

TPM2 NV _Increment(NViyersion,v1)
which invalidates any older policies and thereby any outdated firmwares. This leads to:

Policygeq :=TPM2_PolicyAuthorize (KPUb

Manu>

[TPM2_PolicyPCR(Firmware,)A
TPM2_PolicyNV (N Vyersion < v1)])
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A similar concept with TPM 1.2 could only have removed the sealed blobs for older
versions from the flash drive, but in case an attacker was able to read out the flash in an
earlier state, there would have been no possibility to actually disable these older policies
with the TPM. This is another main benefit of this TPM 2.0 based approach.

3.4 Security Considerations of Firmware Updates with Device
Resident Data

The presented concept relies on the correct cryptographic and functional execution of
a TPM 2.0 implementation for the encryption and correct handling of the policy tickets
respectively. Furthermore, the scheme relies upon a set of specific assumptions in order to
function properly:

* The ticket signing private key of the vendor must be kept confidential, potentially
using a TPM itself as well.

* The provisioning needs to refer to the correct ticket public key for verification.

* The scheme does not protect against runtime-attacks against software.

3.5 Prototypical Implementation of Firmware Updates with
Device Resident Data

The described concept was implemented in a proof-of-concept demonstrator for a typical
automotive Head Unit. An Intel NUC D34010WYK in combination with Tizen In-Vehicle
Infotainment (IVI) [110] using Linux kernel 4.0 was chosen for this implementation. These
4th generation NUCs are one of first commercial off-the-shelf (COTS) devices equipped
with a TPM 2.0 implementation. The demonstrator is shown in Fig. 3.2.

To protect vendor confidential and privacy sensitive data, the Linux LUKS implementa-
tion (Linux Unified Key Setup) is used to create and to open an encrypted container for
storing this data. The key for the encrypted container in turn is protected by TPM 2.0’s
enhanced authorization mechanisms as described in Section 2.4.3.

For ease of demonstration the representation of firmware versions in the PCR values was
simplified — namely not calculations of the overall firmware hashes. Instead of measuring
the complete firmware at boot and extending a PCR with this measurement, a single
file is measured into the PCR called version_file. A TPM monotonic counter is used to
represent the version number.
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Figure 3.2: TPM 2.0 Head Unit Demonstrator

Note that the standard Linux Integrity Measurement Architecture (IMA) [29] could
also not be used in practice for this scenario. Due to the event-driven startup mechanisms
under modern Linux systems, the exact order of PCR extension can vary, which renders
them unusable for sealing. Instead, the complete image would have to be measured from
within the initial ramdisk. A future publication will demonstrate a possible approach
based on squashfs [28].

In Algorithm 1 and 4, the TPM 2.0 equivalent of a Storage Root Key (SRK) —a TPM
Primary Key under the Storage Hierarchy - is already computed. If the NV counter NV C
is already defined, it is used directly. Otherwise NV C gets defined.

Provisioning

When the device is started for the first time, the following steps shown in Algorithm 1
are executed for provisioning the protected storage. It consists of the definition of the NV
version counter, the instantiation of the policy, the creation of the LUKS container and the
sealing of the LUKS key.

Algorithm 1 (Provisioning).
// NV Creation
if not defined(NVC) then
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NVC := TPM2_NV_DefineSpace(counter)
end if
// Policy Initialization
pubkey := TPM2_ LoadExternal(pub_key manu)
policy := TPM2_PolicyAuthorize(pubkey)
// LUKS creation
S := generate_random_key()
create_crypto_fs(S)
// Sealing
SRK := get srk()
enc(SRK,S) := TPM2_Create(S,SRK,policy)
save(enc(SRK,S))

To ease readability, some details are wrapped within simplified function calls. All
functions prefixed with TPM?2_ are the equivalent of the corresponding TPM functions.
not "defined(NVC)$ will check whether the NV index has been defined by performing
aTPM2 NV _Read and checking the resulting value. The public key pub_key manu
of the manufacturer, loaded into the TPM, is bound to the object S encrypted by SRK
via the policy calculated by TPM?2_PolicyAuthorize. The corresponding private key to
pub_key manu now can be used to alter policies necessary for unsealing the encrypted
key S.

Firmware release

Algorithm 2 shows how the manufacturer can produce signatures for new firmware
release versions with a corresponding TPM 2.0 policy without using a TPM. The function
compute_policy calculates the policy based on the PCR value, after extending a PCR by
the firmware digest, and the version of the firmware. This computation is performed by
the manufacturer according to the TPM2.0 specification. This policy will be signed with
the private key of the manufacturer. The device later must be able to associate the policy
and the signature with the version to be installed.

Algorithm 2 (Firmware release).

policy(version) := compute_policy(digest(version_file),version))
signature(version) := sign(policy(version), priv_key manu)
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Upgrade

Algorithm 3 shows the steps executed to install a new firmware version signed by the
manufacturer. The new version will be active after the next reboot (see Algorithm 4). The
version of a signed firmware to be installed must be greater or equal to the current NV
counter because this demonstrator should be able to execute the provisioning process
several times and the hardware TPM’s monotonic counter cannot be decremented again.
To be more precise, even if the counter is undefined by TPM2 NV _Unde fineSpace
it is not possible to reset the counter to a smaller value because for the next definition
the counter will be initialized to be the largest count held by any NV counter over the
lifetime of the TPM. In practice it would be possible to store the initial policy directly in
the firmware image for version 1.

Algorithm 3 (Upgrade).
version := get _latest_signed version_number()
signature(version) := get signature(version)
policy(version) := get policy(version)
save(version_file, version)

In order to perform the simulated upgrade of the firmware binary, the value encoded
within the firmware representing version file is incremented.

Runtime

The steps described in Algorithm 4 are executed in the boot process to mount the encrypted
container. They consist of the PCR extension with the digest of the version file, the
satisfaction of the policy, using this policy for unsealing the container key, the opening of
the encrypted container and then the invalidation of old firmware by incrementing the
NV version counter.

Algorithm 4 (Mount encrypted file system).
/* Satisfying the policy */
version := load(version_file)
TPM2 _PCR_Extend(digest(version _file))
approved_policy := load_policy(policy(version))
signature := load_signature(signature(version))
pubkey := TPM2_ LoadExternal(pub_key manu)
ticket := TPM2_VerifySignature(signature,pubkey,approved_policy)
session := TPM2_StartPolicySession()
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session.TPM2_PolicyPCR(PCR)

session.TPM2_PolicyNV(NVC, < =,version)

policy := TPM2_PolicyAuthorize(pubkey,ticket,approved_policy)

/* Unsealing the container key and mount */

SRK := get srk()

enc(SRK,S) := load()

TPM2_Load(enc(SRK,S))

S := TPM2 Unseal(enc(SRK,S),session)

mount_crpyto_fs(S)

firmware_self test()

/* Invalidate old firmwares */

while TPM2 NV _Read(NVC) < version do
TPM2_NV _Increment(NVC)

end while

The functions load_policy and load_signature will load the policy and the signature
associated by the manufacturer with the version stored in the version file. The function
session. TPM2_Policy represents an execution of those policy commands on the TPM,
referring to the policy session session. For the signed approved policy, a ticket derived
from this policy and the public key of the manufacturer is verified against its signature
using TPM?2 VerifySignature.

The current policy value of the session will be compared with the approved policy
and the TPM then validates that the parameters to TPM?2_PolicyAuthorize match the
values used to generate the ticket. After the crypto file system is mounted, the device
should perform a self test firmware_self test and the NV counter will be incremented
until the value which corresponds to the current firmware version is reached. Thus, the
object encsri (S) cannot be unsealed by firmware versions less than version, providing
protection against downgrade attacks.

3.6 Evaluation of Firmware Updates with Device Resident Data

This new approach is only possible by using new features introduced by TPM 2.0 such
as NV-RAM counters and Enhanced Authorization. It secures device-resident data by
ensuring that only new firmware upgrades of the manufacturer can be installed and
downgrade attacks or attempts to install malicious firmware upgrades are prevented. The
TCB of this new approach is illustrated in Figure 3.3. The down-bump during the update
phase in Figure 3.3a represents the fact that the authorization for accessing the data is
handled by only the TPM. During runtime however the kernel remains part of the TCB
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Figure 3.3: Trusted Computing Base for Firmware Update with TPM 2.0

since it handles the bulk en/decryption. The rollback protection illustrated in Figure 3.3b
shows that userland is only involved once during the end of the update procedure when
the TPM'’s version counter is incremented to the current version.

The prototypical implementation for an automotive head unit protects device-resident
data of the manufacturer (i.e., navigation maps) and of the car user (i.e., contacts and
preferred navigation destinations) against unauthorized access before, during, and after

an upgrade. This general concept can be applied in different application scenarios using
different TPM and TSS 2.0 profiles.
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4 Runtime Product Lines

One interesting security policy for embedded platforms is related to the trend towards
using software product lines. Lately, the difference between a standard and a premium
product or even between products of completely different functionalities are not the result
of differences in hardware but of the supported functionalities in its software. These are
called software product lines, where the firmware for a switch and a router differ in terms
of software features and not in terms of hardware. This however has the potential of
disallowed changing a standard product into a premium product without reimbursing
the vendor appropriately. The approach presented in this chapter showcases the imple-
mentation of a software product line that acts upon boot, thus configuring the product
for runtime. It further enables the distribution of unified firmware images, i.e. single
images for a whole product line of devices. It is based upon individual feature encryption
using trusted computing technologies. This chapter builds upon my contributions to and
reuses text from [49] which include the majority of the general approach, the complete
realization concept and some implementation contributions.

4.1 Background on Runtime Product Lines

The development of Information Technology (IT) products has shifted drastically from
separate and designated designs per model to unified hardware architectures with different
software versions. Different products of similar kind nowadays only differ by their enclosure
and firmware — and sometimes additional interfaces. For example, an Original Equipment
Manufacturer (OEM) may produce routers and firewalls that only differ in the enclosure,
firmware, and number of network ports. The firmware, however, differentiates a router
from a firewall.

At the beginning of the industrial production age, an individual production process
for a product was used. The next step was the employment of general product lines. A
product line of similar products is produced by a common factory where the different
products are assembled and configured using a common set of parts. A typical example is
the production of individual variations of a car model. A buyer can use a shopping tool to
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choose from a set of predetermined parts and functionalities to build their own vehicle.
The goal was to have a unified physical product line to reduce costs by providing variations
of a product to a customer.

With software production, software product lines were introduced: “a set of software-
intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way” [23]. The goal is a unified source code for generating
similar software versions at compile-time from a shared set of software components using
conditional compilation techniques, e.g., #ifdef in the C programming language or flags
such as --enable-feature[=arg] in the GNU Autoconf package [21]. The benefits
of software product lines are improved productivity, increased quality, decreased cost and
labor needs, and much faster time to market [23].
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Figure 4.1: Trusted Computing Base for typical Runtime Product Lines

The next iteration of device product lines will go even beyond this and is referred to
this step as runtime firmware product lines. Instead of compiling and packaging different
firmware images from the same code collection, a unified firmware image will be delivered
for a whole product series. The product customization will happen on the device itself.
Hence, one firmware image contains several features and the device itself decides whether
to unlock a certain feature or not.

These decisions are commonly made in software during the boot phase of the system or
by the features themselves. Somewhere on the device a map of activated features is stored
and then evaluated. The problem here is manyfold. Firstly, the feature map can often be
altered by attackers. Secondly, the code evaluating the feature map can be altered, i.e. a
comparison operation reversed. Thirdly, an attacker can extract the code representing a
feature and insert it into other software. As such, the TCB of such a system spans over the
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whole device and whole runtime of the device, as depicted in Figure 4.1. The lifecycle axis
shows 4 phases of the device’s phases that are relevant to the presented solution. It starts
with the device boot, followed by a longer runtime phase. Then an update phase occurs
that also includes another boot, followed by the runtime phase with the next version of
the firmware. The system model axis includes the TPM, the firmware’s OS kernel and
the userland of applications. An attacker able to manipulate or read out the storage and
gaining access to kernel or userspace during boot or update would be able to extract data
or (in case of local configuration) change the bits of enabled features. During runtime a
typical separation of process execution context defends from such attacks from userland.
These are represented by the trust boundary in Figure 4.1.

4.2 General Idea for Runtime Product Lines

In the presented approach, a device is equipped with a TPM 2.0 that can be a dedicated
hardware chip but also a software implementation to save costs. The TPM acts as secu-
rity anchor by providing secure storage, secure execution, and additional features for
controlling access (cf. Section 2.4).

The general idea of this approach is as follows. A unified firmware image for a product
line consists of several separate read-only feature filesystems. Each feature filesystem
contains a specific feature set and is encrypted using a unique cryptographic feature key.
For each model of a product line, a different model number is stored inside the devices’
TPM. This TPM-resident model number serves as a basis of the runtime configuration of
the firmware image to be booted. By verifying a TPM-Policy, only the allowed features for
a specific model of a product line are unlocked, i.e., decrypted. Note that accessing the
unified firmware image is only possible on an original OEM device containing the pre-
configured TPM. If required, additional read-write filesystems for local data localdataFS
(e.g., for /etc, /home, /srv) and temporary files tmpFS (e.g., for /var) can be mounted.
The protection of the localdata filesystem against manipulation is out of scope of this
chapter, but can be easily realized, for example, using the approach presented in [48].

Figure 4.2 shows an example to illustrate the approach in more detail. The unified
firmware image is structured by the means of overlay read-only filesystems. A base
file system BaseFS contains those parts that are shared between all models. It includes
the operating system (OS) kernel and a multitude of basic libraries and services. Each
model then comes with its feature filesystems FeatureFS-X. The example contains four of
these filesystems, FeatureFS-0 to FeatureFS-3. They contain the differences of this feature
compared to the underlying filesystem. This may be additional files, removed files, or
even altered files. For any given model, a stack can then be built that includes the base
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Figure 4.2: General Idea

filesystem and a series of feature filesystems that are overlayed in order to provide the
actual final boot system. The TPM decides, based on the model number, which features
to unlock, i.e., unseal the respective feature key which was used to encrypt the feature
filesystem to decrypt it. The unlocking of individual features during runtime configuration
is illustrated by the example shown in Figure 4.3. The model number is used to denote
a specific combination of encrypted feature filesystems for a model of the product line.
In the example, the model number has a length of 4 bits to be able to encode the four
different feature filesystems. The binary model number of 0101, will enable the feature
filesystems FeatureFS-0 and FeatureFS-2 to be loaded, since the respective bits were set
within the model number’s feature bitmask. The figure shows the unlocking of FeatureFS-2.
As mentioned above, FeatureFS-2 is encrypted using FeatureFS-2-Key. This key is encrypted
using the TPM-resident ImportTargetKey and stored together with the Policy: 0100, in an
integrity-protected Sealed Key BLOB. The integrity of the BLOB can be verified using also
the ImportTargetKey. The BLOB and the encrypted FeatureFS-2 form the FeatureFS-2 Data
Object. In step 1, the TPM imports the sealed key blob, decrypts the FeatureFS-2-Key, and
checks the integrity of the key BLOB. The TPM verifies the policy in step 2, by checking
that the third bit from the right of the policy 0100, equals 1 (since it was also set to 1 in
the model number 1101,). If this is true, the decrypted FeatureFS-2-Key is unsealed and
transfered to the host CPU (step 3), which uses it to decrypt and mount FeatureFS-2 as
part of the overlay mount (step 4).

In the example, the entire model number was used to encode the used features. It is
also possible to define certain parts of the model number for encoding the used features.
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The remaining parts can be used for other purposes, e.g., to encode the color of the casing.
In principle, the modeling of the model number can be arbitrary complex to realize certain
policies (cf. Section 4.5.2).

4.3 Related Work for Runtime Product Lines

4.3.1 Secure Runtime Product Lines

The work in this chapter extends the idea and concept of compile-time firmware product
lines based upon unified software repositories to run-time firmware product lines based
upon unified firmware images. The most prominent example for compile-time firmware
product lines are the Yocto [40], OpenEmbedded !, and BitBake [85] projects. The BitBake
project provides the build-chain and environment for a compile-time firmware product
line. OpenEmbedded and Yocto provide the core and application level software recipes to
build a multitude of firmware images for a multitude of devices.

The Docker project [93] performs some form of packaging-time product lines by using
overlay filesystems in their images similarly to this approach in order to stack feature
filesystems. We use the same concept but for device boot of the basic operating system
and additionally preventing activation and decryption of any unauthorized feature layer.

Thttp://www.openembedded.org
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Another closely related case of product lines are so-called (feature oriented) software
product lines, e.g., [6]. A lot of research has been conducted on software product lines
[27, 9, 58, 69] and even their security [15], practical implementations exist and given the
inclusion in mainstream build systems, such as autotools [21], they are at the core of mod-
ern software engineering. The presented approach, just as the Yocto and OpenEmbedded
projects, facilitate these capabilities and use them for realizing firmware product lines.

Other related technologies that are designed with a closely related focus are called
feature activation. This term refers to the activation of features on devices (similar to the
presented approach), but based on additional fees payed by the device owner. Though
much research has been conducted on securing feature activation [111] and many more
patents were filed, such as [78, 41], these works have focused on the secure transfer of
activation codes; i.e., on providing the evidence for an activated feature into the device.
The actual securing of the feature-relevant programs on the device were to the best of
the authors knowledge not yet solved. Also note that feature activation is not the focus of
the presented approach and would require a rework of the model number deployment
process (cf. Section 4.5.2).

Finally, it is known that many firmwares today are already partially self-reconfiguring
upon startup based to their model association by activating or deactivating certain software
services. However, the security of these features remains yet to be solved, and a plausible
approach is presented in this chapter.

4.3.2 Overlay Filesystems

Overlay filesystems combine multiple filesystems into one single virtual filesystem and
directories with equal paths are merged to one path. A typical application is the combina-
tion of read only devices (e.g., a CD) with writable devices, where all changes in the read
only filesystem are stored on the writable device. This example use case could be realized
under Windows with the Unified Write Filter [88]. For Linux the overlay filesystems
AUFS? and OverlayFS [16] are available. AUFS is a reimplementation of UnionFS [103]
the first available implementation of an overlay filesystem for Linux. UnionFS is also
available for Free BSD and Net BSD. AUFS was the first device driver used in Docker [93]
to layer Docker images and is very stable. OverlayFS is included in the mainline kernel
and is potentially faster than AUFS. Despite this fact, AUFS was using in the prototypical
implementation to present the concept since the structuring of the data was simpler, and
AUFS was a better match to the requirements for the integration of encrypted SquashFS
read only filesystems into the virtual overlay filesystem.

%http://aufs.sourceforge.net/

32



4.4 Concept for Runtime Product Lines

The concept for implementing Secure Runtime Firmware Product Lines consists of three
parts: (1) configuration of the device during production, (2) creation of the firmware
image, and (3) booting a model-specific firmware.

4.4.1 Device Production

During device production, two steps need to be taken. A key must be deployed to the
device, that is used for importing the sealed key blobs, and the model type number must
be stored inside the device’s TPM. The following TPM commands are used to realize this:

Algorithm 5 (Production). // Set model number
TPM2 NV _DefineSpace(modelldx, policyWritten, UserRead PolicyWrite)
// Create policy session
sess = TPM2_StartAuthSession(PolicySession)
TPM2_PolicyNVWritten(modelldx, false, sess)
TPM2_NV_Write(modelldx, modelNo, sess)
// Deploy (import) ImportTargetKey
ImportKeyBlob := TPM2_Import(ImportTargetKey)
tmpHandle := TPM2_Load(ImportKeyBlob)
TPM2_EvictControl(tmpHandle, ImportKeyHandle)

Model Number

The model number is stored inside the NV-storage of the TPM and can be read by anybody
but cannot be altered. The number will subsequently be used to test whether a certain
software feature shall be decrypted and activated at boot time for the given device. It
is even possible to store the model number as part of the serial number, since the TPM-
operations also allow the testing of only parts of a number stored in NV memory.

The purpose of the TPM2_PolicyNVWritten is to disallow subsequent writes by anybody
to the model number NV index. Only as long as the NV index has not been written, can it
be written. This also enables partial pre-production of products, where for example the
board is assembled and fit into a chassis and the TPM is partially pre-provisioned but the
model number is not yet set.
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ImportTargetKey

The anchor for the decryption operations during boot is the ImportTargetKey. This key
needs to be deployed to all devices of a product line. It is stored persistently inside the TPM
for the lifetime of the device. This key is imported into the TPM and stored persistently
using the TPM2_EvictControl command. When booting a firmware, the keys used for
each of the features are imported underneath this key before being unsealed for actual
usage during firmware decryption and activation.

4.4.2 Firmware Creation

Two additional steps are required for building a firmware image: the product line elements
must be created by means of an overlay filesystem and the filesystems must be encrypted
with a sealed TPM key bound to the corresponding model number bit. The process
involving the TPM can be realized as follows:

Algorithm 6 (Firmware Creation). firmware = createBaseImage()
for fs=overlay 1 to overlay N do
tmpfs = createFeatureLayer()
fs.bitmask = createFeatureBitmask()
key = TPM2_GenRandom()
fs.data = encrypt(key, tmpfs)
policyDigest = sim_PolicyNV(modelldx, fs.bitmask, BITSET)
fs.seal = create_Import(importTargetKey, featureKey, policyDigest)
firmware.add(fs)
end for
release(firmware)

Filesystem Creation

The firmware for Secure Runtime Firmware Product Lines needs to be constructed in a
specific way. For this example, a base firmware image is assumed that is common to all
models of the given product line. Note though that even different base images can be
provisioned, this requires more space in the resulting firmware image. For the sake of
explanation, the construction of a firmware image for two models ModelA and ModelB
with two mutually exclusive features FeatureA and FeatureB is considered.

A base image is constructed as file image on the build PC. For a Linux system, this would
include things such as libc, base-tools, init-system, etc. Next, a second (empty) image file
is created and mounted as overlay to the base image. Then the software for FeatureA is
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installed into the overlay filesystem. This step can also include the rewriting or even the
deletion of files. Some overlay filesystems represent deletion as entries to the “0-inode” for
example. When unmounting the filesystem, the differences from base image to ModelA
are stored inside the FeatureA filesystem. Now, a second file image can be created for
FeatureB and the process of overlay mounting and installation can be repeated.

The approach can be further generalized by, e.g., mounting the images for base, FeatureA,
and FeatureC versus base, FeatureB, and FeatureC if models differ for example in some
intermediate layer, but not in the highest layer.

Filesystem Encryption

For each of the feature filesystem layers, a bitmask is created regarding which bits inside
the model number represent the activation of the corresponding feature. For example, any
model number with bit O set (i.e., uneven numbers) will include the filesystem for FeatureA.
With this information, a corresponding TPM2 PolicyNV statement can be constructed
that represents the test for this bit inside the model number NV index. It can also test for
multiple bits or even the complete model number. This depends on the architecture for
assignment of features to model numbers. The result of the policy statement creation is a
policyDigest, i.e., a hash value that represents this policy.

Then a symmetric key is created that is used for encrypting the feature filesystem image.
This key is then embedded within an import blob for the target TPM. This import blob is
of type keyedHash, which means that it can be unsealed on the target TPM. It includes
the key for the filesystem and also the policyDigest that restricts the unsealing of the key
to those devices that have a model number corresponding to the policy’s requirements.
Finally, this import blob is encrypted using the ImportTargetKey as decryption key.

The bitmask, the encrypted key seal blob for TPM import, and the encrypted filesystem
are then provided with the firmware image as a package FeatureFS-X Data BLOB. Note
that the order of mounting the overlay images plays an important role, especially if file
alterations or removals exist. This can be represented by naming of the files that contain
the feature packages (if they are stored as files inside the firmware image) or by the order
in which they are stored, if e.g., a partition table is used, where each package is contained
inside its own partition.

4.4.3 Booting a Model-specific Firmware

During firmware boot, the specific firmware for the given model of the product line is
unlocked and mounted. This process uses the following algorithm:

Algorithm 7 (Booting). current = mount(basefs)
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modelNo = TPM2 NV_Read(modelldx)
for fs=overlay 1 to overlay N do
if fs.bitmask == modelNo & fs.bitmask then
seal = TPM2_ Import(importKeyHandle, fs.seal)
pSess = TPM2_StartAuthSession (PolicySession)
TPM2_PolicyNV(modelldx, fs.bitmask, BITSET, pSess)
key = TPM2_Unseal(seal, pSess)
overlay = decrypt(key, fs.data)
current = overmount(current, overlay)
end if
end for
current = overmount(current, localdatafs, localdata-directory)
current = overmount(current, tmpfs, runtime-directory)
chroot_and_boot(current)

Basic Preparations

During boot, the first step is to perform some basic operations. During this step, the basefs
image is mounted and the model number is read from the TPM. This reading of the model
number is not restricted in any way and can be performed by any running software. Only
writing is restricted to the vendor’s production step.

Feature Loop

The loader will loop over all features that are provided within the unified firmware image
and test for each of these, whether they are activated for the given model number. Those
that are not active will be skipped. For all activated features, the loader will import the
sealed feature key into the TPM under the ImportTargetKey. Then it will provide a policy
session that proves to the TPM that the policy for this sealed feature key is fulfilled by the
model number stored inside the TPM. Then it will request the unsealing of the feature
key from the TPM, based on the policy session that proves the correctness of this attempt.
With the unsealed feature key, the loader can decrypt the feature filesystem and mount
it on top over the currently mounted system — either over the basefs or over the stack of
basefs and previously mounted feature overlays.
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Local Configuration and Runtime Data

Before switching into the final stack of overlay filesystems, the loader mounts two final
filesystems. The runtime overlay is a temporary filesystem held only in RAM for the
current boot cycle. This is necessary for the firmware in order to create sockets for local
IPC connections, storing process identifiers, or to create temporary files for locking to
schedule access to certain resources. The configuration overlay is an additional filesystem
that contains local configuration data of the device. The reason for performing an overlay
mount for this filesystem instead of a regular mount is that the feature filesystems can
provide default configurations within their images. Thus, only changed configuration files
are actually stored on local storage.

4.5 Discussion of Runtime Product Lines

4.5.1 Security

To upgrade their device to a higher-level model, an user / attacker can try the following
attacks.

Attacking the TPM

The attacker can try to read out the feature keys of the TPM. The secrecy of the feature
keys depends directly on the secrecy of the ImportTargetKey stored inside the TPM. An
extraction of this key is unlikely if a hardware TPM certified by Common Criteria (usually
using EAL4+) targeting the TCG’s defined Protection Profile for TPMs is used. To further
mitigate the impact of a successful key extraction from the TPM, the vendor could also
rotate the import key with every production batch. This will, however, require the vendor
to provide import-blobs of the sealed feature keys for all of these rotated import keys. In
order to compensate for the latter, the vendor can instead choose to deploy an additional
intermediate key together with the firmware blobs. In this approach, every production
batch would have its own import target key. Each firmware version would then include a
specific intermediate import key that is prepared for importing under all import target
keys. The sealed feature keys would then be encrypted for import under the intermediate
keys. Given a realization with n import target keys, i.e., production batches, and m sealed
feature keys, this would mean that each firmware blob includes one (unique) intermediate
key that is packaged n times for the different import target keys and m sealed feature
keys that are encrypted for the intermediate import key. This is a significant simplification
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compared to the n - m sealed feature key that would be required without an intermediate
import key.

Attacking the unsealed feature keys

To decrypt and mount a feature filesystem, the required feature key is decrypted by the
TPM and transferred to the host CPU. An attacker could sniff on the transmission. This
threat can be mitigated either by physically securing the bus between TPM and main CPU
or by using the TPM protocol’s built-in encryption capabilities. For this, the boot-code of
the device could include the public portion of the import key and use this to encrypt a salt
value during session establishment. Attacks against the host CPU are not addressed by the
presented approach. This includes attacks against the OS kernel or even cold boot attacks.
To address the latter, mechanisms such as full memory encryption could be applied [75].

Attacking a feature-rich model

An attacker could attack a feature-rich model and try to extract an unencrypted firmware
image and inject it into a low-feature device. This attack would require access to the
raw RAM during runtime via a software exploit. To cope with potentially unknown
vulnerabilities, appropriate mechanisms for secure code update should be applied [48].

Manipulation of the model number

An attacker could try to change the model number to a number of a device with more
features. The integrity of the model number depends on the inability of the user to
write to the model number NV index. This needs to be ensured by disallowing TPM2 -
UndefineSpace and TPM2_UndefineSpaceSpecial with Platform-Authorization, which is
supposed to be under vendor-control anyways. In order to mitigate attack potential even
further, the vendor can set TPM2 NV WriteLock on model number explicitly on each
boot.

4.5.2 Extensions

Refurbishment of Devices

In many environments with device product lines, there exists the necessity to refurbish
devices that are e.g. produced but never delivered. This can occur due to canceling of
orders or because a certain hardware feature is defective that is only required for one of
the product lines of the device. In such scenarios, the vendor will refurbish the device
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to a new model by exchanging the chassis or a model number sticker on the chassis and
reconfigure the firmware on the device to the new device type.

In order to support this process with the presented scheme, the policy for the model
number NV index on the device can be set to a policy that allows the vendor (and only
the vendor) to perform write operations on this index. Such a case can be achieved using
a TPM2_ PolicySigned. This policy requires an external entity to sign a challenge from the
TPM in order to perform a certain operation.

Model Number Attestation

Many devices nowadays are provided with the inclusion of additional services, such as
cloud integration. This may, however, be a premium feature that is only activated for
premium devices. The presented scheme of storing the model number inside the TPM
supports such scenarios using the TPM2 NV _Certify command. Using this command, the
vendor’s cloud service can send a challenge to the device and the TPM will certify that
the device has a given model number.

Model Numbering Schemes

The presented approach uses a very simplistic scheme for activation of feature filesystem
for a given model number by querying whether certain bits in the model number are set.
In addition, it is possible to extend these schemes further using a combination of AND
and OR in the policy statements. For example, it is possible to require a (set of) bits to be
zero using the TPM2_ PolicyNV with the operation TPM_EO BITCLEAR. These policies
can then be extended using the TPM2_PolicyOR to enable a certain feature filesystem for
other bit combinations as well.

4.6 Implementation of Runtime Product Lines

The concept was implemented on an Intel NUC D34010WYK equipped with a TPM 2.0
implementation running Ubuntu 16.04 with kernel version 4.4. An Apache and a Samba
server were used as product line element (PLE) examples. For accessing the TPM, a TPM
Software Stack (TSS) implementation of the TPM 2.0 System API [131, 122] was used
together with accompanying bash tools for rapid prototyping.

In the device production phase, the storage root key (SRK) of the TPM is generated,
and the model number is written to the NV-Storage.
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During firmware creation the overlay filesystems is constructed. For this purpose, AUFS
was used.

For every product line, an encrypted SquashFS filesystem is created for overlay mounting.
This filesystem is encrypted using dm-crypt [17] container files. Dm-crypt is a Linux module
used for transparent disk encryption. The AES encryption key of the encrypted SquashFS
filesystem is encrypted with a private asymmetric key. The created TPM object is protected
by a policy testing the flag corresponding to the PLE in the TPM’s NV model number.

For booting a model-specific firmware, the mounting of these filesystems is integrated
into the boot process by using initramfs which makes necessary preparations before
switching to the systemd init process.

A shell script for the creation of the overlay filesystem is added to the bottom stage of
initramfs. Scripts in this stage are executed before procfs and sysfs are moved to the real
rootfs and execution is turned over to the init binary of the rootfs.

The command mount -t aufs -o br=/r/tmps=rw:/r/02_apache:/r/ none
/r/chr/ mounts the overlay filesystem with a temporary top filesystem /r/tmps, the
mounted Apache Squash filesystem /r/02_apache, and the Ubuntu base system root
directory /r to the mount point /r/chr. This overlay is finally mounted over the root
filesystem /r/tmps and the init process is started to boot the system. Since the top
filesystem of the current overlay system is a temporary filesystem, all file changes of the
running system will be temporary. In this example, only the Apache SquashFS is mounted
because the flag for enabling the Samba container was not set. Only the key for the
encrypted Apache SquashFS file system could be unsealed because the corresponding flag
was set. The booted system then produces the same state as during the firmware creation
after the installation of the apache packages. This also includes correct configurations,
since no overrides are provided via a local configuration overlay. A first performance
analysis showed only a negligible delay in the boot process introduced by this concept for
runtime firmware product lines.

4.7 Evaluation of Runtime Product Lines

The approach for secure runtime firmware product lines allows unified firmware images
to be provisioned to a whole series of products while preventing unauthorized activation
of features that belong to a different model instance. Using the features of TPM 2.0
Enhanced Authorization, Sealing, and Importing this scheme can be implemented by
using standard hardware. The TCB for the presented approach now only consists of the
TPM itself as depicted in Figure 4.4. Firstly, the storage was completely removed from the
TCB. Regarding the disallowed activation of features the TCB only consists of the TPM
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Figure 4.4: Trusted Computing Base for Secure Runtime Product Lines

itself. Regarding the disallowed extraction of feature code, the firmware’s OS kernel, that
does the bulk encryption, is part of the TCB. The userland software, that contains has the
large attack surface however is not part of the TCB.

The implementation shows the feasibility of this approach and its integration with a
Linux-based system. Future work includes the extension of the presented approach to
include unified images for hardware product lines, similar to the OpenEmbedded’s Board
Support Packages and the tight integration with the build process of unified firmware
images as well as a thorough performance evaluation using different embedded platforms.
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5 Securing Payment Credentials in Plug and
Charge

As mentioned in the introduction, the most common usage of HSMs / TPMs is the protection
of credentials used for authentication or non-repudiation. This integration can trivially be
implemented using off-the-shelf technologies such as tpm2-pkcs11! or tpm2-tss-engine?.
Whilst the usage of said credential does not pose a challenge, their deployment to devices
in the field does. Furthermore, then integration with existing protocols and standards can
pose a major challenge for these scenarios.

This chapter investigates the deployment process of payment credential for Plug and
Charge scenarios following ISO 15118 called TrustEV and HIP. The contributions in this
chapter build upon my contributions to [56, 54, 53] which include major parts of the
general approach and detail concept.

5.1 Background on Plug and Charge

The automotive industry is shifting away from gasoline powered engines to electric engines.
Besides a common reduction in vehicle range, the biggest difference between those two
approaches comes with refueling. A gasoline powered vehicle can be refueled by the
driver within a matter of minutes — usually at a gas station. Electric cars require a longer
refueling process for their batteries in the range of hours. Thus refueling usually does not
happen at a gas station but distributed over parking garages, public parking, supermarket
parking lots, at work and at home. Other than a gas station these distributed charging
solutions require different payment methods than a human cashier.

The first generation of charging stations used a wide variety of RFID payment cards
and mobile apps, requiring vehicle drivers to have a large collection of contracts and
credentials and requiring manual interaction. In order to unify and simplify this process
(and as such to increase acceptance) the standards for Plug and Charge (PnC) ISO 15118

'https://github.com/tpm2-software/tpm2-pkcs11
2https://github.com/tpm2-software/tpm2-tss-engine
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Figure 5.1: Trusted Computing Base for basic PnC

[79, 80] have been developed. They define the communication protocols between the
Charge Point (CP) and the Electric Vehicle (EV) either via Power-Line Communication
(PLC) in case of wired charging (by hand or with a charging robot [136]) or via WiFi in
case of inductive charging.

ISO 15118 is based on public key authentication and signing using X.509 certificates and
a dedicated Public Key Infrastructure ([80], Annex E). Two major credentials are defined.
Firstly, the OEM Provisioning Credential is installed in each vehicle during production by the
vehicle OEM. This credential serves a a lifelong identity for the specific vehicle. Secondly,
the Contract Credential is used for actual payment of charging processes. The contract
credential is provided by a Mobility Operator (MO) when a driver registers its Provisioning
Credential with said MO - by signing a charging service contract. The Contract Credential
is then downloaded automatically during the first charging of the vehicle.

The process for Contract Credential establishment currently expects the MO to generate
a public private key pair and corresponding certificate. The private key is encrypted
with the provisioning key for protection during the aforementioned downloading. On
the Electric Vehicle Charge Controller (EVCC) the contract private key is decrypted and
subsequently used for billing purposes. This process opens up two weak points. Firstly,
even if the private keys for provisioning and contract keys are protected by a HSM/TPM,
the data format of ISO 15118 for the encrypted private key requires at least a temporary
availability in the EVCC’s main application CPU. Secondly, the private keys are (at least
temporarily) known by the MO backend. A successful attack on the MO (cf. the Sony
hack from 2014 [144]) would give an attacker access to these keys. The leak of these
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credentials poses the threat of impersonation and privacy infringement on the driver.
Furthermore, a successful attack on such systems will reduce trust in and reliance of the
public on this essential technology for the energy revolution.

Figure 5.1 illustrates the corresponding TCBs. The lifecycle is divided in only two phases,
key deployment and the runtime with key usage. The standard implementation from
Figure 5.1a contains the complete device as part of the TCB. Further, since the backend
generates the keys to be imported are also part of the TCB for the deployment process
step. If a trivial HSM integration was attempted — similar to Section 2.2 and Figure 2.4b —
the resulting TCB is illustrated in Figure 5.1b. During key deployment, the whole device
and backend are part of the TCB, but afterwards only the TPM is in charge of enforcing
the security policy.

ISO 15118 security concept relies on the implicit assumption that such leaks do not
happen and that the EVCC and the MO are both protected [11]. The standard however
gives no advice on how to handle those keys. Quite the contrary, the standard requires
the key generation in the backend, whilst the generation and storage of keys in an HSM
would be much more secure; following the recommendations of NIST [12].

This chapter describes TrustEV and HIP, two protocol extension for ISO 15118, where
keys are protected by a TPM within the vehicle. It considers the secure generation, storage,
provisioning/enrollment, use and revocation of OEM provisioning and contract creden-
tials, and thus, address the shortcomings of the current standard regarding credential
management.

With these extensions, private keys never leave the vehicle’s TPM and with HIP only
public keys need to be stored in the backend systems of the Original Equipment Man-
ufacturer (OEM) and Mobility Operator (MO). Thus, even a successful attack on these
backend systems cannot compromise private keys. The protocol extensions are backwards
compatible, i.e., even if intermediary systems such as the Charge Point (CP) do not support
the extension, an Electric Vehicle (EV) and MO can still use it.

5.1.1 PnC Charging Infrastructure

The infrastructure required for EV charging requires the connection of energy production,
energy delivery, the CP networks, the EVs and various service providers. Given this
complexity a variety of approaches have been defined that enable management and billing
in such scenarios [104]. A unification of the concept for Plug and Charge was introduced by
ISO 15118 [79, 80]. These standards specify the communication protocols and interfaces
between the EV and the CP. They include automated identification and authorization of
the EV and automated billing of the EV driver. ISO 15118 defines message and sequence
requirements, data models, and XML/EXI-based data representation format. For securing
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the PnC process the use of TLS, encryption and digital signatures are introduced. The
second edition ISO 15118-20 is currently under development.

The standard defines a set of actors, including mainly the Electric Vehicle Charge
Controller (EVCC) Electronic Control Unit (ECU) of the Electric Vehicle (EV) and the
Supply Equipment Communication Controller (SECC) of the CP. The EVCC and the
SECC handle the communication, authentication and handling of the charging sessions.
Furthermore the SECC communicates with backend systems, including the Charge Point
Operator (CPO) that manages the CP, the Contract Clearing House providing eRoaming
services and the Certificate Provisioning Service and MO that offer credential services.
Finally, the OEM provides the Provisioning Credential (PC) to the EVCC.

While ISO 15118 defines the communication protocols between EVCC and SECC, the
communication between the SECC and the backend systems are not defined. Presumably
Open Charge Point Protocol (OCPP) [3, 4, 5] is used to transfer the necessary data to
the CPO who in turn sends the necessary data to the MO for billing the driver or owner.
The latter might be a direct communication or use a Contract Clearing House eRoaming
service using any of the protocols OCHP 1.4 [96], OICP 2.2 [97], OCHPdirect 0.2 [94],
or OCPI 2.2 [95].

5.1.2 Related Work on Plug and Charge security

Given the increased digitalization and connectivity of modern vehicles, automotive security
is gaining a lot of focus and investment. The risks associated with this shift were very
famously demonstrated in the ‘Jeep hack” in 2015 [59]. But other research analyzing the
attackability of e.g. wireless tire pressure sensors [106], diagnostics ports [91], or remote
attacks [25, 90] demonstrate the need for ongoing and further research in defensive
technologies. The effects of successful attacks were discussed in [83]. They all have in
common that the trust and willingness to rely on these technologies by vehicle drivers are
at stake.

In order to secure confidential data and cryptographic credentials, a set of security
extensions to automotive SoCs have been introduced. The first being the SHE module
[115] by the HIS consortium. Then the EVITA project defined a set of three possible
security extensions for SoCs [138] and the TCG released a profile for automotive TPMs
[121]. The Car 2 Car Communication Consortium released a definition for HSMs for
C2X communication [22]. In order to secure on-board communication, the EVITA project
introduced CAN bus authentication [113] and the AUTOSAR consortium defined SecOC
[10]. For Automotive Ethernet systems, TLS was proposed [143]. The security of these
protocols and the defined security extensions rely upon the implementation of said
extensions. Typically, they are implemented as SoC HSMs that provide no certification for
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the assurance level they provide.

The lack of certification of typical automotive security extensions poses a problem for
billing applications. Consequentially, they may pose a problem for PnC solutions as well.
Even if no regulation exists yet (compared to e.g. the Credit Card industry), user trust
should not be gambled with. An alternative exists with current TPM chips that provide
Common Criteria Certification of EAL4+ and even qualification according to AEC-Q100.

Another reason for using TPMs is the ability for fine-grained access control provided
by TPMs, that are neither provided by SHE or EVITA modules. Also, the proposal of
using TPMs in automotive applications is not new. [141] proposes the use of TPMs for
integrity verification in V2X communication scenarios. The anonymization of users via
Direct Anonymous Attestation using TPMs in PnC scenarios was discussed in [145, 142]
and privacy-aware architectures for vehicle-to-grid communication is discussed in [57]
and [109]. Using TPMs to secure value-added-services in EV charging was introduced in
[20].

5.2 System and Threat Model for Plug and Charge

In the following the actors and protocols of the system and the corresponding threat model
are described.

5.2.1 PnC System Model

/
\

Manufacturing ContractCredinstall ContractCredinstall

] /Update/Usage /Update )
|l “TPM/HSM Evee W Tyfsecc B
Manufacturer H Mobility
(OEM) Electric Vehicle (EV) Charge Point (CP) Operator (MO)

Figure 5.2: System Model [56]
The system model is illustrated in Figure 5.2. It consist of the following actors:

* Manufacturer / OEM: The original manufacturer of the EV. The OEM will install the
OEM Provisioning credential (PC) in the EVCC during production.

* EV: The electric vehicle.

* EVCC: The electric vehicle charge controller. The EVCC performs all PnC communi-
cations on behalf of the EV or the driver.
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* TPM/HSM: The security module that is part of the EVCC ECU. It protects the PC
private key and the CC private key from unauthorized access and performs the
signature and decryption operations using these keys.

* CP: The charge point.

* SECC: The Supply Equipment Communication Controller. The SECC communicates
with the EVCC on the one hand and to the CPO and hence the MO on the other
hand. It also controls access to the charging current of the CP.

* MO: The Mobility Operator. The mobility operator issues the Contract Credentials
and bills the customer based on the charging information gathered by the CPO.

The system includes the following credentials:

* OEM Provisioning Credential (PC): The PC serves as lifelong identity for the EV, stored
inside the EVCC. It consist of a keypair { PCpy;, PCp} and an X.509 certificate
Certpc containing the Provisioning Certificate Identifier and PCyy.

e Contract Credential (CC): The contract credential enables the authentication of the
billing processes for the charging processes. I consists of a key pair {CCpyp, CCpr }
and an X.509 certificate C'ertc¢ including a unique E-Mobility Account Identifier
(EMAID) linked to a charging contract.

* Storage Root Key (SRK): This is a new credential introduced with TrustEV / HIP that
serves as decryption target key for the CC,, / Certcc [125].

The system contains the following steps:

* Manufacturing: The assembly of the EV by the OEM, including the PC installation.

* (CertInstallReq: The certificate install request sent by the EVCC via the SECC and
CPO to the MO. It requests a Certcc downloading.

* CertlnstallResp: The response to a CertInstallReq containing the Contract Credential.

* Charging: The regular charging and billing processes remain unaltered by the
TrustEV / HIP solutions. The EVCC uses the Certcc and CC), —i.e. the TPM — to
authenticate to the SECC and CPO and to sign off the billing information. This part
remains unaltered by TrustEV / HIP compared to a naive HSM solution

5.2.2 PnC Security Policy and Threat Model

The basic security policy to be implemented by the TrustEV / HIP approaches is the
protection of the private keys PC,, and CC),. With those keys secured, an attacker is
only able to perform attacks via the application code of an EVCC by tunneling all traffic
to the target and hav data be signed continuously during a charging session. However,
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the attacker is not able to perform impersonation attacks without live access to the victim
and a software update to the victims EVCC allows a mitigation of this attack path without
reissuing of credentials (cf Figure 2.4).

The threat model assumes an adversary that is able to gain physical or remote control
of an EVCC module of a target’s EV. As such he/she can read all data at rest and all data
in RAM of the EVCC application CPU. The adversary cannot gain access to encrypted data
unless he/she has knowledge of the decryption key. The adversary cannot gain access to
the TPM-internal RAM and storage.

In case of the HIP approach, the adversary may even be able to gain access to the MO’s
backend system and retrieve customer credentials from there; not however the MO’s own
PKI private key.

5.3 TrustEV: A concept for Secure ISO 15118 Key Distribution

The general idea of TrustEV is the integration of TPM functionalities into the concept
and flow of ISO 15118 with only minimal changes to the protocol. These changes only
change encrypted data such that only the EVCC, the OEM and the MO require to know
this approach. An intermediate SECC or CPO are not required to be TrustEV aware.

The main benefit will be the enabling of the TPM import features during the ISO 15118
Contract Credential downloading. As such the EVCC’s application CPU is removed from
the TCB for the CC),. Additionally, the usage of the C'C,, can be restricted with the TPM’s
Enhanced Authorization policies, for instance binding it to measured boot states.

5.3.1 TrustEV architecture
TrustEV components

The EVCC serves the communication with the CP, CPO and MO in order to authenticate
the charging process and billing information. For TrustEV it is extended with a hardware
TPM 2.0 that shall secure all credentials of the EV.

The OEM initialized the EVCC and its TPM with the application software and necessary
initial keys. These keys are the so-called Storage Root Key (SRK) that is used as storage
decryption key for protecting all other private keys and also used as target for the import of
credentials. The OEM further establishes the OEM provisioning key pair in the TPM, which
is generated inside the TPM itself for the most secure version. The OEM also deploys the
provisioning certificate to the EVCC including the TrustEV certificate extension TrustEVExt.

An MO capable of the TrustEV approach evaluates the PC certificate for the TrustEVExt
X.509 extension. If such an extension is found the MO will encrypt the Contract Credential
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Storage Root Key (SRK)
[RES TRICTED, DECRYPT, USERWITHAUTH,
FIXEDTPM, FIXEDPARENT ]

Storage Key (SK-20) [SHA-1,
RESTRICTED, DECRYPT, USERWITHAUTH]

1O 15118.20 L Contract Key [SIGN, DECRYPT] |

OEM Provisioning Key [SIGN, DECRYPT,
FIXEDTPM, FIXEDPARENT)

| Contract Key [SIGN, DECRYPT] |

Figure 5.3: TrustEV Key Hierarchy [56]

private key in a TPM import blob instead of the regular plain encryption as defined by
ISO 15118. If no extension is found then the MO will behave in an ISO 15118 compliant
regular way; thus preserving backwards compatibility. A non TrustEV capable MO will
ignore the TrustEVExt since it is non-critical and perform a regular ISO 15118 process. The
latter compatibility modes will of course not benefit from the added security of TrustEV.

As such the TrustEV approach requires the OEM and EVCC as well as the MO to be
aware of the extension. The TrustEV will remain transparent to all other components.
Especially the unencrypted parts of ISO 15118 messages remain unaltered.

TPM Key Hierarchy

The hierarchy of keys inside the TPM is depicted in Figure 5.3. The top most key is the
Storage Root Key (SRK) {SRK ., SRK,,}. It is an asymmetric restricted decryption key
that is used for storage operations. It is derived from seed inside the TPM and a device
secret. The SRK is used to en-/decrypt other key material for storage outside of the TPM
as well as for decrypting keys to be imported into the TPM.

The OEM Provisioning Key is stored under the SRK. It serves for signing CertInstallReq
messages as well as decrypting Contract private keys in original ISO 15118 operation
mode. The SK-20 is another storage key with a different name algorithm, since ISO
15118-20 will offer more space for transport of the encrypted key.
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OEM Provisioning Certificate

Version:

X.509v3 (0x2)

Serial Number:

12345 (0x3039)

Signature Algorithm:

ecdsa-with-SHA256

Value:

Issuer: CN=0EMSubCA2, O=ISO, C=US
Validity Not Before: May 7 08:40:32 2019 GMT
Not After: May 6 08:40:32 2021 GMT
Subject: CN=0OEMProvCert, O=ISO, DC=0OEM
Subject | Public Key: OCTET STRING
Public | Algorithm: id-ecPublicKey
Key Info| Parameters: namedCurve secp256r1
Basic
Constraints:*© CA:FALSE
Key Usage:© Digital Signature, Key Agreement
X500v3 | Liect KeY keyldentifier (SHA-1)
Exten- TPM 2.0 EC Storage Root Key (SRK 1)
sions 512 bit OCTET STRING
TrustEV TPM 2.0 SHA256 Policy Digest
Extension:"® 256 bit OCTET STRING
¢ | TPM 2.0 EC Storage Key (SK-20,,p)
& 512 bit OCTET STRING
SignatureAlgorithm: ecdsa-with-SHA256

OCTET STRING

Figure 5.4: Provisioning Certificate with TrustEV Extension [56]
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TrustEV Certificate Extension

The TrustEVExt X.509 extension defines a non-critical extension to the OEM Provisioning
Certificate. It is non-critical in order to allow backwards compatibility with TrustEVExt
unaware MOs. Figure 5.4 illustrates this extension.

The extension contains all necessary information for the MO to construct the import blob
for the Contract private key C'C,,. The Storage Root Key SRK,;, is used for encrypting
the blob. The Policy Digest represents the policy that shall be associated with the CC,,
according to the OEM. (Note that the MO only need to know the digest of the policy.
The EVCC knows the actual policy represented by said hash. See Section 2.4.3 for more
information.)

In case of the original ISO 15118 specification this same extension needs to be added
to the contract certificate as well, since it allows Contract Credentials to be used for
CertlnstallReq calls. Starting with ISO 15118-20 only OEM Provisioning Certificates are
used for CertInstallReq calls and Contract Credential Certificates can be used unaltered.

5.3.2 TrustEV Process and Protocols

This section describes the processes and protocols of TrustEV regarding manufacturing,
contract certificate generation, installation and upddate, and credential usage.

EV / EVCC Production

During production the OEM initializes the TPM by generating the SRK and reading out the
public key S RK,,;, and the Provisioning Credential key pair { PC,,,;;; PC), } under the SRK.
The PC keypair can be associated with an additional TPM policy such as TPM2 PolicyPCR
or TPM2_PolicyAuthorize. The SRK,,,;, and the digest of the TPM policy are both included
in the TrustEV extension for the Certpc certificate generation. The Certpc is signed by
the OEM CA that is part of the ISO 15118 PKI.

Contract Credentials Generation

The MO validates the correctness of the C'ert pc and extracts all the necessary information.
The MO generates a key pair {C'Cy,,; CCp, } for the user. It then creates the corresponding
X.509 Contract Certificate Certcc that contains the C'Cy,,,, EMAID, and (in case of ISO
15118 and not ISO 15118-20) a copy of the TrustEV certificate extension field from the
Certpc.

Next, the C'C), needs to be encrypted such that it can be imported into the TPM. The
CC,, is encoded in a TPM private key structure that includes the algorithm ID (ECC), an
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Figure 5.5: Encrypted Contract Key for Direct Import [56]
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"CC,y, imported"

Figure 5.6: Installation of Contract Credentials [56]

empty authorization value, a seed value (that is not used for this type of key) and the
actual private key C'C),.. This sensitive area is encrypted using a symmetric key SKpry _ 0.
This key is derived from an new (ephemeral) keypair D H Key,, and the SRK,;. Finally,
an HMAC is prepended. The resulting data structure is depicted in Figure 5.5 and follows
the scheme for TPM key duplication [127] Chapter 23.3.2.3 “Duplication Process with
Outer Wrapper and No Inner Wrapper”.

This data structure is used instead of the regular ISO 15118 encrypted private key.
Since it is opaque to all intermediate nodes besides the EVCC, the protocol messages do
not need to be altered.

Installation and Update of Contract Credentials

The communication between the EV’s EVCC and the CP’s SECC is always started with a
TLS channel establishment. During this, the SECC authenticates itself (as the TLS server).
All subsequent communication is sent through this one-side authenticated channel. The
following will ignore the TLS channel and only describe the messages sent over this
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channel, since it does not contribute to the security of the certificate installation process.

The sequence of messages are depicted in Figure 5.6. The EVCC creates a CertInstallReq
message targeted at the MO. It calls the TPM to sign this message using the PC),. In
order to have the TPM perform this operation the policy associated with the PC,, has to
be fulfilled, e.g. the integrity of the EVCC firmware. The signed CertInstallReq together
with the Certpc are sent via the SECC and CPO to the MO.

The MO generates a Contract Credential key pair with an encrypted private key as
described in the previous section. Further the MO creates a Contract Credential certificate
and sends all these back to the EVCC.

The EVCC then imports the C'C), into its TPM and stores the resulting keyblob alongside
the certificate. Then the Contract Credentials are ready to be used by the EVCC.

In case of an update instead of installation the process is exactly the same for ISO
15118-20. For the original ISO 15118, the EVCC can use the previous contract credential
and certificate for the CertInstallReq in place of the Provisioning Credential.

Legacy Installation and Update of Contract Credentials

In case an MO does not support TrustEV, the non-critical certificate extension included in
the received Certpc (or Certce in case of an update) is ignored and the generation of
Contract Credentials stays unchanged from ISO 15118. The resulting encrypted private
key is decrypted by the EVCC’s TPM and returned back to the EVCC. Then it can be
imported into the TPM as plain private key. As such, the private key is revealed to the
EVCC RAM during the installation process.

If an EVCC does not support the TrustEV approach, it will send a regular CertInstallReq
to the MO. The MO can detect such an EVCC since the TrustEVExt certificate extensions
are not present in the Certpc. It can then proceed with the usual ISO 15118 process.

Contract Credentials Usage

In order to use the Contract Credentials the EVCC sends the data to be signed to the TPM.
It further needs to satisfy the E/A policy associated with the C'C),,. The returned signature
can then be used in the ISO 15118 message as usual.

5.4 HIP: A concept for secure ISO 15118 Plug and Charge

An analysis of TrustEV shows that even though the security is greatly enhanced compared
to the usual ISO 15118 approach, one additional requirement is not fulfilled. That
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Figure 5.7: Contract Credential Provisioning

requirement is the confidentiality of the private key from the MO, thus the removal of
the MO from the TCB. Hence, a successful attack on the MO backend would render the
security of many private keys void.

Thus another extension to ISO 15118 is developed and explained in this section. This
new extension HIP “HSM-based Identities for Plug-and-Charge” require minor modifica-
tions to the PnC protocol but for the benefit of allowing complete confidentiality of the
private keys, even from the MO.

5.4.1 General Idea of HIP

The idea of HIP as opposed to regular ISO 15118 and TrustEV is to generate all key pairs
inside the TPM such that the private keys are never known by any other entity. This shall
be especially true for the Contract Credentials. Figure 5.7 illustrates this basic difference.
As a consequence, the HIP-enabled approach is not compatible with ISO 15118 anymore,
but requires a revision to ISO 15118.

The creation of SRK and PC are the same as with TrustEV. The SRK now does not
serve as import key anymore but as activation key for the Contract Credential certificate
Certcc. The EVCC uses its TPM to generate a Contract Credential key par and sends
a CertInstallReq containing the public key C'C),; to the MO. The MO then generates a
Certificate Certcc and encrypts it in such a way that only a TPM that contains the SRK
as well as the CC),. will decrypt it. This so-called credential activation process can then
ensure that the requesting EVCC TPM is authenticated a posterior once it presents its
Certoco.

Of course, HIP also supports the abilities of TrustEV to associate TPM Enhanced Au-
thorization policies with the PC as well as CC private keys. Such policies could reference
integrity values for the EVCC firmware or require authorization of the EVCC against the
TPM.

The changes to ISO 15118 are the presentation of the C'C,,,;, in the CertInstallReq and the
sending of an encrypted certificate instead of encrypted private key in the CertinstallResp.
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Also the PC certificate extension (similar to TrustEV) is needed. Thus, the EVCC, OEM
and MO need to be aware of the HIP approach and the SECC and CPO need to forward
the altered messages.

5.4.2 Definition of Components and Processes
TPM 2.0 Keys

In the HIP approach, all keys used for EV authentication are generated inside the EVCC’s
TPM. Their attributes are listed in Table 5.1. Most notable, the CC keys now also have
the attributes sensitiveDataOrigin, fixedParent and fixedTPM, indicating that the key is
only ever known to the TPM. The TPM2_PolicyAuthorize serves as a placeholder for OEM
definable policies for key usage; such as checking the EVCC firmware integrity.

| Attribute | SRK | PC and CC \
type: TPM2_ALG _ECC TPM2_ALG_ECC
nameAlg: TPM2_ALG SHA1 TPM2_ALG_SHA256
objectAttributes: | fixedTPM, fixedParent, fixedTPM, fixedParent,
restricted, decrypt, noDA, sign, decrypt,
sensitiveDataOrigin, userWithAuth | sensitiveDataOrigin
authPolicy: n/a TPM2_PolicyAuthorize
curvelD: TPM2_ECC_NIST P256 TPM2_ECC_NIST P256

Table 5.1: Public Area Attributes of the TPM 2.0 Keys [53]

The hierarchy of keys is the same as that of TrustEV depicted in Figure 5.3. If HIP is
used as extension for current ISO 15118 then SHA1 needs to be used as the nameAlg.
Otherwise the encrypted certificate exceeds the CertInstallResp maximum message size.
If HIP is used as extension for the next generation ISO 15118-20 then SHA256 can be
used as nameAlg, since the maximum message size has been increased. The use of SHA1
is however still considered secure since the nameAlg here does not rely on the collision
resistance [12].

ISO 15118 certificate installation/update request message

The CertInstallReq and CertUpdateReq messages need to be extended by the public key of
the TPM generated Contract Credential key pair C'C),;. This new field PublicContractKey
contains the 64-octed Base64 string representing this public key. Alternatively, it is being
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V2G_Message Body

CertlnstallReq Id="ID1"
OEMProvisioningCert: Certpc
ListOf RootCertificateIDs
RootCertificateID
X509IssuerName: ...
X509SerialNumber: ...
PublicContractKey: C'Cpyp

Figure 5.8: Extension of the ISO 15118 CertInstall Req message [53]

discussed to use a Certificate Signing Request (CSR) in this field to carry the public key is
a more PKI-CA friendly format. Figure 5.8 shows these extended messages.

Compatibility with regular ISO 15118 SECCs can be retained. ISO 15118 includes a
protocol negotiation procedure where the major and minor version numbers are matched.
In case the minor version number mismatches whilst the major version number matches,
the SECC is supposed to ignore and forward unknown data elements sent by the EVCC
([80], Section 8.2.1).

Certificate Extension

The OEM Provisioning Credential certificate Certpc is extended with the information
needed by the MO to create the encrypted Certcc. Namely these information are used in a
TPM2_ActivateCredential command. This information includes the public key CC,,;, the
nameAlg as we define it, the SRK key and the policy digest of the policy to be associated
with the CC),. The SRK,,; is used for encrypting the Activate Credential data structure.

The remainder of these certificates are not altered and follow the certificate profiles
specified in ISO 15118 [80], Annex F.

5.4.3 Integration of HIP in the ISO 15118 Protocol Flow
EV / EVCC manufacturing

The manufacturing process for HIP is exactly the same as with TrustEV, see Section 5.3.2.

Contract Credential Installation/Update

The Contract Credential provisioning process is depicted in Figure 5.10. The EVCC starts
by generating a Contract Credential key pair in its TPM. It them constructs a CertInstallReq
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OEM Provisioning Certificate (Certpc)
Version: X.509v3 (0x2)
Serial Number: 12345 (0x3039)
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN=0OEMSubCA2, O=ISO, C=US
Validity Not Before: May 7 08:40:32 2019 GMT
Not After: May 6 08:40:32 2021 GMT
Subject: CN=0OEMProvCert, 0=ISO, DC=0EM
Subject Public Key: OCTET STRING (PCpy)
Public Algorithm: id-ecPublicKey
Key Info Parameters: namedCurve secp256r1
Basic Constraints:© CA:FALSE
X509v3 Key Usage:© Digital Signature, Key Agreement
Exten- TPM 2.0 EC St.orage Root Key (SRK )
sions TPM 2.0 512 bit OCTET STRING
Extension:™¢ TPM 2.0 SHA256 Policy Digest (Pol)
256 bit OCTET STRING
Signature Algorithm: ecdsa-with-SHA256, Value: OCTET STRING

Figure 5.9: Provisioning Certificate with Custom Extension [53]

message containing the public key of this key pair. The CertInstallReq is then sent to the
TPM for signing using the OEM Provisioning Key. The CertInstallReq message, together
with the Provisioning Credential certificate, are send to the MO.

The MO verifies the CertInstallReq signature and extracts the C'C,,,;, public key for the
to be created Contract Credential. It also extracts the SRK,,;, and policyDigest from
the Certpc. Using this data the MO creates a Contract Credential certificate Certoc.
The MO then performs a TPM2_ MakeCredential operation, where a Shared Secret SK is
generated that is used to encrypt the certificate. The SK is thereby embedded in a structure
containing the identifier of the C'C), with all its TPM attributes (such as policyDigest)
and is encryted using the SRK,,;,. These two encrypted blobs are sent to the EVCC.

The EVCC passes the encrypted SK to the TPM. The TPM will decrypt it using the
SRK,, and validate that the included hash references C'C,, alongside the C'C,, object
attributes. Only then will the TPM return S K to the EVCC that in turn can decrypt Certoc.
Now and only now has the Contract Credential been activated and is ready to use. If an
adversary tried to send a software key to the MO, or a TPM key with different attributes
(such as being exportable, or being generated outside the TPM) the TPM would deny the
release of SK and thus the activation of the Certcc.

If an MO would decide not to support the HIP extension, it would ignore the non-critical
fields in the C'ertpc and the additional field in the CertInstallReq and issue a regular CC
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Figure 5.11: Test-bed Setup

key pair and certificate.

Contract Credential Usage

In order to use the Contract Credentials the EVCC sends the data to be signed to the TPM.
It further needs to satisfy the E/A policy associated with the C'C,,,. The returned signature
can then be used in the ISO 15118 message as usual.

5.5 Implementation of TrustEV and HIP

Both TrustEV and HIP were implemented in [56, 53] using two Raspberry Pi 3B for EVCC
and SECC. The EVCC was equipped with an Infineon Iridium 9670 TPM 2.0 chip and the
PLC communication between the nodes was implemented using two PLC Stamp micro 2
EVBs. Figure 5.11 shows a picture of the setup.

For implementation, the ISO 15118 stack RISE V2G was used and the TPM2-TSS
libraries were used for communication with the TPM. THe MO was also implemented on
the SECC-Pi.

As policy for the PC),. and C'C),, a TPM2_PolicyAuthorize was used with a signed policy
containing a TPM2_PolicyPCR. The whole system could be demonstrated as feasible proof
of concept implementation and the amount of adaptations, as described in the concept,
could be verified.
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5.6 Evaluation of HIP

5.6.1 Security Discussion

Given the usage of a TPM and the integration into ISO 15118 based on the HIP approach,
the security of the overall system could be greatly enhanced. The following analysis of
fulfilled security requirements stems from [53]:

1.

Secure key generation: OEM provisioning key pair PC and contract credential key pair
CC are both generated by the TPM (using the TPM’s random number generator) and
stored “under” the SRK (cf. Section 5.4.3 and 5.4.3). Assuming the key generation
of the used TPM is implemented correctly, security requirement 1 is fulfilled.
Secure key storage: As described in Section 5.4.2, PC and CC (and also SRK)
carry the attributes fixedTPM and fixedParent preventing the export of private keys.
Thus, only PC,,,;, and C'Cy,;, can be exported and transmitted to other parties, e.g.,
backend systems. The private keys are securely stored in the TPM’s shielded location.
Thus, neither a backend hacker nor a car hacker can read out private keys and
security requirement 2 is fulfilled.

. Secure cryptographic operations: Security requirement 3 is also fulfilled, since the

critical private keys are only used in the shielded area of the TPM and cannot be
exported.

Key usage authorization: Security requirement 4 is fulfilled because the TPM checks
the security policy every time a private key (OEM provisioning private key or con-
tract certificate private keys) is accessed. By setting the policy TPM2_PolicyPCR
(cf. Section 5.4.2), access to keys is only possible if the EVCC is in a trustworthy
state.

. Cryptographic agility: The TPM 2.0 is specified with a cryptographically agile inter-

face. Modern TPMs already support multiple algorithms without any changes to the
interaction model. Key lengths and algorithms can be chosen by simply altering the
input structure. HIP works independently of the selected cryptographic algorithms.
Insecure cryptographic algorithms can be easily exchanged. In rolled out system:s,
this would either require updating the firmware of the TPM or, if this is not possible,
replacing the TPM. Security requirement 5 is fulfilled.

Trustworthy credential enrollment: The EVCC can only decrypt its Certcc if the
corresponding contract key was generated in the same TPM as the SRK and sealed to
the defined policy (cf. certificate extension in Figure 5.9) and also has the expected
attributes (cf. Table 5.1). For a successful attack, an adversary would need to
compromise the MO backend and to illegitimately control the TPM (e.g., by a run-
time attack) for en-/decrypt Certoc (e.g., with non-trustworthy parameters). This

61



attack vector is more complicated than a direct MO backend misuse and thus beyond
the adversary model. Security requirement 6 is fulfilled.

5.6.2 Discussion of Functional Requirements

Furthermore, the following functional analysis of the HIP approach was presented in [53]:

1. Minimal overhead: To show 1 is fulfilled, the communication and computational
overhead is analyzed. The goal was to stay within the limits defined by ISO 15118,
which is fulfilled in all cases.

* With respect to the communication overhead, the field for Certcoc is limited to

800 bytes and the field for encrypted contract keys is limited to 48 bytes. In
this implementation, the encrypted Certcoc including the IV is transmitted in
the certificate field. It requires 608 bytes. The encrypted AES session key SK,
transmitted in the contract key field, requires 38 bytes®. Note that the
upcoming edition ISO 15118-20 increases the limit for encrypted contract keys
to 64 bytes. This would allow the use of SHA256 for the SRK with an effective
size of 50 bytes for the encrypted SK.

The computational overhead shall not result in exceeding timing parameters
defined by ISO 15118 (cf. [80], Table 109). The maximum time between an
EVCC’s CertInstallReq message generation and the corresponding response is
4500 ms. Thus, the additional operations required by our protocol extensions at
the MO should not be too time-consuming. The measurements were repeated
100 times using Java’s System.nanoTime(). On average, it took 452.5 ms
between CertlnstallReq and the its response and never exceeded the maximum
value. Note that, even though our measured times are arguably far higher
than the expected values from a real MO, as our implementation is mostly in
Java and runs on Raspberry Pis, our implementation still managed to stay far
below the required performance time. Thus, any real-world implementation
should not cause protocol incompatibilities, even assuming a much greater
round trip times between the actors. Our protocol extension also introduces
additional overhead by using the TPM from the EVCC, which falls within
the EVCC sequence performance time of 40000 ms. The time for the entire
certificate provisioning process is measured, between the start of signing the
request and the end the decryption of the received Certcc (cf. Figure 5.10)
100 times. The maximum value was never reached and the average value was

320 byte HMAC and 18 byte encrypted (SKji..||SK), required by the TPM.
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with 5385.1 ms — far below the maximum value. In addition, the time for
signing a PnC authorization request with the TPM using CC), (including the
policy assertion) individually was measured, which was 753.3 ms.

2. ISO 15118 conformance: Our protocol extension slightly alters the ISO 15118 proto-
col to increase security. The request message is changed and a minor protocol version
number introduced. The fields in the response message are refined. The protocol
message flow remained unchanged. Since these minimal changes are required to
substantially increase the security, the functional requirement 2 is also fulfilled.

3. Backwards compatibility: Since HIP does not change the general ISO 15118 message
flow and the introduced certificate extension is marked as non-critical, interme-
diate nodes (e.g., the SECC) simply forward the messages ensuring backwards
compatibility. Thus, functional requirement 3 is fulfilled.

5.7 Conclusion on Secure PnC

o —— Trust Boundary o —— Trust Boundary
Ny~ TCB R\ zn  TCB
T D T O
T N T AN
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=y =5
= =
I [
7 & & &
& &
X ¢
Key Deploy Runtime Key Deploy Runtime
Device Life Cycle Device Life Cycle
(a) TrustEV (b) HIP/HIP-20

Figure 5.12: Trusted Computing Base for basic PnC

This chapter describes the concept, prototypical implementation, and evaluation of
HIP, a protocol extension for ISO 15118 to enable secure key generation and usage in an
HSM (in form of a TPM) within the vehicle. With our solution, the (private) keys of the
OEM provisioning certificate and the contract certificates are generated and used only
within the secured area of the TPM. It ensures backwards compatibility, i.e., entities which
do not support the extension can still use the regular ISO 15118 mode. The introduced
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protocol changes are all not critical and the introduced additional overhead is still within
the constraints defined by ISO 15118. The protocol extension could be integrated in
future versions of the ISO 15118 to improve the protection of (private) keys.

As depicted in Figure 5.12, both TrustEV and HIP reduce the TCB by having only the
TPM on the client device be part of the TCB. The difference between TrustEV and HIP
becomes obvious on the inclusion of the Mobility Operator as part of the TCB in TrustEV
whilst in HIP the MO only issues the certificate but does not create or ever know the key.
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6 Time-based Unidirectional Attestation for
Audit Logging

This chapter presents two approaches using hardware security modules to retrieve trusted
measurements of devices. The second of those is proposed as a solution for time-based
attestation statements using TPM 2.0. It consists of a synchronization phase between
an TPM’s internal clock and a global real-time clock and of attestation-tokens that are
constructed against the TPM’s internal clock. In comparison to earlier approaches (TUDA
v1) that were designed for the hardware security module TPM 1.2, the approach in this
chapter makes use of new feature-sets of TPM 2.0 which allow for a simpler and more
efficient protocol and implementation. This work is an extension to my work in [43, 116]
and the extensions in [55].

6.1 Background on TUDA based Audit Logs

Dedicated crypto-processors, i.e. hardware security modules (HSM), provide the basis for
trusted measurements about the endpoint (“any computing device that can be connected
to a network” [118]) they are installed in. This mechanism can be used to attest the
identity of an endpoint and even the integrity of running software on an endpoint to a
remote party. Typically, such remote attestations are conducted using protocols based
on a challenge-response procedure in order to ensure freshness and/or recentness of the
attestation. Unfortunately, the necessary bi-directional communication is not feasible in
every usage scenario. The current trend in the IETF and W3C to employ REST interfaces
in the IoT domain [31], or the goal to leverage established interfaces, such as SNMP,
in the domain of network equipment would benefit from a protocol that requires only
uni-directional communication since they do not offer parameterized Remote Procedure
Calls.

For the analysis in this thesis the focus lies on the capabilities for audit logging of
the integrity state of platforms, rather than the application to live peer-to-peer remote
attestation. The security policy is that the integrity state of a platform shall be auditable
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for a long time even after the point in time that was attested. This is typically done
by having a verifier performing peer-to-peer attestations and storing them in a secured
long-term log; OpenCIT (formerly OpenAttestation [73]) is an example for this approach.
This however makes the verifier part of the TCB for attestation statements as depicted in
Figure 6.1. A relying party cannot revalidate any of the attestation statements afterwards
or especially in the distant future. On the device itself, we see that the TCB consists only
of the TPM’s Roots of Trust, where the Core Root of Trust for Measurement (CRTM) is
one of them, implemented as part of the early boot code of the CPU.
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Figure 6.1: Trusted Computing Base for Verifier-driven Integrity Audit Logs

The time-based uni-directional attestation (TUDA) protocol is based on the general idea
initially presented in [116] and further refinement of these concepts that are currently!
evolving in the Internet Engineering Task Force (IETF) [55]. The essential principle of the
TUDA protocol is built on time-based attestation statements about the integrity status of
the attestee for a certain point in time. TUDA uses a Time Stamp Authority (TSA) that
is available to both parties of the remote attestation — the attestee and the Verifier — to
synchronize the TPM’s internal clock with a UTC clock. Using regular regeneration of
attestation statements, this approach derives almost equal recentness properties compared
to regular challenge-response schemes.

While the approach presented in this chapter can leverage any HSM that satisfies the
requirements of TUDA, currently the Trusted Platform Module specified by the Trusted
Computing Group provides the required features. As a consequence, the term Hardware
Security Module is used in this chapter when general characteristics and features are
illustrated and the term Trusted Platform Module is used when specific functions and

'https://datatracker.ietf.org/doc/draft-birkholz-rats-tuda/04/
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procedures are described, respectively.

Attestee Verifier 1 Verifier 2 Verifier 3

Request(Noncel) [1 Request(Nonce2) [ ] Request(Nonce3)

Quote(Noncel,PCR)
Quote(Noncel,PCR)

— Quote(Nonce2,PCR)

Quote(Nonge,PCR)

— Quote(Nonce3,PCR)

Figure 6.2: PTS-like Attestation

The capability to provide trusted measurements about an endpoint is an essential build-
ing block to enable automation of security decision [114],[14]. Existing solutions for
endpoint assessment, such as the Network Endpoint Assessment protocol [118] or the
use of the Open Vulnerability Assessment Language [140] focus on the acquisition and
evaluation of collectable endpoint attributes [13]. It is vital to increase the trustworthiness
of providers of information. Their assessments serves as a basis for security automation;
especially if an end point’s configuration and state is self-reported by the target endpoint
(the “endpoint of interest” [13]). In combination with, for example, secure boot mecha-
nisms [68], an attested source of target endpoint attributes can provide the basis for basic
automated security decisions without the need of human interaction.

While the required building blocks for production solutions, e.g. appropriate HSM [61,
62, 63] and remote attestation protocols such as the Platform Trust Service (PTS) [119]
already exist or start to emerge [126], [112], they focus on traditional enterprise usage
scenarios [74]. Parallel execution of multiple invocations can only be executed in order,
leading to time delay, see Figure 6.2. New architectures are being developed to deploy
and manage constrained devices on a very large scale [124], some of which include large
numbers of devices that are not owned by customers. This is the case in some usage
scenarios of software updates, such as [14]. These devices require both more lightweight
HSM and more lightweight attestation protocols due to the constrained resources available;
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most prominently power consumption and network bandwidth.

A protocol that enables target endpoints to attest themselves without the need of a
bi-directional communication channel also allows for the use of broadcast and multicast
transports, or enable the use of new technologies such as the IEEE 802.11p [81] car-2-car
or car-2-infrastructure communication.

A prominent example of a domain in which a challenge-response mechanic is not feasible,
is the Web of Things in the context of the W3C [137]. Communication between devices
in the Web of Things is typically facilitated via Representational State Transfer (REST)
interfaces. The stateless nature of these interfaces is a guiding principle for corresponding
protocols and data exchange procedures. While it is possible to map a challenge-response
mechanism to REST interfaces, e.g. by creating separate REST endpoints for each RPC,
this approach would conflict with the intent of the REST architecture specifically not to
include RPCs in its architecture.

The work presented in this chapter is a significant improvement compared to the
approach TUDA v1 presented in [116]. TUDA v1 for TPM 1.2 requires the use of a key
hierarchy with two keys. The lower key is a restricted keys that needs to be regenerated for
each change of PCR values. The TPM 2.0 allows for less overhead in regard to transferred
data and reduction of computing time required from the HSM by merely requiring one
key in total. Also note, that since TPM 2.0 is a backwards-incompatible re-engineered API,
that TUDA v1 cannot be used for TPM 2.0 based systems.

At the same time, the advantages of TUDA v1 in comparison to challenge-response
based attestation protocols are retained. A prominent example of a challenge-response
based attestation procedure also utilizing a TPM is the PTS Attestation Protocol of the
Trusted Computing Group (TCG) [119]. The PTS protocol allows to select which aspects
of a remote endpoint a Verifier wants to evaluate. The specification defines a local service
running on the Attestee (the Platform Trust Service) and corresponding interfaces to
measure the target endpoint itself and to provide an attestation capability to remote
Verifiers. The approach presented in this chapter does not focus on the acquisition of
measurements on the Attestee. The same measurement procedures that are used in the
Attestation PTS Protocol are also used with TUDA. The contribution of this chapter focusses
on a data model that can be transported using several existing interface architectures,
such as RESTCONF.

6.1.1 TUDA v1

The time-based uni-directional attestation (TUDA) presented in [55, 116] uses a trusted
source of time — a Time Stamp Authority (TSA) that can produce trusted Time Stamp
Tokens (TST) — to eliminate the need for a challenge-response. In a REST architecture,
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for example, if the same TSA is available to both parties — the Verifier and the Attestee
— the remote attestation between them can be conducted using only GET but no POST
operations (if the Verifier initiates the remote attestation) or only POST but no GET
operations (if the Attestee initiates the remote attestation).

Additionally, the TUDA protocol relies on the capability of an HSM included in the
Attestee to operate on restricted keys. Whenever a measurement stored in an HSM
changes, a new restricted key is created by the HSM that can only be used as long as the
current measurement value stored in the HSM is not changed by an updated measurement
value. Restricted keys are temporal keys that are generated by the HSM internally and
their validity is based on measurements stored inside the HSM. The TPM specified by the
TCG satisfies these requirements.

TUDA transfers six chunks of information, called Information Elements (IE). The IEs
are the content that is transported from the Attestee to the Verifier. The term freshness
property in this context refers to the size of the time-window during that it is safe to
assume that the values of the IEs are still valid. An IE that is still valid inside its specific
time-window is referred to as fresh. The information contained in all IEs combined could
be sent en-bloc with every remote attestation, but this is not necessary if the state of some
of these IE is still fresh, see Figure 6.3.

Analogously, TUDA defines specific events at which the values of one or more IE change.

* Setup: TUDA is conducted the first time between Attestee and Verifier. Setup
also occurs when the Identity Key Certificate of the Attestee or the TSA Certificate
changes (see Figure 6.3).

* Initialization: the integrated HSM is reset after completing a boot-cycle (see Figure
6.3).

* Synchronization: due to clock drift, the relative time of the HSM integrated in the
Attestee has to be anchored with the absolute time of the Verifier (see Figure 6.4).

* Measurement Change: the measurements stored in the HSM change and restricted
keys have to be renewed (see Figure 6.4).

After each event a set of fresh IE has to be transmitted to the Verifier in order to
successfully conduct an attestation.

In the following, each of the IEs are explained in more detail, and their core information
is depicted in pseudocode. Note that the actual data structures are more complex than
depicted here and may contain additional information that is not relevant for this use
case.
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Attestee Verifier
[]
Setup) (executed once)
TSA-Cert
AIK-Cert

Initialization ) (after boot)
— boot

— Create Sync-Token

— Create Restricted Key

— Certify Restricted Key

Initial data retrieval) (after boot)

Sync-Token

Certify-Info

Measurement Log

Store
Continuous attestation) (repeatedly)
Attestation .
Verify
Attestation .
Verify

Figure 6.3: TUDA vl initial attestation

TSA Certificate An IE that includes a digital certificate for the key used by the timestamp
authority (TSA) [2] issued by the TSA’s Certificate Authority. This certificate establishes
the trust into the timestamps that are used to synchronized the TPM’s clock with a
global universal time clock (UTC). This IE only has to be transported with the first TUDA
conducted between the Verifier and the Attestee or if the TSA changes.

TSA-Certificate :=
X.509-Certificate(TSA-Key, TSA-Flag)
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Attestation Identity Key Certificate An IE that includes a digital certificate about an
identity key that is generated by the HSM internally (e.g. a TPM Attestation Identity Key —
AIK) signed by a certificate authority. This key forms the identity basis for the attestations.
Furthermore, the certificate must denote that the certified key is an AIK key. This means
that the key cannot be used to sign arbitrary externally provided data. This allows the
key to be used for signing special TPM-internal data structures, such as the Restricted
Key Token. This Key is included in a certificate and may be a IEEE 802.1ar-like IDevID
or LDevID attestation key [77], depending on the settings of the corresponding identity

property.

AIK-Certificate :=
X.509-Certificate(AIK-Key,
Identity-Flag)

Synchronization Token This IE contains the references for attestations based on relative
time since boot provided by the HSM, called tick session. In order to associate the relative
time provided by the Attestee with the absolute time available to a Verifier, a cryptographic
synchronization between the tick session and the trusted absolute time provided by the
TSA is transported via this IE.

SyncToken := {
left_TickStampBlob :=
sig(AIK-Key,
currentTicks :=
{tickValue, tickNonce})
middle_TimeStamp :=
sig(TSA-Key, h(left_TickStampBlob),
uTc)
right_TickStampBlob :=
sig(AIK-Key, h(middle_TimeStamp),
currentTicks :=
{tickValue, tickNonce})

Restricted Key Token This IE contains a TPM-generated special data structure about
a newly created restricted attestation key. This restricted key can only be used if the
platform is in a certain state — i.e. if the PCRs of the TPM contain a predefined value. The
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data structure serves as a certificate that provides proof of this restriction on the key and
is signed with the Attestation Identity Key.

Restriction-Token :=
sig(AIK-Key,
Restricted-PubKey,
PCR-Info)

Measurement Log This IE contains the set of measurements associated with a specific
Restricted Key. Based on these measurements the PCR values of the restricted key were
derived. The verifier can use the measurement log in order to separately judge the
trustworthiness of each software component that was loaded and to reconstruct the PCR
values for the Restricted Key Token.

Measurement-Log :=
List(EventName, PCR-Num, Event-Hash)

Attestation Token An IE that includes an attestation based on a PCR restricted key that
provides evidence that a certain PCR configuration on the Attestee was given at a certain
point in time. The relative time since boot used in this evidence can be associated with
the absolute time available to the Verifier using a fresh Synchronization Token.

Attestation-Token :=
sig(Restricted-Key,
currentTicks :=
{tickValue, tickNonce})

6.2 Approaches for TUDA on TPM 2.0

In order to provide a variant of TUDA for TPM 2.0, two different approaches are inves-
tigated; a one-to-one porting of the protocol to TPM 2.0 and a redesigned version that
uses new features of TPM 2.0. This section gives an overview of the two approaches and
explains the decision for proposing the second, redesigned approach for application as
TUDA v2.
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Attestee Verifier

-

Cyclic attestation) (repeatedly)

|

Resync | (if time drift exceeds limits)

Sync-Token

Software Change | (if PCRs change)

— Create Restricted Key
— Certify Restricted Key

Certify-Info

Measurement Log

Attestation

Figure 6.4: TUDA v1 continuous attestation

6.2.1 Approach 1 - TUDA for TPM 2.0 with Key Restriction

The first approach is the direct translation of TUDA v1 to TPM 2.0. The Informational
Elements of this approach are the same as with the original TUDA, see Section 6.1.1. The
data model however differs due to the new structures of TPM 2.0; specifically those that
were signed by the TPM.

In the following, each of the IEs are explained in more detail, and their core information
is depicted in pseudocode. Note that the actual data structures are more complex than
depicted here and may contain additional information that is not relevant for this use case
(see Section 2.4 for detailed descriptions).

TSA Certificate No changes from TUDA v1.

TSA-Certificate :=
X.509-Certificate(TSA-Key, TSA-Flag)
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AIK Certificate No changes from TUDA v1. In the terminology of TPM 2.0, the AIK is
now called a “restricted key” instead of an “identity key”.

AIK-Certificate :=
X.509-Certificate(AIK-Key,
Restricted-Flag)

Synchronization Token The synchronization token uses a different TPM command,
TPM2_ GetTime() instead of TPM_TickStampBlob(). The TPM2_ GetTime() command
contains the clock and time information of the TPM. The clock information is the equivalent
of TUDA v1’s tickSession information.

SyncToken := {
left_GetTime
sig(AIK-Key,
TimeInfo
{time, resetCount, restartCount})
middle_TimeStamp :=
sig(TSA-Key, h(left_TickStampBlob),
uTc)
right_TickStampBlob :=
sig(AIK-Key, h(middle_TimeStamp),
TimeInfo :=
{time, resetCount, restartCount})

Restriction Info The restriction information contains the same Informational Element as
with TUDA v1. The difference is that with TPM 1.2 the restriction information was containd
as part of the key’s public information. TPM 2.0 introduced Enhanced Authorization
instead. The restriction to certain PCR values in this case is defined as a policy statement
containing a TPM2_PolicyPCR element referencing the according PCR selection and values.
The digest of this policy statement is registered in the public area of the key during key
creation. In order to provide proof of this PCR restriction, the command TPM2_Certify() is
used. The restriction information accordingly consists of PolicyPCR-information, KeyPublic-
information and the certificate of this key.

Restriction-Token := {
pcr-restriction
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{PCR-Selection, PCR-Values}
key-certificate :=
sig(AIK-Key,
Restricted-PubKey,
PolicyPCRdigest(pcr-restriction))

Measurement Log No changes to the contained information. The only difference is that
due to the TPM 2.0’s cryptographic agility, the hash algorithm must be provided and the
length of hash values my be different.

Measurement-Log :=
List(EventName, PCR-Num, Event-Hash)

Attestation Token The attestation token consists of the result of TPM2_ GetTime(). It
serves the same purpose as the TPM_TickStampBlob() of TUDA v1. It proves that at a
certain point in time with repsect to the TPM’s internal clock, a certain configuration of
PCRs was present, as denoted in the key’s restriction information.

Attestation-Token :=
sig(Restricted-Key,
TimeInfo :=
{time, resetCount, restartCount})

6.2.2 Approach 2 — TUDA for TPM 2.0 with TPM-Time Quotes

The second approach describes a new concept that works differently from the concept of
TUDA v1. Instead of relying on the TPM’s time value this approach utilizes the TPM’s clock
value. In contrast to the time value, the clock value is embedded within every TPM2 Quote
statement. This means that it can be utilized in explicit attestations as opposed to merely
implicit attestations. The attestation token, which forms the core of the protocol, can use
this in order to omit the creation of an intermediate key. Instead the AIK is used directly
within the attestation tokens (see Figure 6.5). The TPM2_Quote includes a PCR-Selection
and signature over its values alongside the clock information. This simplifies the approach
drastically, since no intermediate restricted keys need to be generated for every change of
PCRs. Furthermore, it is possible to create attestation tokens for several PCR selections in
parallel, using the same key. This can be useful if not all information from PCRs shall be
disclosed to all requesting parties. The respective update cycles and event are illustrated
in Figure 6.6.
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Figure 6.5: TUDA v2 initial attestation

However, the Clock value (as explained in Section 2.4) is not a constantly incrementing
counter. Even though it is a strongly monotonic counter, it can be “fast-forwarded” using
the TPM2_ClockSet command. Also, the current value of the Clock is stored persistently
over reboot cycles.

There is a potential attack vector that could be exploited by “fast-forwarding” the Clock
value. An attacker could try to gain access to the an Attestee in order to “fast-forward”
the clock and produce attestation tokens for a point of time in the future. Delivering the
precomputed attestation tokens instead of current tokens would provide falsified evidence
of the platforms status.

Two possible alternatives exist in order to cope with this attack. It can either be known
that the TPM2_ClockSet command is protected appropriately, such that only legitimate
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Figure 6.6: TUDA v2 continuous attestation

calls to “fast-forward” can be issued on the Clock value. Alternatively, a proof can be
generated that provides evidence that the Clock value has not been “fast-forwarded” since
the last synchronization token has been generated.

The latter approach requires a sync proof to be collected after the attestation token. The
Verifier can then calculate the difference between the TPMs “non-forwardable” time value
and the “fast-forwardable” Clock value and compare it to the difference between those
values within the sync token. If the differences match, then no (effective) TPM2_ClockSet
was called and the attack on fast forwarding can be excluded.

In the following, each of the IEs are explained in more detail, and their core information
is depicted in pseudocode. Note that the actual data structures are more complex than
depicted here and may contain additional information that is not relevant for this use case
(see Section 2.4 for detailed descriptions).

TSA Certificate No Change compared to the previous approach.

TSA-Certificate :=
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X.509-Certificate(TSA-Key, TSA-Flag)

AIK Certificate No Change compared to the previous approach. However, the AIK is
used to sign the attestation tokens directly in this approach instead of certifying the
restriction properties of an intermediate key.

AIK-Certificate :=
X.509-Certificate(AIK-Key,
Restricted-Flag)

Sync Token No Change in the transferred data. However, this approach now uses the
clock value instead of the time value in order to calculate the point in time of the attestation
token generation. If a sync proof is used, then the clock value is used for calculating the
difference of clock and time in this token and compare it to the difference between clock
and time in the sync proof.

SyncToken := {
left_GetTime :=
sig(AIK-Key,
ClockTimeInfo :=
{clock, time,
resetCount, restartCount})
middle_TimeStamp :=
sig(TSA-Key, h(left_TickStampBlob),
UTC)
right_TickStampBlob :=
sig(AIK-Key, h(middle_TimeStamp),
ClockTimeInfo :=
{clock, time,
resetCount, restartCount})

Measurement Log No Change compared to TUDA v1.

Measurement-Log :=
List(EventName, PCR-Num, Event-Hash)
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Attestation Token This token consists of the output of a TPM2_ Quote(). It contains a
PCR selection and the values alongside the current value of the TPM’s internal clock. The
AIK is used to sign this structure.

Attestation-Token :=
sig(AIK-Key,
quote-info :=
{PCR-Selection, PCR-Values}
ClockInfo :=
{clock, resetCount, restartCount})

Sync Proof (optional) This token contains the output of one TPM2_ GetTime. It is
signed using the AIK. Within this output, the difference for the values of clock and time
is computed and compared to the difference for the values of clock and time inside
the previous sync token. If the differences match, then the TPM’s clock was not “fast-
forwarded”.

SyncToken :=
sig(AIK-Key,
ClockTimeInfo :=
{clock, time,
resetCount, restartCount})

6.2.3 Comparison and Choice

The second approach is much simpler and efficient to use in practical applications.

In the first approach each change in the platform status —i.e. each change in PCR values
— requires the generation of a new key inside the TPM that contains a different restriction.
Then the AIK must perform a TPM2_Certify on this key, before the key can be used to
actually sign attestation tokens using TPM2_ GetTime. In a dynamically changing system,
this can occur very frequently, which introduces a huge overhead. Additionally, stateless
transport interfaces such as REST and SNMP can provide the different IE independently in
order to save network bandwidth. This can lead to cases where a change occurs between
two requests — e.g. between retrieving a restriction info and an attestation token. This
additional complexity can be partially solved within the transport interfaces — e.g. using
update cycle counters — but can hardly be resolved completely. The Verifier must cope with
this introduced complexity. The second approach on the other hand does not require any
action for PCR changes except for updates to the measurement log, that the first approach
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requires as well. However, having the measurement log out of sync with the attestation
token is easy to handle, since a Verifier can continuously recalculate the PCR candidates
for the start of the measurement log and continuously append events and check if the
resulting PCR candidate matches the attestation tokens PCR value.

Regarding the interaction with the TPM, the first approach requires the use of Policy
Sessions in order to prove to the TPM the PCR restriction using TPM2_ PolicyPCR. The
attestation tokens in the second approach can be provided using no sessions at all, since
the AIK does not need to be access protected. Only the TPM2_GetTime function requires
the authentication of the TPM’s privacy administrator (i.e. the Endorsement Hierarchy).
This authentication can however also be set to zero, leading to the complete omission of
sessions in this approach.

The only advantage of the first approach is that continuous attestations require only a
single signature for the attestation token, whilst the second approach optionally requires
a second signature for the sync proof.

In summary, the gained simplicity and network efficiency originating from the omission
of a restricted, intermediate key and the omission of the session outweigh the optional
overhead of the second approach, especially since the overhead only occurs optionally.
For practical implementations the second approach with a non-zero owner authorization
to prevent “fast-forwarding” and thereby omission of the sync proof is by far the most
efficient approach. Therefore, the second approach is proposed as candidate for a TUDA
v2.

6.3 TUDA Synchronization Protocol

Attestee TSA

— GetTime := TPM2_GetTime()

h(GetTime)

».

| — TPM2_ GetTime(h(TimeStamp(h(GetTime))))

Figure 6.7: Synchronization Protocol
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The synchronization protocol recommended for this application has similar properties
to the protocol proposed in [116]. It differs however in order to allow the usage of a IETF
RFC3161 compliant Timestamp Authority (TSA) [2]. In this protocol, the TPM generates
a time token using TPM2_GetTime for the current point in time (called left). The device
sends the hash of this token to the TSA, which signs it and returns the TimeStamp. The
hash of this TimeStamp is then fed into another call to TPM2_GetTime (called right).
The protocol is illustrated in Figure 6.7. The synchronization property of this protocol is
then based on the fact that the TSA TimeStamp must have happened between the two
executions of the TPM2 GetTime calls.

The synchronization token is then composed out of the three signed structures for
TPM2_GetTime left, TSA-TimeStamp and TPM2_GetTime right.

The security of this protocol relies on the fact that the time basis of the first TPM2_-
GetTime is unique. Since the TPM will advance its internal clock continuously and
only reset via TPM2_Clear which would however invalidate the key from usage, the left
structure, signature and resulting hash value are unique values. They denote that as
this signature was generated at the denoted point in time, relative to the TPM’s internal
clock. This provides a fresh and unfakable nonce for the TSA TimeStamp and the TSA
TimeStamp thereby provides a right-limited border for the TPM’s clock. In order to prevent
the replaying of the same hash to the TSA at a later point in time (i.e. to be able to ignore
such cases) another TPM2_GetTime operation is performed which provides a left-limited
border for the TPM’s clock.

For an attacker with control over the device, two things are not possible. The attacker
could re-execute the right TPM2_ GetTime, which would however only lead to a decrease
in accuracy of the synchronization token regarding its left limit. Alternatively, the attacker
could re-execute steps 2 and 3 of the protocol, re-sending the hash-nonce of the left
TPM2_ GetTime to the TSA and providing an alternative right TPM2_GetTime for this
new TimeStamp. This would however merely decrease the accuracy of the right limit.
In summary, there is no means for an attacker to produce a false synchronization or to
maliciously increase the accuracy beyond the given point. The attacker can only decrease
the accuracy of the sync token.

Another problem with regards to accuracy originates for the TPM’s internal clock itself,
which can have a very high drift. This may require the periodic resynchronizations using
this protocol or the adjustment of TPM2_ClockRateAdjust. See Section 6.4.1 for a more
detailed elaboration.
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6.4 Discussing TUDA based Audit Logs

In the following certain aspects of the presented approach for TUDA v2 are discussed.

6.4.1 Time Accuracy

The security of the presented approach is directly related to the accuracy of the point
in time for the attestation tokens. This accuracy depends on two main factors; (i) the
accuracy of the sync token and (ii) the drift of the TPM’s internal clock.

The accuracy of the sync token depends on the round-trip times between the first
TPM2_GetTime ¢4 and the second TPM2_GetTime ¢,,. The timestamp of the TSA may
have occurred at any point in time between those two TPM2_GetTime calls. A worst-case
estimate for the accuracy of the sync token further needs to account for the TPM’s clock’s
drift. The resulting equation is:

(tsr - tsl) : (1 + d’riftTPM)

The drift of the TPM’s clock value is vendor specific. The TPM 2.0 Library Specification
Part 1 [128] defines that the maximum drift may be driftrpy = +15%. The concrete
value depends on the input frequency accuracy and operation temperature of the TPM
which may be accessible to an attacker but these limits can still generally be expected
to be much more precise. If a TPM is managed by a trustworthy party, then the TPM2_-
ClockRateAdjust function can be used to counteract such drifts.

Nevertheless, a high drift and latency merely result in the requirement for more frequent
resynchronization of the TPM’s internal clock with the TSA clock. This means that new
sync-tokens are retrieved regularly. For the verifier, this means that the maximum error of
the time for an attestation token given the time since sync ¢ is:

err = (tg — tg) - (1 +driftrpy) + driftrpar - tas

Given a certain threshold for the accuracy of the time-based attestation, the following
equation must hold:

threshold + (tg — tsy) - (1 + driftrpa)
driftrpm

tas <

6.4.2 Security and Architecture Properties

Besides the ability to bind against transport interfaces that perform RPC-less state transfer
such as REST or SNMP, the presented approach can also server other scenarios where
bi-directional attestation protocols are not fit.
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Most notably, the unidirectional aspect allows the use in multi-client scenarios, including
REST with caches. In regular attestation protocols, each client request requires its own
TPM signature, such that the TPM’s throughput becomes the bottleneck. This was also
the original motivation for the related work in [116]. Since the attestation tokens can
stand on their own, the same token can be distributed to as many clients as necessary,
even in multicast and broadcast environment.

In certain scenarios, the underlying secure requirement defines that data transfer may
only occur from a secure area to an insecure area. Typical scenarios are nuclear power
plants. The goal is here to prevent any interference with the highly security and safety
critical operations of the actuators inside the security zone. Data transfer between secure
and insecure area is regulated by data flow diodes, that allow data to only travel in one
direction. In order to receive integrity information from the inside, a cyclic event stream
from inside to outside must occur and time-based attestations are a very suitable solution.

6.5 Conclusions on TUDA based Audit Logs
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Figure 6.8: Trusted Computing Base for Time-driven Integrity Audit Logs

Due to their time-based nature, the attestation approach of this chapter can be used to
create trusted audit logs. An audit report about the integrity state of the Attestee during a
certain time span can be created by leveraging the time-based attestations created when
a TUDA is conducted. If measurements are sent from the Attestee on a regular basis and
stored appropriately on the Verifier or a corresponding audit server back-end, it is possible
to generate a complete audit log about the Attestee. The transferred IE constitute forensic
evidence and provide a proof of the state that can be reevaluated for any point of time
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in the past. The resulting TCB is depicted in Figure 6.8. The Verifier can be removed
from the TCB and a relying party can reevaluate the attestation. Only the Time Stamp
Authority remains part of the TCB besides the TPM’s Roots of Trust.
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7 Role based Access Management

Many embedded scenarios are composed of a variety of embedded systems that act as
a compound system or trust domain. In order to grant users access to such a system, a
trusted component (TC) is needed that authenticates users and assignes roles for these
systems. One such example are cars — especially rental cars — and lorries that grant
different users different permissions. The security policy for such a TC is to protect the
different end-component credentials from unauthorized access and granting access to
authorized users given their roles for said system. The works in this chapter are based
upon my contributions to [101] which include most of the general approach and parts of
the detailed realization concept.

7.1 Background on Role based Access Management

The automotive industry is undergoing a lot of changes. In the future, the need to own a
car will become less important and robot taxis [135, 19, 33] an other ride-sharing [7] are
replacing individual ownership. In the mean time, car sharing opens the bridge between
now and then and also rental cars gain importance.

With the lack of individual ownership the current approach of physical key for accessing
and igniting a vehicle does not suit anymore. Instead smartphones are turning into an
omnipresent authentication device; even for individually owned cars. The association of
rights between phones and cars is changing regularly.

Typically, a gateway for authenticating users will be implemented as a separate Electric
Control Unit (ECU). This ECU will perform the authentication checks (in userspace) and
grant access and authenticate to other components. As such, the TCB is constructed of
the complete device as depicted in Figure 7.1. Opposed to the other examples presented
in this work, this use case does not carry any dynamicity on the TCB. As such, a classical
interpretation of TCB is sufficient for this solution.

The increase in connectivity and dynamicity introduced with such vehicles comes at
the cost of larger attack surfaces and higher complexity. Nevertheless, they are subject
to theft or “illegal renting” as well as burglary. Example of these are the attack on Tesla

85



—_— Trust Boundary
Trusted Computing Base
— OI2200000000005050005000000000050005000000000007
O T |000000000000000000000000000000000000000000000707
O QY |97000000000000000000000000000000027720277727777
NS (00000000000000000000000000000000000050000050007
[SPX ey
%p srr777 1777777777777777 1777777777 7777777
Q sr22277 s177777 4177777 s177777 11117777
1000000000000000000000000000000000000000000000
\e, LIIIIIIIIIIIIIIIIIIIIIIII I I PP PP I ISP 7777
S 5 [inn00000000000000000050000000
4‘;)‘ L77772777277772 7772777727772 777277772777272772777
> 0 I I IIIIIIIIIIIIIIIII IS I IS TSI I IS I TSI TSI I I I TS

Device Lifetime
Device Life Cycle

Figure 7.1: Trusted Computing Base for Role-based Trust Gateways without TPM

vehicles due to a weak cipher in the key signal [98].

Other attack vectors include access via the vehicle’s sensors [100] followed by reconfig-
uration of ECU and other systems from this CAN-Bus access [87, 83]. Remotely executed
attacks demonstrated that even today’s cars can sometimes be altered, steered, unlocked
or started without direct access [134, 59, 26, 90, 99, 117].

7.2 System and Requirements for Role Based Access
Management

This section presents the system model used for this approach, then defines the corre-
sponding adversary model and finally derives the requirements for the described scenario.

7.2.1 System Model for Role Based Access Management

The system model for Role Based Access Management is presented in Figure 7.2. It
contains the following actors:

B : The backend system managing and issuing rights and policies
* C : The vehicle that is subject to all policies.

* U : The driver of the vehicle using an authentication token 7 to authenticate against
the Band C .

* D : Another driver that &/ may delegate rights to.
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The user token 7 contains a signature key used for authentication. It shall be stored
inside a shielded location of the token; e.g. a TEE environment inside a smartphone such
as TrustZone[8] or other Secure Environment (SE) implementations as proposed in [37].

The car C contains a special purpose ECU, trusted component (TC) that acts as a gateway
for cryptographic schemes and trust domains. This TC includes a TPM that controls the
cryptographic keys and credentials for the in-vehicle domain. Without a TPM, then TC’s
main processor would need to perform then steps of authenticating the user, evaluating
authorizations and access rights and communicates with the rest of the car. All this would
need to be done on the same part of the system that also hosts the communication stack
and a lot of other non-hardened software. With the TPM, these security relevant tasks
can be performed by the TPM, whilst the main CPU performs the non-security related
communication tasks, thus removing this part from the TCB.

Users( with Token

(e.g., Smartphone)

Operating Systel
Car R B STy Backend
- A
Domains TCU (FC) C il B - Manages Roles and
. Hardware Rights

Registration & | 1o ias TPM 2.0
Eol\cy Downloag Policies

Feomtort
CUs

| &=

Ay

nterfaces

[T -1

(Internet)

Authentication
(BT, NFC, ...)

IGw

(BT, NFC, Internet, ...)

2. Remote Feature Activation
3. Online Feature Activation

(Internet)

Figure 7.2: System Model [101]

As depicted by the arrows in Figure 7.2, a user Y registers with a backend 5 . This
needs to be associated with a contract between &/ and B, but this part is out of scope
for this work. The backend B can then issue authorizations that are either transferred
directly to the car C or indirectly to the car C via the users token 7 . The user U/ can then
authenticate against the car’s TC in order to access services of the car C .

7.2.2 Use Cases for Role Based Access Management

The system shall support three generic use cases taken from [101]:

* UCI: Local feature activation In this use case features of the TC are activated. The
TC is the vehicle’s Telematic Control Unit (TCU) which is responsible for all external
communication and is equipped with a TPM. The TCU is typically more powerful
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than other ECU in terms of processing power and available memory. A specific
instantiation of this use case is the user buying additional map data, e.g., maps of
Europe. In this concept all map data would be stored encrypted in the memory of
the TC and the user would get access to the respective feature, which in turn unlocks
the decryption key inside the TC.

* UC2: Remote feature activation In this use case features in ECU are activated that
are not the TC. These ECU are connected to the TC through the in-vehicle network
such as a CAN bus or Automotive Ethernet. A specific instantiation of this use case
could be activating the engine immobilizer and ignition system inside the engine
management ECU. In this case, the user authorizes usage of an HMAC key secured
by the TPM. The HMAC key is then used in a challenge-response mechanism to
answer a challenge sent by the remote ECU. The remote ECU activates its feature
when the challenge is answered correctly.

* UC3: Online feature activation In this use case a secure communication channel
between the car and an external party such as the OEM backend is established. The
TPM may store the authentication key that is used to establish the TLS connection.
The channel to the OEM backend can be used for several purposes such as securely
transmitting updates to the car or synchronizing music playlists.

7.2.3 Role Based Access Management Attack Model

The attack model for this solutions uses the cyber-physical Dolev-Yao attacker model [105]
that is based on the classical Dolev-Yao model [38]. It assumes that an attacker has full
access to all communication channels, being able to eavesdrop, intercept, inject, replay
and modify all messages on all networks in the system. Furthermore an attacker has direct
physical access to certain devices inside the system.

In this specific case the former especially includes the networks between car, user and
backend, but also in in-vehicle networks between the TC and e.g. the engine immobilizer.
The latter includes the application CPUs of the TC ECU and the application CPUs of other
ECUs.

An attacker however cannot eavesdrop on encrypted or modify authenticated data
unless the attacker has knowledge of the cryptographic keys. Furthermore, the attacker
cannot access the shielded locations such as the TC’s TPM or the token’s TEE. The security
of the engine immobilizer and backend are out of scope for this solution and thus assumed.

7.2.4 Functional Requirements for Role Based Access Management

The following functional requirements are defined in [101]:
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* FR1 : Rights management Users in the system may obtain certain rights for a car,
e.g., opening the car or use enhanced infotainment features that will be evaluated
during authentication (FR3 ). Usage rights are bound to exactly one user. Users
shall have the right to delegate their access rights to other registered users through
the backend system. Especially delegated access rights may have further restrictions,
such as time or usage constraints.

* FR2 : Revocation mechanism It shall be possible to actively revoke previously issued
credentials, e.g., in case of a compromised cryptographic key or an authorization
expires due to the end of a contract period.

* FR3 : Offline Authentication It shall be possible to access the vehicle and unlock
personal features while the system is offline or little to no network access is available,
e.g., underground car parks or in remote locations.

* FR4 : Offline rights delegation It shall be possible to delegate rights among different
users offline without interaction with the backend. Online right delegation is already
part of FR1.

7.3 Role Based Access Management Solution

7.3.1 Role Based Access Management Concept

Each of the use cases from Section 7.2.2 is based around the usage of a cryptographic key
inside the TC. Those may be asymmetric decryption, signing or symmetric HMAC keys.
The use case UC1 local feature activation typically requires a decryption key. UC2 remote
feature activation typically refers to in-vehicle authentication e.g. towards the immobilizer.
Inside the vehicle symmetric cryptography is dominant and in this concept covered by
an HMAC key. UC3 online feature activation would typically be based on a TLS client
authentication using asymmetric signature operations.

For each feature from any of these use cases that the TC shall govern a separate
key is generated, referred to as K, . This key is created using the TPM policy TPM2_-
PolicyAuthorize command. This policy binds the usage of this key to a second authorization
entity for defining policies, the backend B, identified by the key K . These policies can
also be defined after the key has been created.

K, +—{ TPM2_PolicyAuthorize < KE

Figure 7.3: Feature key policy [101]

The actual functionalities from Section 7.2.4 to be represented with corresponding
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policies are signed statements by the backend B .

FR1 : Rights management

The basic rights management tasks are implemented as follows:

Granting users rights: In order to grant a user the right to access a feature key, a
policy is issued by the backend, that contains a TPM2 PolicySigned command that
references the key K, ¢.. from the user token 7 . The TC’s TPM generates a nonce
that is signed by the token 7 and sent back to the TPM. Then the authorization of
said backend issued policy is validated using the TPM2_PolicyAuthorize command.
Time constraining users rights The TPM contains an internal clock. The command
TPM2_PolicyCounterTimer can thus be integrated as part of a policy. This requires
the TPM’s clock to be synchronized with the backend (see e.g. Section 6.3) or the
TPM'’s clock must be synchronized with the UTC time. The corresponding policy is
presented at the top of Figure 7.4.

Restricting usage counts Another possibility is to restrict the number of usages of a
feature key by a user. The TPM not only supports NV memory for arbitrary data
storage, but also certain specialized memory slots. One such way is the type NV _-
PIN PASS with an empty password. Whenever an authentication against such an
NV index is performed, a counter is incremented until a threshold value is reached.
Thus the backend can include a TPM2_PolicySecret referencing such an index. This
of course requires the backend to open up a direct connection to the TPM in order
to initialize and configure said NV index.

Delegation The (online) delegation requirement can be accomplished by having the
backend issue a policy for the second user’s authentication key. Thus, the vehicle
needs to be connected to the backend. Note FR4 for offline delegation.

[~} TPM2_PolicySigned o< K}, s.. { TPM2_PolicyCounterTimer oc x<$DATE {{--- ]

N~

Digest signed with K ¢,

[~-- H TPM2_PolicySigned o< K, s.. { TPM2_PolicyNV o x<5 [{--+]

Digest signed with K ¢,

Figure 7.4: Basic policies. (Ist: Time restriction; 2nd: Revocation) [101]
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FR2 : Revocation mechanism

In order to revoke a user’s rights, the corresponding policy needs to stop evaluating to
true. The best way to do so is to use an NV index of type counter or bitmask on the TPM.
A counter can only ever be incremented, a bitmask can bitwise be switched from 0 to 1
but not back. The policy itself can then reference such an index using TPM2_PolicyNV
either with a parameter less-or-equal or bit-clear, as shown second in Figure 7.4. Whilst
the counter is UINT64 and can be used virtually forever, the NV space for bitmasks is
limited. To achieve more flexibility, the mechanisms can be combined and periodically
the old bitmasks could be invalidated using a counter and new (compressed) bitmasks
without the disabled policies recreated. This step will however require granted policies to
be reissued.

FR3 : Offline Authentication

The capability to perform offline authentication is inherent to the presented approach.
The interaction for authentication between the TC’s TPM and the user’s token consists of a
simple challenge-signing-reponse protocol. This can be implemented via WIFI, Bluetooth
or NFC. The policies issued by the backend can even be cached and proxied via the
user’s token if no direct connection between the backend and the TC can be established.
The limitation are those policies that require the establishment of NV indexes (of type
counter or bitmask). The backend must either have created them previously or only use
TPM2_PolicyCounterTimer .

FR4 : Offline rights delegation

Support for offline delegation can be provided as separate authorization from mere
authentication. In order to do so, the backend can authorize a policy containing a TPM2_-
PolicyAuthorize element itself. This second TPM2_PolicyAuthorize will reference the key
of user U ’s token. The user can then issue any of the aforementioned policies (or also
the right for delegation) by performing the same process as the backend usually does.
Figure 7.5 provides an example.
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Figure 7.5: Offline delegation sub policies for the delegated user. First: Offline del-
egation policy. Second: User-defined sub policy [101]

7.4 Role Based Access Management Prototype and Evaluation

7.4.1 Prototype Implementation
Hardware

The concept for Role-based Access Management was prototypically implemented in [101]
in order to evaluate its performance. The hardware setup is depicted in Figure 7.6. It
uses Raspberry PIs for TC and RE running the Rasbian operating system. The TC was
connected with an Iridium SLB 9670 TPM 2.0. Two Android smartphones served as user
tokens and the authentication key was saved using the Android Keystore that utilizes the
phones’ TrustZone [36].

Communication between the Android phones and the TC was established using Blue-
tooth. The in-vehicular network was represented with a physical Ethernet connection and
the backend connection was implemented using WiFi.

Software

The TC was implemented in C and utilized the TSS2 Feature API (FAPI) [130] for commu-
nicating with the TPM. With FAPI, policies can be expressed in JSON. The policy for basic
user authentication is depicted in Listing 7.1 and the offline delegation policy is depicted
in Listing 7.2.

Listing 7.1: Basic User policy [101]
{

"name" : "uid:231432546464, features:3f25664de646a4221e3563f46",

"policy": [
{
"type": "POLICYNV",
"nvHandle": "/nv/Owner/Counter”,
"operandB": 1,

92



18
19
20
21
22

Figure 7.6: Prototype Environment [101]
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"offset": O,
"operation": "LT"

"type": "POLICYCOUNTERTIMER",
"operandB": 5000,

"offset": "0",

"operation": "LT"

"type": "POLICYSIGNED",

"keyPEM": "----- BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9wOBAQEFAAOCAQS
AMIIBCgKCAQEA0X8ZsAAArspY3wmMpkgrviE8OMfxNypfMriWb6SJJSh/AXjAnwyTYswUT6
T5sj1qoQkxjcWmEGHmsd3kOfEEcYg84I7eudwY1N+tBfaFuCEKdQxkeIAmsf1xVt2WYi3
WLN4VYIMC74SfDQXglhrSd1f9P1ITq8RgLIO33Bh9sUMjvIMIe+ulWNkn5dtGCWZ4
DzLpULF6WgcFyM1sAqqUOYmviwIRV7jrtvDrRerS7ChCS4dWRwNpD26Mw/XsDHQWNH8FLO
dtZUcYXSyQQ/NZkq+GX4PRrh/YeScG80YbTr6GVSU/WFxpHVVXuk6EzqThThem+J1
GzsLVrfm9QSSh2rxQIDAQAB----- END PUBLIC KEY----- ",

"keyPEMhashAlg": "SHA256"

"type": "POLICYAUTHORIZE",
"keyPath": "/ext/LoadedBackendKey",
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]
}

Listing 7.2: Offline delegation policy and sub-policy [101]
{

"name" : "uid:231432546464, features:f425dad4de224a4221e35eaf46",
"policy": [

"type": "POLICYCOUNTERTIMER",

"operandB": 5000,

"offset": "0",

"operation": "LT"

A

"type": "POLICYSIGNED",

"keyPEM": "----- BEGIN PUBLIC KEY----- MIIBIjANBgkghkiGO9wOBAQEFAAOCAQS
AMIIBCgKCAQEA0X8ZsAAArspY3wmMpkgrviE8OMfxNypfMrWb6SJJSh/AXjAnwyTYswUT6
T5s5j1qoQkxjcWmEGHmsd3kOfEEcYg84I7eudwY IN+tBfaFuCEKdQxkeIAmsf1xVt2WYi3
WLN4VYIMC74SfDQXglhrSd1f9P1ITq8RgLI933Bh9sUMjvIMIe+ulWNkn5dtGCWZ4
DzLpULF6WgcFyM1sAqquUOYmviwIRV7jrtvDrRerS7ChCS4dWRwNpD26Mw/XsDHQWNH8FLO
dtZUcYXSyQQ/NZkq+GX4PRrh/YeScG8BYbTr6GVSU/WFxpHVVXuk6EzqThThem+J1
GzsLVrfm9QSSh2rxQIDAQAB----- END PUBLIC KEY----- ",

"keyPEMhashAlg": "SHA256"

F A
"type": "POLICYAUTHORIZE",
"keyPath": "/ext/LoadedBackendKey",

}

Evaluation Setup

‘ TPM2_PolicyCounterTimer H TPM2_PolicySigned H TPM2_PolicyNV ‘

Signed by K g
‘ TPM2_PolicyNV H TPM2_PolicyAuthorize }——{ TPM2_PolicySigned H TPM2_PolicyCounterTimer ‘

Signed by K . Signed by K}, sec

Figure 7.7: Basic Policies used for performance evaluation. First is a user policy
and second is a offline delegation policy consisting of two paths: the
backend signed path and the user signed path. [10]]

The performance evaluation of [101] used the policies shown in Figure 7.7. The first
policy authenticates the user via signature, checks an NV counter for revocation and checks
the policy for expiration. The second policy uses offline delegation with the delegated
policy checking for the user authentication and expiration.
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7.4.2 Network Utilization

User Data (Size [Byte]) Total
Type Size
[Byte]
u pn (1066), 0,y (256), Ky pyy (451), KE by (451), Nypy (32), 2512
O Nppy (256)
D pnp (371), Tpn (256), pNgys (895), O pNgus (256), K puy (451), 3419

K p (451), K§ 5y, (451), Npum (32), 0 gy, (256)

Table 7.1: Transmitted message sizes for authentication protocol [101]

In Table 7.1 the sizes of the different message elements are illustrated. The user
authentication messages totaled in 2512 bytes. The delegation use case totaled in 3419
bytes. Given the bandwidth available in Bluetooth, these numbers seem insignificant.

7.4.3 Execution Time

The same policies were evaluated regarding their execution times, averaged over 1000
measurements. The values are presented in Table 7.2. Execution times of 3 to 4 seconds
seem very high. They could be optimized by a more low-level implementation using TSS2
ESYS [132] instead of FAPI. Also upcoming versions of TPMs are expected to come with
acceleration for Big Numbers and Hash algorithms, the two main components in this
approach.

User BT Discovery Policy Process- Overall [ms]

Type [ms] ing [ms]

u 90,83 2979,56 3070,40
(4+89,39) (£155,63) (£92,19)

D 85,91 3957,83 4043,75
(£97,67) (£136,60) (£105,18)

Table 7.2: Execution time of the basic user and a basic delegation policy [101]
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7.5 Conclusion to Role Based Access Management
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Figure 7.8: Trusted Computing Base for Role-based Trust Gateways with TPM

The proposed feature activation system for automotive scenarios utilizes TPM 2.0
inherent policy constructs to authorize key usage within the car. The system allows users
to delegate their access rights both online and offline and even allows the setting of
custom restrictions during both as well as actively revoked authorizations during online
delegation. In this system, the TPM 2.0 is used as the endpoint of a secured communication
channel between the backend and the user’s authentication token, e.g., smartphone. The
authentication of the user combined with the current policies grant access to symmetric
keys of the TPM 2.0. These keys allow for the integration with existing in-vehicle networks
and security solutions with minimal integration effort. The corresponding TCB is depicted
in Figure 7.8. The application CPU of the ECU could be removed from the TCB. Since
this part contains a lot of connectivity code in order to establish Bluetooth and Internet
connections, this is a significant part of the codebase that could be removed from the TCB,
making the system much more secure.
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8 Engineering Systems

The example in Section 2.2 / Figure 2.3 shows how different security policies can be
related to each other. This is especially useful during the security design phase of a system
in order to minimize and determine the Trusted Computing Base (TCB) of a system.

This chapter introduces a consistent methodology for designing secure systems during
this specification phase. The Security Modeling Framework SeMF serves as basis for its
security vocabulary. The SeMF is extended by the concept of SeMF Building Blocks SeBBs as
reasoning tool and provides a security design process utilizing them as refinement artifacts.
This process guides the decision making during the system specification phase focused
on the security aspects and integrates with refinement driven functional engineering
processes in order to minimize and strengthen TCBs.

This methodology is applied to an example that illustrates its principle process. This
example consists of a generalized use cases for displaying sensor readings, such as a
vehicles speed, on a user-facing display, the tachometer. Though this use case appear more
basic, it very nicely introduces the concepts of authenticity and confidentiality and how
these can be related with each other through cryptographic operations. Thus, the results
can then be applied to more complex scenarios alike.

This chapter builds upon and reuses text from my contributions in [107, 52] to which I
was the main contributor. It is further based on my contributions to [71, 44, 45, 46, 39,
44].

8.1 Background on Engineering Systems

The aspect of security in the engineering process of information and communication tech-
nology systems gains increasing attention. The efforts of Microsoft’s Security Development
Lifecycle [89] or IBM’s Secure Engineering Framework [76] are examples of industry’s
increased awareness. The necessity to improve development processes with respect to
security at least partly results from the apparent growth in damage above the 100 million
US dollar mark [102] as well as from the increase in attacker investment. Targeted attacks
today can rely on funding of up to several million dollars [123].
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Remarkably, the sole awareness for systems’ security has led to an increase of quality
of security in systems in recent years. Developer training, secure coding guidelines
and best-practice patterns, code reviews and scanners or even code validation increase
the code quality with regard to its security aspects. However, these approaches mostly
target the correct implementation of a given specification and they are usually not well-
structured and also do not support a more-or-less complete coverage and documentation
of security-related issues.

Security would further strongly benefit from a proper secure engineering process
extending various existing development processes. This process would need to start
with security requirements elicitation at the earliest phase of the process and keep track
of requirements and refine them throughout the different engineering steps. Security
design decisions then also need to take into account possible attacks and threats and risks
associated with them. In principal, such a process seems to be straightforward and some
established techniques already implement parts of it.

SDL’s STRIDE for example is one useful approach that is focused on a rather low level
of abstraction and is oriented towards concrete (security) technologies. Other approaches
address only particular security issues. One example is SecureUML [86] which focuses on
access control modelling. In spite of the large amount of work on IT security, a generic basis
for a more general approach towards secure engineering is still missing. Various formal
models for security either concentrate on particular types of properties (e.g. information
flow [34]) or on special areas (e.g. cryptographic protocols [1]). Other approaches require
the construction of concrete adversary models [30].

In contrast, the Security Modeling Framework SeMF provides one generic framework
for the specification and refinement of all security properties and will serve as a basis for
the security design engineering process.

With increasingly complex and critical systems, it is however necessary to consider
security from the very beginning throughout the whole engineering process in a precise,
consistent and integrated manner, rather than a distinct engineering step or a separated
set of functionalities.

Based on previous work on formal notions for security, combined in the Security Model-
ing Framework SeMF [66] and a requirements elicitation approach [50, 51] the contribu-
tion of this chapter consists of the extension of SeMF through so called SeMF Building
Blocks (SeBB), that allow to encapsulate reasoning steps in a comprehensive manner, such
that SeMF may be applied by non-experts.

The main contribution of this chapter lies within the provisioning of a security design
engineering approach for the System Design/Specification phase in refinement driven
engineering methodologies, as depicted in Figure 8.1. The purpose of this security design
is to guide the functional engineering, prevent insecure designs at an early stage and
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Figure 8.1: Focus within the Engineering Process

assist in design choices to be made. The resulting security concept documents security
design decisions and the documented residual assumptions can serve as a basis for risk
assessment and gives directions and testable conditions for the implementation or issue
organizational security means.

8.2 Security Statements in SeMF

The Security Modelling Framework SeMF provides a formal language based semantics for
expressing security statements in a comprehensible way. Through these means, it does
not only provide an axiomatic framework, but rather an underlying reasoning framework
that allows for unambiguous security statements. Further, SeMF distinguishes itself from
other formal frameworks by providing some characteristics that make it especially suitable
for application in the context of security engineering. The two most important aspects are
carved out and motivated in this Section.

8.2.1 Constraint-Based Positive Security Statements

A typical way of expressing security statements is to formulate abuse-cases or anti-goals
constructively. Formally or informally, the constructive expression is given through express-
ing attacker capabilities to e.g. deduce a secret from a message observation. The safety
condition is, that the attacker’s deduction action must not happen. These approaches
attempt to describe the set of Security Failures. However, incompleteness of this set may
lead to the implementations of possible security leaks into the system’s specification.
Typically, attacker centric constructive reasoning seems more intuitive due to the ease of
construction over constraining. Considering the (typical) case of incompleteness of Security
Assumptions vs. Possible Attacks, a constraining approach based on assumptions is more
robust: It is better if a system meets its security requirements though some provided guarantees
were not considered, than a system (supposedly) meets its security requirements though some
possible attacks were not considered. Similarly, the failure case for a constraining approach
is the false statement of an assumptions whilst the failure case for constructive approaches
is the false omission of an attack. Again, the constraining approach is more robust: It
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is easier to identify a false statement that was written down, than to identify an omitted
statement that was mistakenly not written down.

One possibility to describe positive statements would be to take the desired functionality
of the system as a basis. This however restricts the functional aspects of the engineering
process too much to be practicable. Instead SeMF expresses the set of positive security
statements as constraints against the system. This way, the security aspects of a system
can be investigated separately from other aspects (functional, resources, usability; ...)
which reduces overall complexity, whilst providing guidance to the functional engineering
of the system.

8.2.2 Early and Expressive Statements

Another important factor for a comprehensive vocabulary for security statements is the
expressiveness of the language. Often, reasoning about confidentiality is expressed as
“Some malicious agent must not know asset X”. Though this may appear simple at first
sight, such a property implicitly requires statements about:

* What is the asset and where is it stored and/or processed?
e How can attackers observe, access or conclude it?

* Which are forbidden states, representing attacker knowledge of the asset?

As can be seen, the simple security goal expands to a more complicated set of questions
when applied to an actual system. Typically, these questions are represented implicitly and
constructively within the system behavior, rather than the property or action abstractions,
which makes errors hard to detect.

SeMF on the other hand expresses confidentiality directly regarding the first two
questions as part of the property itself. Further, it utilizes some special concepts in order
to extend the system behavior explicitly.

e Actions to learn from
* Agents’ Local View

* Agents’ Initial Knowledge

With these the above questions are not addressed implicitly within the system behavior
description, but explicitly expressed within the confidentiality property notation. Further,
as this approach is capable of modeling agents’ reasoning capabilities through their Initial
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Knowledge, confidentiality can be expressed as constraint-based property and constructive
statements of forbidden states are not necessary. Finally, it is also possible to specify
more detailed properties, such as unauthorized agents’ allowed knowledge about relations
between the appearance of assets (e.g. “How often does a confidential asset change ?”).
More details about this confidentiality property can be found in [67], [65].

Similarly, the notation for authenticity from [65] can be used to express explicitly which
agent shall be when assured about which event — such as the sending or storing of data. In
[46], there is also a notion of representing Trust which refers to the trusting agent and a
trusted property. This notion is capable of expressing trust in the global system as well
as explicit and specific properties of e.g. other trusted agents — such as the concepts of
Trusted Third Parties and Trusted Computing.

8.2.3 Security Properties in the Security Modelling Framework SeMF

Security properties in SeMF follow these ideas of constraint based positive, early and
expressive statements. The current syntactical representation is in the format of property
predicates. A the subset of properties to be used within this chapter’s example can
informally described as follows: precede(a,b) holds if whenever action b occurs, action
a must have occurred (before) as well. auth(a,b, P) holds if whenever action b occurs,
action ¢ must have happened authentically for agent P, according to P’s local view and
initial knowledge. conf(A, p, M, W) holds if in the occurrences of actions A the parameter
p is indistinguishable (in terms of (L,M)-completeness [67]) from all elements in M for
every agent except those in the set W. trust(P, prop) holds if agent P has the trust that a
property prop holds according to its initial knowledge.
More information can be found in [67, 66, 64, 47].

8.3 Designing Security Policy Systems

Beyond the utilization of SeMF property predicates only as expressive and comprehensive
vocabulary, their semantical definitions can be utilized for reasoning, refining and designing
a secure system.

8.3.1 Reasoning about Security Design

During the design process, the engineer is challenged with the task of designing a system
that fulfills a given set of requirements. For functional engineering a given requirement
can often be fulfilled choosing and associating a mechanism that provides the required
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Figure 8.2: Structure of a Security Building Block

functionality. In the case of security however, it is usually not possible for a mechanism
to directly fulfill a given requirement. Rather, security mechanisms introduce additional
(internal) conditions, that need to be addressed, in order for the mechanism to provide its
security properties. A similar but more generic understanding is used in Arguing Security
[70].

An example for such conditions comes from RSA signatures that require the private
key to be confidential to the signer in order to provide authenticity of a message. In case
of HMAC, there are two internal conditions: The shared secret must be confidential to
sender and receiver and the receiver must not have signed the message itself (e.g. in a
different protocol step). A security mechanism usually does not provide Security Properties
unconditionally. Rather, it may only "transform" one property into another. This circumstance
is represented with the concept of Mechanism-based SeMF Building Blocks (M-SeBBs).

Sometimes however there may not be a mechanism that directly fulfills a given re-
quirement. Instead an engineer has to refine a requirement to a set of less complex
requirements, that each can be fulfilled by a mechanism. For these cases, the notion of
F-SeBBs (or Formally based SeBBs) is used.

In order to support a comprehensible understanding SeBBs provide a graphical format
that allows for easy comprehension even for non-experts. The details of included formal
proofs are completely transparent to the user that only needs to understand the meaning
of SeMF property predicates.

8.3.2 SeMF Building Blocks

Formally, SeMF Building Blocks (SeBBs) encapsulate theorems of implications within the
underlying formal framework SeMF and its properties’ semantics.
A SeMF Building Block consists of three layers, as illustrated in Figure 8.2:
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precede(al,a3) precede(sign(P,m_i,K_priv,sig_j(m_i)),
verify(Q,m_i,sig_j(m_i),K_pub))

conf({sign(P,m_k,K priv,sig_j(m_k))},
precede(a2,a3) | K_priv,AllKeys,{P})

precede(al,a2) |

(a) F-SeBB Precede Transitivity (b) M-SeBB: RSA-Signature

precede(sign(P,m_i,SS,mac_j(m_i)),
verify(Q,m_i,mac_j(m_i),SS))

conf({sign(P,m_k,SS,mac_j(m_k))}, not-precede(sign(Q,m_i,SS,mac_j(m_i)),
K_priv,AllKeys,{P,Q}) verify(Q,m_i,mac_j(m_i),SS))

(c) M-SeBB: HMAC

Figure 8.3: Examples of SeMF Building Blocks

* The provided properties of a Security Building Block represent the security properties
that the Security Building Block provides for the overall system.

* The means represents the mechanism or instrument by which the external properties
can be achieved. These can be based on a proven theorem related to specific
properties of the security requirements, or on expert knowledge related to the
mechanism the SeBB addresses.

* The required conditions are those properties that must be fulfilled in order for the
mechanism to provide the external properties.

These implications represented by a SeMF Building Block have to be formally proven,
according to the means that they represent. These can be categorized into the two different
classes of SeBBs mentioned before:

F-SeBBs or Formal SeBBs represent implications that originate from the semantics of
security properties themselves as defined within SeMF allowing to relate them and proof
these relations for all possible system instances. There are simple ones, such as that if
something is confidential regarding (to be known only by) Bob, then this implies directly
that this asset is confidential regarding Bob and Alice. But also more complex ones exist,
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such as the relating of trust assumptions with authenticity. The specialty with these
properties is that they can be proven within SeMF independent of any specific system.

M-SeBBs or Mechanism SeBBs in contrast cannot be proven completely internally to
SeMF. They represent implications originating from security mechanisms like protocols
and cryptographic functions and require assumptions that originate from evidence or
expert knowledge that is external to SeMF.

In order to visualize the differences between means originating from within SeMF and
those that require external assumptions, the former are represented as diamonds, whilst
the latter are represented as circles (compare Figure 8.3). Exemplarily, the theorem and
proof for the F-SeBB Transitive Precede as presented in Figure 8.3a are shown:

Theorem 1. Given system S with properties precede(a,b) and precede(b, c) holding in S,
the property precede(a, c¢) holds in S as well.

Informally, this theorem can be argued as: If b always precedes ¢ and a always precedes
b, then a also always precedes c. In term of the SeMF semantics, the theorem can be
proven as:

Proof. precede(b, c) states that Vw € B with ¢ € alph(w) it holds that b € alph(w). Due
to precede(a, b) it is known that for these w with b € alph(w), a € alph(w) as well, hence
precede(a, c) holds in S. O

For M-SeBBs similar proofs have to be provided as well. They however include additional
assumptions about the mechanisms. [46] gives an example on proving the example M-
SeBB for RSA signatures in Figure 8.3b.

Note that all F-SeBBs can also be applied for trusted properties, as they hold for all
possible systems, including an agent’s knowledge system. M-SeBB usually will also be
applicable regarding trusted properties, except when a certain agent does not trust a
security mechanism. Within a given engineering environment, a global library can be
established that provides engineers with a set of SeBBs authorized by the security experts
of this domain or company.

8.4 The Security Design Process

Utilizing the concepts of SeMF property predicates and SeBBs, leads to a process for secu-
rity engineering that interfaces with refinement driven functional engineering processes.
Figure 8.4 illustrates the structure of concepts that are utilized in this approach. This
approach integrates with the functional engineering process in the Design phase.
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Figure 8.4: Structure of Progress Interaction

During the requirements analysis phase one may utilize approaches for systematic
identification of formally defined security requirements such as [50]. The important aspect
is that security requirements need to be expressed in the formally defined terminology of
SeMF.

During the design and specification phase the functional engineering concept of re-
finement driven design decisions can be followed. The semantic clarity of SeMF prop-
erties and SeBBs can be leveraged. During all these steps, the focus lies within positive
constrained-based security properties and follows the concept of conditional security.
The well-understandable property predicates and SeBBs make the execution of these
steps possible even for non-experts in formal methods and/or security. This provides an
interface to a continuous risk assessment in order to judge on the fulfillment of conditions.

8.4.1 Support Security Design Decisions

The security design decisions should typically be performed in parallel to the functional
design and specification phase. Here the concept of SeMF Building Blocks is used which
encapsulate security mechanisms and requirement refinement rules in a comprehensible
way.

For the security design aspects, the process presented in Figure 8.5a is used. Taking
a security requirement from the set of collected requirements, in a first step the risk
associated with the requirements is assessed (by some methodology). If it is low enough,
the requirement does not need to be further addressed and may be added to the set of
residual assumptions for documentation, traceability and residual risk assessment purposes.
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Figure 8.5: Design Decisions Process and Documentation

The sets can further serve as guidance for implementation, code review, validation and
testing tasks and cover organizational measures to be taken during deployment.

If the risk associated with a requirement is too high to disregard it, the engineer needs
to decide on a mechanism that fulfills this requirement. As there are internal conditions
associated with each SeBB, they serve as a direct guidance for the decision making. Once
a SeBB is chosen, it can be integrated and its internal conditions will need processed in a
later step as well.

Some M-SeBBs refer to specific actions in the system model. These actions may represent
cryptographic operations related to an M-SeBB. If these actions do not exist, but the SeBB
shall be applied, then the system model itself needs to be refined and the according agents
extended to include these operations.

The repeated execution of these decision steps can form a graph of SeBBs and interme-
diate properties that lead from residual assumptions to the global security requirements
as depicted in Figure 8.5b as well as a solution oriented refinement of the system model
itself. The graph represents a formal proof of the fulfillment of the system’s security
requirements, given the set of residual assumptions to hold in the system.
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8.4.2 Resulting Benefits

By following the above engineering method not only does the engineer have a guidance
during the security design of the system, but gains further benefits from the structured
approach and tools.

Traceability

SeBB graphs provide documentation that can be used during development, providing
backtracing if design decisions need to be reverted. But they also serve as an input to the
“design-rational” of a given system.

Support for Design Patterns

With this kind of traceability included into the method, the approach is suited for inclusion
in pattern driven designs. A first work has been presented in [72], where such a traceability
graph is provided alongside with patterns’ functional descriptions. Further, the existence
of a repository of design and implementation patterns alongside with a library of SeBBs
form a good combination to provide company-wide standards for specifications and
implementations.

Complexity Reduction

As opposed to attack trees, the SeBB based traceability graphs do not necessarily have
the format of trees. At some points, intermediate conditions can converge, e.g. a crypto-
graphic key store may serve for several private keys at the same time. This allows for the
convergence of security means in order to reduce system size and reuse already specified
components (such as such a cryptographic key store).

Risk Assessment

The Traceability graphs can serve as a basis for risk assessment. Further, it is also possible
to identify the most valuable intermediate conditions and residual assumptions based on
their convergence. For the task of overall risk assessment, of course, attacker capabilities
need to be estimated and the residual assumptions need to be mapped to attacker models.
However, these attacker models are now more technically focused and less complex as in
attack trees directly targeting global security requirements.
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Requirement: auth(sense(Sensor,,data,), show(Display, data,), U ser)

Figure 8.6: Example Requirement System

Abstraction Level Flexibility

As opposed to other approaches that are focused on specific levels of abstraction, the
approach is flexible enough to be applicable on abstract levels as well as concrete levels
separately, as well as all the way from e.g. organizational to technical system design.

8.5 Exemplary Application of SeMF Engineering

In order to illustrate this approach an example of a display that shows a set of sensor
values to a user is depicted in Figure 8.6. This could be the velocity and temperature
sensors of a car, or the pressure and temperature sensors of a power-plant. For ease of
readability, the graphical representation will not be used but the SeBBs will be represented
in a textual description.

The input to the design phase of the engineering process is the model illustrated by
Figure 8.6. Note that the arrows represent the functional relations and do not have any
security implications. Regarding security the only information after the requirements
elicitation phase is the requirement of the user to be assured that data on the display was
authentically measured by the corresponding sensor:

auth(sense(Sensory, datay), show(Display, datay),User) (Req)

First, this requirement can be transformed using a SeBB representing the relation of
authenticity and trust in precedence to the authenticity of data shown on the display to
actually be this display for the user and the user’s trust in the precedence of the sensing
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of data by the respective sensor before showing it on the display:

trust(User, precede( sense(Sensory, datay), 8.1
show(Display, datay))) A\
auth(show(Display, data,), (8.2)
show(Display, datay), User)

Property (8.2) representing the correct recognition of the display may be solved through
organizational means and is therefore added to the set of residual assumptions. Property
(8.1) becomes the next requirement for this system.

Next, the engineer decides to solve the new requirement by adding a signature scheme.
As the engineer has not yet decided to use HMAC, RSA or ECDSA, the engineer refines the
system to add generic functions sign(Sensor,, datay, sig(data,)) and verify(Display,
datay, sig(datay)) to the system.

Now Property (8.1) can be refined to make use of these new actions from the signature
scheme, using the SeBB transitive precede of Figure 8.3a twice. As mentioned before all
F-SeBBs and most M-SeBBs can be applied to the trusted properties as well. This results
in the division of the user’s trust into three properties, where the first one refers to the
sensors internal behavior, the second one represents the exact requirement against to
to be decided signature scheme, and the third describes the requirements against the
display:

trust(User,precede( (8.3)
sense(Sensory, datay),
sign(Sensory, data,, sig(datay)))A

trust(User,precede(, (8.4)
sign(Sensory, datay, sig(data,))
verify(Display, data,, sig(dataz))))A

trust(U ser,precede( (8.5)
verify(Display, data,, sig(datay)),
show(Display, data,)))

Property (8.4), a precedence between a sign and a verify can be solved with both, the
SeBB RSA and the SeBB HMAC of Figures 8.3b and 8.3c. The engineer now has to decide
which direction to take for the next refinement.

From SeBB HMAC the engineer can see, that he would need to provide a way to distribute
a shared secret SS confidentially to the Sensors and the Display. Instead, he decides to
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choose RSA. He refines the system by enriching the sign and verify actions according to
the actions in the SeBB RSA’s provided property.

The application of SeBB RSA to Property (8.4) leads to the new requirement of the user
in the confidentiality of each of the sensors’ private keys respectively.

trust(User, conf ({sign(Sensor,, data,, KP™™, (8.6)
sig.(datag))}, K™ AllK eys, {Sensory}))

The engineer could also choose to use the same private key for both sensors. This however
would have raised the issue that data; could be mistaken as datas leading to attack of
providing temperature information as velocity in a car, unless data was tagged. Note that
this approach captures these kinds of mistakes.

The set of open security requirements after this step consists of Property (8.3), Property
(8.5) and Property (8.6).

In order to guarantee the confidentiality of the sensors’ private keys as is Property (8.6),
the engineer decides to include a smartcard or TPM within the sensors. Accordingly, he
has to split the sensor further into two parts, one for the sensing and sending, and one
for signing operations. As a preparation, the engineer adds the corresponding interface
action emd_sign and return_sign to the sensor agent. Then, the engineer can refine
Property (8.3) with the F-SeBB transitive precede into the user’s trust in the precedence in
the future sensing part as well as the signing part:

trust(User, precede(sense(Sensory, datay), 8.7)
emd_sign(Sensory, datay)))A

trust(User, precede(cmd_sign(Sensor,, data,,) (8.8)

sign(Sensory,data,, KP™, sig,(data,))))

After performing this split operation, each of the sensors’ actions is assigned to either
Sensor,-Sensing or Sensor,-Signing, Property (8.6) contains both of them in place of
the former Sensor agent. This set can be further reduced, using a F-SeBB confidential
agent inclusion because if two agents are allowed to know a secret, then this is trivially
fulfilled, if only one of them (the Signing part) does know the secret:

trust(User, conf({sign(Sensor,-Signing, dataz, KP™,
sigz(datay))}, Kﬁ””, AllKeys,{Sensor,-Signing})) (8.9)

At this point, the engineer could decide to use a Trusted Platform Module (TPM) as
Signing component to solve Property (8.9) and Property (8.8) with TPM-specific conditions
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[P8.3)[ [PB4)]| [PEB.5)]

[pe.7| [P@B.8)| [Ps.6)]
<
[P8.10)| [P(8.1D)]

Figure 8.7: SeBB-graph of example refinement

about the certificate management and trust relations to realize. Further, a TPM could be
used to fulfill Property (8.7), using TPMs’ capability to restrict the usage of keys, to a
certain software configurations through PCRs [61, 127]. Using the presented approach,
this can be modeled by a SeBB PCR-Restriction that would satisfy Property (8.7) given the
properties:

trust(U ser, precedewiphase( (8.10)
sense(Sensor,, data,),
emd_sign(Sensory, datay),
changecon fig(Sensors, con figgood),
changecon fig(Sensory, configy)))A

trust(U ser, nothappenswiphase( (8.11)
sign(Sensory, datay, KP™, sig,(datay)),
changecon fig(Sensory, con fig-good)s

changecon fig(Sensory, configy)))

The resulting SeBB-graph that can be used for the Security Rational, Traceability and
Risk Assessment is presented in Figure 8.7.
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8.6 Conclusions to Engineering Systems

The presented approach provides a usable security design engineering process based on
formal models with a formal semantics and utilizes the new notion of SeMF Building
Blocks for supporting refinement of requirements and security design decisions. It can
be applied during any kind of refinement driven engineering of systems and provides a
variety of additional benefits (compare Section 8.4.2).

The example shows how this methodology can be applied and demonstrates that by
following this approach even complex scenarios can be handled. Moreover, it also shows
that the process is capable of representing non-trivial combinations of requirements,
technical solutions and underlying assumptions as they occur in the context of Trusted
Computing Base minimization. An earlier version of this approach has already been
successfully applied to a real-life case study for Car-2-Car an in-vehicle security architecture
design during project EVITA [82].
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9 Conclusion

This thesis shows that it is possible to reduce the TCB for non-trivial security policies down
to a TPM or “mostly a TPM”. With the reduction of the TCB and its physical separation the
complexity of the TCB is decreased and thereby the security of the system is increased.
Furthermore, given that the TPM was purposefully designed for security tasks and is
typically evaluated for Common Criteria, the TCB is adequately strengthened.

In order to evaluate the strength of the TCB, especially for the “mostly a TPM” solutions
the notion of how to describe a TCB was extended by a second dimension that represents
the dynamic aspects of the TCB boundary over the lifecycle of a system. With Figure 2.4 this
difference is already made obvious, since it allows to differentiate between the firmware
being part of the TCB during a given authentication process, whilst prior firmwares are
not part of the TCB during a present authentication process. This differentiation is also of
great importance in Rollback protection mechanisms in Figure 3.3 or in the difference
between a trivial PnC credential provisioning with HSMs versus the TrustEV and HIP
approachs as depicted in Figure 5.1b versus Figure 5.12.

The implementation of security policies with a TPM as TCB was demonstrated by the
implementation of systems with the policies for Selective Confidentiality of Data and Code
based on Device Attributes, Protection of Device Resident Data bound to Firmware enabling
Updates, Secure Credential usage in Plug and Charge, Offline Integrity Audit Logs and Role-
based access management. These policies are examples of non-trivial security policies that
are typically implemented on rich application processors. In this thesis, it was highlighted
that a TCB can be implemented based on a TPM as sole or majority of a TCB, even though
a TPM contains only a finite set of predefined functionalities. By utilizing the TPM’s usage
attributes and Enhanced Authorization policy framework, its NV index storage type (such
as counters), import capabilities for confidential key transfer and credential activation
means, it is possible to implement a wide variety of security policies. The limited set of
functionalities of the TPM are its strength since they provide the basis for highly secure
implementations and security evaluation of the TPM chips. It can be seen that it is possible
to construct a TCB out of this predefined set of functionalities and that a turing-complete
computational basis is oftentimes not required.

Finally, a framework for engineering systems based on security policy refinement and
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partitioning of properties into several smaller sets has been introduced. It offers a first
step towards a structure formal reasoning process that enables the systematic creation of
TCBs and the division of a system into the TCB and non-TCB domains.

9.1 Future Work

Future works include the implementation of further security policies based on TPMs and
to make the process of using TPMs as TCBs more stream-line. One step is to demonstrate
how different TPM functionalities serve as building blocks for these TCBs.

In this effort the notion of TCBs extended to the dynamic aspects of the device lifecycle
can be of great benefit. In the future the different importance of components and lifecycle
aspects should be refined by weighting their contributions to the graphs in order to better
represent actual security strengths. Thus this approach could provide a suitable assessment
strategy.

By extending the formal based engineering process for deducing security policies and
TCBs from global security goals a more systematic approach could be achieved. As a first
step the support by graphical tools could benefit a wider adoption and provide a more
convenient reasoning framework.
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