
IMPROVING THE CLASSIFICATION IN SHADOWED AREAS USING NONLINEAR
SPECTRAL UNMIXING

Guichen Zhang, Daniele Cerra, Rupert Müller

German Aerospace Center (DLR)
Remote Sensing Technology Institute (IMF)

82234 Wessling, Germany

ABSTRACT

This paper presents a shadow restoration method based on
the nonlinear mixture model. A shadowed spectrum is mod-
eled by using a pure sunlit spectrum for the same material
following physical assumptions. Regarding pure sunlit and
shadowed spectra as endmembers, an unmixing process is
then conducted pixel-wise using a nonlinear mixture model.
Shadow pixels are restored by simulating their exposure to
sunlight through a combination of selected sunlit endmem-
bers spectra, weighted by abundance values. Experiments
conducted on a real airborne hyperspectral image are eval-
uated through spectra comparison and classification. In ad-
dition, a soft shadow map is generated, which quantifies the
shadow intensity at the edges between sunlit and shadow ar-
eas.

Index Terms— shadow restoration, hyperspectral, spec-
tral unmixing

1. INTRODUCTION

Hyperspectral images contain rich spectral information and
have been widely used in remote sensing applications [1]. In
airborne hyperspectral images in the visible (VIS) and near-
infrared (NIR) ranges, cast shadow is frequently visible [2].
As shadow pixels lack direct sun illumination compared to
sunlit pixels, their computed reflectance values can be incor-
rect, if these are not processed separately in the atmospheric
correction step. Therefore, it is of great interest to compute
correct reflectance values in shadow areas.

Previous works have studied shadow mask generation
or shadow removal from remote sensing images. Mostly,
shadow masks were generated and used as input for shadow
removal [2]. Three categories of shadow detection methods
can be distinguished, which are thresholding, studying of
the geometry and light source of the scene, and computing
indices which are insensitive to shadow [2]. Besides shadow
detection, shadow restoration has also been an active research
field. Some works consider the relation of statistics or bright-
ness distribution between paired shadow and sunlit regions
for the shadow removal of true color images [3, 4]. Recently,

deep learning based shadow detection and removal methods
have been proposed [5], which require large training sets of
shadow and shadow-free images.

Furthermore, other methods for recovering shadow in hy-
perspectral images have been investigated. Roussel et al. as-
sume that the spectral angle of sunlit and shadow pixels with
the same material is small, which reduces deshadowing to a
pixel matching problem [6, 7]. Physical based methods rely-
ing on a nonlinear unmixing method modeled shadow effect
through multiple scattering of incident light [8]. Besides, field
experiments have found out that the spectral ratio between
shadow and sunlit pixels for the same material decreases as
the acquisition wavelength increases [9].

Other approaches based on spectral unmixing aim at de-
composing an image pixel into pure material spectra, i.e.
endmembers, and their corresponding spatial proportion, i.e.
abundances. So far, several spectral unmixing methods re-
gard shadows as an endmember, whose spectral values at all
wavelengths are zeros [1]. Recently, we proposed a shadow
restoration method based on nonlinear unmixing model and
physical assumptions [10]. By considering the differences of
irradiance in sunlit and shadow pixels, this method models the
spectrum in the shadow using the spectrum of the same ma-
terial under sunlight. We defined pure spectra under sunlight
and their modeled spectra in the shadow as sunlit and shad-
owed endmembers, repectively. Subsequently, abundances
values through a nonlinear unmixing process were derived.
Finally, shadow restoration could be conducted through pixel
reconstruction.

In this paper, we present an improvement on [10]. The
main novelty is a power function used to model the ratio be-
tween diffused irradiance and direct sun irradiance on the
ground. Furthermore, a post-processing step is introduced to
mitigate over-fitting. Restoration result are assessed quanti-
tatively by comparing spectral distances and classification re-
sults.
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2. METHOD

In our previous work [10], we assumed sunlit pixels in an im-
age to receive both direct and diffuse sun irradiance, while
shadowed pixels are illuminated only the latter. Thus, we
modeled the pure spectrum of a material in the shadow, i.e.
a shadow endmember, using a the pure spectrum of the same
material under sunlight, i.e. a sunlit endmember, allowing for
some variability in the endmember. A detailed description can
be found in [10]. Instead of modeling nonlinear effect through
a second-order polynomial model [11] with a free parameter
b as in our previous work, a Fan model [12] is applied in this
paper in order to reduce over-fitting. The reflectance rs of a
material in shadow is then reconstructed as:

rs(λ) =
Es(λ)

El(λ)
· rl +

Es(λ)

El(λ)
·
p−1∑
i=1

p∑
j=i+1

ai · aj · rl,i(λ) · rl,j(λ),

(1)

where El(λ) represents the direct irradiance at wave-
length λ, Es(λ) the diffused irradiance at wavelength λ, p is
the number of materials (endmembers) in one pixel, rl,i(λ)
the i-th reflectance of a sunlit material (endmember) at wave-
length λ, and ai is the i-th abundance corresponding to rl,i.

Here, Es(λ)
El(λ)

is the ratio between diffuse sun irradiance and
direct sun irradiance on the ground. In this paper, we model
this ratio as a power function k1λ−k2 + k3 instead of λ−4, as
the function related to Rayleigh scattering may not hold alone
for real cases, even in the clearest sky. This is due to, among
other factors, humidity and dust content [13]. With the as-
sumption that atmosphere conditions do not change across a
single airborne image, all parameters k1,k2, and k3 are con-
stant. Another free parameter F , representing how much dif-
fused irradiance a pixel receives, is estimated pixel by pixel.
The described ratio is then computed as:

Es(λ)

El(λ)
= F · (k1λ−k2 + k3) (2)

where λ is a wavelength, k1, k2, k3 are positive parame-
ters, and F ranges from 0 to 1.

We represent equation (1) and (2) in vector form, in or-
der to solve for all wavelengths simultaneously. Note that
e li is the i-th sunlit endmember, where i = 1, 2, ...p, with
p the total number of endmembers, a li the i-th abundance
corresponding to the i-th sunlit endmember, and a si the i-th
abundance corresponding to the i-th shadowed endmember.
Given an i-th sunlit endmember e li, a corresponding shad-
owed endmember e si can be written as:

e si = F · (k1λ−k2 + k3) · e li+

F · (k1λ−k2 + k3) ·
p−1∑
i=1

p∑
j=i

ai · aj · e li · e lj
(3)

Nonlinear effects of sunlit endmembers e li are consid-
ered through the FAN model [12]. For a pixel x we have:

x =

p∑
i=1

a li · e li +
p∑
i=1

a si · e si

+

p−1∑
i=1

p∑
j=i+1

a li · a lj · e li · e lj

(4)

where
∑p
i=1 a li + a si = 1, a li ≥ 0, and a si ≥ 0.

As a si and a li are the abundances of shadowed and sun-
lit endmembers for the same material, the shadow restoration
result xrestore of pixel x with B spectral bands is computed
by:

xrestore =

p∑
i=1

(a li + a si) · ei

+

p−1∑
i=1

p∑
j=i+1

a li · a lj · e li · e lj

(5)

3. EXPERIMENTAL RESULTS

We analyze an image subset from an airborne hyperspectral
image acquired over Oberpfaffenhofen, Bavaria, Germany
(Fig. 4 (a) ) with a HySpex VNIR sensor flying at an altitude
of 1615 m, resulting in an image of 181 × 245 pixels, with
a ground sampling distance of 0.7 m. The image comprises
160 spectral bands ranging from 416 nm to 988.4 nm and
has been atmospherically corrected using ATCOR [14]. After
removing water vapor bands, a total of 101 bands have been
processed (Fig. 4 (b) ). Six pairs of sunlit and shadowed
pure pixels distributed over the whole image have been man-
ually selected. The parameters k1 = 1.29, k2 = −7.14,
and k3 = 0.49 in equation (2) have been computed through
least-squares estimation.

(a) image in true color composite

400 450 500 550 600 650 700 750 800 850 900
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

endmember (nm)

re
e
c
ta

n
c
e

(b) endmembers

Fig. 1. Hyperspectral image and manually-selected endmem-
bers from sunlit pixels.

Abundances and F maps were then estimated using the
proposed model in equation (4). For sunlit pixels, only the
terms containing sunlit abundances in equation (4) should be
larger than 0, but in practice shadowed abundances and F val-
ues are also used to minimize the objective function, resulting
in an over-fitting of equation (4) in sunlit pixels. Therefore, a
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sunlit mask is generated in order to separate pure sunlit from
shadowed and sun-shade pixels based on residual analysis,
where we define a sun-shade pixel as a mixed pixel of sunlit
and shadowed pixels.

Firstly, we decompose equation (4) into two sub-equations
by separating the terms of sunlit and shadowed abundances,

resulting in x =

p∑
i=1

a si ·e si noted as a shadowed equation,

and x =

p∑
i=1

a li ·e li+
p−1∑
i=1

p∑
j=i+1

a li ·a lj ·e li ·e lj noted

as a sunlit equation. We have observed that the reconstruction
computed from the sunlit or shadowed equation is close to the
one computed from equation (4) in the spectral domain, if the
input pixel x is a pure sunlit or shadowed pixel, respectively.
Instead, the reconstruction uses both sunlit and shadowed
terms if the input pixel x is a sun-shade pixel, or if x is a new
material. We separate sun-shade pixels and new materials
through a morphological opening, with the assumption that
sun-shade borders appear as thin lines in a local neighbor-
hood, while new materials span larger and more compact
areas. Consequently, a ratio indicating the spectral distances
of the above reconstruction results resulted in a sunlit factor
map (Fig.2 (d)). A hard threshold of 0.9 was set, with F
values set to zero in the mask (Fig. 2 (c)).

A total of 19 endmembers have been chosen, with some
of them being spectrally similar to account for spectral vari-
ability. The five sunlit and shadowed materials abundance
maps aggregate several endmembers belonging to similar ma-
terials (Fig. 3), and show that sunlit and shadowed abun-
dances have been generated successfully. With the advantage
of spectral unmixing, analyzing materials at sub-pixel level, a
sunlit fraction map considering border pixels between sunlit
and shadow areas has been also computed by summing up the
abundances of sunlit endmembers. Instead of a binary mask,
Fig. 2 (a)-(b) show a soft border between sun and shadow
areas, yielding a more realistic representation of shadows.

In Fig. 4 (a) reflectance in most shadow areas appears to
have been recovered. We validated results quantitatively by
analyzing ten pairs of sun-shadow image elements from the
scene. In each pair, we have assumed that sunlit and shadow
areas that are close to the sun-shade border belong to a same
material. Fig. 4 (e) shows that spectral distances for each
pair of sunlit and shadow areas significantly decrease after
applying the proposed method. We additionally validate our
method by comparing classification results in Fig. 4. We ap-
plied a Support Vector Machine (SVM) classifier with default
settings (radial basis function with gamma = 0.01) as avail-
able in ENVI software (version 5.5). We selected 1417 train-
ing samples (17% grass, 63% trees, and 20% impervious sur-
faces) and 1489 validation samples (17% grass, 47% trees,
and 35% impervious surfaces). After shadow restoration, the
overall accuracy and k score increased from 73% to 99% and
from 0.55 to 0.99, respectively. The producer accuracy of

grass and impervious surfaces increased from 44% to 100%
and from 53% to 98%, respectively.
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Fig. 2. Computed parameters. (a) total abundances of sun-
lit endmembers; (b) detail of image (a); (c) F parameter; (d)
sunlit factor.
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Fig. 3. Abundance maps of sunlit endmembers: (a) roof1, (b)
roof2, (c) road, (d) vegetation, (e) man-made material. Abun-
dance maps of shadowed endmembers: (f) roof1, (g) roof2
(h) road, (i) vegetation, (j): man-made material.

4. CONCLUSION

This paper presents an improved shadow restoration method
using nonlinear spectral unmixing and physical assumptions
based on our previous work [10]. The method was tested on a
real hyperspectral airborne image. Results show that the pro-
posed method successfully recovers spectral information in
shadow areas. When comparing the restored image with the
input image, the spectral distance between sunlit and shad-
owed pixels for a given material decrease largely. Moreover,
classification accuracy for a simple case improves from 73%
to 99% after our spectral restoration.
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(a) input image (a) restored image

(c) Classification result(input)(d) Classification result (restored)
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Fig. 4. (a) Input image in true color composite; (b) Restored
image in true color composite; (c) classification result of input
image; (d) classification result of restored image; (e) spectral
euclidean distance between sunlit and shadow pixels: from
input image in blue color; from restored image in red color
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