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Task Context: Pattern Recognition in Sensor Data for Automatic Driving

From Low-Level Sensor Data to understandable High-Level Information

Objects

road surface, markers, borders, traffic signs
vehicles and their type

pedestrians and other road users
obstacles, dangers

Properties of objects

* location (w.r.t. sensor, vehicle, and world)

* meaning (e.qg. traffic sign type and light status)
» context-sensitive meaning (e.g. traffic rules)

« behavior (e.g. movement prediction)

Inference to own driving
* vehicle ego-localization (w.r.t. world and environment)
* situational awareness (e.g. context-sensitive driving behavior)




DLR.de + Chart 3 > F. Andert »+ How does the vehicle get the knowledge it needs? > 29 Mar 2022

Patterns in Image Data: often too Complex for Manual Parameterization
Al /| Deep Learning might be THE answer...

Supervised Learning seems to be simple:

Labeling %
Unlabeled pool Labeled training set
::> Machine Learning <:D
Model ::>
Other Data Recognition of

Labeled Classes

# Images from CityScapes Dataset —
DLR Cordts et al., CVPR 2016
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Patterns in Image Data: often too Complex for Manual Parameterization
Al /| Deep Learning might be THE answer...

State-of-the-art example, trained with Cityscapes data

Use on Further Cityscapes Set Use on BDD Set [@

[1] Cordts et al., The Cityscapes Dataset for Semantic Urban Scene Understanding, CVPR 2016, www.cityscapes-dataset.com
[2] Yu et al.,, BDD100OK: A Diverse Driving Dataset for Heterogeneous Multitask Learning, CVPR 2020, www.bdd100k.com
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Patterns in Image Data: often too Complex for Manual Parameterization
Al /| Deep Learning might be THE answer...

Not optimal for (e.g.) camera images, not optimal for driving scenarios:
ML model will be complex (Gigabytes+)

Required data amount is HUGE (Terabytes+)

« Manual Labeling is VERY expensive (clickwork, crowdsourcing)

Measure scenario
coverage, prefer to add
data from unknown and
critical cases

.. with the result:

» even training can be expensive (GPU super-computing etc.)
« training data might be not complete

» the ML model is neither optimal nor complete

» the ML model may not contain context (“invisible knowledge”)

Automation with
human-in-the loop
(active learning)

Suitable rendering
available, ~99% of
the training data
will be synthetic

-- SO we neeq: _ o o Use ontology of
 reduce Iabellhg cost (find most S|gr1|f|cant dgta to train with) Automatic model mutual object

« data automation (generate synthetic data, with ground truth) extension benefits r_e_Isltlolr(ls anld én-
« labeling automation (semi-/unsupervised learning) when domain shift SIS

« extend model with various new data (domain adaptation) is small

« models to include context (knowledge integration)
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Reduce Labeling Cost with Active Learning

Strategy to find good data for training

General idea: algorithm queries user (oracle) B!

learn a model machine learning
f model

labeled
training set
S

unlabeled pool

U

select queries
oracle (e.g., human annotator)

* Find unsafe points in the model (e.g. specific image)
* Query user with specific task (e.g. specific label)
» Update model by user feedback

Example: Google ReCAPTCHA [

Select all squares with

traffic lights

If there are none, click skip

===
ﬂ...
.I..

C o ®

[3] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin—Madison. 2009.

[4] Google Developers: ReCAPTCHA. developers.google.com/recaptcha/
| B DLR g/ ,
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Redundancy:
Scoring single images
Information overlap
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Diversity:
Scoring Batches
Information union
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Use of synthetic data

Large labeled datasets are cheap now

Straightforward idea

« Generate synthetic data with ground truth, similar to
considered real-world domain
 use high-quality rendering engine
(GTAS, CARLA, ...)
 use nearly equal sensor emulation
(alignment at vehicle, distortion, curves,
radiometry, noise, ...)
» choose similar environment (vehicle path, location,
weather, ...)
* Learn model ©
* Possible further steps:
« active learning: predict real-world labels and let
user optimize where prediction is presumably bad
« optimize model with domain adaptation for best fit Synthetic World Real World
with real data

# Images from CityScapes Dataset —
DLR Cordts et al., CVPR 2016
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Domain Adaptation
How do we learn with new data automatically?

* First of all: we need a labeled source domain with existing Al model
» Then, choose delta-domain to simplify and to increase overlap

countries  long-term change

weather * season

* real/synthetic

.
0
D
-]
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o
=
(9]

&‘

,,,,, Style Transform

B

rce Domain: Lab

Target Domain Style

» Then, have suitable data in target domain ©

Decoder

« Eventually, unsupervised Learning benefits
from similarities between domains

# Images from Sefati et al., K| DeltaLearning
DLR project presentation - ki-familie.vdali.de
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Domain Adaptation
Combine Feature Space to fit with both Domains [®]

- align source and target input (see 6]

« decode features in model (¢-9- ResNet [7])

- align feature space: minimize entropy in -~ /\
similarity [ = provides pseudo-labels |

« align output quce. s_elf—tralnmg with e B . N
pseudo-labels (iterative) adaptation — — adaptation

* Segmentation

|:> Feature :> Task * Detection
¢ Classification
Head .

Space

1012B11X2

.

[5] Niemeijer, Schéafer: Combining Semantic Self-Supervision and Self-Training for Domain
Adaptation in Semantic Segmentation. Workshop Autonomy@Scale, IV 2021

[6] Hoffman: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, PMLR 2018

[7] He et al.: Deep Residual Learning for Image Recognition, CVPR 2016

[8] Saito et al.: Universal Domain Adaptation through Self Supervision, NeurlPS 2020
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Domain adaptation

Result example

Evaluation on BDD with CityScapes source domain
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What about context?

557

Sie. TN

Limited relevance Connected signs and markers Mean

ing unclear Fakes

Need to know the meaning, not only the type:
* Relations between signs

Scope and validity of signs

Relation between signs and road participants
Expected behavior of road participants
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Concept: “Knowledge Directed Object Detector”
Knowledge Representation into Graph Neural Networks [9]

Lzl L] X2
/

GNNs

/ 1|x2|x3
e N e wlalol |- N

Hﬂﬂﬂﬂw S v ton

’ edge features
\ (relations)

node features Eﬂlﬂ Message passing node embedding m--

(x11x2 %3 ... |.. AERSVESNENY

Q N edge embedding

layers
(objects)
% group /
relation G| meaning
statistics identification

[9] Jiang et al., Hybrid Knowledge Routed Modules for Large-scale Object Detection, NeurlPS 2018
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Future work: Prediction of Object Behavior and Risk
What will happen in the next few seconds?

* Old but proven: prediction from filter
(e.g. Kalman filter)
« good at regular driving ‘ e = [‘ -_F
« bad at sharp events -> Problem! e s [ L _— o i )
« Behavior and movement prediction '
from indicators
 at object itself
« within environment (static /
dynamic elements)
* in mutual interactions
* inmap / rules
* in meta-data (time, weather, ...)

* Indicator labeling and learning
* Video and multi-info-based learning

» Will result in complex ontology of
measurable and non-measurable
information and knowledge

Images from CityScapes Video —
DLR www.youtube.com/watch?v=yNc5N1MOOt4
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Thank youl!
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