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We study fermionic excitations in a hot and dense strongly interacting medium consisting of quarks and
(pseudo-)scalar mesons. In particular, we use the two-flavor quark-meson model in combination with the
functional renormalization group (FRG) approach, which allows to take into account the effects from
thermal and quantum fluctuations. The resulting fermionic excitation spectrum is investigated by
calculating the quark spectral function at finite temperature, quark chemical potential, and spatial
momentum. This involves an analytic continuation from imaginary to real energies by extending the
previously introduced analytically continued FRG method to the present case. We identify three different
collective excitations in the medium: the ordinary thermal quark, the plasmino mode, and an ultrasoft
“phonino” mode. The dispersion relations of these modes are extracted from the quark spectral function.
When compared to corresponding results from an FRG-improved one-loop calculation, a remarkable

agreement has been found.
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I. INTRODUCTION

The spectrum of fermionic excitations in a hot relativistic
plasma composed of quarks, antiquarks, and gluons (or
electrons, positrons, and photons) exhibits interesting
collective modes that have been studied for several decades
by now [1-24]. Various methods have been developed to
study these systems, based on perturbation theory, i.e., the
hard thermal loop (HTL) or hard dense loop approximation
[3.8,9,13], as well as kinetic theory [25-27]. One generally
finds the emergence of collective phenomena on a “soft”
momentum scale p ~ gT or p ~ gu, where g is the coupling
constant, 7' the temperature, and y the fermion chemical
potential. Already standard HTL calculations show the
existence of two branches, namely, the ordinary fermionic
quasiparticle branch and the “plasmino” or hole mode, i.e.,
a collective excitation termed in analogy to the plasmon
oscillation. Beyond-HTL calculations at finite temperature
also reveal another collective excitation in the region of

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2020,/101(9)/094010(17)

094010-1

ultrasoft momenta, p ~ ¢°T, g*>u, which we will refer to as a
“phonino” [7,16-18,21-24,28-35].

In this work, we investigate the existence and the
properties of these fermionic excitations at finite temper-
ature and density in the presence of fluctuations, thus going
beyond the usual HTL and one-loop calculations. In order
to include the effects from quantum and thermal fluctua-
tions, we use the functional renormalization group (FRG)
approach and apply it to the quark-meson model as a low-
energy model for the chiral aspects of two-flavor quantum
chromodynamics (QCD). The resulting fermionic excita-
tion spectrum is investigated by calculating the quark
spectral function at finite temperature, quark chemical
potential, and spatial momentum. This involves overcom-
ing the analytic-continuation problem, i.e., the difficulty to
extract real-time quantities such as spectral functions from
a Euclidean (imaginary-time) framework like the FRG, in
its usual formulation. We deal with this problem by using
the analytically continued FRG (aFRG) method, which was
proposed in Refs. [36-38]. The aFRG method avoids the
need for numerical reconstruction schemes, see, for exam-
ple, Refs. [39-47], and exhibits a number of particular
advantages: it preserves the underlying symmetry struc-
tures and their breaking patterns, and it is thermodynami-
cally consistent in that the thermodynamic potential and the
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spectral functions are calculated on the same footing. The
aFRG method has been successfully applied in different
situations, for example, to calculate mesonic in-medium
spectral functions in Refs. [37,38,48], vector- and axial-
vector meson spectral functions in Refs. [49], and quark
spectral functions at 7 =0 and g = 0 in Ref. [50]. The
present work therefore is an extension of Ref. [50] to finite
temperature and chemical potential as well as finite spatial
momentum relative to the heat bath.

The paper is organized as follows. In Sec. II, we briefly
introduce the FRG framework and its application to the
quark-meson model, and then apply the aFRG method to
derive the flow equation for the real-time quark two-point
function, from which the quark spectral functions are
obtained. In Sec. III, we discuss an FRG-improved one-
loop calculation, which is used for comparison to the FRG
computation. In Sec. IV, our results for the quark spectral
functions at finite temperature, finite quark-chemical poten-
tial, and finite spatial momentum as well as for the
dispersion relations of the identified fermionic excitations
are presented. We close with a summary and outlook in
Sec. V. Further details are deferred to several appendices.

II. QUARK SPECTRAL FUNCTION
WITH THE FRG

A. FRG approach to the quark-meson model

The FRG is a powerful nonperturbative approach with a
wide range of applications; see, for example, Refs. [51-58]
for reviews. It is usually formulated in (continuous)
Euclidean space-time and combines Wilson’s idea of the
renormalization group in momentum space [59,60] with
functional methods in quantum field theory.

In the following, we will use the formulation pioneered
by Wetterich [61], which aims at calculating the effective
average action I';, where k is the renormalization-group
scale. After choosing a suitable ansatz for the effective
average action at the ultraviolet (UV) scale k = A, the
effects of quantum and thermal fluctuations are gradually
included until the full effective action I' = I';_, is obtained
in the limit k — 0. The scale dependence of I';, is given by
the following flow equation:

1 -
L.y ) = 3 STHORUTY oy + RO ()

where R, is a regulator function that suppresses momentum

modes with momenta smaller than &, 1",((2) is the second
functional derivative with respect to the fields, and the
supertrace runs over field space, all internal indices, and
also includes an integration over internal momenta.

Our ansatz for the effective average action is based on the
quark-meson model as a low-energy effective theory for the
chiral aspects of QCD with two flavors [62,63] and reads

Clorw) = [ @504 o+ 777 - ol

1

n <a,,¢>2+Uk<¢2>—w}, @)

N

with ¢?> = 6% + 7, an effective potential Uy (¢?), the quark
chemical potential 4, and co an explicit chiral symmetry
breaking term which plays the role of the (up/down) current
quark mass in QCD. This ansatz represents the leading
order in a derivative expansion, also called local potential
approximation (LPA) [64,65]. When inserting this ansatz
into the Wetterich equation, one obtains the flow equation
for the effective potential,

B /1 3
akUk:@ Elk,a_"ilk,ﬂ_chNfIk,y/ . (3)
where explicit expressions for the threshold functions /;, are
given in Appendix A. At the UV scale A, we choose the
effective potential to be symmetric,

1
UA(¢2) = B

URSINCad @
and then solve the corresponding flow equation numeri-
cally using the so-called “grid method”; see, for example,
Ref. [63]. This method is based on a finite-difference
scheme to solve the FRG flow equation. In case of
discontinuities, such schemes do not always converge to
the correct solution, and one should rather use finite-
element or finite-volume methods; see Ref. [66].
However, as shown in Ref. [66], such discontinuities
typically do not influence the minimum of the effective
potential (i.e., the physical point), so that for the inves-
tigations presented in this paper the grid method is still
expected to produce reliable results. In fact, we also
checked explicitly that our results do not depend on the
particular numerical method used by comparing them to
results obtained from the so-called Kurganov-Tadmor
method [67], i.e., a finite-volume method. The numerical
values for the parameters are chosen as in Ref. [50], which
yields the following physical values for the pion decay
constant and the particle masses in the IR: f, = 93.5 MeV,
m, =138 MeV, m, =509 MeV, and m, =299 MeV.
The UV cutoff is chosen to be A =1 GeV. The solution
for the scale-dependent effective potential is then used as
input for the calculation of the quark two-point function
and the quark spectral function.

B. Quark two-point function and
analytic continuation

In order to obtain the flow equation for the quark two-
point function, we will follow the approach presented in
Ref. [50], but extend it to finite spatial momentum, finite
temperature, and quark chemical potential. First, we take
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Diagrammatic representation of the flow equation for the quark two-point function (top), cf. Eq. (5), and of the one-loop

expression for the quark self-energy (bottom), cf. Eq. (20). Solid lines represent quark propagators and dashed lines meson propagators.
The crosses represent regulator insertions 0;R; and the red circles the appropriate vertex functions.

two functional derivatives of the Wetterich equation,
Eq. (1), with respect to the fermionic fields, which yields

1 -
ALy  (p) = 5 Tr(ORu(G — Dyl — p)

(3) (3)
X Uy Pin ()T 5,6Dgp(a = P)

+ OkRp(q + P)Dygy(q + p)
3 3
x Fl(/_/l/)/(/)D(/’(/)(q)Fz(/‘/y)/(/)Dli/l//(q +p)),

(5)
see Fig. 1 for a diagrammatic representation. Therein, g =
(g0, q) is the internal and p = (py, p) the external momen-
tum, D = (Ff) + Ry)~! is the full regulated propagator, the
3
v
Eq. (2), and the remaining trace represents a summation
over all internal indices as well as an integration over
the internal momentum; see Appendix A for explicit
expressions. As in the original studies [36-38,50], we
use three-dimensional regulator functions, which only
regulate spatial momenta but not the energy components,
at the expense of slightly breaking the Euclidean O(4)
symmetry [36]. While in principle also four-dimensional
regulator functions can be used [68,69], the three-
dimensional regulators allow to analytically perform the
integration over the internal energy component, or the
corresponding Matsubara sum at finite temperature, which
significantly simplifies the analytic-continuation procedure
discussed in the following.

In order to obtain the flow equation for the real-time
quark two-point function, we have to perform an analytic
continuation from imaginary to real energies. This analytic
continuation is performed on the level of the flow equations
and is achieved by the following two-step procedure; see
also Refs. [37,38]. First, the periodicity of the bosonic and
fermionic occupation numbers, which appear in the flow
equation upon evaluating the Matsubara summation ana-
lytically, with respect to the Euclidean Matsubara frequen-
cies py = i2znT is exploited,

vertex functions I are obtained from the ansatz in

ng p(E +ipy) = ngp(E). (6)

In a second step, p, is replaced by a continuous real
energy ,

2 5 - . 2 N . . -
Ol (@. P) = ~imA, L)  (py = —i(w + i€). p).  (7)

One should note that the limit ¢ —» 0 can be taken
analytically for the imaginary part of the two-point func-
tion, while for the real part we use a small numerical value
€ =1 MeV. This analytic-continuation procedure obeys
the physical Baym-Mermin boundary conditions [70,71],
and the resulting retarded propagator is analytic in the
upper half of the complex-energy plane, as expected.

We now make the following ansatz for the scale-
dependent quark two-point function:

(2

) (@.5) = 1oCi(@. ) + 7 pA (@, ) — By (. )

(8)

with p = p/|p| and where the UV initial conditions for the
dressing functions are given by

A, p) = [pl. ©)
B (o, p) = he, (10)
Calw,p) = o+ u. (11)

See also Ref. [50]. The flow equation for the quark two-
point function,

2 - - - 5 -
3krz({,3y(w, D) =100k Cx(@, p) + iY - pO A (@, P)

_8kBk(a)’ ﬁ)? (12)
then leads to flow equations for the individual dressing
functions, which are discussed in the appendix. In particu-
lar, the analyticity of the flow of these dressing functions in
the upper half of the complex-energy plane is evident from
these expressions, cf. Egs. (D1)—~(D6), and guarantees that
the correct analytic behavior of the retarded propagator is
maintained in the flow.
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C. Quark spectral function

The quark spectral function is then given by

1

pk,l[/(a)’ ﬁ) = _;ImGk,t//(w’ ﬁ)’ (13)

where the propagator is defined as the inverse of the two-
point function. The quark spectral function therefore has
the same Dirac structure as the two-point function,

C - - A (A - B -
= yop;(c,,,f(w’ p)+iy- p/)(k,v), (w,p) + ﬂ;(c,l,f(w, ).

(14)

pk,y/(a)’ ﬁ)

where the individual components can be obtained as

1
piy(@. B) = ——ImG) (. ). (15)
with X € {A, B, C}. For a discussion of the properties of
these spectral functions and the corresponding sum rules,
we refer to Ref. [50].

In the following, we will focus on particle and anti-
particle spectral functions, i.e., states associated with
positive and negative energies, which can be extracted
from the quark spectral function py, (@, p) by applying
suitable projection operators. A general form of such a
projection operator is given by

1 o
A*F = 50~ en £ (ro? - B+ myo)], (16)
14

with e, = \/p* + m?; see, for example, Refs. [12,15]. This
projection operator, however, depends on the quark mass,
which introduces a certain ambiguity when dealing with
resonance states as encountered in the following. We will
therefore focus on two special cases where the dependence
on the quark mass drops out: the case of zero momentum
and that of zero quark mass. For p = 0, the quark spectral
function can be decomposed as

Py (@,0) = PZL (@)Liyo + prp(@)L_yy,  (17)

with L, = (1 %+ y,)/2, while for m,, = hoy = 0, we have

Py @, B) = pipl@, P)Piyo + pipl@, p)P_yo,  (18)

with P. = (1 £y07 - p)/2. For further details and proper-
ties of these spectral functions, we refer to Appendix A.

III. FRG-IMPROVED ONE-LOOP CALCULATION

It will be instructive to compare the results obtained with
the FRG setup to those from a one-loop calculation. In
order to arrive at a meaningful comparison, we will use the
same parameters and masses in the one-loop calculation as

in the FRG calculation. This in particular entails making
the meson masses in the one-loop calculation momentum
dependent, where the momentum scale is identified
with the FRG scale, as discussed in the following; see
also Ref. [72].

We first write the retarded quark propagator as

GR(w. p) =[(w+ie+u)yo—m, +ip7—2R (0, p)]!
=[roClw. p)+irpA(w.p) - B(w.p)] ™", (19)

where 2R (w, p) is the quark self-energy. The real-time quark
self-energy can be obtained from its Euclidean counterpart
>t (iw,, p) by analytic continuation iw, —w+ie, where
®, = (2n + 1)zT are the fermionic Matsubara frequencies.
In the imaginary-time formalism, we can write the quark
self-energy as

25 (i, )

-

= —h? iwnaé)_p)Gl//me’ 6)

Gy (i, —

+G (”/m7 )Gl//(wm + iwmé + 1_5)
+ 3Gﬂ(lwm - iwnv ZI' - ﬁ)i}/SGw(iwm’ ZDIJ/S
+3Gn:<iymv a)i75Gw(iym +ia)n’é+ﬁ)i75]7 (20)

where & is the Yukawa coupling and v,, = 2mzT are the
bosonic Matsubara frequencies. We note that, in order to
facilitate a comparison, the momentum routing is chosen to
be the same as in the FRG case; see also Fig. 1. This also
gives rise to the overall factor 2 in Eq. (20), since we are
using four instead of the usual two diagrams. The right-hand
side of Eq. (20) contains the free quark and meson
propagators, which are given by

Gy (iw,, p) = [(iw, +p)yo +ip -7 —m,]™", (21)

Golivy. p) = ((iv,)* = p> —mz(1))] ™', (22)

with @ € {0, 7} and where the meson masses are taken to be
momentum dependent. The momentum dependence is here
identified with the scale dependence from the FRG calcu-
lation, i.e., m,(|p|) = m, (k). The other parameters, such as
the quark mass m,, = ho, the Yukawa coupling £, the UV
cutoff A, and the initial values for the propagator at the cutoff
scale are also taken to be the same as in the FRG calculation,
in order to facilitate a comparison.

With this “FRG-improved” one-loop setup, we can
obtain the quark spectral function from the same expres-
sions as discussed for the FRG case, but with the coef-
ficients X € {A, B, C} replaced by X(w, p) = X, (@, p)+
AX(w, p) with
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FIG. 2. Combinations of the quasiparticle energies are shown
vs the RG scale k at T = 100 MeV, u = 0, and |p| = 0. Circles
indicate the locations of van Hove-like points, while continuum
regions are indicated by colored bars; see text for details.

AX(w, ) = Loy (0. P) + Liye (. )
+3L5) (0. 5) + 3L (0. 7). (23)

where explicit expressions for the loop functions £X) are
given in Appendix B. As shown in the appendix, there is a
striking similarity between the one-loop equations for these
loop functions and the corresponding FRG loop functions.
In fact, the FRG equations can be obtained by taking a
derivative of the one-loop equations, at least for zero
momentum, where it can also be shown that the final
result for the coefficients X € {B, C} only differs by a
boundary term; see Appendix C for a detailed discussion.

IV. RESULTS

A. Decay channels and quasiparticle energies

The structure of the quark spectral functions as obtained
from the FRG (or the FRG-improved one-loop setup)
depends to a large part on the behavior of the scale-
dependent quasiparticle energies, since they determine
scale-dependent thresholds ¢ for continuum contributions
to imaginary parts and hence the spectral functions,
which are accumulated during the flow. In Fig. 2, we
show, as an illustrative example, the scale dependence of
certain combinations of these energies at a temperature of
T = 100 MeV. The energies themselves are obtained by
solving the flow equation for the effective potential, Eq. (3),
and monitoring the scale-dependent energies, as defined in
Egs. (A5) and (A6), at the IR minimum o,.

In particular, we show the following combinations of
energies, connected with scale-dependent continuum
thresholds w¢, as summarized here for |p| = 0:

' <y +a, op = Epy + Epas (24)

l//* —+ l/_/ <~ a, w]i = Ek,a - Ek,l[l’ (25)

l//* + a <> v, a)i - E](,l// - Ek,aa (26)

vty t+a<0, f = =Epy —Erer  (27)

with @ € {6, 7}. The first type of process, y* < v + «,
describes the decay of an off-shell quark state y* with
energy @ into an on-shell quark and meson with energies
Ey,, and E; ,, as well as its inverse process. The second and
third lines describe thermal processes that can only occur in
a medium, while the other two processes can also occur in
the vacuum. The continuum regions connected to these
processes are indicated by colored bars in Fig. 2. We note
that the thermal processes can also give rise to van Hove—
like singularities in the spectral functions, which occur
when the derivatives of the energy differences with respect
to the scale k vanish; see also Ref. [49]. This effect can in
principle occur several times during the flow; see also
Fig. 2 where in fact several such van Hove-like singular-
ities can be identified at different scales k. We also note that
the UV and IR values of the energy combinations discussed
above determine the location of thresholds in the spectral
functions, as discussed below.

B. Quark spectral function at finite temperature

We now turn to the quark spectral function at finite
temperature but zero chemical potential and zero spatial
momentum. This case was also studied in Ref. [72] using
the same setup as presented here. In Fig. 3, we show
the quark spectral function p; (w) as obtained from the
FRG as well as the FRG-improved one-loop setup at
T =0, 100, 170, and 300 MeV.' We note that the under-
lying quark-meson model exhibits a chiral crossover
transition at zero chemical potential and finite temperature.
This crossover temperature was found to be 7. = 170 MeV
for the parameters and the setup chosen in this work; see
also Ref. [37].

We observe an overall good agreement between both
frameworks, with quantitative differences arising mostly in
the thermal continuum regime at smaller energies. This
thermal regime exhibits a complicated structure which is
largely due to the effects discussed above, i.e., van Hove—
like peaks as wells as IR and UV thresholds. In the vacuum,
the quark pole mass is found to be m}, ~ 320 MeV and then
slightly decreases, being m}, ~ 300 MeV at T = 100 MeV.
With increasing temperature, we also observe that the
thresholds associated to the processes y* <>y + ¢ and
w* <y + 7 approach each other. This is expected due to

'We note that at high temperatures, 7 > 170 MeV, the FRG
results sometimes show additional delta peaks with a very small
spectral weight, i.e., at least 10 times smaller compared to the
main delta-peak contribution, which are treated as truncation
artifacts by comparison with the one-loop results and are not
shown in the figures.
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The quark spectral function p; (@) as obtained from the FRG (solid) in comparison to the FRG-improved one-loop result

(dashed) at 4 = 0 and different temperatures: 7 = 0, 100, 170, and 300 MeV; see text for details.

the progressing restoration of the spontaneously broken
chiral symmetry which entails that the masses of the chiral
partners, i.e., of the sigma meson and the pion, become
degenerate at high temperatures; see also Ref. [37].

At T =170 MeV, we observe that the delta peak
associated with the quark quasiparticle enters the thermal
continuum regime, giving rise to a prominent peak with a
finite width. At this temperature, i.e., at the chiral crossover
temperature 7. of the model, we also observe the formation
of a massless mode at @ = 0 MeV. This so-called phonino
mode acquires a small mass at 7 > T, with mpyponino &
15 MeV at T = 300 MeV, while the thermal quasiparticle
peak inside the continuum monotonically moves to
higher energies with increasing temperature, being mj, ~
345 MeV at T =300 MeV, cf. Fig. 3. We find that the
spectral weight of the phonino mode is about 50% of the
total weight of the spectral function; see also Ref. [50].

C. Quark spectral function at finite density

We now turn to the case of finite temperature and finite
quark chemical potential but, for now, still zero spatial

momentum. In Fig. 4, we show the quark spectral function
pi (w) as obtained from the FRG as well as the FRG-
improved one-loop setup at 7 =9 MeV and different
chemical potentials. This temperature corresponds to the
critical end point of the model, which was determined to be
located at Tcgp %9 MeV and pucgp = 292 MeV for the
parameters chosen here [48].

The left panel of Fig. 4 shows the quark spectral function
at y = 270 MeV. When comparing this with the vacuum
spectral function in Fig. 3, we note that the chemical
potential simply acts as an overall shift in the energy. This
shift originates from the UV initial conditions for the
dressing functions, cf. Eq. (11), and from the structure
of the flow equations, as presented in the Appendix D,
where the energy w always appears in combination with the
chemical potential. The energy w is therefore measured
relative to the chemical potential and is interpreted as the
additional energy needed to create a quarklike excitation,
for example, given by the location of the delta peak in the
spectral function. Apart from this shift, the quark spectral
function remains almost unchanged over this wide range of
chemical potentials because the temperature is so low,
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FIG. 4. The quark spectral function p; (@) as obtained from the FRG (solid) in comparison to the FRG-improved one-loop calculation
(dashed) at T =9 MeV and different chemical potentials: y = 270 MeV (left) and ¢ = 291.9 MeV (right), see text for details.

demonstrating that in our calculations there is no substan-
tial Silver-Blaze problem [73].

When approaching the Critical endpoint (CEP), how-
ever, nontrivial medium modifications due to the chemical
potential have to become relevant, as shown in the right
panel of Fig. 4, i.e., at y =291.9 MeV. Apart from the
thermal-continuum structure, which is now shifted to
negative energies and arises due to the high quark density
rather than the temperature, we observe that location and
structure of the decay thresholds change when approaching
the CEP. This particularly concerns the threshold connected
with the process y* <> y + o, since the sigma mass rapidly
decreases near the CEP and in fact vanishes at this second-
order phase transition. The sigma-quark threshold therefore
moves to smaller energies close to the CEP, cf. Fig. 4. We
note that the study of the quark spectral function at
chemical potentials beyond the CEP is deferred to future
work since this region is hampered by the appearance of
negative-entropy regimes within current FRG calculations;
see also Ref. [74].

We also find that close to the CEP, the quark pole mass
decreases rapidly, see Fig. 5, where we show the depend-
ence of the quark pole mass on the chemical potential for
the FRG and the one-loop case. A deviation from the linear
behavior only occurs very close to the CEP, where the
quark pole mass as well as the Euclidean quark mass
parameter obtained from the minimum of the effective
potential (here plotted relative to the chemical potential)
both rapidly drop and eventually vanish at the CEP. For
comparison, we also show the corresponding results at 7 =
1 MeV in Fig. 5. At this low temperature, the phase
diagram exhibits a first-order phase transition, where the
quark mass changes discontinuously, while at 7 = 9 MeV
the masses are continuous; see, for example, Ref. [37]. The
height of the discontinuity determines the binding energy
per quark of the self-bound quark matter that arises at this
transition.

D. Quark spectral function at finite temperature and
finite momentum in the chiral limit

In the following, we will study the quark spectral
function in the chiral limit of vanishing explicit quark
masses, i.e., at ¢ = 0. In this limit, the chiral crossover turns
into a second-order phase transition where chiral symmetry
becomes fully restored and the constituent quark mass
vanishes continuously, cf., for example, Ref. [63]. On the
other hand, in the chirally broken phase, i.e., for T < T at
u = 0, the constituent quark mass is finite but the pions are
massless.

50t —— FRG - pole mass
1-loop - pole mass . T=9 MeV
e S - — T=1MeV = || <
0 50 100 150 200 250 300 350
U [MeV]
FIG. 5. The quark pole mass mj, as obtained from the FRG

(solid) in comparison to the FRG-improved one-loop calculation
(dashed), and the quark mass obtained from the minimum of the
effective potential, m,, = hoy, (dotted) at T =9 MeV vs chemi-
cal potential. In addition, we show the corresponding results for
T = 1 MeV where the masses exhibit a discontinuity at the first-
order phase transition. The value of the quark mass at the
discontinuity can be interpreted as the binding energy.
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FIG. 6. The quark spectral function p; (w) as obtained from
the FRG (solid) as well as from the FRG-improved one-loop
calculation (dashed) is shown at 7= 0 MeV (left) and T =
300 MeV (right) for 4 = 0 and ¢ = 0, i.e., in the chiral limit; see
text for details.

This can also be seen from Fig. 6 where we show the
quark spectral function p; (w) as obtained from the FRG as
well as the FRG-improved one-loop setup at 7 = 0 MeV
(left) and T = 300 MeV (right) for u = 0 and ¢ = 0. We
observe that, at 7 = 0 MeV, the quark delta peak is now
directly attached to the continuum generated by the process
v* < y + 7, since the pions are massless in this regime. At
T =300 MeV, the quark spectral function is almost
identical to the case with explicitly broken chiral symmetry,
¢ >0, cf. Fig. 3, and the quark quasiparticle peak has
again merged with the thermal continuum. On the other
hand, the phonino remains exactly massless for 7 > T, in
the chiral limit.

We now turn to the case of finite external spatial
momentum, |p| > 0, in the chiral limit at high temper-
atures. The particular advantage of this is that we can then
use the definition of p}(w,|p|) from Eq. (18), since the
quark mass is zero in the chirally restored phase at T > T,..
In Fig. 7, we show the quark spectral function p} (@, | p|) vs

the external energy w and the external spatial momentum
|p| at T = 180 MeV and T = 300 MeV as obtained from
the FRG-improved one-loop calculation. As a general
observation, we find that the particle peaks and thresholds
are Lorentz boosted to higher energies as the spatial
momentum increases, as expected. Apart from the thermal
quasiparticle peak at positive energies @, we can now also
clearly identify the antiplasmino mode at negative energies.
At |p| = 0, these two modes are degenerate and located at
the same value of |w|. We note that the actual plasmino
mode does not show up in Fig. 7 since we project on
particlelike excitations by using p (@, | p|). The plasmino,
as well as the thermal antiquark, however, carry the
quantum numbers of an antiparticle. These modes can
be obtained from pj(w,|p|) by reflecting it at w =0,
cf. Eq. (A32).

We also observe the formation of the phonino mode at
T > T,. In fact, the delta peak at @ ~0 MeV in Fig. 7
should rather be referred to as the antiphonino mode, since
the term phonino usually refers to a collective antiparticle-
like excitation while Fig. 7 only shows particlelike exci-
tations. The phonino itself can again be obtained by
reflecting pj (o, |p|) at @ = 0. We observe that at T =
180 MeV the antiphonino is boosted toward negative
energies with increasing spatial momentum, as expected
from other studies, see, for example, Ref. [22], while at
T =300 MeV it is moving toward positive energies, until
it merges with the thermal continuum in both cases.

E. Fermionic excitations and dispersion relations

We now turn to the dispersion relations of the fermionic
excitations identified in the preceding section. We note
that we use the peak positions in the spectral functions to
define the corresponding dispersion relations w(|p|). In
Fig. 8, we show the dispersion relations of the thermal
quark, the plasmino, the phonino, and the antiphonino at
high temperatures in the chiral limit. The particle or
antiparticle-like character of these excitations is indicated
as y or ¥ in the figure.

At T = 180 MeV, we find that the dispersion relation of
the thermal quark monotonically increases while the energy
of the plasmino decreases at first and reaches a minimum
at |p| ~50 MeV, from where on it increases again and
eventually approaches the thermal quark branch from
below. This behavior is expected from standard HTL
calculations where the slopes of these two branches are
obtained from

Bl 1B
a)—Mj:3+3M+..., (28)

where M is the mass of the thermal quark; see, for example,
Ref. [14]. The phonino mode also shows an approximately

linear dispersion relation at small momenta, until it merges
with the thermal continuum at |p|~ 100 MeV for
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T=180 MeV

-1000 -750 -500 -250 0

250 500 750 1000

250

-1000 -750 -500 250 0
w [MeV]

FIG. 7. The quark spectral function p} (w,

250 500 750 1000

p|) as obtained from the FRG-improved one-loop calculation (dashed) is shown vs the

external energy w and the external spatial momentum |p| at T = 180 MeV (top) and 7 = 300 MeV (bottom) in the chiral limit, i.e.,

¢ =0, and for u = 0, see text for details.

T = 180 MeV, and it is therefore only plotted up to this
value. We also note that the thermal quark mass at zero
momentum monotonically increases with temperature and
that the splitting between the thermal quark mode and the
plasmino mode decreases. The small kinks visible in the
dispersion relations usually appear when the corresponding
mode enters a continuum regime or passes a decay thresh-
old in the spectral function.

As for the phonino mode, we first note its spacelike
character, with an energy always smaller than its spatial
momentum, @ < |p|, which is evident from the light cone
indicated as long dashed line at @ = |p| in Fig. 8. We also
observe that the phonino branch continuously moves to
smaller energies with increasing temperature until it
switches roles with the antiphonino mode at about
T =210 MeV. At T =300 MeV, we therefore only see
the antiphonino mode in Fig. 8 while the phonino mode is
given by its reflection to negative energies. For the slope of
the phonino branch, we find

awphonino
o0 29
o5 2

~

N{l/\/§ FRG

|5/=0.T=300 MeV 1/3  one —loop
at T = 300 MeV. We note that a value of 1/3 is expected
from analytical beyond-HTL calculations at high temper-
atures, see, for example, Ref. [22], while a value of 1/ V3
was, for example, found numerically in Ref. [24]. We also
note that the sound velocity in an ideal fluid of massless
particles is given by ¢, = 1/+/3, owing to the well-known
relation between energy density and pressure, € = 3p. One
might therefore expect that a value of 1/4/3 should be
approached at high temperatures, which appears to be the
case in the FRG calculation already at about 300 MeV.
In general, however, we find that the slope of the
phonino mode rather strongly depends on the temperature,
cf., for example, the bottom and top panels of Fig. 8, and
that at higher temperatures, around 7 = 300 MeV, it is not
the phonino mode but the antiphonino mode that is present
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FIG. 8.

T=180 MeV, FRG
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The dispersion relations of the identified fermionic excitations as obtained from the FRG-improved one-loop calculation (left)

and the FRG calculation (right) are shown at 7 = 180 MeV (top) and at T = 300 MeV (bottom) in the chiral limit, i.e., c = 0, at u = 0;

see text for details.

at positive energies. This effect may be due to the nontrivial
structure of the overall spectral function and its dependence
on the temperature. In particular, the close proximity to the
thermal-continuum threshold seems to have a strong
influence on the phonino and the antiphonino branches.

V. SUMMARY AND OUTLOOK

In this work, we have studied quark spectral functions at
finite temperature, finite chemical potential, and finite
spatial momentum in order to identify fermionic excitations
in a hot and dense strongly interacting medium. As an
effective model for the chiral aspects of QCD, we used the
two-flavor quark-meson model. In order to include fluc-
tuations, we employed the FRG approach in the LPA. The
analytic continuation from imaginary to real energies
was performed using the aFRG method, which allows to
obtain analytically continued FRG flow equations for

retarded two-point functions. The particular truncation
scheme is thermodynamically consistent and preserves
chiral symmetry and its explicit versus dynamical breaking
patterns. As a simpler alternative scheme to calculate quark
spectral functions, we also assessed an FRG-improved
one-loop setup, which uses momentum-dependent quasi-
particle masses extracted from the FRG calculation. A
detailed comparison between the full FRG treatment and
the FRG-improved one-loop setup shows quite remark-
able agreement, revealing that the main effect of the
fluctuations included in the FRG calculation can be
reproduced by a suitably modified one-loop calculation.
This offers a simple physical interpretation of the results
and paves the way for systematic improvements in terms
of a loop expansion.

We find that the quark spectral functions exhibit non-
trivial in-medium modifications due to the influence of
various decay and scattering channels. In particular, we
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were able to identify three different fermionic excitations:
the thermal quark, the plasmino, and the phonino. We
presented results on the dispersion relations of these
collective excitations at finite temperature in the chiral
limit. The thermal quark and the plasmino mode behave as
expected from standard HTL calculations. The phonino, on
the other hand, shows a strongly temperature-dependent
dispersion relation, which eventually leads to a switching
of the phonino and the antiphonino modes at high
temperatures.

The results presented in this work open up possibilities
for several future applications. A direct application of the
momentum-dependent in-medium spectral functions is to
use them as input for the calculation of other real-time
quantities such as transport coefficients. Another interest-
ing possibility is given by improving the current truncation
toward a self-consistent solution of the spectral function,
which couples back to the effective potential, or to include
higher orders in the derivative expansion of the effective
action. Also, replacing the quarks by nucleon fields and
their parity partners would allow to study the corresponding
baryonic spectral functions in the parity-doublet model
with fluctuations beyond mean field as in Ref. [75], in order
to describe the liquid-gas transition of nuclear matter as
well as the chiral transition at high baryon density in a
unified framework. This can then furthermore be extended
to include vector and axial-vector mesons along the lines
of Ref. [49] and study their spectral changes in dense
nuclear matter.
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APPENDIX A: DETAILS OF THE FRG SETUP

The three-dimensional bosonic and fermionic regulator
functions are given by

R{(q) = (¥ = g*)o(k* = °).

REG) = id (x/kz/az - 1)e<k2 —P). ()

While the FRG flow for the effective average action
explicitly contains the regulator Rj, physics at k — 0
should not depend on a particular choice. For an up-to-
date discussion of how to devise optimized regulators in a

(A1)

particular truncation where this can be quite nontrivial,
see Ref. [76].

The threshold functions appearing in Eq. (3) are
given by

k
Lo = E (1 +2np(Erq)], (A3)
k,a
k
Iy = 5 (1 = np(Egy, —u) —np(Eg, +u)),  (A4)
ky
with the effective energies
Epo=\/k2 +mi,. a€{no,y} (A5)
and the masses
mp ,=2U}, mi ,=2U +4ULp*, mi, =h*¢*.  (A6)

The three-point vertex functions appearing in Eq. (5) are
given by

fori =0

. A7
fori=1,2,3 ( )

1
() _
Fu'/vmﬁ,- - h{ iySti

The dressing functions defined in Eq. (8) can be obtained
from the full two-point function as follows:

- | PPN -

Alw.P) = = w7 pTE (@) (AS)
Bu(@. ) = —~tr(T2 (@, A9
@, p) = -7 ul, (@ p)), (A9)

N .
Culw.P) = 0l gy (@. 7). (AL0)

The flow equations for the individual dressing functions are
then given by

O Xi(@. B) = Tio (0. B) + T o (. B)
+3T0 (0.5) +3T ) (@.). (All)

with X € {A, B, C} and the generalized loop functions

L9 5 (0.5.3)

(X) -
Tiaplo,p) = / a Al2
oD = | G (A12)
with a, € {o,7,y}, X € {A,B,C} and
+ for f =
+— { P=v (A13)
— fora=wy

The momentum integration therein is most conveniently
performed using spherical coordinates,
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/ (;"37‘)13:(217)3 / dq.q° / d6'sin0 / dp.  (Al4)

where the ¢-integration is trivial and the #-integration can
be performed analytically.

In Appendix D, we provide explicit expressions for
the loop functions J kflﬂ(w, D, q), where we use the follow-
ing notation. The function F () is given by

—sztq,cosﬁ for |g| > k
F(g) — ¢ VPzt4r+2p.g,cosd . (A15)
cos for |g| <k
The nonregulated energies E, are given by
E,=\/q; +m;.  a€{moy}  (Al6)

where ¢, is substituted by k for |G| <k, also in the
expressions for the loop functions. Moreover, we use the
following shorthand notation:

o =w+ie+u, (A17)
np = np(Ey). (A18)
fig = ng(E,). (A19)

ng =np(E, +u), (A20)
it = np(Ey + ) (A21)
and
+ fora=o
SZ{— fora=nx" (A22)

We also note that the limit ¢ — 0, which is implied
implicitly, can be performed analytically for the flow
equation of the imaginary part of the two-point functions.
This can be seen by rewriting the imaginary part of the loop
functions by using the Dirac-Sokhotsky identities,

1
limIm -
=0 w+ietE,+Eg

- —n6(w + E, £ Ez), (A23)

1
limIm - 5
=0 (o +ie+ E, £ Ep)

-8 (0w £ E, £ Ep). (A24)

The flow equation for the imaginary part of the retarded
two-point function then reduces to a sum over a few values
kq that correspond to the scales where one of the arguments
of the delta function becomes zero; see Ref. [49] for details.

Based on the solution of the flow equations of the
quark two-point function, the quark and antiquark spectral
functions at zero momentum are then given by

Ika F ImBk
ReCk F ReBk)2 —+ (Ika F ImBk)2 ’

pki.L(a’):ilr(

(A25)

Similarly, the quark and antiquark spectral functions at zero
quark mass are given by

1 Ika F ImAk
7 (ReCy F ReAy)? + (ImC; F ImA;)?”
(A26)

pki,P(a)v p) =

These expressions can be obtained by applying the
corresponding projection operators to the quark spectral
function,

P () =3 Trlpiy (@00 Ls] (A27)
= @)+ pl) (@) (A28)
and
pip(. ) = 3 Trlpry . PlroP?] (A29)
= Pl@, ) £ p) (. B). (A30)

We note that in general pif; (») and pifp(w, p) are neither
even nor odd functions. Instead, charge-conjugation sym-
metry requires

P (@) = pi (). (A31)
picp(@. D) = pip(-o.p). (A32)

See, for example, [19,20].

APPENDIX B: DETAILS OF THE
ONE-LOOP SETUP

The loop functions introduced in Eq. (23) are defined as

3

® 5 [ L9 ,00, 5>
L5 (,p) _/WLaﬂ (@, p.q), (B1)
with a, f € {0, 7.} and X € {A, B, C}. The momentum
integration is again performed using spherical coordinates,

/d3q— ! /Ad 2/”d9sin9/2”d¢ (B2)
@r7 o) Jo s 0

where A = 1 GeV is used as UV cutoff, as for the FRG
calculation.

In Appendix D, we provide explicit expressions for the
loop functions L,(j/? (o, p, q), where we use the following

notation. The energies are defined as
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E,=\/mi+q;, (B3)
E, =\/m} + ¢t (B4)
E,= \/ mg + q; + p? —2q,p.cosf,  (BS)
E, = \/mﬁ, + g%+ p? +2q,p, cos¥, (B6)

with @ € {z,0}, m,, = ho, and the momentum-dependent
meson masses are taken to be the scale-dependent masses

from the FRG calculation, m2(q,) = m2(k).

APPENDIX C: RELATION BETWEEN FRG
AND ONE-LOOP SETUP

We note that the one-loop expressions for AX(w, p), as
defined in Sec. III, are closely connected to the corre-
sponding FRG expressions. To see this, we first define

1 A
Axonc—loop(a)) — 2_”2/0 dkaZLg;;) (a))v (Cl)
af
1 & X
AXFRG () = 2_7124 dkgz:Jéﬂ)(a)), (C2)
ap

where p =0, X € {B,C}, ¢, was replaced by k in the
one-loop expression, and the sum is over all loop func-
tions. Noting that the loop functions for X € {B,C} are
related by

S 0L () = =3I (@)

we find, by using integration by parts, that the two
expressions for AX only differ by a boundary term,

(C3)

1K
—1 — FRG X
AXOMTIP () = AX (a))+2ﬂ2 3 E LY (w)

RN
0

A similar relation can be obtained for the effective
potential. Following the standard derivation for the thermo-
dynamic potential of a noninteracting system of bosons
and fermions in thermal field theory, see, for example,
Ref. [14], we find

A dk
Uone—loop - A sz(kag + 3Kk,ﬂ - 4NCNka,l/I)7 (CS)

where we defined

Kk,a = Ek,a +2T IOg [1 - exp(_Ek.a/T)]’ (C6)

Kk,y/ = Ek,y/ + Tlog {1 +exp [_(Ek.l// - ﬂ)/T]}

+ Tlog {1 +exp [=(Eky + u)/T]}, (C7)
with a € {0, }; see also Ref. [77]. This expression needs
to be compared to the infrared value of the effective
potential as obtained from the FRG setup,

UIRG = UFRS — AUFRS, (C8)
where we will set UTRS = 0 for ease of comparison. We
then have

A dk &3
Uﬁ?G = _/ (Ik,()' + 3Ik,7z - 4NcNfIk,x//)’ (C9)

o 4723
cf. Eq. (3). We note that the loop functions K and / fulfill a
similar relation as L and J for the two-point function,
namely,

Ik.a = akKk,a (CIO)

for @ € {0, 7,y}. We then find, by using integration by
parts again, that the two expressions for the effective
potential only differ by a boundary term,

S
{jone—loop — Uﬁ%{G +—— ZKk.a (Cl 1)
T
a

We will now normalize the potential to its value at 7 =0
and compare the results for the pressure as a function of
temperature,

-p=U(T)-U(T =0). (C12)

In Fig. 9, we compare the pressure as obtained from the
FRG setup to the one from the one-loop calculation, for a

1.0
0.8
&
2 0.6
S
0.4f|—— FRG
1-loop
— SB
0.2
0.0

50 100 150 200 250 300
T [MeV]

FIG. 9. Comparison of the pressure as obtained from the FRG
setup to the one from the one-loop calculation, for a massless
system of noninteracting bosons and a UV cutoff of A = 1 GeV,
normalized to the corresponding Stefan-Boltzmann value
psg = 72T*/90, which corresponds to A — oo.
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massless system of noninteracting bosons, normalized to
the Stefan-Boltzmann value of

o T4
PsB = 90 (C13)
which corresponds to A — 0.

We find that the agreement between the FRG and the
one-loop result is very good at low temperatures, while at
higher temperatures the finite UV cutoff leads to discrep-
ancies between the two frameworks and to an overall
reduction of the pressure as compared to the exact result.
For A — oo, the boundary term in Eq. (C11) vanishes, after
subtracting the vacuum contribution, and we have

FRG __ ,.one—loop
PAso = PAsoo

(C14)

We note here that if the temperature becomes too
large compared to the UV cutoff scale, in our case of
Tmax ® A/27 ~ 170 MeV, the assumption of a temper-
ature-independent effective action in the UV breaks down.
If one wants to extend the accessible temperature range for
a fixed UV cutoff, the results have to be supplemented by
perturbative input [78—80].

APPENDIX D: LOOP FUNCTIONS

In this appendix, we give explicit expressions for various
loop functions.

2 2
(4) - o 1 —kq,h* cos@ . , 1 —kq,h* cos@ .
J . P.4) = . . 1 —fif —E _ h 1 -
k,ay/(w p Q) + (a) + Ea + Ey/) 4E(3;EW ( +ng ng anB> + (w + Ea + Et//)z 4E%1E1// ( +ng nF)
1 kq,h?cos @ 1 —kq,h? cos @
+ - = (1 +ng—iip — Eny) + - — (14 ng—nFx)
(w-E,—E,) 4EJE, P (w-E,~E,)?  4EE, r
1 kq,h*cos @ 1 kq,h*cos @
+ = — + iy — E ny) + = — + iy
(0 +E,—E,) 4EE, (5 + 75 = Earty) (0 +E,—E,)? 4EXE, (np + i)
1 —kq,h?* cos 0 1 kq,h?cos @
+ = —— (ng + iif — Enjp) + = — (ng + ii}), (D1)
(w-E,+E,) A4EE, P (w—-E,+E,)? 4EXE, F
(B) . 1 skhzmy, . , 1 skhzmv, L
Ty (@D 4) = o+t E, +E,) 4B (Lt np =i = Egng) + (o +E, + E,)? 4E2E, (1 np = 7p)
a V74 a~y a 174 ay
1 —skhzml, 1 skh*m
_ A —iin—En, . (1 — itz
+ (0 —E,—E,) 4EJE, (1 = 7y = Eqrty) + (o — E,—E,)* 4E2E, (1 ng = i)
1 —skh*m 1 —skh*m
+ = = (ng + iz — Enly) + - = (ng + iz
(w+E,—E,) 4EJE, (ns + i 5) (w+E,—E,)? 4EE, (n5 + )
1 skh®m 1 —skh*m
+ - L (ng+ it — E, nl) + - — (ng + i), D2
(w—E,+E,) 4E3E, (n =+ i = Eany) (0 —E,+E,)* 4EXE, (ng 717 (b2)
1) (@0,5.3) = + ! kh2(1+ it — Enly) + ! kh2(1+ i)
w,p,q) = = — ng—nr—E_n = — ng—n
kay \ @ P-4 (0 + E, + E,, + ) AE} B R T (0 4 Eg + B, + p)? 4ES BT
1 kh? 1 —kh?
_ (1 — iz —En _ 1 — itz
+(O)—E0—EW+/¢)4E§1( +np—np anB)+(w—Ea—Ey/+ﬂ)2 4E§( +ng — iix)
N 1 khz( LA B+ 1 khz( )
=~ —=(n ny — n = —=(n n
(w+Ea_Ew+ﬂ)4Eg ? r “or (a)+Ea_Ey/+M)24E§ B F
1 kh? 1 —kh?
—— (ng + 7ty — Eqnlg) + (ng + i), (D3)

+ _
(w—E,+E, +p)4E;

(w - Ea + El/l +ﬂ)2 4E§
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2.2 2 21,2
@ = o 1 n*mZF(6) y L ER 1 —k2h?F(6) ~ N
J w,p,q) =+ = = 1+ng—nt— n + = = 1l+ag—n
cyal @ P 4) (0+E, + E,) 4EE, BT ) T @+ B, + E,)? 4ELE, (14 7ip = )
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