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Abstract 

For promoting energy efficiency practices in the building sector, energy conservation measures 

are of utmost importance. The energy conservation measures implemented through Energy 

performance contracting (EPC) are predominantly linked with the performance of baseline 

building energy models. While occupants are recognized as one of the most important driving 

factors of energy use in buildings, current research has failed to identify if building occupancy rate 

can be an influential independent variable to predict baseline energy use in buildings. This research 

aims to identify the influence of considering occupancy rate as an explanatory variable on the 

modelling performance of baseline building energy. 

Six multivariate machine learning approaches (e.g., linear regression, regression trees, ensembles 

of trees, Gaussian Process, support vector machine, nonlinear Autoregressive Exogenous model 

(NARX)) and one univariate (e.g., reformed ten-parameter change point model) inverse modelling 

approach were employed in the baseline model development process of building heating and 

cooling energy use and electricity. The specified multivariate baseline modelling approaches were 

investigated to better isolate the impact of occupancy on building energy performance. NARX 

outperformed other baseline modelling approaches in terms of model predictive accuracy and data 

fitting capabilities. On the contrary, the proposed adapted change point model demonstrates the 

capability of providing operational insight into the case study building.  

The hourly fifteen-month worth of energy use data used in baseline models was extracted from the 

building management system (BMS) server of a real case study building. The prediction period 

was defined as the most recent six months of the available data representing the COVID lockdown 

period. The models were trained using the nine-month worth of data that immediately preceded 

the prediction period.  The arrangement of different input parameters selected by a forward 
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sequential feature selection approach was considered an important step to identify the influence of 

individual parameters on baseline energy use. The influence of occupancy on the accuracy of 

baseline models was quantitively evaluated from this analysis. The results show that baseline 

model performance slightly improves when occupancy data are considered as an explanatory 

variable. However, occupancy data can significantly influence the performance of a baseline 

energy use model in an occupant-centric building. The assessment of hourly energy data and 

associated occupancy data for the case study building indicates the necessity of implementing 

occupant-centric control strategies to improve its energy performance.  
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Chapter 1 

Introduction 

1.1. Background 

Over the past years, due to climate change, environmental issues have become great concerns and 

challenges for human beings [1]. This has resulted in the implementation of state-of-the-art actions 

to monitor and indicate environmental problems as well as devising new solutions to limit 

environmental emissions [2]. Sustainability practices have become necessary to control 

environmental emissions in all aspects of human life [3]. In response to climate change, the 

evaluation of energy demand and energy use in buildings has become increasingly important [4]. 

In recent reports by IPCC [5, 6] buildings have been recognized as a critical field of action for a 

number of reasons. Research shows that building operations account for 28% of global energy-

related GHG emissions [7]. Since buildings are responsible for a massive amount of current GHG 

emissions, they also have significant potential to reduce GHG emissions through improved energy 

efficiency practices. Therefore, to promote energy efficiency practices in the building sector, 

energy conservation measures are in receipt of the greatest importance, and this has been reflected 

in the government policy practices of many nations. For example, the U.S. government passed the 

Energy Policy Act (EPA) of 2005 and Executive Order (EO) 13,423, requiring that 15% of the 

total number of existing buildings be retrofitted to improve energy efficiency by 2020 compared 

with the 2003 baseline. Around 30 billion US dollars have been allocated to conduct energy 

efficiency retrofit of existing buildings and facilities [8].  
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Incentivized by the policies, providing energy efficiency services through energy service 

companies (ESCOs) has become a  thriving market in the last decade [9]. The energy conservation 

measures are implemented through Energy Performance Contracting (EPC), which is a recognized 

financing package provided by ESCOs. The profit (or the payment to ESCOs) of an EPC is 

predominantly linked with energy cost savings because of the execution of energy conservation 

measures (ECMs). The energy savings may be determined from the difference between how much 

energy the building consumed after the retrofit action and how much it would have consumed if 

no retrofit action was taken place. While the former energy consumption amount can be obtained 

from utility meters, the latter, referred to as the energy use "baseline", is not measurable but can 

only be obtained from prediction. The accuracy of baseline energy use can significantly impact 

energy saving estimations and the calculation of the expected payback period. Additionally, it 

influences decisions on retrofit measures and the development of the building retrofit market. 

The whole process of predicting baseline energy use and assessing energy saving is called 

"measurement and verification" (M&V) [10]. The mechanism of an M&V approach is to first 

monitor the energy use of buildings, then develop mathematical or data-driven models trained by 

observed data, and finally predict baseline energy use based on the developed models. This process 

seeks to quantify energy savings and uncertainty levels resulting from retrofit practices. For the 

M&V process, ESCOs follow the International Performance Measurement and Verification 

Protocol (IPMVP) [11, 12] and American Society of Heating, Refrigerating and Air-Conditioning 

Engineers’ (ASHRAE's) Guideline 14: Measurement of Energy and Demand Savings [13]. The 

IPMVP offers uncertainty estimation techniques based on measured data and the baseline 

modelling approach being used to develop the model. 
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The uncertainty of M&V models holds prime importance during model development since this is 

interrelated with the accuracy and reliability of the prediction results. It provides the stakeholders 

(e.g., ESCOs, building owners, facility managers) the information of investment risk for the 

planned retrofit measures and plays a vital role in their decision making. For example, if there is 

an opportunity of saving 30% energy after implementing an ECM, but the uncertainty exceeds 

30%, it is then very risky to invest in this retrofit project. 

The occupancy rate is considered as the key uncertainty factor of M&V models of building energy 

performance. This is because the occupants in buildings influence energy use in three different 

ways: (1) sensible and latent heat gains from the occupants, (2) occupants' need of thermal comfort, 

visual comfort, and indoor air quality, and (3) occupant behavior and interactions with building 

systems and controls [14-16]. In addition, evidence shows that occupancy rate increases after an 

energy retrofit because of a number of desirable benefits offered by these buildings, such as lower 

utility bills, better indoor environment, and higher social reputation [17-20]. Therefore, if the 

occupancy rate is changed at any stage of the energy retrofit, the baseline of energy use should be 

adjusted accordingly.  

1.2. Rationale 

Occupants are recognized as one of the six driving factors of energy use in buildings [21] and as a 

foundation of uncertainty and operational decision-making process with a significant impact on 

building performance simulation (BPS) [15]. Apart from occupants being identified as a source of 

internal heat gains, their interaction with different building systems demonstrates occupants' 

influence on a building's heating and cooling energy use as well as electrical load [22, 23]. 
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While the research community widely recognizes the positive correlation between occupancy rate 

and energy use in buildings [14, 24-31], research has not yet reached the phase that attempts to 

identify the impact of occupancy rate on baseline modelling performance. The contemporary 

research is yet to reveal whether building occupancy rate can be an influential independent variable 

to predict baseline energy use. Also, it could be worthwhile to reveal if a typical building where 

intelligent occupancy-based sensor technologies are not in place performs the same as before in 

terms of energy use when the occupancy pattern abruptly changes.  

1.3. Research Gaps and Research Question 

A good number of past studies, e.g., [32-40] concentrated on developing building energy baseline 

models using different modelling approaches such as change point, Gaussian Process, Gaussian 

Mixture, Artificial Neural Network, Regression Trees, Linear regression, and Degree day-based 

regression. Also, some special types of baseline modelling approaches such as the mean-week 

model, day-time-temperature model, LBNL (Lawrence Berkeley National Laboratory) model, 

proprietary model were used by some studies [34, 35, 39]. Variations were observed in the 

frequency of data such as hourly, daily, weekly, monthly, and the explanatory variables (e.g., 

weather data, time of day, and day of the week used by the studies). The occupancy data were 

rarely considered by any past studies. Liang, et al. [41] proposed an approach to quantitatively 

evaluate how the accuracy of energy baseline models is improved by including the occupancy 

factor. Three types of explanatory variables, e.g., outdoor air temperature, time of the week, and 

occupancy count data, were used in this study to perform this quantitative analysis. On the other 

hand, Heo and Zavala [38] used four types of explanatory variables e.g., outdoor air temperature, 
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AHU supply air temperature, outdoor relative humidity and occupancy data to predict baseline 

chilled-water energy.  

Despite the use of occupancy data in the baseline energy predictions in a limited scope in the recent 

past, the influence of independent explanatory variables including and excluding occupancy data 

and the position of occupancy data in the sequential selection process of explanatory variables, are 

yet to be realised. Therefore, an extensive analysis is required taking into account a wide variety 

of weather data together with time-of-day information and occupancy data. According to 

ASHRAE Guideline 14 [13], the use of more detailed energy use data (such as daily or hourly) 

may decrease the uncertainty in the estimated energy savings. However, this necessitates the use 

of more independent variables to model the energy use. 

Taking into account the identified research gaps and the potential areas for further improvements, 

this research aims to address the following research question: 

• Can a baseline energy model where occupancy data were used as an explanatory variable 

better capture the changes in energy use baseline? 

1.4. Aim and Objective of the Research 

To address the aforementioned research questions, this research proposes a methodology to 

quantitatively evaluate the influence of occupancy rate on the baseline building energy. In this 

instance, occupancy data is considered as an explanatory variable for the baseline building energy 

models. Also, this research aims to investigate if a typical office building performs the same in the 

COVID period as before in terms of energy use when the occupancy pattern abruptly changes.   

In order to fulfill the aim of this research, the following objective needs to be addressed: 
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• Investigate different baseline energy modelling approaches to better isolate the impact of 

occupancy on building energy performance. 

1.5. A brief Overview of Research Methodology 

The case study building selected for this research is the six floor Robertson Hall at Carleton 

University. Since this building is occupied by administrative staff only, its occupancy level 

resembles to a typical “non-academic” office, which is intended for the generalizability of the 

findings of this study. The building was selected because of the access to necessary data, e.g., 

energy consumption, wifi data, and a stable occupancy pattern in order to fulfil the research 

objectives of this research study. 

During baseline model development, five different types of timeseries data were used. These data 

were extracted from multiple sources. Subsequently, data cleaning and pre-processing tasks were 

performed before using them in the models (see Section 3.3.1.2). For instance, the hourly meter 

data (e.g., electricity, heating, and cooling energy use) were extracted from the Schneider meter 

network. The Wi-Fi device count data representing occupancy count were gathered from the Cisco 

CMS IT network. Note that Cisco CMS sends daily device count reports, which was automatically 

saved to the researcher’s cloud storage and appended to previous data. For the same period, hourly 

weather data were extracted from the actual meteorological year (AMY) weather files [42] based 

on the location of the case study building. These datasets and data pre-processing procedures are 

detailed in Section 3.3.1. 

1.6. Research Significance 
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The methodology developed and applied in this study comprises the first step in establishing a general 

approach to evaluate the predictive accuracy of whole building level baseline models. It is worth noting 

that the predictive performance of baseline models is considered as the most critical component of 

uncertainty in the M&V practices of whole building level energy saving calculations. It provides the 

stakeholders (e.g., ESCOs, building owners, facility managers) the information of investment risk, which 

is important in decision making for executing energy efficiency retrofit measures.  

At present, due to the presence of advanced sensor technologies in commercial buildings 15-min interval 

or hourly occupancy data has become available. These data offer a new-fangled opportunity for the building 

practitioners to rigorously investigate the impact of occupancy on the accuracy of baseline prediction. The 

results obtained can assist the building practitioners to understand the influence of occupancy on energy 

use, improve baseline energy predictive performance by considering the occupancy factor, lessen 

uncertainties of M&V practices and facilitate financial settlement of energy efficiency retrofit. 

1.7. Structure of the Thesis 

This thesis has been prepared as per the guideline defined by Murdoch University's Graduate 

Research Office. 

Chapter 1 includes a general background, rationale, research gaps and research questions, 

research aim and objectives, and significance of this research. 

Chapter 2 comprises a review of related literature. This Chapter provides a general background 

of Measurement and Verification (M&V) practices, different baseline modelling approaches, 

statistical performance metrics used to quantify the baseline modelling performance. Also, a 

survey of baseline building energy modelling applications is presented in this Chapter. 
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Chapter 3 presents an overview of the case study building. A wide variety of baseline modelling 

approaches considered in this study are detailed. Also, the methodology that was followed to 

develop and evaluate the models are described. 

Chapter 4 discusses modelling results and presents a comparative analysis of modelling 

approaches in the context of the selection of explanatory variables. This Chapter emphasizes the 

research findings concerning the influence of occupancy level on building energy use.  

Chapter 5 summarizes the findings of this research and draws a conclusion for the entire research 

study. This Chapter also addresses the limitations of this study and provides future directions 

accordingly. 
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Chapter 2 

Review of Literature 

2.1. General Background 

2.1.1. The measurement and verification process (M&V) of building energy use 

The whole process of predicting baseline and assessing energy saving is referred to as 

“measurement and verification” (M&V) [11-13]. The terms M&V denote two components [43]:  

(1) measuring (or estimating) actual savings; and  

(2) verifying the proper installation and the measure’s potential to generate savings. 

The second component involves accurately defining the baseline conditions and (b) installing 

proper equipment/systems which have the potential to generate the predicted savings and 

performance according to specification. The general approach to verifying baseline and post-

installation conditions involves inspections, spot measurement tests, or commissioning activities. 

Commissioning is the process of documenting and verifying the performance of energy systems 

that reflects the operational consistency and reliability of the systems according to the design 

intent.  

There are a set of standards that establish the guidelines to comply with different types of projects 

and contribute to M&V practices by participating in specific developments depending on project 

type. The most recognized standards applicable to building industries and construction facilities 

are IPMVP [11, 12] and ASHRAE’s Guideline 14 [13]. These standards are discussed in detail 

below. 
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International performance measurement and Verification Protocol (IPMVP) 

This protocol maintained by the non-profit Efficiency Valuation Organization (EVO) is used in 

more than 60 countries [44]. IPMVP defines common terminology and the key steps in 

implementing a robust M&V process. It includes guidance on current best practice retrofit options 

and verifying the results through quantifying energy savings and uncertainty levels resulting from 

retrofit practices. This process compares before and after energy consumption or demand on a 

consistent basis, using the following general M&V equation: 

Energy savings = (Baseline Period Energy Use – Reporting Period Energy Use) ± Adjustments 

(Eq. 1) 

IPMVP offers four distinct M&V options to cover a wide range of projects: 

▪ Option A: Retrofit Isolation (Key Parameter Measurement), 

▪ Option B: Retrofit Isolation (All Parameter Measurement), 

▪ Option C: Whole Facility, and  

▪ Option D: Calibrated Simulation 

M&V practitioners select the best option for the individual projects taking into account project 

budget, the number of independent variables to be monitored, frequency of measurement and 

reporting, length of the baseline and reporting periods, and sample size, if all equipment is not 

measured. Options A and B separate the retrofit with a project boundary that covers the affected 

equipment [45]. Option C is a whole-building approach and applicable in cases where the savings 

are greater than 10% of the total site energy consumption. Option D consists of a calibrated 

simulation of the energy systems. This approach is beneficial in situations with no baseline data. 

These options are elaborated below: 
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Option (A): Energy savings are estimated by field measurement of the key performance 

parameter(s), which define the energy use of a particular system after the retrofit action. Typical 

applications may include a lighting retrofit, where the power draw can be measured periodically, 

and hours of operation can be estimated. In this example, lighting hours of operation are not 

selected for the field measurement; instead, it is estimated based on historical data, manufacturer’s 

specifications, or engineering judgement. 

Option (B): Energy savings are calculated by field measurement of all performance parameters, 

which define the energy use of a particular system after the retrofit action. Typical applications 

may include a lighting retrofit where both power draw and hours of operation are monitored and 

recorded. 

Option (C): This option considers energy uses in the whole facility or sub-facility to calculate 

energy savings. In this option, different baseline modeling techniques (such as regression/inverse 

modelling) are used to estimate baseline energy uses considering a number of explanatory 

variables. Under this option, a number of steps are suggested, such as pre-retrofit data process, 

post-retrofit data analysis, and data quality control procedure. Typical examples may include 

energy measurement of a facility where several retrofit measures were implemented or where the 

retrofit measure is expected to affect overall building performance. 

Option (D): Computer simulation software is used to predict energy uses in a facility. The 

simulation model is calibrated to predict energy uses or energy demand that reasonably matches 

actual energy consumption utility data from the real building. Typical examples may include 

energy measurement of a facility where several retrofit measures were implemented, but no 

historical energy data is available. 
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Despite holistic measures, this option can provide an accurate estimation of the energy savings at 

the beginning of the project, which reduces the investment risk of energy service companies. 

Additionally, simulation models can contribute to the development of cost efficient energy 

conservation measures. According to Ruiz, et al. [46], accurate simulation modeling and 

calibration with measured energy data are the major challenges associated with option  D. The 

simulation results often do not tie with the real energy consumptions. Therefore, option  D is rarely 

carried out within the M&V process, and a holistic energy savings performance contract is 

uncommon due to the high risk for both parties.  

ASHRAE guideline 14 

This Guideline specifies the criteria for three particular building approaches. These are the whole 

building approach, retrofit isolation approach, and calibrated simulation. The criteria for these 

approaches are detailed below: 

Whole Building Approach: The whole building approach, also called main meter approach, 

includes procedures that verify the performance of the retrofits for those projects where whole 

building pre- and post-retrofit data are available to determine the energy savings. This approach is 

recognized as the most appropriate one when the total building performance is to be calculated 

rather than the performance of specific retrofits. Examples of the whole building approach include 

the day adjusted model, two, three, four, or five-parameter model, change point model, multi-

variate model. 

Retrofit Isolation Approach: The retrofit isolation approach is intended for retrofits where the 

end-use capacity, demand, or power level can be measured during the baseline period, and the 

energy use of the building equipment or subsystem can be measured post-installation for a short-

term period or continuously over time. 
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Calibrated Simulation: This approach is an appropriate method to consider when one or more 

of the following conditions are present: 

⎯ Either pre-retrofit or post-retrofit whole-building metered electrical data are not available;  

⎯ Savings cannot be readily determined using before-after measurements;  

⎯ Measures interact with other building systems and retrofit isolation methods are not readily 

feasible;  

⎯ Only whole-building energy use data are available but savings from individual retrofits are 

desired; 

⎯ Baseline adjustment needs. 

2.1.2. Baseline modelling approaches 

While baseline modelling approaches are primarily separated into physics-based and data-driven 

or inverse, the latter is widely used in M&V practices and ongoing commissioning of building 

performance [32, 38, 40, 47-51]. 

Physics-based modelling 

The application of physics-based models for predicting baseline energy use has been limited by its 

shortcomings. The development of physics-based models necessitates detailed building 

construction information that can be challenging to acquire [52]. Moreover, the model 

development process involves high engineering costs. Furthermore, these models experience 

model calibration before being used for simulating energy retrofits. The model development and 

calibration process is time consuming as well as labour intensive, even with the application of 

modern calibration techniques [53]. Additionally, traditional deterministic methods that are not 

based on data experience the problem related to their adaptability, as the results obtained are 
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usually valid for a specific building under analysis [54, 55]. On the contrary, the major advantage 

of this modelling approach is that it can be applied to systems in the design phase prior to 

construction [56]. 

Data-driven or inverse modelling 

These baseline modelling approaches received popularity in recent years due to their capability to 

capture a large amount of information for evaluating the applied retrofit measures and predicting 

the energy savings potential of new retrofit actions from the measured data. These types of models 

derive a relationship between a set of inputs (e.g., weather parameters) and outputs (e.g., energy 

consumption) without explicit or detailed knowledge of its physical behaviour [57]. In practice, 

data-driven models trained by actual building energy consumption data and associated weather 

and other explanatory parameter data can provide a reliable estimation of energy use and have 

been widely adopted for energy savings analysis of retrofit, M&V, and ongoing commissioning of 

building performance [32, 38]. 

2.1.3. Baseline model performance metrics 

The statistical performance metrics that are considered in the baseline model evaluation process 

are collectively referred to as ‘goodness-of-fit’ metrics [34]. To determine how well a 

mathematical model describes the variability in measured data, the ASHRAE Guideline 14 [13] 

suggests using three types of performance indices - Coefficient of variation of the standard 

deviation (CVSTD), coefficient of variation of the root mean square error (CVRMSE), and 

normalized mean bias error (nMBE). 

The CV(RMSE), which is also known as normalized root squared error (nRMSE) is one of the 

most recognised baseline model performance metrics and referenced in ASHRAE Guideline 14 
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[13]. This metric quantifies the typical size of the error relative to the mean of the data and is 

expressed by Eq. (1).  

𝐶𝑉(𝑅𝑀𝑆𝐸) = (
𝑅𝑀𝑆𝐸

�̅�
) × 100                                                                                                  (1) 

where 𝑅𝑀𝑆𝐸 =  √∑ (𝑦𝑖
𝑁
𝑖=1 −�̂�𝑖)2

𝑁
 

where, 𝑦𝑖is the measured energy use, �̂�𝑖is the predicted energy use, �̅� is the mean of the measured 

energy use, 𝑁 is the number of data points. 

For instance, a CV(RMSE) value of 30% means RMSE value is 0.30 of the mean of the measured 

data. This performance metric has been widely used in past studies, e.g., [32, 40, 41, 48, 58], for 

evaluating the predictive accuracy of baseline models and quantify the uncertainty in the model.    

The NMBE is referred to as the ratio of the difference between actual energy usage and model 

predicted energy usage to the degrees of freedom and average energy usage by the facility and is 

expressed by Eq. (2).  

𝑛𝑀𝐵𝐸 =  
∑ (𝑦𝑖−�̂�𝑖)𝑁

𝑖=1

𝑁×�̅�
× 100                                                                                                                                   (2) 

Similar to the value of CV-RMSE, a lower NMBE value indicates a better goodness-of-fit for a 

regression-based baseline model. According to ASHRAE Guideline 14 [13], the nMBE value of a 

baseline energy model using monthly and hourly data should be equal to or less than 5% and 10%, 

respectively. This metric was used in a number of past studies, e.g., [32, 40, 48, 58]  to evaluate 

the baseline model performance.  

The coefficient of determination, R2, expressed by Eq. (3), quantifies the proportion of variation 

in the dependent variable that is explained by a regression model. The R2 value can be between 
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zero and one. An R2 value equal to one indicates a perfect fit between the measured data and the 

regression model. This metric was used in past studies, e.g., [32, 40, 48]  to measure the data fitting 

capability of models. 

𝑅2 =  1 −
∑ (𝑦𝑖

𝑁
𝑖=1 −�̂�𝑖)2

∑ (𝑦𝑖
𝑁
𝑖=1 −�̅� )2

                                                                                                                (3) 

2.2. Review of baseline building energy modelling applications 

To date, a good number of literature, e.g., [9, 32-40, 48, 50] concentrated on predicting baseline 

energy use using different modelling approaches, e.g., change point, Gaussian Process, Gaussian 

Mixture, Artificial Neural Network, Regression Trees, Linear regression, and Degree day-based 

regression. Also, some particular types of modelling approaches such as the mean-week model, 

day-time-temperature model, LBNL (Lawrence Berkeley National Laboratory) model, proprietary 

model, cluster inverse model were used by some studies [34, 35, 39, 48]. While M&V practices 

largely rely on traditional relatively simple regression modelling approaches, with the advent of 

advanced metering infrastructure in commercial buildings and cutting-edge energy analytics 

methods, state-of-the-art baseline modelling approaches are getting popular. Consequently, the 

research community is taking the challenge of utilizing high-frequency interval data, e.g., daily 

and hourly data, in the baseline models. On the contrary, Mathieu, et al. [36] used 15-min interval 

data in a regression-based model for predicting baseline electric load in buildings. To capture the 

building load shapes that share some features such as morning start-up, morning ramp-up, evening 

setback, near-base load, evening shoulder, peak load and can vary from one 15-min interval to the 

next, that high-frequency data were used in the model. The criteria for evaluating a baseline model 

for hourly and monthly data are well-defined in ASHRAE Guideline 14.  
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The survey of independent explanatory variables shows that different weather parameters, (e.g., 

temperature (T), relative humidity (RH), wind speed (WS), wind direction (WD), solar radiation 

(SR)), the information of time of day, and day of week, and occupancy sensing data were used in 

the models to characterize baseline energy use (e.g., total electrical or thermal load) in buildings. 

A summary of surveyed related studies on baseline building energy models is presented in Table 

1. Table 1 shows that outdoor temperature is the most common explanatory variable used in all 

surveyed existing studies, followed by the day of week, and time of day. On the other hand, other 

weather parameters such as RH, WS, WD and SR were rarely used in different studies. Also, 

occupancy data was used in only two surveyed studies. Therefore, it could be worthwhile 

considering all explanatory variables in the baseline energy model and evaluating the performance 

of these explanatory variables on the model performance. Sorting out an optimum number of input 

parameters for the individual baseline models creates an untapped opportunity to perform a 

comparative study among these modelling techniques.  
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Table 1. Summary of surveyed studies on baseline building energy models 

Research 

studies 

Baseline model Frequency 

of data 

Respondent Weather parameters Time 

of day 

Day of 

week 

 

Occup

ancy 

level 

Other 

T RH W

S 

W

D 

SR 

Zhang, et al. 

[32] 

• Change point  

• Gaussian Process 

• Gaussian Mixture 

• Artificial neural 

network 

• Hourly  

• Daily 

Hot water 

energy use 

√         

Burak Gunay, et 

al. [33] 

• Change point 

• Regression tree 

• Artificial neural 

network 

Hourly • Heating load 

intensity 

• Cooling load 

intensity 

√  √  √ √    

Afroz, et al. 

[59] 

• Change point 

• Support Vector 

Machine (SVM) 

• Linear Regression 

• Gaussian Process 

• Regression trees 

• Ensembles of 

trees 

• Neural Network 

• HCC/CDD based 

linear regression 

• Naïve approach 

Hourly • Heating load 

intensity 

• Cooling load 

intensity 

√ √ √ √ √ √    

Granderson and 

Price [34] 

• Change point 

• Mean-week 

model 

• Day-time-

temperature 

model 

• Proprietary model 

• LBNL (Lawrence 

Berkeley National 

Laboratory) 

model 
 

• Daily 

• Weekly 

• Monthly 

Electricity 

consumption 

√     √ √   

Liang, et al. 

[35] 

• MW (mean-

week) model 

• LBNL model 

• LBNL model 

including 

occupancy 
variable 

Hourly Electricity 

consumption 

√     √ √ √  

Walter, et al. [9] • Linear regression Hourly Electric load √     √ √   

Mathieu, et al. 

[36] 

Linear regression 15-min Electricity 

consumption 

√     √ √   

Golden, et al. 

[37] 

• Change point 

• Degree day 

 

Daily 

 

Electricity 

consumption 

√         

Heo and Zavala 

[38] 

• Gaussian process Daily 

 

Chilled-water 

energy 

√ √      √ AHU 

supply 

air 

temper

ature 

Touzani, et al. 

[39] 

• Time-of-week-

and-temperature 

model  

• Hourly 

• Daily 

Electricity 

consumption 

√      √   
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• Bayesian additive 

regression trees  

⎯ Hourly 

⎯ Daily 

• Daily linear 

model  

Carpenter, et al. 

[40] 

• Change point 

• Gaussian process 

• Monthly • Electricity 

consumption  

• Natural gas 

consumption 

√         

Srivastav, et al. 

[50] 

• Gaussian Mixture  

• Multi-linear 

regression 

Daily • Electricity 

consumption 

• Cooling 

energy 

consumption  
 

√ √   √     

Ko, et al. [48] • Change point 

• Cluster inverse 

model 

Daily • Electricity 

consumption 

• Gas 

consumption  
 

√      √  Holida

y 

schedu

le 

This research considers different baseline modelling approaches, and their performances are 

evaluated to better isolate the impact of occupancy on building energy performance (Section 4.7). 

This study proposes an adapted change point model that comes with the capability of providing 

building operational insights. Also, different multi-variate baseline modelling approaches (such as 

Neural Network, Gaussian Process, Ensembles of Trees, linear regression, regression trees) were 

used in this study. A range of performance evaluation techniques (such as optimal input 

parameters, optimum network size, hyperparameter tuning) was applied to these models. 

Evaluating the performance of a range of modelling techniques that have been found promising in 

the existing studies, employing an adapted change point model and making use of a range of 

performance evaluation techniques added originality to this research. The evaluation results point 

out the necessity of an accurate modelling practice in real-world applications (Section 4.4 - Section 

4.6). The description of individual models and independent explanatory variables used in the study 

is presented in the following Chapter. 



20 
 

Chapter 3 

An Overview of the Case Study Building, Corresponding Dataset 

and Methodological Approaches 

 

3.1. The case study building 

The Robertson Hall, Carleton University, is considered as a case study building for this research 

and was built in 1969 as a multi-storey building comprising of six floors with a gross floor area of 

9027.48 m2 (Figure 1). This building represents an institutional building that houses the University 

archives, admissions services, and administration facilities. It operates from 9 am to 5 pm, Monday 

through Friday except on government holidays. The latitude and longitude of this building are 45° 

22' 59.16" N and -75° 41' 51.36" W, respectively. 

In 2011, the Robertson Hall underwent a M&V process using the Retrofit Isolation (RI) method: 

key parameters measured (Option A in IMPVP1) with the intent of obtaining perceived benefits 

such as increased energy savings, effective monitoring of CO2 emissions, executing effective 

planning, etc. [60]. The energy consumed by building subsystems was isolated and analyzed 

independently from other facility systems. As per building energy audit report 2011 [61], utility 

costs are distributed as follows: 76% for electricity costs; 17% for steam costs and 13% for water 

costs (Figure 2). With regard to energy usage, 71% of energy use is for electricity and 29% for 

heating. 

 

 
1 A definition of IMPVP standard for the M&V practices can be found in Chapter 2. 



21 
 

 

 

Figure 1. The floor plans of the case study building 

Level 6 

Level 5 

Level 3 

Level 2 

Level 4 

Level  1 
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Figure 2. Building utility cost breakdown 

Examples of saving measures include temperature setback, ventilation reduction, boiler plant 

replacements and lighting controls. Subsystem energy utility usage before and after implementing 

Cost-Saving Measures (CSMs) was obtained by analysing physical data collected using various 

data acquisition tools and procedures including the building automation system data acquisition 

feature, portable data acquisition equipment, automatic metering infrastructure, and maintenance 

logs.  

A utility baseline model was developed for the selected base year. The baseline model accounted 

for variations in utility billing days, occupancy, and weather. However, it was recommended to 

have further adjustments in future for changes in building operational and equipment performance. 

This study looks at the changes in building operational and equipment performance due to COVID-

19, where the baseline period spans from April  to December 2019. The baseline model was used 

to predict building energy use if COVID had not occurred. The predicted data were compared with 

the measured data for the pre-COVID (January 1 – March 23, 2020) and COVID (March 24 – July 

4, 2020) periods. The electricity, heating, and cooling meter data used in the baseline model were 

extracted from a Schneider meter network. The Wi-Fi device count data were gathered from a 

Cisco CMS IT network. Note that Cisco CMS sends daily device count reports, which were 

76%

17%

7%

Electricity Steam Water
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automatically saved to the researcher’s cloud storage and appended to previous data. Details on 

data collection process are provided in Section 3.3.1.1. 

3.2. Baseline modelling approaches 

The traditional change point is recognized as the most widely used baseline model because of its 

simplicity and a great deal of success with monthly data [37, 40, 48]. However, the traditional 

change point model has been found inappropriate for analysing the daily energy consumption in 

an existing study [48]. On the contrary, because of the availability of high-frequency energy data 

and advanced data analytics techniques, at present, comparatively more sophisticated modelling 

techniques are taking the place of traditional baseline models. These sophisticated modelling 

approaches are getting popular because of their ability to better capture the building performance 

and this, in turn, provides high predictive accuracy. In different literature (Table 1), a variety of 

advanced modelling approaches such as Neural Network, Gaussian Process, Gaussian Mixture, 

Ensembles of Trees, linear regression, regression trees were used to estimate hourly, daily, and 

monthly energy usage and their predictive performances were evaluated in some cases. However, 

implementation of these advanced models requires high-level software skills, creating a challenge 

for the building practitioners. 

Therefore, considering the current challenges and the issue of employing traditional baseline 

models with high-frequency data (such as hourly or daily), this research proposes an extensive 

range of baseline modelling approaches. The performance of these modelling approaches was 

evaluated to better isolate the impact of occupancy on building energy performance. A range of 

aspects (such as optimal input parameters, optimum network size, model’s predictive accuracy 

taking into account occupancy data) as detailed in the following sections were considered in this 

study. (Figure 3). Also, an adapted change-point model is proposed here that outweighs the 
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obstacles of traditional change-point models. A brief description of these modelling approaches is 

presented in the following sub-section: 
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Hourly 
time-

series data

Database  
Data 

acquisition and 
preprocessing

Occupancy data 
(wifi)

Data cleaning, 
downsampling

Time of days

Case study 
building

Decoding

Explanatory 
variables

Hourly historical data 
• Electricity
• Heating energy use
• Cooling energy use

Output parameters

Model development and validation, and prediction of baseline energy use

Cross-validation of models 
(CVRMSE         R2        

 

Compare the performance
▪ Including occupancy data
▪ Excluding occupancy data

Evaluate the performance

Run genetic algorithm and select 
the bestfit baseline model with the 
lowest RMSE 

• Selection of modelling approaches 
• Optimization of hyperparameters

Optimization of network size

Selection of input parameters
Baseline modelling approaches
- Change point model

- Multivariate regression model 
e.g., SVM, Linear regression, 
Gaussian process, Regression 
trees, Ensembles of trees

- Neural Network

Weather data - T, 
RH,SR, WS, WD

Weather 
station

 

Figure 3. An overview of the methodology 
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3.2.1. Change-point model 

In the three-parameter change point model, the changepoint temperature, and a slope of the line 

are fitted to the points above or below the change-point. Figure 4 shows a commonly used three-

parameter, change point model applied to heating, cooling, and electricity. This model is also 

known as a “variable-based degree-day model” [62]. Please note Figure 4(c) represents a common 

instance of change point model for electricity consumption where cooling systems i.e., chillers 

share a major part of electricity and heating systems predominantly depend on natural gas.  

 

  

Figure 4. Three-parameter change-point model (a) Heating, (b) Cooling, (c) Electricity 

In functional form, the change point models for heating, cooling, and electricity can be expressed 

by  

Heating energy use: 𝐸𝐻 = 𝐶𝐻 + 𝐵𝐻 (𝑇 − 𝑇𝐻𝐶𝑃 )
−                                                                         (1) 

Cooling energy use: 𝐸𝐶 = 𝐶𝐶 + 𝐵𝐶 (𝑇 − 𝑇𝐶𝐶𝑃 )
+                                                                         (2) 

Electricity consumption: 𝐸 = 𝐶𝐸 + 𝐵(𝑇 − 𝑇𝐸𝐶𝑃 )
+                                                                      (3) 

where 𝐶𝐻 , 𝐶𝐶 and 𝐶𝐸 indicate the y-intercept values at the change point of the models for heating, 

cooling, and electricity, respectively. 𝐵𝐻 , 𝐵𝐶 , and 𝐵 indicate the slope of the models for heating, 

cooling, and electricity, respectively. 𝑇𝐻𝐶𝑃 , 𝑇𝐶𝐶𝑃 and 𝑇𝐸𝐶𝑃  indicate the change point temperatures 

of the models for heating, cooling, and electricity, respectively. 
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The superscript plus (+) indicates that only positive values of the parenthetical expression are 

considered, while the minus (-) annotation indicates the opposite [62].  

This study presents an adapted change point model that simultaneously solves for ten parameters 

[63]. Note that this model was adapted from [63].  Figure 5 presents schematics for change point 

models for four operating conditions and can be expressed by the following regression equations: 

Heating energy use during occupied mode, 𝐸1,𝐻 = 𝑥6,𝐻 + 𝑥5,𝐻 (𝑇 − 𝑥7,𝐻 )
−                 (4) 

Heating energy use during unoccupied mode, 𝐸2,𝐻 = 𝑥9,𝐻 + 𝑥8,𝐻 (𝑇 − 𝑥10,𝐻 )
−           (5) 

Cooling energy use during occupied mode, 𝐸1,𝐶 = 𝑥6,𝐶 + 𝑥5,𝐶 (𝑇 − 𝑥7,𝐶 )
+                  (6) 

Cooling energy use during unoccupied mode, 𝐸2,𝐶 = 𝑥9,𝐶 + 𝑥8,𝐶 (𝑇 − 𝑥10,𝐶 )
+                   (7) 

Electricity use during occupied mode, 𝐸1 = 𝑥6,𝐸 + 𝑥5,𝐸 (𝑇 − 𝑥7,𝐸 )
+                                 (8) 

Electricity use during unoccupied mode, 𝐸2 = 𝑥9,𝐸 + 𝑥8,𝐸 (𝑇 − 𝑥10,𝐸 )
+                            (9) 

   

Figure 5. A schematic illustrating the proposed change point models for (a) Heating, (b) Cooling, (c) Electricity (adopted from 

Ref. [63]) 

The parameters (𝑥1,𝐸 to 𝑥10,𝐸 , 𝑥1,𝐻 to 𝑥10,𝐻, and 𝑥1,𝐶 to 𝑥10,𝐶) defined by the proposed adapted 

change point models represent ten pieces of important information about the operating status of 

the electricity, heating and cooling systems within the building during occupied and unoccupied 

modes (Table 2). The first four parameters (𝑥1,𝐸 to 𝑥4,𝐸 , 𝑥1,𝐻 to 𝑥4,𝐻, and 𝑥1,𝐶 to 𝑥4,𝐶) of the change 

point models provide information about the duration of building occupied and unoccupied modes 

for electricity consumption, heating and cooling energy uses. The parameters 
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𝑥5,𝐸 , 𝑥8,𝐸 , 𝑥5,𝐻, 𝑥8,𝐻, 𝑥5,𝐶 and 𝑥8,𝐶 , representing the slopes of the models, indicate the rate of change 

in the electricity, heating and cooling energy uses in response to changes in outdoor temperature, 

T. The change point temperatures 𝑥7,𝐸 , and 𝑥10,𝐸  for electricity indicate the minimum temperature 

above which the electricity profile during occupied and unoccupied modes maintains a linear 

relationship with the outdoor temperature. The parameters 𝑥7,𝐻 and 𝑥10,𝐻 represent the change 

point temperatures for heating and indicate the maximum temperature below which the heating 

energy use profile during occupied and unoccupied modes maintains a linear relationship with the 

outdoor temperature. Similarly, the change point temperatures 𝑥7,𝐶 , and 𝑥10,𝐶  for cooling indicate 

the minimum temperature above which the cooling energy use profile during occupied and 

unoccupied modes maintains a linear relationship with the outdoor temperature. The y-intercept 

values  𝑥6,𝐸 , 𝑥9,𝐸 , 𝑥6,𝐻, 𝑥9,𝐻, 𝑥6,𝐶 and 𝑥9,𝐶 indicate the minimum expected electricity consumption, 

heating and cooling energy uses during occupied and unoccupied modes independent of the 

outdoor temperature.  

Table 2. The list of ten parameters defined by the change models for electricity, heating and cooling energy uses 

Parameter name Denotation 

𝐱𝟏,𝐄, 𝐱𝟏,𝐇, 𝐱𝟏,𝐂 The scheduled start time of occupied mode  

𝐱𝟐,𝐄, 𝐱𝟐,𝐇, 𝐱𝟐,𝐂 The scheduled stop time of occupied mode  

𝐱𝟑,𝐄, 𝐱𝟑,𝐇, 𝐱𝟑,𝐂 The operational status on Saturday 

𝐱𝟒,𝐄, 𝐱𝟒,𝐇, 𝐱𝟒,𝐂 The operational status on Sunday 

𝐱𝟓,𝐄, 𝐱𝟓,𝐇, 𝐱𝟓,𝐂 The slope of the model for occupied mode 

𝐱𝟔,𝐄, 𝐱𝟔,𝐇, 𝐱𝟔,𝐂 The y-intercept value at the change point of the model for occupied mode 

𝐱𝟕,𝐄, 𝐱𝟕,𝐇, 𝐱𝟕,𝐂 The change point temperature of the model for occupied mode 

𝐱𝟖,𝐄, 𝐱𝟖,𝐇, 𝐱𝟖,𝐂 The slope of the model for unoccupied mode 

𝐱𝟗,𝐄, 𝐱𝟗,𝐇, 𝐱𝟗,𝐂 The y-intercept value at the change point of the model for unoccupied 

mode 

𝐱𝟏𝟎,𝐄, 𝐱𝟏𝟎,𝐇, 𝐱𝟏𝟎,𝐂 The change point temperature of the model for unoccupied mode 

Note: 𝐸, 𝐻 and 𝐶 represent information on the operating status of electricity, heating and cooling systems, 

respectively  

3.2.2. Support vector machine (SVM) 
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SVM is regarded as a robust learning algorithm for solving non-linear problems [8]. This algorithm 

is used to find an optimal hyperplane that separates the classes with a maximum margin [34]. If 

the SVM is trained to predict a time series or real numbers, it is called support vector regression 

(SVR). SVR uses the same principles as SVM [64]. In SVRs, nonlinear mapping of input data in 

a higher-dimensional feature space is done with kernel functions. These kernel functions can be 

polynomials, sigmoidal functions (neural net activation function), and radial basis functions 

(Gaussian distributions). For each input parameter vector (X) and its corresponding output vector 

(Y), SVR relates the inputs and outputs using Eq. (10) [65] 

𝑌 = 𝑊. 𝜑(𝑋) + 𝑏                                                                                                                       (10) 

where 𝜑(𝑋) function non-linearly maps X to a higher dimensional feature space; 𝑊 represents the 

weight vector, and 𝑏 represents the bias, which are dependent on the selected kernel function. The 

kernel function quantifies the similarity of two observations [66]. 

3.2.3. Neural Network 

NARX neural network is regarded as a dynamic recurrent neural network that encloses several 

layers with feedback connections [67]. This neural network allows a delay line on the inputs, and 

the outputs feed back to the input by another delay line. Therefore, this network has two inputs: 

one is an external input, and the other is a feedback connection from the network output. The 

mathematical expression for the output of the NARX network in the training process can be 

represented by the following equation: 

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑑𝑦), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2) … , 𝑥(𝑡 − 𝑑𝑥))                        (11) 

where 𝑦(𝑡) the next value of the dependent output signal is regressed on previous values of the 

output signal and previous values of an independent (exogenous) input signal and 𝑓 is a nonlinear 
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function approximated by a Multi-Layer Perceptron. The 𝑑𝑦 and 𝑑𝑥 terms represent the number 

of time delays for output and input time series, respectively, while 𝑥(𝑡) and 𝑦(𝑡) characterize the 

input and output of the model at time step 𝑡 respectively.  
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Figure 6. The structure of the NARX Neural Network (a) Open loop configuration, (b) Closed loop configuration 

(adapted from Ref. [63]) 

Because of the availability of output data, which refers to building heating and cooling energy use 

and electricity data during the training phase2, the baseline models were trained in Series-Parallel 

(SP) or open-loop configuration (Figure 6). The model trained in SP configuration provides better 

prediction performance than in Parallel (P) or closed-loop configuration, since the input to the 

feedforward network is more accurate. Also, the resulting network has a pure feedforward 

architecture, and static backpropagation can be used for training. Levenberg-Marquardt, with the 

capability of high computational speed and the best convergence to a minimum of MSE for 

function approximation problems [68, 69] was selected as the learning algorithm to train the 

model. 

During the training phase, the dataset (input and target data defining the desired output y(t)) was 

randomly divided into two sets: 70% for training, 30% for validation. Validation was performed 

 
2 Detailed information about the datasets can be found in Section 3.2.1. 
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to measure network generalization and to halt training when generalization stops improving. The 

Matlab ‘preparets’ function was used to prepare the data. This function uses the network structure 

to determine how to divide and shift the data appropriately. 

A MATLAB script was generated using the MATLAB neural net time series toolbox to reproduce the 

results with necessary modifications to the code. By modifying the MATLAB script, the trained network 

was converted to a closed-loop configuration and used to predict baseline energy use for the testing period. 

As part of the standard NARX architecture, estimated outputs are fed back and included in the output 

regressor in the closed-loop configuration.   

3.2.4. Gaussian Process 

The Gaussian Process (GP) defines a prior over function, which can be converted into a posterior 

over the function’s values at a finite, but arbitrary set of points, 𝑥1, … , 𝑥𝑁. This model assumes that 

𝑝(𝑓(𝑥1), … , 𝑓(𝑥𝑁)) is jointly Gaussian, with some mean 𝜇(𝑥) and covariance ∑(𝑥) given by  

∑ = 𝑘(𝑖𝑗 𝑥𝑖 , 𝑥𝑗), where 𝑘 is a positive definite kernel function and depends on the Q-dimensional 

input variables 𝑥𝑖and 𝑥𝑗.  

In a Gaussian Process Regression (GPR) model, the covariance function plays a vital role in the 

predictive mean and variance. Covariance functions contain presumptions about the function to be 

learnt and determines the correlation in the response as a function of the distance between the 

predictor values. As a result, the choice of covariance function may have profound impacts on the 

performance of a GPR model. A wide range of covariance functions e.g., exponential, squared 

exponential, Matern 5/2, rational quadratic was considered during hyperparameter tuning.  

A GPR model can be defined as 

𝑓(𝑥) ~𝐺𝑃𝑅[𝜇(𝑥), 𝑘(𝜃)|𝑥|]                                                                                                         (12) 
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3.2.5. Ensembles of Trees 

These models combine results from many weak learners into one high-quality ensemble model [70]. The 

models’ complexity and predictive accuracy largely depend on the hyperparameter values - leaf size and a 

number of learners. 

This study used a least-squares boosting (LSBoost) learning algorithm for this regression model. At every 

step, the ensemble fits a new learner to the difference between the observed response and the aggregated 

prediction of all learners (𝑦𝑛 − 𝜂𝑓(𝑥𝑛)) grown previously, where 𝑦𝑛 is the observed response, 𝑓(𝑥𝑛) is the 

aggregated prediction from all weak learners grown so far for observation, 𝑥𝑛 and 𝜂 is the learning rate. 

The ensemble fits to minimize mean-squared error. 

3.2.6. Linear Regression 

The linear regression process, as shown in Figure 7, fits the data to a straight line, producing a 

model that can be used to predict future data.  

 

 

 

 

 

 

To fit a linear regression model to linear or quadratic data, the following equation is used: 

𝑦 = 𝑓(𝑥) = 𝑚𝑥 + 𝑏                                                                                                                     (13) 

x 

y 

Δy 

Δx 

𝒎 =
∆𝒚

∆𝒙
 

b 

Regression line 

Figure 7. A schematic representation of linear 

regression model (adapted from [60]) 
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Where, 𝑓( ) is a linear function and 𝑚 and 𝑏 denote the slope and y-intercept value of the model, 

respectively. For multiple linear regression, Equation (14) can be written as 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, … ) = 𝛽0 + 𝛽1 ∗ 𝑥1 + 𝛽2 ∗ 𝑥2 + 𝛽3 ∗ 𝑥3 + ⋯ + 𝛽𝑖 ∗ 𝑥𝑖                                   (14) 

where 𝑦, 𝑥𝑖, 𝛽𝑖, 𝛽0 indicate the response feature, predictor features, regression coefficients, and 

intercept (bias) term, respectively. 

3.2.7. Regression Trees 

A decision tree is a non-parametric approach that identifies different ways of splitting a data set 

based on conditions until the information gain is zero. Construction of a tree usually inherits a top-

down approach where a variable is chosen at each step, which ‘best’ splits the set of data [66]. The 

‘best’ split is characteristic to the algorithm used. In order to predict responses, decisions are trailed 

from the root node to the leaf nodes [66]. Generally, the model development process of regression 

tree involves two steps: 

1. The set of possible values of the predictors, also known as predictor space (X) is divided into 

J distinct and non-overlapping regions and are given by R1, R2, …, RJ. The regions are constructed 

in a way that it minimizes the residual sum of squares and can be expressed by Eq. (15): 

∑ ∑ (𝑦𝑖 − �̅�𝑅𝑗
)2

𝑖∈𝑅𝑗

𝑗
𝑗=1                                                                                                                   (15) 

2. For every observation that falls into a region Rj, prediction is made that indicates the mean of 

response in the training set in that particular region. 

3.3. Modelling procedure 
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A basic workflow, presented in Error! Reference source not found., was followed to develop 

multivariate baseline models and use the model for predicting baseline energy use during Pre-

COVID and COVID lockdown periods spanning from January 1 to July 4, 2020. Note that during 

the COVID lockdown period, there was limited access to the case study building for the occupants. 

The modelling steps are detailed in the following subsections: 

 

Figure 8. A basic workflow for baseline model development and prediction of baseline energy use 

 

3.3.1. Description of datasets and data pre-processing 

For the case study building, the hourly time series data as defined below and detailed in Section 

3.1 were split into a training period and prediction period. The prediction period was defined as 

the most recent six months of the available data (e.g., January 1 to July 4, 2020) representing the 

pre-COVID and COVID lockdown periods. The models were trained using the nine-month worth 

of data (e.g., April 1 to December 31, 2019) that immediately preceded the prediction period. As 

illustrated in Figure 3, a dataset of seven explanatory variables (i.e., five weather variables, e.g., 

temperature (T), relative humidity (RH), wind speed (WS), wind direction (WD), and solar 

radiation (SR), time of day, occupancy data) and three output parameters (i.e., building heating 

and cooling energy uses and electricity consumption) were used in the feature selection and 

baseline model development process.  
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3.3.1.1. Data collection 

Energy data 

The hourly fifteen-month worth of energy use data (e.g., April 1, 2019 to July 4, 2020)  for heating, 

cooling, and electricity were extracted from the building management system (BMS) server of the 

case study building using Schneider meter network. 

Weather data 

For the same period, hourly weather data were extracted from the actual meteorological year 

(AMY) weather files [42] based on the location of the case study building. Note that each weather-

related explanatory variable (i.e., T, RH, WS, WD, and SR) denotes a variable for the multivariate 

baseline models of building heating and cooling energy use and electricity consumption.  

Time of day data 

Also, the information of time of day (HH:MM) was considered as an explanatory input parameter 

for the baseline models by generating a sinusoid function from the raw data, x. Figure 9 shows that 

for 𝑥 = −𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 which is equivalent to 0:00 as per 24 hrs clock y is equal to 0. Likewise, for 

𝑥 = −1.64 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 which is equivalent to 6:00 as per 24 hrs clock y is equal to -1. 

Generate the sine function over the domain –𝜋 ≤ 𝑥 ≤ 𝜋 

x=-pi:0.25:pi; 

y=sin(x); 
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Occupancy-sensing data 

The locally distributed Wi-Fi beacons were used to locate a smart device, i.e., a smartphone by 

requesting connections, or the ID of a device’s connected Wi-Fi network was logged over time. 

Thus, the occupancy entry and departure events were detected based on the continuity of smart 

devices’ transmitted packets received by building’s Wi-Fi network’s access points (APs). 

Wi-Fi enabled device counts were used as a proxy for occupancy. To approximate the number of 

occupants, the peripheral Wi-Fi devices (Wi-Fi printers, etc.) that remained on overnight were 

subtracted. Also, necessary calculations were performed as per past study [71] to receive the 

occupancy data from Wi-Fi enabled device count data. Note that the issue of average occupants 

carrying 1.2 Wi-Fi devices per person was considered in this study. Past studies such as Hobson, 

et al. [71] demonstrate the applicability of Wi-Fi data as the means of occupancy counts. The Wi-

Fi data were used to gather 15 min interval occupancy data. Subsequently, down-sampling was 

performed by a factor of four to obtain hourly occupancy data. Note that whole-building-level 

occupancy data was used in the baseline models as an explanatory variable.  

This research attempted to identify the influence of occupancy level on building energy use. Each 

model’s predictive performance was evaluated, considering occupancy data as an explanatory 

variable and compared predictions with the scenarios where occupancy data was not considered.   

2π 

Figure 9. Plot for the sine function 
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3.3.1.2. Data cleaning and pre-processing 

The raw data collected from multiple sources, such as Schneider meter network, (AMY) weather 

files [42], Cisco CMS IT network, passed through a data pre-processing procedure. For example, 

the information of time of day was converted to a sinusoid function, the 15-min interval Wi-Fi 

data was converted to hourly data by down-sampling. Thus, a dataset of seven explanatory 

variables (i.e., five weather variables, e.g., T, RH, WS, WD, and SR, time of day, occupancy data) 

and three output parameters (i.e., building heating and cooling energy uses and electricity 

consumption) was created for using them in the model development process.  Before starting a 

detailed modelling process, the raw dataset was screened, and data cleaning was performed (using 

Matlab’s ‘filloutliers’ function) to replace the outlier values with a median value over a sliding 

window of length 24 hours, representing one day of data. Please note that according to ASHRAE 

guideline 14 [72], a maximum of 25% of measured data can be eliminated from the baseline 

performance period as part of the data cleaning process before using them in the model 

development process. 

3.3.2. Selection of input parameters 

For the individual multivariate baseline models, an optimum number of input parameters were 

selected using the sequential forward feature selection method [73-75]. Please note the term 

“feature” refers to independent input parameters. The MATLAB Machine Learning Toolbox was 

used in the feature selection process. As illustrated in Figure 10, this method starts with an empty 

set and adds one feature in the first step, which gives the highest value for the objective function. 

From the second step onwards, the remaining features were added separately to the current subset, 

and the new subset was evaluated. In each iteration, one feature that best improved the model 

performance was added. The process was repeated until all the features that were primarily selected 
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were investigated. If at any stage, model performance did not improve after adding a feature to the 

existing subset, the iteration process stopped. The performance of the trained model was assessed 

at each stage based on performance indicators: predictive accuracy and model fitting capability. 

These performance indicators were quantified by the performance metrics: coefficient of variation 

of the root mean square error (CV(RMSE)), and coefficient of determination (R-Squared).  
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Let F=1 which gives the highest value for the objective function 

Let F=1+N where the value of N increases sequentially from 1 to n until  all 

features are investigated

Train the model

In each iteration add one feature  to the existing subset that best improves 

the modelling performance

Evaluate the validation performance

Is there any other features to 

investigate

Get the optimum number of features

Model performance improves from 

previous iteration?
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Load data
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Fit the trained model to the new dataset

No

No

Yes

Yes

 

Figure 10. Feature selection process (adopted from [76]) 

3.3.3. Selection of modelling approaches 
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Highly flexible models tend to overfit data by modelling minor variations that can create noise. 

On the contrary, simple models come with the capability of easy interpretation but may have lower 

accuracy. Therefore, selecting the most suitable baseline modelling approach necessitates a trade-

off. 

Primarily, a wide range of multivariate regression modelling approaches, e.g., support vector 

machine, linear regression, regression trees, Gaussian process, ensembles of trees, and NARX 

neural network were considered for baseline model development. Using the optimum number of 

input parameters, their performances were compared in terms of predictive accuracy and model 

fitting capability and quantified by the statistical performance metrics: CV(RMSE), and R-

Squared. From this analysis, the three best-performing modelling approaches were selected for the 

subsequent analysis. The validation of baseline models was performed using a five-fold cross-

validation technique; a method known to protect against overfitting by partitioning the data set 

into five-folds and estimating accuracy on each fold. This method consists of splitting a dataset 

into five folds or disjoint subsets of the same size; then, iteratively, some are used to learn the 

model, while the others are utilized to assess its performance [77]. For each fold, the model was 

trained using the out-of-fold observations and model performance was assessed using in-fold data. 

Finally, the average test error was calculated overall folds.     

3.3.4. Optimization of model performance 

Hyperparameter3 tuning can be an important step of modelling if the model is prone to overfitting. 

For example, to tune an SVM model, a set of box constraints and kernel scales were chosen; the 

 
3 A hyperparameter acts as an internal parameter of a regression function, such as the box constraint of a support 

vector machine. 
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model was cross-validated for each pair of values, and then their performances were compared 

using five-fold cross-validated RMSE estimates. Please note this study used Matlab Statistics and 

Machine Learning Toolbox to perform automatic hyperparameter tuning through Bayesian 

optimization. Bayesian optimization maintains a Gaussian process model of the objective function 

and uses objective function evaluations to train the model. The optimization minimizes the model 

loss based on the selected validation options. 

The special process of tuning the number of iterations for such an algorithm is called “Early 

Stopping”. Early Stopping performs model optimisation by monitoring the model’s performance 

on a separate validation data set and stopping the training procedure once the performance on the 

validation data stops improving beyond a certain number of iterations. It avoids overfitting by 

attempting to automatically select the inflection point where performance on the validation dataset 

starts to decrease while performance on the training dataset continues to improve as the model 

starts to overfit. Early stopping can be based either on an out of bag sample set (“OOB”) or cross- 

validation (“cv”). 

3.3.5. Evaluation and comparative analysis 

Cross-validation was applied to facilitate the quantification of the baseline model predictive 

accuracy. The accuracy of 21 baseline models was quantified and evaluated by the statistical metric 

CV(RMSE) (coefficient of variation of the root mean square error), and R-Squared.  

As per ASHRAE Guideline 14 [72], a CV(RMSE) of 30% or below indicates a good model fit for 

hourly data with acceptable predictive capabilities and is given by:   

𝐶𝑉(𝑅𝑀𝑆𝐸) = (
𝑅𝑀𝑆𝐸

�̅�
) × 100                                                                                                               (16) 
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where 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖

𝑁
𝑖=1 −�̂�𝑖)2

𝑁
 

where, 𝑦𝑖is the measured energy use, �̂�𝑖is the predicted energy use, �̅� is the mean of the measured 

energy use, 𝑁 is the number of data points. 

The coefficient of determination (R2 ) is the measure of how well the independent variables explain 

variation in the dependent variable. R2 value ranges from 0 to 1. R2 value equal to one indicates a 

“perfect fit” of the regression line to the data and can be expressed as:  

𝑅2 =  1 −
∑ (𝑦𝑖

𝑁
𝑖=1 −�̂�𝑖)2

∑ (𝑦𝑖
𝑁
𝑖=1 −�̅� )2                                                                                                                          (17)        

The rule-of-thumb for an acceptable model using monthly energy data is R2 > 0.75 [78, 79]. For 

the case study the minimum limit was set to 0.70 for the hourly data. It is recommended to select 

the best model out of different regression models depending on the value of R2 and CV(RMSE) 

[72]. 

The performance of multivariate regression models selected from the various approaches in section 

3.2 and the univariate adapted change point models for electricity, heating and cooling energy uses 

was compared quantitively and the results are presented in Chapter 4.  

In the analysis, the performance of three multivariate regression models was evaluated for two 

different scenarios – including and without including occupancy data as an explanatory variable 

to examine the influence of occupancy on the accuracy of baseline models. 

The intent of the comparative analysis presented in the next Chapter is to understand the influence 

of occupancy on the building energy performance. Also, a univariate adapted change point model 

is proposed in this study to provide an insight into a simple baseline model. 
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Chapter 4 

Results and Discussion 

This Section presents a comparative analysis of all modelling approaches considered in this 

research for predicting baseline heating and cooling energy uses and baseline electricity use in the 

case study building. The models’ performance was evaluated in terms of predictive accuracy, data 

fitting capability and operational insights (e.g., building operational schedule and performance, 

energy use profiles during occupied and unoccupied modes). The influence of occupancy level on 

building energy use was investigated. Each individual model’s predictive performance was 

evaluated, considering occupancy data as an explanatory variable, and compared with the 

modelling scenario where occupancy data was not considered.  

A comparative analysis of multi-variate regression modelling approaches is presented in the 

context of the selection of explanatory variables for the models. The performance of the models 

was evaluated at each stage of the input parameter selection process based on performance 

indicators: predictive accuracy and data fitting capability. The performance of multi-variate 

baseline models was assessed using an optimum number of input parameters, and best performing 

models were employed on the testing dataset representing the prediction period.  

4.1. Assessment of related weather data 

A range of hourly weather data gathered from the local weather station were divided into two 

segments – training and testing or prediction periods. Starting from January 1 to July 4, 2020, the 

six months prediction period characterizes the pre-COVID and COVID lockdown stages of 

Canada. The pre-COVID and COVID periods are defined in Figure 12. The training period 

represents a nine-month worth of data spanning from April 1 to December 31, 2019. Figure 11 
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presents the distributions of the weather data used in this study. The symbols µ and σ stand for the 

mean and the standard deviation, respectively. Recall that the training and testing periods do not 

encompass the same months of the year. Therefore, variations were observed to the distributions 

of individual weather data, e.g., outdoor temperature, relative humidity, wind speed, wind 

direction, solar irradiance, including the µ and σ values. Note that the distribution plots of the 

weather data coloured in blue and red represent the training and testing periods, respectively. 
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Outdoor temperature (°C) Relative humidity (°C) 

 
 

  

Horizontal solar irradiance (W/m2) Wind speed (m/sec) 

  

 

  Wind direction (°)4  

Figure 11.Weather conditions during training (Apr 1 – Dec 31, 2019) and prediction periods (Jan 1 – Jul 4, 2020)

 
4 Wind direction is typically reported in degrees and describes the direction from which the wind originates. A direction of 0 degrees is due North on a compass. 

(a) (b) 

(c) (d) 

(e) 
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4.2. Assessment of hourly energy data and associated occupancy data 

Figure 12 illustrates the relative trend between energy use and occupancy level for the pre-COVID 

and COVID periods. The hourly heating and cooling energy use data clearly show different time 

spans, with heating energy use data occasionally overlapping the cooling energy use data during 

the cooling season (see Figure 12(a)). Occupancy level visibly dropped during the COVID period, 

and it did not fluctuate much throughout the day. However, heating and cooling energy use data 

did not follow this changing occupancy pattern during the COVID period. This is partly because 

an occupant-centric control is not maintained by this building, and as such, energy used by the 

case study building does not reflect the rapid drop in occupancy level in the pandemic. This issue 

will be more apparent in the following sections by developing baseline models for energy use, 

including and excluding occupancy data as an explanatory variable for the models. Note that 

examples of occupant-centric controls include demand control ventilation (DCV) at the AHU-

level, zone-level occupant count-based modulation of minimum airflow setpoint of the VAV 

terminals, an adaptation of zone mode of operation based on motion detectors. Existing literature 

[80, 81] shows that in buildings with occupancy sensing technologies, energy use follows a close 

relationship with occupancy.  

Figure 12(b) shows a steady electricity consumption pattern from January to May with a certain 

degree of electricity fluctuations throughout the day depending on time. The electricity 

consumption abruptly moved up by around 300 kW during the cooling season, indicating the share 

of electricity consumed by the functioning chiller of the case study building. 

Figure 13(a) and Figure 13(b) present two typical days’ electricity and occupancy patterns 

representing the pre-COVID and COVID situations. Compared with the COVID situation, in the 

pre-COVID situation, electricity consumption was high and largely followed the occupancy 
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changing pattern. The occupancy curve characterizing the pre-COVID situation represents the 

dual-peak feature during 24 hours as described in ASHRAE 90.1 standard [82]. However, on that 

particular day of the COVID period, a steady electricity consumption profile was observed, and 

this consumption was quite high compared to a very low occupancy level during this time. (see 

Figure 13(b)). 
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Figure 12. The relative trend between energy use and occupancy level (a) Heating and cooling energy use, (b) 
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Figure 13. A typical day’s electricity and occupancy pattern (a) Pre-COVID situation, (b) COVID Situation 

4.3. Adapted change point model 

Hourly data spanning from April 1 to December 31, 2019, were used to train and validate the 

adapted change point models. Fitting the trained validated models for cooling energy use, heating 

energy use, and electricity consumption to the data of prediction period (January 1 to June 30, 

2020), the baseline energy use for the Pre-COVID and COVID were estimated. Note that the only 

regressor used in these models was the outdoor temperature. For the case study building the 

𝑥1−10,𝐶 , 𝑥1−10,𝐻 𝑎𝑛𝑑 𝑥1−10,𝐸 values as detailed in Chapter 3 Section 3.2.1. were determined from 

the baseline models for two operating modes (e.g., Occupied and Unoccupied) of the case study 

building (Table 3).   

Table 3. The change point temperature, y-intercept, and slope parameter values for two modes of operation 

determined from the baseline models for cooling energy use, electricity, and heating energy use 

 Parameters 

Cooling 𝑥1,𝐶  𝑥2,𝐶  𝑥3,𝐶  𝑥4,𝐶  𝑥5,𝐶  𝑥6,𝐶  𝑥7,𝐶  𝑥8,𝐶  𝑥9,𝐶  𝑥10,𝐶  

2 23 1 0 24 12 11 17 18 16 

Electricity 𝑥1,𝐸  𝑥2,𝐸  𝑥3,𝐸  𝑥4,𝐸  𝑥5,𝐸  𝑥6,𝐸  𝑥7,𝐸  𝑥8,𝐸  𝑥9,𝐸  𝑥10,𝐸  

6 20 0 0 23 205 13 15 191 15 

Heating 𝑥1,𝐻  𝑥2,𝐻  𝑥3,𝐻  𝑥4,𝐻  𝑥5,𝐻  𝑥6,𝐻  𝑥7,𝐻  𝑥8,𝐻  𝑥9,𝐻  𝑥10,𝐻  
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7 18 0 0 10 75 20 7 42 12 

As per the parameter information identified from the adapted change point model and presented 

in Table 3, for cooling, the case study building was scheduled to be in occupied mode for 21 hrs 

(2 am to 11 pm). For electricity and heating, the schedules for the occupied mode were found to 

be 6 am to 8 pm, and 7 am to 6 pm, respectively. The operating schedules of the case study building 

for the occupied mode of energy use are presented in Figure 14.  

 

Figure 14. Schedule for the occupied mode for heating, electricity, and cooling energy uses 

According to the information revealed from the change point model, during the cooling season, 

the case study building’s cooling system was operational on Saturday. Note that the parameter 

values 1 and 0 for 𝑥3,𝐶  and 𝑥4,𝐶  indicate the building’s cooling system was in operating and non-

operating status, respectively.  For the electricity, the case study building was in non-operating 

status on Saturday and Sunday (Table 3). Similarly, during the heating season, the case study 

building’s heating system was in non-operating status on weekends.  

The change point temperatures of the models refer to the points at which the model switches from 

weather dependent to non-weather dependent behaviour. According to the parameter values of 𝑥7,𝐶 

and 𝑥10,𝐶, the case study building required cooling in the building occupied and unoccupied modes 

when the outdoor temperature was equal to and above 11°C and 16°C, respectively. The case study 

building required heating in the occupied and unoccupied modes when the outdoor temperature 

was below 20°C and 12°C, respectively (Table 3 for the parameter values 𝑥7,𝐻 and 𝑥10,𝐻). This 
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indicates that the case study building required both heating and cooling in the occupied mode when 

the outdoor temperature was between 11°C and 20°C. On the other hand, the building did not 

require any heating and cooling energy in the unoccupied mode when the outdoor temperature was 

between 12°C and 16°C. The electrical energy use tends to vastly increase in the occupied and 

unoccupied modes when the outdoor temperature was equal to and above 13°C and 15°C, 

respectively (Table 3 for the parameter values 𝑥7,𝐸 and 𝑥10,𝐸). A possible reason behind this could 

be the use of chillers in the cooling season. Note that these findings reflect heating and cooling 

operating schedules in the occupied and unoccupied modes of the building corresponding to 

prediction period (January 1 to June 30, 2020). 

According to the parameter values of 𝑥5,𝐶 and 𝑥8,𝐶, for every one-degree Celsius rise in the outdoor 

temperatures above the change point temperature, the cooling energy use intensity5 tends to 

increase by 2.66 W/m2 and 1.88 W/m2 in the occupied and unoccupied modes, respectively. 

Similarly, with every one-degree Celsius rise in the outdoor temperatures above the change point 

temperature, the electrical energy intensity increases by 2.55 W/m2 and 1.66 W/m2 in the occupied 

and unoccupied modes, respectively. On the contrary, for every one-degree Celsius rise in the 

outdoor temperatures before it reaches the change point temperature, the heating energy use 

intensity drops by approximately 1.11 W/m2 and 0.78 W/m2 in the occupied and unoccupied 

modes, respectively.  

The y-intercept values 𝑥6,𝐸 , 𝑥9,𝐸 , 𝑥6,𝐻, 𝑥9,𝐻, 𝑥6,𝐶 and 𝑥9,𝐶 indicate the minimum expected electrical, 

cooling and heating energy use of the case study building in the occupied and unoccupied modes 

independent of the outdoor temperature. For the case study building the minimum electrical energy 

 
5 The increase or decease in energy use intensity was calculated by dividing slope values by the gross floor area of 

the case study building. 
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use intensities were around 22.71W/m2 and 21.16 W/m2 in the occupied and unoccupied modes, 

respectively independent of the outdoor temperature.   

4.4. Selection of input parameters and its impact on the predictive performance 

of the models 

As detailed in Chapter 3, seven input parameters e.g., temperature (T), relative humidity (RH), 

wind speed (WS), wind direction (WD), solar radiation (SR), time of day (HH:MM), occupancy 

sensing data (Wi-Fi data) were considered in the feature selection process. Note that in the analysis, 

each input parameter refers to individual features. For the individual regression models, features 

were selected using the sequential forward feature selection approach. Two separate analysis was 

performed including and excluding the Wi-Fi data, and their predictive performances were 

compared in terms of CV(RMSE), and R-squared values. Note that Wi-Fi data were used in the 

model as the proxy for occupancy.  

In the feature selection process, features were added successively to the existing subset depending 

on model performance. The explicit feature selection process of the regression models for cooling 

energy use is illustrated in Appendix A Table 1 A to Table 6 A. Table 4 presents the comparative 

predictive performance of the models in each iteration. The features selected in this process 

indicate the best combination of input parameters for the individual models. The results indicate 

that while a similar feature selection process was followed with all models, the same sequence and 

combination of input parameters did not show the best performance in terms of statistical 

performance metrics – CV(RMSE), and R-Squared values. For instance, while with Ensembles of 

Trees the ultimate combination of input parameters was found to be T+RH+Wi-

Fi+WS+SR+HH:MM+WD, with SVM, Gaussian process, linear regression, regression trees, and 
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NARX different sequence and combination of input parameters were observed. The predictive 

performance of individual models slightly improves when Wi-Fi data was considered. 

Table 4. Comparative predictive performance of multi-variate baseline models for cooling energy use 

Regression models Predictors Performance metrics 

CVRMSE R-Squared 

Ensembles 

of Trees 

Including 

Wi-Fi data 

T 22.61 0.82 

T+RH 20.15 0.86 

T+RH+Wi-Fi 19.70 0.87 

T+RH+Wi-Fi +WS 19.47 0.87 

T+RH+Wi-Fi +WS+SR 19.28 0.87 

T+RH+Wi-Fi +WS+SR+ HH:MM 19.23 0.87 

T+RH+Wi-Fi+WS+SR+HH:MM+WD 19.22 0.87 

Excluding 

Wi-Fi data 

T 22.61 0.82 

T+RH 20.15 0.86 

T+RH+WS 19.81 0.86 

T+RH+WS +HH:MM 19.63 0.87 

T+RH+WS +HH:MM +WD 19.61 0.87 

T+RH+WS +HH:MM +WD+SR 19.60 0.87 

SVM Including 

Wi-Fi data 

T 25.61 0.77 

T+RH 23.76 0.80 

T+RH+WS 23.47 0.81 

T+RH+WS+WD 23.39 0.81 

T+RH+WS+WD+Wi-Fi  23.31 0.81 

T+RH+WS+WD+Wi-Fi+SR 23.14 0.81 

T+RH+WS+WD+WiFi+SR+HH:MM 23.12 0.82 

Excluding 

Wi-Fi data 

T 25.61 0.77 

T+RH 23.76 0.80 

T+RH+WS 23.47 0.81 

T+RH+WS +WD 23.39 0.81 

T+RH+WS+WD+SR 23.36 0.81 

T+RH+WS+WD+SR+HH:MM  23.33 0.81 

Regressio

n tree 

Including 

Wi-Fi data 

 

T 23.72 0.81 

T+RH 21.67 0.84 

T+RH+HH:MM 19.98 0.85 

T+RH+HH:MM+Wi-Fi 19.62 0.85 

T+RH+HH:MM+Wi-Fi +SR 19.45 0.85 

Excluding 

Wi-Fi data 

 

T 23.72 0.81 

T+RH 21.67 0.84 

T+RH+HH:MM 19.98 0.85 

Gaussian 

Process 

Including 

Wi-Fi data 

T 22.37 0.83 

T+RH 19.98 0.86 

T+RH +WD 19.47 0.87 

T+RH +WD + Wi-Fi 19.07 0.87 

T+RH +WD + Wi-Fi +HH:MM 18.71 0.88 

T+RH +WD + Wi-Fi +HH:MM +WS 18.39 0.88 

Excluding 

Wi-Fi data 

T 22.37 0.83 

T+RH 19.98 0.86 
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T+RH +WD 19.47 0.87 

T+RH +WD +WS 19.12 0.87 

T+RH +WD +WS +HH:MM  18.82 0.88 

Linear 

regression 

Including 

Wi-Fi data 

T 37.40 0.53 

T+RH 32.28 0.58 

T+RH +WD 30.31 0.60 

T+RH +WD + Wi-Fi 29.73 0.60 

T+RH +WD + Wi-Fi +SR 29.47 0.61 

Excluding 

Wi-Fi data 

T 37.40 0.53 

T+RH 32.28 0.58 

T+RH +WD 30.31 0.60 

T+RH +WD+WS 29.88 0.60 

T+RH +WD+WS+SR 29.63 0.60 

NARX 

Neural 

Network 

Including 

Wi-Fi data 

T 17.27 0.92 

T+RH 14.78 0.94 

T+RH+SR 14.32 0.94 

T+RH+SR+Wi-Fi 13.73 0.95 

Excluding 

Wi-Fi data 

T 17.27 0.92 

T+RH 14.78 0.94 

T+RH+SR 14.32 0.94 

T+RH+SR+HH:MM 14.09 0.94 

Table 5 and Table 6 show the ultimate combination of input parameters for the individual models 

of cooling energy use selected through the feature selection process, including and excluding Wi-

Fi data. When Wi-Fi data is considered, we can see quite different results compared to their peers 

in terms of the combination of input parameters.  In all cases, the T and RH indicating outdoor 

temperature and relative humidity were found to be the common useful explanatory variables for 

all multi-variate regression models. A possible explanation behind differences in the input 

parameter selection process with different baseline modelling approaches is that they differ 

functionally from each other. Detailed information about these models can be found in [83-87].  

Table 5. The comparison of sequential feature selection process to predict cooling energy use including Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD Wi-Fi HH:MM 

Ensembles of Trees ● ● ● ● ● ● ● 

Support Vector Machine ● ● ● ● ● ● ● 

Regression tree ● ● ●   ● ● 

Gaussian Process ● ●  ● ● ● ● 
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Linear regression ● ● ●  ● ●  

NARX Neural Network ● ● ●   ●  

 

Table 6. The comparison of sequential feature selection process to predict cooling energy use excluding Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD HH:MM 

Ensembles of Trees ● ● ● ● ● ● 

Support Vector Machine ● ● ● ● ● ● 

Regression tree ● ●    ● 

Gaussian Process ● ●  ● ● ● 

Linear regression ● ● ● ● ●  

NARX Neural Network ● ● ●   ● 

 

Similarly, for the prediction to baseline electricity and heating energy use, the same order and 

combination of input parameters did not show the best performance with different multi-variate 

regression models in terms of statistical performance metrics – CV(RMSE) and R-Squared values 

(Table 7 to Table 12). The detailed feature selection process of the regression models for electricity 

and heating energy use can be found in Appendix A, Table 7 A to Table 13 A. The results indicate 

that compared to baseline cooling energy use and electricity, the baseline models for heating 

energy use provide relatively low performance. It appears that the nine-month worth of data that 

were used to train the models do not represent the heating season as much as they represent the 

cooling season. However, further studies are required to enquire into the effect of seasonal 

variations and the size of the training dataset on the model’s predictive performance. The 

combination of input parameters selected through the feature selection process was quite different 

when Wi-Fi data were considered compared to their peers where Wi-Fi data were not considered 

(Table 8 and Table 9; Table 11 and Table 12). In both cases, solar radiation was found to be a 

useful explanatory variable along with outdoor temperature and relative humidity to predict 

heating energy use.  
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Table 7. Comparative predictive performance of multi-variate baseline models for electricity 

Regression models Predictors Performance metrics 

CVRMSE R-Squared 

Ensembles 

of Trees 

Including 

Wi-Fi data 

T 17.07 0.80 

T+Wi-Fi 16.09 0.82 

T+Wi-Fi +RH 14.19 0.86 

T+Wi-Fi +RH +SR 13.78 0.87 

T+Wi-Fi +RH +SR +WS 13.58 0.87 

T+Wi-Fi +RH +SR +WS +WD 13.54 0.87 

T+Wi-Fi+RH+SR+WS+WD+HH:MM 13.41 0.88 

Excluding 

Wi-Fi data 

T 17.07 0.8 

T+HH:MM 15.97 0.82 

T+HH:MM +RH 15.26 0.84 

T+HH:MM +RH +WS 15.06 0.84 

T+HH:MM +RH +WS +WD 15.03 0.84 

T+HH:MM+RH+WS+WD+SR 14.94 0.85 

Support 

Vector 

Machine 

Including 

Wi-Fi data 

T 20.13 0.75 

T+ RH 18.97 0.77 

T+ RH+WS 18.35 0.79 

T+ RH+WS+Wi-Fi 17.67 0.79 

T+ RH+WS+Wi-Fi+WD 17.09 0.79 

Excluding 

Wi-Fi data 

T 20.13 0.75 

T+ RH 18.97 0.77 

T+ RH+WS 18.35 0.79 

T+ RH+WS+WD 17.85 0.79 

T+ RH+WS+WD+HH:MM 17.56 0.79 

Regressio

n tree 

Including 

Wi-Fi data 

T 17.76 0.80 

T+Wi-Fi 16.35 0.82 

T+Wi-Fi +RH 14.54 0.85 

T+Wi-Fi +RH+WS 14.21 0.86 

T+Wi-Fi +RH+WS+SR 13.95 0.87 

T+Wi-Fi +RH+WS+SR+WD 13.67 0.87 

T+Wi-Fi +RH+WS+SR+WD+HH:MM 13.51 0.88 

Excluding 

Wi-Fi data 

T 17.76 0.80 

T+RH 16.27 0.82 

T+RH+SR 14.89 0.85 

T+RH+SR+HH:MM 14.63 0.86 

T+RH+SR+HH:MM+WS 14.46 0.86 

Gaussian 

Process 

Including 

Wi-Fi data 

T 16.47 0.81 

T+Wi-Fi 14.51 0.85 

T+Wi-Fi +RH 13.31 0.88 

T+Wi-Fi+RH +SR 12.70 0.89 

T+Wi-Fi+RH+SR +WS 12.54 0.89 

T+Wi-Fi +RH +SR +WS +WD 12.26 0.9 

Excluding 

Wi-Fi data 

T 16.47 0.81 

T+HH:MM 15.22 0.84 

T+HH:MM +RH 14.31 0.86 

Linear 

regression 

Including 

Wi-Fi data 

T 32.89 0.61 

T+RH 30.21 0.63 
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T+RH+Wi-Fi 29.13 0.63 

T+RH+Wi-Fi+WS 28.83 0.63 

T+RH+Wi-Fi+WS+HH:MM 28.12 0.64 

T+RH+Wi-Fi+WS+HH:MM+SR 27.91 0.64 

Excluding 

Wi-Fi data 

T 32.89 0.61 

T+ RH 30.21 0.63 

T+ RH+HH:MM 29.32 0.63 

T+ RH+HH:MM+WS 29.05 0.63 

T+ RH+HH:MM+WS+WD 28.77 0.63 

T+ RH+HH:MM+WS+WD+SR 28.13 0.64 

NARX 

Neural 

Network 

Including 

Wi-Fi data 

T 14.34 0.88 

T+Wi-Fi 12.67 0.91 

T+Wi-Fi +RH 11.73 0.92 

T+Wi-Fi+RH +WS 11.36 0.92 

T+Wi-Fi+RH+WS+SR 11.07 0.92 

T+Wi-Fi +RH +WS+SR+HH:MM 10.78 0.93 

Excluding 

Wi-Fi data 

T 14.34 0.88 

T+ RH 12.73 0.90 

T+RH +WS 12.37 0.90 

 

Table 8. The comparison of sequential feature selection process to predict electricity including Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD Wi-Fi HH:MM 

Ensembles of Trees ● ● ● ● ● ● ● 

Support Vector Machine ● ●  ● ● ●  

Regression tree ● ● ● ● ● ● ● 

Gaussian Process ● ● ● ● ● ●  

Linear regression ● ● ● ●  ● ● 

NARX Neural Network ● ● ● ●  ● ● 

 

Table 9. The comparison of sequential feature selection process to predict electricity excluding Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD HH:MM 

Ensembles of Trees ● ● ● ● ● ● 

Support Vector Machine ● ●  ● ● ● 

Regression tree ● ● ● ●  ● 

Gaussian Process ● ●    ● 
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Linear regression ● ● ● ● ● ● 

NARX Neural Network ● ●  ●   

 

Table 10. Comparative predictive performance of multi-variate baseline models for heating energy use 

Regression models Predictors Performance metrics 

CVRMSE R-Squared 

Ensembles 

of Trees 

Including 

Wi-Fi data 

T 30.32 0.69 

T+HH:MM 26.06 0.77 

T+HH:MM +RH 25.81 0.78 

T+HH:MM +RH +SR 25.55 0.78 

T+HH:MM +RH +SR +Wi-Fi 25.49 0.78 

T+HH:MM+RH +SR+Wi-Fi +WS 25.40 0.78 

Excluding 

Wi-Fi data 

T 30.32 0.69 

T+HH:MM 26.06 0.77 

T+HH:MM +RH 25.81 0.78 

T+HH:MM +RH +SR 25.55 0.78 

T+HH:MM +RH +SR +WS 25.49 0.78 

Support 

Vector 

Machine 

Including 

Wi-Fi data 

T 33.73 0.64 

T+RH 29.82 0.71 

T+RH+SR 28.79 0.71 

T+RH+SR+WS 28.56 0.72 

T+RH+SR+WS+Wi-Fi 28.27 0.72 

T+RH+SR+WS+Wi-Fi+WD 28.03 0.72 

Excluding 

Wi-Fi data 

T 33.73 0.64 

T+RH 29.82 0.71 

T+RH+SR 28.79 0.71 

T+RH+SR+WS 28.56 0.72 

T+RH+SR+WS+HH:MM 28.35 0.72 

Regressio

n tree 

Including 

Wi-Fi data 

 

T 30.71 0.68 

T+RH 26.17 0.77 

T+RH+HH:MM 25.78 0.78 

T+RH+HH:MM+SR 25.61 0.78 

T+RH+HH:MM+SR+Wi-Fi 25.52 0.78 

T+RH+HH:MM+SR+Wi-Fi+WS 25.47 0.78 

Excluding 

Wi-Fi data 

T 30.71 0.68 

T+RH 26.17 0.77 

T+RH+HH:MM 25.78 0.78 

T+RH+HH:MM+SR 25.61 0.78 

T+RH+HH:MM+SR+WD 25.55 0.78 

Gaussian 

Process 

Including 

Wi-Fi data 

T 29.99 0.70 

T+HH:MM 25.59 0.78 

T+HH:MM +SR 24.68 0.79 

T+HH:MM +SR +RH 24.15 0.80 

T+HH:MM +SR +RH +Wi-Fi  24.04 0.80 

Excluding 

Wi-Fi data 

T 29.99 0.70 

T+HH:MM 25.59 0.78 

T+HH:MM+SR 24.68 0.79 

T+HH:MM+SR+RH 24.15 0.80 
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T+HH:MM+SR+RH +WD 24.11 0.80 

Linear 

regression 

Including 

Wi-Fi data 

T 52.63 0.45 

T+RH 46.82 0.52 

T+RH+SR 43.85 0.54 

T+RH+SR+Wi-Fi 42.47 0.55 

T+RH+SR+Wi-Fi+WS 42.03 0.55 

Excluding 

Wi-Fi data 

T 52.63 0.45 

T+RH 46.82 0.52 

T+RH+SR 43.85 0.54 

T+RH+SR+WS 42.87 0.55 

T+RH+SR+WS+HH:MM 42.56 0.55 

NARX 

Neural 

Network 

Including 

Wi-Fi data 

T 24.27 0.82 

T+RH 21.23 0.86 

T+RH+Wi-Fi 19.73 0.87 

T+RH+Wi-Fi+WS 19.54 0.87 

T+RH+Wi-Fi+WS+HH:MM 19.17 0.87 

T+RH+Wi-Fi+WS+HH:MM+SR 18.89 0.88 

Excluding 

Wi-Fi data 

T 24.27 0.82 

T+RH 21.23 0.86 

T+RH+SR 19.94 0.87 

T+RH+SR+WS 19.72 0.87 

T+RH+SR+WS+HH:MM 19.29 0.87 

Table 11. The comparison of sequential feature selection process to predict heating energy use including Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD Wi-Fi HH:MM 

Ensembles of Trees ● ● ● ●  ● ● 

Support Vector Machine ● ● ● ● ● ●  

Regression tree ● ● ● ●  ● ● 

Gaussian Process ● ● ●   ●  

Linear regression ● ● ● ●  ●  

NARX Neural Network ● ● ● ●  ● ● 

 

Table 12. The comparison of sequential feature selection process to predict heating energy use excluding Wi-Fi data 

Regression models Combination of input parameters 

T RH SR WS WD HH:MM 

Ensembles of Trees ● ● ● ●  ● 

Support Vector Machine ● ● ● ●  ● 

Regression tree ● ● ●  ● ● 

Gaussian Process ● ● ●  ● ● 

Linear regression ● ● ● ●  ● 

NARX Neural Network ● ● ● ●  ● 
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4.5. Models’ predictive performance 

The predictive performance of multi-variate regression models for cooling energy use, electricity, 

and heating energy use were quantified using an optimum number of input parameters. Figure 15, 

Figure 16, and Figure 17 present a comparative performance of the models for two different 

situations - including and excluding Wi-Fi data. The results indicate that for cooling energy use, 

and electricity CV(RMSE) values of all considered multi-variate regression models satisfy the 

acceptable limit of 30% specified by ASHRAE Guideline 14 [72] for hourly data. On the other 

hand, except for linear regression, all regression models for cooling energy use, and electricity 

satisfy the minimum limit of 0.70 for R2 value, set as per [78, 79] (Chapter 3 Section 3.3.5). The 

baseline models for heating energy use developed with linear regression do not satisfy the 

acceptable limits for CV(RMSE) and R2 values (Figure 17). However, in all cases NARX performs 

the best in terms of predictive performance quantified by the values of CV(RMSE) and R-squared, 

followed by Gaussian Process and Ensembles of Trees. Note that computational complexity was 

not considered in this analysis as the computational runtime of the considered models was found 

less than or close to one-minute. 

From the predictive performance modelling results, it appears that Wi-Fi data do not have much 

influence on the energy use calculations. This suggests that the case study building’s energy use 

is not occupancy controlled. It seems to be the building AHUs do not hold occupant centric control 

features. Also, there could be a lack of intelligent sensor technologies such as PIR motion detectors 

and occupancy sensors with the BMS system.  

Based on the performance results of the considered models, three modelling approaches – NARX, 

Gaussian Process, and Ensembles of Trees were selected and employed in the subsequent studies. 
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Figure 15. The comparative predictive performance results of individual multi-variate regression models for cooling 

energy use including and excluding Wi-Fi data (a) CV(RMSE), (b) R-squared 

 

 
 

Figure 16. The comparative predictive performance results of individual multi-variate regression models for 

electricity including and excluding Wi-Fi data (a) CV(RMSE), (b) R-squared 
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Figure 17. The comparative predictive performance results of individual multi-variate regression models for heating 

energy use including and excluding Wi-Fi data (a) CV(RMSE), (b) R-squared 

4.6. Optimization of model performance 

As an important step to avoid overfitting and optimize model performance, hyperparameters were 

automatically tuned for the selected models using Bayesian optimization. Bayesian optimization 

locates a point that minimizes an objective function. The searched point represents a set of 

hyperparameter values, and the objective function is the mean squared error (MSE). It uses the 

acquisition function to determine the next set of hyperparameter values for the subsequent iteration 

process. The hyperparameter search ranges and tuned values used to optimize the performance of 

the regression models for cooling energy use, heating energy use and electricity is presented in 

Appendix B Table 1 B.  

A Minimum MSE Plot is presented in Figure B1 of Appendix B for cooling energy use model with 

the Ensembles of Trees (excluding Wi-Fi data). This figure shows that at each iteration, the 

Bayesian optimization tries a different combination of hyperparameter values and updates the plot 
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with the minimum validation mean squared error (MSE) observed up to that iteration, indicated in 

dark blue. At the end of the optimization process, the optimizer selects the set of optimized 

hyperparameters, indicated by a red square. 

4.7. Evaluation and comparative analysis 

The trained optimized models were employed on the testing datasets to predict baseline energy use 

for cooling, heating, and electricity. Note that the training results statistics were calculated on the 

validation datasets. 

The accuracy of 21 baseline models was quantified on the training and testing datasets and 

evaluated by the statistical metric CV(RMSE), and R-Squared values. In Table 13 their 

performances are compared across four models for two different situations – including and without 

including occupancy data as an explanatory variable. Note that the adapted change point model 

being a univariate regression model, only one explanatory variable – the outdoor temperature was 

used in the models for heating energy use, electricity, and cooling energy use.   

In all cases, NARX provided the best performance. On average, all studied models provided the 

highest predictive accuracies for the electricity followed by cooling energy use and heating energy 

use. A possible reason for that could be that the whole nine month-worth of data used to train the 

models represents electricity uses at different times of the day. On the contrary, during the heating 

season, cooling energy use tends to be zero. Similarly, during the cooling season, there could be 

minimal heating energy use because of the hot water systems. Due to the seasonal variations, the 

entire nine months’ heating or cooling energy use data do not represent the heating or cooling 

seasons. 



65 
 

Table 13. Predictive performance of the models for cooling energy use, electricity, and heating energy use on 

different datasets 

Regression model Dataset CV(RMSE) R-Squared 

Cooling Energy Use 

Adapted change point 

model 

- Training 21.04 0.78 

Testing  27.75 0.71 

Ensembles of Trees Including Wi-Fi data Training 17.87 0.88 

Testing  21.35 0.79 

Excluding Wi-fi data Training  18.21 0.88 

Testing 22.19 0.76 

Gaussian Process Including Wi-Fi data Training 17.13 0.89 

Testing  21.73 0.79 

Excluding Wi-Fi data Training 17.87 0.89 

Testing  22.63 0.76 

NARX Neural 

Network 

Including Wi-Fi data Training 11.37 0.96 

Testing  15.26 0.89 

Excluding Wi-Fi data Training 12.09 0.95 

Testing  16.76 0.87 

Electricity 

Adapted change point 

model 

- Training 16.18 0.79 

Testing  21.53 0.73 

Ensembles of Trees Including Wi-Fi data Training 12.56 0.89 

Testing  18.65 0.82 

Excluding Wi-fi data Training  13.12 0.87 

Testing 20.73 0.81 

Gaussian Process Including Wi-Fi data Training 11.95 0.89 

Testing  17.73 0.82 

Excluding Wi-Fi data Training 12.32 0.87 

Testing  19.32 0.78 

NARX Neural 

Network 

Including Wi-Fi data Training 10.52 0.93 

Testing  15.26 0.85 

Excluding Wi-Fi data Training 11.78 0.92 

Testing  17.76 0.83 

Heating Energy Use 

- Training 25.43 0.75 
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Adapted change point 

model 

Testing  30.02 0.67 

Ensembles of Trees Including Wi-Fi data Training 23.75 0.79 

Testing  27.61 0.72 

Excluding Wi-fi data Training  23.87 0.79 

Testing 28.93 0.71 

Gaussian Process Including Wi-Fi data Training 22.74 0.82 

Testing  27.53 0.74 

Excluding Wi-Fi data Training 23.07 0.81 

Testing  29.29 0.72 

NARX Neural 

Network 

Including Wi-Fi data Training 17.54 0.89 

Testing  22.74 0.82 

Excluding Wi-Fi data Training 18.53 0.88 

Testing  24.25 0.81 

 

As an example, the baseline model predictive performance results with Gaussian Process are 

detailed below. Figure 18 illustrates the relationships between predicted and measured cooling 

energy use data for the testing period with Gaussian Process. The R-Square value shows how 

successful the fit is in explaining the variation of the data. The cooling energy use model, including 

Wi-Fi data as an explanatory variable, provides a slightly better fit compared to that of excluding 

Wi-Fi data. Note that only cooling season data of the testing period are presented in Figure 18. In 

the figure the measured values of zero indicate that chillers were not in the operating mode that 

time. During the cooling season the chiller system could be in the idle condition in the unoccupied 

mode of the case study building. 
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Figure 18. Predicted (using Gaussian Process) vs. measured cooling energy use data during testing period (a) 

Including Wi-Fi data (b) Excluding Wi-Fi data 

Similarly, the baseline model for electricity using Gaussian Process shows a slightly better fit on 

the testing dataset when Wi-Fi data were considered in the model (Figure 19). Note that when the 

chiller system came into operation, electricity consumption jumped to a higher level. This gives 

an explanation for not getting any measured data between 280kW and  370kW.  

  

Figure 19. Predicted (using Gaussian Process) vs. measured electricity data during the testing period (a) Including 

Wi-Fi data (b) Excluding Wi-Fi data 



68 
 

Figure 20 presents a time-series plot for hourly measured data versus predicted data for cooling 

energy use. This figure provides a visual inspection of the measured data against their estimated 

peers with the Gaussian process. Two separate models were developed, including and excluding 

the Wi-Fi data as an explanatory variable and compared on the testing data of energy use. For the 

ease of visualization, a particular area of the plot is zoomed in. The model with Wi-Fi data provides 

quite similar prediction results to the model without Wi-Fi data. As detailed in Table 13, the model 

with Wi-Fi data provides slightly better predictive performance.   

As shown in Figure 21 and Figure 22, electricity and heating energy use during the COVID period 

is better captured by the model with Wi-Fi data compared with the modelling scenarios where 

occupancy data was not considered.  This situation can be better visualized from the zoomed-in 

plot. 

 

 

Figure 20. Predicted vs. measured hourly data for cooling energy use using Gaussian Process model 
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Figure 21. Predicted vs. measured hourly data for electricity using Gaussian Process model 

 

 

Figure 22. Predicted vs. measured hourly data for heating energy use using Gaussian Process 

While the past studies [21-23] demonstrate the influence of occupancy level on the energy 

consumption in buildings, the presented baseline modelling results do not establish any substantial 

connection between occupancy level and energy use in the case study building. This indicates the 

absence of technologies that improve the adaptability of buildings to variable occupancy. A 

building featured with the intelligent building operation and control systems such as DCV, 

occupancy-centric zone-level ventilation, setbacks following zone-level occupancy, occupancy 
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presence-based lighting control would have seen a significant drop in energy use compared with a 

traditional building. Therefore, as a future enquiry, this analysis could be extended for a building 

with smart building technologies. 
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Chapter 5 

Conclusions and Future Directions 

5.1. Conclusions 

For promoting energy efficiency practices in the building sector, energy conservation measures 

(ECMs) receive the highest importance nowadays. The decision on ECMs encounters several 

challenges due to the uncertainty over expected energy savings, lack of information and 

benchmarks about the actual performance of the building and its systems after the design phase,  

and a risk of poor execution of retrofit measures and resulting comfort consequences. A baseline 

energy model that acts as a reference point for a facility manager or a building operator assists in 

determining energy and cost-saving potential, energy system fault diagnostics, and acquiring 

physical insight into the operating patterns. The uncertainty of accurate prediction of baseline 

energy use that a building would have consumed if no ECMs had taken place, largely depends on 

the accuracy of the baseline model. Thus, energy conservation measures implemented through 

energy performance contracting (EPC) are predominantly linked with the performance of baseline 

building energy models. Even though baseline models were used in this study to evaluate the 

influence of occupancy rate on the baseline energy use, the outcome of the comparative study of 

modelling performance will assist the building practitioners in selecting suitable baseline models 

in the real-world applications.  

The presented modelling results highlight the capabilities of baseline modelling approaches on 

multiple aspects such as predictive performance, ease of applicability, and ability to reveal building 

operational insight. Note that an insufficient number of inputs affects the prediction performance 

of a model. On the other hand, involvement of large numbers of input parameters comprising 
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excess or redundant input parameters creates unnecessary complexity, increases the probability of 

overfitting the network and decreases the computation speed during the execution of the model. 

The execution of sequential forward feature selection process in this study ensured an optimum 

number of input parameters for the individual multivariate baseline models. Thus, this 

demonstrates multivariate models’ ease of applicability to the real system. On the other hand, high 

R-Squared values indicate good data fitting capacity of the models. Also, the models fulfilled the 

condition of ASHRAE Guideline 14 [72] which is CV(RMSE) ≤ 30%. This indicates a good 

model fit for hourly data with acceptable predictive capabilities. The presented adapted change 

point model as discussed in Section 4.3 comes with the capability of providing operational insight 

into the case study building such as identification of operating status and hours during the heating 

and cooling season. 

The arrangement of different input parameters selected by a forward sequential feature selection 

approach was found to be an important step to identify the influence of individual parameters on 

baseline energy use. Differences were observed in each iteration in the input parameter selection 

process of electricity, heating, and cooling energy use baseline models. Hence, the same sequence 

and combination of input parameters did not show the best performance in terms of statistical 

performance metrics – CV(RMSE) and R-Squared values. For example, when two different 

regression modelling approaches, such as Gaussian process and Ensembles of Trees, were 

employed in the baseline model development process of building electricity or heating or cooling 

energy uses, the same combination of input parameters was not proved to be the best in terms of 

predictive accuracy. The dry bulb temperature followed by relative humidity was found to be the 

common useful parameters for all developed baseline models.  
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The results show that baseline model performance slightly improves when occupancy data are 

considered as an explanatory variable. However, based on the assessment of hourly energy and 

associated occupancy data it seems to be occupancy data can significantly influence the 

performance of a baseline energy use model in an occupant-centric building. In this instance, 

further studies are required to demonstrate the necessity of implementing occupant-centric 

building control strategies to improve its energy performance. A visual inspection of the measured 

data for electricity, heating, and cooling energy uses against their estimated peers with the 

Gaussian process shows that during the COVID period building energy use is better captured by 

the model with Wi-Fi data compared with the modelling scenarios where occupancy data was not 

considered.  

The assessment of hourly energy and associated occupancy data indicates separate time spans for 

heating and cooling energy use. However, during the cooling season in the COVID period, heating 

energy was used occasionally. A possible reason behind this could be the use of domestic water 

heating systems in the cooling season. Occupancy level visibly dropped in the COVID period, and 

it remained pretty stable throughout the day. Note that in the COVID period, occupants had 

restricted access to the case study building. However, heating and cooling energy use did not seem 

to follow the occupancy pattern during this period. This could be partly because an occupant-

centric control such as DCV, occupancy-centric zone-level ventilation, setbacks following zone-

level occupancy, occupancy presence-based lighting control was not applied in this building, and 

as such, energy use of the case study building did not reflect the rapid fall in occupancy level in 

the pandemic period. 

The results show that electricity consumption was steady periodic over daily and weekly cycles 

during the pre-COVID period. However, during the COVID period electricity consumption was 
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steady constant. During the cooling season, the electricity consumption abruptly shifted up, 

indicating the share of electricity consumed by the functioning chiller of the case study building. 

Evaluation of two typical days' electricity and occupancy patterns selected from the pre-COVID 

and COVID periods shows that occupancy level was much higher in the pre-COVID period and 

electricity profile largely followed the changing pattern of occupancy level. In the COVID period, 

a steady electricity consumption profile was observed, and this consumption was quite high 

compared to a very low occupancy level during this time. 

NARX outperformed other baseline modelling approaches in terms of model predictive accuracy 

and model data fitting capabilities. On average, all studied models provided higher predictive 

accuracies for the electricity followed by cooling energy use and heating energy use. This could 

be due to the effect of seasonal variations. Note that the full nine months' worth of data used to 

train and validate the models for heating and cooling energy uses do not represent the heating or 

cooling season; rather the hourly heating and cooling energy use data clearly show different time 

spans. Therefore, further studies are required to enquire into the effect of seasonal variations and 

the size of the training dataset on the model's predictive performance.  

Given the limited data time frame and considering a single case study building, a comprehensive 

conclusion cannot be drawn. The Gaussian Process and Ensembles of Trees performed almost 

similar with respect to the performance metrics such as CV(RMSE), and R2 considered in the 

evaluation. All multivariate regression models tend to outperform the adapted change point model. 

However, the adapted change point model comes with the capability of providing operational 

insight into the case study building. According to ASHRAE Guideline 14 [72], a change point 

model that fits well between energy consumption and outdoor temperature can be considered one 

of the best baseline modelling approaches in practice. Research shows that change-point linear 
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models have physical significance to the actual heat loss/gain mechanisms that drive most 

buildings’ energy use [72]. 

The modified change point model demonstrates its adaptability for the M&V applications. This 

model can be considered simplistic of all considered modelling approaches because of not 

requiring any advanced level analysis such as regressor selection, hyperparameter tuning, and 

adjusting the network size (suitable for NARX) to optimize the model performance. Conversely, 

the implementation of state-of-the-art machine learning baseline modelling approaches requires 

advanced level data analytics skills. Therefore, these modelling approaches could be principally 

applicable for a building system with an advanced metering interface [63].    

The adapted change point models for heating, electricity, and cooling provided some important 

information related to the operating status and performance of the case study building. The baseline 

model for cooling energy use showed the longest operating hour (2 am to 11 pm) for cooling in 

the occupied mode compared with heating and electricity. Also, during the cooling season, the 

case study building's cooling system was found to be operational on Saturday. On the other hand, 

the case study building's heating system during the heating season and electricity were in non-

operating status on weekends.  

As per the parameter information identified from the adapted change point model, the case study 

building required both heating and cooling in the occupied mode when the outdoor temperature 

was between 11°C and 20°C. According to Afroz, et al. [63] and Gunay, et al. [88], the status of 

internal heat gain, large temperature variations within the adjacent zones, or inappropriate control 

programming could be responsible for simultaneous heating and cooling in a building. On the other 

hand, the building did not require any heating and cooling energy in the unoccupied mode when 

the outdoor temperature was between 12°C and 16°C. This indicates the presence of economizer 
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mode in the case study building for a certain outdoor temperature range. Due to the share of 

electricity consumed by the building's chiller system, the electrical energy use tends to vastly 

increase in the occupied and unoccupied modes when the outdoor temperature was equal to and 

above 13°C and 15°C, respectively.  

As per the slope parameter values detected from the change point model, for every one-degree 

Celsius rise in the outdoor temperatures above the change point temperature, the cooling energy 

use intensity tends to increase by 2.66 W/m2 and 1.88 W/m2 in the occupied and unoccupied 

modes, respectively. Similarly, with every one-degree Celsius rise in the outdoor temperatures 

above the change point temperature, the electrical energy intensity increases by 2.55 W/m2 and 

1.66 W/m2 in the occupied and unoccupied modes, respectively. On the contrary, for every one-

degree Celsius rise in the outdoor temperatures before it reaches the change point temperature, the 

heating energy use intensity drops by approximately 1.11 W/m2 and 0.78 W/m2 in the occupied 

and unoccupied modes, respectively.  

As per the y-intercept values, the minimum electrical energy use intensities were around 22.71 

W/m2 and 21.16 W/m2 in the occupied and unoccupied modes, respectively, independent of the 

outdoor temperature. The minimum heating energy use intensities were found to be 8.31 W/m2 

and 4.65 W/m2 in the occupied and unoccupied modes, respectively. On the contrary, the cooling 

energy requirements in the occupied and unoccupied modes were found to be approximately zero 

in the heating season. 

This thesis attempted to address the research question “Can a baseline energy model where 

occupancy data were used as an explanatory variable better capture the changes in energy use 

baseline”? Based on the discussions mentioned above, it could be concluded that the influence of 

occupancy data on the predictive accuracy of baseline models largely depends on the state of 
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intelligent sensor technologies and zone-level metering infrastructure existing within the building. 

A building integrating occupant-centric control strategies seems to better follow the occupancy 

trend in terms of energy use. The results show that occupant-centric control strategies (such as 

DCV, occupancy-centric zone-level ventilation, setbacks following zone-level occupancy, 

occupancy presence-based lighting control) are not maintained in the case study building. Also, 

the assessment of hourly energy data and associated occupancy data shows that heating and 

cooling energy use data did not follow this changing occupancy pattern during the COVID period. 

On the other hand, evaluation of electricity consumption of two typical days’ electricity and 

occupancy patterns representing the pre-COVID and COVID situations shows that in the pre-

COVID situation, electricity consumption largely followed the occupancy changing pattern. 

However, on a particular day of the COVID period, a steady electricity consumption profile was 

observed, and this consumption does not seem to follow the occupancy level during this time. This 

points out occupants’ energy related behaviour issues which ultimately cause misuse of electricity 

by the lighting system, mechanical ventilation, and major electrical equipment such as printers, 

photocopiers and kitchen appliances. The energy for heating and cooling dominates the energy for 

electrical appliances and so the overall effect is that the total energy consumption between pre-

COVID and COVID periods did not differ significantly.  Thus, although the modelling results 

slightly improved when occupancy data was considered as an explanatory variable, it was difficult 

to answer the research question based on this case study and further research is required to draw a 

a comprehensive conclusion on that. 

5.2. Limitations and Future Research Directions 

Despite the fact that this research complements existing baseline modelling studies, investigating 

the influence of occupancy data on the baseline modelling performance adds originality to this 
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study. Limitations still exist, which gives direction to further studies. Because of not having 

occupancy count data before the training period used in this study, full one-year data could not be 

used to train the model. Given the limited data time frame, it was not possible to evaluate the 

performance of the models using different time frame data and determine the optimum size of 

training data. Also, a typical institutional building is considered in this study where occupancy-

based sensor technologies are not present. Therefore, a comprehensive conclusion could not be 

drawn from this study. Even so, it is expected that the outcome of this comparative study of the 

modelling approaches will shed light on the decision-making process of the building practitioners 

in selecting suitable baseline models in the real-world applications. 

Therefore, future research opportunities that can be accomplished in line of the current research 

are identified: 

• The assessment of baseline model predictive performance highlights the necessity of further 

studies to enquire into the effect of seasonal variations on the energy use in a building. In 

relation to this, the training and prediction periods could be varied, and model predictions of 

hourly, daily, and monthly energy use data could be compared to meter data to determine the 

model predictive accuracy.   

• Based on the evaluation of hourly energy and associated occupancy data it seems to be 

occupancy data can considerably influence the performance of a baseline energy use model in 

an occupant-centric building. In this instance, further studies are required to realize the need 

for implementing occupant-centric building control strategies to improve the energy 

performance in a building. A large scale analysis in relation to automatically benchmarking 

energy use in buildings could be performed, including buildings with intelligent control 
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systems (such as DCV, occupancy-centric zone-level ventilation, setbacks following zone-

level occupancy, occupancy presence-based lighting control) and traditional buildings.  
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Appendix A 

Table 1 A. Detailed feature selection results in each iteration step with ensembles of trees (including Wi-Fi data) for 

cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 22.61 12.53 0.82 

RH 49.16 41.68 0.16 

SR 49.75 43.40 0.14 

WS 53.32 47.68 0.02 

WD 51.90 45.55 0.07 

Wi-Fi 50.91 44.08 0.1 

HH:MM 52.70 47.53 0.04 

2 

T+RH 20.15 10.84 0.86 

T+HH:MM 21.61 11.71 0.84 

T+Wi-Fi 22.00 11.97 0.83 

T+SR 21.50 11.71 0.84 

T+WS 21.93 11.89 0.83 

T+WD 22.34 12.33 0.83 

3 

T+RH+Wi-Fi 19.70 10.49 0.87 

T+RH+HH:MM 19.88 10.64 0.86 

T+RH+SR 19.95 10.68 0.86 

T+RH+WS 19.81 10.62 0.86 

T+RH+WD 20.11 10.86 0.86 

4 

T+RH+Wi-Fi+SR 19.47 10.41 0.87 

T+RH+Wi-Fi+HH:MM 19.51 10.36 0.87 

T+RH+Wi-Fi +WS 19.39 10.35 0.87 

T+RH+WiFi +WD 19.70 10.50 0.87 

5 
T+RH+Wi-Fi +WS+SR 19.28 10.24 0.87 

T+RH+Wi-Fi +WS+ HH:MM 19.29 10.27 0.87 
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T+RH+WiFi +WS+WD 19.36 10.33 0.87 

6 T+RH+Wi-Fi +WS+SR+ HH:MM 19.23 10.24 0.87 

T+RH+WiFi +WS+SR+WD 19.27 10.25 0.87 

7 T+RH+Wi-Fi+WS+SR+HH:MM+WD 19.22 10.23 0.87 

 

Table 2 A. Detailed feature selection results in each iteration step with ensembles of trees (excluding Wi-Fi data) for 

cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 22.61 12.53 0.82 

RH 49.16 41.68 0.16 

SR 49.75 43.40 0.14 

WS 53.32 47.68 0.02 

WD 51.90 45.55 0.07 

HH:MM 52.70 47.53 0.04 

2 

T+RH 20.15 10.84 0.86 

T+HH:MM 21.61 11.71 0.84 

T+SR 21.50 11.71 0.84 

T+WS 21.93 11.89 0.83 

T+WD 22.34 12.33 0.83 

3 

T+RH+HH:MM 19.88 10.64 0.86 

T+RH+SR 19.95 10.68 0.86 

T+RH+WS 19.81 10.62 0.86 

T+RH+WD 20.11 10.86 0.86 

4 

T+RH+WS +SR 19.67 10.52 0.87 

T+RH+WS +HH:MM 19.63 10.51 0.87 

T+RH+WS +WD 19.74 10.60 0.87 

5 T+RH+WS +HH:MM +SR 19.64 10.51 0.87 

T+RH+WS +HH:MM +WD 19.61 10.51 0.87 

6 T+RH+WS +HH:MM +WD+SR 19.60 10.48 0.87 
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Table 3 A. Detailed feature selection results in each iteration step with support vector machine (including Wi-Fi 

data) for cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 25.61 18.04 0.77 

RH 56.75 40.92 0.12 

SR 57.40 43.32 0.14 

WS 64.62 43.56 -0.45 

WD 64.63 43.57 -0.45 

Wi-Fi 54.95 38.72 0.2 

HH:MM 59.79 43.43 -0.25 

2 

T+RH 23.76 17.16 0.80 

T+HH:MM 25.25 18.39 0.78 

T+Wi-Fi 25.59 18.61 0.77 

T+SR 24.77 17.99 0.79 

T+WS 24.97 18.12 0.78 

T+WD 25.56 18.58 0.77 

3 

T+RH+Wi-Fi 23.75 17.14 0.80 

T+RH+HH:MM 23.69 17.05 0.81 

T+RH+SR 23.71 17.11 0.81 

T+RH+WS 23.47 16.92 0.81 

T+RH+WD 23.74 17.17 0.80 

4 

T+RH +WS + HH:MM 23.46 16.90 0.81 

T+RH +WS +SR 23.43 16.89 0.81 

T+RH +WS +WD 23.39 16.89 0.81 

T+RH +WS+ Wi-Fi 23.41 16.84 0.81 

5 

T+RH +WS +WD + Wi-Fi  23.31 16.82 0.81 

T+RH +WS +WD + HH:MM 23.38 16.88 0.81 

T+RH +WS +WD + SR 23.36 16.87 0.81 
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6 T+RH +WS +WD + Wi-Fi  +HH:MM  23.27 16.80 0.81 

T+RH +WS+WD + Wi-Fi +SR 23.14 16.62 0.81 

7 T+RH+WS+WD+WiFi+SR+HH:MM 23.12 16.58 0.82 

 

Table 4 A. Detailed feature selection results in each iteration step with support vector machine (excluding Wi-Fi 

data) for cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 25.61 18.04 0.77 

RH 56.75 40.92 0.12 

SR 57.40 43.32 0.14 

WS 64.62 43.56 -0.45 

WD 64.63 43.57 -0.45 

HH:MM 59.79 43.43 -0.25 

2 

T+RH 23.76 17.16 0.80 

T+HH:MM 25.25 18.39 0.78 

T+SR 24.77 17.99 0.79 

T+WS 24.97 18.12 0.78 

T+WD 25.56 18.58 0.77 

3 

T+RH+HH:MM 23.69 17.05 0.81 

T+RH+SR 23.71 17.11 0.81 

T+RH+WS 23.47 16.92 0.81 

T+RH+WD 23.74 17.17 0.80 

4 

T+RH +WS + HH:MM 23.46 16.90 0.81 

T+RH +WS +SR 23.43 16.89 0.81 

T+RH +WS +WD 23.39 16.89 0.81 

5 
T+RH +WS +WD + HH:MM 23.38 16.88 0.81 

T+RH +WS +WD + SR 23.36 16.87 0.81 

6 T+RH +WS +WD + SR +HH:MM  23.33 16.82 0.81 
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Table 5 A. Detailed feature selection results in each iteration step with Gaussian Process (including Wi-Fi data) for 

cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 22.37 12.25 0.83 

RH 48.96 40.37 0.17 

SR 49.69 43.61 0.14 

WS 53.32 48.17 0.01 

WD 51.78 45.82 0.07 

Wi-Fi 50.94 44.26 0.1 

HH:MM 52.62 47.77 0.04 

2 

T+RH 19.98 10.59 0.86 

T+HH:MM 21.46 11.68 0.84 

T+Wi-Fi 21.90 11.86 0.83 

T+SR 21.41 11.66 0.84 

T+WS 21.82 11.93 0.84 

T+WD 22.14 12.20 0.83 

3 

T+RH+Wi-Fi 19.54 10.14 0.87 

T+RH+HH:MM 19.52 10.38 0.87 

T+RH+SR 19.96 10.57 0.87 

T+RH+WS 19.57 10.54 0.87 

T+RH+WD 19.47 10.48 0.87 

4 

T+RH +WD + HH:MM 19.56 10.56 0.87 

T+RH +WD +SR 19.62 10.52 0.87 

T+RH +WD +WS 19.12 10.53 0.87 

T+RH +WD + Wi-Fi 19.07 10.56 0.87 

5 

T+RH +WD + Wi-Fi +HH:MM  18.71 10.21 0.88 

T+RH +WD + Wi-Fi +WS 18.76 10.36 0.88 

T+RH +WD + Wi-Fi +SR 18.87 10.13 0.88 

6 T+RH +WD + Wi-Fi +HH:MM +WS 18.39 10.42 0.88 
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T+RH +WD + Wi-Fi +HH:MM +SR 18.86 10.38 0.88 

7 T+RH+WD+WiFi+HH:MM+WS+SR 18.43 10.58 0.88 

 

Table 6 A. Detailed feature selection results in each iteration step with Gaussian Process (excluding Wi-Fi data) for 

cooling energy use 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 22.37 12.25 0.83 

RH 48.96 40.37 0.17 

SR 49.69 43.61 0.14 

WS 53.32 48.17 0.01 

WD 51.78 45.82 0.07 

HH:MM 52.62 47.77 0.04 

2 

T+RH 19.98 10.59 0.86 

T+HH:MM 21.46 11.68 0.84 

T+SR 21.41 11.66 0.84 

T+WS 21.82 11.93 0.84 

T+WD 22.14 12.20 0.83 

3 

T+RH+HH:MM 19.52 10.38 0.87 

T+RH+SR 19.96 10.57 0.87 

T+RH+WS 19.57 10.54 0.87 

T+RH+WD 19.47 10.48 0.87 

4 

T+RH +WD + HH:MM 19.56 10.56 0.87 

T+RH +WD +SR 19.62 10.52 0.87 

T+RH +WD +WS 19.12 10.53 0.87 

5 T+RH +WD +WS +HH:MM  18.82 10.66 0.88 

T+RH +WD +WS +SR 18.99 10.57 0.88 

6 T+RH +WD +WS +HH:MM+SR 19.00 10.83 0.87 
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Table 7 A. Detailed feature selection results in each iteration step with ensembles of trees (including Wi-Fi data) for 

electricity 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 17.07 12.30 0.80 

RH 34.10 29.49 0.19 

SR 33.65 29.58 0.22 

WS 38.04 34.21 0.01 

WD 36.96 32.81 0.05 

Wi-Fi 34.76 31.28 0.16 

HH:MM 36.37 33.29 0.08 

2 

T+RH 16.28 11.53 0.82 

T+HH:MM 15.97 11.27 0.82 

T+Wi-Fi 15.16 10.00 0.84 

T+SR 16.09 11.26 0.82 

T+WS 16.74 12.00 0.81 

T+WD 16.87 12.13 0.8 

3 

T+Wi-Fi +RH 14.19 9.31 0.86 

T+Wi-Fi +HH:MM 14.69 9.61 0.85 

T+Wi-Fi +SR 14.43 9.44 0.86 

T+Wi-Fi +WS 14.79 9.78 0.85 

T+Wi-Fi +WD 15.08 9.94 0.84 

4 

T+Wi-Fi +RH +SR 13.78 9.01 0.87 

T+Wi-Fi +RH +HH:MM 13.97 9.16 0.86 

T+Wi-Fi +RH +WS 13.92 9.17 0.87 

T+Wi-Fi +RH +WD 14.13 9.28 0.86 

5 

T+Wi-Fi +RH +SR +WS 13.58 8.94 0.87 

T+Wi-Fi +RH +SR + HH:MM 13.77 8.99 0.87 

T+Wi-Fi +RH +SR +WD 13.76 9.03 0.87 

6 T+Wi-Fi +RH +SR +WS + HH:MM 13.58 8.94 0.87 
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T+Wi-Fi +RH +SR +WS +WD 13.54 8.90 0.87 

7 T+Wi-Fi+RH+SR+WS+WD+HH:MM 13.41 8.83 0.88 

 

Table 8 A. Detailed feature selection results in each iteration step with ensembles of trees (excluding Wi-Fi data) for 

electricity 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 17.07 12.30 0.8 

RH 34.10 29.49 0.19 

SR 33.65 29.58 0.22 

WS 38.04 34.21 0.01 

WD 36.96 32.81 0.05 

HH:MM 36.37 33.29 0.08 

2 

T+RH 16.28 11.53 0.82 

T+HH:MM 15.97 11.27 0.82 

T+SR 16.09 11.26 0.82 

T+WS 16.74 12.00 0.81 

T+WD 16.87 12.13 0.8 

3 

T+HH:MM +RH 15.26 10.72 0.84 

T+HH:MM  +SR 15.84 11.12 0.83 

T+HH:MM +WS 15.63 11.05 0.83 

T+HH:MM +WD 15.77 11.14 0.83 

4 

T+HH:MM +RH +SR 15.25 10.74 0.84 

T+HH:MM +RH +WS 15.06 10.64 0.84 

T+HH:MM +RH +WD 15.24 10.70 0.84 

5 T+HH:MM +RH +WS+SR 15.23 10.71 0.84 

T+HH:MM +RH +WS +WD 15.01 10.61 0.84 

6 T+HH:MM+RH+WS+WD+SR 14.94 10.56 0.85 
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Table 9 A. Detailed feature selection results in each iteration step with Gaussian Process (including Wi-Fi data) for 

electricity 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 16.47 12.12 0.81 

RH 35.74 32.08 0.11 

SR 33.53 30.37 0.22 

WS 37.88 33.63 0.01 

WD 36.70 33.17 0.07 

Wi-Fi 34.59 31.84 0.17 

HH:MM 36.08 33.79 0.10 

2 

T+RH 15.51 11.42 0.83 

T+HH:MM 15.22 10.20 0.84 

T+Wi-Fi 14.51 9.06 0.85 

T+SR 15.45 10.45 0.83 

T+WS 16.23 11.97 0.82 

T+WD 16.28 12.01 0.82 

3 

T+Wi-Fi + HH:MM 13.80 8.86 0.87 

T+Wi-Fi +RH 13.31 8.22 0.88 

T+Wi-Fi +SR 13.62 8.61 0.87 

T+Wi-Fi +WS 14.37 9.53 0.86 

T+Wi-Fi +WD 14.60 9.52 0.85 

4 

T+Wi-Fi +RH + HH:MM 12.83 8.17 0.89 

T+Wi-Fi +RH +SR 12.70 7.99 0.89 

T+Wi-Fi +RH +WS 13.09 8.60 0.88 

T+Wi-Fi +RH +WD 13.37 8.72 0.88 

5 

T+Wi-Fi +RH +SR +HH:MM 12.75 8.26 0.89 

T+Wi-Fi +RH +SR +WS 12.54 7.94 0.89 

T+Wi-Fi +RH +SR +WD 12.61 8.20 0.89 

6 T+Wi-Fi +RH +SR +WS +WD 12.26 7.89 0.90 
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T+Wi-Fi +RH +SR +WS +HH:MM 12.52 8.41 0.89 

7 T+Wi-Fi+RH+SR+WS+WD+HH:MM 12.37 8.43 0.89 

 

Table 10 A. Detailed feature selection results in each iteration step with Gaussian Process (excluding Wi-Fi data) 

for electricity 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 16.47 12.12 0.81 

RH 35.74 32.08 0.11 

SR 33.53 30.37 0.22 

WS 37.88 33.63 0.01 

WD 36.70 33.17 0.07 

HH:MM 36.08 33.79 0.1 

2 

T+RH 15.51 11.42 0.83 

T+HH:MM 15.22 10.20 0.84 

T+SR 15.45 10.45 0.83 

T+WS 16.23 11.97 0.82 

T+WD 16.28 12.01 0.82 

3 

T+HH:MM +RH 14.31 9.67 0.86 

T+HH:MM  +SR 15.19 10.54 0.84 

T+HH:MM +WS 15.36 10.87 0.84 

T+HH:MM +WD 15.24 10.64 0.84 

4 

T+HH:MM +RH +SR 14.30 9.75 0.86 

T+HH:MM +RH +WS 14.29 10.02 0.86 

T+HH:MM +RH +WD 14.50 10.18 0.85 

 

Table 11 A. Detailed feature selection results in each iteration step with Ensembles of trees (including Wi-Fi data) 

for heating energy 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 T 30.32 19.55 0.69 
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RH 49.91 41.29 0.16 

SR 51.57 43.78 0.10 

WS 53.96 47.44 0.02 

WD 53.62 53.62 0.03 

Wi-Fi 49.33 41.49 0.18 

HH:MM 54.02 48.06 0.02 

2 

T+RH 29.49 18.96 0.71 

T+HH:MM 26.06 15.44 0.77 

T+Wi-Fi 29.00 18.17 0.72 

T+SR 27.09 16.03 0.75 

T+WS 29.82 19.09 0.70 

T+WD 30.08 19.37 0.69 

3 

T+HH:MM +Wi-Fi 25.99 15.31 0.77 

T+HH:MM +RH 25.81 14.96 0.78 

T+HH:MM +SR 25.84 15.21 0.78 

T+HH:MM +WS 25.88 15.29 0.77 

T+HH:MM +WD 26.06 15.42 0.77 

4 

T+HH:MM +RH +SR 25.55 15.09 0.78 

T+HH:MM +RH +Wi-Fi 25.77 15.29 0.78 

T+HH:MM +RH +WS 25.68 15.22 0.78 

T+HH:MM +RH +WD 25.86 15.35 0.77 

5 

T+HH:MM +RH +SR +WS 25.49 15.07 0.78 

T+HH:MM +RH +SR +Wi-Fi  25.47 15.02 0.78 

T+HH:MM +RH +SR +WD 25.60 15.15 0.78 

6 T+HH:MM+RH+SR +Wi-Fi +WD 25.51 15.09 0.78 

T+HH:MM+RH+SR+Wi-Fi+WS 25.40 15.00 0.78 

7 T+HH:MM+RH+SR+Wi-Fi+WS+WD 25.43 15.05 0.78 
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Table 12 A. Detailed feature selection results in each iteration step with Ensembles of trees (excluding Wi-Fi data) 

for heating energy 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 

T 30.32 19.55 0.69 

RH 49.91 41.29 0.16 

SR 51.57 43.78 0.1 

WS 53.96 47.44 0.02 

WD 53.62 53.62 0.03 

HH:MM 54.02 48.06 0.02 

2 

T+RH 29.49 18.96 0.71 

T+HH:MM 26.06 15.44 0.77 

T+SR 27.09 16.03 0.75 

T+WS 29.82 19.09 0.70 

T+WD 30.08 19.37 0.69 

3 

T+HH:MM +RH 25.81 14.96 0.78 

T+HH:MM  +SR 25.84 15.21 0.78 

T+HH:MM +WS 25.88 15.29 0.77 

T+HH:MM +WD 26.06 15.42 0.77 

4 

T+HH:MM +RH +SR 25.55 15.09 0.78 

T+HH:MM +RH +WS 25.68 15.22 0.78 

T+HH:MM +RH +WD 25.86 15.35 0.77 

5 T+HH:MM +RH +SR +WS 25.49 15.07 0.78 

T+HH:MM +RH +SR +WD 25.60 15.15 0.78 

6 T+HH:MM+RH+WS+WD+SR 25.51 15.09 0.78 

 

Table 13 A. Detailed feature selection results in each iteration step with Gaussian Process (including Wi-Fi data) 

for heating energy 

No. of 

Predictors 

Predictors CVRMSE MAPE R-Squared 

1 T 29.99 19.42 0.7 



100 
 

RH 52.27 45.04 0.08 

SR 51.78 44.32 0.1 

WS 53.81 47.79 0.02 

WD 53.62 47.39 0.03 

Wi-Fi 49.51 41.88 0.17 

HH:MM 53.91 48.40 0.02 

2 

T+RH 29.38 19.27 0.71 

T+HH:MM 25.59 15.38 0.78 

T+Wi-Fi 28.84 18.45 0.72 

T+SR 27.38 16.88 0.75 

T+WS 29.58 19.31 0.70 

T+WD 29.90 19.56 0.70 

3 

T+HH:MM +Wi-Fi 25.41 15.42 0.78 

T+HH:MM +RH 25.14 15.43 0.79 

T+HH:MM +SR 24.68 14.88 0.79 

T+HH:MM +WS 25.55 15.85 0.78 

T+HH:MM +WD 25.59 15.90 0.78 

4 

T+HH:MM +SR +RH 24.15 14.68 0.8 

T+HH:MM +SR +Wi-Fi 24.61 15.00 0.8 

T+HH:MM +SR +WS 24.94 15.57 0.79 

T+HH:MM +SR +WD 24.78 15.54 0.79 

5 

T+HH:MM +SR +RH +WS 24.10 15.02 0.80 

T+HH:MM +SR +RH +Wi-Fi  24.04 14.37 0.80 

T+HH:MM +SR +RH  +WD 24.07 14.46 0.80 

6 T+HH:MM +SR +RH +Wi-Fi+WD 24.24 15.33 0.80 

T+HH:MM +SR +RH +Wi-Fi+WS 24.08 15.08 0.80 

 

Appendix B
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Table 1 B. Tuned hyperparameter values for the selected algorithms 

Regression 

model 

Hyperparameter Hyperparameter 

search range 

Tuned values 

Cooling energy use Heating energy use Electricity 

Model formation 

Including Wi-

Fi data 

Excluding Wi-

Fi data 

Including Wi-

Fi data 

Excluding Wi-

Fi data 

Including Wi-

Fi data 

Excluding Wi-

Fi data 

Ensembles 

of Trees 

Ensemble method BAG, LSBoost Bag Bag Bag Bag Bag Bag 

Number of 

learners 

10-500 37 19 68 97 53 27 

Minimum leaf 

size  

1-3038 7 1 9 3 7 5 

Gaussian 

Process 

Kernel function Nonisotropic 

exponential, 

Nonisotropic 

Matern 3/2, 

Nonisotropic 

Matern 5/2, 

Nonisotropic 

Rational 

Quadratic, 

Nonisotropic 

Squared 

Exponential, 

Isotropic 

Exponential, 

Isotropic Matern 

3/2, Isotropic 

Matern 5/2, 

Isotropic Rational 

Quadratic, 

Isotropic Squared 

Exponential 

Nonisotropic 

Squared 

Exponential 

Nonisotropic 

Rational 

Quadratic 

Isotropic 

Exponential 

Isotropic 

Rational 

Quadratic 

Nonisotropic 

exponential 

Nonisotropic 

Matern 5/2 
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Kernel scale  1.092-1092 93.28 62.67 78.97 67.54 128.73 28.77 

Sigma 0.0001-1112.13 0.0127 0.0024 0.0091 0.0113 0.0015 0.0096 

NARX 

Neural 

Network 

Number of 

hidden neurons 

5-20 13 12 10 12 13 15 

Number of time 

delays 

1-5 3 2 2 2 2 3 
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Figure B1. A Minimum MSE Plot for cooling energy use model with the Ensembles of Trees (excluding Wi-Fi data) 

 

 




