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Abstract The difference between the electromagnetic self-
energies of proton and neutron can be calculated with the
Cottingham formula, which expresses the self-energies as an
integral over the electroproduction cross sections – provided
the nucleon matrix elements of the current commutator do not
contain a fixed pole. We show that, under the same proviso,
the subtraction function occurring in the dispersive represen-
tation of the virtual Compton forward scattering amplitude
is determined by the cross sections. The representation in
particular leads to a parameter-free sum rule for the nucleon
polarisabilities. We evaluate the sum rule for the difference
between the electric polarisabilities of proton and neutron
by means of the available parameterisations of the data and
compare the result with experiment.
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1 Introduction

The mass difference between proton and neutron had been
puzzling for a long time. Ever since Heisenberg had intro-
duced isospin symmetry to explain the near degeneracy of
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these two levels [1], it was taken for granted that the strong
interaction is invariant under isospin rotations and that the
mass difference is of electromagnetic origin. In this frame-
work, it was difficult, however, to understand the experimen-
tal fact that the neutral particle is heavier than the charged
one. A first step towards a resolution of the paradox was
taken by Coleman and Glashow, who introduced the tad-
pole dominance hypothesis [2,3], which associates the bulk
of the electromagnetic self-energies with an octet opera-
tor. The origin of the tadpole remained mysterious, how-
ever. The puzzle was solved only in 1975, when it was
realised that the strong interaction does not conserve isospin,
because the masses of the up- and down-quarks strongly dif-
fer [4]. The crude estimates for the ratios of the three light-
est quark masses obtained in that work, mu/md � 0.67
and ms/md � 22.5, have in the meantime been improved
considerably. In particular, Weinberg [5] pointed out that
in the chiral limit, the Dashen theorem provides an inde-
pendent estimate of the quark mass ratios, as it determines
the electromagnetic self-energies of the kaons in terms of
those of the pions. Neglecting higher orders in the expan-
sion in powers of mu, md and ms , he obtained the estimate
mu/md � 0.56, ms/md � 20.1. Also, the decay η → 3π

turned out to be a very sensitive probe of isospin breaking [6–
10]. The quark mass ratios obtained from that source also
confirmed the picture. According to the most recent edition
of the FLAG review [11], the current lattice averages are
mu/md = 0.46(3), ms/md = 20.0(5).

1.1 Cottingham formula, dispersion relations

The analysis of [4] relies on the Cottingham formula [12],
which invokes dispersion relations to relate the spin-averaged
nucleon matrix elements of the time-ordered product,
〈p|T jμ(x) jν(y)|p〉, to those of the commutator of the elec-
tromagnetic current, 〈p|[ jμ(x), jν(y)]|p〉. Lorentz invari-
ance and current conservation determine the Fourier trans-
forms of these matrix elements in terms of two invari-
ant amplitudes, which only depend on the two variables
ν = p · q/m and q2, where m is the nucleon mass and q
the photon momentum. We stick to the notation used in [4]
and denote the invariant amplitudes by T1(ν, q2), T2(ν, q2)

and V1(ν, q2), V2(ν, q2), respectively. Explicit formulae
that specify the matrix elements 〈p|T jμ(x) jν(y)|p〉 and
〈p|[ jμ(x), jν(y)]|p〉 in terms of the invariant amplitudes
are listed in Appendix A, where we also exhibit the relations
between the structure functions V1(ν, q2), V2(ν, q2) and the
cross sections σT and σL of electron scattering.

In the space-like region and for ν ≥ 0, the structure func-
tions represent the imaginary parts of the time-ordered ampli-
tudes:

Im T1(ν, q2) = πV1(ν, q2),

Im T2(ν, q2) = πV2(ν, q2), ν ≥ 0, q2 ≤ 0. (1)

While the functions V1(ν, q2), V2(ν, q2) are odd under
ν → −ν, the time-ordered amplitudes T1(ν, q2), T2(ν, q2)

are even. In view of the contributions arising from Regge
exchange, V1(ν, q2) ∼ να , V2(ν, q2) ∼ να−2, only T2 obeys
an unsubtracted dispersion relation, while for T1 a subtrac-
tion is needed.1 For q2 < 0, the dispersion relations thus take
the form

T1(ν, q2) = S1(q
2) + 2ν2

∫ ∞

0

dν′

ν′
V1(ν

′, q2)

ν′2 − ν2 − iε
,

T2(ν, q2) = 2
∫ ∞

0
dν′ ν′ V2(ν

′, q2)

ν′2 − ν2 − iε
. (2)

The formulae hold in the cut ν-plane; the upper and lower
half-planes are glued together along the interval |ν| <

Q2/2m of the real axis (throughout, we use Q2 ≡ −q2 when-
ever this is convenient). As illustrated with the discussion
in Appendix E, it is important that kinematic singularities,
zeros, and constraints be avoided – throughout this paper, we
work with the amplitudes defined in Appendix A, which are
free of these [14–16].

We refer to S1(q2) as the subtraction function. It represents
the value of the amplitude T1(ν, q2) at ν = 0. For later use
we introduce the analogous notation also for T2(ν, q2):

S1(q
2) ≡ T1(0, q2), S2(q

2) ≡ T2(0, q2). (3)

1.2 Reggeons and fixed poles

In [4] it is assumed that the asymptotic behaviour is deter-
mined by Reggeon exchange. The contribution of a Regge
pole to a scattering amplitude at large centre-of-mass energy
squared s and small momentum transfer t ≤ 0 has the form
(see e.g. [17]):

T (s, t) = − πβα(t)

sin πα(t)
{exp[−iπα(t)] + τ }sα(t), (4)

where α(t) and β(t) denote the trajectory and the residue,
respectively, and τ is the signature. In the context of the
present paper, we are concerned with t = 0 and τ = 1. The
continuation of the asymptotic formula (4) to low energies is
not unique. For definiteness, we work with the representation

T R
1 (ν, q2) = −

∑
α>0

πβα(Q2)

sin πα

×{(s0 − s+ − iε)α + (s0 − s− − iε)α}, (5)

1 It was even suggested that the subtraction term might solve the noto-
rious puzzle with the proton–neutron mass difference, as it could dom-
inate over the remainder and explain why the neutron is heavier than
the proton [13]. In hindsight, we know better.
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where s+ and s− stand for s± = (p ± q)2 = m2 ± 2mν −
Q2 and s0 ≥ m2 is a constant. Equation (5) is manifestly
symmetric under photon crossing. Unless the intercept α is
an integer,2 the first term in the curly brackets contains a
branch cut along the positive real axis, starting at 2mν =
s0 − m2 + Q2. The second is real there. One readily checks
that, on the upper rim of this cut, the individual terms in
the sum (5) differ from the asymptotic expression (4) only
through contributions of O(sα−1).

The basic assumption made in [4] is that, in the limit
ν → ∞ at fixed q2, only the Reggeons survive, so that the
difference tends to zero:3

T1(ν, q2) − T R
1 (ν, q2) → 0, (6)

We refer to this hypothesis as Reggeon dominance. A nonzero
limiting value in (6) would represent a ν-independent term.
In Regge language, a term of this type would correspond
to a fixed pole at angular momentum J = 0. The Reggeon
dominance hypothesis (6) thus excludes the occurrence of
such a fixed pole.

The presence or absence of a fixed pole at J = 0 in Comp-
ton scattering is a standard topic in Regge pole theory [18]
and the literature contains several works advocating the pres-
ence of such a contribution. In particular, the universality con-
jecture formulated in [19] has received considerable attention
(see e.g. [20] and the papers quoted therein).

Note, however, that these considerations go beyond the
safe grounds provided by asymptotic freedom. While the
short-distance properties of QCD ensure that, if both ν and
q2 are large, the behaviour of T1(ν, q2) and T2(ν, q2) is gov-
erned by the perturbative expansion in powers of the strong
coupling constant, the behaviour in the Regge region, where
only ν becomes large, is not controlled by the short-distance
properties of QCD. In particular, values of q2 of the order of
�2

QCD are outside the reach of perturbation theory, even if ν

is large.
The perturbative analysis shows that an infinite set of

graphs needs to be summed up to understand the high-energy
behaviour of the amplitudes in the Regge region. The dom-
inating contributions can be represented in terms of poles
and cuts in the angular momentum plane (Reggeon calculus,
Reggeon field theory). The behaviour of the sum thus differs
qualitatively from the one of the individual diagrams.

There is solid experimental evidence for the presence
of Reggeons also in the data. Equation (6) amounts to the
assumption that the asymptotic behaviour of the current cor-
relation function can be understood in terms of these. In the

2 Integer values of α require special treatment, but since this case does
not arise for the parameterisations we are working with, we do not
discuss it further.
3 More precisely, it is assumed that the difference disappears rapidly,
so that it obeys an unsubtracted dispersion relation.

analysis described in the present paper, this assumption plays
a key role. In particular, as will be demonstrated explicitly
below, it uniquely fixes the subtraction function relevant for
the difference between proton and neutron in terms of the
electron cross sections, so that the entire self-energy differ-
ence can be expressed in terms of these cross sections. In
other words, the necessity of a subtraction in the fixed-q2 dis-
persion relation for T1(ν, q2) modifies the relation between
the self-energy difference and the electron cross sections, but
does not destroy it.4

The subtraction functions occurring in the fixed-t disper-
sion relations relevant for real Compton scattering are anal-
ysed in [21,22]. As shown there, the experimental informa-
tion on the differential cross sections can be used to impose
bounds on the subtraction functions. In particular, these
bounds lead to the conclusion that the electric polarisabil-
ity of the proton is necessarily larger than the magnetic one,
in conformity with experiment. An update of this work with
the data available today is highly desirable. Unfortunately,
this approach to the problem cannot readily be extended to
virtual Compton scattering, because data on the differential
cross sections are available only for real photons.

1.3 Recent work

The numerical analysis of [4] was based on the scaling
laws proposed by Bjorken [23]. The data available at the
time were perfectly consistent with these, but Bjorken scal-
ing correctly accounts for the short-distance properties of
QCD only to leading order in the perturbative expansion in
powers of αs . The higher-order contributions generate spe-
cific violations of Bjorken scaling [24,25]. In the mean-
time, the implications of the phenomenon and the corre-
sponding modification of the short-distance properties of the
matrix elements 〈p|T jμ(x) jν(y)|p〉 have been investigated
by Collins [26]. Unfortunately, however, he did not reevalu-
ate the self-energy difference in this framework. In fact, the
question of whether the Reggeons do dominate the asymp-
totic behaviour or whether the amplitude in addition contains
a fixed pole at I = 1, J = 0 is not touched at all in that work.

Motivated in part by the study of hadron electromagnetic
mass shifts on the lattice (see, e.g., [27–29]), the Cottingham
formula has recently been reexamined [30–36], but the cen-
tral issue in this context – the possible occurrence of fixed
poles – is not addressed in these papers, either. Instead, the
electron cross sections σT , σL and the subtraction function
S1(q2) are treated as physically independent quantities. The
main problem with the framework set up in [31] is that a

4 In [4], this conclusion was derived on the basis of a somewhat weaker
form of Reggeon dominance, which does not invoke the matrix elements
of the time-ordered product, but those of the current commutator. For a
brief discussion of this aspect, we refer to Appendix C.
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direct experimental determination for S1(q2) is not available.
To bridge the gap, the authors set up a model which parame-
terises the dependence of the subtraction function on q2. The
overall normalisation, S1(0), can in principle be determined
from the difference between the magnetic polarisabilities of
proton and neutron, albeit the experimental value is subject
to rather large uncertainties [37]. The main problem in this
approach, however, is the momentum dependence of the sub-
traction function, which leads to a systematic uncertainty that
is difficult to quantify.

1.4 Structure of the present paper

The remaining sections are organised as follows. In Sect. 2,
we show how the Reggeon dominance hypothesis (6) fixes
the subtraction function S1(q2) from space-like data alone.
In Sect. 3, we discuss the splitting of the amplitudes Ti into
elastic and inelastic contributions. We derive sum rules for
the nucleon polarisabilities in Sect. 4, while a thorough phe-
nomenological analysis is provided in Sect. 5. In particular,
the sum rules allow us to predict the difference between the
electric polarisabilities of proton and neutron. In view of the
fact that the proton polarisabilities are experimentally known
more accurately, our result can be turned into a prediction of
the electric polarisability of the neutron, which is consis-
tent with observation but somewhat more precise. The mag-
netic polarisabilities then follow from the Baldin sum rule.
Section 6 is devoted to the electromagnetic self-energies of
proton and neutron. We discuss the renormalisation of the
Cottingham formula, in particular the role of the subtraction
function in the evaluation of the self-energy and provide a
comparison with recent work on the issue. A summary and
concluding remarks are given in Sect. 7. In Appendix A, we
detail the notation used. Appendix B reviews those properties
of Compton scattering we are making use of. In particular, we
discuss the frame-dependence of the spin average and derive
the low-energy theorem which underlies the sum rule for the
electric polarisability. Appendices C and D contain a short
discussion of the role of causality in our analysis. Last but not
least, we note that in [30–33] a comparison with the analy-
sis of [4] is attempted. Unfortunately, many of the statements
made there are simply incorrect. Some of the misconceptions
are rectified in Appendix E.

2 Determination of the subtraction function

The Regge amplitude obeys a once-subtracted fixed-q2 dis-
persion relation:

T R
1 (ν, q2) = T R

1 (0, q2) + 2ν2
∫ ∞

0

dν′

ν′
V R

1 (ν′, q2)

ν′2 − ν2 − iε
. (7)

In the space-like region and for ν ≥ 0, the absorptive part of
the amplitude specified in (5) is given by

V R
1 (ν, q2) =

∑
α>0

βα(Q2) θ(s+ − s0) (s+ − s0)
α . (8)

The Reggeon dominance hypothesis (6) implies that the
difference between the full amplitude and the Regge con-
tributions, T 1(ν, q2) ≡ T1(ν, q2) − T R

1 (ν, q2), obeys an
unsubtracted dispersion relation. In particular, the value of
T 1(0, q2) = S1(q2)− T R

1 (0, q2) is given by an integral over
the difference V1(ν, q2) − V R

1 (ν, q2). Hence the subtraction
function can be represented as

S1(q
2) = T R

1 (0, q2) + 2
∫ ∞

0

dν

ν
{V1(ν, q2) − V R

1 (ν, q2)}.
(9)

This formula explicitly represents the subtraction function
in terms of measurable quantities: the structure function
V1(ν, q2) is determined by the cross sections for inclusive
electron–nucleon scattering. The high-energy behaviour of
these cross sections also determines the Reggeon residues
βα(Q2) and thereby fixes the term T R

1 (0, q2), as well as
the corresponding contribution to the structure function,
V R

1 (ν, q2).
If the trajectory intercepts α were all below zero, the

unsubtracted dispersion integral over V R
1 (ν, q2) would con-

verge and would exactly compensate the first term on the
right of (9) – the subtraction function would then be given
by the unsubtracted dispersion integral over V1(ν, q2). The
expression for the subtraction function in (9) shows how the
divergence of the unsubtracted dispersion integral generated
by the Reggeons is handled: the corresponding contribution
is removed from the integrand, so that the integral converges
also at the physical values of the intercepts. The modification
is compensated by the term T R

1 (0, q2), which must be added
to the integral over the remainder. The procedure amounts
to analytic continuation in α from negative values, where
T R

1 (0, q2) is given by the unsubtracted dispersion integral
over V R

1 (ν, q2) to the physical values, where that represen-
tation does not hold any more.

We emphasise that the specific form used for the Regge
parameterisation does not matter. In particular, the Regge
amplitude specified in (5) involves a free parameter, s0. Since
it does not affect the leading term in the asymptotic behaviour,
the value used for s0 is irrelevant – our results are independent
thereof. In the following, we simplify the equations by taking
s0 in the range s0 ≥ (m + Mπ )2, which has the advantage
that V R

1 (ν, q2) then vanishes outside the inelastic region.

3 Elastic and inelastic contributions

3.1 Elastic part

The contributions to the structure functions arising from the
elastic reaction e + N → e + N are determined by the
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electromagnetic form factors of the nucleon. In the space-
like region, these contributions are restricted to the lines q2 =
±2νm and read (i = 1, 2)

V el
i (ν, q2) = vel

i (q2){δ(q2 + 2mν) − δ(q2 − 2mν)},

vel
1 (q2) = 2m2

4m2 − q2 {G2
E (q2) − G2

M (q2)},

vel
2 (q2) = 2m2

(−q2)(4m2 − q2)
)

× {4m2G2
E (q2) − q2G2

M (q2)},

(10)

where G E (t) and G M (t) are the Sachs form factors.
The elastic contributions to the time-ordered amplitudes

T1, T2 cannot be specified as easily. In perturbation theory,
they are usually referred to as Born terms, and it is not a
trivial matter to specify them at higher orders of the calcu-
lation. In effective low-energy theories, the decomposition
into a Born term and a ’structure part’ is not a simple matter,
either. For a detailed discussion of these aspects, we refer
to [38–40]. In the framework of dispersion theory, however,
the decomposition is unambiguous. The reason is that ana-
lytic functions are fully determined by their singularities and
their asymptotic behaviour: dispersion theory provides a rep-
resentation of the amplitudes in terms of its singularities. In
our framework, this representation is given by the dispersion
relations (2) and the sum rule (9). The elastic contribution is
the part of the amplitude which is generated by the singulari-
ties due to the elastic intermediate states. These are specified
in (10). Accordingly, the elastic parts of T1, T2 are obtained
by simply replacing V1, V2 with V el

1 , V el
2 and dropping the

Regge contributions. In the case of T2, this leads to

T el
2 (ν, q2) = 2

∫ ∞

0
dν′ν′ V el

2 (ν′, q2)

ν′2 − ν2 − iε
. (11)

In the case of T1(ν, q2) there are two contributions, one from
the subtraction function, the other from the subtracted dis-
persion integral:

T el
1 (ν, q2) = Sel

1 (q2) + 2ν2
∫ ∞

0

dν′

ν′
V el

1 (ν′, q2)

ν′2 − ν2 − iε
. (12)

The sum rule (9) for the subtraction function implies

Sel
1 (q2) = 2

∫ ∞

0

dν

ν
V el

1 (ν, q2). (13)

Taken together, the two terms on the right hand side of (12)
yield the unsubtracted dispersion integral, so that the expres-
sion takes the same form as the one for T el

2 (ν, q2):

T el
1 (ν, q2) = 2

∫ ∞

0
dν′ν′ V el

1 (ν′, q2)

ν′2 − ν2 − iε
. (14)

Inserting the explicit expressions for the elastic contributions
to the structure functions, we obtain

T el
1 (ν, q2) = 4m2q2

(4m2ν2 − q4)(4m2 − q2)

×{G2
E (q2) − G2

M (q2)},
T el

2 (ν, q2) = − 4m2

(4m2ν2 − q4)(4m2 − q2)

×{4m2G2
E (q2) − q2G2

M (q2)}. (15)

Both functions tend to zero when ν becomes large: by
construction, the elastic part of T1(ν, q2) does not con-
tain a singularity at infinity. Moreover, as demonstrated in
Appendix D, even taken by itself, the elastic contributions
can be represented in manifestly causal form.

The explicit expression for the elastic part of the subtrac-
tion function,

Sel
1 (q2) = − 4m2

q2(4m2 − q2)
(G2

E (q2) − G2
M (q2)), (16)

exclusively involves the form factors, which are known very
precisely.

3.2 Inelastic part

We refer to the remainder as the inelastic part of the ampli-
tude:

Ti (ν, q2) = T el
i (ν, q2) + T inel

i (ν, q2), i = 1, 2. (17)

In contrast to the elastic part, which contains the poles gen-
erated by the elastic intermediate states and is singular at the
origin, the inelastic part is regular there. At high energies,
the converse is true: while the elastic part tends to zero, the
inelastic part includes the contributions from the Reggeons,
which are singular at infinity. In particular, the sum rule for
the inelastic part of the subtraction function reads

Sinel
1 (q2) = T R

1 (0, q2)+2
∫ ∞

νth

dν

ν
{V1(ν, q2)−V R

1 (ν, q2)},
(18)

where νth = Mπ + (M2
π − q2)/2m denotes the inelastic

threshold. The dispersive representation for the inelastic part
of T1(ν, q2) then becomes

T inel
1 (ν, q2) = Sinel

1 (q2) + 2ν2
∫ ∞

νth

dν′

ν′
V1(ν

′, q2)

ν′2 − ν2 − iε
.

(19)

In the case of T2(ν, q2), a subtraction is not needed. The con-
tribution from the elastic intermediate state to the dispersion
integral in (2) coincides with the expression for T el

2 (ν, q2)

in (15). Removing this part, which is even more singular at
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the origin than T el
1 (ν, q2), we obtain the following represen-

tation for the inelastic part:

T inel
2 (ν, q2) = 2

∫ ∞

νth

dν′ ν′ V2(ν
′, q2)

ν′2 − ν2 − iε
. (20)

3.3 Subtraction function in terms of cross sections

The structure function V1(ν, q2) is a linear combination of the
transverse and longitudinal cross sections, see Appendix A:

V1(ν, q2) = mν

2αem
k(ν, Q2){σ̄L(ν, Q2) − σT (ν, Q2)},

σ̄L(ν, Q2) ≡ ν2

Q2 σL(ν, Q2), (21)

k(ν, Q2) ≡ 1

2π2

ν − Q2/2m

ν(ν2 + Q2)
.

The representation of the subtraction function thus involves
integrals over the transverse and longitudinal cross sections.
For Sinel

1 (q2) and Sinel
2 (q2), the following integrals are rele-

vant:

�T (Q2) =
∫ ∞

νth

dν k(ν, Q2) σT (ν, Q2), (22)

�L
1 (Q2) = αem

m
T R

1 (0, q2)

+
∫ ∞

νth

dν k(ν, Q2)�σ̄L(ν, Q2), (23)

�L
2 (Q2) =

∫ ∞

νth

dν k(ν, Q2) σL(ν, Q2), (24)

�σ̄L(ν, Q2) ≡ σ̄L(ν, Q2) − σ̄R
L (ν, Q2). (25)

Expressed in terms of these, Sinel
1 (q2) and Sinel

2 (q2) are given
by

Sinel
1 (q2) = m

αem
�1(Q2),

Sinel
2 (q2) = m

αem
�2(Q2),

�1(Q2) = −�T (Q2) + �L
1 (Q2),

�2(Q2) = �T (Q2) + �L
2 (Q2). (26)

While the transverse parts of �1(Q2) and �2(Q2) only dif-
fer in sign, the longitudinal parts are quite different. Regge
asymptotics implies that σT as well as σL grow in propor-
tion to να−1. Accordingly, the integral �T (Q2) converges –
it represents a generalisation of the integral relevant for the
Baldin sum rule to Q2 �= 0 (cf. Sect. 4.2). While �L

2 (Q2) is
dominated by the contributions from the low-energy region
and rapidly converges as well, it is essential that Reggeon
exchange be accounted for in �L

1 (Q2).
We are assuming that, at high energies, the longitudinal

cross section can be approximated with a representation of
the form

σ̄R
L (ν, Q2) = 8π2αem

ν2

2mν − Q2

×
∑
α>0

βα(Q2)(2mν−Q2+m2−s0)
α. (27)

At Q2 = 0, a Reggeon term proportional to να in V1 corre-
sponds to a contribution to σ̄L that is proportional to να+1.
For nonzero values of Q2, however, the factor in front of the
sum implies that the corresponding cross section contains
sub-leading contributions. As discussed at the end of Sect. 2,
the specific form used for the Regge parameterisation is not
essential – as long as it satisfies a once-subtracted dispersion
relation and correctly represents the asymptotic behaviour
of the physical cross section. We stick to the one specified
in (5), which leads to (27).

3.4 Chiral expansion

Chiral perturbation theory (χPT) exploits the fact that in
the limit mu, md → 0 (at fixed �QCD, ms, . . . , mt ) QCD
acquires an exact chiral symmetry, which strongly constrains
the low-energy properties of the amplitudes. The chiral per-
turbation series provides a representation of the quantities
of interest in powers of momenta and quark masses. In
the chiral limit, the pion is a massless particle, but when
the quark masses mu, md are turned on, the pion picks
up mass in proportion to the square root thereof, M2

π =
(mu + md)B + O(m2

q log mq).
In the context of the present paper, we only need the

chiral expansion of the form factors G E (q2), G M (q2), and
of the functions S1(q2), S2(q2). These quantities involve a
single momentum variable, q2. As we work in the isospin
limit, mu = md , the corresponding chiral perturbation series
involves an expansion in the two variables Mπ and q2. The
series can be ordered in powers of Mπ ; the coefficients then
depend on the ratio

τ = − q2

4M2
π

, (28)

which counts as a quantity of O(1). In contrast to the straight-
forward Taylor series in powers of q2, the chiral expansion is
able to cope with the infrared singularities generated by the
pions.

To leading order in the chiral expansion, the infrared sin-
gularities are described by a set of one-loop graphs of the
effective theory [41]. In the case of the magnetic Sachs form
factor, for instance, the evaluation of the relevant graphs
within Heavy Baryon χPT leads to the following expression
for the first non-leading term in the chiral expansion [42]:5

5 Note that the range of validity of the representation (29) is limited.
The ππ intermediate states generate a branch point in the form fac-
tors at q2 = 4M2

π , which corresponds to τ = −1. While relativistic
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G p
M (q2) = μp − g2

Am Mπ

16π F2
π

{
(1 + τ)

arctan
√

τ√
τ

− 1

}

+ O(M2
π log Mπ ),

Gn
M (q2) = μn + g2

Am Mπ

16π F2
π

{
(1 + τ)

arctan
√

τ√
τ

− 1

}

+ O(M2
π log Mπ ). (29)

Up to and including O(Mπ ), the magnetic form factor can
thus be represented in terms of the magnetic moment μ,
the pion decay constant, Fπ = 92.21(14) MeV [44], and
the nucleon matrix element of the axial charge, gA =
1.2723(23) [45]. The formula shows that, up to higher-order
contributions, the singularity is described by a function of
the ratio τ = (−q2)/4M2

π : the scale is set by the pion mass,
not by �QCD. The presence of a scale that disappears in the
chiral limit also manifests itself in the slope of the form factor
at q2 = 0, i.e. in the magnetic radius: the above representa-
tion shows that the chiral expansion of the magnetic radii of
proton and neutron starts with a term of O(1/Mπ ).

The low-energy behaviour of the electric Sachs form fac-
tors is less singular:

G p
E (q2) = 1 + O(M2

π log Mπ ),

Gn
E (q2) = O(M2

π log Mπ ). (30)

Accordingly, the chiral expansion of the electric radii does
not start with a term of O(1/Mπ ), but with a chiral logarithm,
comparable to the situation with the charge radius of the pion.

The subtraction function also diverges if the chiral limit
is taken at a fixed value of the ratio q2/M2

π : the leading term
in the chiral expansion of Sinel

1 (q2) is of order 1/Mπ and is
determined by Fπ and gA as well [46]:

Sinel
1 (q2) = − g2

Am

64π F2
π Mπτ

{
1 − arctan

√
τ√

τ

}

+ O(log Mπ ). (31)

The expansion of the analogous term in T2 starts with [46]:

Sinel
2 (q2) = − g2

Am

64π F2
π Mπτ

{
1 − (1 + 4τ)

arctan
√

τ√
τ

}

+ O(log Mπ ). (32)

In either case, the leading term is the same for proton and
neutron – for Sinel

1 (q2) and Sinel
2 (q2), the chiral expansion

of the difference between proton and neutron only starts at
O(log Mπ ).

Footnote 5 continued
formulations of Baryon χPT do cover this region, an infinite series of
Heavy Baryon χPT graphs contributes in the vicinity of that point, more
precisely in the region where τ + 1 is small, of O(M2

π/m2) [43]. In the
present paper, however, we make use of the chiral expansion only near
τ = 0, where the non-relativistic framework is adequate.

4 Nucleon polarisabilities

4.1 Low-energy theorems

In contrast to the elastic parts, which are singular at the
origin, the inelastic contributions to T1(ν, q2), T2(ν, q2) do
admit a Taylor series expansion in powers of ν and q2. Two
low-energy theorems relate the leading terms in this expan-
sion to the polarisabilities of the nucleon. The theorems
amount to rather nontrivial statements, because the functions
T1(ν, q2), T2(ν, q2) represent the virtual Compton scattering
amplitude in the forward direction, while the experimental
determination of the polarisabilities relies on real Compton
scattering at nonzero scattering angle. A concise derivation
is given in Appendix B.

In the above notation, the low-energy theorems take the
simple form

Sinel
1 (0) = − κ2

4m2 − m

αem
βM , (33)

Sinel
2 (0) = m

αem
(αE + βM ), (34)

where κ is the anomalous magnetic moment, αE and βM are
the electric and magnetic polarisabilities of the particle, and
αem is the fine structure constant. These relations show that
the polarisabilities contain an elastic as well as an inelastic
part, while their sum, αE + βM , is purely inelastic:

αel
E = αemκ2

4m3 , βel
M = −αemκ2

4m3 . (35)

Table 1 shows that the elastic parts only represent a small
fraction of the polarisabilities.

4.2 Sum rules for the polarisabilities

The left hand side of the low-energy theorem (33) represents
the inelastic part of the subtraction function at q2 = 0:

β inel
M = −αem

m
Sinel

1 (0). (36)

The representation for the subtraction function in (18) thus
amounts to a sum rule for the inelastic part of the magnetic
polarisability. Adding the elastic contribution, the sum rule
takes the form

βM = �T (0) − �L
1 (0) − αemκ2

4m3 . (37)

To our knowledge, this sum rule is new. It states that, in the
absence of fixed poles, the magnetic polarisabilities of proton
and neutron are determined by the cross sections for photo-
and electroproduction. If the amplitude T1(ν, q2) were to
obey an unsubtracted dispersion relation, the Regge terms
in the expression for �L

1 (Q2) could be dropped, so that the
sum rule would reduce to the one proposed in [53]. Regge
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Table 1 Experimental values of the nucleon polarisabilities, in units
of 10−4 fm3, as determined from EFT extractions in Compton scat-
tering [47,49,51] and analyses of the Baldin sum rule [48,50] (see

also [37,52]). The latter results were imposed in [47,49], so that the
quoted errors for αE and βM are anticorrelated

αE αel
E βM βel

M αE + βM

p 10.65 (0.50) [47] 0.55 3.15 (0.50) [47] −0.55 13.8 (4) [48]

n 11.55 (1.50) [49] 0.62 3.65 (1.50) [49] −0.62 15.2 (4) [50]

p − n −0.9 (1.6) −0.08 −0.5 (1.6) 0.08 −1.4 (6)

asymptotics implies that a subtraction is needed, but if the
Reggeon trajectories and residues are known, the subtraction
can be expressed in terms of these.

Evaluating the dispersive representation (20) at ν = q2 =
0, we obtain

Sinel
2 (0) = 2

∫ ∞

νth

dν

ν
V2(ν, 0) = m

2π2αem

∫ ∞

νth

dν

ν2 σtot(ν)

.(38)

The low-energy theorem (34) thus represents the familiar
Baldin sum rule [54]. The integral occurring here is a limiting
case of the quantity �T (Q2) introduced in (22): the Baldin
sum rule amounts to

αE + βM = �T (0). (39)

Comparison with (37) shows that the electric polarisability
obeys a sum rule that exclusively involves the longitudinal
cross section and the anomalous magnetic moment:

αE = �L
1 (0) + αemκ2

4m3 . (40)

5 Numerical analysis

5.1 Experimental information

We evaluate the cross section integrals on the following
basis.6

W < 1.3: At low energies, the resonance �(1232) generates
the most important inelastic contribution. It decays almost
exclusively into π N final states which have been thoroughly
explored. The SAID, MAID, Dubna–Mainz–Taipei (DMT),
and chiral-MAID collaborations provide pion photo- and
electroproduction cross sections into these channels [55–
63].7 For W < 1.3 and real photons (Q2 = 0), the trans-
verse cross section is well approximated by the sum over

6 Throughout, the numerical values of W and Q refer to GeV units, the
cross sections are given in μb, while the polarisabilities as well as the
cross section integrals � are expressed in units of 10−4 fm3.
7 The photoproduction cross sections are also provided by the Bonn–
Gatchina collaboration [64,65].

these contributions. In particular, the representations we are
using are consistent with isospin symmetry, which implies
that the contributions from the � to the proton and neutron
cross sections are the same up to symmetry-breaking effects
of O(mu − md , αem), which are expected to be very small.
Moreover, as seen from Fig. 1 (left panel), the � dominates
in the transverse cross sections and gives very small con-
tributions to the longitudinal ones. This property is directly
related to the smallness of the C2 Coulomb quadrupole form
factor for the �Nγ ∗ transition. In the non-relativistic quark
model, where both the nucleon and the � are zero-orbital-
momentum three-quark states, this form factor, as well as the
one of the E2 electric quadrupole, vanish altogether [66–68].

The comparison of the full lines in the two panels of Fig. 1
shows that, in the region where the � generates the dominant
contribution, the transverse cross sections for proton and neu-
tron are indeed nearly the same: the differences are smaller
than the individual terms by an entire order of magnitude [66].
For the polarisabilities, the behaviour of the ratio σL/Q2 in
the limit Q2 → 0 is relevant. Since MAID and DMT offer
a representation also for this quantity, these parameterisa-
tions are particularly convenient for us. For definiteness, we
identify the central values of the cross sections in the region
W < 1.3 with the average of MAID and DMT, abbrevi-
ated as MD: σMD = 1

2 (σMAID + σDMT). As far as the proton
cross sections are concerned, the results obtained with SAID,
MAID, and DMT are practically the same, but Fig. 2 shows
that for the small differences between proton and neutron,
this is not the case. The uncertainties in the input used for
the cross sections do affect our numerical results and will be
discussed together with these.

1.3 < W < 3: In the intermediate region, we rely on the work
of Bosted and Christy (BC), who provide parameterisations
of the transverse and longitudinal proton and neutron cross
sections in the resonance region, m + Mπ < W < 3.2, in
the range 0 < Q2 < 8 [69,70]. These contain a wealth of
information, but suffer from a number of shortcomings. In
particular, their fit to the data is carried out under the assump-
tion that the ratio σL/σT is the same for proton and neutron.
An experimental analysis that does not rely on this assump-
tion would be most welcome. Second, the parameterisation
does not properly cover the region of very small photon virtu-
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Fig. 2 Consistency check at the transition point W = 1.3. The plot
compares the representations of MAID and DMT used below that point
with the BC-parametrisation used above it. The difference between
MAID and DMT and the band attached to BC represent an estimate

of the uncertainties to be attached to these parameterisations. As dis-
cussed in the text, the picture implies that these parameterisations pro-
vide a coherent framework only for Q2 > 0.5

alities (cf. [71]): (a) The algebraic form of the representation
used for σL implies that the quantity σ̄L ≡ σLν2/Q2 disap-
pears when Q tends to zero instead of approaching a nonzero
limiting value. (b) Isospin symmetry implies that the con-
tributions of the resonance �(1232) to proton and neutron
are the same, but, as noted in [36], the BC-parameterisation
does not respect this symmetry to the expected accuracy. (c)
The parameterisation of the contribution from the resonance
N (1530) exhibits an unphysical dependence on Q2: in the
tiny interval 0 < Q2 < 0.001, the contribution from this
resonance to the transverse cross section of the proton varies
by about 40 %. Although this artefact only manifests itself at
very small values of Q2, it seriously affects our calculation
because the results obtained for the polarisabilities depend
on whether we simply evaluate the sum rules at Q2 = 0 or
use very small positive values of Q2 – for the physical cross
sections, a difference of this sort cannot arise.

In the interval 1.3 < W < 3, we use the following
crude estimate for mean values and errors: (i) The central

value is identified with the result obtained with the BC-
parameterisation. (ii) In order to wash out the spikes occur-
ring at very small values of Q2, we assign an 8 % uncer-
tainty to the BC-representation of the proton cross sections:
�σ p = 0.08 σ p . (iii) Since the difference between the proton
and neutron cross sections is much smaller than the individ-
ual terms, small relative errors in the latter can generate large
relative errors in the difference. For this reason, we use the
same error estimate for σ p−n as for the individual terms, i.e.
work with �σ p−n = 0.08 σ p .

The comparison of the representations for the difference
between the proton and neutron cross sections used below
and above W = 1.3 offers a consistency test on our calcu-
lations. Figure 2 compares the representations of MAID and
DMT with the uncertainty band attached to BC at the transi-
tion point. The left panel shows that the representations for
the difference of the transverse cross sections used below and
above that point agree with one another only for Q2 > 0.5.
The problem arises from the deficiencies mentioned above,
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Fig. 3 Consistency check at the transition point W = 3; see main text

which prevent us from reliably evaluating the cross section
integrals at low values of Q2. The right panel shows that the
uncertainties in the difference of the longitudinal cross sec-
tions are considerable, but within these, the representations
used are coherent.

W > 3: We estimate the contributions from higher energies
with the representation of Alwall and Ingelman [72]. It is
based on the vector-meson-dominance model [73–76] and
offers a parameterisation of the transverse and longitudinal
cross sections of the form

σT = βT
P (Q2)sαP−1 + βT

R (Q2)sαR−1,

σL = βL
P (Q2)sαP−1 + βL

R (Q2)sαR−1, (41)

where s = W 2 is the square of the centre-of-mass energy. The
Pomeron cut is approximated by a Regge pole at αP = 1.091,
while the Reggeons with the quantum numbers of f and a2

are lumped together in a single contribution with αR = 0.55.
The Pomeron residues of proton and neutron are the same:

βT
P (Q2)n = βT

P (Q2)p, βL
P (Q2)n = βL

P (Q2)p. (42)

For the remainder, we follow [4], invoke SU (3), and stick
to the value of the D/F ratio quoted there (for the defini-
tion of the Regge couplings D and F and a review of their
determination, we refer to [77]):

βT
R (Q2)n = ξ βT

R (Q2)p, βL
R (Q2)n = ξ βL

R (Q2)p,

ξ = 6F − 4D

9F − D
� 0.74. (43)

The parameterisations for the structure function F2 of
Capella et al. [78,79] and for the ratio σL/σT of Sibirtsev
et al. [80] provide an alternative Regge representation of
the cross sections, which we refer to as CS. In Fig. 3, the
consistency check made at the transition point W = 1.3 is
repeated for W = 3. The plot shows that, for Q2 < 1.4,
the central representation of AI is indeed contained in the
uncertainty band attached to BC, while the one of CS runs

above it. The comparison indicates that, at low values of Q2,
working with AI yields a coherent picture, while with CS
this is not the case. For Q2 > 2, however, the situation is
reversed: there, the AI-representation yields values for the
difference between the transverse cross sections that are too
small while the CS-representation is consistent with the val-
ues obtained from BC. This confirms the conclusion reached
in [72]: the above form of the AI-representation applies as it
stands only for Q2 < 1. At higher values of Q2, the param-
eterisation underestimates the size of the structure function
F2 and further contributions have to be added for the vector-
meson-dominance formulae to become compatible with the
observed behaviour. Since we do not account for these and
the uncertainties we attach to the central representation do
not cover the gap, the input we are working with becomes
incoherent for Q2 > 2. The right panel, on the other hand,
shows that the representations we are using for the longitudi-
nal cross section do survive the consistency test, irrespective
of the value of Q2.

Note that we are discussing the properties of the difference
between the proton and neutron cross sections. The main
problem here is that all of the well-established properties of
the proton cross sections drop out when taking the difference
between proton and neutron. High precision is required to
measure the remainder, in particular also at high energies,
where the Pomeron dominates the scenery. Also, since the
longitudinal cross section is significantly smaller than the
transverse one, pinning it down accurately is notoriously dif-
ficult. In both of the above representations, the ratio σL/σT

is taken to be energy-independent.8 This appears to be con-
sistent with experiment, but since we are not aware of a the-
oretical explanation, a test of the validity of this assumption
would be very useful. For recent applications of these rep-

8 For the representation (41), this property implies βL
R/βT

R = βL
P/βT

P .
In the notation of [72], it corresponds to BV /AV = Bγ /Aγ , for V =
ρ, ω, φ.
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Fig. 4 Cross section integrals related to the Baldin sum rule for the
proton (numerical values in units of 10−4 fm3). At Q2 = 0, all of the
quantities shown reduce to α

p
E + β

p
M . The plot focuses on small val-

ues of Q2, where the behaviour is dominated by the Nambu–Goldstone
bosons – in the chiral limit these generate an infrared singularity. The
short-dashed line shows the parameter-free result obtained from χPT at
leading order. The cross section integrals are evaluated with the param-
eterisation specified in Sect. 5.1, except for �̃F1 , where the contribution
from the region of the Delta is calculated with BC instead of MD

resentations to the amplitudes under consideration we refer
to [71,81,82].

5.2 Evaluation of �T and �2 for the proton

We start the discussion of the cross section integrals with
the one over the transverse cross section, �T (Q2), which is
specified in (22). The value at the origin is relevant for the
sum of the electric and magnetic polarisabilities, �T (0) =
αE + βM . Since the longitudinal cross section vanishes at
Q2 = 0, the function �2(Q2) = �T (Q2) + �L

2 (Q2) takes
the same value there. In fact, Fig. 4 shows that �2(Q2) is
dominated by the transverse part also at nonzero virtuality –
the longitudinal part amounts to a modest correction.

As pointed out in [71], the structure function F1(x, Q2)

can also be used to continue the integral relevant for the
Baldin sum rule to nonzero values of Q2:

�F1(Q2) = 8mαem

Q4

∫ xth

0
dx x F1

= 1

2π2

∫ ∞

νth

dν

ν3 (ν − Q2/2m) σT . (44)

Since the integrand differs from the one relevant for �T (Q2)

only by the factor 1 + Q2/ν2, the quantity �F1 also reduces
to αE + βM when Q2 vanishes, but drops off somewhat less
rapidly when Q2 grows.

The lines for �T , �2 and �F1 in Fig. 4 are obtained by
using the parameterisations specified in Sect. 5.1. As stated
there, the contributions from the region W < 1.3 are eval-
uated with the mean of MAID and DMT, but we could just

as well have used SAID – on this plot, the difference would
barely be visible.

In [71], the function �F1(Q2) is instead evaluated with the
BC-parameterisation, also in the region of the �-resonance.
This leads to the behaviour indicated by the dash-dotted line
labelled �̃F1 . The topmost line, which is obtained by eval-
uating the same formula with the MD-parameterisation, is
higher by about 0.8 units. The difference is closely related to
the fact that the BC-parameterisation does not respect isospin
symmetry to the expected accuracy (see the discussion in
Sect. 5.3).

As pointed out by Bernard et al. [83], χPT neatly explains
the size of the combination of polarisabilities occurring in the
Baldin sum rule. The parameter-free expression (32) for the
leading term in the chiral perturbation series of �2(Q2) is
shown as a dashed line. The comparison with the experi-
mental result for αE +βM shows that, at small values of Q2,
the leading term of the chiral series dominates. In the limit
Q2 → 0, this term reduces to

αE + βM = 11αemg2
A

192π F2
π Mπ

. (45)

In the chiral limit this formula diverges in inverse proportion
to Mπ : if the quarks are taken massless, T inel

2 (ν, q2) contains
an infrared singularity at ν = q2 = 0.

The same singularity also shows up in the Q2-dependence,
which exhibits the presence of an unusually small scale: at
leading order of the chiral expansion, the function �2(Q2)

depends on Q2 only via the variable τ = Q2/4M2
π . Hence

the scale is set by 2Mπ rather than Mρ . Figure 4 shows that,
in reality, �2(Q2) drops even more rapidly, partly on account
of the second-sheet pole associated with the �, partly due to
other higher-order contributions of the chiral series [40,46,
84,85].

The spike seen in Fig. 4 at tiny values of Q2 illustrates the
artefact mentioned in Sect. 5.1, which concerns the contri-
bution from the resonance N (1530): if the numerical values
of the integrals in the region 0.002 < Q2 < 0.005 are fit
with a low-order polynomial, the extrapolation to Q2 = 0
is higher than the result of the direct evaluation at Q2 = 0,
by about 0.4 units. Since the experimental information from
real Compton scattering and from photoproduction is more
stringent than the one from electron scattering, which for
these very small values of Q2 necessarily involves extrapo-
lations, we think that the results obtained by evaluating the
integral over the transverse cross section at Q2 = 0 are more
reliable. The value obtained there with MAID or DMT is
(αE +βM )p = 14.1, while SAID yields a result that is lower
by about 0.1 units. The numbers obtained at Q2 = 0 with
the parameterisations we are using thus agree with the result
(αE + βM )p = 13.8(4) quoted in the review [37], which
stems from [48].
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Fig. 5 Cross section integrals relevant for the difference between pro-
ton and neutron

5.3 �T and �2: proton–neutron difference

Figure 5 shows the difference between the integrals over the
proton and neutron cross sections. The picture looks very
different from Fig. 4: while there, the curves start at � �
14 and rapidly drop with Q2, those in Fig. 5 start at � �
0 and stay there. Since the integrals under consideration are
rapidly convergent, the behaviour of the cross sections in the
resonance region is relevant. The reason why not much is left
in the difference between proton and neutron is that, in that
region, the proton and neutron cross sections are nearly the
same. In particular, as mentioned in Sect. 5.1, isospin symme-
try implies that the most prominent low-energy phenomenon,
the �, drops out when taking the difference between the pro-
ton and neutron cross sections. The cancellation of the main
contributions also manifests itself in the chiral perturbation
series: the leading terms in �

p
2 and �n

2 are large, of order
1/Mπ , but the coefficients are the same, so that the chiral
expansion of �

p−n
2 only starts at O(1).

For our cross section integrals to exhibit these features, it
is essential that the representations we are using in the region
of the � respect isospin symmetry. The dash-dotted line illus-
trates the fact that the BC-parameterisation of the cross sec-
tions violates this constraint quite strongly: the bump seen
around Q2 � 0.1 arises from the difference between pro-
ton and neutron which occurs in that parameterisation in the
region of the �. As mentioned above, the difference between
the parameterisations MD and BC in the region W < 1.3 also
shows up in Fig. 4. It so happens that the difference between
the results obtained via extrapolation from Q2 > 0.002 and
via evaluation at Q2 = 0 nearly cancels the one between the
contributions from the region of the � obtained with BC and
with MD, so that the number obtained for α

p
E + β

p
M in [81]

agrees with experiment.
The spike seen at very small values of Q2 is about twice

as large as the one in Fig. 4 and manifests itself much more

prominently because the difference between proton and neu-
tron is an order of magnitude smaller than the individual
terms. The value obtained at Q2 = 0 is consistent with the
experimental result, (αE + βM )p−n = −1.4(6).

5.4 Pomeron exchange

The integrals considered in the preceding two subsections
converge rapidly. Their properties are governed by the low-
energy behaviour of the cross sections – the asymptotic
behaviour does not play a significant role. For the integral
�L

1 (Q2) specified in (23), the situation is very different: for
this integral to converge, it is essential that the asymptotic
behaviour of the longitudinal cross section be known, so that
it can properly be accounted for. At high energies, the leading
contribution stems from Pomeron exchange, which generates
a branch point at J = 1 in the angular momentum plane. In
phenomenological parameterisations, such as the one speci-
fied in (41), the branch cut is often approximated by a Regge
pole in the range 1 < αP < 2. For this parameterisation to
have the required asymptotic accuracy, it must describe the
contribution from the Pomeron up to terms that disappear in
the limit ν → ∞.

The Regge representation we are using to describe the
asymptotic behaviour of the structure functions leads to the
parameterisation (27). In this framework, the Pomeron term
in (41) not only generates a leading contribution to the cross
section with α = αP , but also a daughter with α = αP − 1.
Furthermore, in contrast to the situation with the parameter-
isation of the contributions from the non-leading Reggeons,
the value of the parameter s0 does matter here: a change in
the value of s0 generates an asymptotic contribution propor-
tional to ναP−1. If the integral in (23) does converge for one
particular value of s0, it diverges for any other value.

As an illustration of the mathematical problem we are
facing here, consider a contribution of the form

�T1(ν, q2) = 1

2
ξ(q2){(s1 − m2 − 2mν − q2)δ

+ (s1 − m2 + 2mν − q2)δ}, (46)

which is free of fixed poles. For ν ≥ 0, q2 ≤ 0, the corre-
sponding absorptive part is given by

�V1(ν, q2) = − sin πδ

2π
ξ(q2) θ(m2 + 2mν + q2 − s1)

× (m2 + 2mν + q2 − s1)
δ. (47)

In the limit δ → 0, the modification of the structure function
disappears, while the change in the time-ordered amplitude
does not, but takes the form of a fixed-pole contribution,
�T1(ν, q2) → ξ(q2), which can have any desired value.

In short: although the hypothesis that the Reggeons
properly account for the behaviour at large values of
ν uniquely determines the subtraction function even if
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Fig. 6 Cross section integrals relevant for the subtraction function

Pomeron exchange contributes, the evaluation of (23)
requires knowledge of the asymptotic behaviour to an accu-
racy that is beyond reach. In the absence of theoretical infor-
mation about the properties of the Pomeron, we are deal-
ing with what Hadamard [86] called an ill-posed problem: in
principle, the data do determine the solution, but tiny changes
in the data (structure function) can lead to substantial changes
in the solution (subtraction function). For this reason, we do
not discuss the sum rules for the individual polarisabilities
of proton and neutron any further.

A model-independent determination of the subtraction
function occurring in the dispersive representation of the
proton Compton amplitude is also of interest in connec-
tion with the proton radius puzzle (for a recent review
see [87]). As pointed out in [88], at least part of the dis-
crepancy could be explained if for some reason the con-
tribution to the Lamb shift that is governed by the virtual
Compton scattering amplitude were significantly larger than
expected. The χPT analyses [40,46,84,85] as well as the
recent works on effective field theory [89] and finite-energy
sum rules [90] were largely motivated by this puzzle; an
improved knowledge of the subtraction function would be of
interest also in that context. Unfortunately, however, a major
breakthrough in the theoretical understanding of the Pomeron
is required before the sum rule set up above could reliably be
evaluated.

5.5 Evaluation of �L
1 for the proton–neutron difference

In the present subsection, we focus on the difference between
proton and neutron, where the Pomeron drops out: the asymp-
totic behaviour of σL(ν, Q2)p−n is dominated by the non-
leading terms in (41), which grow less rapidly with ν, so that
the problems discussed in the preceding subsection do not
arise. The analysis of the difference is of interest for two rea-
sons: (1) the sum rule is obtained under the same premises

(absence of fixed poles, Reggeon dominance hypothesis)
as the Cottingham formula. Consequently, confronting the
result with existing experimental information on the polaris-
abilities, one may test the validity of this hypothesis; (2) our
result for α

p−n
E is somewhat more accurate than the determi-

nation based on the current experimental information. Com-
bined with the experimental values of the polarisabilities of
the proton and the Baldin sum rule, this yields an improved
prediction for the polarisabilities of the neutron.

Figure 6 compares the integrals over the transverse and
longitudinal cross sections, for the difference between pro-
ton and neutron. The function �T (Q2)p−n already occurred
in Fig. 5 – we are now merely focusing on a smaller range in
the variable Q2. The plot shows that the integral �L

1 (Q2)p−n

behaves in a qualitatively different way. Both integrals are
small, but while �T (Q2) exhibits the pronounced spike at
Q2 = 0 discussed earlier, the dependence on Q2 of �L

1 (Q2)

is dominated by the contribution from the region of the �,
which is well understood – in particular, the MAID and DMT
representations show nearly the same Q2-dependence. Using
the mean of the two as central value and half of the dif-
ference as an estimate for the uncertainty for the contribu-
tions from W < 1.3 would in our opinion represent a fair
recipe, but to stay on the conservative side, we double the
error estimate. For the value of the integral at Q2 = 0 this
prescription yields �L

1 (0)MD = −1.4(4). The contributions
from intermediate energies, 1.3 < W < 3, are small: the
estimate �L

1 (0)BC = 0.2(2) covers the deficiencies of the
representation used there. Above that range, we use the AI-
representation, attach an uncertainty of 30 % to it, and get
�L

1 (0)AI = −0.3(1). Adding errors in quadrature, we finally
obtain

�L
1 (0)p−n = −1.6(4). (48)

5.6 Prediction for the polarisabilities of the neutron

In view of Eq. (40), the result (48) amounts to a prediction for
the difference between the electric polarisabilities of proton
and neutron:

α
p−n
E = −1.7(4). (49)

This is consistent with the current experimental value,
α

p−n
E = −0.9(1.6), but significantly more precise. The

numerical result obtained from the Baldin sum rule for the
difference in the value of αE + βM between proton and neu-
tron, (αE + βM )p−n = −1.4(6), then implies

β
p−n
M = 0.3(7). (50)

According to (36), this result also determines the value of the
subtraction function relevant for the self-energy difference at
Q2 = 0:
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Sinel
1 (0)p−n = −0.3(1.2) GeV−2. (51)

Finally, combining the current experimental result for the
electric and magnetic polarisabilities of the proton, α

p
E =

10.65(50) and β
p
M = 3.15(50), with the numbers for α

p−n
E

and (αE + βM )p−n , we arrive at a prediction for the electric
and magnetic polarisabilities of the neutron:

αn
E = 12.3(7), βn

M = 2.9(0.9). (52)

These are also consistent with the current experimental
values, αn

E = 11.55(1.5), βn
M = 3.65(1.50), and more

precise.
Note that the procedure used avoids relying on the avail-

able parameterisations of the transverse cross section. These
contain sharp spikes at very small values of Q2, which make
the evaluation of �T (0) problematic. We make use of the fact
that those present in the longitudinal cross section are much
milder and allow us to assign a meaningful uncertainty to
�L

1 (0). We also emphasise that the fluctuations exclusively
affect the behaviour at small values of Q2. For the evaluation
of the electromagnetic self-energy to be discussed in Sect. 6,
these deficiencies are of no concern, because phase space
suppresses the contributions from the vicinity of the point
Q2 = 0.

5.7 Result for the subtraction function

According to (26), the inelastic part of the subtraction func-
tion relevant for the self-energy is determined by the dif-
ference between the integrals �L

1 (Q2)p−n and �T (Q2)p−n .
The central values of these integrals are shown in Fig. 6. The
narrow band in Fig. 7 indicates the corresponding result for
the subtraction function. The width of the band is obtained
by evaluating the uncertainties in the contributions arising
from the three subintervals, separately for the transverse and
longitudinal contributions, and adding the results in quadra-
ture. For better visibility, the vertical axis is stretched with
the inverse of the dipole form factor, N = (1 + Q2/M2

d )2,
M2

d = 0.71 GeV2. As discussed in Sect. 5.1, the region
Q2 < 0.5 contains unphysical fluctuations – this is why we
chop the uncertainty band off there. Note also that, although
the calculation returns reasonable results even at Q2 = 2,
it is not reliable there, because it does not account for the
contributions by which the AI-parameterisation needs to be
supplemented in order to agree with experiment at those val-
ues of Q2 (see Sect. 5.1).

The figure also indicates the value Sinel
1 (0)p−n = 1.0(2.7)

obtained from the current experimental result for β
p−n
M , as

well as our prediction in (51). These numbers concern the
value of the subtraction function at Q2 = 0, but are slightly
displaced for better visibility.
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βp−n
M = −0.5(1.6) exp

Fig. 7 Momentum dependence of the subtraction function (GeV
units). For better visibility, the vertical axis is stretched with the inverse
of the dipole form factor, N = (1+Q2/M2

d )2, M2
d = 0.71 GeV2. In this

normalisation, the ansatz proposed in [31] (WCM) represents a broad
band of nearly constant width, determined by the experimental value of
the difference between the magnetic polarisabilities of proton and neu-
tron. The curves are drawn for the current experimental value, which is
indicated by the error bar on the left and concerns the value at Q2 = 0,
but is displaced to make it visible. The range obtained with the model
in [36] (ESTY) starts with the same width at Q2 = 0, but shrinks as Q2

grows. The comparatively narrow third band represents our work. We
do not present an error estimate in the region 0 < Q2 < 0.5, because
there our results are sensitive to the inadequacies of the parameterisa-
tions used for the cross sections, but we do show our prediction for the
value of the subtraction function at Q2 = 0

5.8 Comparison with previous work

Recently, Walker-Loud et al. [31] proposed a simple ansatz
for the subtraction function. In our notation, their proposal
amounts to

SWCM(q2) = −
(

m2
0

m2
0 − q2

)2
mβM

αem

+ 1

q2 {G2
M (q2) − F2

D(q2)}. (53)

The singularity at q2 = 0 arises from the elastic contribution
in (15). The corresponding expression for the inelastic part
of the subtraction function,9

Sinel
WCM(q2) = −

(
m2

0

m2
0 − q2

)2
mβM

αem

−4m2{G E (q2) − G M (q2)}2

(4m2 − q2)2 , (54)

9 In [31], a different terminology is used: there, the first term in (54) is
referred to as the inelastic part of the subtraction function. This is inad-
equate, as it amounts to counting the polarisability as a purely inelastic
quantity. The names given to the various terms are not of importance
physically, but when comparing formulae and numerical values, differ-
ences in nomenclature must be accounted for.
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is regular at q2 = 0 and one readily checks that the ansatz
is consistent with the low-energy theorem (36). It amounts
to an extrapolation of that formula to nonzero values of q2,
controlled by the parameter m0. In Fig. 7, this expression is
indicated as a broad band of nearly constant width.

The ansatz (53) for the subtraction function generates a
logarithmic divergence in the integral (62) for the corre-
sponding contribution to the self-energy difference. As dis-
cussed in Sect. 6.1, the self-energy difference indeed diverges
logarithmically. The divergence is absorbed in the electro-
magnetic renormalisation of mu and md , which is of order
e2mu , e2md . As pointed out by Erben et al. [36], the logarith-
mic divergence generated by the ansatz (53) is not propor-
tional to the masses of the two lightest quarks and can thus not
be absorbed in their renormalisation: the particular extrapola-
tion proposed in [31] is not consistent with the short-distance
properties of QCD. The variant proposed in [36],

Sinel
ESTY(q2) = −

(
m2

1 − c q2

m2
1 − q2

)(
m2

1

m2
1 − q2

)2
mβM

αem

−4m2{G E (q2) − G M (q2)}2

(4m2 − q2)2 , (55)

repairs this shortcoming, as it disconnects the behaviour
at small values of q2 from the asymptotic behaviour. This
expression is represented by the central band that gradually
shrinks if Q2 increases.

The explicit choice made in [36] for the coefficient c
implicitly assumes that the contribution from the subtracted
dispersion integral, mdisp

γ , stays finite when the cut-off is
removed, so that the logarithmic divergence then exclusively
arises from the term mS

γ , which stems from the subtraction
function. As discussed in detail in [4], however, the deep
inelastic region also contributes to the coefficient of the log-
arithmic divergence. The scaling violations do not extinguish
this contribution [26]. Hence the choice made for c cannot be
taken literally, but it does have the proper quark mass factors,
so that the divergence arising from the subtraction function
is suppressed. Since the authors cut the integral over the sub-
traction function off at �2 = 2 GeV2, it barely makes any
difference whether c is set equal to zero or taken from [36].
In fact, one of the variants of the model studied in [35] does
correspond to c = 0.

6 Self-energy

6.1 Cottingham formula

The electromagnetic self-energy of a hadron diverges loga-
rithmically. To first order in αem the renormalised electro-
magnetic Lagrangian requires counter terms proportional to
the operators 1, q̄q and OG = Ga

μνGaμν :

Lem = −e2

2

∫
d4 y D̃�(x − y)T jμ(x) jν(y) + �E 1

+
∑

q=u,d,...

δmq q̄q − δg

2g3 OG , (56)

where D̃�(x) is the regularised photon propagator in coor-
dinate space. The counter term proportional to the unit oper-
ator does not contribute to the self-energy. The remainder
is determined by the renormalisation of the quark masses
and of the coupling constant g required by the electromag-
netic interaction. To leading order, these are given by (see for
instance [91])

δmq = 3e2

16π2 log
�2

μ2 Q2
q mq ,

δg = − e2g3

256π4m
log

�2

μ2

∑
q=u,d,...

Q2
q . (57)

The form of the regularisation used for the photon propagator
is irrelevant – it exclusively affects the value of the running
scale μ.

The proton and neutron matrix elements of the opera-
tor (56) lead to a version of the Cottingham formula [12]
that is valid in QCD:

mγ = ie2

2m(2π)4

∫
d4q D�(q2){3q2T1 + (2ν2 + q2)T2}

+ counter terms. (58)

It represents the electromagnetic self-energy in terms of the
time-ordered amplitudes T1 and T2 specified in Appendix A.

6.2 Elastic part of the self-energy

Analogously to the electric and magnetic polarisabilities, the
self-energy also consists of an elastic and an inelastic part,

mγ = mel
γ + minel

γ . (59)

The contribution from the elastic intermediate states
remains finite when the cut-off is removed. It is obtained
by replacing T1, T2 with the elastic parts T el

1 , T el
2 , which are

given explicitly in (15), and replacing D�(q2) with the full
photon propagator, D(q2) = (−q2 − iε)−1. With a Wick
rotation, the expression can be brought to the form

mel
γ = αem

8πm3

∫ ∞

0
d Q2 Q2{ f1 vel

1 (−Q2) + f2 vel
2 (−Q2)},

f1 = 3

{√
1 + 1

y
− 1

}
,

f2 = (1 − 2y)

√
1 + 1

y
+ 2y, (60)
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where vel
1 (q2) and vel

2 (q2) represent the sums of squares of
form factors specified in (10). The variable y stands for y ≡
ν2/Q2. For the elastic contribution, which is concentrated to
the line Q2 = 2mν, we have y = Q2/4m2. In [4], the dipole
approximation for the Sachs form factors was used, which
yields mel

γ = 0.63 MeV for the proton and −0.13 MeV for
the neutron, so that the elastic contribution to the self-energy
difference amounts to (mel

γ )p−n = 0.76 MeV.
In the meantime, the precision to which the form fac-

tors are known has increased significantly. For a thorough
review of the experimental information, we refer to [92].
The above estimates of the elastic contributions to the proton
and neutron self-energies do receive significant corrections,
but the difference between proton and neutron is affected
by less than 0.02 MeV. Compared to the uncertainties in
the contributions arising from the deep inelastic region, the
departures from the dipole approximation are too small to
matter.

6.3 Inelastic part of the self-energy

The inelastic part receives three distinct contributions:

minel
γ = mS

γ + mdisp
γ + mct

γ . (61)

The term mS
γ arises from the subtraction function Sinel

1 (q2),

mdisp
γ is given by a dispersion integral over the structure func-

tions, and mct
γ accounts for the fact that the electromagnetic

interaction renormalises the quark masses as well as the cou-
pling constant of QCD. In the above discussion of the polar-
isabilities, renormalisation did not play any role, because
these concern the properties of T1, T2 at low energies. In
fact, the inelastic part of the magnetic polarisability exclu-
sively picks up the contribution from the subtraction function
specified in (36). In the decomposition used in (61), we have
β inel = βS , βdisp = βct = 0.

The term mS
γ is obtained by replacing T1(ν, q2) in (58)

by the subtraction function Sinel
1 (q2), performing a Wick

rotation, and averaging over the directions of the Euclidean
momentum. The result reads

mS
γ = 3αem

8πm

∫ �2

0
d Q2 Q2 Sinel

1 (−Q2). (62)

This term measures the size of the self-energy arising from
the subtraction function (more precisely, the inelastic part
thereof – the remainder is included in δmel

γ ).
The second term on the right of (61) is obtained by replac-

ing the amplitudes T1, T2 with their inelastic parts T inel
1 , T inel

2
and dropping the contribution from the subtraction function
in the dispersive representation for T inel

1 . The explicit expres-
sion reads

mdisp
γ = αem

2πm

∫ �2

0
d Q2 Q2

∫ ∞

νth

dν ν

×
{(

f1 − 3

2y

)
V1(ν,−Q2) + f2 V2(ν,−Q2)

}
.

(63)

The term with 3/2y makes the difference between the unsub-
tracted and subtracted dispersion integral over V1: it removes
the leading term in the behaviour of f1 when Q2 is held
fixed and ν tends to ∞, so that the integral over ν converges,
despite the growth of V1 generated by Reggeon exchange.
On the other hand, when Q2 becomes large, the behaviour in
the deep inelastic region is relevant. In QCD, the contribu-
tions from that region diverge logarithmically if the cut-off is
removed. In (63), we have simply cut the integral off at Q2 =
�2 – this amounts to a regularisation of the photon propaga-
tor in Euclidean space: D�(−Q2) = θ(�2 − Q2)/Q2.

In the normalisation of the states (A.2), the mass shift
generated by the counter terms in (56) is given by

mct
γ = −

∑
q=u,d,...

δmq

2m
〈p|q̄q|p〉 + δg

4mg3 〈p|OG |p〉. (64)

Neglecting second-order isospin-breaking effects propor-
tional to e2(mu − md), the proton and neutron matrix ele-
ments of operators with isospin zero are the same. Hence the
operators OG , s̄s, c̄c, …drop out in the self-energy differ-
ence. Moreover, isospin symmetry relates the neutron matrix
elements of the light quarks to those for the proton, e.g.
〈k|ūu|k〉n = 〈k|d̄d|k〉p. Using these properties, the contribu-
tion from the electromagnetic renormalisation of the quark
masses to the self-energy difference can be brought to the
form

(mct
γ )p−n = − αem

24πm
(4mu − md) log

�2

μ2 〈p|ūu − d̄d|p〉.
(65)

The formula shows that the coefficient of the logarithmic
divergence is proportional to the masses of the two lightest
quarks. In the chiral limit the divergence disappears alto-
gether: if u and d are taken massless, the self-energy differ-
ence approaches a finite limit if the cut-off is removed. In
reality, the contributions from the deep inelastic region do
generate a logarithmic divergence, albeit with a small coef-
ficient. An update of the analysis performed in [4] is needed
to account for the scaling violations in the corresponding
contributions to the renormalised self-energy difference.

6.4 Numerical evaluation

In [31], the contribution from the subtraction function to
the self-energy difference is evaluated with �2 = 2 GeV2.
According to (26), the inelastic part of the subtraction func-
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tion is given by the difference between two cross section inte-
grals. The part which involves the transverse cross sections,
�T (Q2), generates a convergent contribution to Eq. (62) for
the self-energy. As discussed above, our numerical repre-
sentation of �T (Q2) becomes incoherent at values of Q2

below 0.5, but phase space suppresses that region, so that
our estimate, mS

γ (�T ) � −0.14 MeV, should be close to the
truth (actually, with a coherent representation of the avail-
able experimental information, this part could be evaluated
rather accurately, even without cutting the integral off). The
corresponding integral over the longitudinal cross section,
�L

1 (Q2), is less sensitive to the shortcomings of the repre-
sentation we are using (this is why we were able to obtain
a rather accurate prediction for the difference between the
electric polarisabilities of proton and neutron). Numerically,
the contribution from that integral to the self-energy differ-
ence is tiny: mS

γ (�L
1 ) � −0.03 MeV. In other words: the

contributions from the Reggeons do require a subtraction,
but taken together with those arising from low energies, the
entire contribution from the longitudinal cross section to the
subtraction function generates a negligibly small part of the
self-energy difference. Together with the number for the con-
tributions from the transverse cross section given above, we
obtain

mS
γ = −0.17 MeV. (66)

This is to be compared with the number obtained by instead
inserting Eq. (54) in Eq. (62). With the central value
β

p−n
M = −1 used as input in [31], we obtain (mS

γ )WCM =
0.50 MeV. Keeping all other parts of the calculation in
[31] as they are, but replacing the ansatz for the subtrac-
tion function made there with our prediction, the numerical
result for the self-energy difference, mWCM

γ = 1.30 MeV,
is lowered by 0.67 MeV, so that the central value becomes
mγ = 0.63 MeV. Repeating the exercise with the model
of [36], i.e. replacing Eq. (54) by (55), we instead obtain
(mS

γ )ESTY = 0.20 MeV, so that in this case, the central
value mESTY

γ = 1.04 MeV is lowered by 0.37 MeV, which
leads to mγ = 0.67 MeV. In either case, the early estimate
obtained in [4], mGL

γ = 0.76(30) is confirmed. Comparing
their parameterisation with recent lattice data on the electro-
magnetic self-energy difference, the authors of [31,35] obtain
results for the difference of the magnetic polarisabilities,
β

p−n
M = −0.87(85) and β

p−n
M = −1.12(40), respectively,

which is lower than our prediction in (50). The difference
reflects the fact that, in Fig. 7, the bands that correspond to
their models run above ours. While these extractions involve
a model dependence which is difficult to quantify, there has
recently been progress in the direct calculation of the polar-
isability from the lattice; see [93].

Note that the momentum dependence of the subtraction
function must match the behaviour in the deep inelastic

region. Taken by itself, the contribution from the subtrac-
tion function is very sensitive to the choice of the cut-off
�. As shown in [4], the term mdisp

γ is equally sensitive, but
the sum of the two contributions is nearly independent of �,
because the Cottingham formula only contains the very weak
logarithmic divergence that is related to the electromagnetic
renormalisation of the quark masses mu and md . As indicated
in (65), the coefficient of the divergence is proportional to
these masses and hence very small. Also, it does not come
exclusively from the subtraction function. The contributions
to mdisp

γ arising from the deep inelastic region contribute to
the coefficient of the logarithmic divergence as well. These
were estimated in [4] on the basis of the data available at
the time, which did not show any violations of Bjorken scal-
ing. In the meantime, there has been considerable progress
in understanding the properties of the structure functions in
the deep inelastic region and there is very clear evidence for
scaling violations. For a thorough review of these develop-
ments, we refer to [94]. A corresponding update of the results
obtained on the basis of the Cottingham formula would be of
high interest, also in view of the progress made in calculat-
ing electromagnetic self-energies on the lattice, but this goes
beyond the scope of the present paper.

7 Summary and conclusion

1. Causality relates the imaginary part of the amplitude
for Compton scattering on the nucleon in the forward
direction to the cross section of the process e + N →
e + anything. The relation holds for real photons as well
as virtual photons of space-like momentum, q2 ≤ 0. The
spin-averaged forward scattering amplitude involves two
invariants, which we denote by T1(ν, q2) and T2(ν, q2).
Their imaginary parts are determined by the transverse
and longitudinal cross sections of electron scattering, σT

and σL .
2. Regge asymptotics implies that only T2(ν, q2) obeys an

unsubtracted fixed-q2 dispersion relation, while the one
for T1(ν, q2) requires a subtraction, which represents the
value of the amplitude at ν = 0: S1(q2) = T1(0, q2).
The dispersive representation of the spin-averaged for-
ward Compton scattering amplitude thus consists of two
parts: an integral over the cross sections σT , σL and an
integral over the subtraction function S1. The same also
holds for the Cottingham formula, which represents the
electromagnetic self-energy of the nucleon in terms of
the spin-averaged forward Compton amplitude.

3. It had been pointed out long ago [4] that – unless the
Compton amplitude contains a fixed pole at J = 0 – the
subtraction function is unambiguously determined by the
cross sections of electron scattering. We do not know of a
proof that the Compton amplitude of QCD is free of fixed
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poles, but we assume that this is the case and refer to this
assumption as Reggeon dominance. As briefly discussed
in Sect. 1.2, the validity of this hypothesis is questioned in
the literature. Indeed, an analysis of the Compton ampli-
tude based on first principles that would determine the
behaviour in the Regge region (high energies, low pho-
ton virtualities) is not available. If the hypothesis were to
fail, this would be most interesting, as it would imply
that the known contributions generated by the short-
distance singularities and the exchange of Reggeons
do not fully account for the high-energy behaviour of
QCD.

4. On the basis of Reggeon dominance, we have derived
an explicit representation of the subtraction function in
terms of the electron scattering cross sections. The rep-
resentation requires the asymptotic behaviour of the lon-
gitudinal cross section to be known up to contributions
that disappear at high energies. For the proton Compton
amplitude, where Pomeron exchange generates the dom-
inating contribution, the available information does not
suffice to reliably evaluate the subtraction function. In
the difference between proton and neutron, however, the
Pomeron drops out. We have shown that the experimental
information available at low photon virtuality does suf-
fice to work out the subtraction function relevant for this
difference.

5. In [31], the electron cross sections σT , σL and the sub-
traction function S1(q2) are instead treated as physi-
cally independent quantities. The authors invoke the low-
energy theorem that relates the value of the subtraction
function at q2 = 0 to the magnetic polarisability and use
experimental information about the latter to pin down the
value of the subtraction function at the origin. As direct
experimental information about the q2-dependence is not
available, the authors construct a model for that. Figure 7
compares their model with our prediction. As pointed out
in [36], the model of [31] is not consistent with the fact
that the coefficient of the logarithmic divergence vanishes
in the chiral limit. The alternative ansatz for the subtrac-
tion function proposed there, which does obey this con-
straint, is also shown in Fig. 7.

6. The authors of [31] use their ansatz for the subtrac-
tion function to evaluate the difference between the self-
energies of proton and neutron and obtain mWCM

γ =
1.30(03)(47) MeV, significantly higher than the result
obtained in [4], mGL

γ = 0.76(30) MeV. The difference
is blamed on a ’technical oversight’ committed in [4].
This claim is wrong: it suffices to replace their ansatz for
the subtraction function with the parameter-free repre-
sentation used in [4], which is spelt out explicitly in (26)
above. Leaving all other elements of their calculation as
they are, the central value for the self-energy difference
then drops to mγ = 0.63 MeV, thereby neatly confirm-

ing the old result. The same conclusion is reached with
the calculation performed in [36].

7. We emphasise that the present work only concerns low
photon virtualities. An update of the analysis carried out
in [4] which accounts for the progress made on the exper-
imental and theoretical sides during the last 40 years –
in particular an evaluation of the contributions from the
deep inelastic region which accounts for the violations of
Bjorken scaling – is still missing.

8. Our representation for the subtraction function also leads
to a prediction for the difference between the electric
polarisabilities of proton and neutron. The result is given
in (49). Using the currently accepted results obtained
from the Baldin sum rule, this also determines the dif-
ference of the magnetic polarisabilities and, using the
comparatively rather precise, known value of the electric
polarisability of the proton, we obtain an estimate also
for the polarisabilities of the neutron. The result is given
in (52).

9. The fact that the results obtained from Reggeon domi-
nance are consistent with experiment and even somewhat
more precise amounts to a nontrivial test of the hypothesis
that the Compton amplitude is free of fixed poles. Quite
apart from the possibility of taking new data at small pho-
ton virtuality, an improved representation of the available
experimental information on the cross sections would
allow us to reduce the uncertainties quite substantially
– in particular, if the deficiencies of the available param-
eterisations mentioned in Sect. 5.1 could be removed, the
main source of uncertainties in our calculation would
immediately disappear.

10. The main problem we are facing with our analysis is that
all of the well-established features of electron scatter-
ing drop out when taking the difference between proton
and neutron: the leading terms of the chiral perturba-
tion series are the same, the contribution from the most
prominent resonance, the �(1232), is the same, and the
leading asymptotic term due to Pomeron exchange is also
the same. Since all of these contributions cancel out, not
much is left over. Only a fixed pole could prevent the
subtraction function relevant for the difference between
proton and neutron from being small. The available data
do not exclude the occurrence of a fixed pole, but they
indicate that if the phenomenon occurs at all, then the
pole must have a rather small residue.
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Appendix A: Notation

The structure functions are related to the Fourier transform of
the spin-averaged matrix element of the current commutator,

V μν(p, q) = 1

4π

∫
d4xeiq·x 〈p|[ jμ(x), jν(0)]|p〉. (A.1)

The states are normalised with

〈p′, s′|p, s〉 = 2p0(2π)3δ3(p ′ − p)δs′s (A.2)

and 〈p|O|p〉 stands for 1
2

∑
s〈p, s|O|p, s〉. For the Fourier

transform of the time-ordered matrix element, 〈p|T jμ(x)

jν(y)|p〉, we use the normalisation

T μν(p, q) = i

2

∫
d4xeiq·x 〈p|T jμ(x) jν(0)|p〉. (A.3)

Since Lorentz invariance, current conservation, and parity
only allow two independent tensors of this type,

K μν
1 = qμqν − gμνq2,

K μν
2 = 1

m2 {(pμqν + pνqμ)p · q−gμν(p · q)2 − pμ pνq2},
(A.4)

these matrix elements contain two invariants each, which
only depend on the two variables ν ≡ p · q/m and q2 (m
is the mass of the nucleon). We denote the invariants by
V1(ν, q2), V2(ν, q2) and T1(ν, q2), T2(ν, q2), respectively:

V μν(p, q) = V1(ν, q2)K μν
1 + V2(ν, q2)K μν

2 ,

T μν(p, q) = T1(ν, q2)K μν
1 + T2(ν, q2)K μν

2 . (A.5)

In contrast to the standard structure functions F1, F2 the
invariants V1, V2 are free of kinematic singularities or zeros.
The two sets are related by

V1 ≡ −2x F1 + F2

4mx2ν
, V2 ≡ F2

2xν2 , (A.6)

with x ≡ Q2/2mν.
The notation for the longitudinal structure function FL is

not universal. The convention used in the mini-review on the

structure functions in The Review of Particle Physics [95]
reads

FL = F2 − 2x F1. (A.7)

The structure functions V1(ν, q2) and V2(ν, q2) represent
linear combinations of the transverse and longitudinal cross
sections σT and σL :

V1 = N1(−Q2σT + ν2σL)/Q2, V2 = N1(σT + σL),

N1 ≡ 1

8π2αem

2mν − Q2

ν2 + Q2 . (A.8)

The value of the structure function V2(ν, 0) also deter-
mines the total cross section for photoproduction, σtot =
limQ2→0 σT :

σtot(ν) = 4π2αem
ν

m
V2(ν, 0). (A.9)

For the one-particle matrix elements of the current, we use
the notation

〈p1, s1| jμ|p2, s2〉 = ū(p1, s1)�
μ(q)u(p2, s2),

�μ(q) = FD(q2)γ μ + FP (q2)iσμν qν

2m
, (A.10)

where q = p1− p2. The nucleon spinors are normalised with
ū(p, s′)u(p, s) = 2mδs′s . The functions FD(t) and FP (t)
are referred to as Dirac and Pauli form factors, respectively.
Whenever convenient, we replace these by the Sachs form
factors, which are defined by

G E (t) = FD(t) + t

4m2 FP (t), G M (t) = FD(t) + FP (t).

(A.11)

In the dipole approximation, the form factors are parame-
terised with

G p
E (t) = Gd(t), G p

M (t) = (1 + κ p)Gd(t),

Gn
E (t) = t

4m2 κnGd(t), Gn
M (t) = κnGd(t),

Gd(t) = 1

(1 − t/M2
d )2

, M2
d � 0.71 GeV2, (A.12)

where κ = FP (0) stands for the anomalous magnetic
moment.

Appendix B: Compton scattering

Virtual Compton scattering in the non-forward direction pro-
vides the bridge between the two processes discussed in
Sect. 4.1: scattering of real photons at nonzero scattering
angle and scattering of virtual photons in the forward direc-
tion. Compton scattering has been thoroughly explored in
the literature, for the case where both of the two photons
are on the mass shell (real Compton scattering, RCS) as
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well as when one of them (VCS) or both (VVCS) are off-
shell [15,16,40,53,89,96–112]. We normalise the amplitude
with

T̂ μν(p f , s f , q f |pi , si , qi )

= i

2

∫
d4xei q f ·x 〈p f , s f |T jμ(x) jν(0)|pi , si 〉, (B.13)

and use matrix notation, collecting the different spin orien-
tations in the 2 × 2 matrix Tμν(p f , q f |pi , qi ). The spin
average is given by the trace of this matrix,

T μν(p f , q f |pi , qi ) = 1

2
tr{Tμν(p f , q f |pi , qi )}. (B.14)

B.1 Lorentz invariance

The spin average is not independent of the Lorentz frame
used. To see why this is so, consider a Lorentz transformation:

U (�) jμ(x)U−1(�) = (�−1)μα jα(�x). (B.15)

We denote the pure Lorentz transformation (boost) that takes
a particle at rest into one of four-momentum p by Bp and
work in the basis where the state |p, s〉 is obtained from the
corresponding state at rest, | p̂, s〉, by application of the rel-
evant boost: |p, s〉 = U (Bp)| p̂, s〉. Lorentz transformations
not only change the momentum, but also subject the spin
direction to a rotation, referred to as Wigner rotation:

U (�)|p, s〉 =
∑

s′
|�p, s′〉Ŵs′s(�, p). (B.16)

The Wigner rotation arises because the boost B�p differs
from �Bp by a rotation, which we denote by W (�, p):

�Bp = B�pW (�, p). (B.17)

The matrix Ŵs′s(�, p) in (B.16) is the spin 1
2 representation

of W (�, p). If � is a pure rotation, we have W (R, p) = R.
Also, since the product of two boosts in the same direction is
again a boost in that direction, a pure Lorentz transformation
in the direction of p does not generate a Wigner rotation.

Lorentz invariance implies the transformation law

�μ
α�ν

βT
αβ(p f , q f |pi , qi )

= W†(�, p f )Tμν(�p f ,�q f |�pi ,�qi )W(�, pi ).

(B.18)

In the trace, the Wigner rotations only drop out for those
Lorentz transformations for which W (�, pi ) = W (�, p f ).
In general, this condition is violated. Hence knowledge of
the spin average in one particular frame of reference does not
in general suffice to determine the spin average in a differ-
ent frame: the transformation law (B.18) involves the entire
matrix T̂ μν , including the spin-flip components of the ampli-
tude.

In the Breit frame, p f + pi = 0, the momenta of the
initial and final states point in opposite directions. The boost
which takes the Breit frame into the Lab frame, where pi =
0, is a pure Lorentz transformation in that direction. Hence
the change of frame does not generate a Wigner rotation.
Accordingly, the spin average in the Lab is determined by
the spin average in the Breit frame.

For the Lorentz transformation that takes the Breit frame
into the centre-of-mass system, however, this is not the case:
the Wigner rotation generated by this transformation for the
initial state differs from the one relevant for the final state,
W (�, pi ) �= W (�, p f ). Hence knowledge of the spin aver-
age in the Breit frame does not suffice to evaluate the spin
average in the centre-of-mass system or vice versa.

B.2 Crossing symmetry, parity, and time reversal

The symmetry of the time-ordered product, T jμ(x) jν(y) =
T jν(y) jμ(x), implies invariance under crossing of the pho-
tons:10

Tμν(p f , q f |pi , qi ) = T νμ(p f ,−qi |pi ,−q f ). (B.19)

Invariance under space reflections amounts to

Tμν(p f , q f |pi , qi ) = πμ
απν

β Tαβ(πp f , πq f |πpi , πqi ),

(B.20)

where π = diag(1,−1,−1,−1) inverts the sign of the space
components but leaves the time components alone. Time
reversal not only inverts the momentum and spin directions,
but in addition interchanges the initial and final states. More-
over, the amplitudes are mapped into their complex conju-
gate. Exploiting the fact that the Hermitian conjugate of the
operator jμ(x) jν(y) is given by jν(y) jμ(x), time reversal
invariance can be brought to the form

Tμν(p f , q f |pi , qi )

= πν
απ

μ
β ε Tαβ(πpi , πqi |πp f , πq f )

T ε−1. (B.21)

The superscript T indicates that the transposed matrix is rel-
evant. The matrix ε = iσ2 flips the spin in the initial and final
states. For the Pauli matrices, we have ε σ T ε−1 = −σ . The
above relations lead to the following symmetry property of
Tμν :

Tμν(p f , q f |pi , qi ) = ε Tμν(pi ,−q f |p f ,−qi )
T ε−1.

(B.22)

It implies that, in the decomposition Tμν = T μν1 +∑
i T μν

i σ i of the amplitude in the basis spanned by 1, σ 1,

σ 2, σ 3, the spin-independent part, T μν , is even under the

10 If the time-ordered product of the currents is replaced by the retarded
current commutator, crossing symmetry instead relates the amplitude
to its complex conjugate [15].
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operation pi ↔ p f , qi → −qi , q f → −q f , while the spin-
dependent part, T μν

i , is odd. The mapping interchanges the
Mandelstam variables s = (pi + qi )

2 and u = (pi − q f )
2,

but t = (p f − pi )
2 as well as the photon virtualities q2

i , q2
f

stay put. While the Breit frame is invariant under this oper-
ation, neither the Lab frame nor the centre-of-mass system
have that property.

B.3 Low-energy expansion

The elastic intermediate states generate poles in Tμν . In the
Mandelstam variables the poles are located at s = m2 and
u = m2. We refer to these contributions as Born terms and
denote them by Tμν

B ,

Tμν = Tμν
B + T̄

μν
. (B.23)

The decomposition is not unique [38,40,102]. The essential
property of the Born terms is that they account for the elastic
singularities. This ensures that the remainder, T̄

μν
, is regular

at qi = q f = 0 and can thus be expanded in a Taylor series in
powers of the photon momenta and energies, which the low-
energy expansion treats as small. The construction described
below leads to Born terms that are conserved, so that this also
holds for the remainder:11

q f
μ T̄

μν = qi
ν T̄

μν = 0. (B.24)

Keeping P ≡ 1
2 ( pi + p f ) fixed, momentum conservation

determines the initial and final nucleon momenta in terms of
the photon variables qi , q f . However, unless P vanishes,
energy conservation leads to a nonlinear constraint on the
photon energies, so that it is not consistent to treat all of
these as quantities of O(q). The problem disappears for P =
0, i.e. in the Breit frame: energy conservation then implies
ωi = ω f = ω, so that the kinematics is unambiguously
determined by the independent variables ω, qi , q f , which all
count as quantities of O(q). This is why the Breit frame is the
preferred frame of reference for the low-energy expansion.
For real Compton scattering, a transparent discussion of this
issue is given in [113].

11 In general, it is not a trivial matter to impose current conservation
on the Born terms. If one for instance evaluates the one-particle sin-
gularities in the space components Tab

B and determines the remaining

components of Tμν
B by solving the constraints q f

μ Tμν
B = qi

ν T
μν
B = 0,

one in general arrives at a representation for the Born terms that con-
tains kinematic singularities. The presence of kinematic singularities in
the Born terms complicates the analysis because the remainder T̄

μν
is

then not regular at qi = q f = 0. Compton scattering on the pion illus-
trates the problem: the one-particle singularities do not generate a term
proportional to gμν , but unless a regular term of this type is allowed
for, the representation of the Born terms can be consistent with current
conservation only if it contains kinematic singularities.

In the Breit frame, the Taylor series in powers of the vari-
ables ω, qi , q f takes the form

T̄
μν = T̄

μν

0 + T̄
μν

1 + T̄
μν

2 + · · · with T̄
μν

n = O(qn).

(B.25)

The symmetry (B.22) implies that the even terms of the series,
T̄

μν

0 , T̄
μν

2 , . . ., are proportional to the unit matrix in spin
space, while the odd terms, T̄

μν

1 , T̄
μν

3 , . . ., exclusively con-
tain spin-dependent terms and do not contribute to the spin
average.

We now turn to the consequences of Lorentz invariance
for the low-energy expansion. If the photon energies and
momenta are small of O(q), the momentum transferred to
the nucleon is small as well. We thus only need to consider
Lorentz frames where the nucleon momenta are also small
of O(q). The standard choices (laboratory, centre-of-mass
system, Breit frame) all belong to this category. If a Lorentz
transformation � is to connect two such frames, then the
relative velocity must be small, so that the standard decom-
position into a boost and a rotation, � = B R only involves a
small boost. Hence it suffices to analyse the transformation
properties under rotations and under small boosts.

The behaviour under rotations is trivial, because the cor-
responding Wigner rotations in the initial and final states are
identical, W (R, pi ) = W (R, p f ) = R. Hence they leave
the spin-independent part of the amplitude alone and trans-
form the matrices σ = {σ1, σ2, σ3} occurring in the spin-
dependent part like a vector.

To analyse the properties of small boosts, the SL(2, C)

representation of the Lorentz group is more convenient than
the one acting on the coordinates and momenta. Consider
the matrix B = exp( 1

2v · σ ) ∈ SL(2, C), which represents a
pure Lorentz transformation with a small velocity v = O(q).
The product of two such boosts is given by B B ′ = 1+ 1

2w ·
σ + 1

8w2 + i
4 (v × v′) · σ + O(q3), with w = v + v′. At

O(q), this is a pure Lorentz transformation,12 but at O(q2),
the product in addition contains a small Wigner rotation:
W = 1 + i

4 (v × v′) · σ + O(q4).
The essential point here is that, for the pure Lorentz trans-

formation needed to remove the relative velocity of the two
systems, the Wigner rotations generated in the initial and
final states are at most of order q2. Accordingly, the Lorentz
invariance condition (B.18) implies that, if � is a boost that
only generates velocities of O(q), the individual terms of the
low-energy expansion transform like ordinary tensors – up
to higher-order corrections:

Bμ
α Bν

β T̄
αβ

n (p f , q f |pi , qi ) = T̄
μν

n (Bp f , Bq f |Bpi , Bqi )

+ O(qn+2). (B.26)

12 The fact that the velocity addition is modified only shows up at
O(q3).
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The corrections only matter if the expansion is taken beyond
next-to-leading order. In particular, the leading even term of
the series is proportional to the unit matrix in spin space even
if the reference system is not identified with the Breit frame.

B.4 Spin average

The Breit frame also offers a convenient decomposition of
the amplitude into independent tensors. In the following, we
explicitly construct the decomposition for the spin average,
which we denote by T μν . Current conservation (q f

μ T μν =
qi
ν T μν = 0) implies that the amplitude is uniquely deter-

mined by its space components. Furthermore, rotation invari-
ance ensures that the spin average involves five independent
amplitudes (a, b = 1, 2, 3):

T ab = δab I1 + qa
i qb

f I2 + qa
i qb

i I3 + qa
f qb

f I4 + qa
f qb

i I5.

(B.27)

Since this decomposition exclusively makes use of rota-
tion invariance, the coefficients In are free of kinematic sin-
gularities. They depend on the rotation-invariant quantities
ω, |qi |, |q f | and qi · q f , which can be expressed in terms
of the Mandelstam variables and the photon virtualities. In
view of s + t + u = 2m2 + q2

i + q2
f , only four of these are

independent, for instance: s, u, q2
i , q2

f .
The trace of Eq. (B.22) implies that the invariants are sym-

metric under the interchange of s and u,

In(s, u, q2
i , q2

f ) = In(u, s, q2
i , q2

f ), n = 1, . . . , 5, (B.28)

and the crossing symmetry relation (B.19) then shows that
they are symmetric under q2

i ↔ q2
f as well, except that I3

and I4 are interchanged,

In(s, u, q2
i , q2

f ) = In(s, u, q2
f , q2

i ), n = 1, 2, 5,

I3(s, u, q2
i , q2

f ) = I4(s, u, q2
f , q2

i ). (B.29)

The last relation implies that if the photon virtualities are the
same – in particular for real Compton scattering – there are
only four independent amplitudes [15].

We add a remark concerning the spin average for the case
where the scattering amplitude is written in the form

T̂ μν(p f , s f , q f |pi , si , qi )

= ū(p f , s f )Mμν(p f , q f |pi , qi )u(pi , si ). (B.30)

If the momenta pi and p f are parallel, the sum over the spins
can be represented as a product of projectors:

∑
s

u(pi , s) ⊗ ū(p f , s) = 1

K
(/pi + m) · (/p f + m),

K = 2m
√

1 − t/4m2, (B.31)

so that spin average can be represented as

T μν(p f , q f |pi , qi )

= 1

2K
tr{(/p f + m) · Mμν(p f , q f |pi , qi ) · (/pi + m)}.

(B.32)

This formula might suggest that a frame-independent defini-
tion of the spin average does exist. As already noted by Tar-
rach [15], this is not the case, however: Eq. (B.32) is correct
only in those Lorentz frames where pi and p f are parallel.
In particular, it does not hold in the centre-of-mass frame,
where the right hand side of (B.32) does not represent the
spin average performed on the left hand side.

B.5 Born terms

The Born terms contain poles along the lines s = m2 and
u = m2. The residue of the pole in the s-channel involves a
sum over the one-particle matrix elements of the current:

∑
s

ū(p f , s f )�
μ(−q f )u(pn, s)ū(pn, s)�ν(qi )u(pi , si ).

(B.33)

At the poles, the momentum of the intermediate state is on
the mass shell, p2

n = m2, and the sum over the spin directions
is given by

∑
s

u(pn, s) ū(pn, s) = /pn + m. (B.34)

We specify the residues off the mass shell with analytic con-
tinuation, simply replacing pn with the total momentum,
P = pi + qi = p f + q f , also for P2 �= m2:

T̂ μν
B (p f , s f , q f |pi , si , qi )

= B̂μν(p f , s f , q f |pi , qi )

m2 − s
+ B̂νμ(p f , s f ,−qi |pi , si ,−q f )

m2 − u
,

B̂μν(p f , s f , q f |pi , si , qi )

= 1

2
ū(p f , s f )�

μ(−q f )( /P + m)�ν(qi )u(pi , si ). (B.35)

The two terms represent the two tree graphs obtained with
the standard Feynman rules, except that the photon–nucleon
vertices are equipped with form factors according to (A.10).
Taken separately, the two terms do not obey current conser-
vation, but taken together they do.

In the Breit frame, the spin average can be evaluated
with (B.31). Comparing the resulting expression for the space
components with (B.27), we obtain the following explicit
representation for the Born terms:
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I B
n =

√
1 − t/4m2

(m2 − s)(m2 − u)
Bn, n = 1, . . . , 5,

B1 = 4m2ω2 Fi
D F f

D + w1(Fi
D F f

P + F f
D Fi

P + Fi
P F f

P ),

B2 = w2(Fi
D F f

P + F f
D Fi

P + Fi
P F f

P ),

B3 = ω2 F f
P (Fi

D + Fi
P ),

B4 = ω2 Fi
P (F f

D + F f
P ),

B5 = 0,

w1 ≡ 1

4
(q2

i + q2
f )

2 − 1

4
t2 − t w2,

w2 ≡ 1

2
(q2

i + q2
f ) − 1

2
t − ω2. (B.36)

The symbol Fi
D stands for FD(q2

i ) and F f
D , Fi

P , F f
P are

defined analogously. In the Breit frame, the variable ω rep-
resents the energy of the photons. Expressed in terms of the
Mandelstam variables, we have

ω = s − u

2
√

4m2 − t
. (B.37)

These expressions of course satisfy the relations (B.28)
and (B.29). In the case of equal photon virtualities, Born
terms for the spin-averaged amplitude are also provided
in [40]. The representation specified in (3) and (4) of that
work differs from ours in the overall normalisation of the
amplitude: basically, it amounts to replacing the factor K
in (B.31) by 2m.

B.6 Leading low-energy constants

Since ω, qi , q f are independent variables and T̄
μν

0 is inde-

pendent thereof, the constraint q f
μ T̄

μν

0 = 0 immediately
implies T̄

μν

0 = 0. The term T̄
μν

1 is a linear combination of
the variables ω, qi , q f , but this property is inconsistent with
current conservation: since invariance under space reflections

requires the components T̄
00
1 and T̄

ab
1 to be even under a

reversal of the photon momenta, they must be independent

thereof. The constraint ω2T̄
00
1 = qa

f qb
i T̄

ab
1 can then only be

obeyed if T̄
00
1 and T̄

ab
1 both vanish, but this is compatible

with current conservation only if the remaining components,

T̄
0a
1 , T̄

a0
1 , also vanish.

Accordingly, the low-energy expansion of T̄
μν

only starts
at O(q2). Indeed, the following calculation shows that there
are exactly two independent conserved tensors of that order.
As noted above, the contribution of O(q2) is spin inde-
pendent, T̄

μν

2 = T μν
2 1 and rotation invariance requires

the space components T̄ ab
2 to be of the form (B.27) with

Ī1 = c1 ω2 + c2 q f · qi + c3 q2
i + c4 q2

f , while the other
coefficients are constants. For ω = 0, current conservation
requires qa

f T̄ ab
2 = qb

i T̄ ab
2 = 0. This implies Ī2 = −c2,

Ī3 = Ī4 = Ī5 = c3 = c4 = 0. For the space components,

the general solution of the conditions imposed by rotation
invariance and current conservation at O(q2) thus reads

T̄ ab
2 = c1 δabω2 + c2 {δabq f · qi − qa

i qb
f }. (B.38)

Current conservation then fixes the remaining components
in terms of the same two constants:

T̄ a0
2 = c1 ω qa

i , T̄ 0a
2 = c1 ω qa

f , T̄ 00
2 = c1 q f · qi .

(B.39)

As observed already by Klein [114], there are only two con-
served tensors of polynomial form at O(q2).

B.7 Real Compton scattering

For real photons, q2
i = q2

f = 0, the projection onto the polar-

isation vectors (ε0 = 0, ε · q = 0) annihilates the time com-
ponents as well as the contributions from I3, I4, I5. At low
frequencies, the scattering amplitude is fully determined by
the charge of the particle [115], which we express in units of
the proton charge, Qe ≡ FD(0). At first order in the expan-
sion in powers of the photon frequency ω, the anomalous
magnetic moment κ = FP (0) also shows up [116,117], and
at O(ω2), further contributions, characterised by the two low-
energy constants in (B.38), manifest themselves [114]. In the
Breit frame, the low-energy expansion of the spin-averaged
amplitude starts with

ε
μ�
f Tμνε

ν
i = C1 ε�

f · εi + C2 (ε�
f · ni ) (εi · n f ),

C1 = −Q2
e

+ ω2

4m2 (1 − z){(1 + z)(Qe + κ)2 − Q2
e}

+ ω2(c1 + c2z) + O(ω4),

C2 = ω2

4m2 κ(2 Qe + κ)z − ω2c2 + O(ω4),

(B.40)

where ni ≡ qi/ω, n f ≡ q f /ω are the unit vectors in the
direction of the initial and final photon momenta, respec-
tively, and z ≡ n f · ni (in the Breit frame, the term linear in
ω does not contribute to the spin average). Comparison with
the well-known low-energy representation of the Compton
scattering amplitude (see for instance (2.1) and (2.5) in [37])
shows that, up to normalisation, the low-energy constants c1

and c2 represent the electric and magnetic polarisabilities,
respectively:

c1 = m

αem
αE , c2 = m

αem
βM . (B.41)

We emphasise that only the sum of the contributions from
the Born terms and the polarisabilities manifests itself in
Compton scattering. Both the choice of the reference frame
and the choice of the Born terms are a matter of conven-
tion [38,40,102]. Accordingly, the literature contains several
different variants of the above representation. In the context
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of the present paper, Eq. (B.41) amounts to a definition of
the polarisabilities.

Together with the Born terms, the two polarisabilities
αE , βM determine the low-energy expansion not only of
the spin average but of the entire amplitude Tμν up to and
including O(q2). In fact, if not only the photon energies
and momenta but the nucleon momenta are also booked as
small quantities of O(q), this statement is valid in any refer-
ence frame: the leading terms can be written in a manifestly
Lorentz invariant manner,

Tμν = Tμν
B + m

αem
{−βM K μν

1 + (αE + βM )K μν
2 } 1

+ O(q3). (B.42)

The quantities K μν
1 , K μν

2 represent the generalisation of the
conserved tensors specified in (A.4) to non-forward direc-
tions,

K μν
1 = qμ

i qν
f − gμνq f · qi ,

K μν
2 = 1

m2 {(Pμqν
f + Pνqμ

i )P · q

− gμν(P · q)2 − Pμ Pνq f · qi }, (B.43)

with P = 1
2 (pi + p f ). Conservation of energy and momen-

tum implies that P ·q f coincides with P ·qi ≡ P ·q. While the
Breit frame formulae (B.38) and (B.39) only contain terms
of O(q2), the representation (B.42) of the contributions from
the polarisabilities includes higher orders of the low-energy
expansion.

B.8 Low-energy theorems for T1(ν, q2) and T2(ν, q2)

In the forward direction, the spin average is a Lorentz invari-
ant notion and only two of the four invariant variables are
independent: the photon virtualities are the same, q2

i = q2
f =

q2, and the momentum transfer t vanishes. The standard vari-
able ν = (s−u)/4m coincides with the frequency in the Breit
frame, ω = ν.

The spin average involves the two invariants T1, T2 defined
in (A.3) and (A.5). In the notation of (B.27) these amplitudes
are given by

T1 = I2 + I3 + I4 + I5, q2T1 + ν2T2 = I1. (B.44)

While for real Compton scattering only the invariants I1, I2

count, the amplitudes relevant for Compton scattering of vir-
tual photons in the forward direction also pick up a contribu-
tion from I3, I4, I5.

The comparison of the above expressions for the Born
terms with the elastic part of the forward amplitudes in (15)
shows that the singularities on the left and right hand sides
of (B.44) are indeed the same, but in the case of T1, the
regular parts differ:

T el
1 = I B

2 + I B
3 + I B

4 + I B
5 + 1

4m2 F2
P (q2),

T el
2 = 1

ν2 {I B
1 − q2(I B

2 + I B
3 + I B

4 + I B
5 )}. (B.45)

The difference also shows up when evaluating Eq. (B.38) in
the forward direction, where it implies a low-energy theorem
for T1 [40,53,89,102,107] as well as one for T2 [54],

T inel
1 (0, 0) = − κ2

4m2 − m

αem
βM ,

T inel
2 (0, 0) = − m

αem
(αE + βM ). (B.46)

This demonstrates that, although the amplitudes T1(ν, q2),
T2(ν, q2) do not determine the angular distribution of real
Compton scattering, they do encode the polarisabilities. The
calculation described in Appendix B.3 removes the apparent
contradiction: the amplitudes I3 − I B

3 , I4 − I B
4 , I5 all dis-

appear if the photon energy is set equal to zero. We repeat
that the decomposition of the amplitude into a contribution
generated by the elastic singularities and a remainder only
becomes unique if the asymptotic behaviour is specified. The
extra term in T1 arises because the recipe used above to spec-
ify the Born terms implies that the amplitudes I B

n do not tend
to zero when ν → ∞. In the above analysis of non-forward
Compton scattering, the asymptotic behaviour does not play
any role – accordingly, the regular parts of the Born terms
used in that analysis are without physical significance. In
contrast, the decomposition of the forward amplitudes into
an elastic and an inelastic part set up in Sect. 3 does invoke
the asymptotic behaviour. It implies that the polarisabilities
do pick up a contribution from the elastic singularities.

Appendix C: Causality

The structure functions V1(ν, q2), V2(ν, q2) are experimen-
tally accessible only in the space-like region, q2 ≤ 0.
As discussed in detail in [4,118], causality – the fact that
the current commutator vanishes outside the light-cone –
very strongly constrains their continuation into the time-like
region. General properties of causal functions are described
in [119,120] and explicit representations that manifestly
incorporate causality [121–124] are available. These have
been used, in particular, in the analysis of the structure func-
tions at high energies [125]. The further representation con-
structed in Appendix D shows that the contributions gen-
erated by the elastic intermediate states or individual reso-
nances can be written in manifestly causal form.

In the present context, the key statement13 is that the con-
tinuation is uniquely determined up to a polynomial in the
variable ν:

13 See theorem 2 in [121] and theorem A in [122].
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V (ν, q2) = ε(ν)

N∑
n=0

σn(q2)ν2n, (C.47)

where the coefficients σn(q2) vanish for q2 ≤ 0. In Regge
language, such contributions represent fixed poles in the
angular momentum plane, located at integer values of the
angular momentum.

Regge asymptotics excludes fixed poles in V2(ν, q2), but
a term with n = 0, that is, a fixed pole with J = 0, is not a
priori ruled out in V1(ν, q2):

V fp
1 (ν, q2) = ε(ν)σ (q2). (C.48)

A term of this form is also consistent with the short-distance
properties of QCD, which ensure that, in the Bjorken limit,
where ν and q2 both become large, the structure functions
tend to zero – this merely imposes a constraint on the asymp-
totic behaviour, which in particular requires that σ(s) disap-
pears when s becomes large. If a fixed pole were present in
V1(ν, q2), it would not show up in the electron cross sec-
tions, but would affect the time-ordered amplitude, through
the term

T fp
1 (ν, q2) =

∫ ∞

0

ds σ(s)

s − q2 − iε
. (C.49)

Accordingly, a formula that expresses the electromagnetic
self-energy in terms of the electron cross sections could then
not be given, nor would it be possible to express the polaris-
abilities of the nucleon in terms of these cross sections.

The analysis of [4] is based on the assumption that the
matrix element of the current commutator is free of fixed
poles, so that the electron cross sections unambiguously
determine the structure functions V1(ν, q2), V2(ν, q2), not
only in the space-like region, but also for time-like momenta.
The short-distance properties of QCD ensure that there is then
no ambiguity in T1(ν, q2), T2(ν, q2) either: the electron cross
sections fully determine these. Accordingly, the electromag-
netic self-energy as well as the polarisabilities of the nucleon
are determined by these cross sections, at least in principle.

Appendix D: A new causal representation

Consider the product of two retarded propagators

t ret(p, q) = 1

μ2
1 − (q0 + iε)2 + q2

× 1

μ2
2 − (p0 + q0 + iε)2 + (p + q)2

. (D.50)

The Fourier transform of this amplitude,

t̃ ret(p, x) =
∫

d4qe−i x ·q t ret(p, q), (D.51)

is given by the convolution of the two propagators in coordi-
nate space. Since these vanish outside the forward light-cone,
the same is also true of the convolution: t̃ ret(p, x) differs from
zero only in the forward light-cone, x2 ≥ 0, x0 ≥ 0.

This reflects the properties of the integrand in (D.51),
which contains four poles

t ret(p, q) = 1

(q0 − ω1 + iε)(q0 + ω1 + iε)

× 1

(q0 + p0 − ω2 + iε)(q0 + p0 + ω2 + iε)
,

ω1 =
√

μ2
1 + q2, ω2 =

√
μ2

2 + (q + p)2.

(D.52)

All of these occur in the lower half of the q0-plane. The
path of integration can therefore be deformed into a segment
from −∞ to −R, a semi-circle of radius R and a segment
from R to +∞. If x0 < 0, the factor e−iq0x0

suppresses the
integrand if R is taken large, except for the segments where
the imaginary part of q0 is not large. But there, t ret(p, q) is
small, of order 1/R4. Since the length of these segments is
of order R, their contributions also tend to zero if R is taken
large. Since the integral is path-independent, it vanishes for
x0 < 0.

The quantity t̃ ret(p, x) is Lorentz invariant. The time com-
ponent of the vector x depends on the frame chosen, but for
any point outside the forward light-cone, there is a frame
where the time component is negative. This confirms that
t̃ ret(p, x) vanishes outside the forward light-cone.

The advanced version of the amplitude only differs in the
sign of the iε prescription. Like the advanced propagators
in coordinate space, the Fourier transform of tadv(p, q) is
different from zero only in the backward light-cone, x2 ≥ 0,
x0 ≤ 0. The difference between the two,

v(p, q) = 1

2π i
(t ret(p, q) − tadv(p, q)), (D.53)

is therefore causal: the Fourier transform of v(p, q) vanishes
outside the light-cone. Since tadv(p, q) is the complex con-
jugate of t ret(p, q), the function v(p, q) is real.

For space-like momenta, v(p, q) picks up a contribution
only from the poles at q0 = −p0 ± ω2:

v(p, q) = 1

μ2
1 − q2

δ((p + q)2 − μ2
2), q2 ≤ 0, ν ≥ 0.

(D.54)

This demonstrates that any function which for space-like
momenta can be represented as

V (ν, q2) =
∫ ∞

0
da

∫ ∞

0
db

ρ(a, b)

a − q2

×{δ(q2 + 2νm − b) − δ(q2 − 2νm − b)},
(D.55)
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admits a causal continuation into the time-like region (we
have replaced μ2

1 and μ2
2 by a = μ2

1, b = μ2
2 − m2, respec-

tively and imposed the condition b ≥ 0, which ensures that,
for space-like momenta, the support of V (ν, q2) is contained
in the physical region, Q2 ≤ 2m|ν|). There is only one con-
tinuation that is free of fixed poles. The corresponding time-
ordered amplitude is given by

T (ν, q2) =
∫ ∞

0
da

∫ ∞

0
db

ρ(a, b)

a − q2 − iε

×
{

1

b − q2 + 2νm − iε

+ 1

b − q2 − 2νm − iε

}
. (D.56)

This representation, in particular, yields a causal description
of the elastic contributions discussed in Sect. 3. Since the
form factors are analytic functions of t , the coefficients vel

1 ,
vel

2 introduced in (10) do admit a representation of the form

vel
i (q2) =

∫ ∞

0
da

σi (a)

a − q2 − iε
, (D.57)

so that the spectral functions ρi (a, b) = σi (a)δ(b) indeed
generate the elastic contributions.

Appendix E: Errata in the literature

In the present appendix, we rectify a number of incorrect
statements made in the literature [30–33] about the work
of Gasser and Leutwyler [4]. Unfortunately, some of these
already propagated [35,36,47].

The only deficiency of the analysis reported in [4] which
we are aware of concerns the evaluation of the contribu-
tions arising from the deep inelastic region: the violations
of Bjorken scaling are not accounted for. In particular, if the
ratio x = Q2/2mν is kept fixed, the longitudinal structure
function FL = F2 − 2x F1 is assumed to tend to zero at high
energies, in inverse proportion to Q2. In QCD, FL only disap-
pears in proportion to αs ∝ 1/ log(Q2). The calculation yet
needs to be improved to account for the scaling violations,
but we doubt that this will significantly affect the numerics –
in [4], the contribution from the entire deep inelastic region
was found to be small.

The essence of the analysis in [4] is recapitulated in Sect. 2:
Reggeon dominance implies that the subtraction function is
uniquely determined by the cross section of the reaction e +
p → e + X . In [30], for instance, this crucial point is not
addressed at all. Instead, the paper contains the following
statement:
In their work, they acknowledged the need for a subtracted
dispersion relation but proceeded to ignore this issue, as the
subtraction constant could not be computed.
Quite the contrary, the analysis in [4] not only includes an
explicit evaluation of the subtraction occurring in the fixed-q2

dispersion relation for T1, but contains a detailed discussion
of the matter in a separate section, entitled “Regge poles,
fixed poles, subtractions and the like.”

In [31] the authors write:
In Ref. [4], it was claimed that the elastic contributions to t1
could be evaluated with an unsubtracted dispersive analysis.
However, performing an unsubtracted dispersive analysis of
the elastic contributions […] leads to inconsistent results.
This conclusion is obtained by comparing the decomposi-
tion of T μν(p, q) specified in Appendix A (T1 = − 1

2 t1,
T2 = 1

2 t2 in their notation) with an alternative decompo-
sition, introduced by the authors as T̃1 = 2q2T1 + 2ν2T2,
T̃2 = −2q2T2. While the amplitudes T1, T2 are free of kine-
matic singularities and zeros, T̃1, T̃2 are not. That is why the
authors run into an inconsistency: while T2 does obey an
unsubtracted dispersion relation, the dispersive representa-
tion for ν2T2 requires a subtraction. The need for a subtrac-
tion also shows up in the asymptotic behaviour of the elastic
contributions in (15), which implies that T̃ el

1 does not disap-
pear when ν → ∞ and can therefore not possibly obey an
unsubtracted dispersion relation. The calculation described
by the authors merely shows that amplitudes with kinematic
zeros may fail to obey unsubtracted dispersion relations. It
does not demonstrate that the representation of the elastic
contributions T el

1 , T el
2 in [4] is incorrect – in fact, as shown

in Appendix D, even taken by itself, that representation for
the elastic contributions to T1(ν, q2), T2(ν, q2) obeys all of
the constraints imposed by causality.

Further, in the conclusion of [31], the authors state:
A technical oversight in the evaluation of the elastic con-
tribution was highlighted resulting in a larger central value
than previously obtained [4].
The claim of a ’technical oversight’ suggests that the value
0.76 MeV for the elastic contribution obtained in [4] is incor-
rect and needs to be replaced by 1.39(2) MeV. That, however,
is not the case. The number quoted in [4] concerns the full
contribution of the elastic intermediate states to the Cotting-
ham formula, which includes the elastic contribution to the
subtraction function. In [31], the elastic part of the mass-shift
is instead identified with the contribution from the elastic
states to the subtracted dispersion integral. In fact, the authors
notice that their model for the subtraction function also con-
tains elastic contributions and that if these are accounted for,
the claimed discrepancy in the value of the elastic contribu-
tion to the self-energy difference disappears.14 This demon-
strates that their claim is wrong and that the evaluation in [4]
is correct.

14 Incidentally, although their amended expression for the elastic part
of the self-energy is numerically close to the contribution generated by
the elastic singularities, this is only approximately so: while these singu-
larities are proportional to G2

E and G2
M , their expression for the elastic

part of the mass-shift in addition involves an integral over G E G M .
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The incorrect statements concerning the analysis in [4]
are iterated elsewhere. For instance, the following claims are
made:
[32]: One is lead to conclude that the unknown subtraction
function cannot be evaded and the evaluation of δmγ in Ref.
[4] is not correct.
[33]: This work uncovered a technical oversight in work of
Gasser and Leutwyler [4,91] related to a subtracted disper-
sion integral, which unfortunately invalidates their result.

Finally we point to an erratum in [32]:
In Ref. [4], an argument to evade the subtraction function
based on the parton model was presented. However, as was
first noted in Ref. [26], the argument was based on false
assumptions about the scaling violations of the Callan-Gross
relation [126].
The necessity of a subtraction arises from the Regge
behaviour at fixed q2. The analysis in [4] relies on stan-
dard Regge behaviour and hence necessarily involves a sub-
tracted dispersion relation for T1. Scaling violations concern
the behaviour of the structure functions in the deep inelastic
region, where q2 becomes large. It is true that in [4], the scal-
ing violations are ignored, but to claim that this is used in [4]
as an argument to evade the subtraction function is plain
wrong: a subtraction was made and the subtraction function
was determined.
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