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Abstract. The aim of this paper is the application of beam element representations for structural 
skin reinforcements in flexible full aircraft FE models used in ditching simulations. To verify 
this approach, it was initially analyzed on flexible reinforced bottom-aircraft panels under guided 
ditching conditions, considering also structural mesh size variations and partly corresponding 
fluid mesh densities. For this analysis two different numerical methods were used for 
comparisons, the coupled Finite Element-Smoothed Particle Hydrodynamics and the Arbitrary 
Lagrangian Eulerian methods. For the generation of the full aircraft model a multidisciplinary 
process chain approach and a standardized data format description are used. The beam element 
representations are considered for the modelling of skin reinforcement as well as other structures 
like cabin and cargo floor structures. By this approach, first time feasible full aircraft ditching 
simulations and the subsequent analysis of both global kinematics and the local fuselage 
structural response could be achieved. 

1.  Introduction 
Novel aircraft designs must be compliant to crashworthiness certification requirements. One 
requirement is to investigate the behavior of the aircraft exposed to the hydrodynamic loads expected in 
a planned emergency landing on the water, commonly known as ditching. Contrary to a crash on water 
which can be described as an unexpected and unprepared event, ditching is characterized by the level of 
preparation prior to the impact. Low approach speeds, a nose-up position of the aircraft, the 
consideration of the sea state and the direction of the wind as well as the cabin preparation are pursued 
by the pilots and the crew in order to reduce the impact loads and deaccelerations to increase the 
survivability of the occupants and their subsequent evacuation [1]. Diverse methods can be applied by 
aircraft manufacturers to demonstrate compliance with respect to ditching requirements. Nevertheless, 
computational numerical approaches in combination with detailed aircraft models allow not only for the 
analysis of the global kinematics of the aircraft, but also for the investigation of the local airframe 
structural integrity. This work focuses on the impact phase, where the highest hydrodynamic loads are 
present and the subsequent landing phase, characterized by different hydrodynamic phenomena induced 
by the high forward velocity and the specific shape of the rear bottom section of the aircraft.  

The generic character of this investigation is adopted by the application of a tool used in 
multidisciplinary aircraft pre-design process chains for the description of an aircraft configuration and 
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the generation of the detailed flexible aircraft models. In combination with the development of suitable 
modelling methods for the structure and the fluid, this kind of aircraft models can be used in ditching 
simulations. Initial investigations on the application of beam element representations replacing typical 
extruded shell element structures, such as for skin reinforcements in flexible aircraft panel models, 
showed advantages in terms of computational effort with qualitatively very similar structural behavior 
[2]. The transfer of this modelling technique to a much coarser full aircraft model for affordable ditching 
computations is a main objective of this work. 

In the first part of this paper two numerical approaches applied to model the transient interaction of 
fluid and structure are presented. The next part includes the description of the modelling technique and 
of the test cases with flexible aircraft panel models, followed by the verification in a guided ditching 
condition using different numerical approaches to extend results presented in [2]. The transfer of the 
modelling technique to a flexible full aircraft model for the application in ditching simulations is 
presented in the next section. Finally, conclusions of this work are given. 

 

2.  Numerical approaches 
The numerical simulation of a water impact is challenging, as it is considered as a multi-model coupled-
approach where considerable fluid displacements and a nonlinear response of the structure is expected 
due to the high hydrodynamic loads. In order to attempt for an efficient and affordable computation, the 
fluid and the structure are discretized with different suitable numerical approaches and computed using 
an explicit time integration scheme. In this work the Finite Element (FE) method and a Lagrangian 
formulation is used to discretize the structural sub-model and compute the deformation of the material 
and the mesh. This method is common for structural models in crashworthiness calculations. 

The fluid sub-model is treated differently compared to the structural model. In this work two different 
approaches are considered. One method commonly used for this type of application is the Smoothed 
Particle Hydrodynamics (SPH), a Lagrangian mesh-free method in which the continuous fluid domain 
is discretized by a set of particles which moves with the flow. The condition at each particle position is 
then estimated as a weighted average of the properties of the neighboring particles [3]. Since large water 
basins are commonly used in ditching simulations, computational effort and boundary effects can be 
reduced using a hybrid modelling approach by introducing a portion of the fluid domain discretized with 
FE brick elements surrounding the SPH domain which are coupled to the particles using a node-to-
surface penalty contact formulation [4]. 

Another approach used widely for fluid dynamics computations is the Eulerian formulation. Contrary 
to the Lagrangian method where the mesh moves with the material, in the Eulerian approach the mesh 
remains fixed while the material moves through the fixed mesh, thus being appropriate for models 
presenting large material deformations. In addition, in the Arbitrary Lagrangian-Eulerian (ALE) method 
the mesh motion is arbitrary with respect to a fixed special frame, thus combining the advantages of 
using the Lagrangian method for the structure and the Eulerian method for the fluid [5]. Both sub-models 
are then coupled using an embedded contact interface with the structure immerged in the fluid domain. 
This Coupled Euler-Lagrange (CEL) method is the second approach used in this work.   

 

3.  Modelling techniques of beam-stiffened aircraft structural models for ditching simulations 
The first model considered in this work is a beam-stiffened flexible aircraft fuselage panel used for 
guided ditching simulations. This model was developed starting from a generic detailed lower fuselage 
panel with individually modelled skin, stringers, frames, and local clips, including connections via 
individual joints and tied interfaces [6]. This reference panel was simplified with skin and 
reinforcements modelled using a conformal mesh with common nodes at the intersections of stringers 
and frames to reduce model complexity for an easier conversion between used codes (Simplified shell-
stiffened aircraft panel, in Figure 1). In the final model development step, representative beam elements 
were integrated to model the stringers and inner frames (Beam-stiffened aircraft panel, in Figure 1), 



11TH-EASN
IOP Conf. Series: Materials Science and Engineering 1226  (2022) 012057

IOP Publishing
doi:10.1088/1757-899X/1226/1/012057

3

 
 
 
 
 
 

instead of the previous extruded representations with shell elements [2]. The material here is an 
aluminum alloy AL2024 with density 2.8 x 10-6 kg.mm-3, Young modulus 72.14 GPa, Poisson ratio 0.33, 
and initial yield stress 0.3268 GPa. The isotropic hardening of the material is modelled using a tabulated 
plasticity curve, as presented in [2]. Panel length, width, and curvature are 1127 mm, 795 mm, and 2000 
mm, respectively. The skin thickness is 0.8 mm and the standard mesh size is 10 mm. Stiffeners 
dimensions are reported in [2]. Figure 1 portraits the aircraft panel model in the different development 
stages mentioned above. 

 

 
Figure 1. Generic detailed aircraft panel (Left), simplified shell-stiffened panel (Center), and panel with 
integrated representative beam FE in skin reinforcements (Right). 

 
In addition to the integration of beam elements, different mesh sizes were considered to analyze their 

implication toward the full-aircraft application. As reported in [2], computations with the beam-stiffened 
aircraft panel using the coupled SPH-FE method already showed comparable results with a coarser mesh 
size of 20 mm (3398 elements in total). The computational effort in terms of elapsed time could be 
considerably reduced in combination with corresponding coarser fluid domains. In this section 
additional results of the beam-stiffened aircraft panel ditching computations using the ALE-CEL method 
are presented. 

 

3.1.  Reinforcements modelling 
Results of the guided ditching simulations using the reinforced aircraft panel with integrated beam 
element representations for the inner frames and stringers are presented for both ALE-CEL and SPH-
FE methods in Figure 2. The contour plot presented on the left side shows the pressure fields in the fluid 
at 50 ms, during the contact of the forward bay section with the water surface. While ALE calculates a 
comparably smooth pressure field in the fluid, the SPH method leads to an irregular pressure field. 
However, the flow front in the SPH-FE calculation (bottom) appears to be very similar to the one in the 
ALE-CEL computation and in both simulations the highest pressures are found in the area behind the 
water front. The time history of the vertical force in global z direction (Figure 2, right) reveals in general 
slightly higher forces calculated with the ALE-CEL method. The comparison between the considered 
structural models however shows a good agreement for both methods, especially between the simplified 
panel with extruded reinforcements modelled with shell elements and the beam-stiffened model. In both 
computational methods (ALE-CEL and SPH-FE), the shape of the curves and the maximal force levels 
are very similar to the results with the reference model. 
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Figure 2. Guided ditching simulation with the beam-stiffened fuselage panel at 50 ms for both 
considered computational methods. Left: Contour plot of the fluid pressure in MPa, ranging from 0.1 
MPa to 0.3 MPa (Top: ALE-CEL. Bottom: SPH-FE). Right: time history of the vertical force. 

 

3.2.  Mesh size variation 
Figure 3 shows results of the guided ditching simulation with the beam-stiffened panel considering a 
coarser structural mesh size and an unchanged fluid representation. The contour plot on the left side of 
Figure 3 denotes a very similar interaction between the fluid and the structure compared to the results 
presented in Figure 2 with the standard mesh size. The response of the structure is very similar to the 
previous calculation and a very good agreement compared to the reference panel is found for both 
computational methods, according to the vertical force time history (Figure 3, right). 

 

 
Figure 3. Guided ditching simulations with the beam-stiffened fuselage panel including a coarser mesh 
size at 50 ms for both computational methods. Left: Contour plot of the fluid pressure in MPa, ranging 
from 0.1 MPa to 0.3 MPa (Top: ALE-CEL. Bottom: SPH-FE). Right: time history of the vertical force. 

 
The force obtained with the ALE-CEL method is still slightly higher compared to the result obtained 

with the coupled SPH-FE approach. An investigation into the local responses of the beam-stiffened 
panel in guided ditching conditions (standard and coarser mesh size) is presented in Figure 4. Results 
show higher relative vertical displacements for computations with ALE-CEL in both cases, independent 
from the structural mesh sizes. This is consistent with the forces comparison. Apart from little method 
specific aspects, the behavior of the beam reinforced panel with both methods is comparable and the 
coarser mesh decreases significantly computational costs. 
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Figure 4. Contour plot of the relative vertical displacement of the beam-stiffened fuselage panel at 50 
ms for both considered computational methods. Top: ALE-CEL, Bottom: SPH-FE. Left: standard mesh 
size. Right: coarser mesh size. Visualization of the LH or RH panel-half in flight direction, respectively. 

 

3.3.  Fluid particle density variation 
Further computations with the beam-stiffened aircraft panel and the coarser mesh size are performed 
with a coarser fluid particle density for the coupled SPH-FE method. Results are presented in Figure 5. 
The time history of the vertical force indicates a higher prediction of the force with the coarser fluid 
density, compared to the reference panel and the computation with a standard water domain. However, 
the shape and the maximal force levels are comparable. 

 

 

Figure 5. Time history 
of the vertical force 
obtained for the beam-
stiffened aircraft panel 
model with a coarser 
mesh size and a 
corresponding coarser 
fluid particle density. 

 
With respect to the computational cost, the use of the coarser fluid particle density in combination 

with the beam-stiffened aircraft panel and the coarser structural mesh leads to a reduction of a factor 15 
of the computational effort compared with the standard model. The reduction of the elapse time is 
therefore very attractive for the full-aircraft ditching simulation.  

 

4.  Modelling technique transfer to a flexible full-aircraft model for ditching simulations 
The integration of representative beam FE for the discretization of fuselage skin reinforcements in a full 
flexible fuselage model is assessed in this section. The general description of the aircraft system as well 
as the generation of the structural FE model of the full-aircraft is reached using a multi-disciplinary 
approach and a tool for structural analysis. For the pre-processing and modelling of the water domain 
and the coupling, several python-based routines were used. 
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4.1.  Model generation 
The aircraft considered in this work is the ‘DLR D150’ generic aircraft. This aircraft is similar to a 
commercial fixed-wing single-aisle aircraft used for short to mid-range missions with a capacity of 150 
passengers. The design of this aircraft is based on a multi-disciplinary process chain considering inputs 
from specific tools for outer geometry, cabin design, aerodynamics, structure, powerplants, etc. For the 
description of the aircraft design the hierarchical XML-based data format called CPACS (Common 
Parametric Aircraft Configuration Schema) was used [7]. This data format provides the basis for the 
python-based modelling and sizing tool PANDORA (Parametric Numerical Design and Optimization 
Routines for Aircraft) [8], which was used for the generation of the flexible FE fuselage model of the 
D150 aircraft. To generate the reinforced fuselage skin, the tool reads the CPACS-inputs of the fuselage 
geometry, reinforcement positions, and structural profiles description including the cross-section. This 
cross-section is used by the tool to determine engineering constants used as inputs for the beam elements. 
According to the positions of the reinforcements, beam finite elements are created by the tool. Beside 
stringers and frames, PAX and cargo floor structure are represented with beam elements, too. Finally, 
additional structural components such as bulkheads and the center wingbox are modelled automatically. 
The elastic-plastic material model of the AL2024 described above is used for the fuselage. Figure 6 
shows the fuselage of the D150 FE model. The outer skin panels, modelled using shells, are hidden here 
for visualization purposes. 

 

 
Figure 6. Generic fuselage structural model with beam FE representations for fuselage skin and panel 
reinforcements. The configuration is a short to mid-range single-aisle aircraft model.  

 

4.2.  Global FE full-aircraft model ditching simulation  
A fixed-wing twin-engine GFEM aircraft model including the flexible fuselage model depicted in Figure 
6 is used for ditching simulations in free motion conditions. The wings, the empennage and the engines 
are modelled with rigid bodies and are coupled to the flexible fuselage. Pylons are modelled with 1D 
elements to connect the engines to the wing. Since the interaction between the engines and the water 
influences the kinematic behavior of the aircraft, connections between the pylons and the engines can 
fail when reaching a critical load to allow a more realistic ditching scenario. Global aircraft mass 
properties are reached by integration of over 1500 lumped masses for payload and secondary masses, 
which are coupled to the structural mesh with the use of interpolation elements. 

The approach configuration of the aircraft, prior to the impact on water, is symmetric with a sink rate 
of 1.5 m.s-1, a forward velocity of 70 m.s-1, and a pitch angle of 8°. In total, the ditching simulation runs 
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over 2000 ms, which covers the impact and a significant part of the landing phase. Computational results 
are obtained using the coupled SPH-FE approach. The length, width and depth of the water basin are 
200 m, 24 m and 2 m, respectively. In total 1.2 million SPH particles, with a particle spacing of 0.2 m, 
equivalent to a total volume of 9.6 million liters are used in the computation. In this first simulation a 
simple lift model with a linear decrease was used. The lift force balances the aircraft weight at the 
beginning of the computation and is zero 2000 ms after the impact. The interaction between the flexible 
aircraft and the water domain is modelled using a contact interface with a penalty formulation. Figure 7 
shows four different states of the ditching sequence (approach, impact, after engine break-off, landing) 
of the full-aircraft ditching simulation. Contour plots of the vertical displacement in the fluid (left) and 
of the von Mises stress in the fuselage (right) are presented. The vertical displacement time history of 
the CoG of the aircraft is provide in addition in Figure 8.  

 

 
 
Figure 7. Ditching simulation of the flexible aircraft. Left: contour plot of particle vertical displacements 
(in mm). Right: contour plot of the von Mises stresses of the bottom fuselage section (in MPa). 
 

The highest hydrodynamic loads can be found at about 400 ms after first contact, when the rear 
bottom fuselage section is deformed to the maximum by the fluid pressure, causing a deep concave 
deformation of the skin and reinforcements. The failure criterion of connections is exceeded when the 
engines enter into the water. Then, the engines separate from the pylons, hit the wing intrados and move 
away from the aircraft as presented at 800 ms. Later, the front part of the aircraft hits the water surface, 
also triggered by the nose-down moment caused by the engines impact. At 1100 ms the parts of the 
fuselage below the cockpit and in front of the wings are subjected to high stresses. This contact causes 
the aircraft to skip, leaving the front part the water surface (Figure 8) while a second contact of the rear 
aircraft section was observed. Then the aircraft continues its landing phase up to the end of the 
simulation at 2000 ms without coming to a complete rest at that moment. 
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Figure 8. Vertical 
displacement time 
history at the CoG 
position of the aircraft. 
Initial vertical input at 
2.4 m indicates position 
of the CoG at the begin 
of the simulation with an 
initial pitch attitude of 
8°. 

 
The elapsed time to complete the simulation was around 21 h, using 8 nodes and a total of 64 

processors of a local cluster, and computational features like a multi-model coupling scheme carried out 
with different suitable time steps for each sub-model. The modelling technique with simpler beam 
element representations for skin and panel reinforcements proposed in this work is adapted to ditching 
simulation with flexible aircraft models. The analysis of the global aircraft kinematic behavior and the 
local structural response can be achieved in a reasonable time. The consideration of mesh sizes according 
to the flexible panel analysis will be further investigated. 

 

5.  Conclusions 
In this work, the integration of a modelling technique to represent fuselage skin reinforcements such as 
stringers and frames by simple beam elements in flexible full-aircraft models was investigated for 
ditching computations. This approach was enhanced by an analysis of beam-stiffened flexible fuselage 
panels under guided ditching conditions with computational methods based on the coupled SPH-FE and 
the ALE-CEL approaches. Results predict good agreement with computations undertaken with shell-
stiffened models. Also, the computational effort is significantly reduced. A full-aircraft ditching 
simulation with beam reinforcements was performed using the SPH-FE method. Results were obtained 
in a reasonable elapsed time. The global aircraft kinematics as well as the local structural response could 
be assessed for the impact phase and a significant part of the landing phase of the ditching, demonstrating 
the interest of integrating beam FE representations for full aircraft ditching simulations. 

References 
[1] EASA 2014 Certification specifications and acceptable means of compliance for large aeroplanes 

CS‐25/Amdt 15 EASA Tech. Rep. 
[2] Leon Muñoz C, Kohlgrüber D and Langrand B 2021 Analysis of fuselage skin reinforcements 

with beam element models in flexible aircraft panels for ditching simulations IOP Conf. Ser.: 
Mater. Sci. Eng. 1024 012054  

[3] Gingold R A and Monaghan J J 1977 Smoothed particle hydrodynamics ‐ Theory and application 
to non‐spherical stars Mon. Not. Roy. Astron. Soc. 181 pp 375–89 

[4] Siemann M and Langrand B 2017 Coupled fluid-structure computational methods for aircraft 
ditching simulations: comparison of ALE-FE and SPH-FE approaches Computers & 
Structures 188 pp 95–108 

[5] Donea J, Huerta A, Ponthot J P and Rodríguez‐Ferran A 2004 Arbitrary lagrangian‐eulerian 
methods Encyclopedia of Computational Mechanics (New Jersey: John Wiley & Sons) 

[6] Siemann M, Kohlgrüber D and Voggenreiter H 2017 Numerical simulation of flexible aircraft 
structures under ditching loads CEAS A. J. 8 pp 505–21 

[7] Nagel B, Böhnke D, Gollnick V, Schmollgruber P, Rizzi A, La Rocca G and Alonso J J 2012 
Communication in aircraft design: can we establish a common language? ICAS (Brisbane) 

[8] Petsch M, Kohlgrüber D and Heubischl J 2018 PANDORA - A python based framework for 
modelling and structural sizing of transport aircraft MATEC Web. Conf. 233 00013 


