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Exciting Nonlinear Modes of Conservative Mechanical Systems
by Operating a Master Variable Decoupling

Cosimo Della Santina1,2, Dominic Lakatos1, Antonio Bicchi3, Alin Albu-Schaeffer1,4

Abstract— Eigenmanifolds extend eigenspaces to nonlinear
mechanical systems with possibly non-Euclidean metric. Recent
work has shown that hyper-efficient oscillations can be excited
by simple controllers, which simultaneously stabilize an Eigen-
manifold and regulate the total energy. Yet, existing techniques
require imposing assumptions on the system dynamics that
may not be fulfilled by the controlled system. This paper
overcomes these limitations, by allowing for a partial dynamic
compensation, which produces an advantageous decoupling of
the system’s dynamics. This decoupling happens in a convenient
set of coordinates, which are induced by the modal charac-
terization of the mechanical system. Two control algorithms
taking advantage of this property are proposed and validated
in simulation.

I. INTRODUCTION

The evolution of complex mechanical systems is governed
by the interplay of potential fields and dynamic forces.
The two actions dynamically balance each other for specific
initial conditions, yielding regular oscillations. Often, these
oscillations are not isolated, but part of entire families
continuously evolving from an equilibrium of the system.
These collections of periodic orbits are well understood
for linear systems thanks to the celebrated linear modal
analysis. However, when nonlinearities are involved the
analysis becomes dramatically more complex [1], especially
when multi-body effects are involved [2]. Still, most of
the interesting oscillatory mechanical systems are nonlinear.
For example, animals are well known to rely on natural
oscillations to locomote efficiently [3], [4]. Inspired by
biology, researcher have introduced elastic and soft elements
into the mechanical design of robotic systems, leading to
soft robots [5]. These systems are thought to be especially
suited for performing oscillatory tasks, and their expected
practical applications include locomotion [6], periodic pick
and place [7], and carrying payloads that exceed the static
torque limits [8]. Elastic elements may also be optimized to
maximize performance [9], [10].
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As a consequence, understanding how to produce non-
linear oscillations in mechanical systems has become an
increasingly important goal for control theorists. For example
[11]–[13] deal with the challenge from the prospective of
virtual holonomic constraints, [14] using immersion and
invariance control, [15] through energy shaping, [16] in the
context of Floquet theory, and [17] by means of transverse
feedback linearization. Alternatives range from optimal con-
trol [18], [19] to data-driven methods [20], [21]. Although
effective, all these techniques require some form of steady
state dynamic cancellation and persistent excitation.

We focus here specifically on exciting oscillatory be-
haviors which do not require any energy expenditure at
steady state. This is possible only if the desired steady
state orbits are autonomous evolutions of the open loop
system. These oscillations can be identified and described
by means of nonlinear modal theory [2], [22]. Based on this
intuition, we recently proposed [23]–[28] to excite nonlinear
oscillations by combining two control loops. The first [24]
stabilizes nonlinear counterparts of the linear eigenspace:
the Eigenmanifolds [2]. The second loop imposes a desired
amplitude of oscillations by regulating the total energy of
the system [25]. Interestingly already a PD-like regulation of
Eigenmanifolds may be sufficient to realize Eigenmanifold
stabilization [24]. Yet, the approach works only under sim-
plifying hypotheses on the transverse dynamics. Even more
importantly, the energy regulation must be designed in a way
that it does not perturb the invariance of the Eigenmanifold
in order to prove the convergence of the nested loops. This
is however possible only in a restrict class of mechanical
systems [25].

The goal of the present paper is to extend this theory to
the case in which the model of the system is sufficiently
well known to allow for model cancellations during the
transient. We show that in this case the discussed limitations
in our framework can be overcame by means of a decoupling
action. This way, the system can be brought in a special
form where a master oscillator acts as a clock for a periodic
time variant system. We propose two controllers - one
for Eigenmanifold stabilization and the other for energy
regulation - and we prove their convergence properties. We
then show their effectiveness in exciting the nonlinear modes
of a system that we could not have handled using [24], [25].

II. EXCITING EFFICIENT OSCILLATIONS THROUGH

EIGENMANIFOLD STABILIZATION

The formal coordinate-free definition of Eigenmanifold
can be found in [2]. We provide here only a brief and
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coordinate dependent introduction. We also define here some
novel concepts that we will then use to derive the results of
this paper - namely master dynamics, slave variables, and
master energy.

A. Dynamics in linear modal coordinates

Consider a generic conservative mechanical system, not
subject to non-holonomic constraints, and fully actuated
q̈ = −M−1(q)(C(q, q̇)q̇+G(q))+M−1(q)τ , where M(q) ∈
Rn×n is the inertia matrix, C(q, q̇)q̇ are Coriolis and cen-
trifugal forces, G(q) are potential forces (usually including
gravity and elastic field), and τ ∈ Rn are the generalized
forces that we use as inputs. The energy of this system is
E(q, q̇) = q̇TM(q)q̇/2+U(q), with U(q) being the potential
energy - i.e. the scalar function having G(q) as gradient
vector. Consider now an isolated stable equilibrium qeq of
this system. We perform linear modal analysis [2, Sec. II]
on the linearized system at the equilibrium. We suppose for
the sake of space that all eigenspaces have dimension two
(non resonance condition). We call W the matrix bringing
the configuration of the linear system in modal coordinates.
Without loss of generality, we order the rows of W such
that the first one refers to eigenspace we aim extending to
the nonlinear realm. To simplify the notation, we introduce
the linear change of coordinates x = W (q − qeq), which
leads to the dynamics

ẍ = f(x, ẋ) + g(x)τ, (1)

where x = [x1, . . . , xn]T ∈ Rn are the mechanical system’s
configuration expressed in the modal coordinates of the
linearized system, and ẍ, ẋ ∈ Rn are their time derivatives.
The drag of the system is f : R2n → Rn, and the input field
is the full rank matrix g : Rn → Rn×n.

B. Eigenmanifold

Consider system (1) with τ = 0. An Eigenmanifold is a
2-dimensional submanifold of the state space R2n, such that

i) it contains the equilibrium, i.e. (0, 0) ∈M,
ii) it is a collection of periodic orbits characterized by a

distinct energy - i.e. each x(t) such that (x(0), ẋ(0)) ∈
M is periodic, it is fully contained in M, and have a
total energy E distinct from all other trajectories in M,

iii) all these orbits are line-shaped - i.e. they do not self-
intersect, and do not have circular topology.

C. Coordinate embeddings

We say that an Eigenmanifold is an extension of an
eigenspace if the latter is tangent to the first at the equi-
librium. In the rest of the paper we will focus w.l.o.g. on
the Eigenmanifold M which is tangent to the eigenspace
identified by (x1, ẋ1). Under this hypothesis we can always
introduce (see [2, Secs. 8,9]) two functions X : R2 → Rn
and Ẋ : R2 → Rn. They are called coordinate embedding of
the Eigenmanifold, and they are such that M can be defined
implicitly as the locus of points that verify

x = X(x1, ẋ1), ẋ = Ẋ(x1, ẋ1). (2)

Fig. 1. If initialized on the invariant manifold, the evolution of
the system is fully defined by the one dimensional dynamics of the
master variable. The remaining n−1 slave variables are specified by
the master variable through a set of nonlinear algebraic functions.

Note for (2) to be verified (X1, Ẋ1) must be the identity
function. We will release in the next future a tool for
automatically evaluate X, Ẋ from (1).

D. Master dynamics and slave variables

We call modal dynamics the following second order sys-
tem

ẍ1 = f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) (3)

When evolving on the Eigenmanifold system (1) behaves
as the 1-DoF system (3), and all the other variables are
constrained by the algebraic rules (2). For this reason, we
refer to (x1, ẋ1) as master variables, and to the remaining
part of the state as slave variables. Note that this is a standard
terminology that we are borrowing from [29]. Fig. 1 depicts
this idea. This structure is lost as soon as we leave the
manifold, even if in the immediate boundary.

Finally, we define the energy of the master dynamics as

EM = E(X(x1, ẋ1), X(x1, ẋ1)), (4)

from which, it is clear that in the general case (3) is not
itself a mechanical system. For example, the energy is in not
quadratic in ẋ1 as soon as Ẋ is not linear in ẋ1.

E. Tangency constraints

Since the Eigenmanifold is invariant by definition, time
derivative of the state (ẋ1, ẍ1) must always be tangent to
the Eigenmanifold itself (i.e. zero orthogonal component). A
simple way to express this condition is to evaluate the time
derivative of (2), and then substitute the vector field (1). We
then substitute back x = X(x1, ẋ1) and ẋ = Ẋ(x1, ẋ1). This
process yields the tangency constraints

Ẋj =
∂Xj
∂x1

ẋ1 +
∂Xj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)),

fj(X, Ẋ) =
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)).

(5)

∀j ∈ {2 . . . n}. Note that j = 1 trivially holds. The master
dynamics (3) clearly assumes an important role here.
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Fig. 2. Making the Eigenmanifold M an attractor by means of
feedback control is a simple way of generating steady state regular
oscillations that do not need any persistent excitation to be sustained
at steady state. This is because they are already an open loop
evolutions of the system. Yet, an Eigenmanifold contains infinite
modal oscillations - some of which are shown in the picture as
solid lines. Since each mode is labelled by a different energy level,
we can pick the desired one by including a further feedback action
that regulates the energy of the mechanical system.

III. EIGENMANIFOLD STABILIZATION

This section introduces a new feedback controller, whose
aim is to make the Eigenmanifold M a local attractor
for the closed loop system. We have already shown in
[24] that achieving such goal results in the generation of
nonlinear oscillations that require no persistent excitation to
be sustained. This idea is summarized by Fig. 2. Yet the
simple PD-like action proposed in our previous work only
worked under simplifying assumption.

We have seen in Sec. II-D and Fig. 1 that the sys-
tem assumes a simplified structure when evolving on the
Eigenmanifold. We aim here at designing a feedback action
that can force a similar hierarchical dynamics also in the
vicinity of the Eigenmanifold. We propose to achieve this
goal through compensatory acceleration acting only on the
master variable

a1(x, ẋ) = f1(X(x1, ẋ1), Ẋ(x1, ẋ1))− f1(x, ẋ), (6)

which in turn can be used to augment a PD-like loop

τ(x, ẋ) = g−1(x)

κp ∆ + κd ∆̇ +


a1(x, ẋ)

0...
0


 , (7)

where κp ∈ R+, κd ∈ R+, ∆ = X(x1, ẋ1) − x, and ∆̇ is
the time derivative of ∆.

Lemma 1. If (8) is asymptotically stable with (ξ, ξ̇) open
loop evolution of ξ̈ = f1(X(ξ, ξ̇), Ẋ(ξ, ξ̇)), then (7) makes
M a local attractor of the a closed loop system.

Proof. Differentiating w.r.t. time ∆j = Xj(x1, ẋ1) − xj
yields

∆̇j = −ẋj +
∂Xj
∂x1

ẋ1 +
∂Xj
∂ẋ1

[f1(x, ẋ) + g1(x)τ ]

= −ẋj + Ẋj(x1, ẋ1)

+
∂Xj
∂ẋ1

[f1(x, ẋ)− f1(X, Ẋ) + g1(x)τ ] ,

where in the first step we used the chain rule, and in the

second step we used (5), i.e. the manifold invariance. Now,
we close the loop with (7) and (6). Recalling that ∆1 ≡ 0
by definition yields

∆̇j = Ẋj(x1, ẋ1)− ẋj , (9)

which now describes the displacement between velocities and
corresponding manifold coordinates. We differentiate (9) a
second time obtaining

∆̈j =− fj(x, ẋ)− gj(x)τj

+
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

[f1(x, ẋ) + a1]

=− fj(x, ẋ)− gj(x)τj

+
∂Ẋj
∂x1

ẋ1 +
∂Ẋj
∂ẋ1

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) ,

(10)

where again we applied the chain rule and plugged in (6) and
(7). Now, we exploit once more the tangency constraints (5),
together with the definition of ∆ and the expression of its
time derivative (9). The result is

∆̈j = fj(X, Ẋ)− fj(X −∆, Ẋ − ∆̇)− κp ∆j − κd ∆̇j .

To complete the proof, we linearize the dynamics for small
displacements from the manifold M, i.e. around ∆j = 0
and ∆̇j = 0 ∀j ∈ {2 . . . n}. The result is (8), with
z =

[
∆2 . . .∆n

]T
and ż =

[
∆̇2 . . . ∆̇n

]T
, and where we

exploited that ∆1 ≡ 0 and ∆̇1 ≡ 0 by construction. In (8),
x1 and ẋ1 do not appear as an input, but only as dependencies
in the dynamic matrix. Indeed, the following equations hold

∂fj(x, ẋ)

∂x1
=
∂fj(X−∆, Ẋ−∆̇)

∂x1

∣∣∣∣∆j = 0

∆̇j = 0

, (11)

∂fj(x, ẋ)

∂ẋ1
=
∂fj(X−∆, Ẋ−∆̇)

∂ẋ1

∣∣∣∣∆j = 0

∆̇j = 0

. (12)

Note that the controller a1 decouples the dynamics of
master variable from the slave variables. Indeed it holds
ẍ1 = f1(x, ẋ) + (f1(X(x1, ẋ1), Ẋ(x1, ẋ1)) − f1(x, ẋ)) =
f1(X(x1, ẋ1), Ẋ(x1, ẋ1)), i.e. x1 evolves according to the
modal dynamics (3) also outside the manifold. Thus, the
dependency of (8) from ξ and ξ̇ can be regarded as a time-
variance.

IV. ENERGY REGULATION

The advantages of introducing the decoupling action (6)
do not stop to the challenge of making the Eigenmanifold
a local attractor. On the contrary, we can leverage the
simplified resulting dynamics to include an energy regulation
loop and still prove convergence to the desired behavior.
Achieving this goal without (6) requires imposing very
strong constraints to the kind of behaviors that can be
implemented, and to the control actions that must be exerted
- as discussed in [25]. Also it would require to be able to
regulate the displacements from the Eigenmanifold in finite
time. Note that regulating the energy is paramount in our
framework, since it allows to select the desired oscillation
among the infinite similar ones which are part of the same
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ż =

[
0 I

−Σ(ξ(t), ξ̇(t))− κp −Γ(ξ(t), ξ̇(t))− κd

]
z, with Σi,j(x1, ẋ1) =

∂fi+1

∂xj+1

∣∣∣∣x=X,

ẋ=Ẋ

, Γi,j(x1, ẋ1) =
∂fi+1

∂ẋj+1

∣∣∣∣x=X,

ẋ=Ẋ

. (8)

(a) Trajectory in Master space

(b) Evolution of Energy in time

Fig. 3. Pictorial example of the effect of (13). Panel (a) presents an
evolution in master variables space (x1, ẋ1), while Panel (b) presents the
corresponding evolution of the energy in time. When the system is in a
neighborhood of equilibrium configuration x1 = 0 (i.e. when it crosses
the gray area), energy is injected by the controller, moving the system to
another of its autonomous orbits. Eventually this brings the robot in the
region of state space with the desired amount of energy.

Eigenmanifold (see Fig. 2). This in practice means selecting
the amplitude of the oscillation.

We propose to inject or remove energy from the system
when needed with a simple bang bang loop (14), which
accelerates the master variable only. The modal energy EM

is defined in (4). The key idea here is that thanks to discussed
decoupling operated by (6) we can look at the master
dynamics as a conservative autonomous system. Thus we can
regulate the modal energy and then just wait that E converges
to EM when the the system reaches the Eigenmanifold.

Thus, combining (14) with the controller (7) performing
decoupling and stabilization yields

τ(x, ẋ)=g−1(x)

κp ∆ + κd ∆̇ +


a1(x, ẋ) + ā1(x1, ẋ1)

0...
0


 ,

(13)

where γ > 0, E+ > E− > 0, and x+
1 > 0 > x−1 are scalar

constants. a1 is the decoupling action (6).

Lemma 2. If the following hypotheses hold
H1 the level curves of the modal energy EM are closed
H2 f1(X(x1, 0), Ẋ(x1, 0)) /∈ {0, γ} ∀x1 /∈ [x−1 , x

+
1 ]

H3 the hypotheses of Theorem 1 are verified

then (13) produces a closed loop system having M as a local
attractor and limt→∞E(x(t), ẋ(t)) ∈ [E−, E+].

Proof. We consider the case E(x1(0), ẋ1(0)) < E−, which
we sketch in Fig. 3. The proof for E(x1(0), ẋ1(0)) > E+

follows similar arguments. Thus, the closed loop dynamics
of the master variable x1 is

ẍ1 = f1(X(x1, ẋ1), Ẋ(x1, ẋ1))

+


0 if x1 /∈ [x−1 , x

+
1 ]

+ γ if x1 ∈ [x−1 , x
+
1 ] ∧ ẋ1 > 0

− γ otherwise,

(15)

which is autonomous, and it does not depend on the evolution
of slave variables x2 . . . xn. Note that system (15) verifies
the basic conditions [30, Sec. 2.7]. Thus, its solution always
exists unique and finite for a given initial condition.

a) Time partitioning: We introduce a partition of the
time into a sequence of intervals [31]

[0, t) = (

i+(t)⋃
1

tini ) ∪ (

j+(t)⋃
1

tout
j ) ∪ (

k+(t)⋃
1

t0k) , (16)

where (a) tini is the i− th interval for which x1 ∈ [x−1 , x
+
1 ]

and ẋ1 6= 0; (b)tout
j is the j − th interval for which x1 /∈

[x−1 , x
+
1 ]; (c) t0k is the k−th interval for which x1 ∈ [x−1 , x

+
1 ]

and ẋ1 = 0. i+(t),j+(t),k+(t) are the number of intervals
tini ,tout

j ,t0k contained in [0, t). Of the three classes of intervals,
only in tini energy is introduced in the system.

b) The system always exits from x1(t) /∈ [x−1 , x
+
1 ]:

If x1(t) /∈ [x−1 , x
+
1 ] then (15) becomes ẍ1 =

f1(X(x1, ẋ1), Ẋ(x1, ẋ1)), which is the master variable’s
dynamics on the manifold (3).

Since the system is conservative, then the modal energy
is constant in time. As a consequence

dEM

dt
= 0⇒ dEM

dx1
ẋ1 +

dEM

dẋ1
ẍ1 = 0 , (17)

i.e. x1 evolves on the level curves of EM. Note that this
is not a trivial consequence of the conservation of energy,
but it also required that modal energy is dependent only
from the master variables. This property, together with H1,
implies that the orbits (x1, ẋ1) intercept the interval [x−1 , x

+
1 ].

Finally, H2 assures that (3) has no equilibrium on the orbit.
This is sufficient to that the evolution of x1 reaches the
interval [x−1 , x

+
1 ] in finite time. So each tout

j is finite, and
it is always followed by a tini .

c) Energy increases in tini : When x1 ∈ [x−1 , x
+
1 ] and

ẋ1 6= 0, (15) is excited by a nonconservative force. This
implies a energy change equal to

dEM

dt
(x1, ẋ1) = ẋ1

{
+γ if ẋ1 > 0

−γ otherwise

= γ |ẋ1| > 0 , ∀t ∈ tini .

(18)
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ā1 = γ


0 if x1 /∈ [x−1 , x

+
1 ] or EM ∈ [E−, E+]

1 if x1 ∈ [x−1 , x
+
1 ] and ((EM < E− and ẋ1 > 0) or (EM > E+ and ẋ1 < 0))

−1 otherwise.

(14)

(a) (b) (c)

Fig. 4. Panel (a) shows the generalized inverted elastic pendulum, with main quantities underlined. θ and r are the polar coordinates of the point mass. γ1

and γ2 are a polar and a radial spring, normalized by the mass. γ1 is equal to zero in the classic inverted elastic pendulum model. The mass is subjected
to a constant gravitational field g. Panels (b) and (c) show the Eigenmanifold of system (20), for γ1 = 20 1

s2
, γ2 = 60 1

s2
, g = 9.81 m

s2 , r0 = 1m. The
solid line is the trajectory corresponding to the initial condition θ = 0 and θ̇ = π

2
rad
s .

Fig. 5. Representation of the modal dynamics of the generalized inverted
pendulum. The red arrows are a representation of the modal acceleration
field f1(X, Ẋ). The black lines are examples of modal oscillations ex-
pressed in modal coordinates.

d) Energy increases in time: Conditions x1 ∈ [x−1 , x
+
1 ]

and ẋ1 = 0 hold only for isolated instants, since H3 implies
ẍ1 6= 0. Thus t0k are all of zero measure. Putting together
the energy balances for all the intervals yields

EM(t) = EM(0) +

∫ t

0

dEM

dt
dt′

= EM(0) +

∫ t̄

0

dEM

dt
dt′′

≥ EM(0) + εt̄,

(19)

where t̄ =
∑i+(t)

1 max (tini ), and in the second step we
changed the integral coordinate to express the time as union
of tini intervals.

e) EM reaches [E−, E+] in finite time: Eqs. (18) and
(19) imply that EM(t) is increasing for EM < E−. Thus x1

and ẋ1 eventually reach a value such that EM = E−. Since
(17), then once reached the desired energy band [E−, E+],
the model energy EM remains in it. Therefore a T ∈ R
always exists such that EM(x1(t), ẋ1(t)) ∈ [E−, E+] for

all the t > T .
f) E reaches [E−, E+] asymptotically: The previous

step of the proof implies that ā1(x1(t), ẋ1(t)) = 0, and (13)
is equal to (7) for all the t > T . The manifold attractiveness
follows from H3 and lemma 1, and in turn

lim
t→∞

E(x(t), ẋ(t)) = lim
t→∞

EM(x1(t), ẋ1(t)) ∈ [E−, E+] .

It is worth mentioning that both controllers (7) and (13) are
such that τi → 0, since τi(x1, ẋ1, X2, Ẋ2, . . . , Xn, Ẋn) ≡ 0.
So the closed loop system evolves autonomously at steady
state, without any injection of external energy. Also, note
that E− and E+ can be selected arbitrarily close to each
other. However, smaller is the interval [E−, E+] higher are
the chances of chattering in the practice.

V. SIMULATION

We present here the application of the proposed strategy to
a simple yet representative example of nonlinear mechanical
system: the generalized inverted elastic pendulum shown in
Fig. 4(a). Note that the controllers that we have proposed in
our previous work [25] cannot be applied to this system since
its Eigenmanifold does not self-intersects when projected in
configuration space - as we will see later in this section.

The system’s dynamics is

θ̈ = −2
ṙ

r
θ̇ +

g

r
sin(θ)− γ1

r2
θ +

τθ
m
,

r̈ = +rθ̇2 − g cos(θ)− γ2 (r − r0) +
τr
m
,

(20)

where θ and r are the polar coordinates of the body, with
their derivatives θ̇, θ̈, ṙ, r̈. g is the gravity constant. γ1 and
γ2 are the ratio between stiffnesses of both springs and the
body mass m. The system has an equilibrium in θ ≡ 0 and
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Fig. 6. Inverted elastic pendulum (20) controlled through (7), with κd = 1Ns
m

(a,b,c), κd = 10Ns
m

(d,e,f). The considered physical parameters are
γ1 = 20 1

s2
, γ2 = 60 1

s2
, g = 9.81 m

s2 , r0 = 1m. The selected initial condition is θ = 0, θ̇ = 7
16
π rad

s
, r ' 0.54m, ṙ = 0.5m

s . Note that for these values
the system is outside the invariant manifold, indeed r(0) −X(θ(0), θ̇(0)) ' − 1

4
m and ṙ(0) − Ẋ(θ(0), θ̇(0)) = −0.5m

s . Panels (a,d) present the time
evolution of the Lagrangian variables θ and r. Panels (b,e) show the control action generated by the controller. Panels (c,f) present the evolution of the
mass in Cartesian space.
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Fig. 7. Evolution of inverted elastic pendulum (20) controlled through
(13), with κd = 10Ns

m
, E− = 21J, E+ = 22J, x− = − π

32
, x+ = + π

32
,

γ = 1N. The system starts from the equilibrium r = r0 − g
κ1

, θ = 0. The
controller successfully increases the system oscillations, while maintaining
the two degrees of freedom synchronized (i.e. on the modal manifold). This
is particularly evident in panel (b).

r ≡ r0 − g
γ2

. Its linearized dynamics is

∆θ̈ '

(
g(r0 − g

γ2
)− γ1

(r0 − g
γ2

)2

)
∆θ, ∆r̈ ' −γ2∆r. (21)

So, the normal modes of the linearized system are two decou-
pled evolutions: an angular oscillation with fixed radius, and
a radial oscillation with fixed angle. The nonlinear extension
of the latter is trivial, since for θ ≡ 0 and θ̇ ≡ 0 the dynamics
collapses into a linear one.

The other mode turns into a more complex oscillation,
characterized by a non strict Eigenmanifold. We evaluate
its parametrization (X, Ẋ) by approximating the solution of
(5) extending a Galerkin procedure tipically used in center
manifold theory [29]. We approximate (20) with a 3rd order
Taylor expansion around the equilibrium. We then consider
the symmetry of (20), w.r.t. θ and around θ = 0. If (θ̂,
˙̂
θ,r̂, ˙̂r) is a system evolution, than also (−θ̂, − ˙̂

θ,r̂, ˙̂r) is. This
implies that X and Ẋ must be even. Therefore, we consider
as guess for the two maps a fourth order polynomial without
odd terms. This implicitly assures that the tangent to the
Eigenmanifold at the equilibrium is the linear eigenspace.
We force condition (i) to hold by taking the constant terms
of the polynomial to be the equilibrium of the system.
Plugging the Taylor approximation of the dynamics and the
polinomial guesses for X, Ẋ into (5) yields 12 algebraic
equations in the parameters of the polynomial. We cannot
report them here for the sake of space. We used solve
function from MatLab to solve them. Substituting the two
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maps into the dynamics of θ, we obtain the modal dynamics
θ̈ = −2 Ẋ2(θ,θ̇)

X2(θ,θ̇)
θ̇ + g X2(θ,θ̇) sin(θ)−γ1 θ

X2(θ,θ̇)2
. As an example, we

take γ1 = 20 1
s2 and γ2 = 60 1

s2 . Figs. 4(b) and 4(c) show
the resulting Eigenmanifold. The orbit corresponding to the
initial condition θ = 0 and θ̇ = π

2
rad
s is superimposed as an

example. Fig. 5 depicts the resulting modal dynamics.

We consider now the application of the control law (7)
to make the Eigenmanifold parametrized by X and Ẋ an
attractor. Σ and Γ are the scalars Σ = −γ2 + θ̇2, Γ = 0.
Thus, the stability of the transverse dynamics (8) is proven
using [32], which yields γ2 + κp > θ̇2 and κd > 2θ̇θ̈

θ̇2−γ2
.

So, in case the speed of the master variable is not too big
compared to the radial stiffness, a pure damping feedback
on r is sufficient to make the Eigenmanifold an attractor.
Fig. 6 presents the evolution of the system (20) controlled
through (7). We present two different choices of κd: low
gain 1Ns

m , and higher gain κd = 10Ns
m . The initial condition

is θ = 0, θ̇ = 7
16π

rad
s , r = X(0, 7

16π) − 1
4 m ' 0.54m,

ṙ = Ẋ(0, 7
16π) − 0.5 m

s = 0.5 m
s . In both cases the robot

converges to a stable oscillation. Panels (a,d) show the time
evolutions. In the less damped case (a-c), r takes more time
to converge, and does that with an overshoot. Looking to the
control actions (b,e), this translates into a more prominent
action of the decoupling controller τθ. Note that in both
cases the control action converges to values close to zero,
i.e. the robot evolves on the manifold following autonomous
trajectories. The small deviations from the null value are
due to the mismatches between ideal and approximated maps
X, Ẋ . Panels (c,f) show the trajectory of the center of mass
in Cartesian space. A much more dynamic transient can be
observed in (c).

Fig. 7 presents the time evolutions of system (20) con-
trolled through the complete controller (13). Note that
the system is conservative, and the energy E(θ, θ̇, r, ṙ) =
1
2 (r2θ̇2+ṙ2)+ 1

2 (γ1θ
2+κ2(r−r0)2)+g (r cos(θ)) has closed

level curves, thus fulfilling the hypotheses of lemma 2. We
considered E− = 21J, E+ = 22J, x− = − π

32 , x+ = + π
32 ,

γ = 1N. The system starts at the equilibrium, i.e. θ = 0,
r = r0 − g

κ2
' 0.84m, θ̇ = 0, ṙ = 0, and it reaches the

desired level of energy after about 9s. Note that thanks to the
stabilizing controller, evolutions remain synchronized during
the whole excitation phase despite the perturbations. This
is evident from the zero-crossings of the velocity in Fig. 7
(b). The same figure also highlights a key characteristics of
the considered mode: the frequency of oscillation of θ is
half of the frequency of oscillation of r. This type of non-
unison oscillations are a peculiar product of the non-linear
dynamics, made possible by the fact that the parametrization
of the manifold X decreases in one direction and increases
in the other (see Fig. 4(b)). For the same simulation, Fig.
8(a) presents the Cartesian evolution of the center of mass.
Fig. 8(b) reports a comparison between the control actions
exerted by the proposed controller (τθ and τr), and the ones
that would have been necessary to regulate an equivalent
rigid robot along the same trajectory when the mass is 1Kg
(τθ,fa and τr,fa). Fig. 8(c) shows the trajectory in (a portion

of) state space, which can be qualitatively compared with
Fig. 4(b). Finally,in Fig. 9 we report the application of
the proposed control strategies to a more complex system:
a 3-DoF planar manipulator. Due to space limitations we
cannot the derivation of the Eigenmanifold embedding and
of the associated control rule, which however follows the
same steps as for the generalized elastic pendulum discussed
above. This example is meant to show the generality of the
method.

VI. CONCLUSIONS

This paper proposed a model based solution to the problem
of exciting nonlinear oscillations through Eigenmanifold
stabilization and energy injection. This solution can be used
when a good knowledge of the master variable dynamics
is available. We showed that by including a model based
compensation in our control strategy the transverse dynamics
can be locally studied as a linear problem, and the energy
regulation can be achieved in finite time through a bang bang
controller. Future work will be devoted to the assessment of
global convergence, to the inclusion of a more robust mech-
anism to compensate for energy losses, and to validating
experimentally the results on a multi-DoF robotic system.
Furthermore, we will release a toolbox for automatically
evaluating the expression of X, Ẋ of a given mechanical
system.
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nonlinear normal modes for execution of efficient cyclic motions in
articulated soft robots,” Proc. Int. Symp. on Experimental Robotics -
ISER, 2020.

[27] D. Calzolari, C. Della Santina, and A. Albu-Schäffer, “Pd-like regu-
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