GNSS-based Precise Orbit Determination of LEO Satellites – Status, Challenges, Prospects

Knowledge for Tomorrow

Oliver Montenbruck

Four Decades of GPS use for LEO Orbit Determination

Benefits of GNSS for POD

- High accuracy
 - Millimeter-level precision of GNSS carrier phase
 - Strong geometry (multiple concurrent signal sources, supports kinematic POD)
- Global and autonomous (supports onboard POD)
- Navigation (current) & timing (emerging)
- Favorable cost and performance, no limitation of users
- No platform limitation
 - From space station to cubesats
 - Good h/w availability

Alternatives

- Ground-based R/F tracking
- DORIS
- SLR

GNSS Hardware for POD

- Characteristics
 - Dual-frequency (or more)
 - One or more GNSSs (GPS, GLO, GAL, BDS)
 - Code (decimeter) and phase (mm)
 - Integer ambiguities
 - Multipath mitigating antennas
- Spaceborne GNSS Receivers
 - Designed and qualified for space environment (\$\$\$\$)
 - Rad-hard, guaranteed multi-year lifetime
 - Bulky (few kg, 10-20W), "old" technology
- Commercial-off-the-shelf (COTS)
 - Up-qualified geodetic receivers, aviation antennas
 - State-of-the-art electronics
 - Low SWaP (size, weight, power), reduced cost
 - Tailored qualification, potentially reduced lifetime

Image credits: JPL, TASI-I, RUAG, Airbus, DLR

Where Are We?

Ground-based POD

- Mostly reduced dynamic, some kinematic
- Sophisticated force models (grav, non-grav)
- Empirical parameters for compensating deficiencies of (non-gravitational) force models
- Batch least squares estimation, 1000s of parameters
- Many s/w packages (GIPSY, Bernese, NAPEOS)
- (Few) cm-level accuracy

- Reduced dynamic
- Force modeling limited by CPU resources and lack of environmental parameters
- Extended Kalman filter
- Few 10s of estimation parameters
- Meter-level accuracy achieved in current system (platform and payload support)
- Limited by broadcast ephemeris accuracy

Precise vs Accurate Orbit Determination

- No truth reference (except signal simulator testing)
- Precision can be assessed through
 - Overlap comparison
 - Inter-agency comparison / combination
- Comparison with other techniques
 - DORIS
 - SLR

but each independent technique has it's own errors

• SLR promises validation at 1cm / 1mm level (accuracy/precision)

Zimmerwald Observatory (AIUB), Sentinel-3 LLR (ESA)

Challenges

- Antenna phase center/pattern calibration
 - mm to cm distortions seen in phase residuals
 - not seen in standalone antenna calibration
- Center-of-mass location
 - Fuel mass and distribution only partly known
 - (mm to) cm level uncertainties
- Non-gravitational forces
 - Limited knowledge/models of surface forces (drag, solar and Earth radiation pressure)
 - Thermal and R/F radiation
 - 10 nm/s² (1 cm) level uncertainties
- Validation
 - SLR station calibration (coordinates, biases)

Prospects: On-Board Navigation Using Galileo

- · Precise GNSS orbits and clocks in real-time
 - Broadcast Ephemerides: SISRE ~10cm vs ~50 cm for GPS
 - High Accuracy Service: SISRE 5-10 cm for GPS and Galileo
- Showcase: Sentinel-6A
 - Playback processing of PODRIX GPS+Galileo observations
 - GPS+Galileo broadcast ephemerides
 - Sequential filter, fidelity force model
 - 10 cm 3D accuracy w.r.t. to POD
- Applications
 - Radio occultation missions
 - Synthetic Aperture Radar

DOI 10.1007/s10291-021-01198-9

Summary and Outlook

- GNSS is a well established tool and primary work horse for precise orbit determination of Earth observation satellites in LEO
- Supported by hardware portfolio ranging from COTS to fully space-grade systems
- Geodetic (down to 1 cm) precision for navigation and science in accord with current mission needs
- Limitations related to characterization of spacecraft, antenna, non-gravitational forces
- Emerging trend for fast and accurate orbit information, i.e. (near-)real-time POD
- Galileo offers best prospects for (sub-)decimeter onboard POD w/o external aiding
- Possible game changer for future Earth observation mission architectures?

