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Abstract
Background: Accumulation of heavy metals like copper, nickel, arsenic, cobalt, and cadmium are 
increasing day by day. Accumulation of these heavy metals poses serious threats to human health. 
Elemental toxicity percentage has been found to be increased day-by-day and creating different minor 
to major problems from tissue to the gene level. Different important gene expressions are altered due 
to the contamination of such heavy metals. The present study aimed to identify a common target gene 
that is involved in the toxicity of major heavy metals and to study the major impact of the gene on the 
concerned biological system.
Methods: In the progression of the work, major genes involved in copper, nickel, arsenic, cobalt, and 
cadmium toxicity were listed through intense data curation, and a pathway showing the correlation 
and physical interaction of all the genes that were constructed using in-silico tools STRING and Gene 
Mania database. Further, functional and expression analysis of the discovered gene was done using 
in-silico tools like genome-wide association study (GWAS), genotype-tissue expression (GTEx), and 
RegulomeDB.
Results: According to the network analysis, NFE2L2 was recognized as a common target involved in 
the above-mentioned heavy metals toxicity. Expression analysis revealed that the highest expression 
of NFE2L2 was observed in tissues of oesophagus, ovary, bladder, vagina, thyroid, and skin. Detailed 
investigation at the pathway level revealed that the involvement was importantly observed in 
immunodeficiency and developmental delay. 
Conclusion: The study opened a wide vision that the major target of such toxicants is various pathways 
of neurobiological distress and biological processes, and hence, it can be considered as a susceptible 
target for heavy metals-induced toxicity. 
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Introduction
Metals are substances that have properties like high 
electrical conductivity, luster, and malleability. The metals 
that have a specific density above 5 g/cm3 are regarded as 
heavy metals (1). Heavy metal contamination is widespread 
around the world due to various anthropogenic, 
technogenic, and geogenic activities (2). Heavy metals 
are evident environmental pollutants that pose increasing 
toxicity due to evolutionary, environmental nutritional, 
and ecological reasons (3, 4). Toxicity induced by heavy 
metals is dependent upon the route of administration, 
absorbed dose, and the duration of exposure to the 
pollutant. These days, heavy metal toxicity is a topic of 
major concern due to its fatal effects on the human body 

(Figure 1) (5). Such toxicities can lead to severe disorders 
that cause increased cellular damage resulting largely due 
to oxidative stress. Heavy metal-induced toxicity has the 
potential to lower the energy levels that subsequently 
damage the function of the lungs, brain, liver, and kidney. 
They may also alter blood composition. Long-term 
exposure to heavy metals can lead to gradual degeneration 
of muscular, neurological, and physical processes that 
mimic diseases like multiple sclerosis (MS), muscular 
dystrophy, Alzheimer’s, and Parkinson’s diseases. In some 
cases, continuous exposure to heavy metals can also lead 
to cancer. Although heavy metals have been reported to 
impose several serious health effects when exposed for 
a long time, the usage of these metals is still prevalent 
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in various parts of the world. Sources of heavy metals 
in the environment include soil erosion, mining, urban 
runoff, industrial effluents, sewage discharge, and many 
more (6). The most commonly found heavy metals in the 
environment are arsenic, cadmium, cobalt, copper, and 
nickel (7). The present study aimed to identify a common 
susceptible target that is being expressed in all five heavy 
metal-induced toxicities. This will, therefore, help in 
bridging the gap between various heavy metal toxicities 
by linking them to a common gene target. Table 1 presents 
major toxic heavy metals, their source, and side effects 
generated by their accumulation (8).

Materials and Methods
Intensive data mining and use of various in silico tools 
were done to form a proper workflow (Figure 2) for the 
computational identification of a biomarker for heavy 
metal-induced toxicity.

Literature study
An extensive study of various research papers was carried 
out to identify the genes whose expression is altered due 
to the accumulation of heavy metals like copper, nickel, 
arsenic, cobalt, and cadmium. The main focus was to 
study such genes that can be used as a susceptible target 
for various body tissues. Thus, curative data mining was 
required to create a list of genes involved in heavy metal 
toxicity.

Pathway construction
Pathways of all the genes involved in heavy metal-
induced toxicity were studied using an in-silico tool 
STRING (31). STRING is a database that shows protein-
protein interactions of both known and predicted protein 
molecules. The database shows both direct and indirect 
interactions but functional interactions of the protein. The 
information about the interactions of the protein is obtained 
from various sources like experimental, co-expression, co-

occurrence, databases, text mining, neighborhood, and 
gene fusion. In the present study, the STRING database 
was used to construct a pathway involving all 102 genes at 
0.700 high confidence interaction score.

Functional analysis using genome-wide association 
study (GWAS) 
Functional analysis of the NFE2L2 gene, the identified 
common target of heavy metal-induced toxicity, was done 
using the PhenoScanner package. The package includes 
publicly available large-scale GWAS data, associations, 
unique single nucleotide polymorphisms (SNPs), and 
comprehensive phenotypes data (32). In the present 
research, the GWAS of diseases and traits and gene 
expression analysis at p-value 1E-5 were performed. 

Gene expression analysis in genotype-tissue expression 
(GTEx)
Gene expression datasets of the NIH GTEx project were 
used to determine the relationship between the NFE2L2 
gene and gene expression in multiple human tissues (33). 
The GTEx project includes median gene expression levels 
in 2 cell lines and 51 tissues. The project is based on the 
data collected from 11,688 tissue samples obtained from 
714 adult post-mortem individuals (34).

Results
Literature study
A literature survey was conducted in order to identify 
major toxic heavy metals that are adversely affecting 
humans. Heavy metals like copper, nickel, arsenic, cobalt, 
and cadmium were found to be highly accumulated in 
humans posing certain fatal effects (Table 1). Furthermore, 
an intense literature study was performed to identify the 
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genes whose expressions get altered due to this toxicity 
of these heavy metals. A list of 102 genes was prepared 
that involved 20 genes for copper-induced toxicity, 24 for 
nickel-induced toxicity, 20 for arsenic-induced toxicity, 18 
for cobalt-induced toxicity, and 20 for cadmium-induced 
toxicity. Table 2 presents a list of key genes involved in the 
toxicity induced by five different heavy metals (35-37).

Pathway analysis
The expression of genes was analyzed based on text 
mining, databases, neighborhood, gene fusion, co-
occurrence, experimental and co-expression data sources 
using the STRING database at 0.700 high confidence 
interaction score. The pathway obtained contained 68 
nodes and 79 edges with a P value  <  1.0e-16. The average 
node degree was obtained to be 11.7. The interaction of 
all the genes with each other was analyzed (Figure 3), and 
it was observed that the genes play an important role in 
biological processes like positive regulation of neuron 
maturation, negative regulation of synaptic transmission, 
cardiac neural crest cell development, and many more.

Gene expression analysis of NFE2L2 in GTEx
Gene expression of NFE2L2 was studied in GTEx. The 
gene was analyzed to be expressed in various parts of the 
body like the brain, adipose tissue, heart, kidney, liver, 
skin, thyroid, and more. The maximum expression of the 

gene was observed in esophagus tissue having a mean 
TPM of 174.3. The minimum expression of the gene was 
seen in the pancreas with a mean TPM of 14.12 (Figure 4).

Phenotypic expression analysis of NFE2L2 gene in GWAS
The NFE2L2 gene was studied and analyzed for its 
phenotypic expression in the GWAS central database 
and it was observed that the gene shows its phenotypic 
expression in various neuro-related disorders like 
stroke, MS, amyotrophic lateral sclerosis, Kuru disease, 
Alzheimer’s disease, Parkinson’s disease, etc. This depicts 
a strong correlation between NFE2L2 and esophagus, 
ovary, bladder, vagina, thyroid, skin and, brain tissues 
and its link in cancer, metabolic diseases, liver, kidney, 
and neurodegenerative diseases, therefore, it can be used 
as a susceptible target for various degenerative diseases 
(Figure 5). 

Discussion
Nuclear factor, erythroid 2-like 2 known as NFE2L2/
Nrf2 is a transcription factor that is mostly present in the 
cytoplasm of the cell. The transcription factor is redox-
sensitive that regulates various antioxidant enzymes (38). 
The gene is known to play a vital role in providing resistance 
to oxidative stress (39). Under oxidizing conditions, the 
gene controls the upregulation of several antioxidant 
proteins. The factor also acts as a primary system that 

Table 1. Major toxic heavy metals, their source, and side effects generated by their accumulation

Heavy Metal Application Exposure Effects References

Nickel

Nickel is widely used in industries because 
of its physicochemical properties. It is also 
used in stainless cookware, pipe, and 
faucets. Wastewater and dust for smelting 
and mining also contain nickel.

Humans are exposed 
to nickel by inhalation, 
direct skin contact, and 
oral consumption.

●	 Lung cancer
●	 Lung toxicity
●	 Cancer of nose
●	 Occupational or allergic dermatitis
●	 Kidney toxicity
●	 Liver toxicity
●	 Respiratory tract cancer 

(9-11)

Arsenic  

Arsenic is used in the production of car 
batteries and alloyed semiconductor 
materials and pigments. It is used for 
isotope labeling in cancer research. Arsenic 
is also present naturally in contaminated 
groundwater.

Humans are naturally 
exposed to arsenic 
by consumption of 
crops (like rice) grown 
using As-contaminated 
groundwater.

●	 Prostate cancer
●	 Carcinoma 
●	 Skin cancer
●	 Liver cancer
●	 Leukemia
●	 Kupffer cell cancer

(12-15)

Cadmium 

Cadmium is generally used in batteries, 
electroplating, and paints. Soil gets 
contaminated with cadmium due to the use 
of fertilizers containing Cd.

Humans are majorly 
exposed to Cd by intake 
of Cd-contaminated food.

●	 Cancer
●	 Kidney injury
●	 Bone fractures and lesions
●	 Liver lesions
●	 Kidney diseases
●	 Kidney disfunction
●	 Osteoporosis 
●	 Tubular dysfunction

(16-20)

Cobalt 

Cobalt is used in the hard metal industry, 
construction industry, e-waste recycling 
industry, diamond industry, pigment and 
paint production industry. Cobalt is also 
used in vitamin B12 supplements and the 
treatment of anemia. 

Humans are generally 
exposed to cobalt due 
to intake of vitamin 
supplements and 
inhalation.

●	 Affects cardiovascular system
●	 Loss of hearing, vision, and balance
●	 Goiter development
●	 Chronic thyroiditis
●	 Hypothyroidism
●	 Occupational skin diseases 

(21-27)

Copper 
Copper is used in machinery, construction, 
transportation, military weapons, imitation 
jewellery, dental products, and cosmetics.

Humans are generally 
exposed to copper due 
to intake of copper salts 
and food.

Excess copper affects:
●	 Nervous system
●	 Adrenal function
●	 Reproductive system
●	 Learning ability of newborn baby
●	 Connective tissue

(28-30)



Garg et al

Environmental Health Engineering and Management Journal 2022, 9(1), 33-4036

Table 2. Key genes involved in heavy metal-induced toxicity

Entry Genes for Copper 
Toxicity

Genes for Nickel 
Toxicity

Genes for Arsenic 
Toxicity

Genes for Cobalt 
Toxicity Genes for Cadmium Toxicity

1 ATP7B EGFR AS3MT TP53 EGFR

2 SLC31A1 MTHFR TP53 TNF TP53

3 APP TGFB1 MTHFR NFE2L2 AKT1

4 TP53 ABCB1 GSTM1 PTGS2 MAPK1

5 SNCA AKT1 ABCB1 IL1B SOD1

6 SOD1 NFE2L2 NFE2L2 CYP3A4 IL6

7 PRNP NFKB1 GSTP1 CXCL8 PON1

8 BIRC5 BCL2 AKT1 CASP3 MMP9

9 ABCB1 PTGS2 VEGFA HMOX1 NFE2L2

10 NFE2L2 CDKN2A HMOX1 CASP8 NOS3

11 APOE CXCL8 PON1 ALB NFKB1

12 MAPT IFNG MMP9 RHOA HMOX1

13 VEGFA GSTT1 BRCA1 MCL1 ESR1

14 PON1 CCND1 BCL2 POU5F1 PRNP

15 GSTP1 MAPK14 ESR1 GDF15 CXCL8

16 CYP1A1 MGMT PTEN EPO TERT

17 CRP APEX1 CDKN1A ALAD PTGS2

18 PARK7 POU5F1 MAPK1 SLC40A1 MAPK3

19 CXCL8 HAMP CYP1A1 - UGT1A1

20 HTT SQSTM1 MTOR - XRCC1

21 - CAT - - -

22 - CLDN1 - - -

23 - MT2A - - -

24 - ATP13A2 - - -

Figure 3. Gene pathway obtained from STRING.
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counteracts reactive oxygen species (ROS) derived from 
mitochondria. Firstly, the NEF2l2 gene maintains the 
mitochondrial glutathione (GSH) pool by elevating the 
inducible expression of enzymes responsible for GSH 
biosynthesis along with GSH reductase (regeneration 
enzyme) (40). In the mitochondria, detoxification of 
superoxide-derived hydrogen peroxide to water is done 
using GSH peroxidases (GPx1 and GPx4) and NADPH 
(41). Secondly, Nrf2 upregulates several enzymes involved 
in the pentose phosphate pathway that increases the 
level of an essential reducing molecule, i.e., NADPH 
in the cell. NADPH is used for the production of GSH 
reduced by the activity of GSH reductase and for removal 
of hydrogen peroxide caused by GPx (42). Also, Nrf2 is 
directly involved in the expression of antioxidant enzymes 
present in mitochondrial like peroxiredoxin 3 (Prdx3 and 
Prdx5), mitochondrial superoxide dismutase 2 (Sod2), 
thioredoxin reductase 2 (TrxR2), and GPx1 (43-46). The 
combined effect of all these roles of NFE2L2 makes the 
cell resistant to oxidative stress (47).

At greater concentrations and persistent exposure, 
ROS can damage DNA, proteins, lipids, and cellular 

macromolecules. This may lead to cell death through 
apoptotic or necrotic pathways. Any alterations in 
the biochemical attributes of these macromolecular 
components can lead to several different pathological 
conditions and human diseases, especially cancer, 
metabolic disorders, and neurodegenerative diseases (48). 

The results of various wet-lab studies and in silico 
validation are consistent with the results of the present 
study. In one of the studies, knockout of the Nrf2 gene 
in mice, increased the susceptibility of mice to chemical 
toxicity and disease conditions associated with oxidative 
pathology (49,50). In another genomic study, several ARE-
containing genes were identified as Nrf2 target genes that 
are involved in the control of oxidant homeostasis (51). 
In the other study, mouse embryo fibroblast of NFE2L2 
knockout mice was seen to exhibit reduced expression of 
autophagy genes (52). This further validates the role of the 
NFE2L2 gene in the process of autophagy.  

Therefore, it can be concluded that the NFE2L2 gene can 
be used as a susceptible common target for heavy metal-
induced toxicity after detailed network analysis. Further, 
expression analysis reveals the expression of the gene in 
most of the oesophagus, ovary, bladder, vagina, thyroid, 
skin, and brain tissues. Thus, the study opened a wide 
vision that the major target of such toxicants is showing 
important involvement in cancer, metabolic diseases, 
neurobiological distress, and hence, it can be considered 
as a reference target for such issues.

The accumulation of heavy metals also leads to cancer. 
The accumulation of heavy metals generates ROS as 
mentioned above. ROS plays a dual role in carcinogenesis 
by acting as an oncogenic in the early stages of metal 
carcinogenesis and as an antioncogenic in the late stages 
of metal carcinogenesis. NFE2L2 plays a key role in 
differentiating the two stages of metal carcinogenesis. 
During the early stages, NFE2L2 acts as an antioxidant 

Figure 4. Gene expression analyzed through GTEx.

Figure 5. Phenotypic expression analysis of NFE2L2 through 
GWAS.
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reducing the elevated levels of ROS whereas, during the 
late stage, NFE2L2 acts as an oncogene by manipulating 
the reduced levels of ROS in order to obtain apoptosis 
resistance (53). 

Therefore, NFE2L2 is an important gene that affects 
several biological processes due to the accumulation of 
heavy metals leading to several fatal conditions like cancer 
and neurodegeneration.

Conclusion
The NFE2L2 gene was recognized as a common gene in 
the toxicity induced by different heavy metals like copper, 
nickel, arsenic, cobalt, and cadmium using in silico meta-
analysis based on the data retrieved from the intense 
literature study. The high expression of the gene in the 
oesophagus, ovary, bladder, vagina, thyroid, skin, and brain 
establishes an expectable link between the NFE2L2 gene 
and cancer, metabolic disorders, neuro-related disorders, 
ROS, and disruption of cell cycle and cell signaling as well. 
Also, various wet-lab studies and the role of NFE2L2 in 
the generation of ROS on the accumulation of heavy metal 
further make it an important target for study. Therefore, 
these findings will help in understanding the metal-
induced toxicity in humans and can act as a susceptible 
target for heavy metal-induced toxicity. 
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