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Abstract: Camera systems support the rapid assessment of ship traffic at ports, allowing for a
better perspective of the maritime situation. However, optimal ship monitoring requires a level of
automation that allows personnel to keep track of relevant variables in the maritime situation in an un-
derstandable and visualisable format. It therefore becomes important to have real-time recognition of
ships present at the infrastructure, with their class and geographic position presented to the maritime
situational awareness operator. This work presents a novel dataset, ShipSG, for the segmentation
and georeferencing of ships in maritime monitoring scenes with a static oblique view. Moreover, an
exploration of four instance segmentation methods, with a focus on robust (Mask-RCNN, DetectoRS)
and real-time performances (YOLACT, Centermask-Lite) and their generalisation to other existing
maritime datasets, is shown. Lastly, a method for georeferencing ship masks is proposed. This
includes an automatic calculation of the pixel of the segmented ship to be georeferenced and the
use of a homography to transform this pixel to geographic coordinates. DetectoRS provided the
highest ship segmentation mAP of 0.747. The fastest segmentation method was Centermask-Lite,
with 40.96 FPS. The accuracy of our georeferencing method was (22 £ 10) m for ships detected within
a 400 m range, and (53 £ 24) m for ships over 400 m away from the camera.

Keywords: ship dataset; instance segmentation; ship georeferencing; homography

1. Introduction
1.1. Maritime Situational Awareness and Ship Monitoring

Research in the field of maritime safety and security concentrates on the development,
testing and validation of innovative systems for the assessment of the status of maritime
infrastructures. One aspect of this is in the development of maritime situational awareness
systems to quantitatively determine the protection status of infrastructures in real-time and
execute measures to respond to threats (e.g., major accidents, natural catastrophes, terror
attacks, organised crime) [1]. An automatic and meaningful awareness of the maritime
situation requires instruments and sensors that are able to recognise elements of interest to
propose suitable measures to the user and authorities [2].

Real-time ship monitoring at ports is one of today’s most challenging tasks for Vessel
Traffic Services (VTS) [3], and great efforts are being made using Automatic Identification
Systems (AIS) [4]. The International Maritime Organisation (https://www.imo.org/en/
OurWork/Safety /Pages/AlS.aspx, accessed on 16 February 2022) requires that every ship
and vessel with 300 or more gross tonnage carries AIS transceivers, which must transmit
information such as a unique identification number, ship type, position, course and speed,
in the form of encoded radio messages. The AIS tracking system allows VTS and the
surrounding ships to be aware of the marine traffic in the area and to perform tasks such as
collision avoidance or search and rescue. However, the AIS messages are only transmitted
by ships in intervals from 2 to 10 s while underway, and up to 6 min in static position
(https:/ /www.navcen.uscg.gov/?pageName=AlSMessages, accessed on 16 February 2022).
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This leaves room for real-time systems to analyse the situation several times per second
and therefore help to prevent or respond to complications. Moreover, since it is an open
standard, AIS presents some vulnerabilities to cyber threats, which include spoofing,
highjacking attacks or denial of service [5-9].

Optical camera systems thus become a good choice for the rapid assesment of ship
traffic. Due to their availability, affordable price and uncomplicated deployment, they can
serve as support in tasks of ship monitoring. When placed with elevation and an oblique
view of the water, they allow an excellent perspective of the situation. Personnel might,
however, not be able to effectively keep track of everything relevant due to the amount of
video screens and information that need to be assessed [10]. It therefore becomes important
to have automatic recognition of ships present at the infrastructure, with their class and
position presented to the maritime situational awareness operator in a more understandable
format, for example on a map.

1.2. Ship Segmentation

Deep-learning-based object recognition is one of most well studied computer vision
topics and can be applied to recognise ships in images from optical cameras.

One of the trends in the field is to obtain the mask of objects detected with segmenta-
tion, which is referred to by the name of instance segmentation. This technique allows the
extraction of further information relating to the recognised objects, such as their position
on Earth’s coordinate system, referred to as georeferencing. Georeferencing can be better
inferred from the segmented mask of an object than from a sourrounding bounding box,
which usually contains a lot of unnecessary background.

Instance segmentation is a type of supervised deep learning problem, and datasets
for training are needed. There are some general-purpose benchmark datasets, such as
COCO [11]. The images available in the general-purpose datasets do not suit specific tasks
of ship recognition with the precision required by a maritime awareness application. Real-
world maritime situations require varied ship data with precise annotations, that should
include the ship class, mask and further features, such as geographic coordinates. Amongst
works in the literature that deal with ship detection with optical monitoring views, available
datasets are the Singapore Maritime Dataset (SMD) [12], Seaships7000 [13] and the dataset
presented by Chen et al. [14]. However, these datasets lack the required annotations to
perform instance segmentation, contain low ship variety, and do not have a favourable
oblique view, which means that georeferencing becomes difficult to perform. We have not
found a public dataset that contains oblique view images of a maritime infrastructure and
mask annotations of several types of ships for the exploration, evaluation and development
of instance segmentation methods.

State-of-the-art instance segmentation methods with robust results on the COCO
dataset are Mask-RCNN [15] and DetectoRS [16]. State-of-the-art methods for real-time
applications have been developed in YOLACT [17] and Centermask [18]. Existing works
evaluate object detection methods in maritime environments on their private ship detection
datasets [19,20]. Nita et al., in [21], tackle the task of ship instance segmentation without a
real-time approach, using only Mask-RCNN [15] on their private dataset. A comparison of
state-of-the-art ship instance segmentation methods from maritime oblique view images,
with a focus on robust and real-time methods, and a public dataset, has not been found.

1.3. Ship Georeferencing

Once ships have been detected and segmented, georeferencing is required to provide
their real-time location to a situational awareness system.

General-purpose object georeferencing has been studied primarily for airborne appli-
cations [22-24] and autonomous driving [25]. In the field of ship georeferencing, existing
works made use of radar [26], remote sensing using synthetic aperture radar [27] and
AIS [28]. Helgesen et al., in [29], proposed a pipeline for ship detection and georeferencing
using their private dataset with oblique view images of the water. They use the pinhole
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camera calibration transformation matrix proposed in [30] to georeference bounding boxes
of detected ships. For this, their approach requires previous knowledge of the camera, such
as location, elevation, field of view and tilt angle of the lense. Moreover, their study is
limited to a maximum range of 400 m between the camera and the ship. An extensive anal-
ysis of a methodology for ship georeferencing using oblique view images where previous
knowledge of the camera is not required has not been found.

1.4. Proposed Work

The aim of this work is to address the gaps in the field of ship segmentation and geo-
referencing from oblique view images to advance the development of maritime situational
awareness systems with higher levels of automated information extraction. Our proposed
contributions can be summed up in the following three statements.

First, we present the creation of a novel dataset, ShipSG, for ship segmentation and
georeferencing using static oblique view images. This dataset contains mask annotations of
the ships present in the images along with their corresponding class, positions (latitude,
longitude), and lengths. The dataset was created using two cameras at a port location, and
the geographic ship positions were obtained using AIS data. To the best of our knowledge,
this is the first dataset of its kind and will be publicly available (https://dlr.de/mi/shipsg,
accessed on 16 February 2022).

Second, we explore four instance segmentation methods to recognise ships with the
ShipSG dataset. Two as a baseline for robust instance segmentation, Mask-RCNN [15] and
DetectoRS [16], and two capable of real-time processing, YOLACT [17] and Centermask-
Lite [18]. The goal is to find which of the four provides the best precision for ship segmenta-
tion, and which method provides the best trade-off between precision and inference speed.
We also provide an approximation of how well these methods generalise after training with
the ShipSG dataset on the aforementioned datasets SMD [12], Seaships7000 [13] and the
dataset by Chen et al. [14].

Third, we propose a methodology for the automatic georeferencing of ship masks. We
automatically calculate the pixel to be geoferenced from the segmented masks provided
by the previous instance segmentation step. The georeferencing method we propose is
based on the use of a homography matrix to transform pixels from the ShipSG images to
geographic latitudes and longitudes.

The following sections of this paper are organised as follows. Section 2 presents the
creation of the ShipSG dataset and its content. Also discussed are the selected instance
segmentation methods and our proposed ship georeferencing method. Section 3 shows
the results of each instance segmentation method along with an analysis of our ship
georeferencing method. We present the results in Section 4, followed by our conclusion
in Section 5.

2. Materials and Methods
2.1. The ShipSG Dataset

The ShipSG dataset (https:/ /dlr.de/mi/shipsg, accessed on 16 February 2022) was
collected using two cameras located at the Fischereihafen-Doppelschleuse lock, part of the
port of Bremerhaven, Germany. The cameras have partly overlapping fields of view, facing
the port basin, in order to observe the maritime activity at the entrance of the lock and at the
river where the port is located (see Figure 1). The port basin is within a 400 m range of the
cameras. The range of the river is over 400 m, where ships can be seen up to approximately
1200 m away from the cameras. The acquisition of images took place in Autumn 2020
during daylight hours with sunny, cloudy, windy and rainy weather conditions. The
tidal range was between 3 and 4 m (https://gezeitenfisch.com/de/bremen/bremerhaven-
doppelschleuse, accessed on 16 February 2022). Vehicles and people appearing within the
images were anonymised since they are not of interest for this work.
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Figure 1. View of each camera used for ShipSG data collection, showing the river, port basin and lock
entrance. (a) View of first camera. (b) View of second camera.

To obtain information relating to ships present within each image, we accessed AIS
position and static messages (https:/ /www.navcen.uscg.gov/?pageName=AlISMessages,
accessed on 16 February 2022) from AISHub (https://www.aishub.net/, accessed on
16 February 2022). The former is sent by ships in intervals between 2 and 10 s, and the
latter in intervals of 3 and 6 min [4]. These messages contain, amongst other fields, the
ship position (latitude and longitude in decimal degrees) and the ship length (in meters).
We used these two fields to annotate the ships in the images of the dataset. The AIS ship
position is used as a ground truth for our georeferencing method and the ship length is
used to study how our georeferencing method changes with the ship length. In order to
label data, we accessed the timestamp of each image and searched for the AIS message
which has the most similar timestamp and a position which lies within the field of view of
the cameras. We defined 100 milliseconds as the maximum offset between the image and
AIS timestamp so that the position of the ship seen in the image corresponds as close as
possible with the position contained in the AIS message. Since a short offset is used, and
due to the fact that ships send AIS messages with a time period of seconds, this leads to
only one AIS reference of a ship per image. We discarded images in which the timestamp
could not be related to any AIS message timestamp. A total of 3505 images were found
with an AIS message corresponding to one of the ships within the image.

We designated the ship classes for the dataset based on an observation of their purpose
and visual similarities. Examples of each ship class are shown in Figure 2 and are described
as follows:

e Cargo: All types of cargo ships.

e  Law Enforcement: Police watercrafts and coast guard ships.

*  Passenger/Pleasure: Ferries, yachts, pleasure and sailing crafts.

®  Special 1: Crane vessels, dredgers and fishing boats.

*  Special 2: Research and survey ships, search and rescue ships and pilot vessels.
e Tanker: All types of tankers.

e Tug: All types of tugboats.

For the task of instance segmentation, annotations of ship masks are needed as input
for algorithm training. We manually annotated the ship masks within each image with
their corresponding class using the LabelMe software [31]. Figure 3 illustrates samples of
our dataset with the annotated masks.

We used the definition of small, medium and large mask area scales that were intro-
duced for the COCO dataset [11], and have the following values:

Small, if area < 322 pixels,
Mask Area Scale = { Medium, if 322 < area < 962 pixels,
Large, if area > 962 pixels
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Figure 2. Examples extracted from the dataset that show the seven ship classes. Each class contains a
variety of sizes and orientations of the ships. (a) Cargo, (b) Tug, (c) Special 1, (d) Tanker, (e) Law
Enforcement, (f) Passenger/Pleasure, (g) Special 2.

These area scales are later used in this work to measure the performance of instance
segmentation algorithms. Table 1 lists the number of masks annotated in the dataset
per class, as well as the number of masks per area scale in pixels. In total, 11625 masks
were annotated.

Table 1. Number of masks annotated per class for each area scale.

Class Small Medium Large Total %

Cargo 98 902 300 1300 11.18
Law Enforcement 101 3536 111 3748 32.24
Passenger /Pleasure 48 485 93 626 5.38
Special 1 64 427 511 1002 8.62
Special 2 265 2312 53 2630 22.62
Tanker 277 753 382 1412 12.15

Tug 249 470 188 907 7.80

All classes 1102 8885 1638 11625 100

In summary, the ShipSG dataset contains:

e 3505 images from the two cameras.

e 11,625 annotated ship masks grouped in seven classes with COCO format [11]. The
AIS ship type will also be shared so that future users can create their own classes.

* 3505 geographic positions, consisting of the latitude and longitude of one of the masks
within each image.

* 3505 ship lengths, one per geographic position annotated.

The authors of this paper intend to provide the dataset to the public (https://dlr.de/
mi/shipsg, accessed on 16 February 2022). To the best of our knowledge, this dataset is the
first of its kind dedicated to ship segmentation and georeferencing, and which is available
to the public. It was not possible to share the MMSIs associated with the AIS messages for
the ShipSG dataset due to the underlying principles of the privacy policy implemented
when performing data acquisition. This policy was composed by the German Aerospace
Center (DLR) and implements the General Data Protection Regulation (EU) 2016/679 [32].
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Figure 3. Visualisation of ShipSG dataset samples with annotated ship masks and classes, and one
ship position per image.
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2.2. Instance Segmentation Methods Selected

In order to explore the task of instance segmentation using our dataset, four state-
of-the-art methods were selected. Two as a baseline for robust instance segmentation
and two capable of real-time processing, which are described in Sections 2.2.1 and 2.2.2,
respectively. The comparison of these methods follows the standard metrics used by the
COCO dataset [11], based on the well-known average precision (AP). The mean average
precision (mAP) is the calculated mean of all the AP of the classes present. As a metric of
speed during inference, frames per second (FPS) are considered.

2.2.1. Robust Instance Segmentation Methods

Mask R-CNN [15] is a two-stage algorithm that was developed as an extention of the
object detector Faster R-CNN [33]. In the first stage, with the region proposal network [33],
multiple object candidates are proposed. In the second stage, the region of interest pooling
extracts features from each candidate and performs the classification of the object and the
regression of the bounding box. In Mask R-CNN, a fully convolutional network was added
to regress the mask from the detected bounding boxes. This method is one of the most
popular in the field of instance segmentation for its robustness. With the ResNeXt-101
backbone [34], it achieves a mask mAP of 0.375 on the COCO dataset.

DetectoRS [16] is a multi-stage network that proposed a recursive feature pyramid [35]
to include additional feedback connections from feature pyramid networks into the bottom-
up backbone layers. Its authors also propose the convolution of features by looking twice
at the input with different atrous rates and then to combine the outputs, which is referred
to as switchable atrous convolution. This method is a state-of-the-art instance segmentation
method, and with ResNet-50 as the backbone [36], it achieves a mask mAP of 0.444 on the
COCO dataset.

2.2.2. Real-Time Instance Segmentation Methods

YOLACT [17] emerged as one of the first real-time and one-stage instance segmenta-
tion methods. It uses an independent fully convolutional network [37] to produce prototype
masks and a parallel branch to calculate mask coefficients for each predicted anchor box,
which are filtered using non-maximum supression. Both branches are combined by crop-
ping and thresholding the prototyped masks with the filtered anchor box. On the COCO
dataset, with ResNet-101 as the backbone [36] and 700 x 700 pixels as an input size, it
achieves an mAP of 0.312 and an inference speed of 23.4 FPS.

Centermask [18] is a one-stage method. It makes use of the fully convolutional one-
stage object detector [38], and introduces a spatial attention-guided mask branch, which
is paired with the object detector to suppress the pixels that do not belong to the mask on
the regions proposed as boxes. Specifically, for our work, we selected Centermask-Lite, a
downsized version of the original which is better suited for real-time applications. The
authors of Centermask introduced in [39] a novel backbone, VoVNet, where instead of
adding residual shortcuts every second feature map, as is done in ResNet, features are
concatenated only once in the last feature map. With VoVNet-39 as backbone, Centermask-
Lite achieves a mask mAP of 0.363 and 35.7 FPS on the COCO dataset.

2.3. Ship Georeferencing Using Homography

Once the ships are segmented using an instance segmentation method, georeferencing
is required to provide their location to the situational awareness system.

The use of homography, an isomorphism between projective spaces, is well established
in the computer vision field to transform points from the same planar surface captured
by two perspectives, which up to now has not been deeply studied in the context of
ship georeferencing.

We tested the use of a homography qualitatively for ship georeferencing for maritime
anomaly detection environments in [40]. The present work will expand upon this and make
an in depth quantitative study of the use of homographies for ship georeferencing.
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We take advantage of the static view of the cameras and perform a transformation by
calculating the homography between the camera pixel coordinates (Cy, Cy) and Earth’s
geographic latitude and longitude (¢, A) in decimal degrees. Since the ground surface area
captured by the cameras is small enough with respect to the Earth’s local curvature, it is
approximated by its tangent plane.

A homography, expressed as the matrix H, used to perform the transformation is
shown in Equation (1), where the unknown parameters h11, fi1y, . . ., hi3p are calculated using
n number of pixel pairs (Cy, C,) and geographic latitude and longitude pairs (¢, A) as
shown in Equation (2). Using n = 4 pairs of pixel coordinates and their corresponding
geographic positions would suffice to solve the eight unkown parameters of Equation (2)
(h11,h12, ..., h3). Having more pairs would result in more than one solution for each
parameter of the equation. Therefore, 1 > 4 is preferred, allowing the optimal solution for
each unknown parameter to be calculated using least squares.

P Cyx hi1 hip hiz| |Gy
Al =H Cy = |hyy hy hps Cy . 1
1 1 hy hp 1|1
Cx] Cy1 1 0 0 0 _¢1'Cx1 _991'Cy1 hll 1
0 0 0 Cy Cpy 1 —A1-Cq —Ar-Cy | |2 A
Ch Gy 1 0 0 0 —¢2-Cr, —¢2:Cp||M3] |
0 0 0 Cy Cp 1 —Ay-Cyy —A2-Cy||P1] Z |2, @
hy» )
ha3 ‘
an Cyn 1 0 0 —@n - an —@n - Cyn I’l31 Pn
[0 0 0 Cy Gy 1 =M Co —AaCyl|py| |

The n pairs have to be selected manually in advance to create H. Multiple pairs
distributed throughout the geographic and image area of interest should be selected, for a
better adjusted H. For (¢, ,, A1..,) we used the geographic annotation that each image
contains, as explained in Section 2.1, and for (Cy, ,,Cy, ,) the pixel coordinates of the
corresponding ship in the corresponding image. To manually select this pixel, we observed
the placement of the navigation antenna on each ship, since this is the element which
provides the geographic location in the AIS messages. This antenna is usually located on
the bridge or wheelhouse of the ship. We therefore selected the pixel that intersects the ship
hull at the antenna location and the water underneath as the pixel corresponding to the
latitude and longitude gathered with AIS.

We took 1 = 200 samples of the training set images to create the homographies of both
cameras (see Figure 4), and solved Equation (2) to obtain H. The validation set is later used
to quantitatively analyse how well this method performs.The separation of homographies
by high or low tides was not found to provide a significant improvement in results.

Once the homographies are created, we then propose a method to automatically
calculate the pixel (Cy, Cy) of the mask which best represents the ship’s geographic position.
This pixel is afterwards georeferenced using Equation (1). We automatically find the pixel
which lies at the intersection point between the ship hull and the water below the bridge or
wheelhouse, where the navigation antenna of the ship is located. We calculate this pixel to
be the lowest of the mask in the vertical direction (Y) corresponding to the statistical mode
of the horizontal axis (X). An example of this procedure can be seen in Figure 5.
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(a)

(b)

Figure 4. Reference pairs to create the homographies. The coloured dots to the left show the
latitudes and longitudes obtained from the AIS messages on a map. To the right, the counterpart
pixel coordinates are displayed, annotated by hand. The black icons show the location of the
cameras. (a) First camera pairs for homography creation, with blue dots. (b) Second camera pairs for
homography creation, with red dots.

A

Y (pixel)

Lowest pixel

X (pixel)

Figure 5. Example of segmented ship mask with calculated pixel to be georeferenced (in red, enlarged
for visualisation).

3. Results
3.1. Experimental Evaluation of Instance Segmentation Methods on the Dataset

We split the dataset into two sets of images—training and validation. The training set
contains 80% of the dataset, with 2804 images, and the remaining 20% is used for validation,
with 701 images. Both sets have a comparable class distribution, as the one shown in the
last column of Table 1.

The training and evaluation of the robust methods discussed in Section 2.2.1, Mask R-
CNN and DetectoRS, was done using the MMdetection framework from OpenMMLab [41].
The input image size in both cases was 1333 x 800 pixels, and the backbones selected were
ResNeXt-101 and ResNet-50, respectively.

For the experimental setup of the real-time methods discussed in Section 2.2.2, our
interest was to look for the optimal trade-off between inference speed and AP. Therefore we
selected two configurations for each, one with a deeper backbone (more layers) and one with
a shallower backbone. The implementation of YOLACT used was the source provided by its
authors [17]. The first configuration, YOLACT55, uses a smaller input size (550 x 550 pixels)
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and the lighter ResNet-50 [36] as backbone and which will provide faster inference speed.
The second configuration, YOLACT7q, uses a higher input size of 700 x 700 pixels and a
deeper backbone, the ResNet-101 [36], which will provide higher AP. As for Centermask-
Lite, we used the source implementation provided by its authors [18], which is implemented
on top of the framework Detectron2 [42]. For a faster inference speed, the first configuration,
Centermask-Liteyq9, uses a lighter backbone, VoVNet-19 [39]. The second, Centermask-
Litey3g, uses the deeper VoVNet-39 [39], for higher AP. Both Centermask-Lite configurations
use an input size of 800 x 600 pixels, as per definition by their authors [18].

Table 2 shows a summary of the training configurations. All the methods were ini-
tialised with weights pre-trained on the COCO dataset [11]. The Pytorch version used for
the four methods was 1.8.1 and the GPU used to train and compute the inference speed was
a Nvidia Quadro GV100.

Table 2. Configurations during training for each method evaluated.

Method Input Size (Pixel) Backbone Batch Size  Iterations = Number of Epochs
Mask R-CNN [15] 1333 x 800 ResNeXt-101 2 15,400 11
DetectoRS [16] 1333 x 800 ResNet-50 2 15,400 11
YOLACT55 [17] 550 x 550 ResNet-50 8 6480 18
YOLACTyg [17] 700 x 700 ResNet-101 8 5760 16
Centermask-Liteyqg [18] 800 x 600 Vovnet-19 8 5949 17
Centermask-Liteysg [18] 800 x 600 Vovnet-39 8 5949 17

Table 3 illustrates the results per method evaluated. For the evaluation and comparison
of these methods, we chose the standard metrics used by the COCO dataset [11]. These are the
overall mAP, the mAP at intersection over union 50% (mAPs;), the mAP at intersection over
union 75% (mAP75) and the mAP at different mask area scale, i.e., mAPg for small objects,
mAP); for medium objects and mAP;, for large objects (https:/ /cocodataset.org/#detection-
eval, accessed on 16 February 2022). As well as the mAP, we include the class-agnostic mask
AP (AP.,) which shows that there is not significant class imbalance. As a metric of speed
during inference, frames per second (FPS) are considered. The complete results showing each
AP per class and per instance segmentation method are shown in Appendix A.

Table 3. Resulting instance segmentation APs and inference speed per method evaluated. The two
first rows are robust methods and the rest are the real-time methods.

Method AP, mAP mAPs5, mAP5 mAPg mAPyMm mAPL FPS

Mask R-CNN [15] 0.772 0.733 0.961 0914 0.503 0.752 0.772 8.50
DetectoRS [16] 0.780 0.747 0.982 0.924 0.556 0.757 0.792 6.62
YOLACTs50 [17] 0.571 0.527 0.886 0.609 0.086 0.515 0.709 36.28
YOLACT7q [17] 0.622 0.582 0.911 0.700 0.140 0.582 0.751 27.75
Centermask-Litey9 [18] 0.732 0.635 0.840 0.780 0.455 0.640 0.657 40.98
Centermask-Liteysg [18] 0.740 0.644 0.839 0.787 0.461 0.648 0.661 35.25

Out of the robust methods evaluated, Mask R-CNN [15] and DetectoRS [16] reach the
best mask mAP in all cases compared to the real-time methods. DetectoRS achieves the
highest AP, and mAP, with values of 0.780 and 0.747, respectively. The inference speed of
these methods provides 8.50 and 6.62 FPS, respectively.

Comparing the performances of the real-time methods, YOLACT [17] and Centermask-
Lite [18], we observe that Centermask-Liteysg achieves the highest AP, and mAP. More-
over, Centermask-Lite in both configurations performs better with small and medium
objects. YOLACT, however, achieves a higher mAP with large objects, 0.751, compared
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with Centermask-Liteysg, 0.661. In terms of inference speed, Centermask-Litey;9 achieves
the highest FPS value of 40.98.

3.2. Generalisation of the Evaluated Instance Segmentation Methods on Other Datasets

It is advantageous for a computer vision architecture to be able to perform well in di-
verse scenarios, since this indicates that overfitting due to the dataset used has not ocurred.

To study the ability of the instance segmentation models trained in Section 3.1 to
generalise in different scenarios, we analysed their performance with test images from
other existing datasets with similar characteristics: SMD [12], Seaships7000 [13] and the
dataset by Chen et al. [14]. Since these datasets do not provide ship mask annotations, we
annotated the ships present in 100 images of the three datasets and combined them into a
mini-dataset with a single class. Samples of this mini-dataset for generalisation can be seen
in Figure 6. The annotated content is as follows:

e SMD [12]: Two images per on-shore scene, totalling 80 images.
*  Seaships7000 [13]: 12 random images of the dataset.
¢ Dataset by Chen et al. [14]: Two images per scene, totalling eight images.

(@

(b) (c)

Figure 6. Annotated masks on existing datasets for the study of the generalisation of our models.
(a) Annotated examples of the SMD [12]. (b) Annotated examples of Seaships7000 [13]. (c) Annotated
examples of the dataset by Chen et al. [14].

Table 4 shows the results after inference on the generalisation mini-dataset. The best
AP is achieved by DetectoRS with 0.486. When looking at the AP5y, we observe that
DetectoRS provides a satisfactory value of 0.830. Of the real-time methods, Centermask-
Liteysg achieves the best AP, with 0.387, and an APsy of 0.710.These results show that the
models trained with ShipSG can predict ships from other datasets with reasonable accuracy.

Table 4. Generalisation mask AP results per model, the first two rows are robust methods and
the rest are real-time capable methods. All the classes have been contemplated as a single class
(class-agnostic).

Method AP APs

Mask R-CNN [15] 0.441 0.749
DetectoRS [16] 0.486 0.830
YOLACTss5 [17] 0.340 0.615
YOLACTy [17] 0.336 0.613
Centermask-Liteyqg [18] 0.348 0.636

Centermask-Liteysg [18] 0.387 0.710
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3.3. Experimental Evaluation of Ship Georeferencing

The data collection process, explained in Section 2.3, shows that every image of the
dataset contains one ship position taken from AIS messages (latitude and longitude) along
with the corresponding pixel annotation. We created two homographies, one per camera,
as shown in Section 2.3. We then quantitatively analysed how well the method performs
for the task of ship goereferencing.

We took the resulting ship masks from DetectoRS [16] using the 701 images of the
validation set, which contains ship images from both cameras. We georeferenced the masks
using Equation (1), after following the proposed method described in Section 2.3.

Figure 7 shows the qualitative results of our proposed ship georeferencing method.
As introduced in Section 2.1, we split the field of view into the port basin area and the river
area in order to observe the results from both camera ranges to the ships. These are smaller
and greater than 400 m, respectively.

(a) (b)

Figure 7. Qualitative ship georeferencing results. (a) Port basin. (b) River. Green dots show the
positions given by AIS. Orange dots show the georeferenced positions using our method). Gray lines
join the actual and georeferenced positions.

We quantitatively compared the true latitudes and longitudes collected with AIS (¢ 475,
Aars) and the homography-georeferenced latitudes and longitudes (¢y, Ag). For this
comparison, we convert both latitudes and longitudes from decimal degrees to Universal
Transverse Mercator (UTM) to express every result in meters. The metrics used to determine
how well the technique performs are the following;:

e  Latitude absolute error (Ag):

Ap =|@ars — ¢H] 3)
*  Longitude absolute error (AA):

AA =|Aars — Ag| 4)

*  Georeferencing distance error (GDE), to measure the distance between true and
georeferenced positions. The haversine equation is used instead of euclidean distance,
to take into account the radius (R) and therefore curvature of the Earth:

— Aais — A
GDE =2 - R - arcsin \/sin2 M +COS PaLs - COS QFf - sin? WTH' 5)
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*  Distance root-mean-square error (DRMSE) [43], to measure the quadratic mean of all
latitude and longitude errors. Due to the squared differences, larger errors are more
penalised than small errors:

1
RMSE(P = \/kzi'(—l(quISi — (PHi)z (6)
1
RMSE, = \/kzi-(_l (Aars; — An,)? 7)
DRMSE = /RMSE,? + RMSE, ®)

Table 5 shows the quantitative results. For all metrics, a lower value indicates a better
result. As expected, our method is more accurate the closer the ships are to the cameras,
which is represented by the smaller values of all metrics within the port basin. This can be
compared to the river area, where every pixel covers more geographical area, and therefore the
error becomes more significant. We consider the mean GDE as the most representative metric,
because it directly measures the distance in meters between the actual and estimated positions.
This metric reaches (22 4 10) m inside the port basin and (53 + 24) m on the river. The DRMSE
calculated inside the port basin is 27 m, and 61 m on the river, providing a comparable result to
the GDE metric. This indicates that errors larger than the mean GDEs are not common and do
not have great impact, showing therefore that the method works consistently.

Table 5. Quantitative ship georeferencing results. Ag and AA stand for absolute latitude and
longitude error, respectively. GDE stands for georeferencing distance error. Std stands for standard
deviation. DRSME stands for distance root-mean-square error.

Location

Mean Ap [m] Mean AA[m] Mean GDE[m] Std GDE[m] DRSME [m]

Port Basin (range < 400 m)
River (range > 400 m)

16 12 22 10 27
42 27 53 24 61

In Section 2.1 it was described that we collected ship lengths along with the ship
positions from AIS messages. This was done to observe how the GDE changes with the ship
length, as shown in Figure 8. For the smallest ship lengths (0 to 20 m), the GDE within the
port basin and river are similar. This shows that, independently from the range between
ship and camera, the smaller the ship, the more accurately the method finds the pixel of the
mask to be georeferenced.

Georeferencing Distance Error per Ship Length

[ Port Basin

100 4 B River

80

60

40

Georeferencing Distance Error (m)

20

0-20 20-40 40-60 60-80 80-100 =100
Ship Length (m)

Figure 8. Georeferencing distance error per ship length. GDEs and their uncertainties fall within the
bounds of the ship length.
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Range is the largest contributor to the GDE. For ships over 20 m long, there is a
significant increase in GDE when viewed at ranges greater than 400 m (at the river). For
ranges closer than 400 m (within the port basin), the ship length has less impact on the
resulting GDEs than on the river.

Even though the larger and more distant the ship, the more difficult it becomes to find
the exact pixel of the mask to be georeferenced, all GDEs are consistent within uncertainties
per ship length. This shows that the method provides a reliable estimation, including for
larger ships on the river side where every pixel covers more geographical area.

4. Discussion

In this work, ShipSG, a novel dataset for ship segmentation and georeferencing, has
been presented. This dataset contains 3505 images from a static oblique view, using two
cameras with partly overlapping views. A total of 11,625 ship masks were annotated and
grouped in seven ship classes. Through the use of AIS messages, acquired simultaneously
with the images, we annotated the geographic position (latitude and longitude) and length
of one ship per image. To the best of our knowledge, this is the first dataset of its kind. This
dataset will be shared with the public (https://dlr.de/mi/shipsg, accessed on 16 February
2022). We split the ShipSG dataset into training (80%) and validation (20%) sets, and
explored four state-of-the-art instance segmentation methods for the automatic recognition
of the annotated ships. Two robust methods, Mask-RCNN [15] and DetectoRS [16], and two
real-time methods, YOLACT [17] and Centermask-Lite [18], were explored. Each real-time
method was studied with two configurations, with a lighter and a deeper backbone. After
training all methods with the ShipSG dataset, DetectoRS provides the best mAP, of 0.747.
The fastest method explored was Centermask-Litey9, with 40.96 FPS. Centermask-Liteyso,
with the deeper backbone Vovnet-39 [39], provided the best trade-off between mAP and
FPS, with 0.644 and 35.25, respectively, which makes it the most suitable candidate for
tasks of real-time ship segmentation for a future situational awareness system. YOLACTjgy,
however, with ResNet-101 as the backbone [36], performs better with large objects (mAPL,
of 0.751) when compared with Centermask-Lite (mAPy, of 0.661). Since the key aim of this
work is to recognise ships at all ranges and with all sizes and classes, future work will focus
on improving large object segmentation for Centermask-Lite.

As all instance segmentation methods provided a good mAP, higher than 0.5 in all
cases, we tested how well they generalise when segmenting ships of other maritime datasets
after training with ShipSG. We annotated the ship masks of a mini-dataset of 100 images
from SMD [12], Seaships7000 [13] and the dataset by Chen et al. [14], which are datasets
that either did not contain the necessary annotations or are not suitable due to the lack
of variety of ships and scenes, but still contain some ships that could be used for testing.
DetectoRRS still showed the best AP, with 0.486, and APs5p of 0.830. Centermask-Liteysg
provided the best AP of the real-time methods explored, with 0.387 and APs of 0.710. It
has been shown, therefore, that the methods trained with the ShipSG dataset could be used
for inference on other similar maritime scenes.

A method for the automatic geoferencing of ship masks has been presented. The
method is based on the use of a homography matrix to transform pixels from the ShipSG
images, taking advantage of the static view, to geographic latitudes and longitudes. The
homographies, one per camera, were created using the AIS positions of the ships present
in the training set images of ShipSG. The georeferenced pixel is chosen to be that which
intersects the ship hull and the water below, at the point where the navigation antenna is
located on the ship. We also present a method to automatically calculate this pixel.

We quantitatively analysed our proposed method for ship georeferencing at a range
closer than 400 m (within the port basin) and farther than 400 m (on the river). As expected,
the accuracy of the method is best when the ship is closest to the camera. Furthermore,
independently from the range between the ship and camera, the smaller the ship, the more
accurately the method finds the pixel of the mask to be georeferenced. The results prove
that this is a reliable approach, since the georeferenced pixel is shown to fall within the
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bounds of the ship (Figure 8) and within the uncertainty of the method (Table 5) when
considering both shorter and longer camera ranges.

A future maritime situational awareness tool for ship georeferencing used by, for
instance, authorities, would need a series of further improvements to avoid the estimation
of the presence of recognised ships in a location where an error could be more significant.
This is, for instance, the case of an estimation of a ship position sitting on land. Future work
will include the study and mitigation of the systematic effects of the use of homographies,
to improve the accuracy of the method. Furthermore, a future approach will make use of
deep learning for the identification of the georeferenced pixel from the masks to minimise
the presented georeferencing results. The use of deep learning will include the manual
annotation of the pixel to be georeferenced from all the masks of the dataset as ground
truth. The manual annotation of the pixel to be georeferenced can also be used as a baseline
to analyse how good humans are at defining the pixel of a ship to be georeferenced against
an automatic approach like the one we propose in our work. Further considerations will
also include the automatic calculation of other ship parameters such as ship length, since
the corresponding ground truth values are already available within the dataset. Future
improvements of the dataset will also be shared with the public.

Our georeferencing method offers several improvements when compared with the
state of the art in ship georeferencing from static oblique view images [29]. Firstly, our
methodology can be replicated using any existing static camera at a maritime infrastructure
without previous knowledge about the camera, such as location, elevation, field of view
and tilt angle. Moreover, our quantitative analysis includes seven classes of ships and
many ship sizes, from small boats to large container ships. We also analysed results in two
independent ranges, within and over 400 m.

The ship segmentation and gereferencing method presented in this work is intended to
be utilised as part of a complete pipeline for ship segmentation and georeferencing that can
be used to present meaningful real-time information about ships to maritime situational
awareness operators.

5. Conclusions

A novel dataset, ShipSG, for ship segmentation and georeferencing using a static
oblique view of a port has been presented. This dataset contains images with mask
annotations of ships present, and their corresponding class, position and length.

Four instance segmentation methods to recognise ships were explored using the
dataset. DetectoRS shows the best overall mAP, though Centermask-Liteysg is found to be
the most precise of the real-time capable methods studied and is therefore most suited for
our application. After training with ShipSG, the generalisation on a mini-dataset made of
existing maritime datasets is shown.

A quantitative analysis of our homography based method for ship georeferencing
from their segmented masks has also been presented. As expected, the accuracy of the
method is best when the ship is closest to the camera. However, results prove that this is a
reliable approach for all ship lengths independently from the range, since the georeferenced
pixel is shown to fall within the bounds of the ship when considering both shorter and
longer camera ranges.

Future studies will focus on the improvement of Centermask-Liteysg to detect larger
objects, the study of systematic effects of homographies for georeferencing, the use of deep
learning to improve the identification of the pixel from the mask to be georeferenced and
the integration of both tasks on a single pipeline that can be used by a maritime situational
awareness system.
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Abbreviations

The following abbreviations are used in this manuscript:

VTS Vessel Traffic Services

AIS Automatic Identification System
SMD Singapore Maritime Dataset
DLR German Aerospace Center

AP Average Precision

mAP mean Average Precision

FPS Frames Per Second

UTM Universal Transverse Mercator
GDE Georeferencing Distance Error

DRMSE Distance Root-Mean-Square Error

Appendix A. Class Average Precision per Class and Instance Segmentation Method

This appendix contains the resulting instance segmentation APs per class and method
explored in Section 2.2.

Table Al. Resulting instance segmentation APs per class of the ShipSG dataset using Mask-RCNN,
as explained in Section 3.1.

Class AP APs5 APy APg APy AP
Cargo 0.707 0.987 0.938 0.541 0.715 0.762
Law Enforcement 0.842 0.99 0.978 0.558 0.868 0.73
Passenger/Pleasure 0.705 0.951 0.919 0.542 0.737 0.72
Special 1 0.754 0.947 0.923 0.357 0.722 0.83
Special 2 0.773 0.958 0.927 0.51 0.808 0.81
Tanker 0.677 0.973 0.86 0.52 0.685 0.757
Tug 0.671 0.921 0.851 0.491 0.728 0.797

Table A2. Resulting instance segmentation APs per class of the ShipSG dataset using DetectoRS, as
explained in Section 3.1.

Class AP AP50 AP75 APS APy APy,

Cargo 0.718 0.995 0.933 0.59 0.711 0.788

Law Enforcement 0.848 0.99 0.979 0.563 0.869 0.778
Passenger/Pleasure 0.733 0.983 0.952 0.62 0.756 0.761
Special 1 0.786 0.975 0.944 0.466 0.739 0.847
Special 2 0.772 0.985 0.935 0.584 0.799 0.814
Tanker 0.687 0.994 0.845 0.534 0.695 0.767

Tug 0.685 0.949 0.882 0.539 0.728 0.791



https://dlr.de/mi/shipsg

Sensors 2022, 22,2713 17 of 19

Table A3. Resulting instance segmentation APs per class of the ShipSG dataset using YOLACT5g5, as
explained in Section 3.1.

Class AP AP50 AP75 APS APM APL

Cargo 0.469 0.889 0.424 0.08 0.438 0.722

Law Enforcement 0.685 0.978 0.91 0.072 0.703 0.717
Passenger /Pleasure 0.512 0.887 0.589 0.11 0.546 0.633
Special 1 0.617 0.906 0.771 0.039 0.446 0.745
Special 2 0.51 0.933 0.552 0.155 0.545 0.716
Tanker 0.442 0.82 0.504 0.065 0.454 0.668

Tug 0.454 0.792 0.511 0.079 0.471 0.766

Table A4. Resulting instance segmentation APs per class of the ShipSG dataset using YOLACTyq, as
explained in Section 3.1.

Class AP APs APy5 APg APym APy

Cargo 0.529 0.911 0.54 0.13 0.506 0.728

Law Enforcement 0.727 0.978 0.923 0.123 0.745 0.76
Passenger/Pleasure 0.577 0.896 0.768 0.197 0.595 0.728
Special 1 0.669 0.937 0.809 0.076 0.529 0.782
Special 2 0.57 0.947 0.739 0.203 0.609 0.775
Tanker 0.508 0.901 0.559 0.137 0.536 0.704

Tug 0.494 0.808 0.558 0.112 0.551 0.78

Table A5. Resulting instance segmentation APs per class of the ShipSG dataset using Centermask-
Liteyy9, as explained in Section 3.1.

Class AP AP50 AP75 APS APM APL

Cargo 0.597 0.848 0.767 0.497 0.585 0.644

Law Enforcement 0.739 0.853 0.854 0.520 0.763 0.626
Passenger/Pleasure 0.608 0.844 0.778 0.484 0.627 0.625
Special 1 0.661 0.843 0.798 0.313 0.571 0.719
Special 2 0.665 0.838 0.798 0.429 0.686 0.674
Tanker 0.576 0.832 0.730 0.438 0.589 0.618

Tug 0.601 0.824 0.736 0.504 0.657 0.695

Table A6. Resulting instance segmentation APs per class of the ShipSG dataset using Centermask-
Liteysg, as explained in Section 3.1.

Class AP APs AP7s5 APg APy AP

Cargo 0.598 0.823 0.784 0.477 0.594 0.638

Law Enforcement 0.731 0.835 0.843 0.498 0.756 0.612
Passenger /Pleasure 0.607 0.825 0.779 0.517 0.629 0.622
Special 1 0.652 0.818 0.785 0.269 0.555 0.733
Special 2 0.657 0.826 0.786 0.436 0.676 0.684
Tanker 0.565 0.815 0.732 0.442 0.578 0.616

Tug 0.699 0.93 0.799 0.59 0.752 0.721

References

1.  Engler, E; Goge, D.; Brusch, S. ResilienceN—A multi-dimensional challenge for maritime infrastructures. NASE MORE:
Znanstveni casopis za More i Pomorstvo 2018, 65, 123-129.

2. Wang, K,; Liang, M,; Li, Y,; Liu, J.; Liu, R W. Maritime traffic data visualization: A brief review. In Proceedings of the 2019 IEEE
4th International Conference on Big Data Analytics ICBDA), Suzhou, China, 15-18 March 2019; pp. 67-72.

3. Yan, Z,;Xiao, Y.,; Cheng, L.; He, R;; Ruan, X.; Zhou, X,; Li, M.; Bin, R. Exploring AIS data for intelligent maritime routes extraction.
Appl. Ocean. Res. 2020, 101, 102271. [CrossRef]


http://doi.org/10.1016/j.apor.2020.102271

Sensors 2022, 22,2713 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

United States Coast Guard AIS Encoding Guide. Available online: https://www.navcen.uscg.gov/pdf/AIS/AISGuide.pdf
(accessed on 16 February 2022).

Jakovlev, S.; Daranda, A.; Voznak, M.; Lektauers, A.; Eglynas, T.; Jusis, M. Analysis of the Possibility to Detect Fake Vessels in the
Automatic Identification System. In Proceedings of the 2020 61st International Scientific Conference on Information Technology
and Management Science of Riga Technical University (ITMS), Riga, Latvia, 15-16 October 2020; pp. 1-5.

Struck, M.C.; Stoppe, J. A Backwards Compatible Approach to Authenticate Automatic Identification System Messages. In
Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26-28 July 2021;
pp. 524-529.

Wimpenny, G.; Safar, J.; Grant, A.; Bransby, M.; Ward, N. Public key authentication for AIS and the VHF data exchange system
(VDES). In Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2018), Miami, FL, USA, 24-28 September 2018; pp. 1841-1851.

Alincourt, E.; Ray, C.; Ricordel, PM.; Dare-Emzivat, D.; Boudraa, A. Methodology for AIS signature identification through
magnitude and temporal characterization. In Proceedings of the OCEANS 2016-Shanghai, Shanghai, China, 10-13 April 2016;
pp- 1-6.

Balduzzi, M.; Pasta, A.; Wilhoit, K. A security evaluation of AIS automated identification system. In Proceedings of the 30th
Annual Computer Security Applications Conference, New Orleans, LA, USA, 8-12 December 2014; pp. 436—445.

Li, F; Chen, C.H.; Xu, G.; Chang, D.; Khoo, L.P. Causal factors and symptoms of task-related human fatigue in vessel traffic
service: A task-driven approach. J. Navig. 2020, 73, 1340-1357. [CrossRef]

Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dolldr, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740-755.

Prasad, D.K,; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection
and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993-2016. [CrossRef]

Shao, Z.; Wu, W.; Wang, Z.; Du, W,; Li, C. Seaships: A large-scale precisely annotated dataset for ship detection. IEEE Trans.
Multimed. 2018, 20, 2593-2604. [CrossRef]

Chen, X.; Qi, L.; Yang, Y.; Luo, Q.; Postolache, O.; Tang, J.; Wu, H. Video-based detection infrastructure enhancement for
automated ship recognition and behavior analysis. |. Adv. Transp. 2020, 2020, 7194342. [CrossRef]

He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22-29 October 2017; pp. 2980-2988. [CrossRef]

Qiao, S.; Chen, L.C,; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021;
pp- 10213-10224.

Bolya, D.; Zhou, C.; Xiao, F; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Korea, 27 October-2 November 2019; pp. 9157-9166.

Lee, Y.; Park, J. Centermask: Real-time anchor-free instance segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19 June 2020; pp. 13906-13915.

Zhao, H.; Zhang, W.; Sun, H.; Xue, B. Embedded Deep Learning for Ship Detection and Recognition. Future Internet 2019, 11, 53.
[CrossRef]

Ghahremani, A.; Kong, Y.; Bondarev, E. Multi-class detection and orientation recognition of vessels in maritime surveillance.
Electron. Imaging 2019, 2019, 266-1-266-5. [CrossRef]

Nita, C.; Vandewal, M. CNN-based object detection and segmentation for maritime domain awareness. In Artificial Intelligence
and Machine Learning in Defense Applications II; International Society for Optics and Photonics: Bellingham, WA, USA, 2020;
Volume 11543, p. 1154306.

Han, K.M.; DeSouza, G.N. Geolocation of multiple targets from airborne video without terrain data. J. Intell. Robot. Syst. 2011,
62, 159-183. [CrossRef]

Cai, Y,; Ding, Y,; Xiu, J.; Zhang, H.; Qiao, C.; Li, Q. Distortion measurement and geolocation error correction for high altitude
oblique imaging using airborne cameras. |. Appl. Remote Sens. 2020, 14, 014510. [CrossRef]

El Habchi, A.; Moumen, Y.; Zerrouk, I.; Khiati, W.; Berrich, J.; Bouchentouf, T. CGA: A New Approach to Estimate the Geolocation
of a Ground Target from Drone Aerial Imagery. In Proceedings of the 2020 Fourth International Conference On Intelligent
Computing in Data Sciences (ICDS), Fez, Morocco, 21-23 October 2020; pp. 1-4.

Gao, F; Deng, F; Li, L.; Zhang, L.; Zhu, J.; Yu, C. MGG: Monocular Global Geolocation for Outdoor Long-Range Targets. IEEE
Trans. Image Process. 2021, 30, 6349-6363. [CrossRef] [PubMed]

Naus, K.; W, M,; Szymak, P.; Gucma, L.; Gucma, M. Assessment of ship position estimation accuracy based on radar navigation
mark echoes identified in an Electronic Navigational Chart. Measurement 2020, 169, 108630. [CrossRef]

Liu, RW,; Yuan, W.; Chen, X.; Lu, Y. An enhanced CNN-enabled learning method for promoting ship detection in maritime
surveillance system. Ocean. Eng. 2021, 235, 109435. [CrossRef]

Svanberg, M.; Santén, V.; Horteborn, A.; Holm, H.; Finnsgérd, C. AIS in maritime research. Mar. Policy 2019, 106, 103520.
[CrossRef]

Helgesen, @ .K.; Brekke, E.F; Stahl, A.; Engelhardtsen, @. Low Altitude Georeferencing for Imaging Sensors in Maritime Tracking.
IFAC-Pap. 2020, 53, 14476-14481. [CrossRef]


https://www.navcen.uscg.gov/pdf/AIS/AISGuide.pdf
http://dx.doi.org/10.1017/S0373463320000326
http://dx.doi.org/10.1109/TITS.2016.2634580
http://dx.doi.org/10.1109/TMM.2018.2865686
http://dx.doi.org/10.1155/2020/7194342
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.3390/fi11020053
http://dx.doi.org/10.2352/ISSN.2470-1173.2019.11.IPAS-266
http://dx.doi.org/10.1007/s10846-010-9442-7
http://dx.doi.org/10.1117/1.JRS.14.014510
http://dx.doi.org/10.1109/TIP.2021.3093789
http://www.ncbi.nlm.nih.gov/pubmed/34232878
http://dx.doi.org/10.1016/j.measurement.2020.108630
http://dx.doi.org/10.1016/j.oceaneng.2021.109435
http://dx.doi.org/10.1016/j.marpol.2019.103520
http://dx.doi.org/10.1016/j.ifacol.2020.12.1449

Sensors 2022, 22,2713 19 of 19

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330-1334. [CrossRef]
Wada, K. labelme: Image Polygonal Annotation with Python. 2016. Available online: https://github.com/wkentaro/labelme
(accessed on 16 February 2022).

Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons
with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA Relevance). 2016. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT /?uri=CELEX:32016R0679 (accessed on 16 February 2022).

Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91-99. [CrossRef] [PubMed]

Xie, S.; Girshick, R.; Dollar, P; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 1492-1500.

Lin, T.Y.; Dollér, P; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26 July 2017; pp. 2117-2125.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.

Guo, Y,; Chen, F; Cheng, Q.; Wu, J.; Wang, B.; Wu, Y.; Zhao, W. Fully Convolutional One-Stage Circular Object Detector on
Medical Images. In Proceedings of the 2020 4th International Conference on Advances in Image Processing, Chengdu, China,
13-15 November 2020; pp. 21-26.

Lee, Y.; Hwang, J.w.; Lee, S.; Bae, Y.; Park, J. An energy and gpu-computation efficient backbone network for real-time object
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach,
CA, USA, 16-17 June 2019.

Solano-Carrillo, E.; Carrillo-Perez, B.; Flenker, T.; Steiniger, Y.; Stoppe, J. Detection and Geovisualization of Abnormal Vessel
Behavior from Video. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
Indianapolis, IN, USA, 19-22 September 2021.

Chen, K.; Wang, ].; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection
Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155.

Wu, Y; Kirillov, A.; Massa, F; Lo, W.Y,; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
detectron2 (accessed on 16 February 2022).

Pawlowski, E. Experimental study of a positioning accuracy with GPS receiver. In Proceedings of the 12th Conference on Selected
Problems of Electrical Engineering and Electronics, WZEZ, Kielce, Poland, 17-19 September 2015. [CrossRef]


http://dx.doi.org/10.1109/34.888718
https://github.com/wkentaro/labelme
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.13140/RG.2.1.3349.3528

	Introduction
	Maritime Situational Awareness and Ship Monitoring
	Ship Segmentation
	Ship Georeferencing
	Proposed Work

	Materials and Methods
	The ShipSG Dataset
	Instance Segmentation Methods Selected
	Robust Instance Segmentation Methods
	Real-Time Instance Segmentation Methods

	Ship Georeferencing Using Homography

	Results
	Experimental Evaluation of Instance Segmentation Methods on the Dataset
	Generalisation of the Evaluated Instance Segmentation Methods on Other Datasets
	Experimental Evaluation of Ship Georeferencing

	Discussion
	Conclusions
	Class Average Precision per Class and Instance Segmentation Method
	References

