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Abstract
The gyrokinetic Poisson equation arises as a subproblem of Tokamak fusion reactor simu-
lations. It is often posed on disk-like cross sections of the Tokamak that are represented in
generalized polar coordinates. On the resulting curvilinear anisotropic meshes, we discretize
the differential equation by finite differences or low order finite elements. Using an implicit
extrapolation technique similar to multigrid τ -extrapolation, the approximation order can be
increased. This technique can be naturally integrated in a matrix-free geometric multigrid
algorithm. Special smoothers are developed to deal with the mesh anisotropy arising from
the curvilinear coordinate system and mesh grading.

Keywords Fusion plasma · Disk-like · Cross section · Multigrid · Extrapolation

Mathematics Subject Classification 65N55 · 65N06 · 65N30 · 65B99

1 Introduction

In the context of Tokamak fusion plasma, a Poisson equation has to be solved on disk-like
domains which correspond to the poloidal cross sections of the Tokamak geometry; see, e.g.,
[5, 10, 37]. In its most simplified form, this cross section takes a circular form but deformed
(cf. Fig. 1, center) or more realistic D-shaped geometries were found to be advantageous; see,
e.g., [5, 10]. For more details on the problem setting and the physical details, we refer the
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reader to [5, 10, 13, 32, 37–39]. Here, we propose a tailored solver for

−∇ · (α∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R
2 is a disk-like domain, f : Ω → R, and α : Ω → R is a varying coefficient,

also refered to as density profile.
The purpose of this article is to develop a problem-specific solver for this scenario. Our

particular problem setting is taken from [5, 13, 32, 38, 39]. The solution of this system is a part
of the iterative solution process in large gyrokinetic codes such as Gysela [13] where the 2D
problem must be solved repeatedly over many times steps on hundreds or thousands of such
2D cross sections. Note that the solution of the Gyrokinetic equation on each cross section
is only a moderately sized problem, but each simulation run with the plasma physics code
may require the solution of this subproblem millions of times. Already small improvements
in the methods can lead to substantial reductions in computation time of the field solver.
This motivates and justifies the effort for a dedicated development and for optimizing the
algorithms.

The article will study several mathematical difficulties and propose special techniques to
handle each of them. In particular,

– the domain geometry and the variable coefficient formally lead to a linear system with
a sparse matrix. However, the conventional assembly and the repeated access to this
matrix will limit performance. In fact, on many modern architectures, memory access
can be more critical for performance than the floating point operations. Therefore, as an
alternative to working with sparse matrix formats, we will here develop techniques that
are suitable for a matrix-free implementation.

– The smoothness of the domain and the regularity of the coefficients justify the use of
higher order discretizations, promising to reach better accuracy with fewer unknowns.
Conventionally, however, higher order discretizations would lead to sparse matrices with
more complex structure, which are also more densely populated. Solving for these dis-
cretizations would thus incur an increased cost. Here we will focus on a nonstandard
alternative, where higher order is achieved using computationally cheap low order dis-
cretizations only, but using an implicit extrapolation step [18] to reach higher order.

– The solver algorithm itself must be scalable or, in other words, asymptotically optimal.
Recall that linear (or close to linear) algorithmic complexity is a necessary condition for
reaching scalability. Beyond this, we are here not only interested in the order of com-
plexity, but also to keep the absolute cost minimal. Our focus is on geometric multigrid
methods which belong to the most efficient solvers for elliptic problems, also in terms of
absolute cost. In the development below, we will carefully optimize them for the given
mesh structures. This requires in particular dealing with the anisotropy of the meshes
and thus introducing special zebra line smoothers.

– Finally, all algorithms must be suitable for parallelization. Although developing an opti-
mized parallel implementation is beyond the scope of the current article, we will design
the algorithms such that parallelization will be possible in future work. This means that
all algorithmic components, e.g., smoothers or grid transfer operators, are constructed
such as to avoid any sequential bottlenecks or global dependencies, except the limita-
tions caused by the multigrid hierarchy itself. In the envisioned application, many cross
sections will be computed independently, leading to a significant degree of coarse grain
parallelism. Beyond this the solution on each of the 2D cross sections must be suitable to
exploit node level parallelism and instruction level parallelism. Therefore all algorithms
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developed here are ready to exploit intra-node parallelism. Additional care has also been
taken so that a vectorization of the loop kernels will be possible and also executing the
solver on accelerators such as a GPU becomes possible.

In the article, we will consider two illustrative domain shapes. The first one is a simple
circle or circular annulus and the second one is a deformed circle as introduced in [5];
see Fig. 1. These domains can be described in curvilinear coordinates. In its simplest form,
the geometry can be described by polar coordinates, but for a more realistic geometry, more
general transformations must be used.

One drawback of the curvilinear coordinates is the introduction of an artificial singularity
in the origin of themapping. Further challenges for our solver come from the anisotropy in the
transformed meshes and a varying coefficient α describing a physical density. Additionally,
the meshes may be refined anisotropically to account for particular physical effects.

Multigrid methods can achieve optimal complexity for many problems and are among the
most efficient solvers for elliptic model problems such as (1.1); see, e.g., [6, 35]. However,
multigrid methods for curvilinear (e.g., polar) meshes are less commonly studied topics; cf.
[1, 3, 23, 33, 35] for some results.When additional difficulties arise, such as generalized polar
coordinates, varying coefficients, and locally refined, anisotropic meshes, then the multigrid
components must be suitably modified and adapted to maintain excellent convergence rates
at low cost per iteration. Designing the algorithms for parallel execution onmodern computer
architectures and achieving a low memory footprint put additional constraints on the design
of the multigrid components for coarsening, prolongation, and smoothing of the iterates.

Wepresent a geometricmultigrid algorithmusing special line smoothers tailored to support
parallel scalability. Additionally, we propose an implicit extrapolation scheme based on [15,
16, 18] with the goal to improve the order of differential convergence. Note that this refers
to convergence of the algorithm with respect to the solution of the PDE, as different from
algebraic convergence when considering the multigrid method as a linear system solver.

Conventional Richardson-style extrapolation for PDE relies on global asymptotic error
expansions for the discrete solution and thus requires strict smoothness assumptions [22]
to guarantee the existence of global asymptotic error expansions. An interesting variant of
Richardson extrapolation that can save cost for higher dimensional problems is called splitting
or multi-parameter extrapolation, see e.g. [20, 26, 30].

The combination of such extrapolation methods with iterative multilevel solvers, such as
the multigrid method, is in many ways natural [29, 36] and has recently seen renewed interest
[9, 19]. In particular, it is attractive to combine Richardson-style extrapolation with cascadic
multigrid [4, 31] methods, as studied e.g. in [25, 34]. Since the cascadic multigrid method is
not optimal in the L2-norm, special extrapolation formulas must be developed [7, 8].

τ -extrapolation and other implicit extrapolation variants rely on extrapolation applied to
local quantities, such as the residual or the local energy, and thus they can also be used
when only local smoothness is guaranteed. In this article, we will use implicit variants of
extrapolation as proposed in [15, 27, 28]. Thesemethods are related to τ -extrapolation that has
been proposed in combination with multigrid solvers [6, 14]. Different from τ -extrapolation,
our method is based on the existence of an underlying energy functional and is thus limited
in its current form to self-adjoint PDE.

The remainder of the article is organized as follows. In Sect. 2, we present the detailed
problem setting and the geometry motivated from fusion plasma applications. In Sect. 3, we
briefly introduce our five and nine point finite difference stencils as well as the finite elements
combined with nonstandard numerical integration. We also briefly discuss the handling of
the mesh singularity at the origin. In the main section, Sect. 4, we introduce the new geo-
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Fig. 1 Circular (left) and deformed circular (center) geometry that can be described by curvilinear coordinates
(r , θ) ∈ [r1, 1.3] × [0, 2π ] with the mapping FP (2.1) (left) and FGP (2.2), κ = 0.3, δ = 0.2, (center),
respectively. Rapidly decaying density profile (2.3) (right). Around the decay of the coefficient, the meshes
are locally refined in r ; here, with hmax/hmin = 8

metric multigrid algorithm with optimized line smoothers and using implicit extrapolation.
In Sect. 5, we present numerical results.

2 Curvilinear Coordinates andModel Problem Representations

In this paper, we will consider physical domainsΩr1 that can be described by amapping from
a logical domain (r1, 1.3) × [0, 2π) onto Ωr1 for r1 ∈ [0, 1.3). Except for the singularity
arising for r1 = 0, the mapping is invertible. We will later present different strategies to
handle the artificial singularity. Note that rmax = 1.3 is purely problem-specific and it will be
used throughout this paper only for simplicity of the presentation; other values are possible.

First, we will consider the circular geometry, which can be described by the polar coordi-
nate transformation FP(r , θ) = (x, y) with

x = r cos(θ), y = r sin(θ), (r , θ) ∈ [r1, 1.3] × [0, 2π]; (2.1)

see Fig. 1 (left). A generalized transformation FGP(r , θ) = (x, y) is given by

x = (1 − κ)r cos(θ) − δr2, y = (1 + κ)r sin(θ), (r , θ) ∈ [r1, 1.3] × [0, 2π]. (2.2)

The particular model setting is based on [5, 32, 39] to describe more realistic Tokamak cross-
sections.According to [5, 39], we use κ = 0.3 and δ = 0.2. The resulting domain is illustrated
in Fig. 1 (center). Note that (2.2) reduces for κ = δ = 0 to (2.1). Nevertheless, we will also
give explicit formulas for (2.1) since we consider the polar coordinate transformation as a
case of particular interest.

In our simulations, we either use α ≡ 1 to consider the Poisson equation or use a typical
density profile given by

α(r , θ) = α(r) = 2

2.6 + 3.14

(
1.3 + arctan

(
1 − r

0.09

))
; (2.3)

see Fig. 1 (right). The density profile (2.3) is motivated by [12, 32, 38] and models the rapid
decay from the core to the edge region of the separatrix in the Tokamak.
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Concerning the mesh, we use local refinements to pass from the core to the edge region
of the separatrix; see, e.g., [24] or Fig. 1 for a representative refinement by a ratio of 8 in
direction of r and a minimal mesh size of 49 × 64.

For the polar coordinate transformation and the coefficient (2.3) the partial differential
equation from (1.1) reads

− 2

(2.6 + 3.14)
(
0.09 − (1−r)2

0.09

) ∂u
∂r

+ α(r)

(
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2

)
= f , (2.4)

where the term in the last parenthesis corresponds to the well-known Laplacian operator
expressed in polar coordinates.

Remark 2.1 Note that we neither explicitly distinguish between the functions u(r , θ) =
ũ(x, y) nor the operators ∇̃ = ∇x,y and ∇ = ∇r ,θ in (1.1) and (2.4), defined for the
corresponding variables. We will do this to a certain extent by using ·̃ for operators and
functions expressed in Cartesian coordinates in the following. However, to not overload the
notation we waive this notational overhead whenever this disctinction becomes clear from
the context.

In the following, we will consider the energy functional to be minimized corresponding
to (1.1). For a scalar coefficient, it writes

Ẽ (̃u) =
∫

Ω∗
r1

(1
2
α̃|∇̃ũ|2 − f̃ ũ

)
d(x, y)

=
∫ 1.3

r1

∫ 2π

0

(1
2
α(DF−T∗ ∇u, DF−T∗ ∇u) − f u

)| det DF∗|d(r , θ) = E(u),

(2.5)

where∗ ∈ {P, GP}, DF∗ is the Jacobianmatrix, andΩ∗
r1 is the physical domain for either (2.1)

or (2.2). In the remaining part of the paper, we mostly use the index ·∗ to refer to both
transformations likewise. For the inverse transformations, see [5]. Due to space limitations,
we only provide

det DFP = r , DF−1
P = 1

det DFP

(
r cos(θ) r sin(θ)

− sin(θ) cos(θ)

)
, (2.6)

and

det DFGP = r(1 + κ)(1 − κ − 2δr cos(θ)),

DF−1
GP = 1

det DFGP

(
(1 + κ)r cos(θ) (1 − κ)r sin(θ)

−(1 + κ) sin(θ) (1 − κ) cos(θ) − 2δr

)
.

(2.7)

In order to simplify the notation for (2.5), we define

(
arr∗ 1

2a
rθ∗

1
2a

θr∗ aθθ∗

)
:= 1

2
α(r)DF−1∗ (r , θ)DF−T∗ (r , θ)| det DF∗(x, y)|. (2.8)

Note that (2.8) is symmetric and thus arθ∗ = 1
2a

rθ∗ + 1
2a

θr∗ . Additionally, note that arθP = 0,
i.e., for the polar coordinate transformation the offdiagonal entries are zero as long as the
diffusion term α remains scalar.
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Fig. 2 Physical (left) and logical (right) domain for r1 > 0 and polar coordinate transformation (2.1) with
two-level hierarchical, anisotropic tensor-product mesh

3 DiscretizationMethods

In this paper, we will use linear finite elements and compact finite differences to construct
a geometric multigrid algorithm on anisotropic grids represented by curvilinear coordinates.
We use particular finite difference stencils from [18] which maintain the symmetry of the
energy functional also for anisotropic grids. For finite elements, we introduce nonstandard
integration rules that are advantageous when implicit extrapolation is used within the multi-
grid algorithm; cf. [16, 18].

We first consider an anisotropic hierarchical grid with two levels. This is suitable to apply
the extrapolationmethod developed in [18]. The two-level hierarchical grid is given in tensor-
product form on the logical domain (r1, 1.3) × [0, 2π) (see Fig. 2) with

r1 ≥ 0, rnr := 1.3, r2i : = r2i−1 + hi , r2i+1 := r2i + hi , hi > 0, 1 ≤ i < 
nr
2

�,
θ1 := 0, θnθ := 2π, θ2 j : = θ2 j−1 + k j , θ2 j+1 := θ2 j + k j , k j > 0, 1 ≤ j < 
nθ

2
�,

where nr and nθ denote the (odd) number of nodes in r - and θ -direction, respectively. We
denote h := maxi hi and k := max j k j .

3.1 Finite Element Discretization

We briefly recapitulate the nonstandard integration rule from [16, 18, 21]. In [18], it was
already shown that the nonstandard quadrature rules may be better suited than standard
quadrature for linear elements when approaching the singularity as r1 → 0.

Remark 3.1 (Nonstandard Finite Element integration) We use nodal P1 basis functions with
a nonstandard numerical integration rule; see [16, 18, 21]. Let us note that this nonstandard
integration rule does not use standard edge-midpoint quadrature. In this approach, each
additive term of a reformulated integrandwill be evaluated at one term-specific evaluation
node only.
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Fig. 3 Mesh elementΔ (left)with transformation onto a reference triangle T (right).Definition of the directions
ξ1 = e1, ξ2 = e2, and ξ3 = e2 − e1 as well as the definition of the evaluation nodes ξ(T ,1), ξ(T ,2), and ξ(T ,3)

(right)

As in the case of standard integration, we map any triangle Δ of the triangulation of the
logical domain onto the reference triangle T = {(ξ1, ξ2) ∈ R

2 : 0 ≤ ξ1, ξ2 ≤ 1, ξ1 + ξ2 ≤
1}. Then, we introduce the directional derivative

∂ϕ

∂ξ3
= ∂ϕ

∂ξ2
− ∂ϕ

∂ξ1
. (3.1)

For any two finite element basis functions ϕα and ϕβ with Δ ∈ supp(ϕα) ∩ supp(ϕβ), we
have for the bilinear form on the logical domain∫

Δ

(α

2

(
DF−T∇r ,θ ϕα DF−T∇r ,θ ϕβ

))
| det DF |d(r , θ)

=
∫
T

(
b

ξ1ξ1 ∂ϕ̂α̂

∂ξ1

∂ϕ̂β̂

∂ξ1
+ b

ξ1ξ2

(
∂ϕ̂α̂

∂ξ1

∂ϕ̂β̂

∂ξ2
+ ∂ϕ̂α̂

∂ξ2

∂ϕ̂β̂

∂ξ1

)
+ b

ξ2ξ2 ∂ϕ̂α̂

∂ξ2

∂ϕ̂β̂

∂ξ2

)
d(ξ1, ξ2),

(3.2)

where ϕ̂α̂ and ϕ̂β̂ , α̂, β̂ ∈ {1, 2, 3}, are the corresponding functions on the reference element
and where

α

2
DF̂−1DF−1DF−T DF̂−T | det DF || det DF̂ | =:

(
b

ξ1ξ1 b
ξ1ξ2

b
ξ1ξ2 b

ξ2ξ2

)
; (3.3)

with the mapping F̂−1(Δ) = T ; cf. Fig. 3.
For the nonstandard quadrature rule, we first transform (3.2) by using (3.1) to

∫
T

(
bξ1ξ1

∂ϕ̂α̂

∂ξ1

∂ϕ̂β̂

∂ξ1
+ bξ2ξ2

∂ϕ̂α̂

∂ξ2

∂ϕ̂β̂

∂ξ2
+ bξ3ξ3

∂ϕ̂α̂

∂ξ3

∂ϕ̂β̂

∂ξ3

)
d(ξ1, ξ2); (3.4)

where

bξ1ξ1 := b
ξ1ξ1 + b

ξ1ξ2
, bξ2ξ2 := b

ξ2ξ2 + b
ξ1ξ2

, and bξ3ξ3 := −b
ξ1ξ2

. (3.5)

The numerical approximation of the integral (3.2) is then given by

|T |
3∑

n=1

bξnξn
(
ξ (T ,n)

) ∂ϕ̂α̂

∂ξn

(
ξ (T ,n)

) ∂ϕ̂β̂

∂ξn

(
ξ (T ,n)

)
, (3.6)
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The linear form is approximated by using

∫
T
g(ξ1, ξ2)d(ξ1, ξ2) = |T |

3

3∑
i=1

g (zi ) , (3.7)

where zi , i ∈ {1, 2, 3}, are the corner nodes; cf. Fig. 3.

3.2 Finite Difference Discretizations

For completeness, we additionally present the finite difference stencils as they will be used
here. We refer to [18] for further detail. For any rectangular grid element � := (ri , ri+1) ×
(θ j , θ j+1) of the logical domain, we consider the discretized local energy function

∫
�

(
arr∗ u2r + arθ∗ uruθ + aθθ∗ u2θ − f u| det DF∗|

)
d(r , θ) (3.8)

corresponding to (1.1) and where arr∗ , arθ∗ , and aθθ∗ are implicitly given by F∗ as defined
in (2.1) or (2.2), respectively.

Note that arθ∗ = 0 if F∗ = FP is the standard polar coordinate transformation. Note also
that this does only generally hold for scalar diffusion α. For this case, we obtain the five point
stencil

us+1,t : (∗5)s+1,t := −kt + kt−1

hs

arrs,t + arrs+1,t

2

us−1,t : (∗5)s−1,t := −kt + kt−1

hs−1

arrs−1,t + arrs,t
2

us,t+1 : (∗5)s,t+1 := −hs + hs−1

kt

aθθ
s,t + aθθ

s,t+1

2

us,t−1 : (∗5)s,t−1 := −hs + hs−1

kt−1

aθθ
s,t−1 + aθθ

s,t

2

us,t : (∗5)s,t := − [(∗5)s+1,t + (∗5)s−1,t + (∗5)s,t+1 + (∗5)s,t−1
]
,

(3.9)

with right hand side

(hs + hs−1)(kt + kt−1)

4
fs,t | det DFs,t | (3.10)

and quadratic error convergence. Note that this stencil differs slightly in us+1,t and us−1,t
when compared to [18]. This results from the use of the trapezoidal rule instead of the
midpoint rule. It was chosen to have the five point stencil (3.9) as the reduced version of the
nine point stencil (3.11).
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Fig. 4 Finite difference stencils around r1 = 0 (left), finite element discretization around r1 = 0 (center),
finite difference discretization across the origin for finite differences and finite elements and r1 > 0 (right)

In case of a transformation where arθ∗ = 0, we have to use a seven or nine point stencil,
to obtain a quadratic discretization error. The nine point stencil used here is given by

us+1,t : (∗9)s+1,t := (∗5)s+1,t us−1,t : (∗9)s−1,t := (∗5)s−1,t

us,t+1 : (∗9)s,t+1 := (∗5)s,t+1 us,t−1 : (∗9)s,t−1 := (∗5)s,t−1

us+1,t+1 : (∗9)s+1,t+1 := −arθs+1,t + arθs,t+1

4

us+1,t−1 : (∗9)s+1,t−1 := arθs,t−1 + arθs+1,t

4

us−1,t+1 : (∗9)s−1,t+1 := arθs−1,t + arθs,t+1

4

us−1,t−1 : (∗9)s−1,t−1 := −arθs−1,t + arθs,t−1

4
us,t : (∗9)s,t := − [(∗9)s+1,t + (∗9)s−1,t + (∗9)s,t+1 + (∗9)s,t−1

]

(3.11)

with right hand side (3.10). We refer to [18] for its derivation.

3.3 Handling of the Artificial Singularity

In the following, we propose some ways to handle the artificial singularity for r → 0. All
our proposals are based on the idea to retain a symmetric operator.

3.3.1 The Origin as Discretization Node

A natural approach consists in integrating the node (r1, θ) = (0, 0) into the mesh. This,
however, needs an adaptation of the discretization rules since the logical nodes (0, θ j ), j =
1, . . . , nθ all coincide geometrically.

For our finite difference stencils, we modify the discretization around the origin as follow-
ing. Let us consider an arbitrary node (r2, θ j ), 1 < j < nθ − 1. We remove all interactions
of the stencil with (r1, θ j−1) and (r1, θ j+1); see Fig. 4 (top left). We then take the interaction
with (r1, θ j ) and set it also as connection from (r1, θ j ) to (r2, θ j ) to obtain a symmetric
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matrix. The diagonal entry for (r1, 0) is then given by the negative sum of the values on all
angles.

For our finite element discretization, we integrate the basis functions over the triangles
with nodes (r1, θ j ), (r2, θ j ), (r2, θ j+1); see Fig. 4 (center). Note that it is important to pass
(r1, θ j ) to the assembly of the transformation onto the reference angle, although it physically
corresponds to (r1, 0) for all 1 ≤ j ≤ nθ . If (r1, 0) is passed for all angles, the orthogonality
of the mesh (i.e., the tridiagonal structure of T ) is lost locally and the connections of (r1, θ j1)

to (r2, θ j1) and (r1, θ j2) to (r2, θ j2) can differ for j1 = j2.

3.3.2 Artificial Boundary Conditions

A simple and often used workaround to overcome the problem of the artificial singularity
is to choose 0 < r1 � 1 and to enforce Dirichlet or Neumann boundary conditions for the
artificial boundary r1 × [0, 2π ]. A direct drawback is that these conditions are hard or even
impossible to determine in practical cases. This workaround is however used in the Gysela
implementation as presented in [13].

3.3.3 Discretization Across the Origin

Another approach that we propose is the discretization across the origin. Instead of explicitly
using (0, 0) as discretization node or imposing boundary conditions at r1 > 0, we first
assemble the stiffness matrix for r1 > 0 without any condition on (r1, θ j ), 1 ≤ j ≤ nθ .

To discretize across the origin, we only assume nθ −1 to be even. For finite differences and
finite elements likewise, we then take the finite difference stencil entry (∗5)−1, j or (∗9)−1, j

with r−1 = r1 and h−1 = 2r1 since the geometrical distance is 2r1 between the nodes (r1, θ j )

and (r1, θ j + π) to define a stencil entry from (r1, θ j ) to (r1, θ j + π) (and vice versa).
Note that this may lead to an unsymmetric operator if nonsymmetric domains and seven

point stencils are considered. In this case, one could copy the values from the first half circle
to the second half circle to retain a symmetric operator.

4 Geometric Multigrid for Curvilinear Coordinates

Multigrid methods are among the most efficient solvers for elliptic model problems such
as (1.1); see, e.g., [6, 35]. Multigrid methods for meshes in polar coordinates were considered
in, e.g., [1, 3, 23, 33, 35] but are, however, less studied. In the following sections, we will
develop special multigrid components for the model problem in curvilinear coordinates such
as the generalized polar coordinates proposed in (2.2).

In order to define the notation, we first define a hierarchy of L + 1 grids with Ωl−1 ⊂ Ωl ,
1 ≤ l ≤ L , and |ΩL | = nr ∗ nθ . To identify matrices and vectors on grid Ωl , we use
the subindex l, 0 ≤ l ≤ L . The iterates of step m are characterized by a superindex m,
m ≥ 0. The restriction operator from grid l to grid l − 1 is denoted I l−1

l and I ll−1 represents
the interpolation from grid l − 1 to grid l. The presmoothing operation with ν1 steps is
denoted Sν1 , the postsmoothing operation with ν2 steps is denoted Sν2 . The multigrid cycle
um+1
L = MGC(L, γ, umL , AL , fL , ν1, ν2) is then given recursively for 0 ≤ l ≤ L .
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The multigrid cycle

um+1
l = MGC(l, γ, uml , Kl , fl , ν1, ν2)

– Presmoothing: um+1/3
l = Sν1(uml , Kl , fl)

– Coarse grid correction

– Compute the residual: rm+2/3
l = fl − Klu

m+1/3
l

– Restrict the residual: rm+2/3
l−1 = I l−1

l rm+2/3
l

– Solve Al−1ê
m+2/3
l−1 = rm+2/3

l−1 by
• (if l = 0:) the use of a direct solver.
• (if l ≥ 1:) γ -times recursively calling

êm+2/3
l−1 = MGC(l − 1, γ,♦, Kl−1, r

m+2/3
l−1 , ν1, ν2)

– Interpolate the correction: êm+2/3
l = I ll−1ê

m+2/3
l−1

– Compute the corrected approximation: um+2/3
l = um+1/3

l + êm+2/3
l

– Postsmoothing: um+1
l = Sν2(um+2/3

l , Kl , fl)

In the recursive call,♦ stands for zero as a first approximation and in further calls (W-cycle)
for an approximation taken from the previous cycle.

4.1 Optimized Zebra Line Smoothers

For highly anisotropic problems, point relaxation and standard coarsening (i.e., coarsening
by a factor of 2 in each dimension) do not yield satisfactory results. Pointwise smoothing
then only has poor smoothing properties with respect to weakly-coupled degrees of freedom
(dofs); cf. [35,Sec. 5.1]. In the context of multigrid, we speak of strong coupling between
one dof to another if the offdiagonal entry of the considered matrix is “relatively” large;
compared to the other offdiagonal entries of the same dof. If the entry is “relatively” small,
we speak of weak coupling.

If the anisotropy is aligned with the grid, standard coarsening can be kept and only the
smoothing operation has to be adapted to obtain goodmultigrid performance. Line relaxations
are block relaxations where all the connections between degrees of freedom of one line are
taken into account to update this line in one single step. Using line relaxation, errors become
smooth if strongly connected degrees of freedom are updated together. For a more detailed
introduction to line smoothers, see, e.g., [35,Sec. 5.1].

For compact finite difference stencils and linear nodal basis functions, zebra line smoothers
correspond to Gauß-Seidel line relaxation methods where all even and all odd lines (rows
or columns), respectively, are processed simultaneously. For operators where the anisotropy
changes across the domain, alternating zebra relaxation has been proposed; see [33]. The
polar coordinate transformed Laplace operator yields strong connections on circle lines on
the interior part of the domain and strong connections on radial lines on the outer part; cf. (2.4).
Consequently, alternating zebra relaxation was proposed for the unit disk [1]. We will now
briefly introduce zebra relaxation and then explain our particular choice of smoothers for all
parts of the (deformed) domain from Fig. 1 described by curvilinear coordinates.
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Fig. 5 Circle (left) and radial (second to left) zebra coloring for the equidistant discretized annulus with
r1 = 1e−6. Nonzero pattern of Kl,BB restricted to an interior circle (second to right) and of Kl,BB restricted
to one radial direction (right) assuming a circle-by-circle numeration of the nodes with nl,r = nl,θ = 9. The
periodic boundary conditions at (rl,i , θnl,θ ) = (rl,i , 2π) introduce the interaction in the upper right and lower
left corners of the the circle relaxation operator (second to right). The first and last line of radial relaxation
operator (right) only have one entry since Dirichlet boundary conditions were set there, entries ·1,9 and ·57,65
were put on the right hand side; only the corresponding nonzero rows and columns are printed

Let nl = nl,r × nl,θ be the number of nodes on grid l ∈ {0, L}. Furthermore, let Bl and
Wl be disjoint index sets such that Bl ∪ Wl = {1, 2, . . . , nl} and by reordering

uml =
(
uml,B
uml,W

)
, fl =

(
fl,B
fl,W

)
, and Kl =

(
Kl,BB Kl,BW

Kl,WB Kl,WW

)
(4.1)

for any grid l ∈ {0, L}. Note thatwedrop the second index l in B andW to avoid a proliferation
of indices.

In the following, we will focus on zebra colorings such that Kl,BB and Kl,WW can be
partitioned into a block diagonal system with blocks of sizeO(

√
nl). Note that this property

does not hold for the radial directions if a full (deformed) disk is considered; if r1 = 0, then
all these directions are coupled by the origin.

For curvilinear coordinates, the two natural line smoothing operations are denoted circle
and radial zebra relaxation. For circle zebra relaxation, all nodes (rl,i , θl, j ), j ∈ {1, . . . , nl,θ }
get the same color while (rl,i−1, θl, j ) and (rl,i+1, θl, j ), j ∈ {1, . . . , nl,θ }, get another color.
For radial zebra relaxation (rl,i , θl, j ), i ∈ {1, . . . , nl,r } are colored together; see Fig. 5 (left
and second to left).

Let us color each line (row or column) alternatingly black and white. Then, the diagonal
blocks of size O(

√
nl) in Kl,BB and Kl,WW only have three entries per row for all finite

difference stencils and finite element basis functions introduced in Sect. 3. For a coloring in
accordance with the ordering of the nodes, the local block can be tridiagonal. However, also
the banded systems with three entries per row can be solved inO(

√
n) operations by a direct

solver; see Fig. 5 (second to right and right) for the nonzero structure.
The presmoothing operation Sν1(uml , Kl , fl) can be expressed as follows.
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The circle or radial presmoothing operation

um,0
l,B = uml,B , um,0

l,W = uml,W

for i = 1, . . . , ν1 solve

Kl,BBu
m,i
l,B = fl,B − Kl,BWum,i−1

l,W

Kl,WWum,i
l,W = fl,W − Kl,WBu

m,i
l,B

endfor

u
m+ 1

3
l,B = um,ν1

l,B , u
m+ 1

3
l,W = um,ν1

l,W

(4.2)

The postsmoothing operation Sν2(u
m+ 2

3
l , Kl , fl) is obtained equivalently. In order to

smooth the coarse degrees of freedom first, we will color them always in black.

Remark 4.1 Note that the zebra-line Gauss-Seidel preconditioner is not triangular but block-
triangular. That means that all nonzero entries shown in Fig. 5 (also those in the upper
triangular part) remain on the left hand side of the system. The shown entries all belong
to the same line (row or column). For larger finite difference stencils or hierarchical finite
element bases, Kl,BB and Kl,WW from (4.2) may have more than three nonzeros per row.
Then, either more colors have to be used or a part of the upper triangular matrix has to be
brought to the right hand side.

Let us consider the annulus Ωhi := [ri , ri +hi ]× [0, 2π] as an individual domain; with a
constant discretization parameter k j = k in the second dimension, i.e, nθk = 2π . From [1],
we know that the smoothing factors of circle and radial relaxation, μCZ,hi ,k j and μRZ,hi ,k j ,
on Ωhi are given by

μCZ,hi ,k j = max
ri≤r≤ri+hi

⎧⎨
⎩
(

q2i, j r
2

1 + q2i, j r
2

)2
,CC

⎫⎬
⎭

μRZ,hi ,k j = max
ri≤r≤ri+hi

⎧⎨
⎩
(

1

1 + q2i, j r
2

)2
,CR

⎫⎬
⎭

(4.3)

with qi, j = k j
hi

as well as CC ∈ {0.23, 0.34}, depending on ri ≥ 0, and CR = 0.23,
independently of ri . From Fig. 6 (left), we see that both relaxations behave very differently
on different annuli of size hi of the global domain. We see that radial relaxation is prohibitive
around the origin but shows good smoothing behavior for r → 1.3. Circle relaxation shows
good smoothing behavior around the origin but does not provide essential smoothing where
the mesh was refined and for r → 1.3. In order to obtain a reasonable smoothing procedure
on the entire domain, we thus have to combine circle relaxation with radial relaxation. In
[1], alternating zebra relaxation, consisting of one step with each smoothing operator, was
proposed.

To reduce theworkload and to optimize the smoothing operation,we propose the following
smoothing procedure. Since circle relaxation leads to good smoothing around the origin, we
color the nodes around the origin in circle lines. For each following circle with radius ri > r1,
we then check in accordance to (4.3), if
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Fig. 6 Approximated local smoothing factors μCZ,hi ,k j and μRZ,hi ,k j for a finer discretization of the mesh
depicted in Fig. 1 (left) with r1 = 1e − 6. Approximation by evaluating the argument of the maximum
functions in (4.3) at ri ; we use that k j is constant on each circle line represented by ri , i = 1, . . . , nr . Domain
decomposition and optimized circle and radial smoothers (center and right). The red parts of the domain are
not smoothed by the corresponding smoothing operation

q2i, j r
2 > 1 ⇔ k j

hi
ri > 1 (4.4)

and change to radial relaxation if this is the case. Note that we use that k j is constant on each
circle line represented by ri , i = 1, . . . , nr . We then obtain a decomposition of the domain
into two domains, where different relaxation methods are used; see Fig. 6.

Although the decomposition rule (4.4) was developed for a domain described by polar
coordinates, we also use this as a rule of thumb for the deformed geometries described by
transformation (2.2). See Sect. 5.2 for a numerical evaluation.

The optimized presmoothing operation Sν1(uml , Kl , fl) is then givenwith six colors: black
(for circle and radial, denoted BC and BR), white (for circle and radial, denotedWC andWR),
and orange (denoted OC and OR), which itself is not smoothed; see Fig. 6. The values of the
previous half-step of relaxation are implicitly used as Dirichlet boundary conditions on the
orange-colored part of the decomposition.

The optimized circle-radial presmoothing operation

um,0
l,B∗ = uml,B∗ , u

m,0
l,W∗ = uml,W∗ , u

m,0
l,O∗ =

(
uml,B∗⊥
uml,W∗⊥

)
for ∗ ∈ {C, R}

Note: ∗⊥ = R if ∗ = C and vice versa.

for i = 1, . . . , ν1
for ∗ ∈ {C, R} solve

Kl,B∗B∗u
m,i
l,B∗ = fl,B∗ − Kl,B∗W∗u

m,i−1
l,W∗ − Kl,B∗O∗u

m,i−1
l,O∗

Kl,W∗W∗u
m,i
l,W∗ = fl,W∗ − Kl,W∗B∗u

m,i
l,B∗ − Kl,W∗O∗u

m,i−1
l,O∗

update: um,i−1
l,O∗⊥ =

(
um,i
l,B∗

um,i
l,W∗

)

endfor

endfor

u
m+ 1

3
l,B∗ = um,ν1

l,B∗ , u
m+ 1

3
l,W∗ = um,ν1

l,W∗ for ∗ ∈ {C, R}

(4.5)
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The values um,i
l,O∗ on the orange colored part of the domain contain the interface boundary

conditions for each half-step of smoother. Note that only those values next to the interior
interface, which represent the interface boundary conditions, have to be updated in each step
of the iterative process. The larger the stencil, the more lines have to be updated in practice.

Note that (4.5) is not parallelized across the two different smoothers (circle and radial)
but that the radial smoothers use information from the circle smoothers. If no information is
exchanged, an increase in iterations is to be expected. However, if the color of the outermost
circle-smoother line is smoothed first, then for compact FE or FD stencils such as provided
in this paper, the two sequential colors of the radial smoothers can be executed in parallel
with the second color of the circle smoother. Since the circle color lines are of larger size
than the radial color lines, both parallel steps are expected to finish at similar times.

4.2 Coarsening and Intergrid Transfer Operators

The coarsening and intergrid transfer operators use the classical choices. We always employ
standard coarsening and we use bilinear interpolation, which is also well-defined for
anisotropic meshes, if the additional extrapolation algorithm is not used. In case of implicit
extrapolation, we use bilinear interpolation for l = 1, . . . , L − 1 only and transfer between
the two finest grids is adapted. As presented in Sect. 4.3, extrapolation will only affect the
transfer between the two finest grid levels. In case (0, 0) is an actual discretization node and
is chosen as first coarse node, we have to adapt the restriction and prolongation there. Our
restriction operator is always defined as the adjoint

I l−1
l =

(
I ll−1

)T
, l = 1, . . . , L. (4.6)

Remark 4.2 [Scaling between prolongation and restriction] Note that there is no scaling
constant in definition (4.6) since for the finite element discretizations aswell as for our tailored
finite difference schemes, the right hand side is locally scaled with O(hi k j ), 1 ≤ i ≤ nr
and 1 ≤ j ≤ nθ ; cf. [18] for details on the derivation of the finite difference stencils. As a
potential source of implementation error, this has to be taken into account.

4.3 Implicit Extrapolation

In this section, we introduce the implicit extrapolation step within our multigrid algorithm,
based on the extrapolation strategy of [15, 16, 18]. The extrapolation step is only conducted
between the two finest levels of multigrid hierarchy, affecting the operators on and interpo-
lation between ΩL and ΩL−1.

Let us assume that the coarse degrees of freedom are ordered before the fine degrees of
freedom. By using the indices ·c for coarse and · f for fine nodes, we have

KL =
(
KL,cc KL,c f

KL, f c KL, f f

)
, fl =

(
fL,c

fL, f

)
, uml =

(
umL,c
umL, f

)
,

and equivalently for any other entity defined on ΩL .
In accordance to [15,p. 173], we present the new smoothing procedure that excludes coarse

grid nodes from the (pre- or post-)smoothing procedure
um+1/3
L, f = Sν1(umL, f , KL, f f , fL, f − KL, f cu

m
L,c)

and um+1
L, f = Sν2(umL, f , KL, f f , fL, f − KL, f cu

m+2/3
L,c )

(4.7)
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The new smoother on the finest level is the previously defined smoother only acting on the
fine nodes.

Remark 4.3 Only the fine grid nodes are smoothed on the first level and the nodes belonging
to the coarse grid are excluded from the smoothing operation. This differs from the introduc-
tion of τ -extrapolation in [2, 6, 14]. The weaker smoother may lead to a reduced algebraic
convergence of the multigrid iteration, but it has the advantage that the fixed point of the
multigrid iteration is uniquely defined. For more details, we refer to [15,p. 173] and the
references therein.

Before presenting the extrapolated multigrid cycle, we must also introduce the modified
intergrid transfer operators I LL−1 and I L−1

L := (I LL−1)
T . In order to do so, denote by TL−1

the triangulation on ΩL−1. We then define

I LL−1 :=
(

Ic
T f c

)
, (4.8)

where Ic is the identity matrix on the coarse degrees of freedom and

(
T f c
)
s−nL−1,t

: =
{ 1

2 , if there exists an edge e in TL−1 s.t. xs ∈ e and xt ∈ ∂e,
0, otherwise.

Note that edges are open sets, i.e.,
◦
e = e.

The implicitly extrapolated multigrid cycle um+1
L = IEMGC(L, γ, umL , KL , fL , ν1, ν2)

is then given as in [15,Algorithm 1].

The implicitly extrapolated multigrid cycle

um+1
L = IEMGC(L, γ, umL , KL , fL , ν1, ν2)

– Presmoothing: um+1/3
L, f = Sν1(umL, f , KL, f f , fL, f − KL, f cumL,c)

– Define iterate: um+1/3
L =

(
umL,c

um+1/3
L, f

)

– Coarse grid correction

– Compute and restrict the residual:
rm+2/3
L−1 = 4

3 I
L−1
L ( fL − KLu

m+1/3
L ) − 1

3 ( fL−1 − KL−1u
m+1/3
L,c )

– Call a standard multigrid cycle on L − 1 levels:
êm+2/3
L−1 = MGC(L − 1, γ, 0, KL−1, r

m+2/3
L−1 , ν1, ν2)

– Interpolate and correct approximation:
um+2/3
l = um+1/3

l + I LL−1ê
m+2/3
L−1

– Postsmoothing: um+1
L, f = Sν2(umL, f , KL, f f , fL, f − KL, f cu

m+2/3
L,c )

– Define iterate: um+1
L =

(
um+2/3
L,c
um+1
L, f

)

Remark 4.4 In [15,pp. 169f], it was shown that the implicitly extrapolatedmultigrid algorithm
for linear elements can be interpreted as a multigrid algorithm solving the original PDEwhen
discretized by quadratic nodal basis functions.
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In [15], only constant coefficients were considered. Note that in our applications, due to
the transformation of the physical domain, even α ≡ 1 leads to nonconstant coefficients;
cf. Sect. 2. Nonconstant coefficients were considered with hierarchical bases in [16]. In
contrast to [16], we use the intergrid transfer operator given in [15]. This results from the
discretization by nodal basis functions.

The proof of Remark 4.4 is based on the relation between linear nodal, linear quadratic,
and h- and p-hierarchical basis functions. The transfer operator I LL−1 is part of the trans-
formation between a nodal and a hierarchical basis; see also [18,Sec. 4.4.1]. The necessary
relations [15,(55) and (56)] are formally proven for nonconstant coefficients in [18,Lemma
4.2, Theorem 4.3]. In particular, we can write

4

3
I L−1
L

(
fL − KLu

m+1/3
L

)
− 1

3

(
fL−1 − KL−1u

m+1/3
L,c

)

= I L−1
L

[( 4
3 fL,c − 1

3 fL−1
4
3 fL, f

)
︸ ︷︷ ︸

=: f exL

−
( 4

3KL,cc − 1
3KL−1

4
3KL,c f

4
3KL, f c

4
3KL, f f

)
︸ ︷︷ ︸

=:Kex
L

um+1/3
L

]
, (4.9)

where the term in brackets corresponds to the residual computation of the quadratic approach.

Remark 4.5 We note that the direct discretization of a PDE with higher order finite elements
will typically lead to a denser matrix structure and consequently to a higher flop cost per
matrix-vectormultiplication or smoother application.Here, we construct an equivalent higher
order discretization using by way of a clever recombination of low order components as they
arise canonically in a multigrid solver. In this way, we avoid the explicit set up of any more
expensive higher order discrete operator. In other words, the implicit extrapolation multigrid
method leads to a qualitatively equivalent high order discretization at reduced cost. This
reduces memory cost avoiding the setup of more densely populated matrices, and they avoid
the correspondingmemory traffic and higher flop cost incurred in each iteration of an iterative
solution process. In fact, except the computation of the extrapolated residual in the restriction
phase, the cost of the extrapolated multigrid algorithm is the same as for standard low order
discretization.

Of course, this alone does not account for other solver cost such as induced by the possibly
slower (algebraic) convergence of the extrapolated multigrid algorithm (meaning that more
iterations are needed) and the need to solve the discrete system with higher (algebraic)
accuracy in order to exploit the lower discretization error. Because of these two effects the
cost of computing a proper solution with the extrapolatedmultigrid algorithm is still expected
to be more expensive than solving for a low order discretization. For an in-depth analysis of
the so-called textbook efficiency of parallel multigrid algorithms, see also [11, 17].

5 Numerical Results

In this section, we study (1.1) with α as given in (2.4) to model the density of the fusion
plasma according to [32, 38]. As test case for our new method, we use the manufactured
solution

u(x, y) = (1.32 − r2(x, y)) cos(2πx) sin(2π y), (5.1)

where r(x, y) is defined by (2.1) or (2.2). The right hand side f and the Dirichlet boundary
conditions on (r , θ) ∈ 1.3× [0, 2π ] are given accordingly. This example is taken from [39].
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We thank Edoardo Zoni for providing his Python script for symbolic differentiation and, in
the interest of saving space, we refrain from representing the right hand side explicitly.

We use an anisotropic discretization in r ∈ [r1, 1.3] with ri+1 = ri + hi , i = 1, . . . , nr
to account for the density profile drop in the separatrix’ edge area; cf. [12, 38]. We restrict
the anisotropy to h = maxi hi = 8mini hi .

For our multigrid algorithm, we conduct one step of pre- and one step of postsmoothing,
i.e., ν = ν1 + ν2 = 2. In prospect of a parallel implementation, we only use V -cycles. We
use a strong convergence criterion by demanding a relative residual reduction by a factor of
108. The maximum number of iterations is set to 150. In all tables, we provide the finest
mesh size as nr × nθ . We also provide the iteration count of the multigrid algorithm needed
to convergence as its as well as

ρ̂ = its

√
‖r itsL ‖2
‖r0L‖2

, (5.2)

the mean residual reduction factor. Note that the measured ρ̂ is generally slightly smaller
than the theoretical reduction factor and becomes more precise when more iterations are
executed. For all simulations, we present the error of the iterative solution compared to the
exact solution evaluated at the nodes in the (weighted) ‖ · ‖�2 -norm, defined by

‖v‖�2 = 1

n

√√√√ n∑
i=1

v2i ,

and the ‖ · ‖∞-norm. We also provide the error reduction order as ord. for both norms. The
order is here calculated as the error reduction from one row to its predecessor, i.e.,

ord = log

(‖errk−1‖
‖errk‖

)
/ log

(√
gridsizek
gridsizek−1

)
.

The orders were computed with errors norms rounded to the fifth nontrivial digit.

Remark 5.1 (Residual and algebraic error convergence) As mentioned in Remark 4.4, the
implicitly extrapolated multigrid algorithm can be considered as a multigrid algorithm based
on a second order discretization. Consequently, we require for the residual

‖rmL ‖ := ‖ f exL − Kex
L umL ‖ ≤ 10−8‖ f exL − Kex

L u0L‖ =: 10−8‖r0L‖; (5.3)

for which the norm is directly available from the multigrid context; cf. (4.9).

We test several different configurations and provide comparisons in the following sections.

– In Sect. 5.1, we show that neither circle nor radial relaxation alone are sufficient to
obtain fast convergence of our multigrid algorithm. Our choice of optimized circle-radial
relaxation always leads to fast convergence.

– In Sect. 5.2, we show that (4.5) results in an optimal domain decomposition to execute
the optimized smoothing operations,

– In Sect. 5.3, we compare the multigrid algorithm based on finite elements with nonstan-
dard integration and finite difference discretizations for different approaches to handle
the artificial singularity from Sect. 3.3.

– In Sect. 5.4, we proceed similarly to Sect. 5.3 by using the multigrid algorithm with
implicit extrapolation as described in Sect. 4.3.
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Table 1 Comparison of zebra line smoothers

Circle smoothing Radial smoothing Optimized smoothing

nr × nθ its ρ̂ ‖err‖�2 ‖err‖∞ its ρ̂ ‖err‖�2 ‖err‖∞ its ρ̂ ‖err‖�2 ‖err‖∞

Circular geometry (2.1)–FD 5p stencil (3.9)

49 × 64 150 0.93 5.1e-02 9.6e-02 150 0.92 5.1e-02 9.6e-02 13 0.23 5.1e-02 9.6e-02

97 × 128 150 0.94 1.3e-02 2.4e-02 150 0.96 1.3e-02 2.4e-02 13 0.23 1.3e-02 2.4e-02

193 × 256 150 0.94 3.2e-03 5.9e-03 150 0.96 3.2e-03 6.0e-03 13 0.22 3.2e-03 6.0e-03

385 × 512 150 0.95 8.0e-04 1.5e-03 150 0.97 8.6e-04 4.9e-03 13 0.22 8.0e-04 1.5e-03

Deformed geometry (2.2)–FD 9p stencil (3.11)

49 × 64 150 0.98 7.6e-02 1.5e-01 150 0.95 7.1e-02 1.5e-01 46 0.67 7.1e-02 1.5e-01

97 × 128 150 0.98 3.4e-02 1.4e-01 150 0.97 1.8e-02 4.1e-02 45 0.66 1.8e-02 4.1e-02

193 × 256 150 0.98 3.0e-02 1.4e-01 150 0.97 4.7e-03 1.5e-02 44 0.66 4.5e-03 1.1e-02

385 × 512 150 0.98 2.9e-02 1.4e-01 150 0.97 1.6e-03 1.5e-02 44 0.65 1.1e-03 2.6e-03

Multigrid without extrapolation based on finite difference discretizations on circular and deformed geometry
with r1 = 1e−8 andDirichlet boundary conditions on the innermost circle. Iteration counts its (max. its=150),
mean residual reduction factor ρ̂, and errors of iterative solution to exact solution evaluated at the nodes in
‖ · ‖�2 and ‖ · ‖∞ norms

Remark 5.2 (Expectations on convergence orders) For the non-extrapolated versions of our
solvers, we expect quadratic error convergence in the �2-norm, as, e.g., predicted by the
derivation of the finite difference stencils. For the implicitly extrapolated version, we expect
quartic convergence for a non-refined grid and to come close to 3.7 if a fast descending
diffusion coefficient and local grid refinement is used. For more details, see [18].

5.1 Multigrid with Circle, Radial, and Optimized Circle-Radial Relaxation

In this section, we study different smoothing procedures: circle smoothing, radial smoothing,
and our optimized circle-radial smoothing described in Sect. 4.1 and denoted as optimized
smoothing in Table 1. For r1 = 0, radial relaxation is prohibitive since the origin couples all
directions. We thus choose r1 = 1e − 8 and enforce Dirichlet boundary conditions on the
innermost circle to avoid an additional influence of the artificial singularity.

From Table 1, we see that neither circle nor radial smoothing alone are sufficient to obtain
satisfactory residual reduction factors. Note that pointwise smoothers yielded even worse
results. The optimized smoother, although smoothing each node also only once, yields good
results (i.e., quadratic error reduction).

5.2 Multigrid with Optimized Circle-Radial Relaxation

In this section,we numerically show the optimality of our circle-radial domain decomposition
by testing it against other decompositions. As a basic rule, we use (4.5). We compare this
optimized smootherwith other decompositionswherewe color±n (additional or less) circles,
n ∈ N, circle by circle and the remaining part in a radial manner.

Table 2 shows that the optimal residual reduction factor, as well as the minimum number
of iterations, is obtained with rule (4.5).
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Table 2 Smoother optimization

Circular geometry—FD 5p Deformed geometry—FD 9p

nr × nθ Decomp Its ρ̂ Its ρ̂

145 × 256 (4.5) 8 0.09 19 0.36

(4.5) − 4 9 0.11 19 0.36

(4.5) − 8 11 0.16 22 0.43

(4.5)+4 15 0.27 30 0.53

(4.5)+8 26 0.48 48 0.68

Multigrid without extrapolation based on finite difference discretizations on circular and deformed geometry
with r1 = 1e − 8 and Dirichlet boundary conditions on the innermost circle. Different decompositions of
the domain and influence of the optimized circle-radial smoothing operators. For decomp, (4.5±n, n ∈ N),
means that ±n circles are colored circle-wise instead of radial-wise as proposed by (4.5). Further notation as
in Table 1

Table 3 Comparison of discretizations

nr × nθ Its ρ̂ ‖err‖�2 Ord. ‖err‖∞ Ord. Its ρ̂ ‖err‖�2 Ord. ‖err‖∞ Ord.

Circular geometry

FE P1 (nonstandard integ.) FD 5p

49 × 64 25 0.47 5.9e-02 – 1.0e-01 – 25 0.47 5.2e-02 – 9.6e-02 –

97 × 128 23 0.44 1.6e-02 1.93 4.5e-02 1.23 23 0.44 1.3e-02 2.02 2.4e-02 2.02

193 × 256 23 0.43 4.1e-03 1.93 2.4e-02 0.91 23 0.43 3.2e-03 2.01 6.0e-03 2.01

385 × 512 22 0.43 1.1e-03 1.89 1.2e-02 0.98 22 0.43 8.0e-04 2.00 1.5e-03 2.00

Deformed geometry

FE P1 (nonstandard integ.) FD 9p

49 × 64 88 0.81 7.3e-02 – 1.6e-01 – 88 0.81 7.2e-02 – 1.5e-01 –

97 × 128 79 0.79 1.9e-02 1.94 4.8e-02 1.77 80 0.79 1.8e-02 2.00 4.1e-02 1.87

193 × 256 76 0.78 4.9e-03 1.98 1.3e-02 1.93 76 0.78 4.6e-03 2.00 1.1e-02 1.96

385 × 512 74 0.78 1.2e-03 1.98 5.7e-03 1.15 74 0.78 1.1e-03 2.00 2.6e-03 1.99

Multigrid without extrapolation based on finite element and finite difference discretizations on circular and
deformed geometry with r1 = 0. Error reduction given by ord.; further notation as in Table 1

5.3 Multigrid Based on Different Discretizations

In this section, we consider different ways to handle the artificial singularity as proposed
in Sect. 3.3. We consider the case where r1 = 0, i.e., where (0, 0) is a node on the grid as
well as r1 ∈ {10−2, 10−5, 10−8}. For r1 > 0, we consider the case of Dirichlet boundary
conditions as well as our strategy of discretizing across the origin; cf. Sect. 3.3.3.We observe
that we obtain identical results for the configurations with Dirichlet boundary conditions on
the innermost circle and by discretizing across the origin, respectively, if r1 → 0; cf. Table 5.

We consider the multigrid algorithm based on finite element discretization with nonstan-
dard integration techniques andon thefinite differencefive andnine point stencil, respectively,
where the latter is only used if the deformed geometry is considered.

From Tables 3, 4, and 5, we first see that the multigrid algorithm needs about twice as
many iterations if (0, 0) is used as explicit mesh node. For the circular geometry and r1 > 0,
we only need 13 iterations to reduce the residual by a factor of 108. The number of iterations
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Table 6 Comparison of extrapolated discretizations

nr × nθ Its ρ̂ ‖err‖�2 Ord. ‖err‖∞ Ord. Its ρ̂ ‖err‖�2 Ord. ‖err‖∞ Ord.

Circular geometry

FE P1 (nonstandard integ.) FD 5p

49 × 64 54 0.71 1.2e-02 – 6.5e-02 – 54 0.71 3.6e-03 – 1.6e-02 –

97 × 128 42 0.64 2.9e-03 2.08 3.6e-02 0.87 42 0.64 2.4e-04 3.95 1.5e-03 3.47

193 × 256 42 0.64 9.5e-04 1.62 1.8e-02 0.99 42 0.64 1.8e-05 3.77 1.8e-04 3.10

385 × 512 42 0.64 3.3e-04 1.52 9.1e-03 1.00 42 0.64 1.4e-06 3.66 2.2e-05 3.01

Deformed geometry

FE P1 (nonstandard integ.) FD 9p

49 × 64 150 0.90 1.4e-02 – 8.4e-02 – 150 0.90 7.6e-03 – 2.6e-02 –

97 × 128 140 0.88 2.1e-03 2.80 2.2e-02 1.98 140 0.88 5.6e-04 3.80 2.9e-03 3.15

193 × 256 136 0.87 4.6e-04 2.16 8.4e-03 1.37 135 0.87 4.2e-05 3.74 3.6e-04 3.02

385 × 512 134 0.87 1.5e-04 1.63 4.1e-03 1.03 133 0.87 3.2e-06 3.72 4.5e-05 3.00

Multigrid with extrapolation based on finite element and finite difference discretizations on circular and
deformed geometry with r1 = 0. Further notation as in Table 3

and residual reduction factors are higher in the case of the deformed geometry. The number of
iterations is still only between 41 and 47. The convergence of the iterative scheme is (almost)
independent of the choice how to handle r1 > 0. The number of iterations of our multigrid
algorithm is independent of the discretization parameter.

The error convergence over the different levels of discretizations is unsatisfactory for the
finite element discretization if r1 = 0. For r1 = 1e − 2, our strategy to discretize across
the origin also leads to unsatisfactory results; r1 = 1e − 2 might still be too large for this
heuristic. For r1 ∈ [1e−5, 1e−8], we obtain identical results with this heuristic andDirichlet
boundary conditions on the innermost circle. We have optimal quadratic error convergence
in l2- as well as inf-norm.

5.4 ExtrapolatedMultigrid Based on Different Discretizations

We now consider the multigrid algorithm as in the previous section by only adding our
extrapolation step between the two finest grids. Note that the analysis of [15] predicts an
accuracy equivalent to P2-elements, and thus to reach O(h3) in L2 up from O(h2). The
meshes enjoy an approximate symmetry, which can lead to a cancellation of odd error terms.
In fact, we will observe below that the approximation order reaches close to O(h4) in some
cases.

From Tables 6 and 7, we again see that the multigrid algorithm needs about twice as many
iterations if (0, 0) is used as explicit mesh node.

For the circular geometry and r1 > 0, we need less than 40 iterations to reduce the
residual by a factor of 108. The number of iterations and residual reduction factors are higher
in the case of the deformed geometry but still only between 73 and 85. Again, the number of
iterations is independent of the discretization parameter.

The slower convergence (compared to the previous section) is due to the influence of a
strengthened Cauchy inequality. For more details, we refer to Remark 4.5 and [15].
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The error convergence over the different levels of discretizations is unsatisfactory for the
finite element discretization if r1 = 0.

For r1 > 0, the convergence of the iterative scheme is independent of the choice on how
to handle the innermost circle, if r1 is sufficiently small. For r1 ∈ [1e − 5, 1e − 8], we
obtain almost identic results with the heuristic of discretizing across the origin and Dirichlet
boundary conditions on the innermost circle. We have an error convergence order between
3.5 and 4.0 in l2- and a convergence order of about 3.0 in inf-norm.

6 Conclusion

We have presented a novel scalable geometric multigrid solver for a Poisson equation aris-
ing in gyrokinetic fusion plasma models. We have developed a new optimized radial-circle
smoothing procedure to take into account the anisotropies of the underlying partial differential
equation and of the mesh, particularly in the edge area of the separatrix in the Tokamak.

Furthermore, we have constructed an implicit extrapolation scheme that leads to third
order error convergence in the inf-norm and shows an error convergence order between
3.5 and 4.0 in the l2-norm. For simpler meshes and geometries as considered here, e.g.,
without deformation, artificial singularity, and anisotropic mesh-refinement, we expect up
to convergence order four when the odd order terms in the error expansions vanish due to
symmetry.

If using implicit extrapolation, the iteration counts are slightly larger but they still remain
modest and independent of the mesh size, so that the solver is asymptopically optimal. This is
necessary for algorithmic scalability. Further improvements may be possible based on more
efficient smoothing procedures. The numerical results for our multigrid algorithm based
on finite elements with nonstandard integration and the finite difference nine point stencil
are almost identical. Our extrapolated finite difference stencil gives thus rise to a matrix-
free implementation with low memory footprint and high precision. With the fast implicitly
extrapolated multigrid method, we have constructed an algorithm to compute cost-effective
high precision approximations of the gyrokinetic Poisson equation.
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