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We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a 
simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the 
convergence properties directly, we explore perturbative corrections up to 30th order and highlight the 
role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed 
basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT 
series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a 
direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to 
advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate 
that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent 
agreement with the best available coupled-cluster calculations at a fraction of the computational cost.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The solution of the Schrödinger equation for atomic nuclei 
using realistic nuclear interactions is at the heart of ab initio
nuclear structure theory. In practice this problem is addressed 
by constructing approximate methods for a truncated, i.e., finite-
dimensional Hilbert space. However, for the calculation of ground-
state energies of heavy nuclei significant algorithmic and compu-
tational efforts are needed. There is a plethora of different ab initio
methods, e.g., coupled cluster (CC) theory [1–6], in-medium sim-
ilarity renormalization group (IM-SRG) [7–11], or self-consistent 
Green’s function methods [12–14]. However, it is desirable to have 
an alternative, light-weight framework available. A conceptually 
simple method to solve for the eigenenergies of a physical system 
is many-body perturbation theory (MBPT) [15–17]. A perturbative 
treatment is the standard approach for many problems from differ-
ent fields of theoretical physics. The advantage of MBPT compared 
to other ab initio approaches is its simplicity, which also allows 
for straightforward generalizations to excited states and open-shell 
nuclei [18] without the need of sophisticated equation-of-motion 
techniques. The reasons, why MBPT usually is not considered as 
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an ab initio technique, are convergence issues of the underly-
ing perturbation series. Several studies of high-order MBPT based 
on Slater determinants constructed from harmonic oscillator (HO) 
single-particle states (HO-MBPT) have shown that the perturbation 
series is divergent in almost every case [18,19]. In such cases one 
heavily relies on the use of resummation techniques, e.g., Padé ap-
proximants, that enable a robust extraction of observables although 
the perturbative expansion diverges [19–21].

In this Letter, we formulate MBPT based on Hartree–Fock (HF) 
single-particle states (HF-MBPT), and, for the first time, investigate 
the convergence behavior of the perturbation series up to 30th
order. We compare the ground-state energies of 4He and 16,24O 
to results from exact diagonalizations in the configuration inter-
action (CI) approach using the same model space [22–24]. Based 
on the rapidly converging perturbation series resulting from the 
use of HF basis states, we study ground-state energies of selected 
closed-shell medium-mass and heavy nuclei at third-order MBPT, 
and compare to recent CC calculations [6].

2. The nuclear Hamiltonian

For all following investigations we start from the chiral nucle-
on–nucleon (NN) interaction at next-to-next-to-next-to leading or-
der (N3LO) by Entem and Machleidt [25] combined with the three-
nucleon (3N) interaction at next-to-next-to leading order N2LO 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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in its local form [26] with three-body cutoff �3N = 400 MeV/c. 
Additionally, we use the similarity renormalization group (SRG) 
to soften the Hamiltonian through a continuous unitary transfor-
mation controlled by a flow parameter α [27–31]. In principle 
this transformation induces beyond-3N operators, which we have 
to neglect. To avoid the complication of dealing with explicit 3N 
interactions, we make use of the normal-ordered two-body ap-
proximation (NO2B) of the 3N interaction that was found to be 
very accurate for medium-mass nuclei, see Refs. [32,33]. For the 
matrix-element preparation we adopt the procedure introduced in 
Ref. [6], in particular, we use large SRG model spaces and exploit 
the iterative scheme where necessary. Thus, the matrix elements 
and the treatment of the chiral NN+3N interaction are identical to 
Ref. [6] and we can compare directly to the CC results presented 
there.

3. Many-body perturbation theory

The essence of Rayleigh–Schrödinger perturbation theory is the 
definition of an additive splitting, referred to as partitioning, of a 
given Hamiltonian H into an unperturbed part H0 and a pertur-
bation W . By introducing an auxiliary parameter λ we obtain a 
one-parameter family of operators,

Hλ = H0 + λW , (1)

where the perturbation is defined by W = H − H0. As ansatz for 
the solution of the eigenvalue problem of H we take a power se-
ries expansion of the energy and eigenstate in terms of an auxiliary 
parameter λ, where the expansion coefficients are given by the en-
ergy corrections and state corrections, respectively. We choose H0
to be the HF Hamiltonian arising from an initial NN+3N interaction. 
We have shown in Refs. [19,18] that high-order MBPT corrections 
are accessible by means of a recursive scheme, allowing for de-
tailed investigations of the convergence characteristics of the per-
turbation series. In general we cannot expect that a perturbation 
series is convergent [34–36], but one can exploit resummation-
theory techniques to extract information on the observables of in-
terest. There are different schemes and transformations that can be 
used to extract, e.g., the ground-state energy from a divergent ex-
pansion [37–39]. Padé approximants have proven to be particularly 
useful in the treatment of high-order HO-MBPT [19,18]. Addition-
ally, they are well-known to mathematicians especially in the field 
of convergence acceleration [21,36,37]. However, the calculation of 
energy corrections up to sufficiently high orders is only feasible for 
light nuclei due to increasing computational requirements. When 
proceeding to the medium-mass region, one has to choose a dif-
ferent strategy. Depending on the rate of convergence, one might 
expect low-order partial sums of the perturbation series to be rea-
sonable approximations to the exact ground-state energy. Having 
only low-order information available, resummation methods are 
less effective, because one is limited to a small number of ap-
proximants that yield valid approximations only if the transformed 
sequence converges sufficiently fast [18]. However, an alternative 
is to exploit the freedom in the partitioning, i.e., the choice of the 
unperturbed basis, to improve the convergence of the perturbation 
series.

We specifically explore a partitioning defined by a prior HF cal-
culation, which optimizes the single-particle basis [17]. Note that 
the HF ground-state energy corresponds to the first-order partial 
sum,

EHF = E(0) + E(1) . (2)

Therefore, the first contribution to the correlation energy appears 
in second-order HF-MBPT. The second- and third-order contribu-
tions to the ground-state energy for a two-body operator W are 
given by [40]

E(2) = 1

4

>εF∑

ab

<εF∑

i j

〈ab|W |i j〉〈i j|W |ab〉
(εa + εb − εi − ε j)

,

E(3) = 1

8

>εF∑

abcd

<εF∑

i j

〈ab|W |i j〉〈i j|W |cd〉〈cd|W |ab〉
(εa + εb − εc − εd)(εa + εb − εi − ε j)

+ 1

8
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ab

<εF∑

i jkl

〈ab|W |i j〉〈i j|W |kl〉〈kl|W |ab〉
(εa + εb − εi − ε j)(εa + εb − εk − εl)

+
>εF∑

abc

<εF∑

i jk

〈ab|W |i j〉〈cj|W |kb〉〈ik|W |ac〉
(εa + εb − εi − ε j)(εa + εc − εi − εk)

. (3)

In the third-order energy correction the first, second, and third 
term are called particle–particle (pp), hole–hole (hh), and particle–
hole (ph) correction, respectively. The εi correspond to the HF 
single-particle energies and all matrix elements are taken to be 
antisymmetrized. Summation indices a, b, c, . . . correspond to par-
ticle indices, i.e., states above the Fermi level εF, whereas i, j, k, . . .
correspond to hole indices up to the Fermi level. The zero and 
one-body parts of the normal-ordered Hamiltonian only enter in 
the first-order energy correction. Brillouin’s theorem states that 
there is no mixing of the HF state with singly-excited determinants 
[17] and by orthogonality the zero-body part is only present in the 
expectation value of the perturbation. In principle, the derivation 
of energy corrections beyond third order is straightforward. How-
ever, considering a diagrammatic approach in terms of Hugenholtz 
diagrams, the number of contributing diagrams at a given pertur-
bation order p increases rapidly [41] such that it becomes chal-
lenging to go beyond third-order in practice. Additionally, terms 
from higher-order corrections involve expressions that are noto-
riously hard to compute, because their efficient implementation, 
e.g., by means of BLAS-enabled matrix operations, is not obvious. 
The computational power needed to perform third-order MBPT cal-
culations up into the medium-mass region can be provided by a 
single compute node within 1–3% of the computing time needed 
for state-of-the-art CC calculations.

4. Convergence characteristics of Hartree–Fock many-body 
perturbation theory

We start by comparing perturbation series from HO and HF-
MBPT, and we focus on their convergence characteristics and sen-
sitivity to the SRG flow parameter. In Fig. 1 we present a direct 
comparison of the order-by-order behavior for the two partition-
ings up to 30th order for 16O. For these high-order calculations 
we use an Nmax-truncation of the many-body model space, simi-
lar to the no-core shell model (NCSM) [23]. The left-hand column 
of Fig. 1 shows the high-order partial sums and the right-hand 
column the individual energy corrections for each order. Panel (a) 
shows the partial sums from HO-MBPT for a sequence of model 
spaces with fixed SRG flow parameter α = 0.08 fm4. The partial 
sums are divergent for every model space. The divergence is also 
apparent from panel (c) which reveals exponentially increasing en-
ergy corrections. In contrast, panel (b) shows the partial sums 
arising from HF-MBPT that are convergent for all model spaces. 
Furthermore, the converged values agree with direct CI results. As 
seen in panel (d), the energy corrections are exponentially sup-
pressed for higher orders, giving rise to a robust convergence.

In Fig. 2 we show the high-order partial sums and energy 
corrections in HF-MBPT for different SRG flow parameters. Pan-
els (a), (b) and (c) show the convergent perturbation series for 
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Fig. 1. Partial sums for the ground-state energy of 16O in the HO basis (a) and 
the HF basis (b) for the NN+3N-full interaction with α = 0.08 fm4 and model-space 
truncation parameters Nmax = 2 ( ), 4 ( ), and 6 ( ). The corresponding energy 
corrections for each order are displayed in panels (c) and (d), respectively. All cal-
culations are performed at frequency h̄� = 24 MeV.

Fig. 2. Partial sums for varying flow parameters in HF-MBPT for 4He (a), 16O (b), 
and 24O (c). The corresponding energy corrections are shown in panels (d), (e) and 
(f), respectively. The model space is truncated at Nmax = 6 for 4He and 16O, and at 
Nmax = 4 for 24O. The flow parameters for the different data sets are α = 0.02 fm4

( ), 0.04 fm4 ( ), and 0.08 fm4 ( ). All calculations use a NN+3N-full interaction 
and frequency h̄� = 24 MeV.

4He, 16O and 24O, respectively. The calculations are performed 
for fixed Nmax = 6 for 4He, 16O and Nmax = 4 for 24O, and the 
flow-parameter dependence of the absolute energies results from 
the varying degree of convergence with respect to the many-body 
model space.

A more interesting flow-parameter dependence can be observed 
for the individual energy corrections in panels (d), (e), and (f). 
There is a clear dependence of the convergence rate on the flow 
parameter for the oxygen isotopes. For 16O the series converges 
exponentially in all three cases. The larger the flow parameter, i.e. 
the softer the Hamiltonian, the more rapid the convergence—as 
Table 1
Ground-state energies for 4He, 16O and 24O in units of [MeV] obtained in HF-MBPT 
for different orders up to p = 30 and in CI calculations with NN+3N-full interactions 
for different flow parameters α. The model spaces are truncated by Nmax = 6 for 
4He and 16O and Nmax = 4 for 24O. The HO frequency is h̄� = 24 MeV.

α [fm4]
0.02 0.04 0.08

4He E(2)
sum −19.204 −20.269 −23.588

E(3)
sum −20.334 −23.224 −26.589

E(10)
sum −20.507 −24.444 −26.947

E(20)
sum −20.526 −24.462 −26.964

E(30)
sum −20.537 −24.469 −26.971

CI −20.539 −24.483 −26.994

16O E(2)
sum −85.620 −107.241 −120.699

E(3)
sum −89.315 −110.861 −123.863

E(10)
sum −83.780 −107.199 −122.561

E(20)
sum −84.180 −107.341 −122.577

E(30)
sum −84.018 −107.331 −122.577

CI −84.043 −107.330 −122.577

24O E(2)
sum −125.460 −124.459 −149.053

E(3)
sum −122.880 −126.670 −151.059

E(10)
sum −119.705 −121.233 −147.446

E(20)
sum −119.335 −121.314 −147.508

E(30)
sum −119.483 −120.948 −147.489

CI −119.131 −120.947 −147.488

might be naively expected. For 24O the behavior is slightly more 
complicated. For the softest interaction with α = 0.08 fm4 there 
is still a clear exponential convergence. However, for the harder 
interactions, i.e., α = 0.02 and 0.04 fm4, we observe no system-
atic decrease of the high-order perturbative contributions anymore, 
they remain approximately constant and cause a small-amplitude 
oscillatory behavior of the partial sums. However, even in these 
cases we can easily extract a robust estimate for the asymptotic 
value. In the case of 4He the suppression is independent of α and 
we observe the same rapid convergence for all interactions.

The numerical values of the partial sums for selected orders 
of HF-MPBT for the three nuclei and the different flow parame-
ters are summarized in Table 1 together with the results of di-
rect CI calculations for the same Hamiltonians and model spaces. 
The higher-order partial sums are in good agreement with the CI 
results—in most cases the deviation of the ground-state energy is 
much smaller than 0.1%.

Based on our detailed analysis of high-order HF-MBPT and due 
to the exponential suppression of the energy corrections, we can 
take low-order partial sums as a reasonable approximation to the 
converged results. This motivates the investigation of third-order 
HF-MBPT for medium-mass and heavy closed-shell nuclei in the 
following.

5. Explicit summation for heavy nuclei

For heavier nuclei and larger model spaces we cannot compute 
the high-order perturbation series explicitly and, thus, we cannot 
investigate the convergence characteristics explicitly. We can, how-
ever, evaluate the perturbative contributions up to third order very 
efficiently. To demonstrate the validity of a low-order perturba-
tive approximation, we need to compare our results to established 
ab initio techniques, in our case, CC calculations with sophisticated 
triples corrections.

We consider a sequence of closed-shell nuclei ranging from 
4He to 132Sn and perform calculations in second and third-order 
HF-MBPT in a large model space truncated with respect to the 
single-particle principal quantum number emax = 12. We restrict 
ourselves to SRG-evolved Hamiltonians with flow parameter α =



286 A. Tichai et al. / Physics Letters B 756 (2016) 283–288
Fig. 3. Panel (a) shows the ground-state energies per nucleon from third-order HF-MBPT ( ) in comparison to CR-CC(2, 3) ( ) results for selected closed-shell nuclei. Panel (b) 
shows the correlation energies per nucleon, E(2)

0 ( ) as well as E(2)
0 + E(3)

0 ( ) for HF-MBPT. Additionally, the correlation energy per nucleon for CCSD ( ) and CR-CC(2,3) 
( ) are shown. All calculations are performed with the NN+3N-full interaction with α = 0.08 fm4, h̄� = 24 MeV in an emax = 12 model space. Experimental values are 
indicated by black bars.

Fig. 4. Ground-state and correlation energies for the NN+3N-induced interaction. All other parameters as in Fig. 3.
0.08 fm4, which were used extensively in previous calculations and 
showed favorable order-by-order convergence in our high-order 
studies. We cannot perform CI calculations for these large spaces, 
however, the coupled-cluster framework has proven to provide 
accurate results for ground-state energies of closed-shell nuclei 
[1–4]. We compare the HF-MBPT results to recent CC calculations 
at the CCSD and the CR-CC(2, 3) level [5,6,42]. Starting from a 
HF reference state, this approach provides a complete inclusion of 
singly and doubly excited clusters on top of the reference state 
and, in the case of CR-CC(2, 3) an approximate non-iterative inclu-
sion of triply excited clusters [43–46].

In Figs. 3 and 4 the ground-state energies per nucleon (a) as 
well as the correlation energies Ecorr = E − EHF per nucleon (b) 
from HF-MBPT and CR-CC(2, 3) are depicted for an initial chi-
ral NN+3N and an initial chiral NN interaction. The SRG-induced 
three-nucleon contributions are taken into account in both cases, 
leading to the NN+3N-full and NN+3N-induced interactions, re-
spectively.

These figures show a remarkable result: The binding energies 
in third-order HF-MBPT and CR-CC(2,3) are in excellent agreement 
with each other. The relative differences are much smaller than 1%
in most cases. The same observation holds for the correlation en-
ergy, i.e., the correction to the HF energy. The third-order energy 
corrections contribute approximately 0.2 MeV to the overall bind-
ing energy per nucleon and are, therefore, one order of magnitude 
smaller than the second-order correction but not negligible.
Fig. 5. Individual contributions of the diagrams appearing at third-order perturba-
tion theory. Shown are the contributions per nucleon from the pp diagram ( ), the 
hh diagram ( ), and the ph diagram ( ). The overall contribution of the third-order 
correction is depicted in ( ). The first panel corresponds to the NN+3N-full inter-
action and the second panel to a NN+3N-induced interaction with α = 0.08 fm4, 
h̄� = 24 MeV, and emax = 12.

The third-order energy contribution (3) consists of three terms 
corresponding to three Hugenholtz diagrams. Fig. 5 disentangles 
their individual contributions to the overall third-order energy cor-
rection. The contribution of the pp, hh, and ph terms vary mildly 
over the entire mass range. For the tin isotopes, the total third-
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order energy correction contributes 3% to the overall binding en-
ergy and is not negligible. In particular we observe that the main 
contribution to the third-order energy correction arises from the 
ph diagram. In the case of a NN+3N-induced interaction all three 
terms are suppressed with increasing mass number, whereas for 
the NN+3N-full interaction the ph contribution remains sizeable. 
These systematic dependencies of the individual third-order con-
tributions on the input Hamiltonian show that a partial inclusion 
of selected third-order terms may lead to wrong estimates.

6. Conclusions

We have discussed Rayleigh–Schrödinger MBPT as an efficient 
approach to compute ground-state energies for closed-shell nuclei 
throughout the medium-mass region. The use of a HF basis has 
enabled us to overcome convergence problems that generally arise 
in HO-MBPT. Investigating 16O in different model spaces showed 
convergent partial sums when using HF-MBPT coinciding with the 
results from explicit CI calculations. Additionally, we found system-
atic dependencies of the convergence rate on the SRG parameter, 
i.e. the softness of the interaction, in the case of 16O and 24O. Thus, 
in HF-MBPT we can improve the convergence behavior of the per-
turbation series by further evolving the Hamiltonian, whereas the 
divergence of the HO-MBPT series will not be cured.

We can identify a hierarchy of elements influencing the conver-
gence properties of the perturbation series. Defining a partitioning, 
or equivalently, defining a starting point for the perturbative treat-
ment is the most important part. The radically different behavior 
of the perturbation series in HF-MBPT and HO-MBPT shows that 
the order-by-order convergence of the partial sums is very sensi-
tive to the partitioning. When using HF-MBPT we can improve the 
convergence by using softer interactions corresponding to larger 
SRG flow parameters. Even for HF basis sets harder interactions can 
spoil convergence. The ‘softness’ of the interaction has been char-
acterized in terms of Weinberg eigenvalues, which are connected 
to the spectrum of two-body Green’s functions [47–49]. Similar ex-
pressions also appear in the equations for the first-order state cor-
rection. Though the general connection seems obvious, one should 
be careful with conclusions about the convergence of MBPT for a 
finite nucleus based on the softness of the interaction. Our work 
has shown that the partitioning is key for convergence. Our ob-
servation that the convergence of HF-MBPT deteriorates for harder 
interactions could simply be explained by the fact that the unper-
turbed HF solution becomes a much worse approximation for the 
ground state in these cases.

The superior convergence properties of HF-MBPT is a motiva-
tion to use low-order approximations to investigate nuclei in the 
medium-mass region. We have validated these low-order approx-
imations by comparing to the most sophisticated CC calculations 
and found excellent agreement of third-order HF-MBPT and CR-
CC(2,3) at the level of better than 1%. The consistency of high-
order partial summations with exact CI diagonalizations as well as 
the agreement of low-order summations with CC results may qual-
ify HF-MBPT as an ab initio approach. However, the strong depen-
dence of the convergence on the partitioning should be a reason 
for caution. The HF partitioning seems to be robust for sufficiently 
soft interactions, but there is no formal guarantee for convergence.

The great advantage of low-order HF-MBPT is its simplicity: 
Computationally, the third-order calculations are much cheaper 
than CC or IM-SRG calculations. They are, therefore, ideal for sur-
vey calculations over a large range of medium-mass nuclei, e.g., to 
explore the ground-state systematics with new interactions. For-
mally, the underlying equations and algorithms are trivial com-
pared to CC or IM-SRG. As a result, extensions to the description of 
excited states and open-shell nuclei are straight-forward. We have 
demonstrated this already for light nuclei using high-order degen-
erate HO-MBPT [18]. Alternative multi-configurational formulations 
for open-shell nuclei are under investigation.
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