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We perform an analysis of QCD lattice data on charmed-meson masses. The quark-mass dependence of the
data set is used to gain information on the size of counterterms of the chiral Lagrangian formulated with open-
charm states with JP ¼ 0− and JP ¼ 1− quantum numbers. Of particular interest are those counterterms that
are active in the exotic flavor sextet channel. A chiral expansion scheme in which physical masses enter the
extrapolation formulas is developed and applied to the lattice data set. Good convergence properties are
demonstrated, and an accurate reproduction of the lattice data based on ensembles of PACS-CS,MILC,ETMC,
and HSC with pion and kaon masses smaller than 600 MeV is achieved. It is argued that a unique set of low-
energy parameters is obtainable only if additional information from HSC on some scattering observables is
included in our global fits. The elastic and inelastic s-wave πD and ηD scattering as considered by HSC is
reproduced faithfully. Based on such low-energy parameters, we predict 15 phase shifts and inelasticities at
physical quarkmasses but also for an additionalHSCensemble at smaller pionmass. In addition,we find a clear
signal for a member of the exotic flavor sextet states in the ηD channel, below the K̄Ds threshold. For the
isospin-violating strong decay width of the D�

s0ð2317Þ, we obtain the range (104–116) keV.

DOI: 10.1103/PhysRevD.98.014510

I. INTRODUCTION

Systems with one heavy and one light quark play a
particularly important role in the spectroscopy of QCD
[1–4]. Two distinct approximate symmetries characterize
the spectrum of open-charm mesons. While in the limit
of an infinitely heavy charm quark the heavy-quark spin
symmetry arises, the opposite limit with vanishing
masses for the up, down, and strange quark mass leads
to the flavor SU(3) chiral symmetry. The approximate
chiral symmetry of the up, down, and strange quarks
guides the construction of effective field theory
approaches based on the chiral Lagrangian. There are
two complementary approaches feasible. Either one may
construct an effective chiral Lagrangian formulated in
terms of heavy-quark multiplet fields [1,2,5] or one may
start with an effective chiral Lagrangian with fully
relativistic fields, wherein the low-energy constants are
correlated by constraints from the heavy-quark spin
symmetry [6,7]. The former approach may be more
economic in applications in which the coupled-channel

unitarity constraint is implemented by means of partial
summation techniques [8–13].
A striking prediction of the leading-order chiral inter-

action of the Goldstone bosons with the D mesons with
either JP ¼ 0− or JP ¼ 1− is an attractive short-range force
in the exotic flavor sextet channel [6,8,9]. The strength of
this interaction is somewhat reduced as compared to a
corresponding force in the conventional flavor triplet
channel that can be successfully used to describe the
lowest scalar and axial-vector states in the open-charm
meson spectrum [6,8,9,11–16]. Whether the chiral force in
the flavor sextet sector leads to the formation of exotic
open-charm meson states is an open issue. The possible
existence of such an exotic flavor sextet multiplet of states
depends on the precise form of chiral correction terms [6,9].
In this work, we wish to study the size of such chiral

counterterms. First rough studies [6,9] suffer from limited
empirical constraints. Additional information from first
QCD lattice simulation on a set of s-wave scattering lengths
was used in a series of later works [10–13]. Results that in
part show unnaturally large counterterms and/or illustrate
some residual dependence on how to set up the coupled-
channel computation are obtained. Here, we follow a
different path and try to use the recent data set on the
quark-mass dependence of the D-meson ground-state
masses [17–23]. This dynamics is driven in part by the
counterterms that also have a significant impact on the
open-charm coupled-channel systems as discussed above.
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One may hope to obtain results that are less model
dependent in this case.
However, it is well known that chiral perturbation theory

formulated with three light flavors does not always show a
convincing convergence pattern [24–31]. How is this for the
case at hand? Only a few studies are available in which this
issue is addressed for open-charmmeson systems. In a recent
work, the authors presented a novel chiral extrapolation
scheme for the quark-mass dependence of the baryon octet
and decuplet states that is formulated in terms of physical
masses [32–35]. It is the purpose of our study to adapt this
scheme to the open-charm sector of QCD and apply it to the
available lattice data set. This requires in particular consid-
ering the D mesons with JP ¼ 0− and JP ¼ 1− quantum
numbers on equal footing. For a given set of low-energy
constants, each set of the four D-meson masses has to be
determined numerically as a solution of a nonlinear system.
The work is organized as follows. In Sec. II, the part of

the chiral Lagrangian that is relevant here is recalled. It
follows a section in which the one-loop contributions to the
D-meson masses are derived in a finite box. We do not
consider discretization effects in our study. In Secs. IV and

V, power counting in the presence of physical masses is
discussed. The application to available lattice data sets is
presented in Secs. VI–VIII. Lattice data taken on ensembles
of PACS-CS, MILC, ETMC, and HSC are considered. The
results for the D-meson masses are considered in Sec. VI.
The various sets of low-energy parameters are collected in
Sec. VI and Sec. VII. Our results for the s-wave scattering
lengths can be found in Sec. VII. In Sec. VIII, we present
our predictions for phase shifts and inelasticities based on
the parameter sets of Sec. VII as obtained form the
considered lattice data. In Sec. IX our values for the
isospin violating decay width of the D�

s0ð2317Þ are pre-
sented. With a summary and outlook, the paper is closed.

II. CHIRAL LAGRANGIAN WITH
OPEN-CHARM MESON FIELDS

We recall the chiral Lagrangian formulated in the
presence of two antitriplets of D mesons with JP ¼ 0−

and JP ¼ 1− quantum numbers [1,2]. In the relativistic
version, the Lagrangian was developed in Refs. [6,8,9]. The
kinetic terms read

Lkin ¼ ð∂̂μDÞð∂̂μD̄Þ −M2DD̄ − ð∂̂μDμαÞð∂̂νD̄ναÞ þ
1

2
ðM þ ΔÞ2DμαD̄μα

− f2trfUμUμg þ 1

2
f2trfχþg; ð1Þ

where

Uμ ¼
1

2
e−i

Φ
2fð∂μe

iΦfÞe−iΦ2f; Γμ ¼
1

2
e−i

Φ
2f∂μe

þiΦ
2f þ 1

2
eþiΦ

2f∂μe
−iΦ

2f;

χ� ¼ 1

2
ðeþiΦ

2fχ0e
þiΦ

2f � e−i
Φ
2fχ0e

−iΦ
2fÞ; χ0 ¼ 2B0diagðmu;md;msÞ;

∂̂μD̄ ¼ ∂μD̄þ ΓμD̄; ∂̂μD ¼ ∂μD −DΓμ: ð2Þ

Following Ref. [6], we represent the 1− field in terms of an
antisymmetric tensor field Dμν. The covariant derivative ∂̂μ

involves the chiral connection Γμ, the quark masses enter
via the symmetry-breaking fields χ�, and the octet of the
Goldstone boson fields is encoded into the 3 × 3 matrix Φ.
The parameter f is the chiral limit value of the pion-decay
constant. Finally, given our particular renormalization
scheme, the parameters M and M þ Δ give the masses of
the D and D� mesons in that limit with mu ¼md¼ms¼ 0.
We continue with first-order interaction terms

Lð1Þ ¼ 2gPfDμνUμð∂̂νD̄Þ− ð∂̂νDÞUμD̄μνg

−
i
2
g̃PϵμναβfDμνUαð∂̂τD̄τβÞþð∂̂τDτβÞUαD̄μνÞg; ð3Þ

which upon an expansion in powers of the Goldstone boson
fields provide the three-point coupling constants of the

Goldstone bosons to the D mesons. While the decay of the
charged D� mesons [6] implies

jgPj ¼ 0.57� 0.07; ð4Þ

the parameter g̃P in (3) cannot be extracted from empirical
data directly. The size of g̃P can be estimated using the
heavy-quark symmetry of QCD [1,2]. At leading order, one
expects g̃P ¼ gP.
Second-order terms of the chiral Lagrangian were

first studied in Refs. [6,9], in which the focus was on
counterterms relevant for s-wave scattering of Goldstone
bosons with the D mesons. A list of eight terms with
dimensionless parameters ci and c̃i was identified. This
list was extended by further terms relevant for p-wave
scattering in Ref. [36]. A complete collection of relevant
terms is
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Lð2Þ ¼ −ð4c0 − 2c1ÞDD̄trχþ − 2c1DχþD̄þ 4ð2c2 þ c3ÞDD̄trðUμUμ†Þ − 4c3DUμUμ†D̄

þ 1

M2
ð4c4 þ 2c5Þð∂̂μDÞð∂̂νD̄Þtr½Uμ; Uν†�þ −

1

M2
2c5ð∂̂μDÞ½Uμ; Uν†�þð∂̂νD̄Þ

þ ic6ϵμνρσðD½Uμ; U
†
ν�−D̄ρσ −Dρσ½U†

ν; Uμ�−D̄Þ þ ð2c̃0 − c̃1ÞDμνD̄μνtrχþ þ c̃1DμνχþD̄μν

− ð4c̃2 þ 2c̃3ÞDαβD̄αβtrðUμUμ†Þ þ 2c̃3DαβUμUμ†D̄αβ

−
1

ðM þ ΔÞ2 ð2c̃4 þ c̃5Þð∂̂μDαβÞð∂̂νD̄αβÞtr½Uμ; Uν†�þ

þ 1

ðM þ ΔÞ2 c̃5ð∂̂μDαβÞ½Uμ; Uν†�þð∂̂νD̄αβÞ − 4c̃6Dμα½Uμ; Uν†�−D̄να; ð5Þ

where the parameters M and M þ Δ are the D and D�
meson masses as evaluated at mu ¼ md ¼ ms ¼ 0. In the
limit of a very large charm-quark mass, it follows that
M → ∞ but Δ → 0. All parameters ci and c̃i are
expected to scale linearly in the parameter M0. As
illustrated in Ref. [6], it holds c̃i ¼ ci in the heavy
quark–mass limit.
A first estimate of some parameters can be found in

Ref. [6] based on large-Nc arguments. Since at leading
order in a 1=Nc expansion single-flavor trace interactions
are dominant, the corresponding couplings should go to
zero in the Nc → ∞ limit, suggesting

c0 ≃
c1
2
; c2 ≃ −

c3
2
; c4 ≃ −

c5
2
;

c̃0 ≃
c̃1
2
; c̃2 ≃ −

c̃3
2
; c̃4 ≃ −

c̃5
2
: ð6Þ

In the combined heavy-quark and large-Nc limit, we are left
with four free parameters only, c1, c3, c5, and c6. For two of
them, approximate ranges

c1 ≃ 0.44 − 0.47; c3 þ c5 ≃ 1.0 − 1.4 ð7Þ

were obtained previously in Ref. [6]. While the parameter c1
can be estimated from theDmeson masses, the parameter c3
is constrained by the empirical πD-invariant mass spectrum
[6,9]. A complementary estimate was explored in Ref. [10],
in which the parameter c3 þ c5 was adjusted to first QCD
lattice computations for s-wave scattering lengths of the
Goldstone bosons with the D mesons. It is remarkable that
their range for c3 þ c5 ≃ 1 is quite consistent with the earlier
estimates [6,9] based on the empirical πD-invariant mass
spectrum. The c3 parameter is of crucial importance for the
physics of two exotic sextets of JP ¼ 0þ and JP ¼ 1þ
resonances. Such multiplets are predicted by the leading-
order chiral Lagrangian (1), which entails in particular the
Tomozawa-Weinberg coupled-channel interactions of the
Goldstone bosons with the D mesons [8]. The latter predicts
weak attraction in the flavor sextet channel. If used as the
driving term in a coupled-channel unitarization, exotic
signals appear. A reliable estimate of the correction terms
proportional to c3 and c̃3 is important in order to arrive at a
detailed picture of this exotic sector of QCD [6,9].
We close this section with a first construction of the

symmetry-breaking counterterms proportional to the prod-
uct of two quark masses:

Lð4Þ ¼ −d1Dχ2þD̄ − d2DχþD̄trðχþÞ − d3DD̄trðχ2þÞ − d4DD̄ðtrχþÞ2

þ 1

2
d̃1Dμνχ2þD̄μν þ

1

2
d̃2DμνχþD̄μνtrðχþÞ þ

1

2
d̃3DμνD̄μνtrðχ2þÞ þ

1

2
d̃4DμνD̄μνðtrχþÞ2: ð8Þ

Such terms are relevant in the chiral extrapolation of the D-meson masses. For the pseudoscalar mesons, we provide the

tree-level contributions to the polarization Πð2Þ
H and Πð4−χÞ

H of the D and Ds mesons. We use a convention with

M2
H∈½0−� ¼ M2 þ Πð2Þ

H þ Πð4−χÞ
H þ � � � ; M2

H∈½1−� ¼ ðM þ ΔÞ2 þ Πð2Þ
H þ Πð4−χÞ

H þ � � � ;
Πð2Þ

D ¼ 2B0ð4c0 − 2c1Þðms þ 2mÞ þ 4B0c1m;

Πð4−χÞ
D ¼ 4B2

0ðd1 þ 2d2 þ 2d3 þ 4d4Þm2 þ 4B2
0ðd3 þ d4Þm2

s þ 4B2
0ðd2 þ 4d4Þmms;

Πð2Þ
Ds

¼ 2B0ð4c0 − 2c1Þðms þ 2mÞ þ 4B0c1ms;

Πð4−χÞ
Ds

¼ 4B2
0ð2d3 þ 4d4Þm2 þ 4B2

0ðd1 þ d2 þ d3 þ d4Þm2
s þ 4B2

0ð2d2 þ 4d4Þmms; ð9Þ
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where we consider the isospin limit with mu ¼ md ¼ m.
Analogous expressions hold for the vector mesons polari-

zation Πð2Þ
H∈½1−� and Π

ð4−χÞ
H∈½1−�, where the replacements ci → c̃i

and di → d̃i are to be applied to (9). With c̃i ¼ ci and d̃i ¼
di and Δ → 0, the heavy-quark spin symmetry is recovered
exactly.
We need to mention a technical issue. The propagator

SαβμνðpÞ of our 1− fields involves four Lorentz indices, which
are pairwise antisymmetric. Interchanging either α ↔ β or
μ ↔ ν generates a change in sign. A mass renormalization
from a loop contribution arises from a particular projection
Πðp2Þ of the polarization tensor Πμν

αβðpÞ with

Πðp2Þ ¼ −1
ðd − 1Þp2

ðgμαpνpβ − gμβpνpα − gναpμpβ

þ gνβpμpαÞΠμν;αβðpÞ; ð10Þ

where d is the space-time dimension. This is the part that is
used in (9) and will be used also in the following.

III. ONE-LOOP MASS CORRECTIONS
IN A FINITE BOX

The chiral Lagrangian of Sec. II is used to compute the
D-meson masses at the one-loop level. To prepare for a
comparison of QCD lattice data, this computation is done in
a finite box of volume V. A direct application of the relati-
vistic chiral Lagrangian in the conventional MS scheme does
lead to a plethora of powercounting violating contributions.
There are various ways to arrive at results that are consistent
with the expectations of power-counting rules [32,37–39].

We follow here the χ-MS approach developed previously
for the chiral dynamics of baryons [32,40,41], which is
based on the Passarino-Veltman reduction scheme [42].
Recently, this scheme was generalized for computations in
a finite box [34]. This implies that all finite box effects are
exclusively determined by the volume dependence of a set
of universal scalar loop functions as discussed and pre-
sented in Ref. [34]. Our results will be expressed in terms of

Clebsch coefficientsGðHÞ
QR andGðχÞ

HQ,G
ðSÞ
HQ,G

ðVÞ
HQ, and a set of

generic loop functions. While the index H or R runs over
either the triplet of pseudoscalar or vector D mesons, the
index Q runs over the octet of Goldstone bosons (see
Tables I and II). In our case, there will be two tadpole

integrals Īð0ÞQ and Īð2ÞQ from the Goldstone bosons and the
scalar bubble-loop integral ĪQR. In addition, there may be

tadpole contributions ĪðnÞR involving an intermediate D
meson. To render the power counting manifest, it suffices
to supplement the Passarino-Veltman reduction scheme by
a minimal and universal subtraction scheme [32]:

(i) Any tadpole integral involving a heavy particle is
dropped.

(ii) The scalar bubble-loop integral requires a single
subtraction.

The required loop functions have been used and detailed in
previous works [32,34] for finite box computations. For the
readers’ convenience, we recall the loop functions in the
infinite box limit [32,34] with

Īð0ÞQ ¼ ĪQ ¼ m2
Q

ð4πÞ2 log
�
m2

Q

μ2

�
; Īð2ÞQ ¼ 1

4
m2

QĪQ;

ĪQR ¼ 1

16π2

�
γHR −

�
1

2
þm2

Q −M2
R

2M2
H

�
log

�
m2

Q

M2
R

�

þ pQR

MH

�
log

�
1 −

M2
H − 2pQRMH

m2
Q þM2

R

�

− log

�
1 −

M2
H þ 2pQRMH

m2
Q þM2

R

���
;

with p2
QR ¼ M2

H

4
−
M2

R þm2
Q

2
þ ðM2

R −m2
QÞ2

4M2
H

; ð11Þ

TABLE I. Coefficients GðHÞ
QR .

GðDÞ
πD� ¼ 2

ffiffiffi
3

p
gP GðDsÞ

KD� ¼ 4gP
GðDÞ

ηD� ¼ 2ffiffi
3

p gP GðDsÞ
ηD�

s
¼ 4ffiffi

3
p gP

GðDÞ
K̄D�

s
¼ 2

ffiffiffi
2

p
gP

GðD�Þ
πD ¼ 2

ffiffiffi
3

p
gP GðD�

s Þ
KD ¼ 4gP GðD�Þ

πD� ¼ 2
ffiffiffi
3

p
g̃P GðD�

s Þ
KD� ¼ 4g̃P

GðD�Þ
ηD ¼ 2ffiffi

3
p gP GðD�

s Þ
ηDs

¼ 4ffiffi
3

p gP GðD�Þ
ηD� ¼ 2ffiffi

3
p g̃P GðD�

s Þ
ηD�

s
¼ 4ffiffi

3
p g̃P

GðD�Þ
K̄Ds

¼ 2
ffiffiffi
2

p
gP GðD�Þ

K̄D�
s
¼ 2

ffiffiffi
2

p
g̃P

TABLE II. Coefficients GðχÞ
HQ, G

ðSÞ
HQ, and GðVÞ

HQ. The corresponding results for the D� and D�
s follow by the

replacement ci → c̃i and M → M þ Δ.

H Q GðχÞ
HQ=B0 GðSÞ

HQ M2GðVÞ
HQ

D π −48ð2c0 − c1Þm − 24c1m 24ð2c2 þ c3Þ − 12c3 24ð2c4 þ c5Þ − 12c5
K −32ð2c0 − c1Þðms þmÞ − 8c1ðms þmÞ 32ð2c2 þ c3Þ − 8c3 32ð2c4 þ c5Þ − 8c5
η − 16

3
ð2c0 − c1Þð2ms þmÞ − 8

3
c1m 8ð2c2 þ c3Þ − 4

3
c3 8ð2c4 þ c5Þ − 4

3
c5

Ds π −48ð2c0 − c1Þm 24ð2c2 þ c3Þ 24ð2c4 þ c5Þ
K −32ð2c0 − c1Þðms þmÞ − 16c1ðms þmÞ 32ð2c2 þ c3Þ − 16c3 32ð2c4 þ c5Þ − 16c5
η − 16

3
ð2c0 − c1Þð2ms þmÞ − 32

3
c1ms 8ð2c2 þ c3Þ − 16

3
c3 8ð2c4 þ c5Þ − 16

3
c5
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where we note that in the infinite volume limit the two

tadpole integrals Īð0ÞQ and Īð2ÞQ turn dependent and can no
longer be discriminated in that case. The finite volume

corrections for Īð0ÞQ , Īð2ÞQ , and ĪQR are detailed in Ref. [34].
We point at the presence of the additional subtraction

term γHR ¼ γHR ðM;ΔÞ with

γHR ¼ − lim
m;ms→0

M2
R −M2

H

M2
H

log

����M
2
R −M2

H

M2
R

����; ð12Þ

as suggested recently in Ref. [34] in the analogous case of a
baryon self-energy computation. The subtraction term
depends on the chiral limit values M and M þ Δ of the
D and D� meson masses only. It was not yet imposed in
earlier computations [32–34]. As was discussed in
Ref. [34], the request of such a term comes from a study
of the chiral regime with

mQ ≪ Δ with Q ∈ fπ; K; ηg: ð13Þ

Within a counting scheme with mQ ∼ Δ ∼Q, there is no
need for any additional subtractions beyond the ones
enforced by the χ-MS approach. However, to arrive at
consistent results for mQ ≪ Δ, this subtraction is instru-
mental. While for Δ ∼mQ ∼Q and γHR ¼ 0 the scalar
bubble scales with ĪQR ∼Q as expected from dimensional
analysis, in the chiral regime, with mQ ≪ Δ and mQ ∼Q,
one would expect ĪQR ∼Q2 ∼m2

Q. This expectation turns
true only for γHR ≠ 0 as chosen in (12).
We are now well prepared to collect all contributions

to the D-meson self-energies at the one-loop level.
Consider the bubble- and tadpole-loop contributions. The
Passarino-Veltman reduction scheme in combination with
the χ-MS approach leads to the expressions

Πbubble
H∈½0−� ¼

X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�
2
�
−
1

4
ðM2

H −M2
R þm2

QÞĪQ −M2
Hp

2
QRĪQR

�
; ð14Þ

Πtadpole
H∈½0−� ¼

1

4f2
X
Q∈½8�

ðGðχÞ
HQĪQ −GðSÞ

HQm
2
QĪQ −GðVÞ

HQM
2Īð2ÞQ Þ; ð15Þ

Πbubble
H∈½1−� ¼

X
Q∈½8�

X
R∈½0−�

�
GðHÞ

QR

2f

�
2
�
−

1

12
ðM2

H −M2
R þm2

QÞĪQ −
1

3
M2

Hp
2
QRĪQR

�

þ
X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�2�
M2

H þ 2M2
R

12M2
R

Īð2ÞQ −
ðM2

H þM2
RÞ2

6M2
R

p2
QRĪQR

−
�ðM2

H −M2
RÞðM2

H þM2
RÞ2

24M2
HM

2
R

þM4
R þ 6M2

RM
2
H − 3M4

H

24M2
HM

2
R

m2
Q

�
ĪQ

�
; ð16Þ

Πtadpole
H∈½1−� ¼

1

4f2
X
Q∈½8�

ðGðχÞ
HQĪQ − GðSÞ

HQm
2
QĪQ − GðVÞ

HQðM þ ΔÞ2Īð2ÞQ Þ; ð17Þ

where the loop functions are expressed in terms of physical
meson masses. The sums in (14) and (16) extend over
intermediate Goldstone bosons (Q) and pseudoscalar or
vector D mesons (R) with either R ∈ ½0−� or R ∈ ½1−�. The
Clebsch coefficients GðHÞ

QR are specified in Table I. In the
contributions from the tadpole diagrams, the sums in (15)
and (17) extend over the intermediate Goldstone bosons Q.

The coefficients GðχÞ
HQ, G

ðSÞ
HQ, and G

ðVÞ
HQ are listed in Table II.

The results (14), (16) deserve a detailed discussion. First,
let us emphasize that a chiral expansion of the loop function
as they are given confirms the leading chiral power as
expected from dimensional counting rules. All power-
counting violating contributions are subtracted, owing to

the χ-MS approach. Here, we adopted the conventional
counting rules

mQ ∼Q and M1− −M0− ∼ Δ ∼Q; ð18Þ
which is expected to be effective for Δ ∼mQ. Our results
(14), (16) are model dependent, as there are various
subtraction schemes available to obtain loop expressions
that are compatible with dimensional counting rules. Most
prominently, there is the infrared regularization of Becher
and Leutwyler [38] and the minimal subtraction scheme
proposed by Gegelia and Japaridze [39]. Following our
previous work on the chiral extrapolation of the baryon
masses, we will attempt to extract a model-independent part
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of such loop expressions. This goes in a few consecutive
steps. The driving strategy behind this attempt is to keep the
physical masses inside the loop function.
Consider first the terms that are proportional to the

tadpole loop function ĪQ. There are two distinct classes of
terms. The coefficient in front of any ĪQ is proportional to
either m2

Q or toM2
H −M2

R. The terms proportional to m2
QĪQ

or also to Īð2ÞQ in (14) and (16) have the same form as the
corresponding structures in (15) and (17) and therefore
renormalize the low-energy parameters cn and c̃n with

cr2 ¼ c2 þ
1

8
g2P; cr4 ¼ c4; c̃r4 ¼ c̃4 −

1

8
g̃2P;

cr3 ¼ c3 −
1

4
g2P; cr5 ¼ c5; c̃r5 ¼ c̃5 þ

1

4
g̃2P;

c̃r2 ¼ c̃2 þ
1

12
g̃2P þ 1

24
g2P; c̃r3 ¼ c̃3 −

1

6
g̃2P −

1

12
g2P:

ð19Þ

We conclude that the terms proportional to m2
QĪQ or Īð2ÞQ in

(14) and (16) may be dropped if we use the renormalized
low-energy parameters crn and c̃rn in the tadpole contribu-
tions (15), (17) but also in (24). Note, however, that by
doing so some higher-order terms proportional to

�
1 −

M2
R

M2
H

�
n

m2
QĪQ → 0; ð20Þ

with n ≥ 1, are neglected in ΠH∈½1−�. We argue that the
latter terms would cause a renormalization scale depend-
ence that cannot be absorbed into the available counter-
terms at the considered accuracy level. To avoid a model
dependence, such terms should be dropped.
We are left with the terms proportional to

ðM2
R −M2

HÞĪQ. If the charm meson masses are decom-
posed into their chiral moments, the leading renormal-
ization scale dependence of such terms can be absorbed
into the Q2 counterterms c0;1 and c̃0;1. Similarly, the
components of order Q4 can be matched with counter-
terms dn and d̃n. Most troublesome, however, are the
subleading contributions proportional to m5

Q log μ in
such a strict chiral expansion of the vector D-meson
masses. There is no counterterm available to remove
such a scale dependence. In fact, only within a two-loop
computation, this issue is resolved in a conventional
approach. Instead, we keep the charm meson masses
unexpanded in the terms ðM2

R −M2
HÞĪQ and follow the

strategy proposed in Ref. [35]. For those terms, we
provide the decomposition

ðM2
R −M2

HÞĪQ ¼ ðM2
R −M2

HÞ
m2

Q

ð4πÞ2 log
m2

Q

M2
R|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼ĪQjμ¼MR

þM2
R −M2

H

M2
R

m2
Q ĪR|{z}

→0

; ð21Þ

where the second term depending on the heavy-meson tadpole ĪR can be systematically dropped without harming the chiral
Ward identities. We end up with the renormalized bubble-loop expressions

Π̄bubble
H∈½0−� ¼

X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�2�
αHQR −M2

Hp
2
QRĪQR þ 1

4
ðM2

R −M2
HÞ

m2
Q

ð4πÞ2 log
m2

Q

M2
R

�

Π̄bubble
H∈½1−� ¼

X
Q∈½8�

X
R∈½0−�

�
GðHÞ

QR

2f

�2�
1

3
αHQR −

1

3
M2

Hp
2
QRĪQR þ 1

12
ðM2

R −M2
HÞ

m2
Q

ð4πÞ2 log
m2

Q

M2
R

�

þ
X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�2�
−
ðM2

H þM2
RÞ2

6M2
R

p2
QRĪQR þ ðM2

H þM2
RÞ2

24M2
HM

2
R

ðM2
R −M2

HÞ
m2

Q

ð4πÞ2 log
m2

Q

M2
R

�
; ð22Þ

which will be the basis for our following studies. Note yet the additional subtraction terms αHQR in (22). Such terms were
suggested in Ref. [35] for the analogous case of a baryon self-energy computation. To arrive at consistent results for
mQ ≪ Δ, the terms αHQR are instrumental,

αH∈½0−�
QR ¼ α1Δ2

32π2

�
ðM2

H −M2Þ
�
Δ∂
∂M −

Δ∂
∂Δ −

M þ Δ
M

�
þ ðM2

R − ðM þ ΔÞ2Þ M
M þ Δ

�
Δ∂
∂Δþ 1

��
γ1 þ

ΔMm2
Q

16π2
α1γ2;

αH∈½1−�
QR ¼ α̃1Δ2

32π2

�
ðM2

H − ðM þ ΔÞ2Þ M
M þ Δ

�
Δ∂
∂Δþ 1

�
þ ðM2

R −M2Þ
�
Δ∂
∂M −

Δ∂
∂Δ −

M þ Δ
M

��
γ̃1 þ

ΔMm2
Q

16π2
α̃1γ̃2; ð23Þ
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where the functions αi, α̃i and γi, γ̃i depend on the ratio
Δ=M only. They are listed in Appendices A and B. While
the rational functions αi and α̃i all approach the numerical
value 1 in the limit Δ → 0, the functions γi and γ̃i show a
logarithmic divergence in that limit. We summarize the
convenient implications of our subtraction scheme:

(i) The chiral limit values of the D-meson masses are
not renormalized.

(ii) The low-energy parameters c0;1 and c̃0;1 are not
renormalized.

(iii) The wave-function factor of the D mesons is not
renormalized in the chiral limit.

We close this section with a brief discussion on the role
of the renormalization scale μ. Given our scheme, a scale
dependence arises from the tadpole terms only. Such terms
need to be considered in combination with the tree-level

contribution Πð4−χÞ
H . This leads to the condition

μ2
d
dμ2

di ¼ −
1

4

Γdi

ð4πfÞ2 ;

Γd1 ¼
1

6
ð4c1 þ 12c3 þ 3c5Þ;

Γd2 ¼
1

9
ð44c1 − 52c3 − 13c5Þ;

Γd3 ¼
1

18
ð240c0 − 84c1 þ 240c2 þ 68c3

þ 60c4 þ 17c5Þ;

Γd4 ¼
1

27
ð264c0 − 132c1 þ 264c2 þ 140c3

þ 66c4 þ 35c5Þ; ð24Þ
where identical results hold for the c̃i and d̃i coupling
constants. However, it is evident that scale-invariant results
follow with (24) only if the meson masses in the tadpole
contributions are approximated by the leading-order Gell-
Mann–Oakes–Renner relations with m2

π ¼ 2B0m and
m2

K ¼ B0ðmþmsÞ, for instance. This is unfortunate since
we wish to use physical masses inside all loop contribu-
tions. Recalling our previous work [35], there may be an
efficient remedy of this issue. Indeed, the counterterm
contributions can be rewritten in terms of physical masses
such that scale invariance follows without insisting on the
Gell-Mann–Oakes–Renner relations for the meson masses.
Such a rewrite is most economically achieved in terms of
suitable linear combinations of the low-energy constants

dc1 ¼ −
1

23
ð26d1 þ 9d2Þ;

dc3 ¼
1

345
ð43d1 þ 60d2 þ 69d3Þ;

dc2 ¼
1

276
ð−132d1 þ 18d2Þ;

dc4 ¼
1

45
ð−11d1 þ 15d2 − 33d3 þ 45d4Þ: ð25Þ

With Table III, our rewrite is specified in detail. We assure
that, replacing the meson masses in the table by their
leading-order expressions, the original expressions as given
in (9) are recovered identically. We note a particularity: at

leading order, the effects of c0 in GðχÞ
HQ cannot be discrimi-

nated from c2 in GðSÞ
HQ. Scale invariance requires consid-

ering the particular combinations c2 þ c0 in GðSÞ
HQ and in

turn use c0 ¼ 0 in GðχÞ
HQ.

IV. SELF-CONSISTENT SUMMATION
APPROACH

The renormalized loop functions depend on the physical
masses of theDmesons. In a conventional chiral expansion
scheme, the meson masses inside the loop would be
expanded to a given order so that a self-consistency issue
does not arise. This is fine as long as the expansion is
rapidly converging. For a slowly converging system, such a
summation scheme is of advantage even though this may
bring in some model dependence [32–35].
Let us be specific on how the summation scheme is set

up in detail. There is a subtle point emphasized recently in
Ref. [35] that needs some discussion. The coupling con-
stant gP was determined in Ref. [6] from the pion-decay
width of the D� meson using a tree-level decay amplitude.
Alternatively, the decay width can be extracted from the
D�-meson propagator in the presence of the one-loop
polarization Πbubble

D� . The latter has imaginary contributions
proportional to the same coupling constant g2P that reflect
the considered decay process. In the absence of wave-
function renormalization effects, one would identify a
Breit-Wigner width by

MD�ΓD�→Dπ ¼ −ℑΠbubble
D� ; ð26Þ

where the loop function is evaluated at the D� meson mass
MD� . Both determinations would provide identical results.
However, in the presence of a wave-function renormaliza-
tion effect from the loop function

ZH − 1 ¼ ∂
∂M2

H
Π̄H; ð27Þ

TABLE III. A rewrite of Πð4−χÞ
H in (9).

Πð4−χÞ
H

H ¼ D H ¼ Ds

m4
π −9dc2 þ 18dc3 −18dc2 þ 18dc3

m4
K −18dc2 þ 24dc3 −12dc2 þ 24dc3

m4
η −5dc2 þ 6dc3 −2dc2 þ 6dc3

B0mm2
π 9dc1 18dc1

B0ðmþmsÞm2
K 9dc1 6dc1

B0mm2
η dc1 2dc1

B0msm2
η 4dc1 0

B2
0ð2mþmsÞ2 4dc4 4dc4
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this would no longer be the case. Following Ref. [35], we
will therefore use the form of the Dyson equation

M2
H − Π̄ð0Þ

H − Π̄ð2Þ
H − Π̄ð4−χÞ

H − Π̄tadpole
H − Π̄bubble

H =ZH ¼ 0;

ð28Þ

where we take Π̄ð0Þ
H ¼ M2 and Π̄ð0Þ

H ¼ ðM þ ΔÞ2 for the
pseudoscalar and vector D mesons, respectively. The

second-order terms Π̄ð2Þ
H are the tree-level contributions

(9) proportional to the quark masses as written in terms of
the parameters c0, c1 and c̃0, c̃1. The fourth-order terms

Π̄ð4−χÞ
H are the tree-level contributions (9) proportional to

the product of two quark masses. Here, the parameters di
and d̃i are probed. We recall that the wave-function
renormalization ZH has a quark-mass dependence that
cannot be fully moved into the counterterms of the chiral
Lagrangian.
We provide a first numerical estimate of the importance

of the various terms in (28). We put Π̄ð4−χÞ
H ¼ Π̄tadpole

H ¼ 0

since the associated counterterms are not known reliably.
Insisting on the large-Nc relations

2c0 ¼ c1; 2c̃0 ¼ c̃1; ð29Þ

we adjust the four parameters c1, c̃1 and M, Δ to the
four isospin-averaged pseudoscalar and vector D-meson
masses [43]. The results of this procedure are collected
in the second-to-last column of Table IV. In the third
column, we show the size of the loop contribution Π̄bubble

H
and the wave-function renormalization factor ZH. From
those numbers we conclude that the loop terms are as
important as the contributions of the Q2 counterterms
(shown in the second column). Note also the significant
size of the wave-function factor for the strangeDmesons. It
is instructive to compare the values of the four parameters
c1, c̃1 andM, Δ with their corresponding values that follow
in a scenario in which all loop effects are neglected. Such
values are shown in the last column of Table IV. A
reasonable spread of the parameters as compared to the
initial scenario is observed.
While with (28) we arrive at a renormalization

scale-invariant and self-consistent approach for a chiral
extrapolation of the D-meson masses that considers all

counterterms relevant at next-to-next-to-next-to-leading-
order (N3LO), there is an important issue remaining. Is
it possible to decompose the renormalized loop function
Π̄bubble

H into its chiral moments and therewith shed more
light on the convergence properties of such a chiral
expansion. It is known that a conventional chiral expansion
has not too convincing convergence properties at physical
values of the strange quark mass. Does a resummed scheme
that is formulated in terms of physical meson masses show
an improved convergence pattern?

V. POWER-COUNTING DECOMPOSITION
OF THE LOOP FUNCTION

At sufficiently small quark masses, a linear dependence
of the D-meson masses is expected as recalled in (9). The
associated slope parameters c0, c1 and c̃0; c̃1 are scale
independent. This is an effect of chiral order Q2. With
increasing quark masses, additional terms in the chiral
expansion turn relevant. While there is no controversy on

how to count the Q4 contributions Π̄ð4−χÞ
H and Π̄tadpole

H , it is
less obvious how to further decompose the loop contribu-
tion Π̄bubble

H into its power-counting moments. The loop
functions depend on the physical massesmQ,MH, andMR.
In any power-counting ansatz based on chiral dynamics, we
would assign

mQ

MR
∼Q ∼

mQ

MH
ð30Þ

for the ratios of the Goldstone boson masses over the D-
meson masses. The mass differences of either pseudoscalar
or vector mesons

MH −MR

mQ
∼Q;

MR −MH

MH
∼Q2 for HkR; ð31Þ

can also be counted without controversy. In (31), we use a
notation HkR requesting H;R ∈ ½0−� or H;R ∈ ½1−�. Less
obvious is how to treat the mass differences of a pseudo-
scalar and a vector D meson.
There are different schemes possible. Technically, most

straightforward is the extreme assumption

MR −MH

mQ
∼Q;

MR −MH

MH
∼Q2 for H⊥R; ð32Þ

TABLE IV. The loop functions (22) are evaluated with the coupling constants gP ¼ g̃P ≃ 0.57 and the physical
isospin-averaged meson masses. In addition, the large-Nc relations (29) are assumed.

H Π̄ð2Þ
H =ð2MHÞ Π̄bubble

H =ð2MHÞ ZH With bubble Tree level

D 4.7 MeV −50.2 MeV 1.108 M 1907.4 MeV 1862.7 MeV
Ds 106.2 MeV −65.5 MeV 1.418 Δ 191.7 MeV 141.3 MeV
D� 5.0 MeV −113.4 MeV 1.163 c1 0.440 0.426
D�

s 114.1 MeV −166.1 MeV 1.643 c̃1 0.508 0.469
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which can be motivated in the limit of a large charm-quark
mass at which Δ → 0 and therewith Δ ≪ mπ . In (32), we
use a notation H⊥R, implying that either H ∈ ½0−� and
R ∈ ½1−� or H ∈ ½1−� and R ∈ ½0−�. While the counting
ansatz (32) is expected to be faithful for mQ ¼ mK, it is not

so useful formQ ¼ mπ. However, since the loop corrections
are typically dominated by contributions involving the kaon
and eta meson masses, such an assumption should have
some qualitative merits nevertheless. The leading-order
terms are readily worked out with

Π̄bubble
H∈½0−� ¼

X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�2�
αHQR þ XðHÞ

QR þ γHR
16π2

M2
Hm

2
Q

	
1 −

�
mQ

2MH
−
MR −MH

mQ

�
2

�

þOðQ6Þ;

Π̄bubble
H∈½1−� ¼

2

3

X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

2f

�2

XðHÞ
QR

þ 1

3

X
Q∈½8�

X
R∈½0−�

�
GðHÞ

QR

2f

�2�
αHQR þ XðHÞ

QR þ γHR
16π2

M2
Hm

2
Q

	
1 −

�
mQ

2MH
−
MR −MH

mQ

�
2

�

þOðQ6Þ;

XðHÞ
QR ¼ M2

H

m2
Q

16π2

�
m2

Q

M2
H
þ 2

MR −MH

MH

�
−M2

H

m2
Q

32π2

�
m2

Q

M2
H
− 3

MR −MH

MH

�
log

m2
Q

M2
R

þMH

m3
Q

16π2

	
−π þ 3π

2

�
mQ

2MH
−
MR −MH

mQ

�
2


; ð33Þ

accurate to order Q5. The coefficients αHQR and γHR were
given already in (23) and (11). In Table V, we decompose
the loop function into third-, fourth-, and fifth-order
numerical values. The results are compared with the exact
numbers already shown in Table IV. While we observe a
qualitative reproduction of the full loop function, owing to
contributions from intermediate pion states, there is no
convergence observed, as expected. By construction, the
counting rule (32) fails in the chiral regime where all quark
masses, in particular, the strange-quark mass, approach
zero. This is illustrated by Fig. 1, in which we plot the loop
function Π̄H in the flavor limit with mπ ¼ mK ¼ mη. Here,
the D-meson masses MD ¼ MDs

and MD� ¼ MD�
s
are

obtained as the solution of the set of Dyson equations (28)
in which the full loop expression (22) is assumed. The
parameter set of Table IV, which is based on the scenario

Π̄ð4−χÞ
H ¼ Π̄tadpole

H ¼ 0, is applied. While for large pion
masses the hierarchy of dashed and dotted lines system-
atically approaches the solid line, this is not the case for
pion masses smaller than mπ ≤ Δ ∼ 200 MeV.

How can one improve on the counting rule (32)? Before
presenting a universal approach, we consider yet two
further interim power-counting scenarios. First, we work
out the extreme chiral region where all Goldstone boson
masses are significantly smaller than Δ ∼ 200 MeV. In this
case, the counting rules

mQ

Δ
∼Q;

Δ
M

∼Q0 ð34Þ

are used. Since the extreme chiral region is not realized in
nature, such an assumption is not expected to provide any
significant results for quantities measurable in experimental
laboratories.
Since at some stage lattice QCD simulations may be

feasible at such low strange-quark masses, we provide the
corresponding expressions for the loop function never-
theless. Here, we decompose all meson masses into their
chiral moments in application of a strict chiral expansion.
At third order,

TABLE V. The loop functions (22) are evaluated with the coupling constants gP ¼ g̃P ≃ 0.57 and the physical
isospin-averaged meson masses. A decomposition according to (30), (31), and (32) is performed. All terms are in
units of MeV.

H Π̄bubble
H =ð2MHÞ Π̄bubble−3

H =ð2MHÞ Π̄bubble−4
H =ð2MHÞ Π̄bubble−5

H =ð2MHÞ
D −50.2 −38.7 −29.4 22.8
Ds −65.5 −93.2 27.3 2.4
D� −113.4 −135.1 19.0 6.3
D�

s −166.1 −308.3 99.8 61.8
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Πbubble−3
H∈½0−� ¼ 0;

Πbubble−3
H∈½1−� ¼ −

2

3
π
X
Q∈½8�

X
R∈½1−�

�
GH

QR

8πf

�2

m3
QðM þ ΔÞ; ð35Þ

the vector D mesons pick up a contribution only. At fourth
order, the expressions turn more complicated. We do not
expand in powers of Δ=M because there are terms present
proportional to logΔ=M and also because we do not want

to pollute the strict chiral expansion by a further scale
assumption. The algebra required is somewhat involved,
and we organize it by a series of suitable dimensionless
coefficients αn, γn and α̃n, γ̃n that depend on the ratio Δ=M
only. While the coefficients γn, γ̃n characterize the chiral
expansion of the scalar bubble functions, the αn, α̃n result
from a chiral expansion of the coefficients in front of the
scalar loop functions. Altogether, we derive the compact
expressions

Π̄bubble−4
H∈½0−� ¼

X
Q∈½8�

X
R∈½1−�

�
GH

QR

8πf

�2�
γð1Þd m2

QΠ
ð2Þ
R þ γð2Þd m2

QΠ
ð2Þ
H þ γð3Þd Πð2Þ

R Πð2Þ
R þ γð4Þd Πð2Þ

H Πð2Þ
H

þ γð5Þd Πð2Þ
R Πð2Þ

H þM
Δ
m4

Q

	
ðα2γ2 − α1γ4Þ þ ðα2γ3 − α1γ5Þ log

m2
Q

ðM þ ΔÞ2

�

;

Π̄bubble−4
H∈½1−� ¼

X
Q∈½8�

X
R∈½0−�

�
GH

QR

8πf

�2�
γ̃ð1Þd m2

QΠ
ð2Þ
R þ γ̃ð2Þd m2

QΠ
ð2Þ
H þ γ̃ð3Þd Πð2Þ

R Πð2Þ
R þ γ̃ð4Þd Πð2Þ

H Πð2Þ
H

þ γ̃ð5Þd Πð2Þ
R Πð2Þ

H þ M
3Δ

m4
Q

	
ðα̃2γ̃2 − α̃1γ̃4Þ þ ðα̃2γ̃3 − α̃1γ̃5Þ log

m2
Q

M2


�

þ
X
Q∈½8�

X
R∈½1−�

�
GH

QR

8πf

�2 2

3

�
m2

Qðm2
Q − Πð2Þ

H þ Πð2Þ
R Þ − 1

4
ð2m2

Q þ 3Πð2Þ
H − 3Πð2Þ

R Þm2
Q log

m2
Q

ðM þ ΔÞ2
�
: ð36Þ

The dimensionless coefficients γðnÞd and γ̃ðkÞd are expressed
in terms of the basic coefficients αn, γn and α̃n, γ̃n in
Appendices A and B. Again, they depend on the ratio Δ=M
only. We note that the rational functions αn and α̃n approach
1 in the limit Δ=M → 0. In contrast, the γn and γ̃n have
contributions proportional to logΔ=M and do not approach
1 in the heavy quark–mass limit. All terms in (36) that are

proportional to γðnÞd or γ̃ðnÞd can be viewed as a renormaliza-

tion of the low-energy parameters dn and d̃n. This is
illustrated in Appendices A and B, in which explicit
expressions are provided. We note that the fifth-order
terms can also be readily constructed. For the vector D
mesons, we derive

FIG. 1. D- andD�-meson masses in the flavor limit as a function of the pion mass. The power-counting decomposed loop functions of
(33) are used with the parameter set of Table IV.
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Π̄bubble−5
H∈½1−� ¼

X
Q∈½8�

X
R∈½1−�

�
GðHÞ

QR

8πf

�2
πmQ

12ðM þ ΔÞ

× f3m4
Q þm2

Qð2Πð2Þ
H − 6Πð2Þ

R Þ
þ 3ðΠð2Þ

H − Πð2Þ
R Þ2g þ � � � ; ð37Þ

where the dots stand for additional terms extracted

from (36) with the replacement Πð2Þ
H → Πð3Þ

H . For the
pseudoscalar D mesons, the corresponding expressions

follow from (36) with the replacement Πð2Þ
H → Πð3Þ

H only.
We plot the loop function Π̄H in the flavor limit with

mπ ¼ mK ¼ mη and MD ¼ MDs
¼ M and MD� ¼ MD�

s
¼

M þ Δ. Here, we use our first estimate for the low-energy
parameters c0;1 and c̃0;1 as displayed in the next-to-last
column of Table IV. From Fig. 2, we conclude that for pion
masses smaller than Δ (the value of which is indicated by
the vertical line in light gray) the successive orders (dashed,
dotted, and dash-dotted lines) approach the exact solid line
convincingly. Unlike the consequences of the power-
counting ansatz (32) as illustrated in the previous Fig. 1,

this is clearly not the case for (34) in the large pion-mass
domain with mπ > Δ.
Neither the extreme counting assumptions (32) nor (34)

generates an expansion scheme that converges for physical
up, down, and strange quark masses. A step forward may
be provided by the conventional ansatz

Δ ∼mQ ∼Q; ΔQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2

Q

q
∼Q;

Δ
M

∼Q;

ð38Þ

suggested originally by Banerjee andMilana [44,45] for the
chiral expansion of baryon masses. Even though the
authors demonstrated in a recent work [35] that such an
expansion is not suitable to arrive at a meaningful expan-
sion for the baryon octet and decuplet masses at physical
values of the up, down, and strange quark masses, it
deserves a closer study of whether it may prove significant
for a chiral expansion of the D-meson masses. The
counting rules (38) lead to somewhat more complicated
expressions. Again, we derive the third-, fourth-, and fifth-
order terms. We find
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and

FIG. 2. D-meson masses in the flavor limit as a function of the pion mass. The power-counting decomposed loop functions of (35),
(36), (37) are used with the parameter set of Table IV.
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with ΔQ of (38). Since the fifth-order contributions are
quite lengthy, they are delegated to Appendices A and B. In
Table VI, we decompose the loop function into third-,
fourth-, and fifth-order numerical values. The results are
compared with the exact numbers already shown in
Table IV. The conclusions of that table are unambiguous:
the power-counting ansatz (38) is not suitable for a chiral
extrapolation of the D-meson masses. We note that (38)

reproduces neither the results of (32) nor those of (34). We
further demonstrate our claim by a plot of the loop function
Π̄H in the flavor limit with mπ ¼ mK ¼ mη as was done in
Figs. 1 and 2. Figure 3 demonstrates that for mπ > Δ no
quantitative reproduction of the solid line is obtained.
We finally present our counting ansatz that is expected to

be applicable from small- to medium-size quark masses
uniformly. It is an adaptation of the framework developed

TABLE VI. The loop functions (22), (40) are evaluated with the coupling constants gP ¼ g̃P ≃ 0.57 and the
physical isospin-averaged meson masses. A decomposition according to (38) is performed. All terms are in units of
MeV.

H Π̄bubble
H =ð2MHÞ Π̄bubble−3

H =ð2MHÞ Π̄bubble−4
H =ð2MHÞ Π̄bubble−5

H =ð2MHÞ
D −50.2 −67.7 15.0 −8.9
Ds −65.6 −152.8 27.8 26.6
D� −113.4 −111.7 −57.1 18.6
D�

s −166.1 −252.0 84.3 −69.5

FIG. 3. D-meson masses in the flavor limit as a function of the pion mass. The power-counting decomposed loop functions of (39),
(40), (A5), and (B4) are used with the parameter set of Table IV.
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recently for the chiral extrapolation of the baryon octet and
decuplet masses [35] and implements the driving idea to
formulate the expansion coefficients in terms of physical
masses. It is supposed to interpolate the two extreme
counting rules (32) and (34). The counting rules are

MR −MH

mQ
∼Q;

MR −MH

MH
∼Q2 for HkR;

MR −MH

mQ
∼Q0;

MR −MH � ΔH

MH
∼Q2 for H⊥R

ΔQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMH −MRÞ2 −m2

Q

q
∼Q with

ΔH ¼ ΔMH lim
mu;d;s→0

1

MH
; ð41Þ

where the sign � is chosen such that the last ratio in (41)
vanishes in the chiral limit. The implications of (41) are

more difficult to work out. The counting rules (41) as they
are necessarily imply

Q ∼
ΔH

MH
¼

8<
:

Δ
M for H ∈ ½0−�
Δ

MþΔ for H ∈ ½1−� ; ð42Þ

which is at odds with the assumption in (34). Therefore,
we supplement (41) by the request that the implications of
(41) are recovered in the chiral regime. This requires a
particular summation of terms proportional to ðΔ=MÞn
with n ¼ 1; 2; 3;….
There is yet another issue pointed out in Ref. [35]. The

chiral expansion of the scalar bubble function is charac-
terized by an alternating feature. We recall from Ref. [35]
the approximation hierarchy
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ð43Þ
where we denoted x ¼ mQ=MH and MR ¼ MH. As was discussed in Ref. [35], the terms with even and odd powers in x
have opposite signs always. This implies a systematic cancellation effect among terms proportional to xn and x1þn, where
the effect is most striking for n ¼ 1. Therefore, it is useful to always group such terms together. Even though the need of
such a reorganization is not very strong for the D-meson systems under consideration, we adapt this strategy in the
following. Note that the convergence domain of (43) was proven to be limited by jxj < 2 only, a surprisingly large
convergence circle. Given this scheme, accurate results can be obtained by a few leading-order terms. We construct the
third-order contributions from the one-loop diagrams,
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with ΔQ and ΔH as introduced in (41). The dimensionless coefficients αi, γi, δi and α̃i, γ̃i, δ̃i depend on the ratio Δ=M only.
They are detailed in Appendices A and B. The contributions proportional to αiδj and α̃iδ̃j in (44) are constructed to ensure
that the terms proportional to ðm4

Q=ΔÞ and ðm4
Q=ΔÞ logm2

Q are recovered exactly.
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We advance to the fourth-order terms. The explicit expressions are obtained,
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with ΔQ and ΔH already introduced in (44).

TABLE VII. The loop functions (22) are evaluated with the coupling constants gP ¼ g̃P ≃ 0.57 and the physical
isospin-averaged meson masses. A decomposition according to (41) is performed. This leads to (44), (45), (A6),
and (B5). All terms are in units of MeV.

H Π̄bubble
H =ð2MHÞ Π̄bubble−3

H =ð2MHÞ Π̄bubble−4
H =ð2MHÞ Π̄bubble−5

H =ð2MHÞ
D −50.2 −48.5 −2.8 1.1
Ds −65.6 −88.3 20.1 2.9
D� −113.4 −99.5 −17.1 3.1
D�

s −166.1 −197.5 26.3 6.6

FIG. 4. D-meson masses in the flavor limit as a function of the pion mass. The power-counting decomposed loop functions of (44),
(45), (A6), and (B5) are used with the parameter set of Table IV.
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In Table VII, we decompose the loop function into third-,
fourth-, and fifth-order numerical values. The results are
compared with the exact numbers already shown in
Table IV. The conclusions of that table are unambiguous:
the power-counting ansatz (41) is well justified for a chiral
extrapolation of the D-meson masses. We note that the
fifth-order contributions to the D-meson masses are on
average about 3 MeV only. Our novel expansion scheme
is characterized by a rapid convergence property. All
D-meson masses are reproduced at the few MeV level.
We further substantiate our claim by Fig. 4, which shows
the loop function Π̄H in the flavor limit withmπ¼mK¼mη.
The figures are in correspondence to Figs. 1, 2, and 3 and
demonstrate that for any reasonable pion mass, say,
0 ≤ mπ < 600 MeV, a quantitative reproduction of the
solid line is obtained. We conclude that it is justified to
identify the full loop expressions as the loop function to be
used at chiral order Q4 without any significant error from
the incomplete fifth-order terms.

VI. FIT TO QCD LATTICE DATA

In this section, wewill determine the low-energy constants
ci and di of the chiral Lagrangian from lattice QCD simu-
lations of the D-meson masses. Open-charm mesons have
been extensively studied on different QCD lattices [10,18,
20–22,46–54].For a recent review,we refer toRef. [55].There
exists a significant data set for D-meson masses at various
unphysical quark masses. We consider data sets in which the
pion and kaon masses are smaller than about 600 MeVonly.
Once we determined the low-energy constants (LECs) in our
mass formula, the D-meson masses can be computed at
any values for the up-, down-, and strange-quark masses,
sufficiently small to justify the application of the chiral
extrapolation.
Though in principle such an analysis can be done at

different chiral orders, we do so using the subtracted loop
expressions (22) in (28) with the scalar loop functions as
worked out previously for the finite box case in Ref. [34]. It
is a matter of convenience to perform our fits using the full
one-loop functions rather than any truncated form.
Therewith, the finite volume corrections specific to the
various chiral moments, the explicit derivation of which
would require further tedious algebra, are not required. This

strategy is justified since we have demonstrated with
Table VII that the full loop function is reproduced quite
accurately by its N3LO approximation, with a residual
uncertainty for theD-meson masses of about 3 MeVonly. It
is emphasized that such a point of view relies heavily on
our reorganized chiral expansion approach, which is for-
mulated in terms of physical meson masses.
While for instance in Refs. [18,20] the extrapolation

toward the physical point was the focus, the purpose of our
study is the extraction of the low-energy constants of the
chiral Lagrangian. Therefore, a different strategy is used in
our work. We use the empirical D-meson masses as an
additional constraint in our analysis. For a given pion and
kaon mass, we infer the quark masses from the one-loop
mass formulas for the pseudo-Goldstone bosons to be used
in our expressions for theD-meson masses. Assuming that
the lattice data can be properly moved to the physical
charm-quark mass, the low-energy constants are obtained
by a global fit to the QCD lattice data set. Altogether, there
are about 80 data points considered in our analysis.
A comprehensive published data set is from Mohler and

Woloshyn [18,53] based on the PACS-CS ensembles [17].
The Fermilab approach is employed in implementing the
valence charm quark [56,57]. In this approach, heavy quark
mass–dependent counterterms are added in the heavy-quark
action to systematically reduce discretization effects. The
valence charm quark–mass dependence is parametrized by a
hopping parameter κc, which is tuned to match the average of
the physical kinematic D-meson masses. In Table VIII, we
recall the relevant results, which are the pion, kaon, and the
four D-meson masses in units of the lattice spacing a.
The levels for theDmesons as given in Table VIII are not the
masses but rather energies measured relative to some fixed
reference. In turn, only mass differences of D mesons are
constrained by that table in our studies.
Recently, the group of Marc Wagner analyzed a large set

of ensembles from the ETMC [20,21]. Our analysis
requires the D-meson masses evaluated at the physical
charm-quark mass. We are grateful to the authors of
Ref. [20] for making available unpublished results, which
allow us to independently extrapolate their lattice data
to the physical charm-quark mass. For each ensemble,
the four D-meson masses and also the ηc and J=Ψ
masses are computed at two different values of the charm

TABLE VIII. Meson masses and energy levels in units of the lattice spacing a as taken from Refs. [18,53,17].
Statistical errors are given only. The results are based on ensembles from PACS for which their estimate of the lattice
spacing is a ¼ 0.0907ð13Þ fm.

amπ amK aED aEDs
aED� aED�

s

323 × 64 0.0717(32) 0.2317(6) 0.7765(12) 0.8197(24) 0.8447(27) 0.8850(24)
323 × 64 0.13593(140) 0.27282(103) 0.78798(82) 0.83929(26) 0.85776(122) 0.90429(43)
323 × 64 0.17671(129) 0.26729(110) � � � 0.82848(40) � � � 0.89015(69)
323 × 64 0.18903(79) 0.29190(67) 0.79580(61) 0.84000(36) 0.86327(99) 0.90429(60)
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valence-quark mass μc. As a consequence of the discreti-
zation procedure, there are corresponding pairs of meson
masses that turn degenerate in the continuum limit. We use
the notation ð�;∓Þ and ð�;�Þ from Refs. [20,21]. In this
work, we focus on the ð�;∓Þ states and use the masses of
the partner states ð�;�Þ only as a rough estimate for the
size of the discretization error. In the vicinity of the physical
charm-quark mass, a linear behavior,

aMH ¼ αH þ βHaμc; ð46Þ

is expected to hold for all hadron masses. Since the chosen
charm-quark masses are close to the physical one, the
ansatz (46) should be justified to sufficient accuracy. The
parameters αH and βH can be extracted from the data
provided to us by Kalinowski and Wagner. In Table IX, we
show their results for the ηc and J=Ψ masses together with
their preferred lattice spacing values a. Corresponding
results for the D-meson masses are listed at the end of
Appendix B. The task of determining the physical value for
μc remains. Since one would not expect a significant
dependence of the ηc- nor the J=ψ-meson mass on the
precise value of the up-, down-, and strange-quark masses,
one may contemplate using either of the two masses to
obtain a good estimate for μc. Both scenarios are scruti-
nized in the following based on the data of Kalinowski and
Wagner. To fix the charm-quark mass, we always choose
the ensemble with the lightest up- and down-quark masses.

In addition, the lattice spacing a as recalled in Table IX is
assumed. A typical example for this procedure is shown in
Fig. 5, in which a sizable uncertainty for the extracted value
of μc is observed.
How such an uncertainty propagates into the masses of

theDmesons is shown in Tables XI and X, which are based
on the charm-quark masses from the ηc and the J=ψ
mesons, respectively. As expected, this uncertainty in the
charm-quark mass is reduced for the ensembles that
correspond to even smaller lattice spacings with a ¼
0.0815 fm and a ¼ 0.0619 fm. This can be inferred by a

FIG. 5. The interpolation of charmonium masses to determine
μc, at given a ¼ 0.0885 fm. The ensemble is chosen with
amπ ¼ 0.1240. The physical values of aMηc and aMJ=ψ are
indicated by the dashed lines.

TABLE IX. Meson masses in units of the lattice spacing a based on the ensembles of the ETM Collaboration. The
values in the table are provided to us by the authors of Ref. [20]. Statistical errors are given only. The data
correspond to three different βQCD ¼ 1.90, 1.95, 2.10 values for which in Ref. [58] an estimate of the lattice scale is
provided with a ¼ 0.0934ð37Þ, 0.0820(37), 0.0644ð26Þ fm, respectively.

a (fm) amπ amK aμc aMηc aMJ=Ψ

483 × 96 0.0619 0.0703(4) 0.1697(3) 0.2230 1.0595(2) 1.1006(3)
0.1919 0.9570(2) 1.0003(4)

483 × 96 0.0619 0.0806(3) 0.1738(5) 0.2227 1.0579(2) 1.0989(4)
0.1727 0.8915(2) 0.9364(5)

483 × 96 0.0619 0.0975(3) 0.1768(3) 0.2230 1.0591(1) 1.1002(3)
0.1727 0.8919(1) 0.9370(3)

323 × 64 0.0815 0.1074(5) 0.2133(4) 0.2230 1.3194(2) 1.3835(4)
0.1727 1.1567(2) 1.2233(4)

323 × 64 0.0815 0.1549(2) 0.2279(2) 0.2230 1.3251(1) 1.3903(2)
0.1727 1.1573(1) 1.2253(2)

243 × 48 0.0815 0.1935(4) 0.2430(4) 0.2230 1.3179(3) 1.3837(4)
0.1727 1.1582(3) 1.2273(4)

323 × 64 0.0885 0.1240(4) 0.2512(3) 0.2772 1.3869(1) 1.4649(3)
0.2270 1.2241(2) 1.3042(4)

323 × 64 0.0885 0.1412(3) 0.2569(3) 0.2768 1.3859(1) 1.4636(3)
0.2389 1.2642(1) 1.3430(3)

243 × 48 0.0885 0.1440(6) 0.2589(4) 0.2768 1.3863(2) 1.4645(4)
0.2389 1.2645(2) 1.3442(5)

243 × 48 0.0885 0.1988(3) 0.2764(3) 0.2929 1.4273(2) 1.5069(4)
0.2299 1.2353(2) 1.3172(5)
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comparison of Tables XI and X. While the center values of
the masses in Tables XI and X are derived from the ð�;∓Þ
states of Tables XXI and XXII in Appendix B, the shown
error bars entail an estimate for the total error including the
statistical error and the uncertainty from the discretization
procedure. We take half of the splittings of the two modes,
ð�;∓Þ and ð�;�Þ, for the latter.
It is immediate from Tables XI and X that the D-meson

masses are quite sensitive to the precise charm-quark mass
used and also to the lattice scale a assumed. We note that, for
instance, there exist two distinct values for the lattice spacing
for the coarsest ensembles: the value a ¼ 0.0885ð36Þ fm
obtained from the pion decay constant [59] and a ¼
0.0920ð21Þ fm obtained from the nucleon mass [58]. We
conclude that it may advantageous to determine the lattice
scale and the charm-quark mass from the D-meson masses
directly. Such a procedure is expected to minimize the
discretization errors for the D-meson masses. This is what
we will do in the following. All information required for
such a strategy is provided with Tables XI and X, from
which the parameters αH and βH in (46) can be read off.

There are yet three further sources of QCD lattice data on
the D-meson masses, which we will discuss briefly
[10,19,22]. The two data sources [10,19] are partial to
the extent that not all four D-meson masses are provided.
Only the pseudoscalar masses are computed. The results of
Ref. [10] rely on previous studies by the LHP Collaboration
[60], which uses a mixed action framework with domain-
wall valence quarks but staggered sea-quark ensembles
generated by MILC [61–65]. For the charm quark, it uses a
relativistic heavy-quark action motivated by the Fermilab
approach [56,57]. In Table XII, we summarize the relevant
masses that are considered in our study.
The results of the HPQCD Collaboration [19] are based

on MILC ensembles together with a highly improved
staggered valence quark (HISQ) action. The HISQ action
has since been used very successfully in simulations
involving the charm quark such as for charmonium and
for D- and Ds-meson decay constants. In Table XIII,
we collect the relevant masses in units of the lattice
spacing for the configurations on three coarse and two
fine lattices.

TABLE X. D- and J=ψ -meson masses in units of the lattice scale a. The charm-quark mass is determined to
reproduce the physical J=ψ mass. This leads to aμc ¼ 0.2535, 0.1902, and 0.1829 for the three groups of
ensembles. Statistical errors are given only.

amπ amK aMD aMDs
aMD� aMD�

s
aMJ=ψ

0.0703(4) 0.1697(3) 0.5905(52) 0.6236(56) 0.6466(86) 0.6770(28) 0.9715(20)
0.0806(3) 0.1738(5) 0.5906(64) 0.6234(57) 0.6506(26) 0.6763(11) 0.9697(21)
0.0975(3) 0.1768(3) 0.5913(50) 0.6229(57) 0.6486(28) 0.6764(15) 0.9703(21)

0.1074(5) 0.2133(4) 0.7840(122) 0.8159(147) 0.8568(44) 0.8905(34) 1.2791(55)
0.1549(2) 0.2279(2) 0.7895(128) 0.8183(144) 0.8678(47) 0.8950(39) 1.2828(55)
0.1935(4) 0.2430(4) 0.7934(148) 0.8175(151) 0.8745(38) 0.8965(41) 1.2818(58)

0.1240(4) 0.2512(3) 0.8514(181) 0.8953(206) 0.9356(28) 0.9806(45) 1.3890(75)
0.1412(3) 0.2569(3) 0.8544(168) 0.8972(208) 0.9363(41) 0.9802(45) 1.3895(75)
0.1440(6) 0.2589(4) 0.8552(159) 0.8978(208) 0.9403(23) 0.9844(45) 1.3906(77)
0.1988(3) 0.2764(3) 0.8599(184) 0.8950(219) 0.9487(60) 0.9841(66) 1.3882(79)

TABLE XI. D- and ηc-meson masses in units of the lattice scale a. The charm-quark mass was determined to
reproduce the physical ηc meson mass. This leads to aμc ¼ 0.2618, 0.1957, and 0.1852 for the three groups of
ensembles. Statistical errors are given only.

amπ amK aMD aMDs
aMD� aMD�

s
aMηc

0.0703(4) 0.1697(3) 0.5947(52) 0.6279(56) 0.6506(86) 0.6809(28) 0.9351(85)
0.0806(3) 0.1738(5) 0.5949(64) 0.6277(57) 0.6546(26) 0.6803(11) 0.9332(85)
0.0975(3) 0.1768(3) 0.5955(50) 0.6271(57) 0.6526(28) 0.6804(15) 0.9335(84)

0.1074(5) 0.2133(4) 0.7946(122) 0.8263(147) 0.8664(44) 0.9001(34) 1.2312(212)
0.1549(2) 0.2279(2) 0.8004(128) 0.8291(144) 0.8777(47) 0.9049(39) 1.2342(217)
0.1935(4) 0.2430(4) 0.8039(148) 0.8278(151) 0.8840(38) 0.9059(41) 1.2314(219)

0.1240(4) 0.2512(3) 0.8677(181) 0.9114(206) 0.9506(28) 0.9953(45) 1.3370(296)
0.1412(3) 0.2569(3) 0.8708(168) 0.9132(208) 0.9511(41) 0.9949(45) 1.3379(299)
0.1440(6) 0.2589(4) 0.8714(159) 0.9137(208) 0.9545(24) 0.9990(45) 1.3382(302)
0.1988(3) 0.2764(3) 0.8753(184) 0.9102(219) 0.9627(60) 0.9980(66) 1.3325(310)
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Most recently, the HSC computed the excited open-charm
meson spectrum in a finite QCD box [22,23]. Results for the
D-meson masses based on an ensemble with a pion mass of
about 390 MeV are published in Ref. [23] and recalled in
Table XIV. For an additional ensemble at smaller pion
masses, studies are ongoing [22].
We note that the charm-quark mass in Refs. [10,19,23]

was not adjusted to theD-meson masses. While in Ref. [10]
the spin average of the physical J=Ψ- and ηc-meson mass
was used, and in Ref. [19], the charm-quark mass was
tuned to the physical ηc mass. In both cases, we cannot
exclude uncertainties significant to our analysis. To min-
imize any bias from a possibly imprecise charm quark–
mass determination, we consider only mass differences
from Tables XII–XIV in our fits. In addition, we fine tune
the lattice scales. As we have seen in the case of the
ETMC results, such a procedure reduces any possible bias
significantly.
We introduce a universal parameter Δc of the form

aMH → aMH þ ð1þ ϵHÞaΔc; with ϵH ≃ 0; ð47Þ

which is supposed to fine tune the choice of the charm-
quark mass. In principle, the values of ϵH depend on the
type of the D meson considered and also the βQCD value of
the ensemble considered. The value ð1þ ϵHÞaΔc is to be
added to aMH as collected in Tables XI–XIV.
For the ETMC masses, the magnitude of ϵH can be

extracted from Tables X and XI, in which we insist on the
normalization condition that ϵH ¼ 0 for theDmeson on the
ensemble with the lightest pion mass. Then, values for jϵHj
of about 0.1 arise in some cases at most. Such an estimate is
not available for the other collaborations. For these other
cases, we put ϵH ¼ 0, which would arise in the heavy
quark–mass limit. We would argue that a precise determi-
nation of aΔc and therewith the physical charm-quark mass
for a given ensemble requires the quantitative control of the
chiral extrapolation formulas for the D-meson masses.
We do not implement discretization effects in our chiral

extrapolation approach since this would introduce a sig-
nificant number of further unknown parameters into the
game. For each lattice group, such effects have to be
worked out in the context of our chiral extrapolation
scheme. As a consequence, a fully systematic error analysis
is not possible yet in our present study. Here, we follow the
strategy suggested in Refs [34,35], in which the statistical
error given by the lattice groups is supplemented by a
systematic error in mean quadrature. We perform fits at
different ad hoc values for the systematic error. Once this
error is sufficiently large, the χ2 per data point should be
close to 1. In our current studies, we arrive at the estimate of
5–10 MeV. In anticipation of our analysis of the lattice data
set, we collect the result of four representative fits. Their
characteristics and defining assumptions will be discussed
in more detail in the next sections.
For a given ensemble, the statistical errors in the lattice

data are correlated. However, since the statistical error for
any meson mass considered here is typically much smaller
than our estimate for the systematic error, such a correlation
is of no relevance in our study. In contrast, the choice of the
charm-quark mass and the lattice scale setting, both of
which we treat in detail, is a significant effect.
Our fit procedure goes as follows. For a given lattice

ensemble, we take the pion and kaon masses as given in
lattice units and then determine from the one-loop expres-
sions (28) in Ref. [35] the quark masses for that ensemble.
They depend on the three particular linear combinations of
the low-energy constants of Gasser and Leutwyler [67].
One combination can be fixed by the request that the

TABLE XIV. D-meson masses from HSC in units of the temporal lattice spacing [23,66]. The lattice spacing is
3.5at ¼ 0.123ð4Þ fm. It holds that a ¼ as ≃ 3.5at.

atmπ atmK atMD atMDs
atMD� atMD�

s

243 × 128 0.06906(13) 0.09698(9) 0.33265(7) 0.34426(6) 0.35415(17) 0.36508(88)
323 × 256 0.03928(18) 0.08344(7) � � � � � � � � � � � �

TABLE XII. D-meson masses based on ensembles of MILC
[63] as used by LHPC [60]. The results are recalled from
Ref. [10] in units of the lattice spacing a. The lattice spacing
is a ≃ 0.12 fm.

amπ amK aMD aMDs

203 × 64 0.1842(7) 0.3682(5) 1.2081(13) 1.2637(10)
203 × 64 0.2238(5) 0.3791(5) 1.2083(11) 1.2635(10)
203 × 64 0.3113(4) 0.4058(4) 1.2226(13) 1.2614(12)
203 × 64 0.3752(5) 0.4311(5) 1.2320(11) 1.2599(12)

TABLE XIII. D-meson masses from the HPQCD Collaboration
in units of the lattice spacing a as taken from Refs. [19,47]. The
studies are based on ensembles of MILC [65]. The lattice
spacings are a ¼ 0.119ð2Þ fm and a ¼ 0.0846ð7Þ fm for the
two sets of data, respectively.

amπ amK aMD aMDs

243 × 64 0.1599(2) 0.3122(2) 1.1395(7) 1.1878(3)
203 × 64 0.2108(2) 0.3285(3) 1.1591(7) 1.2014(4)
203 × 64 0.2931(2) 0.3572(2) 1.1618(5) 1.1897(3)

283 × 96 0.1344(2) 0.2286(2) 0.8130(3) 0.8471(2)
283 × 96 0.1873(1) 0.2458(2) 0.8189(3) 0.8434(2)
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η-meson mass is reproduced at physical quark masses. The
other two are determined by our fit to lattice data. With
those, the quark-mass ratio ms=m is determined. This is
analogous to Ref. [35], in which those low-energy con-
stants are determined from a fit to the lattice data on baryon
masses. In Table XV, we show our results for four distinct
fit scenarios, which are reasonably close to the results of

Ref. [35]. The quark-mass ratio ms=m as given in the last
row of the table is compatible with the latest result of
ETMC [59] withms=m ¼ 26.66ð32Þ. In Table XV, also, the
lattice scale parameters a together with the offset charm
quark–mass parameters Δc are presented. All fits reproduce
the D-meson masses of all ensembles recalled in this work
quite well. The table illustrates that the offset parameters
are almost always non-negligible. Our values for the lattice
scale can be compared with the ones advocated by the
various lattice groups as recalled in the tables of this
section. Any deviation from such values may be viewed as
a reflection of significant discretization effects. Those
depend on the specifics of the scale setting. The aim of
our work is to minimize such discretization effects in the
open-charm meson sector of QCD. We find it interesting
that, in particular, our values for ETMC are amazingly
close to those lattice scales obtained in our previous
analysis of the baryon masses from the identical lattice
ensembles [35].
The quality of the data description is illustrated with fit 1,

for which we offer a comparison with the lattice data in
Figs. 6–8. A more quantitative comparison with χ2 values
will be provided in the next section. In all figures, open
symbols correspond to results from our chiral extrapolation
approach. They lie always on top of the lattice points,
which are shown with either green, blue, or red filled
symbols. In the case in which for a considered lattice
ensemble there is no lattice result for the considered D
meson mass available, our theory prediction is presented
with a yellow filled symbol.
In Fig. 6, we scrutinize the lattice results of

Refs. [10,18,53] as recalled in Tables VIII and XII. Note
that the strange-quark mass varies along the different pion
masses of the figure. The D-meson masses are shown in
units of GeV, where the lattice scales for the two groups are
taken from Table XV. In addition, the effect of the fine-
tuned charm-quark mass in terms of the appropriate Δc
values in Table XV is considered. From Fig. 6, we conclude
that all masses from Refs. [10,18,53] are recovered well

TABLE XV. Results for fit 1–fit 4. The low-energy constants
Ln are at the renormalization scale μ ¼ 0.77 GeV. The offset
parameters aΔc are introduced in (47). We use f ¼ 92.4 MeV
throughout this work. A more detailed discussion of the four fit
scenarios is given in Secs. VII and VIII.

Fit 1 Fit 2 Fit 3 Fit 4

aPACS−CS ðfmÞ 0.0934 0.0940 0.0935 0.0928
aΔc;PACS−CS 0.1067 0.1110 0.1119 0.1023

aLHPC ðfmÞ 0.1291 0.1267 0.1291 0.1291
aΔc;LHPC 0.0359 0.0087 0.0443 0.0381

aβ≃6.76c;HPQCD ðfmÞ 0.1367 0.1359 0.1336 0.1367

aΔβ≃6.76
c;HPQCD

0.1500 0.1494 0.1184 0.1500

aβ≃7.09c;HPQCD ðfmÞ 0.0953 0.0991 0.0970 0.0992

aΔβ≃7.09
c;HPQCD

0.0936 0.1336 0.1049 0.1282

aβ¼1.90
c;ETMC ðfmÞ 0.1018 0.0996 0.1025 0.1027

aΔβ¼1.90
c;ETMC

0.0983 0.0747 0.1041 0.1086

aβ¼1.95
ETMC ðfmÞ 0.0934 0.0925 0.0928 0.0943

aΔβ¼1.95
c;ETMC

0.0908 0.0817 0.0817 0.1005

aβ¼2.10
ETMC ðfmÞ 0.0695 0.0704 0.0695 0.0699

aΔβ¼2.10
c;ETMC

0.0629 0.0728 0.0608 0.0659

aHSC ðfmÞ 0.1211 0.1243 0.1242 0.1242
aΔc;HSC 0.0050 0.0337 0.0328 0.0343

103ðL4 − 2L6Þ −0.1395 −0.1112 −0.1102 −0.1575
103ðL5 − 2L8Þ 0.0406 −0.0940 −0.0235 −0.0370
103ðL8 þ 3L7Þ −0.5130 −0.5127 −0.4950 −0.5207
ms=m 26.547 26.187 26.596 26.600

FIG. 6. D-meson masses from fit 1 compared to results based on lattice ensembles from PACS-CS and LHPC [10,18,53]. The yellow
symbols present our predictions for the case in which no lattice values are available yet.

CHIRAL EXTRAPOLATIONS OF CHARMED MESON MASSES … PHYS. REV. D 98, 014510 (2018)

014510-19



with an uncertainty of less than 10 MeV. The figures
include predictions of five meson masses shown with
yellow symbols for which there do not exist so far
corresponding values from the lattice collaborations.
Note that in some cases the lattice data point is fully

covered with our chiral extrapolation symbol. This signals
an almost perfect reproduction of the lattice point.
We continue with Fig. 7, in which the predictions of

ETMC are compared to our results. Here, the meson
masses are shown in lattice units. This permits an efficient

FIG. 7. D-meson masses from fit 1 in lattice units as compared to results from ETMC [20].

FIG. 8. D-meson masses from fit 1 in lattice units as compared to results from HPQCD and HSC [19,23,47]. The yellow symbols
present our predictions for the case in which no lattice values are available yet. Note that we show the HPQCD data in units of their
spatial lattice spacing but the HSC data in units of 3.5 times their temporal lattice spacing.
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presentation of the results at three distinct βQCD values. The
data set of ETMC is of particular importance for the chiral
extrapolation since it offers masses for the JP ¼ 0− and
JP ¼ 1− states consistently. The figure illustrates that such
data can be reproduced accurately for all βQCD values. Note
that the effect of a fine-tuned charm-quark mass is
considered again in terms of the parameter Δc properly
taken from Table XV.
A discussion of Fig. 8, which combines results from

HPQCD and HSC [19,23,47], remains. Again, the meson
masses are shown in lattice units with Δc from Table XV.
The reproduction of the lattice data is again impressive. The
reader is pointed to the fact that we predict 13 masses with
yellow symbols for which there are not yet values available
from the lattice groups. Of particular interest are the mass
predictions for the second ensemble of HSC as recalled in
Table XIV. For this ensemble, we have been informed that
the HSC is currently computing various scattering observ-
ables. We will return to this issue below.
The section is closed with a brief discussion of the quark

masses. Given the different fit scenarios of Table XV, their
values can be computed for any lattice ensemble for which
the pion and kaon masses are measured on a specified
lattice volume, where again, here, we ignore discretization
effects. Within a chiral Lagrangian approach, only ratios of
the quark masses can be determined. This is so because
only products of B0m or B0ms occur. In Fig. 9, such ratios
are confronted with corresponding ratios from the various
lattice groups. While our values are given by open symbols,
the lattice results are given by closed symbols. We follow

here our convention that the open symbols are always on
top of the closed symbols. An amazingly consistent pattern
occurs. We note that the determination of the quark-mass
ratios depends on the action used and may be quite
involved due to nontrivial renormalization effects. Most
straightforward are the results from HPQCD and ETMC
[47,59,68], in which it is stated that the quark-mass ratio
remains unrenormalized. The PACS and LHPC collabora-
tions made significant efforts to control their nontrivial
renormalization effects in the quark masses [10,17]. As
shown in our figure, all quark-mass ratios appear consistent
with a universal set of chiral low-energy parameters as
given in Table XV. All four fit scenarios lead to almost
indistinguishable results for the quark masses. The small
spread in the low-energy constants is not significant.

VII. LOW-ENERGY CONSTANTS FROM QCD
LATTICE DATA

We report on our efforts to adjust the low-energy
parameters to the D-meson masses as evaluated by the
various lattice groups. Our first observation is that the
available data set is not able to determine a unique parameter
set without additional constraints. Therefore, it would be
highly desirable to evaluate the D-meson masses with
JP ¼ 0− and JP ¼ 1− quantum numbers on further QCD
lattice ensembles with unphysical pion and kaon masses.
Typically, solutions can be found with similar quality

in the lattice data reproduction but quite different values for
the low-energy parameters. This problem is amplified by

FIG. 9. The quark-mass ratiosms=m are shown for the various lattice ensembles considered. Closed symbols show the values from the
lattice collaborations, and open symbols show our results.
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the unknown size of the underlying systematic error from
discretization effects. Almost always, the size of the
statistical errors given by the lattice groups is negligible,
and it is expected that the systematic error is dominating the
total error budget. In turn, it is unclear whether a parameter
set with a better χ2 value is more realistic than a solution
with a worse χ2. The D-meson masses may be overfitted.
To actually perform the fits is a computational challenge.

For any set of the low-energy parameters, four coupled
nonlinear equations are to be solved on each lattice
ensemble considered. We apply the evolutionary algorithm
of GENEVA 1.9.0-GSI [69] with runs of a population size
4000 on 100 parallel CPU cores.
In Table XVI, we collect four distinct fit scenarios that

are constrained by additional input from first lattice results
on some scattering observable. All four fit scenarios
incorporate the s-wave scattering lengths of Ref. [10] into
their χ2 functions. In addition, fits 2–4 are adjusted to the
scattering phases shifts of Ref. [23]. In fits 3 and 4, the
subleading counterterms (49) are activated. All parameter
sets reproduce the D-meson masses with a χ2=N close to 1,
given an estimate for the systematic error in the range 5–
10 MeV. In all fit scenarios, the four low-energy constants
c0;1 and c̃0;1 are adjusted to recover the isospin-averaged
physical D-meson masses with JP ¼ 0− and JP ¼ 1−

quantum numbers from the PDG [43]. This implies that
deviations from leading-order large-Nc or heavy-quark
symmetry sum rules are considered for c0;1 and c̃0;1. In
turn, we must not impose the heavy quark–symmetry
relations dn ¼ d̃n for all n ¼ 1;…; 4. Scale-invariant

expressions request dc1 ≠ d̃c1 and dc3 ≠ d̃c3 but permit the
assumptions dc2 ¼ d̃c2 and dc4 ¼ d̃c4 [see (25)]. All four fit
scenarios are based on the latter. In addition, we note that
while fits 1 and 3 impose the leading-order large-Nc
relations

cr2 ¼ −
cr3
2
; cr4 ¼ −

cr5
2
; c̃r2 ¼ −

c̃r3
2
; c̃r4 ¼ −

c̃r5
2
;

ð48Þ

the remaining scenarios of fits 2 and 4 keep those
parameters unrelated.
The quality with which the four scenarios reproduce the

D-meson masses from the lattice ensembles is summarized
in Table XVII. From the fact that all chi-square values are
close to 1 for an ad hoc systematic error in between 5 and
10 MeV, we arrive at our estimate of an intrinsic systematic
error of 5–10 MeV for the D-meson masses. All low-
energy parameters are in qualitative agreement with the first
rough estimates in (7). On the other hand, we find
significant tension with the low-energy parameters as
obtained in Refs. [11,36,70,71]. The parameters of fit 2
are reasonably close to the two sets claimed in Ref. [10]
with the notable exception of c1, which differs by about a
factor 2. Despite the considerable variations in the low-
energy constants, we deem all four parameter sets accept-
able from the perspective of describing the D-meson

TABLE XVI. The low-energy constants from a fit to the
pseudoscalar and vector D-meson masses based on QCD lattice
ensembles of the PACS-CS, MILC, ETMC, and HSC as
described in the text. Each parameter set reproduces the isospin
average of the empirical D-meson masses from the PDG.

Fit 1 Fit 2 Fit 3 Fit 4

M (GeV) 1.8762 1.9382 1.9089 1.8846
Δ (GeV) 0.1873 0.1876 0.1834 0.1882

c0 0.2270 0.3457 0.2957 0.3002
c̃0 0.2089 0.3080 0.2737 0.2790
c1 0.6703 0.9076 0.8765 0.8880
c̃1 0.6406 0.9473 0.8420 0.8583
cr2 ¼ c̃r2 −0.5625 −2.1893 −1.6224 −1.3046
cr3 ¼ c̃r3 1.1250 4.4956 3.2448 2.9394
cr4 ¼ c̃r4 0.3644 2.0012 1.2436 0.9122
cr5 ¼ c̃r5 −0.7287 −4.1445 −2.4873 −2.1393

dc1 ðGeV−2Þ 1.8331 1.6937 1.6700 1.9425
d̃c1 ðGeV−2Þ 1.6356 1.6586 1.4701 1.7426

dc2 ¼ d̃c2ðGeV−2Þ 1.0111 0.9954 0.8684 1.0032
dc3 ðGeV−2Þ 0.1556 0.0679 0.1531 0.1109
d̃c3ðGeV−2Þ 0.2571 0.1640 0.2597 0.2143

dc4 ¼ d̃c4ðGeV−2Þ 0.8072 1.6392 0.8607 1.1255

TABLE XVII. The table shows the impact of an ad hoc
systematic error (that is added to the statistical error in mean
quadrature) on the chi-square values of the various lattice data
sets. The set of lattice data fitted is described in the text. The
corresponding low-energy parameters of fits 1–4 are given in
Table XVI.

Fit 1 Fit 2 Fit 3 Fit 4
Systematic
error (MeV)

χ2PACS−CS=N 0.5054 0.8721 0.5329 0.4824 10
1.6153 2.6456 1.9222 1.6726 5

χ2LHPC=N 0.0999 1.6006 0.3911 0.1574 10
0.3659 5.9049 1.4524 0.5851 5

χ2HPQCD=N 0.9430 0.9131 1.2962 1.0606 10
β ≃ 6.76 3.7132 3.5877 5.1052 4.1814 5
χ2HPQCD=N 0.2468 0.2688 0.3393 0.4172 10
β ≃ 7.09 0.9798 1.0662 1.3459 1.6495 5

χ2ETMC=N 0.4584 1.2096 0.9919 0.8367 10
β ¼ 1.90 1.1053 2.8710 2.5727 2.1517 5
χ2ETMC=N 0.6546 1.5087 1.0253 0.8279 10
β ¼ 1.95 1.6217 3.6038 2.5556 2.0590 5
χ2ETMC=N 0.1860 0.4915 0.4431 0.3572 10
β ¼ 2.10 0.4061 1.1424 0.9964 0.7943 5

χ2HSC=N 0.1425 0.1710 0.4735 0.2622 10
0.3757 0.5893 1.8550 0.9965 5
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masses. We repeat that it is unclear whether fit 1 should be
trusted more, only because it would be compatible with a
discretization error slightly smaller than the one for fit 4.
After all, a 5 MeV systematic error would be an astonish-
ingly small value.
We take up the additional constraints considered. In

Ref. [10], a set of s-wave pion and kaon scattering lengths
was computed on four different lattice ensembles as
recalled in Table XII. Since only for the first two ensembles
the kaon mass is smaller than our cutoff choice of 600MeV,
we include into our χ2 function only the scattering lengths
from the first two ensembles of that table. The scattering
lengths are computed in the infinite volume limit based on
the parameter sets collected in Table XVI.
We apply the coupled-channel framework pioneered in

Refs. [6,8,9], which is based on the flavor SU(3) chiral
Lagrangian. It relies on the on-shell reduction scheme
developed in Refs. [41,72], which can be justified if the
interaction is of short-range nature or the long-range part is

negligible [73,74]. Fortunately, this appears to be the case
for the s-wave interactions of the Goldstone bosons off any
of the D mesons. In these and the current work, the
coupled-channel interaction is approximated by tree-level
expressions. Coupled-channel unitarity is implied by a
particular summation scheme formulated in terms of scalar
loop functions evaluated with physical meson masses and
relativistic kinematics.
An alternative chain of works based on a somewhat

different treatment of the coupled-channel effects is
Refs. [10–13,36,71]. We did a careful comparison of the
three available sources for the flavor structure of the
coupled-channel interaction [9–11]. We find two discrep-
ancies among the original works [9,10] in which we do take
into account the different phase conventions used in the two
works for the isospin states. The two discrepancies are in
the ðI; SÞ ¼ ð1=2; 0Þ sector. One is traced as a misprint, in
CWT of Table 2 of Ref. [9], in which the two entries 13 and
22 need to be interchanged (see Ref. [8]). The second one
we attribute to a misprint in Ref. [10]. Unfortunately, we
were not able to relate to the flavor coefficients shown in
Ref. [11]. As compared to Refs. [9,10], there are more than
ten unresolved contradictions.
In Table XVIII, we collect the χ2=N values that char-

acterize how well we reproduce the s-wave scattering
length of Ref. [10] in our four fit scenarios. Note that
we use here our estimates for the lattice scales aLHPC as
shown in Table XV. The table is complemented by Fig. 10,

TABLE XVIII. Chi-square values from fits 1–4 for the s-wave
scattering length of Ref. [10]. The first two ensembles of
Table XII with a kaon mass smaller than 600 MeVare considered
in the chi-square function. The corresponding low-energy param-
eters of fits 1–4 are given in Table XVI.

Fit 1 Fit 2 Fit 3 Fit 4

χ2s-wave scattering lengths=N 0.9184 1.3849 2.2596 2.0597

FIG. 10. s-wave scattering length from fit 4 as compared to predictions from Ref. [10]. The blue (red) data points show the scattering
lengths for the ensembles in which the kaon mass is smaller (larger) than 600 MeV. The yellow points provide the physical value for the
scattering lengths.
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in which a direct comparison of our results with the lattice
data is provided for fit 4. In the figure, the lattice data
points, shown by filled symbols, are confronted with open
symbols that represent our results. The error bars in the
latter points reflect an estimate of the systematic uncer-
tainty in our computation of the scattering lengths, in
which we should state that the χ2 values in Table XVIII are
computed always in terms of the center value of our
prediction. Our systematic error estimate is implied by a
variation of the matching scale μM around its natural value
[6,8,9]. The error bars are implied by ΔμM ¼ �100 MeV
with μM → μM þ ΔμM. For a detailed discussion of why
ΔμM cannot be chosen much larger without jeopardizing
the approximate implementation of crossing symmetry,
we refer to the original works [41,72]. It is important
to recall that dialing the matching scale slightly off its
natural value does not affect our self-consistent determi-
nation of the D-meson masses. The latter is a convenient
tool to estimate the uncertainties of the unitarization
process.
In the upper panels of Fig. 10, we show the channels that

are dominated by a repulsive Tomozawa-Weinberg inter-
action term [8]. In terms of a flavor SU(3) multiplet
classification, they belong to a flavor 15-plet that cannot
be reached within the traditional quark-model picture. A
minimal four-quark state configuration is required. In
contrast, in the lower panels, channels that belong to the
exotic flavor sextet sector, in which the leading Tomozawa-
Weinberg interaction shows a weak attraction, are pre-
sented [8]. As pointed out in Refs. [3,6,8,9], depending on
the size of chiral correction terms, exotic resonance states
may be formed by the chiral dynamics. Final-state inter-
actions distort the driving leading-order term and ultimately
generate the more complicated quark-mass dependence as
seen in the figure. We discriminate results based on
ensembles with a kaon mass larger or smaller than
600 MeV by distinct colored symbols. With red symbols,
we indicate that the kaon mass is larger than our cutoff
value, and therefore chiral dynamics is not expected to be
reliable. A fair reproduction of all relevant scattering
lengths is seen in Fig. 10. Our predictions for the scattering
lengths at the physical point are also included by the
additional yellow filled points farthest to the left.
We conclude that with the constraints set by scattering

lengths of Ref. [10] we cannot rule out any of our four fit
scenarios in Table XVI.

VIII. SCATTERING PHASE SHIFTS
FROM QCD LATTICE DATA

In this section, we finally present an additional constraint
on the low-energy parameters that provide a clear criterion

that of the four fit scenarios is most reliable and should be
used in applications. Recently, HSC computed πD phase
shifts in both isospin channels. The results are based on the
ensemble recalled in Table XIV. Given our four parameter
sets, we can compute those observable at the given
unphysical pion and kaon masses. We do this for all four
parameter sets.
It is necessary to explain how we compare with those

lattice results. Ultimately, one should compute the various
discrete levels the collaboration computed and then apply
the Lüscher method [75,76] to extract the coupled-channel
scattering amplitudes. This requires an ansatz for the form
of the reaction amplitudes. In the case of a single-channel
problem, this can be analyzed in a model-independent
manner. In turn, for πD scattering in the I ¼ 3=2 channel,
we can compare our results with the single-energy
phase shifts as taken from Fig. 20 of Ref. [23] at different
center-of-momentum energies E¼ ffiffiffi

s
p

−mπ−MD. They are
to be confronted with the four lines from our four fit
scenarios. In the figure of Table XIX, we see that the two
red lines are significantly off the lattice data points, where
with those lines fit 1 and 2 are presented. This is the case
even though in fit 2 an attempt was made to reproduce the
πD phase shifts from Ref. [23]. Note that in fit 1 we ignored
any of the latter. We assure that our conclusions are stable
against a reasonable variation of the matching scale in this
sector.
Based on this observation, we made our ansatz for the

scattering amplitudes more quantitative by the consider-
ation of an additional set of low-energy constants relevant
at chiral order 3. Such terms were constructed in
Refs. [77,78] to take the form

L3 ¼ 4g1D½χ−; Uν�−∂̂νD̄

− 4g2Dð½Uμ; ½∂̂ν; Uμ�−�− þ ½Uμ; ½∂̂μ; Uν�−�−Þ∂̂νD̄

− 4g3D½Uμ; ½∂̂ν; Uρ�−�−½∂̂μ; ½∂̂ν; ∂̂ρ�þ�þD̄þ H:c:

ð49Þ

Our motivation to consider such terms is slightly distinct
from the one followed in Refs. [77,78]. From the previous
work [6], we expect the light vector meson degrees of
freedom (d.o.f.) to play a crucial role for the considered
physics. Ultimately, we would like to consider them as
active d.o.f. This is beyond the scope of the current
work. Here, we consider the low-energy constants as a
phenomenological tool to more accurately integrate out the
light
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vector meson d.o.f. In the scenarios of fits 3 and 4, the
contributions of the gn are worked into the coupled-channel
interaction. Their values are displayed in Table XIX, which
consecutively lead to a significantly improved reproduction
of the scattering phase shift.
We proceed with the coupled-channel πD system with

I ¼ 1=2 for which its determination of the three phase
shifts and inelasticities is more involved. Some model
dependence may enter the analysis. In Ref. [23], an
estimate of the latter was accessed by allowing a quite
large set of different forms of the ansatz for the coupled-
channel amplitudes. That then led to two error bands in
their plotted phase shifts and inelasticity parameters. The
smaller one shows the statistical uncertainty, and the larger

one includes also the systematic error. In Figs. 9 and 10 of
Ref. [23], it is shown, in addition, on how many levels their
results are based on in a given energy bin. Above the πD
and below the K̄Ds thresholds, there are three clusters of
levels. We take their center and translate those into single-
energy phase shifts and inelasticities with error bars taken
from the estimated uncertainties. In Fig. 11, those “lattice
data” points are shown and confronted with our results
from the four fit scenarios. In addition, a fourth lattice data
point at energies above the K̄Ds threshold is also included
in the figure but shown in red symbols. We do have some
reservation toward those points, since the number of close-
by energy levels is quite scarce. This is particularly
troublesome since here it is a true three-channel system

TABLE XIX. While the solid lines are from fits 2 and 4, the

dashed lines are with respect to fits 1 and 3. The lattice data are

from Ref. [23].

Fit 1 Fit 2 Fit 3 Fit 4

g1 ðGeV−1Þ 0 0 0.2240 0.2338

g2 ðGeV−2Þ 0 0 0.5405 0.4663

g3 ðGeV−4Þ 0 0 0.0399 0.0299

FIG. 11. Phase shifts with ðI; SÞ ¼ ð1=2; 0Þ from fits 1–4 as compared to lattice data from Ref. [23]. While the solid lines are from fits
2 and 4, the dashed lines are with respect to fits 1 and 3. The two red lines present the disfavored scenarios from fits 1 and 2. We apply the
somewhat unusal convention of the lattice group in which the phase shift at threshold is normalized to zero even in the presence of a
bound state.
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that would need more rather than a fewer number of levels
to unambiguously determine the scattering amplitude. In
turn, the particular choice of ansatz is expected to play a
much more significant role in the determination of the red
lattice data points. We conclude that the error bars must be
significantly underestimated for those points.
Figure 11 confirms our conclusions from the previous

Table XIX that only fits 3 and 4 may be expected to be
faithful. The πD and ηD phase shift points are highly
discriminative among the four fit scenarios. Fits 3 and 4
describe the lattice data in Fig. 11 significantly better than
fits 1 and 2. Since fit 4 is doing better in the D-meson
masses, also in the s-wave scattering lengths, one may
identify fit 4 to be the most promising candidate for making
reliable predictions.
There is a further piece of information provided by HSC

in the given ensemble. The mass MB of a bound state just
below the πD threshold is predicted. It is a member of the
conventional flavor antitriplet, the formation of which was
predicted by chiral dynamics unambiguously [8,9]. Within
the given error, it is not distinguishable from the πD
threshold value. The following bound is derived from data
published by HSC,

ϵB ¼ mπ þMD

MB
− 1 < 0.001; ð50Þ

at the one sigma level. We compute this value in the four fit
scenarios with

103ϵB ¼
�
Fit 1 Fit 2 Fit 3 Fit 4

8.0 5.4 4.3 5.7;
ð51Þ

where we find discrepancies for the bound-state mass of the
order of our resolution of 5–10 MeV. For a consistency
check, we exploit the uncertainties in the unitarization
process, by tuning the matching scale to meet the condition
(50) for fits 1–4. This is achieved, for instance, with ΔμM ≃
69 MeV and ΔμM ≃ 86 MeV in fits 3 and 4, respectively,
where we emphasize that with ΔμM the determination of
theD-meson masses is not affected. Then, we reconsider the
phase shifts and inelasticities and find that altogether the
impact of such a change of the matching scale is quite
moderate. While now fit 1 goes almost perfectly through the
three blue lattice data points for the πD phase shift, the lines
of fits 3 and 4 are slightly below those points. The crucial
observation is that the significant disagreement with the
single blue ηD phase shift is persistent in the fit 1 scenario,
and therefore fit 4 must remain our favorite choice.
We wish to make one comment on fit 1 since it is

particularly interesting despite its deficiencies: a clear signal
of a member of the exotic sextet state is visible in the πD
phase shift. It shows a significant variation a little right of the
last blue lattice point. We deem it unfortunate that exactly in
this region there are not yet sufficient consolidated lattice
points that may rule out our first fit scenario unambiguously
available. Note, furthermore, that our fit 1 scenario, which
did not take any of the scattering observables from HSC into
account, is disfavored mainly by one feature of the HSC
results in the ðI; SÞ ¼ ð1=2; 0Þ sector. The single blue value
for ηD phase shift is significantly off the line of Fit 1. It
would be interesting to make the ansatz used by HSC for the
coupled-channel amplitude more flexible and allow for an
exotic-state coupling dominantly to the ηD channel. One

FIG. 12. Predictions for phase shifts from fit 4 for the physical point but also for pion and kaon masses as shown in Table XIV.
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may speculate that this exercise could show that the claimed
uncertainty for this lattice point is underestimated signifi-
cantly. If this happens, our fit 1 scenario may come into the
game again. This may be so even though HSC appears to
reject our fit 1 scenario based on their results in the ðI; SÞ ¼
ð3=2; 0Þ sector. Here, the reader should be cautioned that we
cannot fully rule out that the phenomenological treatment of

the third-order effects is fooling us. More detailed studies are
required to substantiate our conclusions.
In the following, we take our best-fit scenario of fit 4 and

provide a thorough documentation of its consequences. In
Figs. 12 and 13, all phase shift and inelasticity parameters
are shown for all possible combinations of ðI; SÞ. In
Fig. 12, we present the channels in which no exotic signals

FIG. 13. Predictions for phase shifts from fit 4 for the physical point but also for pion and kaon masses as shown in Table XIV.
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are expected. Indeed, the evolution from the two HSC
ensembles of Table XIV with unphysical quark masses to
the physical point is smooth and unspectacular. While
the solid black lines correspond to the physical point, the
dashed and dotted lines correspond to the two HSC
cases, in which the dashed lines are with respect to
the upper ensemble of Table XIV. We refrain from includ-
ing our estimate of the systematic uncertainty from a
variation of the matching scale, because, first of all, it is
a small effect and, second, it obscures the clarity of the
figures.
We advance to the exotic sectors with ðI; SÞ ¼ ð0;−1Þ

and (1,1). With the upper two panels of Fig. 13, we
demonstrate that, here, the evolution from the two HSC
ensembles to the physical point is still smooth but quanti-
tatively more significant, particularly in the two-channel
system with ðI; SÞ ¼ ð1; 1Þ. The corresponding amplitudes
are characterized by strong cusp effects at threshold. The
latter reflect some weak attraction present in those channels
being members of the flavor sextet.
Most striking are our predictions for the quark-mass

dependence of the ðI; SÞ ¼ ð1=2; 0Þ sector, which we
present with the lower two panels of Fig. 13. The line
conventions are identical to the ones used in the previous
figures. The largest effect is seen in the πD phase shift.
Going from the HSC ensembles to the physical point, it
even changes sign. Here, we see a clear signal for a
member of the exotic flavor sextet state. The πD phase
shift passes through 90° in between the ηD and K̄Ds
thresholds. We checked that the amplitudes ηD → ηD and
also K̄Ds → K̄Ds show a well-defined resonance struc-
ture, with a width significantly smaller than the
300–400 MeV of the flavor antitriplet partner at lower
masses. We find this to be a spectacular confirmation of
the leading-order prediction of this state advocated since
15 years ago by one of the authors (see Ref. [3]). It is
amusing to see that the clear signature of this state at the
physical point may not be seen at the studied HSC
ensemble with unphysically large pion masses. Most
exciting is the most recent claim in Ref. [79] that this
state can be seen in data from LHCb [80,81].

IX. ISOSPIN-VIOLATING DECAY OF D�
s0ð2317Þ

FROM QCD LATTICE DATA

A most striking prediction of chiral dynamics is the
formation of the D�

s0ð2317Þ as a coupled-channel hadronic
molecule with significant components in the KD and ηDs
two-body states [8]. At leading order in a chiral expansion,
the coupled-channel interaction is predicted by the
Tomozwa-Weinberg term that is parametrized only by
the pion-decay or kaon-decay constants, fπ or fK, driven
into their chiral flavor SUð3Þ limit with fπ;K → f.
This term dominates the s-wave coupled-channel force

of the Goldstone bosons with the pseudoscalar and vector

Dmesons. The force is short ranged; it may be visualized in
terms of a vector meson t-channel exchange process with
properly adjusted coupling constants. In contrast to a
widespread confusion in the field, there are hadronic
molecular states that are not driven by a long-range force
as provided by an exchange process involving the pion. The
challenge is to control and predict such short-range forces.
The original work [8] was taken up by many authors

[6,9,11–14,71,79,82,83] who confirm this universal pic-
ture. The challenge is to make this approach more quanti-
tative by controlling chiral correction terms. A first attempt
was made in Refs. [6,9] based on rough assumptions on the
πD invariant mass distributions. A more sophisticated
approach was pursued in Refs. [10,12], in which first
QCD lattice data on some s-wave scattering lengths were
used. With the significantly improved and extended lattice
data set, the determination of the low-energy constants, as
achieved in our work, is expected to be more controlled and
reliable.
In this section, we focus on a particular property of the

D�
s0ð2317Þ, its isospin-violating hadronic decay width.

Since its mass is below the KD threshold and it carries
isospin 0, it can decay into the πD channel only via
isospin-violating processes. Estimates of that width within
typical quark-model approaches predict such a width of
less than 10 keV [84]. This is contrasted by estimates from
chiral-coupled-channel approaches. Here, already, the
leading-order Tomozawa-Weinberg predicts a width of
about 75 keV as demonstrated first in Ref. [6]. A
corresponding computation with similar physics input
but less stringent framework arrived at a similar value
[82]. This is to be compared to the significantly larger
values of about 140 keV in Ref. [6] and later with even an
error estimate of ð133� 22Þ keV [10]. The latter two
works implemented chiral correction terms, in which the
more sophisticated approach [10] was based on additional
constraints from some early lattice data.
The results of our study for the decay width are collected

in Table XX for all four fit scenarios. They are based on
the framework as detailed in Ref. [6]. Since the mass of the
D�

s0ð2317Þwas not tuned in any of our fits, we again use the
uncertainty in the unitarization and adjust the matching
scale to recover the precise mass of the D�

s0ð2317Þ. This is
achieved with 50 MeV < ΔμM < 100 MeV in the four
scenarios. Besides the low-energy constants determined in
our work, the computation of the width parameter depends
crucially on the mixing angle ϵ of the π0 − η system.

TABLE XX. Prediction for the isospin-violating decay width of
the D�

s0ð2317Þ in the four fit scenarios of Table XVI.

Fit 1 Fit 2 Fit 3 Fit 4 ϵ

ΓD�
s0ð2317Þ→π0Ds

ðkeVÞ 61.1 54.1 88.6 80.1 0.0100
74.6 68.4 115.8 104.4 0.0122
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According to Ref. [67], it is determined by the quark
masses as follows:

sinð2ϵÞ
cosð2ϵÞ ¼

ffiffiffi
3

p md −mu

2ms −mu −md
: ð52Þ

While in Ref. [6] the value ϵ ¼ 0.010ð1Þ was taken from
Ref. [67], an updated estimate ϵ ¼ 0.0129ð7Þ was used in
Ref. [10]. Here, we consider the impact of a recent and
more precise lattice determination of the quark masses by
ETMC [59]. This leads to a significantly lower estimate
ϵ ¼ 0.0122ð18Þ on which our faithful results in Table XX
are based.
Since we argued that the lattice data of HSC rule out fits

1 and 2, we estimate the isospin-violating hadronic width of
the D�

s0ð2317Þ with (104–116) keV, somewhat lower than
the previous claimed value of ð133� 22Þ keV [10].

X. SUMMARY AND CONCLUSIONS

We studied the chiral extrapolation of charmed-meson
masses based on the three-flavor chiral Lagrangian for-
mulated with pseudoscalar and vector charmed fields. Here,
the recent approach by the authors constructed for the chiral
extrapolation of the baryon ground-state masses was
adapted to the charm sector successfully, and good con-
vergence properties for the chiral extrapolation were
observed. Within the framework, the chiral expansion
was formulated in terms of physical masses. While an
attempt was made to remove all model dependence, a
residual scheme dependence cannot be ruled out at this
stage. All D-meson masses arise in a manifest scale-
invariant manner. The framework was applied to lattice
data such that an almost unique set of low-energy constants
was established. While we considered finite volume effects
systematically, we did not implement discretization effects.
In turn, a fully systematic error analysis was outside the
realm of our present study.
The low-energy parameters were adjusted to QCD lattice

data at N3LO, where large-Nc sum rules or relations that
followed in the heavy charm quark–mass limit were used
systematically. We considered lattice data based on ensem-
bles of PACS-CS, MILC, ETMC, and HSC with pion and
kaon masses smaller than 600 MeV. Besides taking into
account constraints from the D-meson masses from the
various lattice groups, we also considered first results on

scattering observables in particular from HSC. Only with
the latter, in particular, HSC’s estimate of the ηD phase
shift, we arrived at a rather well-defined parameter set, in
terms of which we made predictions. The data set on theD-
meson masses together with constraints from s-wave
scattering lengths is not sufficient to nail down the set
of low-energy constants.
We computed 15 phase shifts and inelasticities at

physical quark masses and also for an additional HSC
ensemble. Such results can be scrutinized by lattice QCD
with available computing resources and technology. In
addition, we predict the isospin-violating strong decay
width of the D�

s0ð2317Þ to be (104–116) keV. Given our
favorite set of low-energy parameters, we find a clear signal
for a member of the exotic flavor sextet states in the ηD
channel, below the K̄Ds threshold.
To further substantiate the claimed chiral low-energy

parameters, it is necessary to take additional data on QCD
lattices, in particular, at unphysical quark masses. Our
predictions are relevant for the PANDA experiment at
FAIR, in which the width of the D�

s0ð2317Þ may be
accessible by a scan experiment [85]. Also, the invariant
ηD mass distribution, in which we expect a signal from
an exotic flavor sextet state, may be accessed by the efficient
detection of neutral particles with the available calorimeter.
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APPENDIX A

In this appendix, we collect all dimensionless coeffi-
cients that are needed in the various power-counting
decompositions of the renormalized loop function (14).
Here, we focus on the pseudoscalar D mesons for which
we find

α1 ¼
ð2M þ ΔÞ2

4M2
; α2 ¼

2M2 þ 2ΔM þ Δ2

2M2
; α3 ¼ 1;

γ1 ¼
2M þ Δ

M
log

Δð2M þ ΔÞ
ðM þ ΔÞ2 ; γ2 ¼ −

2M2 þ 2ΔM þ Δ2

Mð2M þ ΔÞ log
Δð2M þ ΔÞ
ðM þ ΔÞ2 −

M
2M þ Δ

;

γ3 ¼
M

2M þ Δ
; γ4 ¼ −2

MðM þ ΔÞ2
ð2M þ ΔÞ3 log

Δð2M þ ΔÞ
ðM þ ΔÞ2 þ M3

2ð2M þ ΔÞ3 ; γ5 ¼
MðM þ ΔÞ2
ð2M þ ΔÞ3 ;
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δ1 ¼ γ1 −
2M þ Δ

M
log

2Δ
ðM þ ΔÞ ; δ2 ¼ γ2 þ

2M2 þ 2ΔM þ Δ2

Mð2M þ ΔÞ log
2Δ
M

þ 2M þ Δ
4M

þ 2ðδ3 − γ3Þ log
M þ Δ
M

;

δ3 ¼ γ3 −
2M2 þ 2ΔM þ Δ2

2Mð2M þ ΔÞ ; δ5 ¼ 0;

δ4 ¼ γ4 þ
2MðM þ ΔÞ2
ð2M þ ΔÞ3 log

2Δ
M

−
4M2 þ Δð4M þ 5ΔÞ

32Mð2M þ ΔÞ þ 2ðδ5 − γ5Þ log
M þ Δ
M

;

δ6 ¼
2M þ Δ
2M

∂
∂Δ

2MΔ
2M þ Δ

ðγ1 − δ1Þ þ δ1; δ7 ¼ γ2 þ
1

2
ðγ1 − δ1Þ

Δ2

ð2M þ ΔÞ2 ;

β1 ¼ Δ
∂
∂Δ α1

2M þ Δ
2M

; β2 ¼ Δ2
∂
∂Δ

α1δ2
Δ

; β3 ¼ Δ2
∂
∂Δ

α1δ3
Δ

; β4 ¼ Δγ1
∂
∂Δ α1; β5 ¼ Δ

∂
∂Δ α1δ1;

β6 ¼
Δ2∂2

∂Δ∂Δ
�
α1

2M þ Δ
2M

�
; β7 ¼ Δ

Δ2∂2

∂Δ∂Δ
α1δ2
Δ

β8 ¼ Δ
Δ2∂2

∂Δ∂Δ
α1δ3
Δ

; β9 ¼ γ1
Δ2∂2

∂Δ∂Δ α1;

β10 ¼
Δ2∂2

∂Δ∂Δ α1δ1; β11 ¼ −
1

4
α1

M
2M þ Δ

þ ðα1 − α2Þ
ð2M þ ΔÞM

2Δ2
: ðA1Þ

While the αi characterize the chiral expansion of the coefficients in front of ĪQR and ĪQ in (16), the γi and δi follow
from a chiral expansion of ĪQR with MH ¼ M and MR ¼ M þ Δ and mQ < Δ. The coefficients βi are required in
(44), (45), (A6).
We turn to the chiral domain (34), in which the bubble-loop contributions to the D-meson masses generate a

renormalization of the low-energy parameters di. Such terms are proportional to the product of two quark masses (9). We
provide detailed results with

Πð4−χÞ
H →

X
Q∈½8�

X
R∈½1−�

�
GH

QR

8πf

�2

fγð1Þd m2
QΠ

ð2Þ
R þ γð2Þd m2

QΠ
ð2Þ
H þ γð3Þd Πð2Þ

R Πð2Þ
R þ γð4Þd Πð2Þ

H Πð2Þ
H þ γð5Þd Πð2Þ

R Πð2Þ
H g;

di →
1

4
g2P

X5
k¼1

ΓðkÞ
di

ð4πfÞ2 γ
ðkÞ
d ; ðA2Þ

and

γð1Þd ¼ M
2ðM þ ΔÞ

	 ∂
∂Δ ðα2Δγ1 − α1Δγ2Þ − Δγ1

∂α2
∂Δ



;

γð2Þd ¼ Δ
2M

	 ∂
∂M ðα2Mγ1 − α1Mγ2Þ −

1

M
γ1

∂
∂M ðα2M2Þ



−
M þ Δ
M

γð1Þd ;

γð3Þd ¼ −
M

4ðM þ ΔÞ2
�∂α1Δ2

∂Δ
��∂γ1Δ

∂Δ
�
−

α1Δ2M
4ðM þ ΔÞ

∂
∂Δ

	
1

2ðM þ ΔÞ
�∂γ1Δ

∂Δ
�


;

γð4Þd ¼ −
1

8M2

� ∂
∂M −

∂
∂Δ

�
2

ðα1MΔ3γ1Þ þ
γ1Δ
8M3

� ∂
∂M −

∂
∂Δ

�
2

ðα1M2Δ2Þ þ 1

8M3

� ∂
∂M −

∂
∂Δ

�
ðα1MΔ3γ1Þ

−
γ1Δ
8M4

� ∂
∂M −

∂
∂Δ

�
ðα1M2Δ2Þ;

γð5Þd ¼ −
1

2M
∂
∂M

1

2ðM þ ΔÞ
∂
∂Δ ðα1MΔ3γ1Þ þ

γ1Δ
2M2

∂
∂M

1

2ðM þ ΔÞ
∂
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and

GUO, HEO, and LUTZ PHYS. REV. D 98, 014510 (2018)

014510-30



Γð1Þ
d1

¼ −
32

3
c̃1; Γð1Þ

d2
¼ 16

9
ð15c̃0 − 2c̃1Þ; Γð1Þ

d3
¼ 8c̃1; Γð1Þ

d4
¼ 88

9
ð2c̃0 − c̃1Þ;

Γð2Þ
d1

¼ 40

3
c1; Γð2Þ

d2
¼ 16

9
ð15c0 − 2c1Þ; Γð2Þ

d3
¼ 0; Γð2Þ

d4
¼ 88

9
ð2c0 − c1Þ;

Γð3Þ
d1

¼ −
32

3
c̃21; Γð3Þ

d2
¼ −

64

3
ð2c̃0 − c̃1Þc̃1; Γð3Þ

d3
¼ 32c̃21; Γð3Þ

d4
¼ 64

3
ð16c̃20 − 10c̃1c̃0 þ c̃21Þ;

Γð4Þ
d1

¼ 256

3
c21; Γð4Þ

d2
¼ 512

3
ð2c0 − c1Þc1; Γð4Þ

d3
¼ 0; Γð4Þ

d4
¼ 256

3
ð2c0 − c1Þ2;

Γð5Þ
d1

¼ −
32

3
c1c̃1; Γð5Þ

d2
¼ −

64

3
ð−8c1c̃0 þ ðc0 þ 2c1Þc̃1Þ; Γð5Þ

d3
¼ 0; Γð5Þ

d4
¼ 32

3
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We turn to the conventional counting ansatz (38), for which the third- and fourth-order contributions to the D-meson
polarization tensor are already given with (39), (40). The fifth-order term is
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It remains to specify the fifth-order term with respect to the novel counting ansatz (41). We find
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APPENDIX B

In this appendix, we collect all dimensionless coefficients that are needed in the various power-counting decompositions
of the renormalized loop function (16). Here, we focus on the vector D mesons for which we find

CHIRAL EXTRAPOLATIONS OF CHARMED MESON MASSES … PHYS. REV. D 98, 014510 (2018)

014510-31



α̃1 ¼
ð2M þ ΔÞ2
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While the α̃i characterize the chiral expansion of the coefficients in front of ĪQR and ĪQ in (16), the γ̃i and δ̃i follow
from a chiral expansion of ĪQR with MH ¼ M þ Δ and MR ¼ M and mQ < Δ. The coefficients β̃i are required in
(44), (45), (B5).
We turn to the chiral domain (34), in which the bubble-loop contributions to the D�-meson masses generate a

renormalization of the low-energy parameters d̃i. Such terms are proportional to the product of two quark masses (9). We
provide detailed results with

Πð4−χÞ
H →

X
Q∈½8�

X
R∈½0−�
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8πf
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fγ̃ð1Þd m2
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H þ γ̃ð5Þd Πð2Þ

R Πð2Þ
H g;

d̃i →
1

4
g2P

X5
k¼1

Γ̃ðkÞ
di

ð4πfÞ2 γ̃
ðkÞ
d ; ðB2Þ

with
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where the other ΓðkÞ
d̃i

with k ¼ 1; 2;…; 5 follow from the corresponding ΓðkÞ
di

in (A4) upon the interchange ci ↔ c̃i.

We turn to the conventional counting ansatz (38), for which the third- and fourth-order contributions to the D�-meson
polarization tensor are already given with (39), (40). The fifth-order term is
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It remains to specify the fifth-order term with respect to the novel counting ansatz (41). We find

CHIRAL EXTRAPOLATIONS OF CHARMED MESON MASSES … PHYS. REV. D 98, 014510 (2018)

014510-33



Π̄bubble−5
H∈½1−� ¼

X
Q∈½8�
R∈½1− �

�
mQR

4πf
GðHÞ

QR

�
2 1

3

�
3π

16

m3
Q

MH
−
m4

Q

M2
H

�
1

6
−
1

8
log

mQ

MR

�
þ ðMR −MHÞ2

�
π

4

MH

mQ
þ 1þ 3

2
log

mQ

MR

��

þ
X
Q∈½8�
R∈½0− �

�
mQ

4πf
GðHÞ

QR

�
2
�
α̃1
12

M2

ð2M þ ΔÞ
Δ3

4ðM þ ΔÞ2 log
4Δ2

M2
−
α̃1
24

Δ2

m2
Q
ðMR −MH þ ΔHÞ2

M þ Δ
M

∂
∂Δ ðγ̃1ΔÞ

þMH

12

M
M þ Δ

	
−ðα̃1 − α̃2Þ

�
Mð2M þ ΔÞ
2ðM þ ΔÞ2

m2
Q

Δ2
H
ðMH −MRÞ log

m2
Q

M2
R
þ ðδ̃1 − γ̃1Þ

Δ2
Q

ΔH
− δ̃1

Δ2
Q

Δ2
H
ðMR −MH þ ΔHÞ

�

þ β̃11
M2

H

�
ðMH −MRÞ3 log

m2
Q

M2
R
þ Δ3

Q½logðMR −MH − ΔQÞ − logðMR −MH þ ΔQÞ�
�

þm2
QΔ2

Q

Δ3
H

�
ðα̃2 − α̃1Þ

�
δ̃2 þ δ̃3 log

m2
Q

M2
R

�
− α̃1

�
δ̃4 þ δ̃5 log

m2
Q

M2
R

��


þMH

24
ðMR −MH þ ΔHÞ2

	
β̃9

Δ2
Q

m2
QΔH

− β̃10
Δ2

Q

m2
QΔ2

H
ðMH −MRÞ

þ β̃6
m2

QΔ2
H

�
ðMH −MRÞ

�
Δ2

Q −
m2

Q

2

�
log

m2
Q

M2
R
þ Δ3

Q½logðMR −MH − ΔQÞ − logðMR −MH þ ΔQÞ�
�

þ
�
−β̃7

Δ2
Q

Δ3
H
þ β̃8

m2
Q

Δ3
H
log

m2
Q

M2
R

�
�
; with m2

QR ¼ m2
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TABLE XXI. Masses for the D mesons in units of the lattice scale a. The values in the table were provided to us by the authors of
Ref. [20]. “Discr.” stands for the various choices of the discretization scheme (see, e.g., [20]).

amπ amK aμc Discr. amD amDs
amD� amD�

s

0.0703(4) 0.1697(3) 0.2230 ð�;∓Þ 0.6655(12) 0.6981(4) 0.7161(18) 0.7456(10)
0.1919 ð�;∓Þ 0.6072(11) 0.6402(3) 0.6621(18) 0.6923(10)
0.2230 ð�;�Þ 0.6706(15) 0.7035(5) 0.7078(24) 0.7430(10)
0.1919 ð�;�Þ 0.6123(14) 0.6460(4) 0.6536(23) 0.6898(10)

0.0806(3) 0.1738(5) 0.2227 ð�;∓Þ 0.6661(19) 0.6983(4) 0.7209(26) 0.7452(12)
0.1727 ð�;∓Þ 0.5712(14) 0.6041(4) 0.6325(25) 0.6586(11)
0.2227 ð�;�Þ 0.6721(22) 0.7037(5) 0.7209(20) 0.7452(10)
0.1727 ð�;�Þ 0.5775(17) 0.6102(4) 0.6335(23) 0.6587(10)

0.0975(3) 0.1768(3) 0.2230 ð�;∓Þ 0.6666(16) 0.6980(5) 0.7183(23) 0.7458(13)
0.1727 ð�;∓Þ 0.5720(12) 0.6036(4) 0.6308(24) 0.6587(13)
0.2230 ð�;�Þ 0.6713(13) 0.7033(5) 0.7169(19) 0.7451(8)
0.1727 ð�;�Þ 0.5770(12) 0.6098(4) 0.6290(22) 0.6579(11)

0.1074(5) 0.2133(4) 0.2230 ð�;∓Þ 0.8473(10) 0.8780(5) 0.9140(31) 0.9474(10)
0.1727 ð�;∓Þ 0.7501(8) 0.7827(4) 0.8262(29) 0.8601(9)
0.2230 ð�;�Þ 0.8588(16) 0.8922(7) 0.9112(25) 0.9443(10)
0.1727 ð�;�Þ 0.7629(14) 0.7978(6) 0.8224(24) 0.8566(10)

0.1549(2) 0.2279(2) 0.2230 ð�;∓Þ 0.8543(5) 0.8824(3) 0.9268(11) 0.9536(7)
0.1727 ð�;∓Þ 0.7549(5) 0.7841(3) 0.8362(11) 0.8637(8)
0.2230 ð�;�Þ 0.8666(8) 0.8961(4) 0.9218(11) 0.9500(6)
0.1727 ð�;�Þ 0.7683(7) 0.7991(3) 0.8322(17) 0.8597(7)

0.1935(4) 0.2430(4) 0.2230 ð�;∓Þ 0.8559(8) 0.8784(5) 0.9309(18) 0.9521(13)
0.1727 ð�;∓Þ 0.7600(11) 0.7850(4) 0.8443(18) 0.8669(13)
0.2230 ð�;�Þ 0.8690(8) 0.8928(5) 0.9273(14) 0.9484(11)
0.1727 ð�;�Þ 0.7763(7) 0.8007(5) 0.8413(14) 0.8629(11)
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