Variability class dependent evaluation of the CAMS Radiation Service

Faiza Azam¹, Jethro Betcke¹, Marion Schroedter-Homscheidt¹, Mireille Lefevre², Yves-Marie SaintDrenan², Laurent Saboret³, and Stephane Andrietti³

German Aerospace Center (DLR), Institute of Networked Energy Systems

Knowledge for Tomorrow

¹Institute of Networked Energy Systems, German Aerospace Center (DLR) ²MINES Paris / Armines

³Transvalor

Outline

CAMS Radiation Service

- CAMS Radiation schemes (recent improvements)
 - CAMS 3.2 vs CAMS 4.0
- Ground based variability classes validation
 - Variability classes
 - Validation procedure
- Validation results
- Conclusion/Outlook

CAMS Radiation Service

- Copernicus (EU Earth Observation Programme)
 - Copernicus Atmospheric Monitoring Service (CAMS)
 - CAMS is implemented on behalf of EU by ECMWF
 - CAMS Radiation Service (CRS)
 - Incoming Surface Solar Irradiance (SSI)

ECMWF

CAMS Radiation Service

method papers:

Qu et al., Contrib. Atm. Sci., 2017 Lefèvre et al., Atm. Meas. Tech., 2013 Gschwind et al., Contrib. Atm. Sci., 2019 Schroedter-Homscheidt et al., Contrib Atm. Sci. (submitted)

CAMS Radiation scheme (recent improvements)

• CAMS 4.0 operational since June 28, 2021

	CAMS 3.2	CAMS 4.0
Calibration	Reflectances as provided by EUMETSAT	Time-dependent update Calibration coefficients from KNMI (Meirink et al. 2013)
Cloud retrieval	APOLLO, binary cloud mask based on Kriebel et al. 1988/1989	APOLLO-NG, probabilistic cloud mask from Klüser et al. 2015 (cloud confidence level)
	COT using Stephens scheme (Stephens et al. 1984) with clipping at COT < 0.5	COT using Stephens scheme (Stephens et al. 1984) with COT LUTS extended to 0.001
Cloudy/Clear decision for Heliosat-4	Based on binary mask	Cloud probability threshold 1%

CAMS Radiation schemes (recent improvements)

• CAMS 4.0 operational since June 28, 2021

	CAMS 3.2	CAMS 4.0
Circumsolar correction	Single COT value	Empirical apparent COT modificationfactor for DNI calculations:0.41 for optical thin ice clouds0.20 for water/mixed phase clouds
Bias correction (post- processing)	Empirical multiplication factor	Retrained bias correction

- Bias correction compares CAMS with BSRN as reference. For all-sky irradiance, biases are dominated by errors in the satellite based cloud properties determination and its input (as calibration)
- Uncorrected and bias-corrected irradiances are provided in expert output mode

thin &

less variable

overcast

Example variability classes 1-8

Hours being classified, 1-min resolved data, 10 min moving average

- 8 classes defined by ground based direct irradiance patterns
- Class 1 is cloud free and class 8 is overcast
- Classes 2-5: cloudy cases with large number of optically thin clouds
- Classes 6-8: optically thick, scattered or broken clouds
- Automatic classification possible from ground-based direct irradiance time series, sky cameras and using cloud mask from satellite
- Method paper ground based: Schroedter-Homscheidt, et al., Meteorol. Z.,

```
DOI:10.1127/metz/2018/0875
```

Validation procedure

- A new scheme is developed for the evaluation of CAMS services based on variability classes
- Data used in the evaluation:
 - Ground based variability classes time series for the year 2015
 - CAMS Global horizontal irradiance (GHI) and Direct normal irradiance (DNI), previous version
 3.2 and current operational version 4.0, 2015
 - BSRN & Enermena stations GHI and DNI as reference, 2015
- Variability class dependent analysis can help in assessment of all sky irradiance under different cloudy conditions without directly using the cloud parameters

Results

- Distribution of variability classes 1-8 (variability classes pairs)
- Rural/urban regions:
 - Relatively less cases in classes 1 and 2
 - Large number in overcast

Desert regions:

- More clear sky and nearly clear sky cases
- Less number in cloudy classes

DLR.de/ve • Chart 10

Results

- Bias corrected GHI
- Percental relative mean bias (pMBD)
- Rural/urban regions:
 - Bias improved in all classes
- Desert regions:
 - Better results for clear sky, thin cloud classes
 - Different results at different stations for classes with optically thick clouds and overcast

CRS CAMS 4.0 Bias Correction evaluation

• Other evaluation studies on the impact of bias correction: GHI

Bias correction nearly passive for GHI

CRS CAMS 4.0 Bias Correction evaluation

- Other evaluation studies on the impact of bias correction: DNI
 - Small changes for DNI

CAMS 4.0 DNI bias corrected

CAMS 4.0 DNI uncorrected

DLR.de/ve • Chart 15

Results

CAMS 4.0 BNI no corr CAMS 4.0 BNI

- CAMS 4.0 DNI = BNI, with and without bias correction
- Percental relative mean bias (pMBD)
- Rural/urban regions:
 - Almost no impact of bias correction on classes 1-4. Bias increases for classes 5-7. Some improvement in class 8
- **Desert regions:**
 - bias correction increases biases in variable & optically thick cloud conditions

Conclusion/Outlook

- Variability classes are derived from irradiance observations only
- They offer a monitoring of cloud types and aerosol impact independent of the cloud retrieval
- CAMS 4.0 vs CAMS 3.2:
 - quality of CAMS Radiation Services improved significantly
 - some stations in desert regions: increased DNI bias under 'variable cloud conditions', but very small number of occurences
- Current operational version, CAMS 4.0:
 - bias correction as a post processing not effective anymore for GHI
 - was mainly correcting instrument calibration errors
 - GHI: both aerosol and thick cloud dominated cases are made worse but compensate each other
 - DNI: variable cloud situations are made worse
 - Decision: bias correction scheme will be removed in CAMS 4.5
- Next: Extend evaluation to HIMAWARI8 and GOES16.
- Next: Use variability class based diagnostics to revisit several cloud retrieval steps

Acknowledgements

- This work is supported EU Copernicus Programme (CAMS implemented on behalf of EU by ECMEF)
- Thanks to CAMS2-73 team at:
 - DLR
 - MINES Paris / Armines
 - Transvalor
- Special thanks to the Baseline Surface Radiation Netwrok (BSRN) and Enermena for the ground measuremnts of GHI and DNI data

References

- Kriebel et al., 1989: Optical Properties of Clouds Derived from Fully Cloudy AVHRR Pixels. Beiträge zur Physik der Atmosphäre,
 Vol. 62, No. 3, pp. 165-171, August 1989
- Klüser et al., 2015: APOLLO_NG a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels, Atmos.
 Meas. Tech., 8, 4155-4170
- Lefèvre et al., 2013: McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, AMT, 2013

Gschwind et al., 2019: Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions – McClear-v3, Contrib. Atm. Phys./Meteorol. Z., 2019

- Stephens et al., 1984: A Shortwave Parameterization Revised to Improve Cloud Absorption, Journ. Atm. Scienc., Vol 41, no 4, 687-690
- Schroedter-Homscheidt, M., et al., 2018: Classifying ground-measured 1 minute temporal variability within hourly intervals for direct normal irradiances. – Meteorol. Z. 27, 2, 160–179. DOI:10.1127/metz/2018/0875
- Schroedter-Homscheidt, M., et al., Surface solar irradiation retrieval from MSG/SEVIRI based on APOLLO Next Generation and HELIOSAT-4 methods, submitted Contrib Atm. Sci.
- Meirink, J.F., et al., 2013: Inter-calibration of polar imager solar channels using SEVIRI, Atmos. Meas. Tech., 6, 2495-2508.
- Qu et al., 2017: Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method, Contrib. Atm. Phys./ Meteorol. Z., 2017
- User's Guide at http://atmosphere.copernicus.eu/documentation

DLR.de/VE • Chart 19 > Variability class dependent evaluation of CAMS radiation services > Azam et al. > 24.03.2022

Additional slides

Comparison statistics GHI and DNI

