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We introduce a hybrid many-body approach that combines the flexibility of the No-Core Shell Model 
(NCSM) with the efficiency of Multi-Configurational Perturbation Theory (MCPT) to compute ground-
and excited-state energies in arbitrary open-shell nuclei in large model spaces. The NCSM in small 
model spaces is used to define a multi-determinantal reference state that contains the most important 
multi-particle multi-hole correlations and a subsequent second-order MCPT correction is used to capture 
additional correlation effects from a large model space. We apply this new ab initio approach for the 
calculation of ground-state and excitation energies of even and odd-mass carbon, oxygen, and fluorine 
isotopes and compare to large-scale NCSM calculations that are computationally much more expensive.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The solution of the nuclear many-body problem with realis-
tic interactions is at the heart of ab initio nuclear structure the-
ory. In recent years tremendous progress has been made in the 
ab initio description of nuclear observables, particularly in the 
regime of medium-mass nuclei beyond the p-shell. Innovative ap-
proaches like Coupled Cluster (CC) theory [1–6], In-Medium Sim-
ilarity Renormalization Group (IM-SRG) [7–11], or Self-Consistent 
Green’s function (SCGF) [12,13] have been established and provide 
accurate descriptions of ground-states observables. In a previous 
work we have shown that many-body perturbation theory (MBPT) 
with Hartree–Fock single-particle orbitals yields rapidly convergent 
perturbation series and that low-order partial sums are in agree-
ment with state-of-the-art CC calculations [14], thus, adding to the 
collection of efficient medium-mass methods.

Despite all the progress, the description of fully open-shell 
medium-mass systems remains a challenge. The aforementioned 
methods, in their basic formulation, are limited to ground states 
of nuclei with closed sub-shells. The ground state of these nuclei 
is dominated by a single Slater determinant that can serve as a 
reference state for the construction of the fully correlated eigen-
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state. Several extensions have been developed to expand the range 
of the single-determinant methods. Isotopes in the vicinity of shell 
closures can be tackled by equation-of-motion techniques build on 
the ground state of a neighbouring closed-shell nucleus [4]. Fur-
ther away from shell closures, traditional shell-model approaches, 
build on a closed-shell core and a small valence-space, combined 
with non-perturbative valence-space interactions derived from ei-
ther CC [15] or IM-SRG [16,17] have been used successfully.

An important step towards a full no-core description of open-
shell nuclei with multi-determinantal reference states is the 
multi-reference formulation of the IM-SRG [11]. First applications 
used particle-number projected Hartree–Fock–Bogoliubov refer-
ence states for even-mass isotopes in semi-magic chains [18–20]. 
Moreover, we merged the multi-reference IM-SRG with the No-
Core Shell Model (NCSM) [21–23] to address arbitrary even-mass 
isotopes and excited states [24]. These methods are powerful and 
efficient but far from trivial, both, conceptually and algorithmi-
cally. Recently, the concept of symmetry breaking has also been 
applied in the framework of perturbation theory and first ap-
plications of particle-number-broken Bogoliubov MBPT have been 
discussed [25].

In this paper we present a much simpler approach, a combina-
tion of the NCSM in small model spaces with a low-order MBPT 
correction to capture correlations from a large space. This hybrid 
method, for the first time, allows to calculate nuclear ground-state 
and excitation energies for all open-shell systems in large no-core 
model spaces. After defining the Hamiltonian, we review multi-
configurational perturbation theory and discuss the combination 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with reference states obtained in the NCSM. We then explore the 
convergence of the perturbative expansion up to high orders to 
justify low-order truncations. Using second-order perturbative cor-
rections we perform a detailed study of ground-state and excita-
tion energies for carbon and oxygen isotopes and benchmark with 
large-scale NCSM calculations. Furthermore, we present the first 
no-core ab initio results for the fluorine isotopic chain out to the 
extremely neutron-rich 31F.

2. Nuclear Hamiltonian

In all following calculations we start from the chiral nucleon–
nucleon (NN) interaction at next-to-next-to-next-to leading or-
der by Entem and Machleidt [26]. We include a chiral three-
nucleon (3N) interaction at next-to-next-to leading order with a 
local regulator and a three-body cutoff of �3N = 400 MeV [27,28]. 
The Hamiltonian is softened using a Similarity Renormalization 
Group (SRG) transformation with a flow parameter α = 0.08 fm4

[29–31,22,32]. This transformation induces many-nucleon forces 
that are included consistently up to the 3N level, many-body 
forces beyond that level are neglected. This SRG-evolved interac-
tion has been used in a number of calculations in the medium-
mass regime [6,14,24,19,20] and is, thus, ideally suited to bench-
mark the present approach.

3. Multi-configurational perturbation theory

The heart of Rayleigh–Schrödinger perturbation theory is the 
definition of an additive splitting, called partitioning, of the nu-
clear Hamiltonian into an unperturbed part H0 and a perturba-
tion W , such that H = H0 + W . While the choice of partitioning 
is simple in the case of standard MBPT with respect to a single 
Slater determinant, there is no canonical generalization to multi-
configurational reference states and several formulations are pos-
sible. We adopt the so-called multi-configurational perturbation 
theory (MCPT) discussed in Refs. [33,34] and also used in Ref. [35].

We choose our multi-configurational reference state |ψref〉 to be 
a normalized eigenvector obtained in a prior NCSM calculation in 
a model space Mref,

|ψref〉 ≡
∑

ν∈Mref

cν |φν〉 , (1)

where cν denotes the expansion coefficients and |φν 〉 the orthonor-
mal many-body basis states, the simple Slater determinant basis of 
the NCSM in our case. The unperturbed Hamiltonian is chosen such 
that the reference state fulfils an eigenvalue relation

H0 |ψref〉 = E(0)

ref |ψref〉 . (2)

Formally, the unperturbed Hamiltonian can then be written in the 
spectral representation

H0 = E(0)

ref |ψref〉〈ψref| +
∑

ν /∈Mref

E(0)
ν |φν〉〈φν | . (3)

Note that only the reference state and not the other eigenstates of 
the initial NCSM calculation in Mref are relevant here.

Following the Møller–Plesset idea, the zeroth-order energies 
E(0)
ν of the unperturbed many-body states |φν〉 outside the ref-

erence space, ν /∈ Mref, are given by the sum E(0)
ν = ∑

p εp of 
single-particle energies εp for the states occupied in |φν〉. The 
single-particle energies are defined via

εp ≡ 〈p|H [1]|p〉 +
∑

rs

〈pr|H [2]|ps〉 γrs , (4)
where H [1], H [2] are the one- and two-body parts of the full 
Hamiltonian, respectively, and γrs is the one-body density ma-
trix of the reference state. In principle, an explicit three-body 
term can be included as well, however, for the sake of computa-
tional simplicity we will later-on use a normal-ordered two-body 
(NO2B) approximation for the inclusion of 3N interactions [36]. 
The zeroth-order reference energy is also defined via these single-
particle energies taking into account the multi-determinantal char-
acter of the reference state through the mean occupation numbers, 
i.e., the diagonal elements of the one-body density matrix γpp , so 
that E(0)

ref = ∑
p εpγpp .

With the partitioning defined in Eq. (3) the zeroth- and first-
order contributions to the perturbation series for the energy read

E(0) = 〈ψref|H0|ψref〉 = E(0)

ref , (5)

E(1) = 〈ψref|W |ψref〉 = 〈ψref|H|ψref〉 − E(0)

ref . (6)

Obviously, the sum E(0) + E(1) reproduces the full reference energy, 
i.e., the eigenvalue obtained for the reference state with the full 
Hamiltonian H in Mref.

The second-order energy correction has the well-known form

E(2) = −
∑

ν /∈Mref

|〈ψref|W |φν〉|2
E(0)
ν − E(0)

ref

= −
∑

ν /∈Mref

|〈ψref|H|φν〉|2
E(0)
ν − E(0)

ref

(7)

= −
∑

μ′∈Mref

cμ′
∑

μ∈Mref

c	
μ

∑

ν /∈Mref

〈φμ|H|φν〉〈φν |H|φμ′ 〉
E(0)
ν − E(0)

ref

. (8)

Higher-order perturbative contributions can be formulated in a 
straightforward manner with the same basic structures for ma-
trix elements and energy denominators. Likewise the perturbative 
corrections to the many-body states can be evaluated, which is of 
interest for the computation of observables other than the ener-
gies. One can also employ a recursive formulation, as discussed in 
Refs. [37,38], to systematically extract high-order corrections.

The matrix elements in the final expressions for the perturba-
tive corrections only involve the simple unperturbed basis states 
|φν〉, i.e., the Slater determinants that are the basis in m-scheme 
NCSM calculations. Those matrix elements can be readily evalu-
ated using standard NCSM technology. As an efficient alternative, 
we employ normal-ordering techniques for evaluating the matrix 
elements in Eq. (8). We normal order the Hamiltonian with re-
spect to the rightmost determinant |φμ′ 〉 and we redo the normal 
ordering for each element of the μ′ summation. Similar techniques 
have been applied in quantum chemistry [41,42]. The computa-
tional scaling of the second-order correction for large reference 
spaces is given by dim(Mref)

2 · n2
p · nh , where np, nh denote the 

number of particle and hole states, respectively.

4. Combining NCSM and MCPT

Using the multi-configurational formulation of perturbation 
theory, we can define a two-stage hybrid approach for the ab initio
calculation of ground-state energies and excitation spectra.

The first step consists of an NCSM calculation in a small model 
space, typically Nref

max = 0, 2 or 4, for a set of low-lying eigen-
states. These eigenstates guarantee good Jπ quantum numbers and 
already contain the most important multi-particle multi-hole cor-
relations as a seed for the perturbative improvement. The second 
step then consists of the evaluation of the perturbative corrections 
in a large model space, typically we use a truncation of the single-
particle harmonic oscillator basis at emax = (2n + l)max = 12. Each 
NCSM eigenstate of interest serves as reference state for separate 
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Fig. 1. Partial sums (left panel) of 6Li and 7Li for the chiral NN+3N interaction with 
α = 0.08 fm4 and truncation parameters Nmax = 4. The corresponding energy cor-
rections for each order are displayed in the right panel, respectively. All calculations 
are performed with a harmonic-oscillator basis at h̄� = 20 MeV.

evaluations of the perturbative correction. Thus, perturbation the-
ory is used as a convergence booster that efficiently accounts for 
correlations from a huge model space.

Formally, this NCSM-PT approach is guaranteed to converge to 
the exact result in two different limits: In the limit Nref

max → ∞ the 
perturbative energy corrections go to zero and we obtain the ex-
act eigenvalue. Alternatively, in the limit of the perturbative order 
p → ∞ the exact value is also reproduced for all Nref

max, provided 
that the perturbation series converges. In practice, we will restrict 
ourselves to second-order perturbative correlations, to keep the 
computational cost at a minimum, and vary Nref

max to explore the 
stability of the NCSM-PT energies.

As input for the perturbative corrections the initial three-
body Hamiltonian is normal-ordered with respect to the multi-
configurational NCSM reference state. Subsequently, we discard the 
residual three-body part and work with the chiral Hamiltonian in 
normal-ordered two-body approximation [36].

5. Convergence characteristics

To demonstrate that the multi-configurational perturbation se-
ries is well behaved for NCSM reference states, we explicitly eval-
uate high-order energy correlations adopting the recursive scheme 
discussed in [37,38]. As benchmark systems we choose 6Li and 
7Li using a Nref

max = 0 reference space and a small Nmax-truncated 
space for the perturbative corrections, so that a direct compari-
son with explicit NCSM calculations for the same Nmax is possible. 
We use an underlying harmonic-oscillator single-particle basis for 
these studies. Fig. 1 shows the p-th order partial sums in the left-
hand panels and the size of the individual perturbative corrections 
on a logarithmic scale in the right-hand panels. The different data 
sets correspond to the lowest four eigenstates from the Nref

max = 0
space used as reference states in the perturbative calculation. For 
all states the partial sums converge quickly and higher-order en-
ergy corrections are exponentially suppressed. The high-order par-
tial sums agree within a few ten keV with the results of direct 
NCSM calculations in the same model space. We also find that 
the low-order partial sums provide a reasonable approximation to 
the converged value. Note that the high-order treatment requires 
the storage of the many-body basis, and is, therefore, not applica-
ble to medium-mass systems or large model spaces. It serves as a 
proof-of-principle calculation for the convergence of the perturba-
tion expansion.
6. Ground-state energies

For heavier systems and larger model spaces, where we cannot 
compute the perturbation series up to high orders explicitly, we 
limit ourselves to the computationally simple second-order pertur-
bative correction. We explore ground and excited states through 
the carbon and oxygen isotopic chains, including even and odd-
mass isotopes. For some of these systems, large-scale calculations 
with the importance-truncated NCSM are still feasible, so that 
we can benchmark the NCSM-PT results directly. The importance-
truncated NCSM calculations within the NO2B approximation are 
performed up to Nmax = 10 using an optimized natural orbital 
single-particle basis obtained from diagonalizing a MBPT-corrected 
one-body density. The use of such natural orbitals improves the 
model-space convergence and eliminates the dependence on the 
underlying oscillator frequency [39].

The results for the ground-state energies of carbon, oxygen, and 
fluorine isotopes are summarized in Fig. 2, respectively. In addition 
to the NCSM-PT results including the second-order correction for 
Nref

max = 0 and 2, we also show the reference energy, i.e., the NCSM 
eigenvalue obtained in the Nref

max space. For these calculations we 
use a Hartree–Fock single-particle basis in order to further opti-
mize the reference states. Both the reference energies and second-
order partial sums show a sizable dependence on Nref

max. In general 
when starting from a Nref

max = 2 reference state NCSM-PT provides 
better ground-state systematics than Nref

max = 0 reference states. In 
particular NCSM-PT at Nref

max = 2 almost perfectly reproduces the 
large-scale IT-NCSM results. This indicates that the Nref

max = 2 space 
adds important correlations to the reference states that cannot 
be captured by the second-order perturbative correction. We con-
clude that the NCSM-PT with Nref

max = 2 generally provides accurate 
ground-state energies and an ideal compromise between accuracy 
and computational efficiency. A single such NCSM-PT calculation 
requires typically two to three orders of magnitude less computing 
time than the corresponding importance-truncated NCSM calcula-
tion. With the present implementation we will be able to perform 
NCSM-PT calculations with Nref

max = 2 up to the calcium isotopes 
and slightly beyond.

The NCSM-PT ground-state energies in Fig. 2 for the neutron-
rich fluorine isotopes out to heaviest known isotope 31F [43] rep-
resent the first no-core ab initio calculations of these nuclei. This 
regime is relevant for the so-called oxygen anomaly [44], i.e., the 
drastic shift of the neutron dripline from the oxygen to the fluorine 
isotopic chain. Our calculations show practically constant ground-
state energies in the range from 25F to 31F, in agreement with 
experiment. It will be very interesting to explore this phenomenon 
with a range of chiral NN+3N interactions, to study its robustness 
and the theoretical uncertainties resulting from the input interac-
tion.

Next we will explore the impact of chiral three-body forces 
on the ground-state systematics. Therefore, we compare our prior 
results for the NN+3N-full Hamiltonian to ground-state energies 
obtained from using the chiral NN interaction and keeping SRG-
induced many-body terms up to the three-body level (NN+3N-
ind). We emphasize that the NN+3N-induced Hamiltonian is (ap-
proximately) unitarily equivalent to the initial NN interaction. 
Fig. 3 provides a comparison of the two interactions for the carbon, 
oxygen and fluorine isotopic chains. All calculations are performed 
with Nref

max = 2 reference states. We observe that in all cases the 
second-order results without chiral 3N forces yield less binding 
and the agreement with experiment is significantly worse. Of par-
ticular importance is the impact on the oxygen dripline. While the 
inclusion of chiral 3N forces provides the neutron dripline at 24O, 
the NN+3N-ind interaction is unable to reproduce this property 
and predicts the neutron rich 25,26O to be bound more tightly 
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Fig. 2. Reference energies ( , ) and second-order NCSM-PT energies ( , ) with Nref
max = 0 and 2, respectively, for the ground states of 11−20C, 16−26O, and 17−31F for 

the NN+3N-full interaction with α = 0.08 fm4 and model-space truncation emax = 12. All calculations are performed with a Hartree–Fock optimized single-particle basis at 
h̄� = 20 MeV. Importance-truncated NCSM calculations ( ) are shown for comparison [39]. Experimental values are indicated by black bars [40].

Fig. 3. Reference energies ( , ) and second-order NCSM-PT energies ( , ) with Nref
max = 2 for the ground states of 11–20C, 16–26O, and 17–31F for the NN+3N-ind (squares) 

and NN+3N-full interaction (circles). The SRG flow parameter is given by α = 0.08 fm4 and all calculations are performed within a emax = 12 truncated model space. We use 
Hartree–Fock optimized single-particle basis at h̄� = 20 MeV. Experimental values are indicated by black bars [40].
than 24O. It was already observed in prior calculations that the in-
clusion of chiral 3N forces is necessary for the correct reproduction 
of the experimentally observed dripline [44,19].

We observe a similar trend in the fluorine chain, where the in-
clusion of chiral 3N induces a kink in the ground-state binding 
energies at 25F, i.e., at neutron number N = 16 as in the neigh-
bouring 24O. Beyond 25F ground-state energies remain constant 
up to 30F which corresponds to opening up the f7/2 shell. The 
NN+3N-ind interaction predicts a completely different behaviour 
with smoothly decreasing ground-state energies up to 29F, in con-
tradiction to experiment.

7. Excitation spectra

By evaluating the second-order correction for different refer-
ence states extracted from the NCSM spectrum in the Nref

max space 
we can address the excited states directly. We obtain the abso-
lute NCSM-PT energies of the excited states from separate calcula-
tions of the second-order correction and subsequently subtract the 
NCSM-PT ground-state energy to extract excitation energies. Fig. 4
presents the excitation spectra of selected carbon and oxygen iso-
topes compared to direct NCSM calculations.

It is well known that same-parity excitation energies in NCSM 
converge much faster with Nmax than absolute energies. There-
fore, many of the NCSM excitation energies shown in the right-
hand columns of each panel in Fig. 4 are already quite stable. The 
NCSM-PT, which leads to stable absolute energies for the excited 
states, can hardly improve the convergence of the excitation en-
ergies. We find similar stability with respect to Nmax and Nref

max
and good agreement for practically all excitation energies. In cases 
where the level ordering changes in the NCSM at large Nmax the 
NCSM-PT calculations give the correct level ordering right away, 
examples are lowest two states in 15C, and the third and fourth 
state in 19O. As for the ground-state energies, an NCSM-PT cal-
culation for Nref

max = 2 provides a good compromise of accuracy 
and computational efficiency, in particular since going to Nmax

ref = 4
yields no further improvement for most of the calculations. Due to 
the scaling with the reference-space dimension, the NCSM-PT cal-
culations with Nref

max = 4 reference states need about two orders of 
magnitude more computing time than with Nref

max = 2. We further 
note that absolute energies in NCSM are far from being converged.

8. Conclusion and outlook

We have introduced a hybrid ab initio approach, the NCSM-PT, 
that combines the flexibility of the NCSM with the efficiency of 
MBPT techniques to compute ground and excited-state energies in 
arbitrary open-shell systems in large model spaces. The NCSM in 
small model spaces is used to define a multi-determinantal refer-
ence state that contains the most important multi-particle multi-
hole correlations and the second-order correction from multi-
configurational perturbation theory are used to capture correla-
tion effects from a large model-space. Everything is formulated 
in an m-scheme basis, so that even and odd-mass nuclei and ex-
cited states can be treated directly. We find very good agreement 
of the ground-state and excitation energies obtained in NCSM-PT 
with direct NCSM calculations—the accuracy of the NCSM-PT is on 
par with more demanding approaches like the multi-reference IM-
SRG. We presented the first no-core ab initio calculations for the of 
neutron-rich fluorine isotopes, which reproduce the so called oxy-
gen anomaly.
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Fig. 4. Spectra obtained via second-order NCSM-PT for selected carbon and oxygen isotopes for the NN+3N-full interaction with α = 0.08 fm4, emax = 12, and h̄� = 16 MeV. 
These calculations are performed with a harmonic-oscillator basis to separate centre-of-mass contaminations in the reference states. Importance-truncated NCSM calculations 
for a sequence of model spaces are displayed in the right panel. For 19,20O and Nref

max = 4 we introduced an additional truncation cμcμ′ ≥ 10−6 (μ �= μ′) for the calculation 
of the second-order energy corrections in NCSM-PT in order to reduce computing time.
Because of its low computational cost compared to standard 
NCSM calculations, this approach is ideally suited for exploratory 
calculations over a large range of nuclei. With the rapid progress 
in the construction of consistent NN+3N interactions from chiral 
EFT at various orders and with different regulators [45,46], survey 
calculations for testing and constraining new nuclear interactions 
will be of great importance.

Acknowledgements

This work is supported by the DFG through contract SFB 1245, 
the Helmholtz International Center for FAIR within the framework 
of the LOEWE program launched by the State of Hesse, and the 
BMBF through contracts 05P18RDFN1 (NuSTAR.DA). Numerical cal-
culations have been performed at the computing center of the TU 
Darmstadt (lichtenberg), at the Jülich Supercomputing Centre (ju-
reca), and at the LOEWE-CSC Frankfurt.

References

[1] D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 69 (2004) 054320.
[2] R.J. Bartlett, M. Musial, Rev. Mod. Phys. 79 (2007) 291.
[3] G. Hagen, T. Papenbrock, D.J. Dean, M. Hjorth-Jensen, Phys. Rev. C 82 (2010) 

034330.
[4] K. Kowalski, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, P. Piecuch, Phys. Rev. 

Lett. 92 (2004) 132501.
[5] P. Piecuch, J.R. Gour, M. Wloch, Int. J. Quant. Chem. 109 (2009) 3268.
[6] S. Binder, J. Langhammer, A. Calci, R. Roth, Phys. Lett. B 736 (2014) 119.
[7] H. Hergert, S.K. Bogner, S. Binder, A. Calci, J. Langhammer, R. Roth, A. Schwenk, 

Phys. Rev. C 87 (2013) 034307.
[8] K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106 (2011) 222502.
[9] T.D. Morris, N.M. Parzuchowski, S.K. Bogner, Phys. Rev. C 92 (2015) 034331.

[10] T.M. Henderson, G.E. Scuseria, J. Dukelsky, A. Signoracci, T. Duguet, Phys. Rev. C 
89 (2014) 054305.

[11] H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rep. 621 
(2016) 165.

[12] V. Soma, A. Cipollone, C. Barbieri, P. Navrátil, T. Duguet, Phys. Rev. C 89 (2014) 
061301.

[13] A. Cipollone, C. Barbieri, P. Navrátil, Phys. Rev. Lett. 111 (2013) 062501.
[14] A. Tichai, J. Langhammer, S. Binder, R. Roth, Phys. Lett. B 756 (2016) 283.
[15] G.R. Jansen, M.D. Schuster, A. Signoracci, G. Hagen, P. Navrátil, Phys. Rev. C 94 

(2016) 011301.
[16] S.K. Bogner, H. Hergert, J.D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, 
R. Roth, Phys. Rev. Lett. 113 (2014) 142501.

[17] S.R. Stroberg, H. Hergert, J.D. Holt, S.K. Bogner, A. Schwenk, Phys. Rev. C 93 
(2016), 051301(R).

[18] H. Hergert, R. Roth, Phys. Rev. C 80 (2009) 024312.
[19] H. Hergert, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 110 

(2013) 242501.
[20] H. Hergert, S.K. Bogner, T.D. Morris, S. Binder, A. Calci, J. Langhammer, R. Roth, 

Phys. Rev. C, Nucl. Phys. 90 (2014) 041302.
[21] P. Navrátil, S. Quaglioni, I. Stetcu, B. Barrett, J. Phys. G 36 (2009) 083101.
[22] R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, Phys. Rev. Lett. 107 

(2011) 072501.
[23] B.R. Barrett, P. Navrátil, J.P. Vary, Prog. Part. Nucl. Phys. 69 (2013) 131.
[24] E. Gebrerufael, K. Vobig, H. Hergert, R. Roth, Phys. Rev. Lett. 118 (2017) 152503.
[25] A. Tichai, P. Arthuis, T. Duguet, H. Hergert, V. Somà, R. Roth, Phys. Lett. B 786 

(2018) 195.
[26] D.R. Entem, R. Machleidt, Phys. Rev. C 68 (2003), 041001(R).
[27] P. Navrátil, Few-Body Syst. 41 (2007) 117.
[28] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, P. Navrátil, Phys. Rev. Lett. 

109 (2012) 052501.
[29] S.K. Bogner, R.J. Furnstahl, R.J. Perry, Phys. Rev. C 75 (2007), 061001(R).
[30] H. Hergert, R. Roth, Phys. Rev. C 75 (2007), 051001(R).
[31] R. Roth, S. Reinhardt, H. Hergert, Phys. Rev. C 77 (2008) 064003.
[32] E.D. Jurgenson, P. Maris, R.J. Furnstahl, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. 

Rev. C 87 (2013) 054312.
[33] Z. Rolik, A. Szabados, P.R. Surján, J. Chem. Phys. 119 (2003) 1922.
[34] P.R. Surján, A. Szabados, D. Köhalmi, Ann. Phys. (Leipz.) 13 (2004) 223.
[35] R. Roth, Phys. Rev. C 79 (2009) 064324.
[36] E. Gebrerufael, A. Calci, R. Roth, Phys. Rev. C 93 (2016), 031301(R).
[37] R. Roth, J. Langhammer, Phys. Lett. B 683 (2010) 272.
[38] J. Langhammer, R. Roth, C. Stumpf, Phys. Rev. C 86 (2012) 054315.
[39] A. Tichai, J. Müller, K. Vobig, R. Roth, Natural orbtitals in large-scale no-core 

shell model calculation, 2018, unpublished.
[40] M. Wang, G. Audi, F. Kondev, W. Huang, S. Naimi, X. Xu, Chin. Phys. C 41 (2017) 

030003.
[41] G. Hose, U. Kaldor, J. Phys. B 12 (1979) 3827.
[42] G. Hose, U. Kaldor, Phys. Scr. 21 (1980) 357.
[43] H. Sakurai, S. Lukyanov, M. Notani, N. Aoi, D. Beaumel, N. Fukuda, M. Hirai, E. 

Ideguchi, N. Imai, M. Ishihara, H. Iwasaki, T. Kubo, K. Kusaka, H. Kumagai, T. 
Nakamura, H. Ogawa, Y. Penionzhkevich, T. Teranishi, Y. Watanabe, K. Yoneda, 
A. Yoshida, Phys. Lett. B 448 (1999) 180.

[44] T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk, Y. Akaishi, Phys. Rev. Lett. 105 (2010) 
032501.

[45] E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. Lett. 115 (2015) 122301.
[46] D.R. Entem, R. Machleidt, Y. Nosyk, Phys. Rev. C 96 (2017) 024004.

http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4465486A3034s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4261526F3037s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486150613130s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486150613130s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4B6F44653034s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4B6F44653034s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5069476F3039s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib42694C613134s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865426F3133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865426F3133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5473426F3131s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4D6F3135s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib48653134s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib48653134s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib483135s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib483135s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib536F43693133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib536F43693133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib436942613133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib54693136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4A613136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4A613136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib426F3134s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib426F3134s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5374723136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5374723136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865526F3039s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486542693133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486542693133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865313461s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865313461s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4E6151753039s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F4C613131s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F4C613131s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4261724E613133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4765566F3137s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5469636861693A323031386D6C6Cs1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5469636861693A323031386D6C6Cs1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib456E4D613033s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4E613037s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F42693132s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F42693132s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib426F46753037s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4865526F3037s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F52653038s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4A754D613133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4A754D613133s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F537A3033s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib5375537A3034s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F74683039s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4765623136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib526F4C613130s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4C61526F3132s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib414D453136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib414D453136s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486F4B613739s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib486F4B613830s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib53614C753939s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib53614C753939s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib53614C753939s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib53614C753939s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4F7453753130s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib4F7453753130s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib45704B723135s1
http://refhub.elsevier.com/S0370-2693(18)30798-6/bib456E4D613137s1

	Open-shell nuclei from No-Core Shell Model with perturbative improvement
	1 Introduction
	2 Nuclear Hamiltonian
	3 Multi-conﬁgurational perturbation theory
	4 Combining NCSM and MCPT
	5 Convergence characteristics
	6 Ground-state energies
	7 Excitation spectra
	8 Conclusion and outlook
	Acknowledgements
	References


