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Task Context: Pattern Recognition in Sensor Data for Automatic Driving
From Low-Level Sensor Data to understandable High-Level Information

Objects

• road surface, markers, borders, traffic signs

• vehicles and their type

• pedestrians and other road users

• obstacles, dangers

• …

Properties of objects

• location (w.r.t. sensor, vehicle, and world)

• meaning (e.g. traffic sign type and light status)

• context-sensitive meaning (e.g. traffic rules)

• behavior (e.g. movement prediction)

• …

Inference to own driving

• vehicle ego-localization (w.r.t. world and environment)

• situational awareness (e.g. context-sensitive driving behavior)

• …
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Patterns in Image Data: often too Complex for Manual Parameterization
AI / Deep Learning might be THE answer… 

Supervised Learning seems to be simple:
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Patterns in Image Data: often too Complex for Manual Parameterization
AI / Deep Learning might be THE answer… 

State-of-the-art example, trained with Cityscapes data
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[1] Cordts et al., The Cityscapes Dataset for Semantic Urban Scene Understanding, CVPR 2016, www.cityscapes-dataset.com

[2] Yu et al., BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning, CVPR 2020, www.bdd100k.com

Use on Further Cityscapes Set [1] Use on BDD Set [2]



Patterns in Image Data: often too Complex for Manual Parameterization
AI / Deep Learning might be THE answer… 

Not optimal for (e.g.) camera images, not optimal for driving scenarios:

• ML model will be complex (Gigabytes+)

• Required data amount is HUGE (Terabytes+)

• Manual Labeling is VERY expensive (clickwork, crowdsourcing) 

… with the result:

• even training can be expensive (GPU super-computing etc.)

• training data might be not complete

• the ML model is neither optimal nor complete

• the ML model may not contain context (“invisible knowledge”)

… so we need:

• reduce labeling cost (find most significant data to train with)

• data automation (generate synthetic data, with ground truth)

• labeling automation (semi-/unsupervised learning)

• extend model with various new data (domain adaptation)

• models to include context (knowledge integration)
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Reduce Labeling Cost with Active Learning
Strategy to find good data for training

Example: Google ReCAPTCHA [4]
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[3] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison. 2009.

[4] Google Developers: ReCAPTCHA. developers.google.com/recaptcha/

General idea: algorithm queries user (oracle) [3]

• Find unsafe points in the model (e.g. specific image)

• Query user with specific task (e.g. specific label)

• Update model by user feedback 



Use of synthetic data
Large labeled datasets are cheap now
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Real WorldSynthetic World

Straightforward idea

• Generate synthetic data with ground truth, similar to 

considered real-world domain

• use high-quality rendering engine 

(GTA5, CARLA, …)

• use nearly equal sensor emulation 

(alignment at vehicle, distortion, curves, 

radiometry, noise, …)

• choose similar environment (vehicle path, location, 

weather, …)

• Learn model ☺

• Possible further steps:

• active learning: predict real-world labels and let 

user optimize where prediction is presumably bad

• optimize model with domain adaptation for best fit 

with real data

Images from CityScapes Dataset –

Cordts et al., CVPR 2016



Domain Adaptation
How do we learn with new data automatically? 

• First of all: we need a labeled source domain with existing AI model

• Then, choose delta-domain to simplify and to increase overlap

• countries                            

• weather

• sensors

• …

• Then, have suitable data in target domain ☺

• Eventually, unsupervised Learning benefits

from similarities between domains
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Images from Sefati et al., KI DeltaLearning

project presentation - ki-familie.vdali.de



Domain Adaptation
Combine Feature Space to fit with both Domains [5]
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[5] Niemeijer, Schäfer: Combining Semantic Self-Supervision and Self-Training for Domain 

Adaptation in Semantic Segmentation. Workshop Autonomy@Scale, IV 2021

[6] Hoffman: CyCADA: Cycle-Consistent Adversarial Domain Adaptation, PMLR 2018

[7] He et al.: Deep Residual Learning for Image Recognition, CVPR 2016

[8] Saito et al.: Universal Domain Adaptation through Self Supervision, NeurIPS 2020

Steps:

• align source and target input (see [6])

• decode features in model (e.g. ResNet [7])

• align feature space: minimize entropy in 

similarity [8]
→ provides pseudo-labels

• align output space: self-training with 

pseudo-labels (iterative)



Domain adaptation
Result example
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Evaluation on BDD with CityScapes source domain

before domain adaptation after domain adaptation



What about context?
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FakesConnected signs and markers Meaning unclearLimited relevance

Need to know the meaning, not only the type:

• Relations between signs

• Scope and validity of signs

• Relation between signs and road participants

• Expected behavior of road participants

• …



Concept: “Knowledge Directed Object Detector”
Knowledge Representation into Graph Neural Networks [9]
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[9] Jiang et al., Hybrid Knowledge Routed Modules for Large-scale Object Detection, NeurIPS 2018
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Future work: Prediction of Object Behavior and Risk
What will happen in the next few seconds?

• Old but proven: prediction from filter 

(e.g. Kalman filter)

• good at regular driving

• bad at sharp events -> Problem!

• Behavior and movement prediction 

from indicators

• at object itself

• within environment (static / 

dynamic elements)

• in mutual interactions

• in map / rules

• in meta-data (time, weather, …)

• Indicator labeling and learning

• Video and multi-info-based learning

• Will result in complex ontology of 

measurable and non-measurable 

information and knowledge 
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Images from CityScapes Video –

www.youtube.com/watch?v=yNc5N1MOOt4



Thank you!

Project information: ki-familie.vdali.de
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