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Abstract
We investigate bright and dark diffractive focusing emerging in the free propagation of specific wave profiles. These general 
wave phenomena manifest themselves in matter, water, and classical waves. In this article, we lay the foundations for these 
effects and illustrate their origin in Wigner phase space. Our theoretical studies are supported by experimental demonstra-
tions of dark focusing in water waves. Moreover, by using different phase slits we analyze several aspects of bright and dark 
focusing for classical and matter waves.

Keywords  Diffraction from a slit · Wigner function · Haar wavelet · Schrödinger equation · Surface gravity water waves · 
Bessel beam · Fresnel zone plate · Diffractive focusing

1  Introduction

Focusing is usually associated with an increase of intensity. 
The other extreme is zero intensity. In this article, we focus 
on yet another feature of focusing—the focusing of darkness.

The dark diffractive focusing is complementary to the 
well-known bright diffractive focusing. It arises most promi-
nently for slits with an antisymmetric phase profile. In this 
article, we develop a novel quantitative criterion that is 
applicable for the characterization of both bright and dark 
foci.

1.1 � Diffractive focusing

The diffraction in space of plane light waves by a slit and 
the diffraction in time of a rectangular quantum wave packet 
of zero momentum are phenomena described by differential 
equations of the same form. For classical waves, as light 
and sound, the equation governing the space propagation 
of the wave is the paraxial Helmholtz equation (PHE). For 
matter waves, the dynamics of a wave packet is determined 
by the Schrödinger equation in the absence of a potential. 
The Helmholtz equation in two dimensions, in the paraxial 
approximation, and the potential-free Schrödinger equa-
tion in one space dimension have the same mathematical 
form, despite the involved variables having different physi-
cal meaning. Whereas the paraxial Helmholtz equation 
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describes the field distribution in two dimensions: the propa-
gation direction and the transverse direction, the Schrödinger 
equation predicts the evolution in time of a one-dimensional 
wave packet.

In the paraxial approximation, the scalar field emanating 
from a slit is determined by the Fresnel diffraction integral 
[1]. A more general formulation without approximations is 
based on the first and the second Rayleigh-Sommerfeld dif-
fraction integrals [1, 2]. This formulation will also be used 
in this article for one-dimensional slits. The time evolution 
of matter wave packets is obtained by using the Feynman 
propagator [3]. Based on an initial wave packet Ψ(x, t = 0) , 
it determines the shape of the wave packet Ψ(x, t) at a later 
time t.

It is well-known that wave packets of initial real-valued 
Gaussian profile always display increasing spatial spread-
ing. In full contrast, waves diffracting from rectangular slits 
firstly present focusing followed by spreading in time. This 
effect has been discussed several times for waves of differ-
ent nature, as optical waves [4, 5], plasmonic waves, surface 
gravity waves in a water tank [6], and the time-focusing of 
rectangular wave packets [7].

There are other waves which preserve their shape (non-
diffracting) in the propagation direction, as the Bessel light 
beams [8], or that accelerate in the direction of the transverse 
coordinate: the Airy wave packets, which were firstly pre-
dicted in the context of quantum physics [9] and later experi-
mentally demonstrated with the help of classical waves [10, 
11]. Their properties are however beyond the scope of this 
article.

The diffractive focusing is purely determined by the shape 
of the initial wave. For instance, wave functions of real-val-
ued Gaussian profile do not display focusing effects in space 
nor in time. One question that naturally arises is what kind of 
initial wave functions leads to focusing? Moreover, is there 
any other type of focusing effect beyond the typical pattern 
of the Fresnel diffraction?

In this article, we investigate matter, water, and classical 
wave packets of constant amplitude with an initial phase 
dependence on the transverse coordinate. This feature results 
in unexpected focusing effects: an increase of the degree 
of focusing in some cases, or the emergence of temporary 
darkness in the middle of the wave packet, corresponding 
to localized minima in the intensity pattern. We establish 
the necessary conditions to describe these bright and dark 
focusing effects and investigate the properties of this new 
type of focusing from different perspectives.

1.2 � Antisymmetric wave functions in physics

In a previous article [5], we have addressed the diffractive 
focusing of a rectangular wave packet for matter waves and 
the classical analogy arising in the diffraction from a slit. In 

this article, we instead focus on antisymmetric wave packets 
and phase slits.

Wave functions with antisymmetric properties arise in 
different contexts of classical and quantum physics. Several 
examples come to our mind: (a) In quantum physics, the 
second energy eigenfunction of a particle in a rectangular 
infinite potential well is an antisymmetric function. (b) The 
odd-numbered energy eigenfunctions of the quantum har-
monic oscillator, expressed in terms of Hermite-Gaussian 
functions, are antisymmetric. (c) Wave functions describing 
identical fermions are necessarily antisymmetric [12, 13]. In 
contrast, the wave function describing identical and indis-
tinguishable bosons is symmetric. (d) This is opposed to the 
classical physics problem of identical coupled resonators. 
Here the two eigenmodes are symmetric and antisymmetric 
functions, but the general solution is a superposition of both 
modes. (e) For a quantum particle in a double-well potential 
with an energy lower than the potential barrier there are also 
two eigenmodes: one symmetric and one antisymmetric [12, 
13]. Finally, in classical optics we point out (f) the second 
propagation mode (as well as higher-order even modes) of 
an electromagnetic wave propagating in a planar waveguide 
[14], and (g) the second order Hermite-Gaussian laser beam 
mode [14].

All the functions listed above have in common to be 
smooth, i.e. they are continuously differentiable. The 
antisymmetric function on which we focus in the present 
article is a shifted version of the Haar wavelet [15]. The Haar 
function, or Haar wavelet is defined in the interval [0, 1] and 
takes the following form

In order to define a rectangular wave function with antisym-
metric property, we translate the Haar function to the inter-
val [−1∕2, 1∕2] . The resulting function is not differentiable 
at the edge points x = −1∕2 , x = 0 , and x = 1∕2 . However, 
it corresponds to a spatially localized and square-integrable 
function with constant amplitude and a phase shift of � 
between the half left and the half right. Indeed, by impos-
ing a phase shift of � between the left and right half, we 
transform a symmetric function of rectangular shape into an 
antisymmetric one. This leads to a destructive interference 
in the center of the wave packet during its time evolution. 
The same occurs in the diffraction from a phase slit with the 
same initial shape. The destructive interference is preserved 
along the propagation axis.

At first glance, the intensity pattern for a rectangular 
antisymmetric wave function is divided into two regions 
with mirror symmetry. However, the width of the central 

f (x) =

⎧
⎪⎨⎪⎩

1 if 0 ≤ x < 1∕2

−1 if 1∕2 ≤ x < 1

0 elsewhere.
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region with very low intensity varies along the time axis, 
leading to wider and narrower dark regions. We call the later 
phenomenon dark focusing by analogy and in contrast to 
the bright focusing familiar from the diffractive focusing 
of rectangular wave packets or a slit with constant phase. 
Our study of this phenomenon has been motivated by the 
experiments that were performed in the context of diffractive 
guiding, where a similar behavior is displayed in Fig. 2c)of 
Ref. [16].

In recent years, several articles investigating the splitting 
of wave packets have appeared. One of them is the produc-
tion and collision of soliton waves in a parabolic potential 
well [17]. Others address the dissociation dynamics of mol-
ecules like H +

2
 using laser pulses [18]. In contrast to our 

studies, these examples rely on the time evolution of non-
rectangular packets.

Moreover, we note that the �-phase shift in the center of 
an antisymmetric wave packet is also intrinsic to dark soliton 
solutions of the nonlinear Schrödinger equation which dis-
play sudden intensity depressions [19, 20].

1.3 � Outline

Our article is divided into six sections. In Sect. 2 we estab-
lish the analogy between the free propagation of matter, 
water, and classical waves in certain regimes with the help 
of dimensionless variables. We introduce the Feynman 
propagator to describe the time evolution of such waves. We 
present the Fresnel diffraction integral governing the propa-
gation of a wave packet that emerges from a rectangular slit. 
Section 3 is dedicated to a theoretical analysis of bright and 
dark focusing. We compare and contrast these phenomena 
by studying the propagation of a rectangular symmetric wave 
packet and its antisymmetric counterpart. We analyze the 
characteristics of bright and dark focusing both in space-
time and in phase space. In Sect. 4 we present experimental 
observations of the dark focusing effect in surface gravity 
water waves generated in a water tank. Section 5 contains 
an extension of bright and dark focusing to the diffraction of 
classical waves (acoustic and light waves). For this purpose, 
we use numerical calculations of the first Rayleigh-Sommer-
feld diffraction integral for a variety of phase slits. Beyond 
the rectangular antisymmetric slit, we present results for 
slits with other phase values than � and slits with triangular 
symmetric and antisymmetric phase function. The triangular 
phase slits are the 2D analogue of the 3D axicons used in 
optics to generate Bessel beams. They can be convergent or 
divergent. The antisymmetric triangular slit, with a phase 
difference of � between the half left and half right, leads to 
a kind of dark focusing similar to that of the Haar antisym-
metric wave function. In Sect. 6 we summarize the results 
of the article. Our analysis is supplemented by Appendix A, 

where we determine the times at which bright and dark foci 
emerge.

2 � Propagation of waves in free space

In the following, we recall an analogy between matter, 
water, and classical waves, which manifests itself in certain 
regimes. We introduce the Feynman propagator governing 
the time evolution of these freely propagating waves. Next, 
we present the dynamics of a wave profile emerging from a 
rectangular slit. Thereby, we set the stage for our analysis of 
bright and dark focusing.

2.1 � Matter, water, and classical waves

In quantum mechanics [12, 13], the time evolution of the 
wave function �(x, t) of a free particle of mass m in one 
dimension is governed by the time-dependent Schrödinger 
equation

and determined by the initial condition �(x, 0) = �0(x) . Here 
ℏ denotes the reduced Planck constant.

In terms of the dimensionless coordinate � ≡ x∕W  , 
time � ≡ t(2�ℏ∕mW2) , and wave function Ψ ≡ �

√
W  , the 

Schrödinger Eq. (1) reads

where W is a characteristic length in the problem under con-
sideration, for example, the width of the slit.

In surface gravity water wave theory, for the nar-
row-banded waves moving in the x-direction, the 
instantaneous surface elevation takes the form 
h(x, t) = Re

{
a0A(x, t) exp[i(k0x − �0t)]

}
 , where a0 denotes 

the maximal amplitude. Here the carrier wave number 
k0 and the angular carrier frequency �0 are subject to the 
deep-water dispersion relation �2

0
= gk0 with g being the 

gravitational acceleration. The normalized slowly-varying 
dimensionless amplitude envelope A(x, t) satisfies the equa-
tion [11, 21]

Next, by using the definition of the group velocity 
cg ≡ �0∕2k0 , we introduce the coordinates of the comov-
ing frame [22] � = 4��2k0x and � = ��0(x∕cg − t) , with 
� ≡ k0a0 being the wave steepness parameter ( 𝜀 ≪ 1 ). The 
spatial evolution of the envelope of the surface elevation in 

(1)iℏ
�

�t
�(x, t) = −

ℏ2

2m

�2

�x2
�(x, t)

(2)4�i
�

��
Ψ(� , �) = −

�2

��2
Ψ(� , �),

(3)�2A

�t2
− 2i�0

�A

�t
= ig

�A

�x
.
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the linear regime is governed by the Schrödinger equation 
in the form

where i is exchanged by −i in comparison to Eq. (2). Con-
sequently, for identical initial conditions the correspond-
ing solutions Ψ(� , �) and A(� , �) are related via complex 
conjugation.

In optics [1], the Schrödinger equation appears only 
within the slowly-varying envelope approximation of the 
Helmholtz equation

for the position dependence u(x, z) of the linearly polarized 
electromagnetic wave of the frequency � . Here k = �∕c is 
the corresponding wave vector.

Indeed, for the electromagnetic wave propagating in the 
z-direction, we can look for the solution of Eq.  (5) in the 
form u(x, z) = U(x, z) exp(ikz) , where U(x,z) is a slowly-var-
ying function of z obeying the paraxial equation [1]

Here we have assumed that the second-order derivative 
�2U∕�z2 is negligible with respect to k(�U∕�z).

As a result, by introducing the dimensionless coordinate 
� = x∕W  and the propagation distance � = z�∕W2 , with 
� ≡ 2�∕k being the wave length, we arrive again at the 
dimensionless form of the Schrödinger Eq.  (2) for U(� , �).

2.2 � Waves emerging from a rectangular slit

The solution

of Eq. (2) at time 𝜏 > 0 is determined by the propagator [3]

and the wave function Ψ(� , 0) at � = 0.
As an elementary example, we now consider the free 

propagation of the initial wave function

as originating from a rectangular slit located between the 
dimensionless coordinates � = 0 and � = (−1)�∕2 with 

(4)4�i
�

��
A(� , �) =

�2

��2
A(� , �),

(5)
(

�2

�x2
+

�2

�z2

)
u(x, z) + k2u(x, z) = 0

(6)2ik
�

�z
U(x, z) = −

�2

�x2
U(x, z).

(7)Ψ(� , �) = ∫
∞

−∞

d�0 G(� , �|�0, 0)Ψ(�0, 0)

(8)G(� , ���0, 0) ≡ 1√
i�

exp
�
i
�

�
(� − �0)

2
�

(9)Φ�(� , 0) ≡
√
2Θ

�
1 − �4� − (−1)���

� = 1, 2 . Here we have introduced the Heaviside step 
function

With the help of the propagator G(� , �|�0, 0) , Eq. (8), and 
the initial wave function Φ�(� , 0) , Eq. (9), we determine 
according to Eq. (7) the propagated wave function

as expressed in terms of the Fresnel integral [23]

3 � Bright and dark focusing

In the present section, we introduce the phenomena of bright 
and dark focusing which manifest themselves in the free 
propagation of particular wave packets.

For this purpose, certain superpositions of the wave func-
tions Φ1(� , �) and Φ2(� , �) , Eq. (11), are at the focus of our 
interest. In particular, we consider the function

At time � = 0 , the real-valued wave function Ψ±(� , 0) is 
composed of two rectangular profiles of length 1/2 without 
( + ) and with (−) phase jump of � at the coordinate � = 0.

First, we present definitions of bright foci, defocusing, 
and dark foci. We then analyze the emergence of these 
features in the free propagation of the initial wave packet 
Ψ±(� , 0) . Finally, we provide further insight into these 
effects with the help of Wigner phase space.

3.1 � Bright foci, defocusing, and dark foci

In the following, we define a measure for the focusing of a 
wave which can be employed both for dark (small intensity) 
as well as bright regions (large intensity). At first sight, the 
location of maxima and minima of the intensity seems to 
be a good criterion to identify the position of bright and 
dark foci, respectively. However, as we will demonstrate 
in Sect. 3.3, also an antisymmetric wave with a vanish-
ing intensity at the symmetry axis � = 0 displays focusing 
effects at the center. For this reason, we introduce in the 

(10)Θ(𝜒) ≡
{

0 𝜒 ≤ 0,

1 𝜒 > 0.

(11)

Φ�(� , �) =
(−1)�√

i

�
F

��
�

�
�

�

−F

��
�

�

�
� −

(−1)�

2

���

(12)F(w) ≡
√

2

� �
w

0

d� ei�
2

.

(13)Ψ±(� , �) =
1√
2

�
Φ1(� , �) ± Φ2(� , �)

�
.
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present section a different measure which closely matches 
the intensity criterion in many cases.

Our analysis is motivated by the shape of the time-evolved 
wave function Ψ±(� , �) , Eq. (13), which is a symmetric (+) 
or antisymmetric (−) function with regard to � = 0 , satisfy-
ing the relation

at any time � . This is due to the fact that the parity of the 
initial wave packet is conserved during free propagation.

Consequently, the probability density ||Ψ±(� , �)
||2 is a 

symmetric function with respect to the center � = 0 . Thus, 
it can be approximated by the parabola

for |𝜒| ≪ 1 . Here we have introduced the offset

and the curvature

both evaluated at the central position � = 0.
Maxima and minima of �+(�) correspond to large or small 

intensities of the wave Ψ+(� , �) at the center and could be 
used to define the location of bright and dark foci. However, 
due to the antisymmetry of Ψ−(� , �) , the function �−(�) van-
ishes identically. For this reason, we require a more general 
measure to identify these foci for antisymmetric wave func-
tions. We now introduce a novel criterion that is based on the 
minima and maxima of the curvature �±(�) . Indeed, minimal 
and maximal values of �±(�) correspond to sharply peaked 
and very narrow regions in the intensity pattern.

(14)Ψ±(� , �) = ±Ψ±(−� , �)

(15)||Ψ±(� , �)
||2 ≃ �±(�) +

1

2
�±(�)�

2

(16)�±(�) ≡ ||Ψ±(0, �)
||2

(17)�±(�) ≡ �2

��2
||Ψ±(� , �)

||2
||||�=0

,

More precisely, as illustrated in Fig. 1, we refer to a mini-
mum of the function 𝛽±(𝜏) < 0 as a bright focus. A maxi-
mum of the function 𝛽±(𝜏) > 0 corresponds to a dark focus. 
Therefore, it is the sign of �±(�) in combination with the 
occurrence of an extremal value which characterizes these 
special foci.

For �±(�) = 0 there is instead a defocusing. Here the 
quadratic approximation of ||Ψ±(� , �)

||2 with regard to � 
presented in Eq. (15) breaks down and higher-order terms 
have to be taken into account to provide an adequate model 
of the probability density for |𝜒| ≪ 1.

As indicated in Fig. 1 and shown in the following, in 
many cases minima of �±(�) closely correspond to maxima 
of the intensity �±(�) and vice versa, thus matching our first 
thoughts.

3.2 � Wave packet with constant amplitude 
and phase

We now focus on the free propagation of the symmetric 
wave function Ψ+(� , �) , Eq.  (13). This particular wave 
packet originates from a rectangular slit of unit length. In 
the following, we review the main features that emerge dur-
ing its time evolution with a slightly different emphasis as 
in the analysis pursued in Ref. [5].

In Fig. 2a we display the space-time diagram of the time-
evolved probability density ||Ψ+(� , �)

||2 . At particular times 
� , indicated by the colored ticks, we show in Fig. 3a the cor-
responding profile of the probability density as a function of 
the transverse coordinate �.

In particular, for � = 0 the rectangular profile (blue) 
results from the initial function

according to Eqs. (9) and (13).

(18)Ψ+(� , 0) = Θ(1 − |4� − 1|) + Θ(1 − |4� + 1|)

Fig. 1   Schematic sketch of the probability density ||Ψ±(� , �)
||2 (red 

solid line) as function of the transverse coordinate � with |𝜒| ≪ 1 , 
displaying at time � (a) a bright focus, (b) defocusing, and (c) a dark 
focus. For comparison, we present the profile of the probability den-
sity (dashed gray line) assumed at slightly larger or smaller times. 

According to Eq.  (15), the probability density ||Ψ±(� , �)
||2 at time � 

can be approximated by a parabolic function with curvature �±(�) . a 
At a bright focus, the curvature 𝛽±(𝜏) < 0 assumes a local minimum. 
b For defocusing, the curvature �±(�) = 0 . c At a dark focus, the cur-
vature 𝛽±(𝜏) > 0 has a local maximum
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At specific times, the probability density ||Ψ+(� , �)
||2 then 

displays bright (purple and green) and dark (red and orange) 
foci close to the central position � = 0 , as evident from 
Figs. 2a and 3a. In order to determine these times, we con-
sider the curvature

as obtained from Eq. (17) by making use of the symmetry 
Ψ+(� , �) = Ψ+(−� , �) of the wave function. Here Ψ+,�� (0, �) 
denotes the second derivative of Ψ+(� , �) with regard to � 
evaluated at � = 0.

(19)�+(�) = 2Re
[
Ψ∗

+,��
(0, �)Ψ+(0, �)

]

We display the curvature �+(�) , Eq. (19), in Fig. 4 by a 
red solid line in comparison to the probability density �+(�) , 
Eq. (16), at � = 0 shown in blue. Interestingly, a bright 
focus, that is a local minimum of �+(�) with � = �+

min,k
 , cor-

responds approximately to a local maximum of the prob-
ability density �+(�) , where k = 1, 2,… . Analogously, a dark 
focus, that is a local maximum of �+(�) with � = �+

max,k
 , cor-

responds approximately to a local minimum of the prob-
ability density �+(�).

We have determined the times �+
min,k

 for a bright focus 
and �+

max,k
 for a dark focus as detailed in Appendix A. There, 

we have shown that for small times � these foci are approxi-
mately located at

Fig. 2   Space-time diagram of the probability density ||Ψ±(� , �)
||2 as 

determined by Eq. (13), resulting from an initial wave packet of con-
stant amplitude for |𝜒| < 1∕2 (a) without and (b) with phase jump 
of � at � = 0 . a The probability density ||Ψ+(� , �)

||2 displays bright 
(purple and green ticks) and dark foci (red and orange ticks) close to 

the central axis � = 0 . b The probability density ||Ψ−(� , �)
||2 displays 

defocusing (purple and green ticks) and dark foci (red and orange 
ticks) close to the central axis � = 0 . In the figure, we have only 
marked two particular times � at which each of these features appears 
and refer to Fig. 3 for further details

Fig. 3   Profile of the probability density ||Ψ±(� , �)
||2 at particular times 

� indicated by ticks in Fig. 2 and arranged as function of the recip-
rocal time 1∕� . a Emerging from a rectangular profile (blue) at time 
� = 0 , we present the last two bright (purple and green) and dark foci 
(red and orange) for the probability density ||Ψ+(� , �)

||2 . b For an ini-

tial wave packet with constant amplitude and phase jump of � , indi-
cated by a blue cross at � = 0 , we display the last two dark foci (red 
and orange) and the occurrence of defocusing (purple and green) as 
characterized by broad dark regions in Fig.  2. The particular times 
�±
max,k

 and �±
min,k

 ( k = 1, 2,… ) at which these feature emerge are listed 
in Table 1
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In order to resolve the different foci in Figs. 3a and 4, we 
have made use of the inverse propagation coordinate 1∕� . As 
a consequence, the foci are approximately equally spaced as 
evident from Eq. (20).

We also present the numerical values of �+
min,k

 and �+
max,k

 
for k = 1, 2, 3 in the left two columns of Table 1. Indeed, as 
illustrated in Fig. 3 for k = 1, 2 , at a bright and dark focus we 
recover the typical behavior of the parabola depicted in Fig. 1.

Moreover, for k = 1 and �+
min,1

≈ 0.268 we arrive at a prob-
ability density of �+(�+min,1

) ≈ 1.67 . Thus, the bright focus 
appears a bit earlier than the time �0 ≈ 0.342 when the bright-
est spot with �+

(
�0
)
≈ 1.80 arises. Consequently, a bright 

focus where the probability density has locally the tightest 
peak in the region |𝜒| ≪ 1 matches only approximately a local 
maximum of the probability density at � = 0 . This feature has 
already been pointed out in Ref. [5].

Finally, we note that at an intermediate time between 
a bright and dark focus, the probability density ||�+(� , �)

||2 
displays defocusing with �+(�) = 0 , as evident from Figs. 2 
and 4. We refrain here from a more detailed analysis of this 
phenomenon.

3.3 � Wave packet with constant amplitude and �
‑phase jump

Next, we study the dynamics of the wave function Ψ−(� , �) , 
Eq. (13), describing the free propagation of the initial function

according to Eqs. (9) and (13). Here Ψ−(� , 0) has a constant 
amplitude and a phase jump of � at � = 0.

In Fig. 2b, we illustrate the probability density resulting 
from the propagation of the initial wave packet Ψ−(� , 0) . 
Moreover, we display in Fig. 3b the corresponding profile 

(20)�+
min,k

≃
1

8k − 5
and �+

max,k
≃

1

8k − 1
.

(21)Ψ−(� , 0) = Θ(1 − |4� − 1|) − Θ(1 − |4� + 1|)

of the probability density ||Ψ−(� , �)
||2 at particular times � , 

indicated by colored ticks in Fig. 2b, and arranged as a func-
tion of the reciprocal time 1∕�.

Since Ψ−(� , �) is an antisymmetric function, we obtain 
for all times � the value Ψ−(0, �) = 0 and the second deriva-
tive Ψ−,�� (0, �) = 0 with regard to � at � = 0 , as evident in 
Fig. 2b. For this reason, the offset �−(�) = 0 , Eq. (16), of the 
quadratic approximation in Eq. (15) disappears. Moreover, 
the curvature �−(�) , Eq. (17), reduces to

being only determined by the first derivative of the function 
Ψ−(� , �) with regard to � at � = 0 , where we have made use 
of the antisymmetry of Ψ−(� , �).

We depict in Fig. 5 the vanishing function �−(�) in blue 
and the curvature �−(�) , Eq. (22), in red. Due to the appear-
ance of the absolute value in Eq. (22), the curvature �−(�) 
is always positive. Thus, no bright foci emerge for the prob-
ability density ||Ψ−(� , �)

||2.
In order to obtain a deeper insight into the behavior of the 

function �−(�) , we consider the first derivative

with regard to � at the center � = 0 , as derived in Appendix  
A.

According to Eqs. (22) and (23) the function �−(�) dis-
plays local minima and maxima at the times

(22)�−(�) = 2
|||Ψ−,� (0, �)

|||
2

,

(23)Ψ−,� (0, �) =
2√
i�

�
1 − exp

�
i�

4�

��

Table 1   Numerical values for the times � = �±
min,k

 and � = �±
max,k

 
at which the curvature �±(�) , Eq.  (17), of the probability den-
sity ||Ψ±(� , �)

||2 displays a local minimum or a maximum at � = 0 , 
respectively, with k = 1, 2,…

At these particular times, a bright focus, defocusing, or a dark focus 
emerges as analyzed in the main text. In the last row we present an 
approximation valid for large values of k as derived in Appendix A

�+(�) �−(�)

�+
min,k

�+
max,k

�−
min,k

�−
max,k

1 0.268 0.137 1/8 0.214
2 0.0890 0.0660 1/16 0.0815
3 0.0522 0.0433 1/24 0.0496
. . . . .
k ∼ (8k − 5)−1 ∼ (8k − 1)−1 (8k)−1 ∼ (8k − 4)−1

Fig. 4   Probability density �+(�) (blue), Eq.  (16), and curvature 
�+(�) (red), Eq.  (17), of the function ||Ψ+(� , �)

||2 at the center � = 0 
as a function of the reciprocal time �−1 . Here maxima and minima 
of �+(�) almost coincide with minima and maxima of �+(�) , respec-
tively, as assumed at times � = �+

min,k
 and � = �+

max,k
 with k = 1, 2,… . 

As a consequence, a bright focus is accompanied by a large probabil-
ity density, while a dark focus corresponds to a small probability den-
sity at the center � = 0
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respectively, with k = 1, 2,… . The exact locations of the 
maxima are presented in Table 1. Indeed, the use of the 
inverse propagation coordinate 1∕� in Figs. 3b and 5 leads 
to an approximately equal spacing of these extremal values 
as a consequence of Eq. (24).

First, we focus on the local minima of �−(�) . For � = �−
min,k

 
the function �−

(
�−
min,k

)
= 0 . According to Section 3.1, this 

corresponds to the occurrence of a defocusing.
Moreover, since �−(�) = 0 for all values of � , this implies

for |𝜒| ≪ 1 . Indeed, the sixth power of � in Eq. (25) is the 
reason for the emergence of the broad dark regions presented 
in Fig. 2b, indicated by purple and green ticks. This feature 
becomes even clearer in Fig. 3b where we show the cor-
responding profiles of the probability density at the times 
�−
min,1

 and �−
min,2

.
Next, we turn to the local maxima of the function �−(�) , 

Eq. (22), with 𝛽−
(
𝜏−
max,k

)
> 0 . Accordingly, for � = �−

max,k
 , 

the probability density ||Ψ−(� , �)
||2 displays dark foci at 

� = 0 . In Fig. 2b we indicate the times �max,1 and �max,2 of 
the last two dark foci by red and orange ticks and show the 
corresponding profiles of the probability density in Fig. 3b. 
At these particular times the dark spots are the tightest and 
close to the center � = 0 the probability density

(24)�−
min,k

=
1

8k
and �−

max,k
≃

1

8k − 4
,

(25)|||Ψ−(� , �
−
min,k

)
|||
2

= O
(
�6

)

is in lowest order proportional to the second power of �.

3.4 � Bright and dark focusing viewed from phase 
space

In order to obtain a deeper insight into bright and dark dif-
fractive focusing, we study now the occurrence of these phe-
nomena in Wigner phase space. For this purpose, we make 
use of the Wigner function [24, 25]

corresponding to the wave packet Ψ±(� , �) , Eq. (13), with 
constant amplitude for −1∕2 ≤ � ≤ 1∕2 and without ( + ) and 
with (−) phase jump of � at � = 0 . Here, we have introduced 
the dimensionless momentum � = pW∕(2�ℏ) as determined 
by the momentum p and the characteristic length W of the 
problem in correspondence to the units presented in Sect.  2.

According to Eq.  (13), the wave packet Ψ±(� , �) can 
be expressed as a superposition of functions Φ1(� , �) 
and Φ2(� , �) . Consequently, also the Wigner function 
W±(� , �, �) , Eq. (27), can be decomposed into a sum

of two phase space distributions

and

where

for �,� = 1, 2.
For � = � , the function W��(� , �, �) , Eq. (31), denotes 

the Wigner function corresponding to the wave func-
tion Φ�(� , �) , Eq. (11). Thus, the phase space distribution 
Wd(� , �, �) , Eq. (29), is the sum of the Wigner functions 
corresponding to the wave functions Φ1(� , �) and Φ2(� , �).

For � ≠ � , the function W��(� , �, �) expresses the interfer-
ence of the wave functions Φ�(� , �) and Φ�(� , �) in phase 
space at time � . Thus, the phase-space distribution Wi(� , �, �) , 

(26)
||||Ψ−

(
� , �−

max,k

)||||
2

= O
(
�2

)

(27)
W±(� , �, �) =

∫
∞

−∞

d� e2�i��Ψ±

(
� −

�

2
, �

)
Ψ∗

±

(
� +

�

2
, �

)

(28)W±(� , �, �) = Wd(� , �, �) ±Wi(� , �, �)

(29)Wd(� , �, �) ≡ 1

2

[
W11(� , �, �) +W22(� , �, �)

]

(30)Wi(� , �, �) ≡ 1

2

[
W12(� , �, �) +W21(� , �, �)

]
,

(31)

W��(� , �, �) =

∫
∞

−∞

d� e2�i��Φ�

(
� −

�

2
, �

)
Φ∗

�

(
� +

�

2
, �

)

Fig. 5   Probability density �−(�) (blue), Eq. (16), and curvature �−(�) 
(red), Eq.  (17), of the function ||Ψ−(� , �)

||2 evaluated at the center 
� = 0 as a function of the reciprocal time 1∕� . Despite a vanishing 
probability density �−(�) for all times � , we are able to identify dark 
foci that express themselves as local maxima of the function �−(�) 
assumed at the time � = �−

max,k
 with k = 1, 2,… . However, since 

�−

(
�−
min,k

)
= 0 no bright foci appear during the free propagation of 

this particular wave packet. Instead defocusing emerges for � = �−
min,k
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Eq. (30), is determined by the interference of the wave func-
tions Φ1(� , �) and Φ2(� , �).

We now determine the explicit forms of the phase distribu-
tions Wd(� , �, �) and Wi(� , �, �) at the initial time � = 0 . For 
this purpose, we insert the wave function Φ�(� , 0) , Eq. (9), in 
Eq. (31) and evaluate the integral for � = � = 1, 2 . By mak-
ing use of Eqs. (29) and (30), respectively, we arrive at the 
expressions

and

In Fig.  6, we display the phase space distributions (a) 
Wd(� , �, 0) and (b) Wi(� , �, 0) at time � = 0 . First, we notice 
that the function Wd(� , �, 0) is composed of two identi-
cal patterns as located in the domains −1∕2 ≤ � ≤ 0 and 
0 ≤ � ≤ 1∕2 . Indeed, the phase distribution Wd(� , �, 0) 
is composed of two Wigner functions corresponding to 

(32)

Wd(� , �, 0) =

1

��

{
Θ

(
1

8
−
||||� +

3

8

||||
)
sin

[
4��

(
� +

1

2

)]

−

[
Θ

(
1

8
−
||||� +

1

8

||||
)
− Θ

(
1

8
−
||||� −

1

8

||||
)]

sin (4���)

− Θ

(
1

8
−
||||� −

3

8

||||
)
sin

[
4��

(
� −

1

2

)]}

(33)

Wi(� , �, 0) =
2

��
cos (��)

×

{
Θ

(
1

8
−
||||� +

1

8

||||
)
sin

[
4��

(
� +

1

4

)]

−Θ

(
1

8
−
||||� −

1

8

||||
)
sin

[
4��

(
� −

1

4

)]}
.

a slit located between −1∕2 ≤ � ≤ 0 and 0 ≤ � ≤ 1∕2 as 
expressed by the wave functions Φ1(� , 0) and Φ2(� , 0) , 
Eq. (9). In contrary, the phase space distribution Wint (� , �, 0) 
emerging from the interference of these wave functions 
only possesses a non-vanishing contribution in the domain 
−1∕4 ≤ � ≤ 1∕4 . Moreover, its pattern resembles the one 
shown in the left or right half of Fig. 6a, but contains addi-
tional oscillations in the direction of the dimensionless 
momentum �.

According to Eq. (28), the two phase space distributions 
Wd(� , �, 0) and Wi(� , �, 0) compose the Wigner function 
W±(� , �, 0) . We display these particular Wigner functions 
at the initial time � = 0 in Fig. 7a, b.

First, we notice that both functions W±(� , �, 0) are identi-
cal in the domain |𝜒| > 1∕4 where the phase space distri-
bution Wi(� , �, 0) does not yield a contribution. Moreover, 
we observe in Fig. 7 a that the Wigner function W+(� , �, 0) 
indeed corresponds to a rescaled version of the pattern dis-
played in the left half of Fig. 6a. In addition, we note that the 
Wigner function W+(� , �, 0) is positive close to the center 
� = 0 and � = 0 as depicted in red. On the other hand, the 
Wigner function W−(� , �, 0) displayed in Fig. 7b is domi-
nated by negative values close to the center � = 0 and � = 0 
as depicted in blue.

Next, we recall that the probability density can be 
extracted as marginal of the Wigner function [25]. In dimen-
sionless coordinates this relation reads

Interestingly, as shown in Fig. 7a, b by the blue curves, the 
marginals ||Ψ+(� , 0)

||2 and ||Ψ−(� , 0)
||2 are identical except of 

the point � = 0 , where the function Ψ−(� , 0) vanishes while 
Ψ+(� , 0) has a positive value.

We now analyze the emergence of bright and dark foci 
in terms of the Wigner function. For this purpose, we recall 
that dynamics of the Wigner function is governed by the 
quantum Liouville equation [25]. Consequently, the free 
evolution of the Wigner function W±(� , �, 0) corresponds to 
the phase space transformation

as induced by a shift of the argument � which is determined 
by the product of the momentum � and the time �.

First, we focus on the time evolution of the Wigner func-
tion W+(� , �, �) displayed in the left column of Fig. 7. At the 
time � = �+

max,1
 a dark focus arises as shown as in Fig. 7c. 

Here the negative contributions to the Wigner function play 
a stronger role close to the center |𝜒| ≪ 1 . On the other 
hand, as displayed in Fig. 7e a bright focus at time � = �+

min,1
 

arises due to the absence of negative contributions to the 

(34)||Ψ±(� , �)
||2 = ∫

∞

−∞

d� W±(� , �, �) .

(35)W±(� , �, �) = W±(� − ��, �, 0)

Fig. 6   Phase-space distributions (a) Wd(� , �, 0) , Eq.  (32), and (b) 
Wi(� , �, 0) , Eq.  (33). According to Eq.  (28), their sum ( + ) and dif-
ference (−) yield the Wigner function W±(� , �, 0) at time � = 0 . a 
Analogous to the wave function Ψ±(� , 0) , Eq.  (13), emerging from 
a rectangular slit, the phase-space distribution Wd(� , �, 0) at time 
� = 0 is restricted to the domain −1∕2 ≤ � ≤ 1∕2 . b In contrary, 
the phase-space distribution Wi(� , �, 0) is restricted to the domain 
−1∕4 ≤ � ≤ 1∕4 . For this reason, the Wigner functions W+(� , �, 0) 
and W−(� , �, 0) look identical for |𝜒| > 1∕4 as shown in Fig. 7a, b
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Fig. 7   Time evolution of the 
Wigner functions W+(� , �, �) 
(left column) and W−(� , �, �) 
(right column). a At time � = 0 , 
positive and negative contribu-
tions of W+(� , �, 0) interfere 
and form a rectangular profile 
of the probability density. c 
At � = �+

max,1
 negative parts 

of W+(� , �, �) dominate at the 
center � = 0 and give raise to 
a dark focus. e For � = �+

min,1
 

positive parts of W+(� , �, �) 
dominate in the central region 
� = 0 , giving raise to a bright 
focus. b At time � = 0 , positive 
and negative contributions of 
the Wigner function W−(� , �, 0) 
interfere and form a rectan-
gular profile of the prob-
ability density, except of the 
central position � = 0 where ||Ψ−(0, 0)

||2 = 0 . d At a later 
time � = �−

min,1
 positive and 

negative parts of W−(� , �, �) are 
approximately equally distrib-
uted at each position in the cen-
tral region |𝜒| ≪ 1 , leading to a 
defocusing. f At time � = �−

max,1
 

negative parts of W−(� , �, �) 
instead dominate in the center 
and lead to the appearance of 
a dark focus. These particular 
times are listed in Table 1
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Wigner function close to the central region |𝜒| ≪ 1 . The par-
ticular times at which these foci arise are listed in Table 1.

Second, we turn to the dynamics of the Wigner function 
W−(� , �, �) presented in the right column of Fig. 7. At time 
� = �−

min,1
 defocusing occurs as depicted in Fig. 7d. Here, 

close to the center � = 0 the probability density ||Ψ−(� , �)
||2 

is governed by a sixth power in �  as demonstrated in 
Eq. (25). This particular dependency arises because positive 
and negative contributions to the Wigner functions almost 
cancel in the region |𝜒| ≪ 1 . On the other hand, at the time 
� = �−

max,1
 positive and negative contributions to W−(� , �, �) 

only cancel very close to the center � = 0 , while otherwise 
positive contributions dominate giving raise to a dark focus.

In conclusion, the illustration of the quantum dynamics 
in Wigner phase space allowed us to obtain a deeper under-
standing of bright and dark focusing. However, it is remark-
able that the Wigner functions W+(� , �, �) and W−(� , �, �) 
display very different phenomena although these functions 
are closely related, as demonstrated in the present section.

4 � Dark focusing with surface gravity water 
waves

As demonstrated in Sect. 2, surface gravity water waves 
behave in a certain regime analogous to matter and classical 
waves. This analogy has proven to be useful in the study of 
various effects which are familiar from optics and quantum 
mechanics [11, 16, 21, 26–28]. In the present section, we 
benefit again from the similarity of the wave dynamics in 
these systems and demonstrate an experimental observation 
of dark focusing with surface gravity water waves.

First, we introduce our experimental setup for measuring 
the propagation dynamics. Next, we show the initial wave 
profile and the methods to extract the evolution of the ampli-
tude envelope. Finally, we present our measurements and the 
occurrence of a dark focus in water waves.

4.1 � Experimental setup

In order to measure the propagation dynamics of surface 
gravity water waves pulses and the dark/bright focusing phe-
nomena, we have conducted a series of experiments in a 5m 
long, 0.4m wide, and H = 0.2m deep laboratory wave tank 
(see Fig.  8). The wave maker is programmed to excite a 
wave packet with a desired programmable envelope of differ-
ent slit shapes by a computer-controlled wedge that is partly 
immersed in the water and moves up and down. The carrier 
wave number k0 ≈ 23m−1 satisfies the deep-water condition 

k0H > 𝜋 [29]; the wave dissipation can be neglected. To 
avoid any effect of residual reflections from the beach 
located at the far end of the test section, measurements are 
performed at distances between 0.3m to 4.2m from the wave 
maker. We note that while surface gravity water waves are 
nonlinear in their nature, the effects of nonlinearity are not 
relevant for the propagation distance considered in the labo-
ratory set-up. Only by increasing the fetch to much longer 
propagation distances they could become notable.

The instantaneous water surface elevation is measured by 
four wave capacitance-type wave gauges [30] mounted on a 
bar parallel to the tank side walls. The bar with the gauges 
is fixed to an instrument carriage that can be shifted along 
the tank.

4.2 � Methods

In order to mimic the antisymmetric state Ψ−(� , �) , Eq. (21), 
we prepare a temporal rectangular water wave packet of 
width t0 with a sign flip at t = 0 . At the wave maker it has 
the form

and the temporal surface elevation at the origin

(36)A−(x = 0, t) ≡
⎧
⎪⎨⎪⎩

−1, −
t0

2
< t < 0

1, 0 < t <
t0

2

0, otherwise

Fig. 8   Experimental setup for generating surface gravity water wave 
packets. The wave maker (right) is computer controlled and can gen-
erate different types of surface gravity water wave envelopes which 
propagate freely. Their elevation is measured using the capacitance 
type wave gauges (center) and an absorbing beach (left) is placed to 
avoid reflections
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is prescribed by the wave maker at x = 0 , where �0 is the 
carrier frequency, a0 is the maximal amplitude, and A− the 
normalized amplitude envelope. The propagation dynam-
ics of the surface gravity water wave is then governed by 
Eq. (4).

In order to extract the amplitude envelope at a differ-
ent position, we make use of wave gauges that are shown 
in Fig. 8. These wave gauges measure the real part of the 
wave function. The Hilbert transform is applied to obtain 
the imaginary part and thus allows us to obtain the evolu-
tion of the envelope. Similar as in Ref. [21] we have utilized 
the toolbox function “hilbert” [31] of Matlab for this pur-
pose. For further details on the Hilbert transform we refer 
to Ref. [32].

4.3 � Measurements

We study experimentally and numerically the case of an ini-
tially rectangular profile with phase jump of � at � = 0 as 
given by Eq. (36). We recall from Sect. 2 that the evolution 
of the complex amplitude envelope A−(� , �) is analogous 
to the dynamics of the wave function Ψ−(� , �) analyzed in 
Sect. 3.3. To ease the comparison of both cases, we make 
use of the dimensionless units introduced in Sect. 2.

The experiments are performed with a carrier frequency 
of �0 = 15 rad∕s , an initial amplitude of a0 = 3mm , and 
width of t0 = 5.18 s . Thus, satisfying both deep water and 
linear propagation conditions.

(37)h(t, 0) ≡ Re
[
a0A−(x = 0, t)ei�0t

] The experimental curves are shown in Fig. 9a and the cor-
responding simulations in Fig. 9b. We note that the simula-
tions were performed under conditions similar to the experi-
mental ones i.e. with a finite amount of oscillations due to a 
limitation given by the finite carrier frequency. We display 
the two dark foci (orange and red) and the occurrence of 
defocusing (green and purple) characterized by broad dark 
regions. The particular times �−

max,k
 and �−

min,k
 ( k = 1, 2,… ) at 

which these feature emerge are listed in Table 1.
Furthermore, we study the dependence

Fig. 9   Profile of the absolute square ||A−(� , �)
||2 of the complex 

amplitude envelope at particular times � marked in Fig. 2, arranged 
as function of the reciprocal time 1∕� . These specific profiles arise 
for an initial wave packet with constant amplitude and phase jump 
of � at � = 0 . The particular times �−

max,k
 and �−

min,k
 ( k = 1, 2,… ) 

are listed in Table  1 and indicate the emergence of defocusing and 

a dark focus, respectively. a Experimental envelopes given via 
Hilbert transform for the corresponding experimental locations 
x = 1.2m, 1.9m, 3.4m, 3.8m (shown as inverse of �−

min,2
 , �−

max,2
 , �−

min,1
 , 

�−
max,1

 ). b Simulations performed numerically via the split step Fourier 
transform algorithm for a finite slit with the same characteristics as 
given in the experiment

Fig. 10   Double logarithmic plot of two experimental profiles that 
are presented in Fig.  9a for � = �−

min,1
 and � = �−

max,1
 in the domain 

0.076 < 𝜒 < 0.176 . For small values |𝜒| ≪ 1 we expect a power-law 
dependence ||A−(� , �)

||2 ∼ |�|s of the absolute value squared of the 
amplitude envelope as determined by the power s. With the help of a 
linear fit, we obtain (a) for � = �−

min,1
 (black) the slope s = 6.03 ± 0.34 

and (b) for � = �−
max,1

 (blue) the slope s = 2.07 ± 0.12
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with regard to the power s in the domain |𝜒| ≪ 1 . According 
to Eqs. (25) and (26), there is characteristic power s = 6 for 
defocusing in contrary to s = 2 corresponding to the leading 
order at a dark focus. For the experimental data, we present 
in Fig. 10 the dependence of |A−(� , �)|2 on � in a double 
logarithmic plot. Here we have used the particular values 
� = �−

min,1
 (black curve) and � = �−

max,1
 (blue curve), respec-

tively. The power law Eq. (38) is examined for both curves in 
the region 0.076 < 𝜒 < 0.176 . a For defocusing at � = �−

min,1
 , 

we identify a slope of s = 6.03 ± 0.34 which is in agreement 
with the expected sixth power presented in Eq. (25). b For 
a dark focus at � = �−

max,1
 , the slope s = 2.07 ± 0.12 instead 

confirms the parabolic dependence shown in Eq. (26).

5 � Bright and dark focusing of classical 
waves with phase slits

In this section we investigate the properties of diffraction 
patterns of scalar waves, for several cases of initial wave 
functions at the slit with non-constant phase value. We 
define a complex wave function where the amplitude is 
constant in the slit, but the phase is either piecewise con-
stant (Haar wavelet), or has a linear dependence on the slit 
coordinate x. We use the general formulation of diffraction 
based on the Rayleigh-Sommerfeld integrals, as they provide 
more accurate results for acoustic and light waves than the 
Fresnel integral, when comparing to experimental measure-
ments [5]. However, the predictions for the location, maxima 
and width of bright and dark focusing regions agree with the 
results based on the Fresnel integral. Only for small values 
of the normalized coordinate z𝜆∕W2 < 0.1 the lobes in the 
intensity pattern differ considerably.

First, we discuss the intensity and phase diffraction pat-
terns obtained for a Haar phase slit with a width of a few 
wavelengths, using the Rayleigh-Sommerfeld scalar diffrac-
tion theory. Second, we generalize our analysis to phase slits 
with a linear dependence on the transverse coordinate. We 
study the triangular phase slits with symmetric and asym-
metric profiles, in analogy to the three-dimensional axicon 
used to generate Bessel beams. Finally, we present results for 
the divergent phase slit, where the triangular phase profile is 
mirrored relative to the x-axis. Despite the differences in the 
theoretical treatment we find a good correspondence with 
time diffraction patterns of matter waves.

(38)||A−(� , �)
||2 ∼ |�|s The diffraction pattern of a two-dimensional aperture or 

a slit illuminated by a plane scalar wave of wavelength � 
and wave number k = 2�∕� can be obtained either by the 
first, or by the second Rayleigh-Sommerfeld (RS) diffraction 
integral [2, 33], respectively.

Q(�, �, 0) is a point inside a plane aperture denoted by A and 
� is a unit vector perpendicular to the aperture. P(x, y, z) 
is a space point in the diffraction region where the field is 
calculated. The distance between P and Q is denoted by 
s = PQ . U0(Q) is the scalar field at the aperture, assumed 
to be identical to the field propagating in free space without 
diffracting screen. Both integrals achieve similar results, but 
in the calculations presented below we have only used the 
first integral.

For classical waves a slit is defined as a two-dimensional 
aperture of finite width W in one dimension (x-coordinate) 
and infinite in the other (y-coordinate). This slit is transla-
tion invariant along the y-axis and thus, we can restrict the 
calculation of the integrals to one dimension. We set the 
slit aligned with the y-axis. When the illuminating field is 
a plane wave, the first RS integral takes the following form 
[33]:

Here � = k
√
(� − x)2 + z2  and H(1)

0
= J0 + iY0 are Han-

kel functions of the first kind and order 0. J0 and Y0 are 
the respective Bessel functions of first and second kind. � 
denotes the x coordinate inside the slit domain. In Ref. [33] 
the field at the aperture was normalized to 1.0 and no phase 
factor with spatial dependence was used. However, modify-
ing the initial field by imposing an amplitude and a phase 
with dependence on the coordinate � does not affect the form 
of the integrals.

5.1 � Slits of constant amplitude and Haar phase

In diffraction problems of scalar waves by a slit, the field at 
the aperture is often assumed to be identical to the free space 

(39)

⎧
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0
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propagating field and its phase is constant. We can impose 
an amplitude dependence on the transverse coordinate of the 
slit � , or a non-constant phase. We restrict our discussion to 
cases where the amplitude remains constant in the aperture, 
but the phase has a discrete jump Δ� = 2�0 between the two 
halves of the slit. The scalar field at the origin of the propa-
gation axis takes the form U0(�) = A0 exp(±i�0) , where A0 is 
constant. The phase constant �0 can have any value between 
0 and 2� . For the sake of simplicity we can set a negative 
phase ( −�0 ) for −W∕2 < 𝜉 < 0 and a positive phase ( �0 ) for 
0 < 𝜉 < W∕2 . The amplitude is a real function of � , which 
is set constant and equal to 1.0 in the present discussion.

The profiles of the amplitude and phase are presented 
in Fig. 11a. The intensity, on-axis profile and phase of the 
diffraction pattern for an antisymmetric slit with phase 
difference Δ� = � and width W = 12� are presented in 
Fig. 11b–d. The dark focusing already discussed in Sect.  3 
for matter waves is also clearly visible. The main difference 
is the number of bright lobes close to the axis origin. Unlike 
in the Fresnel diffraction, the number of lobes on the RS dif-
fraction patterns is finite and related to W∕� . On the other 
hand, the intensity on axis has a small, but non-zero value as 
in the Fresnel diffraction pattern. We attribute this deviation 
to errors in the numerical integration.

Fig. 11   Antisymmetric phase slit with (a) a phase jump of Δ� = � . 
The phase function is the shifted and scaled Haar wavelet. The inten-
sity (b), intensity along the symmetry axis (c), in logarithmic scale 
and phase (d) of the diffraction pattern for a slit of width W = 12� . 
The on-axis intensity presents a small but non-zero oscillatory 

behavior along z (c). Based on the symmetry properties of the first 
RS integral, the antisymmetric slit should produce a zero value on 
the symmetry axis, as for the Fresnel integral. Thus, we attribute this 
deviation to numerical errors in the quadrature calculation
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When the slit width is only a multiple of a few wave-
lengths, i. e. W∕� ∼ m , the intensity profile close to the 
slit, calculated using the first RS integral, has an oscilla-
tory behaviour with a number of lobes equal to m. This is 
in contrast to the assumption of a constant field amplitude 
at z = 0 . However, this is not only confirmed by other cal-
culation methods but also experimentally verified for opti-
cal waves [5]. It is the result of scattering and resonance 
imposed by the boundary of the narrow slit. In wider slits 
the intensity approaches 1.0 and the number of small oscil-
lations decrease in amplitude and increases in the same step 
of m (see Fig. 11b). By contrast, in the Fresnel diffraction 
the number of oscillations in the intensity profile increases 
to infinity as one approaches z = 0.

The differences in the dark focusing between the inten-
sity maps of the matter wave diffraction and the Rayleigh-
Sommerfeld diffraction can be quantitatively analyzed by 
comparing the position of the maxima and minima of the 
second derivative along the symmetry axis (z-axis). For 
a direct comparison with the results of Sect. 3 we define 
the normalized coordinates � = x∕W  and � = z�∕W2 . The 
results are illustrated in Fig. 12. The second derivative with 
regard to � of the intensity pattern in Fig. 11a was evalu-
ated numerically along the �-axis. Profiles of the intensity 

at the � values of first two maxima and minima listed in 
Table 1 are presented in Fig. 12a. A visual inspection finds 
clear similarities with the profiles of Fig. 3b. However, when 
we mark the positions of these maxima and minima in the 
second derivative of the intensity, denoted by �RS

−
(�) and 

presented in Fig. 12b, an increasing deviation is perceived 
along the inverse coordinate ( 1∕� ) between the actual max-
ima and minima and the corresponding values of Table 1. 
For instance, the curvature at � = 0 of the last profile in 
Fig. 12a (plotted in magenta) is in contrast to the nonzero 
curvature of the blue profile. The deviation is explained by 
the fact that intensity patterns of the Rayleigh-Sommerfeld 
diffraction present always a finite number of lobes, and thus 
bright or dark focus regions. By contrast, in the Fresnel dif-
fraction the number of lobes, either of maxima, or minima 
increases to infinity as one approaches the slit.

The results of the intensity pattern for different values 
of �0 are presented in Fig. 13. There are two cases where 
the intensity pattern presents a mirror symmetry along the 
propagation axis. For �0 = �∕2 the phase difference between 
the left and the right half of the field at the slit is Δ� = � . 
The intensity pattern is divided into two separated bright 
regions. If the phase difference is Δ� = 2n� , with n integer, 
the field intensity corresponds exactly to that of the classical 

Fig. 12   Intensity profiles (a) and second derivative of the intensity 
along the symmetry axis (b) of scalar waves diffracted by a slit, cal-
culated using the Rayleigh-Sommerfeld diffraction theory. The sec-
ond derivative of the Rayleigh-Sommerfeld intensity, denoted by 
�RS
−
(�) along the symmetry axis (b), was calculated numerically from 

the same data set used in Fig. 11. Intensity profiles corresponding to 
5 different values of 1∕� are plotted in (a) (with colors orange, green, 
red, blue and magenta). The first 4 profiles correspond to the first two 

values �−
max,k

 and �−
min,k

 of �−(�) in Table 1 with k = 1, 2 . The last pro-
file (magenta) corresponds to the second minimum of �RS

−
(�) , located 

at � ≈ 0.0555 and marked by a solid vertical line of the same color in 
(b). The positions of the other 4 profiles are marked in (b) by verti-
cal dashed lines. Whereas the first maximum and the first minimum 
of the curvature �RS

−
(�) of the intensity, corresponding to the farthest 

dark focal region, match well with the values of Table 1, the positions 
of the following maxima and minima deviate considerably
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diffraction pattern associated with the bright focusing. For 
intermediate values of the phase jump, either 0 < 𝜙0 < 𝜋∕2 , 
or 𝜋∕2 < 𝜙0 < 𝜋 the intensity pattern becomes asymmetric 
along the z-axis (see Fig. 13). This property can be exploited 
in light beam steering close to the slit. The same phase dif-
ference applied to matter wave packets would also produce 
an asymmetry in the time evolution of the spreading packet.

5.2 � Slits with symmetric and antisymmetric linear 
phase profile: analogy with the Bessel beam

There are other ways to produce an apparent splitting in 
the intensity diffraction pattern, by defining other ini-
tial wave functions. The Haar phase profile is the most 

Fig. 13   Field intensity maps as function of phase constant �0 . The 
phase difference between the left and the right side of the slit is 
Δ� = 2�0 . Non-integer values of Δ�∕� lead to asymmetric intensity 

patterns along the symmetry axis. For �0 = �∕2 and �0 = � there is 
symmetry. These cases correspond to dark and bright focusing pat-
terns, respectively
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simple one. However, if we impose a phase difference of 
� between the right and the left side of the field in the slit, 
the resulting diffraction pattern also presents dark focus-
ing, for phase profiles with linear dependence on x. We 
discuss first the case of a symmetric linear phase profile, 
that is, the phase slit has a triangular shape. We define a 
slit centered at x = 0 with the phase defined as a linear 
function of � , but with symmetric and constant gradient. 
The maximum phase value is in the center ( x = 0 ) and 
denoted by �0 . The phase at the boundaries of the slit is 
0. We must emphasize that a one-dimensional wave func-
tion with a phase linearly dependent on the coordinate x 
and constant gradient corresponds to a wave packet with 
momentum. For classical waves, the linear phase depend-
ence is equivalent to a refraction. Thus, with a triangular 
phase the left wave packet has a positive and the right one 

has a negative momentum. The diffraction in space of both 
sides of the wave function is equivalent to the collision of 
two wave packets in time.

The triangular phase profile is the one-dimensional ana-
logue of the axicon prism used to generate Bessel beams 
[8]. The field at the slit is composed of two waves with con-
stant amplitude evolving in space with opposite propaga-
tion direction. The result is a narrow field profile along the 
z-direction, similar to the Bessel beams field profile, despite 
being only one-dimensional (Fig. 14a). An increasing value 
of �0 leads to a tighter focusing, increasing the intensity 
maximum.

When the right and the left sides of the initial wave are 
dephased by � (Fig. 15), the evolving intensity pattern splits 
into two well-separated bright branches and a central dark 
region where dark focusing arises. The intensity pattern is 

Fig. 14   Slit with (a) constant amplitude and symmetric triangular 
phase profile. �0 is the maximum of profile. Intensity maps (b)–(e), 
for phase slits with various values of �0 . The degree of focusing 

increases with �0 . The triangular phase profile is the 2D analog of the 
axicon. For large slits the transverse intensity profile approaches that 
of the Bessel beam and the focal region extends along the z-axis
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similar to that of the Haar phase function. However, the 
distance of the region where the dark focusing occurs with 
regard to z = 0 differs. When the peak phase �0 increases, 
the focusing is faster and the distance to z = 0 decreases 
(see Fig. 15b–e).

A further example of the impact of the phase function 
on the intensity maps is presented in Fig. 16. This cor-
responds to the two-dimensional version of a divergent 
axicon, where the middle point of the slit has a phase mini-
mum. Thus, the triangular phase profile points downwards. 
This wave function leads to divergent waves in the diffrac-
tion pattern, as the half left and the half right plane waves 

have initial momenta pointing in opposite direction. This 
is especially evident if the phase maximum �0 has a large 
value, or equivalently, the gradient increases (see Fig. 16 
b–d).

We can conclude that the dark focusing can occur not 
only for phase slits with Haar phase profile, but also in 
antisymmetric phase slits with a phase jump of � . Moreo-
ver, symmetric phase slits with divergent triangular profile 
also produce a dark region in the center of the intensity dif-
fraction pattern. Though, this requires large gradients of the 
linear phase function.

Fig. 15   Slit with (a) asymmetric phase profiles. The left linear seg-
ment of a symmetric triangular profile is shifted by � resulting into 
an asymmetric function. Intensity maps (b)–(e), for various slits 
with asymmetric triangular profile. The phase difference at x = 0 is 

Δ� = � . A dark region is formed close to z�∕W2 ≈ 0.1 in the symme-
try axis. This region moves down with increasing �0 . A requirement 
for this effect is a phase jump of � between both slit sides



Bright and dark diffractive focusing﻿	

1 3

Page 19 of 23     51 

6 � Conclusions and outlook

To the best of our knowledge, we have investigated for the 
first time the dark focusing of matter, water, and classical 
waves. We have established a quantitative measure for the 
definition of bright and dark foci and have analysed the 
mathematical properties of these closely related features.

For this purpose, we have made use of phase slits of 
rectangular shape without and with phase jump of � at 
the center, the latter corresponding to the Haar wavelet. 
We have compared the localization of intensity maxima 
and minima and the corresponding hill and valley widths 
which emerge during free propagation. Moreover, we have 
analyzed and illustrated the emergence of bright and dark 
foci in Wigner phase space.

Our theoretical studies were complemented by an 
experimental observation of dark foci in the propaga-
tion of surface gravity water waves. Moreover, we have 
shown that dark focusing is not only a feature of real-
valued wave functions, but also appears for other wave 
functions. In particular, we have studied the diffraction 
of classical waves from antisymmetric phase slits with a 
linear dependence on the transverse coordinate and a phase 
difference of � between the half left and half right.

Dark focusing is not only the low-intensity counterpart of 
the bright focusing, rather it has its own characteristics. For 
instance, it emerges at different locations of the propagation 
coordinate than the bright focusing and is connected to mini-
mal valley widths. We note that dark focusing not only arises 
for antisymmetric, but also for symmetric wave packets. 

Fig. 16   Phase slit with (a) symmetric and linear phase function. 
Intensity maps (b)–(d) for various slits. This type of phase function 
leads to divergent waves. It is the 2D analogue of the divergent axi-

con. In this example the maximum for �0 is � . The increasing gradi-
ent of the linear phase determined by the constant �0 leads to waves 
with increasingly divergent intensity
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However, due to the vanishing intensity at the center, the 
dark focusing is more prominent in the first case.

In addition, we have demonstrated that also defocusing 
can occur which leads to broad dark regions. Interestingly, 
this phenomenon is connected to a very particular power 
law which governs the dependence of the intensity on the 
transverse coordinate.

In order to obtain a deeper insight into these focus-
ing effects, we have made use of Wigner phase space. In 
our analysis, we have revealed the intimidate connection 
between a freely propagating wave packet with and without 
a phase jump at its center. In fact, both situation only differ 
by the sign in front of the interference term contributing to 
the Wigner function. We have shown, that it is the absence 
or presence of negative contributions to the Wigner func-
tion close to the center of the transverse coordinate which 
result in a bright or a dark focus. Indeed, the free time evo-
lution of the Wigner function corresponds to a shearing of 
phase space. As a result, at very particular times negative 
contributions to the Wigner function play a more dominant 
role in the central region and give raise to these diffraction 
phenomena.

Experimental measurements of surface gravity water 
waves generated in a water tank verify our theoretical predic-
tions. With the help of an antisymmetric slit in time, we have 
indeed observed the emergence of a dark focus. Moreover, 
we have demonstrated the particular power law that is con-
nected with defocusing and the broad dark regions that show 
up in the propagation of this particular wave profile. Our 
results indicate that the dark focusing as well as the bright 
focusing are universal phenomena in classical and quantum 
physics for wave functions of constant amplitude.

The extension of the diffraction of scalar waves, char-
acterized by a rectangular antisymmetric profile, to phase 
slits with intermediate values of the phase between 0 and 2� 
allows us to understand how the value of the phase differ-
ence influences the symmetry of the diffraction pattern and 
how the transition between bright and dark focusing occurs.

When the initial wave function has a constant amplitude, 
but the phase profile is linear and not piecewise constant, 
other diffractive effects arise. When the phase profile is an 
isosceles triangle, with the maximum in the middle point of 
the coordinate axis, the bright diffractive focusing is boosted 
along the propagation axis. The maximum in the intensity 
pattern also increases with an increasing value of the phase 
maximum. On the other hand, the point of highest intensity 
approaches the origin of diffraction. Moreover, the diffrac-
tion pattern of a triangular phase slit corresponds to the 2D 
analog of the 3D field intensity generated by an axicon. In 
the case where the middle point of the slit has a phase mini-
mum, the diffraction pattern becomes increasingly divergent 
with increasing gradient of the phase profile.

These results are of relevance in many fields of physics 
where wave packets evolve freely in space. Then the dark 
focusing manifests itself most prominently for wave packets 
that have initially an antisymmetric profile. In particular, 
the dark focusing of classical waves can be exploited in the 
Talbot effect of one-dimensional gratings and Fresnel phase 
zone plates.

In this article, we have limited our analysis to wave 
functions with only two segments, either symmetric, or 
antisymmetric. The extension to wave functions that display 
repeated profile segments and are generated by finite peri-
odic phase slits may be explored in the context of the Talbot 
effect. In most cases, the Talbot effect is studied by using 
one-dimensional amplitude slits. Here phase slits introduce 
an additional degree of freedom. Recently, it has been dem-
onstrated by calculations and experiments that a plasmonic 
wave can be guided using a periodic array of slits in the 
propagation direction [16]. However, beyond amplitude slits, 
the effects introduced by phase slits remain to be investi-
gated. Moreover, non-periodic multilayer slits have been 
used to focus electromagnetic waves of short wavelength 
(X-rays and extreme UV) in one dimension [34]. These grat-
ings are a special version of the Fresnel zone plates called 
Multilayer Laue Lens [35]. A phase slit where the phase 
segments are adequately tailored could as well be used as a 
one-dimensional focusing lens.

Appendix A: Appearance of bright and dark 
foci

In this Appendix, we determine the times at which bright 
foci, dark foci, and defocusing occurs for the freely-prop-
agating wave packet Ψ±(� , �) , Eq. (13), originating from a 
rectangular profile ( + ) without and (−) with phase shift of 
� at the center � = 0.

For this purpose, we recall the wave packet Φ±(� , �) 
which originates at time � = 0 from a rectangular slit 
located between the dimensionless coordinates � = 0 and 
� = (−1)�∕2 with � = 1, 2 . According to Eq. (11), the propa-
gated wave packet takes the form

The behavior of Φ�(� , �) close to � = 0 is governed by the 
first and second partial derivative with regard to � . Indeed, 
making use of the explicit form of the Fresnel integral F(w), 
Eq. (12), yields the first partial derivative
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with regard to � . Moreover, the second partial derivative 
with regard to � reads

By making use of the definition

Eq. (13), we are now in the position to analyze the proper-
ties of the wave packet Ψ±(� , �) close to the central position 
� = 0.

First, according to Eq. (41) we obtain the values

and

at the center � = 0 as a function of the time � . Here we 
have made use of the antisymmetry F(−w) = −F(w) of the 
Fresnel integral defined by Eq. (12).

Second, the first derivatives

and

with regard to � at � = 0 result from Eqs. (42) and (44).
Third, according to Eqs. (44) and (43) the second deriva-

tives of Ψ±(� , �) with regard to � read

and

at � = 0.
As demonstrated in the following, Eqs. (45)–(50) allow 

us to determine the times at which bright foci, dark foci, and 
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defocusing appears for the probability density ||Ψ±(� , �)
||2 

close to the symmetry axis � = 0.

Slit with constant amplitude and phase

First, we study the appearance of these features during the 
propagation of the wave packet Ψ+(� , �) , Eq. (44), origi-
nating from a rectangular slit with constant amplitude and 
phase.

According to Eq. (15), the probability density

displays a parabolic dependence for |𝜒| ≪ 1 . Here the offset 
of the parabola

as expressed in terms of the Fresnel integral F(w), Eq. (12), 
can be obtained with the help of Eqs. (16) and (45).

Moreover, according to Eqs. (17) and (47), the curvature 
of the parabola

is determined by the value Ψ+(0, �) and the complex conju-
gate of the second partial derivative Ψ∗

+,��
(0, �) at � = 0 . By 

inserting Eqs. (45) and (49) and making use of the explicit 
form of the Fresnel integral F(w) given by Eq. (12), we 
express Eq. (53) as

In order to determine the times �+
min,k

 and �+
max,k

 at which 
bright and dark foci appear, we calculate according to 
Sect. 3.1 the minima and maxima of the function �+(�) , 
Eq. (54). Our numerical results are enumerated by the index 
k = 1, 2,… and presented in Table 1. Moreover, we note that 
defocusing occurs at the zeroes of �+(�).

Next, we derive approximate analytical expressions for 
�+
min,k

 and �+
max,k

 which are valid for small times 𝜏 ≪ 1 . For 
this purpose, we recast Eq. (54) in the form
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In the domain 𝜏 ≪ 1 we can approximate the Fresnel 
integrals

and

in Eq. (55) by using infinity as the upper bound of inte-
gration. Inserting Eqs.  (56) and (57) then yields the 
approximation

or, equivalently,

For small values 𝜏 ≪ 1 , the location of the maxima and 
minima of �+(�) approximately corresponds to those of the 
cosine in Eq. (58). Accordingly, we obtain with k = 1, 2,… 
the approximate expressions

for the minima, and

for the maxima of �+(�) , Eq. (53), valid for small times, that 
is for k ≫ 1 . Here �+

min,k
 denotes the time of a bright focus 

and �+
max,k

 the one of a dark focus, being located at � = 0 and 
emerging during the free propagation of the wave function 
Ψ+(� , �) , Eq. (44), originating from a rectangular slit.

Slit with constant amplitude and �‑phase jump

Next, we perform an analogous analysis for the freely-
evolving wave packet Ψ−(� , �) , Eq. (44), emerging from a 
slit with constant amplitude and a �-phase jump at � = 0 . 
Also here we make use of a quadratic approximation of 
||Ψ−(� , �)

||2 close to the symmetry axis � = 0 . According to 
Eqs. (16) and (47), the offset of the parabola

for all times � due to the antisymmetry of the wave function 
Ψ−(� , �) with regard to �.

(56)∫
√

�

4�

0

d� sin
�
�2
�
≃ ∫

∞

0

d� sin
�
�2
�
=

�
�

8

(57)∫
√

�

4�

0

d� cos
�
�2
�
≃ ∫

∞

0

d� cos
�
�2
�
=

�
�

8

(58)�+(�) ≃
2�

�

√
2

�

[
cos

(
�

4�

)
− sin

(
�

4�

)]
,

(59)�+(�) ≃
4�

�
√
�
cos

�
�

4�
+

�

4

�
.

(60)�+
min,k

≃
1

8k − 5

(61)�+
max,k

≃
1

8k − 1

(62)�−(�) = 0

By making use of Eqs. (46) and (50), we can show that 
the curvature of the parabola

Eq. (17), is only determined by the first derivative of the 
function Ψ−(� , �) with regard to � . By inserting Eq. (48) 
into Eq. (63), we arrive at the exact expression

or, equivalently,

According to Sect. 3.1, the times at which bright and dark 
foci occur are governed by the minima and maxima of the 
function �−(�) , Eq. (65). First, we emphasize that �−(�) ≥ 0 
for 𝜏 > 0 . Thus, minima of �−(�) are assumed at the times

with k = 1, 2,… , where �−(�−min,k
) = 0 . For this reason, there 

are no bright foci during the propagation of the wave packet 
Ψ−(� , �) . Instead, according to Sect. 3.1, defocusing occurs 
at � = �−

min,k
.

On the other hand, we numerically determine the times 
� = �−

max,k
 when the function �−(�) , Eq. (65), displays local 

maxima. We present the corresponding values in Table 1. 
Since 𝛽−(𝜏−max,k

) > 0 , the time � = �−
max,k

 indicates the emer-
gence of a dark focus.

In addition, for small times 𝜏 ≪ 1 we find an approxi-
mate analytical expression at which a maximum of �−(�) 
occurs. Indeed, the maximum of the sine function in 
Eq. (65) emerges at

where k = 1, 2,… . For k ≫ 1 , Eq. (67) provides a good esti-
mation of the time at which a dark focus appears as demon-
strated in Table 1.
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