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Abstract: This paper aims to propose a new guidance algorithm for a rocket with aerodynamics control for launch
operations, based on the concept of the instantaneous impact point (IIP). In this study, the rocket with aerodynamics
control is considered with the purpose of reducing dispersion of the impact point after separation of the rocket for safety
reasons. Since a very limited aerodynamic maneuverability is typically allowed for the rocket due to the structural limit,
a guidance algorithm producing a huge acceleration demand is not desirable. Based on this aspect, the proposed guidance
algorithm is derived directly from the underlying principle of the guidance process: forming the collision geometry
towards a target point. To be more specific, the collision-ballistic-trajectory where the instantaneous impact point becomes
the target point, and the corresponding heading error are first determined using a rapid ballistic trajectory prediction
technique. Here, the trajectory prediction method is based on the partial closed-form solutions of the ballistic trajectory
equations considering aerodynamic drag and gravity. And then, the proposed guidance algorithm works to nullify the
heading error in a finite time, governed by the optimal error dynamics. The key feature of the proposed guidance algorithm
lies in its simple implementation and exact collision geometry nature. Hence, the proposed method allows achieving the
collision course with minimal guidance command, and it is a desirable property for the guidance algorithm of the rocket
with the aerodynamics control. Finally, numerical simulations are conducted to demonstrate the effectiveness of the
proposed guidance algorithms.

Keywords: Instantaneous Impact Point (IIP) Guidance, Optimal Error Dynamics, Rocket Landing Guidance, Aerody-
namic Control

1. INTRODUCTION

In space launch vehicle operations, reducing the im-
pact point dispersion of separated rocket stages is im-
portant for flight safety reasons. The separated rocket
typically conducts a free-fall flight after the separations.
Thus, the flight trajectories and impact points signifi-
cantly vary due to external disturbances such as wind,
aerodynamic, and uncertainty in engine cutoff time. As
a result, the impact point dispersion for existing systems
is relatively huge, and it becomes an obstacle for flight
safety operations.

To reduce the impact point dispersion caused by exter-
nal disturbances, it is required to provide a control mean
and guidance capability to a separated rocket in order to
correct its flight path direction so that the impact point
reaches the desired target point. In this context, one of the
possible options for providing guidance capability would
be a separated rocket system with aerodynamic control
fins. In this system, only very limited aerodynamic ma-
neuverability is typically allowed due to the structural
load limit. Therefore, a guidance algorithm producing
a minimal acceleration demand is required, and the in-
stantaneous impact point (IIP)-based guidance algorithm
is desirable to meet this requirement [2], [1].

By definition, the IIP of a rocket is a touch-down point
when it is assumed that it undergoes a free-fall flight [3].
The basic idea of the IIP guidance is to alter the cur-
rent IIP to the desired target point by steering the flight
path angle. Originally, the IIP guidance has been pro-

posed for the upper stages of rockets to compensate for
burnout parameter errors [4]. Recently, the IIP guidance
has also been applied to reusable rocket systems in the
boost-back-burn guidance phase [1]. However, few stud-
ies applying the IIP guidance to a separated rocket with
aerodynamic control with the purpose of reducing the IIP
dispersion are available in the open literature. In addi-
tion, the existing method did not consider the aerody-
namic effect while determining the IIP. Therefore, in the
endo-atmospheric region, the predicted IIP has less accu-
racy, and it results in unnecessary acceleration demand in
a vicinity of a target point.

Motivated by these observations, this paper aims to
propose a guidance algorithm for a rocket with aerody-
namic control to guide the rocket towards the desired dive
point while minimizing the acceleration demand, based
on the concept of the IIP guidance with consideration of
the aerodynamic effect. To be more specific, the pro-
posed method is derived from the underlying principle of
shaping the collision geometry towards the desired dive
point. The collision-ballistic-trajectory, where the instan-
taneous impact point becomes the target point, and the
corresponding heading error are first determined using
the partial closed-form solutions of the ballistic trajec-
tory equations considering aerodynamic drag and grav-
ity. Then, by utilizing the optimal error dynamics [5], the
proposed guidance command nullifying the heading er-
ror in a finite time is determined. The key feature of the
proposed guidance algorithm lies in its simple implemen-



tation and exact collision geometry nature. Hence, the
proposed method allows achieving the collision course
with minimal acceleration demand, which is desirable for
an aerodynamically controlled rocket. Finally, numerical
simulations are conducted to show the effectiveness of
the proposed guidance algorithm.

This paper is organized as follows. In Section 2, the
problem to be solved is defined. Section 3 provides the
proposed guidance algorithm in detail. Simulation results
are provided in Section 4. Lastly, concluding remarks are
offered in Section 5.

2. PROBLEM DEFINITION

In this section, the guidance problem considered in this
study is formulated. First, the guidance kinematics for a
rocket with aerodynamic control is derived. The guidance
goal is then stated.

2.1 Kinematic Equations

As guidance for a rocket with aerodynamic control
is typically conducted in the vertical plane in the endo-
atmospheric region, we consider a two-dimensional guid-
ance geometry over a flat earth, as shown in Fig. 1. In this
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Fig. 1. Guidance geometry.

figure, (H,X) denotes the inertial reference frame. The
notations R and T are the rocket and the target point. In
this study, the target point can be considered as the de-
sired dive point. The variables r and σ represent the rela-
tive range and the line-of-sight (LOS) angle between the
rocket booster and the target point, respectively. The vari-
ables V and γ represent the velocity and the flight path
angle. Additionally, the normal acceleration and the axial
acceleration can be denoted by an and ad, respectively.
The normal acceleration is acting perpendicular to the ve-
locity vector, and it contributes to altering the velocity di-
rection (or changing the flight path angle). The axial ac-
celeration (i.e., drag acceleration) is acting in the opposite
direction to the velocity vector, and it mainly contributes
to decreasing the magnitude of velocity. In the guidance
geometry given in Fig. 1, the kinematic equations can be

written as

ḣ = V sin γ, (1)
ẋ = V cos γ, (2)

V̇ = −ad − g sin γ, (3)

γ̇ =
an
V
− g cos γ. (4)

where the variables h and x represent the height and
the downrange for the rocket, respectively. In the above
equation, ad and an are produced by the aerodynamics
forces, and they are given by

an =
ρV 2SCL

2m
, ad =

ρV 2SCD

2m
(5)

where ρ, S, and m represent the air density, the reference
area, and the mass, respectively. CL and CD are the lift
and drag coefficients. Here, ad can be rewritten in the
term of the ballistic coefficient β as

ad = gβV 2, where β =
ρSCD

2mg
(6)

In Eq. (5), as CL can be controlled by the aerodynamic
control fins attached to the rocket booster, ad can be con-
sidered as the control input for the kinematic equations.

2.2 Guidance Goal
The ultimate goal of guidance considered in this study

is to drive the rocket towards the desired dive point
(xT , hT ) with the purpose of reducing the impact point
dispersion on the sea for safety reasons. If the im-
pact time tf is defined as the time when the height of
the dive point is equal to the height of the rocket (i.e.,
h (tf ) = hT ), the requirement for achieving the above
guidance goal can be expressed as

xf − xT = 0 (7)

where xf = x (tf ) represents the impact point at the final
time.

3. PROPOSED GUIDANCE ALGORITHM

This section describes the proposed guidance algo-
rithm. First, the proposed guidance concept, which is
based on the instantaneous impact point (IIP), is ex-
plained. Next, the prediction method for the instanta-
neous impact point considering the aerodynamic force is
then discussed. Finally, the proposed guidance algorithm
is determined by utilizing the optimal error dynamics [5].

3.1 Guidance Concept
As a very limited aerodynamic maneuverability is gen-

erally allowed for the rocket because of its structural load
limit, a guidance algorithm generating a huge accelera-
tion demand is not desirable for this system. Therefore,
in this study, a guidance algorithm based on the concept
of IIP is considered to produce a minimal acceleration



demand. The IIP is defined as the touch-down point of
a rocket under the assumption that the rocket immedi-
ately ends the propelled flight without corrective maneu-
ver [3]. Accordingly, by definition, the IIP in Fig. 2 is
the achieved position of the rocket at the target height hT
under the given initial conditions (V0, γ0) with an = 0.
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Fig. 2. Definition of IIP and CBT.

In general, the IIP is not equal to the desired dive point
at the beginning of the guidance phase because of the ini-
tial guidance error. Therefore, the impact point error is
usually non-zero as follows.

∆x = xf − xT 6= 0 (8)

This error should be nullified in a finite time in order to
achieve the guidance goal, and the proposed guidance al-
gorithm will work in a way to change the current IIP to
the desired point.

The achieved IIP usually depends on the initial condi-
tions such as the initial position (x0, h0), the initial veloc-
ity V0, and the initial flight path angle γ0. Among these
initial conditions, the flight path angle can significantly
affect the achieved IIP. Suppose that the IIP and the de-
sired dive point match when the initial flight path angle
becomes γd. In that case, the rocket can reach the tar-
get point along a certain ballistic trajectory without any
maneuver. This specific trajectory is called the collision-
ballistic-trajectory (CBT), and the corresponding initial
flight path angle leading to the CBT (i.e., γd) is called the
desired flight path angle in this study. Since the collision
course is achieved when γ → γd, the difference between
the current flight path angle and the desired flight path
angle can be defined as the heading error as follows.

εh = γd − γ (9)

From the kinematic relationship as given in Eq. (4), it can
be readily predicted that the flight path angle can be al-
tered by imposing the normal acceleration. Therefore, the
satisfaction of the guidance goal with a minimal accelera-
tion demand can be accomplished by producing appropri-
ate acceleration command in a way to nullify the heading
error. In the next section, the proposed guidance algo-
rithm will be determined based on the guidance concept
mentioned above.

3.2 Prediction Method for Instantaneous Impact
Point

To realize the proposed guidance concept, the IIP
should be rapidly predicted. Additionally, the aerody-
namic force should be taken into account when predict-
ing the IIP in order to improve prediction accuracy. By
definition, the kinematic equations for predicting the IIP
can be determined by imposing the condition an = 0 to
Eq. (4) as

ḣ = V sin γ, (10)
ẋ = V cos γ, (11)

V̇ = −gβV 2 − g sin γ, (12)
γ̇ = −g cos γ. (13)

An integral of these equations is required to determine
the IIP. However, as these equations are highly nonlinear,
it is difficult to get complete closed-form solutions. In-
stead, numerical integration needs to be performed, but it
requires a lot of computation burden to determine the IIP.

Therefore, we use Chudinov’s equation approach [6]
in which the computational burden does not significantly
increase while providing accurate prediction result. The
main idea of this approach is that the flight path angle is
used as an independent variable instead of time. Then,
the nonlinear kinematic equations can be converted into a
more simplified form that is easy to handle. Under the
ballistic trajectory, the flight path angle monotonically
decreases. Accordingly, if the flight path angle is dis-
cretized with a step size ∆γ, the flight path angle at the
k-th step can be written as

γk+1 = γk −∆γ, where k = 0, 1, 2, (14)

When the step size ∆γ is chosen as a small value, the
ballistic coefficient and the gravity can be approximated
as constant values during the interval [γk, γk+1]. Under
the approximation, the kinematic equations can be refor-
mulated with respect to the flight path angle as

V ′ = V tan γ + βkV
3 sec γ, (15)

t′ = − (V/gk) sec γ, (16)

x′ = −
(
V 2/gk

)
, (17)

h′ = −
(
V 2/gk

)
tan γ. (18)

where (·)′ represents the derivative with respect to the
flight path angle γ. From Eq. (15), the closed-form solu-
tion of the velocity during the interval [γk, γk+1] is deter-
mined as

Vk+1 =
Vk cos γk

cos γk+1

√
1 + βkV 2

k cos2 γk (ϕk − ϕk+1)
(19)

where

ϕk =
sin γk

cos2 γk
+ ln

[
tan

(γk
2

+
π

4

)]
(20)



Based on the trapezoidal method with Eq. (19), the ap-
proximated closed-form solutions for the remaining vari-
ables are determined as

tk+1 = tk +
2 [Vk sin γk − Vk+1 sin γk+1]

gk (2 + µk)
, (21)

xk+1 = xk +
V 2
k sin 2γk − V 2

k+1 sin 2γk+1

2gk (1 + µk)
, (22)

hk+1 = hk +
V 2
k sin2 γk − V 2

k+1 sin2 γk+1

gk (2 + µk)
. (23)

where

µk = βk
(
V 2
k sin γk + V 2

k+1 sin γk+1

)
(24)

Based on the above iterative solutions, the IIP can be de-
termined. The detail of the IIP prediction method is sum-
marized in Algorithm 1.

Remark 1. As the state variables at the next step are
computed by utilizing the partial closed-loop solutions in
the proposed method, a relatively large ∆γ is allowed
while guaranteeing a satisfactory prediction accuracy. In
this way, the proposed method can determine the IIP with
less computational burden compared to existing numeri-
cal integration methods.

Algorithm 1 IIP Prediction Algorithm
Input: initial conditions x0, h0, V0, γ0, t0 and terminal

condition hT
while hk > hT do

determine trajectory solutions using Eqs. (19)
to (24)
end while
Return xk

3.3 Computation of Collision-Ballistic-Trajectory
The next step is to determine the desired flight path an-

gle that forms the collision-ballistic trajectory. For con-
venience, let us define a function f (·) as the predicted
IIP for a given initial flight path angle γ0 by utilizing Al-
gorithm 1.

xf = f (γ0) (25)

If g (·) is defined to be the inverse function of f (·), the
desired flight path angle can be written as

γ0 = g (xT ) (26)

However, the function f (·) is given by the algorithm, de-
termining the inverse function g (·) is intractable. Thus,
the iterative gradient method [2] is used in this study.

The changes in the IIP with respect to the initial flight
angle can be written as

∂xf
∂γ0

≈ ∆xf
∆γ0

=
f (γ0 + ∆γ0)− f (γ0)

∆γ0
= α (γ0)

(27)

where the parameter ∆γ0 represents a small perturbation
of the initial flight path angle. If there is the impact point

error as shown in Eq. (8), the correction of the initial
flight path angle for reducing this error can be made as
follows.

γ0 ← γ0 +
1

α (γ0)
∆x (28)

If this process is repeated until ∆x meets the predeter-
mined convergence criterion, the desired flight path angle
for the collision-ballistic-trajectory can be determined.
This procedure can be summarized as Algorithm 2.

Algorithm 2 γd Determination Algorithm
Input: initial flight path angle γ0 and convergence crite-

rion εtol
while |∆x| > εtol do

update the initial flight path using Eq. (28)
end while
Return γ0

3.4 Guidance Command
Hereafter, the proposed guidance command for nulli-

fying the heading error in a finite time is discussed. From
Eq. (9), it is assumed that the desired flight path angle
γd is slowly varying. Under this assumption, the time-
derivative of the heading error can be approximated as

ε̇h ≈ −γ̇ (29)

It is worth noting that the gravity term is already taken
into account when determining the IIP in the kinematic
relationship as given in Eq. (4). Therefore, from Eqs. (4)
and (29), the effective heading error dynamics can be
written as

ε̇h = −an
V

(30)

This equation implies that the heading error can be con-
trolled by imposing the normal acceleration.

According to the previous study [5], any tracking error
can converge to zero in a finite time while minimizing the
control effort under the specific form of the error dynam-
ics as

ε̇h +
K

tgo
εh = 0 (31)

where tgo = tf − t represents the remaining time of im-
pact (or time-to-go), which can be determined by Algo-
rithm 1. The parameter K is a positive constant, and it
can be considered the design parameter that decides the
convergence pattern of εh. As the parameterK increases,
the heading error εh rapidly decreases.

Finally, the proposed guidance command can be ob-
tained by combining Eqs. (30) and (31).

an =
KV εh
tgo

(32)

Remark 2. As the error dynamics shown in Eq. (31)
is given by the Cauchy-Euler equation, the closed-form
solution can be determined as

εh =
εh,0
tf

tKgo (33)



From Eq. (33), it can be readily observed that the heading
error εh decreases as the time-to-go tgo approaches zero.
Therefore, finite time convergence is guaranteed in the
proposed method.

4. SIMULATION STUDY

In this section, numerical simulations are performed
to investigate the characteristics of the proposed method.
The rocket model used in this study refers to [7]. The
rocket model parameters are given asm = 55, 000kg and
S = 12.54m2. The simulation conditions are provided in
Table 1 [7]. In this simulation, other design parameters
are chosen as K = 3, ∆γ = −0.1 deg, εtol = 1.0 m.
Those are considered as the default values.
Table 1. The simulation conditions used in this study.

Parameters Values

Initial Point, (x0, h0) (0.0, 3.0) km

Dive Point, (xT , hT ) (1.0, 0.0) km

Initial Flight Path Angle, γ0 −65 deg

Initial Velocity, V0 280 m/s
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Fig. 3 shows the flight trajectory. It can be read-
ily observed that the rocket touches down the desired
dive point successfully under the proposed guidance al-
gorithm. Fig. 4 provides the flight path angle and the
desired flight path angle determined by Algorithm 2 re-
spectively. As shown in the result, the flight path an-
gle approaches the desired flight path angle by the pro-
posed method. Accordingly, the heading error decreases
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Fig. 5. Heading error profile.
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as the rocket approaches the desired dive point, as shown
in Fig. 5. The guidance command profile can be observed
in Fig. 6. The result obtained indicates that the pro-
posed guidance algorithm produces a small acceleration
demand for achieving the guidance goal, which desirable
property for the rocket system. Fig. 7 shows the velocity
profile. We can observe that the velocity increases during
the flight because of gravity.

Figs. 8 and 9 show the simulation results with vari-
ous design parameter K = 3, 4, 5. As shown in Fig. 8,
the magnitude of guidance command increases as the de-
sign parameter K increases. As a result, the heading er-
ror rapidly converges to zero as the design parameter K
increases. Figs. 10 and 11 represent the simulation re-
sults with various dive points xT = 0.5, 1.0, 1.5 km. As
shown in Fig. 10, the rocket can successfully reach the
desired dive point by the proposed method even though
the dive point changes. However, more acceleration is re-
quired depending on the dive points, as shown in Fig. 11.
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5. CONCLUSION

This paper studies a new instantaneous impact point
(IIP) guidance algorithm for a rocket with aerodynamic
control for flight safety operations. To this end, we
developed a rapid IIP prediction method considering
the aerodynamic drag and gravity based on the partial

closed-form solutions of the ballistic trajectory equations.
In addition, the computing algorithm for the collision-
ballistic-trajectory was proposed. Under the collision-
ballistic-trajectory, the IIP reaches the desired target point
without any correction maneuver. The proposed guidance
algorithm was then realized in a way to nullify the head-
ing error by utilizing the optimal error dynamics. Finally,
numerical simulations were performed to verify the per-
formance of the proposed method. The results obtained
indicate that the proposed method can successfully guide
the rocket towards the desired dive point with a minimal
acceleration demand, even in the presence of the aerody-
namic effect.
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