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Abstract: The Ningaloo Reef, Australia’s longest fringing reef, is uniquely positioned in the NW
region of the continent, with clear, oligotrophic waters, relatively low human impacts, and a high
level of protection through the World Heritage Site and its marine park status. Non-invasive optical
sensors, which seamlessly derive bathymetry and bottom reflectance, are ideally suited for mapping
and monitoring shallow reefs such as Ningaloo. Using an existing airborne hyperspectral survey,
we developed a new, geomorphic layer for the reef for depths down to 20 m, through an object-
oriented classification that combines topography and benthic cover. We demonstrate the classification
approach using three focus areas in the northern region of the Muiron Islands, the central part
around Point Maud, and Gnaraloo Bay in the south. Topographic mapping combined aspect, slope,
and depth into 18 classes and, unsurprisingly, allocated much of the area into shallow, flat lagoons,
and highlighted narrow, deeper channels that facilitate water circulation. There were five distinct
geomorphic classes of coral-algal mosaics in different topographic settings. Our classifications
provide a useful baseline for stratifying ecological field surveys, designing monitoring programmes,
and assessing reef resilience from current and future threats.

Keywords: marine habitats; coral reefs; Ningaloo Marine Park; object-based classification; hyperspec-
tral; geomorphic classification; topographic derivatives

1. Introduction

Australia boasts extensive coral reef ecosystems, such as the Great Barrier Reef and the
less well-known fringing the Ningaloo Reef [1–3]. Ningaloo, in the northwest of western
Australia, is Australia’s longest fringing reef (300 km) and supports over 200 species of
corals and other biota [1–4]. Since 1987, the area has been protected by the Ningaloo Marine
Park, and this was expanded in 2005 [5], with the reef and narrow strip of the coastal
regions also receiving World Heritage status in 2011 [2,6].

In recent decades, benthic habitat maps of coral reefs, derived from optical, remote
sensing instruments (airborne and satellite-based), have become widely used in monitoring
and managing marine and coastal estates [7–11]. Many factors contributed to this, for exam-
ple, free or lower cost datasets and software, progress in operationalising data processing,
and more sophisticated classification methods. We have also seen a growing appreciation
among managers and marine planners of the utility of these datasets for marine planning,
conservation, monitoring, and management (e.g., [12–14]). Timely and efficient monitoring
and management of large marine parks such as the Ningaloo Reef require detailed baseline
information on the bathymetry and its derivatives, and the distribution and abundance
of benthic habitats. Extensive areas with oligotrophic, clear waters, such as the Ningaloo
Marine Park (NMP), are ideally suited for optical remote sensing as a tool for baseline
mapping and monitoring.
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The first benthic habitats map of the NMP was created by the Western Australian
Department of Environment and Conservation, and included broadly defined habitat
classes based on aerial photo interpretation by experts [5,15]. Since then, some mapping
has been performed in more detail [16] but only over a few selected sanctuary zones. A
major airborne hyperspectral campaign to ascertain reef bathymetry and derive benthic
habitats along the reef was undertaken in 2006 [17]. The data processing, spectral analysis,
image classification hierarchy, validation, and probability analysis are explained in previous
work [18,19].

Remote sensing through satellite or airborne data has been routinely used to map
coral reef communities worldwide, particularly in regions with low turbidity. Some of
these studies have used high spatial resolution data (2–5 m pixels), e.g., IKONOS [20,21] or
Quickbird [22]; however, due to intrinsically high cost, only limited investigations have
attempted coral reef mapping with airborne hyperspectral data. These include CASI [23,24],
AAHIS and AVIRIS [20], AISA Eagle [22], and HyMap (focus on seagrasses) [25], though
they generally did not cover extensive geographic areas.

In addition to habitat maps, topographic classes derived from remotely sensed bathymetry
are particularly useful for understanding the distribution of benthic cover and monitoring
reefs. Planning for biological surveys of particular taxa, which might require sampling by
specific depth, slope, or aspect, can be aided by the availability of bathymetric derivatives.
Additionally, high-resolution bathymetry and topography aid the understanding of the
water circulation around reefs in the deeper and shallow regions [26] and exposure to coral
bleaching events [27,28].

Despite its remoteness, the Ningaloo region and its reefs face many natural threats
(e.g., cyclones, pests, and diseases). The last few decades have also seen increased anthro-
pogenic pressures such as exploration and mining (e.g., oil and gas), ports and shipping,
commercial and recreational fishing, and, increasingly, nature-based tourism [29]. The
current and future challenges for management include the remote geographical location
of Ningaloo (>1000 km from the state capital of Perth) and the changing climate with
associated increased frequency of cyclones and marine heatwaves [28,30,31].

This paper aims to expand on the original Ningaloo Reef hyperspectral study [18]
by performing object-oriented classification and including topographic variables. We will
demonstrate these classifications at three different focus areas along the Ningaloo Reef
and contrast them with products from the recent global Allen Atlas of coral reefs for
these locations [10]. We will also indicate the potential use of such classifications for the
management and monitoring of the Ningaloo Reef.

2. Materials and Methods
2.1. Remote Sensing Data Acquisition

Airborne hyperspectral imagery (HyMap instrument) was acquired by HyVista Cor-
poration (https://hyvista.com/) over ten days in April and May 2006. The sensor was
configured for 125 spectral bands between 450–2500 nm, with a spectral resolution of 15 nm
and 3.5 m pixels. The airborne survey covered 3400 km2 of waters to a depth of 20 m and
the adjacent coastal strip (Figure 1). This survey was designed to provide a comprehensive
baseline of high spatial and thematic resolution data for the management and monitoring
of the Ningaloo Marine Park and coastal areas.

We used the physics-based Modular Inversion and Processing System (MIP) [32–34]
to process the calibrated sensor radiance flight. Processing included correction for sun
glint, the atmospheric correction of radiances to the subsurface reflectance, and the Q-factor
correction to account for the bidirectional effects of the water column [34]. Correction of
water column-related effects leading to retrieval of bathymetry and bottom reflectance was
performed using the MIP WATCOR module [35,36] (Figure 2). A detailed description of
bathymetry and bottom reflectance retrieval, including spectral unmixing, is provided in
previous work [18].

https://hyvista.com/
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Figure 1. The extent of the HyMap airborne survey, location of the three focus areas and manage-
ment zones (state waters) over the Ningaloo Reef in Western Australia. The abbreviation of ‘SZ ‘with 
a place label refers to a sanctuary zone. 

2.2. Field Data Collection 
We undertook ten field trips to gather data supporting both the processing and clas-

sification of the airborne data. The large size of the study area, access logistics, and varia-
ble weather conditions mandated the duration of the field campaign between 2006–2009. 
All field data were geo-located and collected in the same month (April) to ensure compa-
rable cover and stage in macroalgal growth. We collected benthic cover data and under-
water spectra for a range of substrates at pixel (3.5 m × 3.5 m) and mega-quadrat (9 m × 9 
m) scales [18]. To ensure field data were representative of the specific cover type and to 

Figure 1. The extent of the HyMap airborne survey, location of the three focus areas and management
zones (state waters) over the Ningaloo Reef in Western Australia. The abbreviation of ‘SZ ‘with a
place label refers to a sanctuary zone.

2.2. Field Data Collection

We undertook ten field trips to gather data supporting both the processing and classi-
fication of the airborne data. The large size of the study area, access logistics, and variable
weather conditions mandated the duration of the field campaign between 2006–2009. All
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field data were geo-located and collected in the same month (April) to ensure comparable
cover and stage in macroalgal growth. We collected benthic cover data and underwater
spectra for a range of substrates at pixel (3.5 m × 3.5 m) and mega-quadrat (9 m × 9 m)
scales [18]. To ensure field data were representative of the specific cover type and to account
for any minor position errors, we selected areas with homogenous cover types [37].
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Figure 2. Summary of data processing steps used for the airborne hyperspectral survey at the
Ningaloo Reef.

2.3. Image Classification

Benthic habitat classification included bottom reflectance, bathymetry, and first and
second derivatives of bottom reflectance [17,18]. Despite the large size of the dataset (3◦

of latitudinal extent), a single set of spectral signatures was used for classification. This
ensured a more automated approach and the possible application of image-retrieved sig-
natures to future satellite-based hyperspectral sensors. Pixel-based classification using
fuzzy logic was used to create a set of thematic classes. The final class assignment was
organised in hierarchical tables with increasing levels of detail [17,18]. Benthic class labels
incorporated the cover type name and percentage of that cover by each benthic compo-
nent as determined in the field (Table S1 from Supplementary Materials). The ecological
relevance of class names was also considered, focusing on the dominant biotic component.
Look-up tables were created for joining raster outputs to the thematic legends at different
hierarchical levels and thus allowed a different degree of detail to be displayed [17,18].
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2.4. Topographic and Geomorphic Classifications

We used high resolution bathymetry extracted from the hyperspectral data in an
object-based image classification to derive topographic classes for the Ningaloo Reef. We
segmented the image prior to classification, thus combining pixels with similar values
to form objects, which were then classified [38]. We also integrated the benthic classes
with the topographic variables to create a geomorphic classification. All processing for the
object-based image classification was run in an ENVI Feature Extraction environment.

2.5. Topographic Classification and Development of Ruleset

Terrain variables such as slope, aspect, and depth ranges were calculated in ENVI and
used to define topographic classes. These variables were selected for their usefulness in
characterising typical fringing reef features and classified into logical, knowledge-based
classes. For example, an aspect ranging from 225–315◦ was labelled as facing west, a
slope ranging from 30–90◦ as steep, and depths ranging from 0–5 m were classified as
shallow (Table 1).

Table 1. Ranges of variables for aspect, slope, and depth to define topographic parameters for the
Ningaloo Reef.

Name Description

East facing Aspect: 45–135◦

North facing Aspect: 315–360◦ and 0–45◦

South facing Aspect: 135–225◦

West facing Aspect: 225–315◦

Flat Slope: 0–30◦

Steep Slope: 30–90◦

Shallow Depth: 0–5 m
Deep Depth > 5 m

The spatial resolution of the retrieved bathymetry and the resultant slope and aspect
data was identical to the original airborne data (3.5 m). As this was considered too fine
a scale to map more extensive features such as lagoons or their slopes, the aspect and
slope data were aggregated using a 9 m × 9 m (majority) filter. We applied a land mask,
developed using NIR bands, as an additional input for the segmentation step.

We used the object segmentation scale of 10 (range was 0–100); thus, a relatively small
object size could be created. The merging object scale was also set to 10 (scale 0–100).
We used the logical operator AND to create all possible slope, depth, and aspect ranges
combinations, calculated their attributes, and supervised classification to derive the final
topographic variables raster. The logic of four quadrants of the compass, a threshold of
30◦ for a slope, and a 5 m threshold in the bathymetry were used to define 22 possible
topographic classes (Table 1 and Table S2). These settings and, in particular, depth ranges,
allowed for separating lagoonal and slope-based objects.

2.6. Geomorphic Classification and Development of Ruleset

In the geomorphic classification, we used the slope, aspect, depth, land mask, and the
pixel-based habitat map. Depending on the focus area, we set the segmentation scale to
20 or 30 and the merging scale to 70 or 80, with no thresholding. Spatial, thematic, and
textural object attributes were calculated during the ruleset development. In the absence of
prior knowledge about object properties, several object spatial attributes were investigated
and tested for their appropriateness in capturing features and spatial extent. All attributes
were displayed as an image with objects fitting a specific range of parameters identifiable
in different tones. This approach facilitated the efficient selection of suitable attributes and
their parameters for each geomorphic class. Finally, the classes were described in the ruleset
(Table S3), comparable in class descriptions to the previous mapping undertaken through
aerial photo interpretation [15]. The object-based classification was performed using the
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defined ruleset applicable to the entire study area. Classified images were validated against
a field dataset described in previously published work [17,18].

2.7. Validation

We performed validation of the pixel-based classification and, separately, an image-
derived bathymetry. The pixel-based classification was validated using 185 points selected
through random stratification by the classes to avoid oversampling abundant cover types
such as sand. The geomorphic classification was validated using 124 different points to
check the correspondence between the field data and geomorphic class labels. As there
was an inherent geolocation error for the field locations, we used a buffer of 10 m around
the field location to extract pixel labels. We used the majority rule to allocate the final
class label.

Bathymetry was corrected for tide (Exmouth gauge) and validated against sound-
ings from the WA Department of Transport (https://www.transport.wa.gov.au/imarine/
marine-geographic-data.asp, accessed on 5 October 2021). As slope and aspect were
derived from the bathymetry dataset, no separate validation was undertaken.

2.8. Comparison with Allen Atlas

We compared the results of our study to those available in the recently released Allen
Atlas [10]. We downloaded data from the atlas for the three focal areas, created summaries
of percentage areas mapped, and produced an overview of cover types mapped using the
Allen Atlas benthic and geomorphic classifications. As the class definitions differed slightly
from the current study and some classes were absent in our classification (e.g., rubble, rock,
or seagrass), we indicated that in the final summary.

3. Results
3.1. Overview of Marine Habitat Distribution at the Ningaloo Reef

Using pixel-based classification along the Ningaloo Reef, we mapped an area of
761.7 km2 with 58.54 km2 (~8%) of coral mosaics, 390 km2 (~51%) of macroalgae mosaics,
and 312 km2 (~41%) of pavement and sand. The continuous tabulate coral made up over a
third of all corals. Just over 66% of coral mosaics were constituted of dense tabulate coral,
sparse digitate coral, soft coral, and sparse sub-massive and massive corals. Continuous to
patchy digitate and tabulate coral forms accounted for 10% of the coral cover, while “blue
tip” Acropora was 8.5%. Most of the hard coral occurred as either very dense (>90%) cover
or as patchy distribution (20–45%) (Figure 3).

Coral mosaics were well represented in most Ningaloo Marine Park sanctuary zones
(IUCN Category II). Bateman sanctuary had the highest proportion of hard coral classes,
followed by Murat, Mandu, and Maud (Figure 4). The smallest sanctuary zone, Lakeside,
had the smallest area of coral (0.06%) (despite a few prominent coral bommies), with the
majority being sand (92%). In contrast, Bundegi, Murat, and Tantabiddi sanctuary zones
were dominated by macroalgae mosaics, while Turtles, Gnaraloo, and 3-Mile sanctuary
zones had the largest proportion of limestone pavement (as mapped to the 20 m depth
limit here).

3.2. Topographic Classification

The combination of bathymetry (depth) and its derivatives of slope and aspect resulted
in a map for the Ningaloo Reef combining all three variables. Results for this topographic
classification are illustrated here using three selected focus areas of Muiron Islands, Point
Maud, and Gnaraloo Bay, representing northern, central, and southern sections of the
fringing reef (Figure 5). As Ningaloo is a longitudinal fringing reef, westerly or easterly
aspects dominated, although the high spatial resolution highlighted large areas with south-
facing slopes. Point Maud had the largest proportion of the flat regions, whereas steep
slopes characterised Gnaraloo Bay.

https://www.transport.wa.gov.au/imarine/marine-geographic-data.asp
https://www.transport.wa.gov.au/imarine/marine-geographic-data.asp
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Figure 3. Summary of coral mosaics within the Ningaloo Reef study area (<20 m depth) and in
sanctuary zones. Data are sorted by the area covered from largest to smallest for the top 10 classes,
accounting for 97% of the total coral cover.
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The topographic classification for the whole of the Ningaloo Reef resulted in a clear
delineation of flat lagoons, mostly in shallow waters, steep slopes of channels, and some
undulating surfaces. The three focus areas were different with respect to the dimensions of
the lagoon, range of depths, slope, and aspect (Figures 6–9). Figure 6 provides the legends
that should be used to interpret Figures 7–9.
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legend applies to Figures 7–9.
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Figure 7. Topographic variables for the focus area at Muiron Islands at the northern extent of
the Ningaloo Reef. (a) depth, (b) aspect, (c) slope, and (d) topographic classification. Legends in
Figure 6 apply.
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The depth and aspect datasets and the final topographic classification clearly delineate
the channel between the North and South Muiron Islands (Figure 7). Shallower waters and
secondary channels in the SE of the area had wide sloping surfaces (300 m) facing east and
west. Due to the channel’s north-south alignment, west-facing, gentle slopes in the shallow
water made up 17.5% of the area, and west-facing, gentle slopes in the deep water, another
14%. The third and fourth largest areas were in the east and south-facing flat and shallow
settings (12% each).
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The Point Maud area had quite a varied reef structure, with the northern zones mapped
as flat, with sandy plains and slopes (Figure 8). The Point Maud area had a large proportion
of west-facing flat and deep areas (15%) and east and west-facing flat, shallow topographic
settings (~13% each). An additional 21% of the area was classified as south-facing, gently
sloping, shallow and deep areas.

Gnaraloo Bay (Figure 9) was characterised by a narrow and shallow lagoon and a
large flat area adjacent to the shoreline. The reef pattern was more heterogeneous outside
the shallow lagoon with higher ranges in slope and depth (due to the occurrence of large
bommie-like structures). This area had a large proportion of westerly slopes, with equal
proportions classified as gentle and deep, steep and deep, and gentle and shallow settings.
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There were also nearly equal areas of easterly slopes in the same depth and slope ranges
(~30% of total).

3.3. Geomorphic Classification

We classified reef and lagoonal features of interest through the multi-scale, object-
oriented classification. The ruleset based on topographic variables and habitat classification
allowed the three different focus areas along the coast to be classified into five broad
classes, three of which were coral dominated mosaics, and two were predominantly sand
or pavement (Figure 10).
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the Ningaloo Reef.

The Muiron Islands area was classified as a deep channel separating the two islands,
shallow forereef, deep lagoonal environments, reef flats, and very shallow lagoonal settings.
Both coral and algal communities were present in the channel between the two islands
and on the slopes. Very little sand or limestone (<2%) was mapped in this focus area
(Figures 10 and 11).

The southern section of the Point Maud area had many small, round objects (coral
bommies) and a relatively heterogeneous reef structure. In contrast, the northern section
was more homogeneous and classified as flat sandy lagoons and some sand on slopes.
The Point Maud area mainly consisted of coral and algal communities (backreef/shallow
forereef and other shallow areas; 55%) and 15% consisted of forereef and deep lagoonal
environments with coral and macroalgae mosaics. In the north and east of Point Maud,
there were also a couple of extensive areas of flat lagoonal sand (Figures 10 and 12).

Gnaraloo Bay (towards the south of the Ningaloo Reef) was mapped as a narrow
and shallow lagoon with extensive flat sandy areas along the shoreline, becoming more
heterogeneous outside of the shallow lagoon with larger differences in slope and depth
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because of the occurrence of large bommie-like structures. The two most extensive classes
at Gnaraloo were coral and algal communities (deep forereef and other deep areas plus
backreef/shallow forereef and other shallow areas; 52% combined) (Figure 10). The shallow
coral communities on the reef flat can be seen in the western part of Figure 13, while
nearshore sand in the shallow lagoons had a large contiguous distribution.
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3.4. Validation

The bathymetry derived from airborne data had an overall 77% agreement with
the Department of Transport echo-soundings and was considered acceptable for this
study (Figure S1).

The overall accuracy of the pixel-based classification at the thematic generalisations
level presented was 71.8% (Table S4, and for the geomorphic classification, 93.5%. User
accuracy for the pixel-based classification ranged from 61–78% for the coral-dominated
classes, 66–74% for the macroalgal communities, and 64–90% for the limestone pavement
and sand environs. Unsurprisingly, as geomorphic classification grouped several narrower
thematic classes, user accuracies were very high; between 90–96% for the coral-algal
communities and 90–100% for the pavement and sand (Table S5).

3.5. Comparison with the Allen Atlas

Within the same study extent for each focus area, the current study mapped a higher
proportion (20–50%) of the area than the Allen Atlas, as the hyperspectral sensor allowed
mapping into deeper waters (Table 2). Surprisingly, the proportions of habitat classes were
dissimilar. The hyperspectral sensor used in this study indicated a greater proportion of
coral/algal classes than the Allen Atlas and, conversely, a smaller proportion of sand, rock,
and rubble (Table 2). Interestingly, the Allen Atlas discerned some small areas of seagrass,
although the hyperspectral study did not (only small seagrass drift samples and beach
wrack were occasionally observed during field trips).
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Table 2. Comparison between the current hyperspectral study and data from the Allen Atlas (ha).

Category
Muiron Islands Point Maud Gnaraloo Bay

This
Study

Allen
Atlas

This
Study

Allen
Atlas

This
Study

Allen
Atlas

Coral/algae 629.0 192.3 898.6 326.0 623.4 162.5

Sand + rock + rubble 13.1 24.5 148.6 310.9 45.0 90.9

Seagrass 0.0 1.1 0.0 5.6 0.0 29.5

Total area mapped * 642.08 262.20 1047.14 809.80 668.41 330.69
* Numbers in italics refer to the same spatial extent within each study area.

4. Discussion

This study showed that benthic cover and bathymetric features over a very extensive
fringing reef could be successfully and consistently mapped using high resolution airborne
hyperspectral remote sensing with operational methods. Our pixel-based classification
mapped 46 benthic cover classes and provided statistics on the coral forms for the first time
across the entire area of the Ningaloo Reef. Very few studies in the past have mapped such
a large area, except now for the considerable effort through the global Allen Atlas [10].

In contrast with the previous benthic habitat map for Ningaloo, created through
photointerpretation [15], our mapping captured a lot less coral cover and more macroalgae
mosaics (8% vs. 51% within the study area), primarily due to the difference in the mapping
methods [17]. We have characterised and enumerated cover by the different coral forms for
the first time.

The use of hyperspectral data allowed mapping at the finer thematic resolution in
benthic cover and simultaneous retrieval of bathymetry up to 20 m depth. Other coral reef
studies have reported similar depth mapping limits (e.g., [18]).

Our approach of classifying the reef with the combined benthic cover, depth, slope,
and aspect dataset highlights many areas along the reef with uniform cover types yet
different topographic conditions (depth, slope, and aspect settings). On the other hand,
some areas with uniform morphology may have a different benthic cover. The clear benefit
of the method used in this study was that once created, the ruleset was transferable to
the remainder of the reef without a need for additional modifications, thus making it
more repeatable.

These two datasets, topographic and geomorphic, complement each other. As such
datasets become more widely available at higher spatial resolutions, they will facilitate
more marine ecology studies using landscape ecological theory, which are already well
advanced in terrestrial systems [39]; they would also facilitate, for example, the evaluation
of future threats to a reef (e.g., [28]).

Future satellite-based hyperspectral monitoring (e.g., EnMap) should allow similar fea-
ture discrimination, even at a coarser spatial resolution. However, allowing for bathymetry
retrieval, current multispectral sensors have less capacity to resolve differences between
coral and macroalgae mosaics [13,40].

The use of bathymetry in identifying areas with specific depth, aspect, slope character-
istics, or rugosity is common in marine habitat investigations, especially for mesophotic
regions such as a more recent investigation at Ningaloo [26] or in assessments of shallow
reef resilience [28]. Water circulation can affect local conditions near the reef passes or shal-
low lagoons. Past events demonstrate that poor water circulation can result in mass coral
mortalities (e.g., [2]). Thus, maps that identify these potentially vulnerable environments
are helpful for scientists and managers.

Mapping topographic features is particularly relevant for the Ningaloo Reef because it
is a fringing reef along the steep and narrow continental shelf and it experiences strong
prevailing wind and waves. Bathymetric data and their derivatives have been previously
used to describe the structural complexity of reefs (e.g., [26,41]). In this Ningaloo study,
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they enhance our understanding of the distribution of benthic cover, rather than just char-
acterising the topographic settings or mapping rugosity. As seen from our focal areas, the
topographic classification enhances the information available to ecologists and managers.

The advantage of our geomorphic maps is that they provide thematic generalisation
across the benthic classes. Still, at the same time, they provide the context for the coral-
algal mosaics; for example, shallow lagoonal or deeper areas. Because our classification
incorporates topographic variables, it can more readily be compared (in areas of spatial
overlap) with the studies which have characterised deeper regions of Ningaloo Reef using
acoustic data and AUV imagery [42]. That study mapped the geomorphic variables through
depth, curvature, aspect, rugosity, hypsometric, and bathymetric position indices. Other
studies which have applied object-oriented classification (e.g., [43]) have also incorporated
wind and wave model data into the classification process on the Great Barrier Reef.

Our approach of combining pixel-based marine habitat classification and object-based
classification, incorporating topographic variables, allows for the processing of additional
datasets and comparisons over time. Although the methods for the benthic classification in
this study were focused on the coral cover, which is of particular interest to the managers
for their monitoring programmes, data can be easily reprocessed to extract more detailed
characterisation of other communities; for example, coralline encrusting algae or canopy
algae such as Sargassum.

Although comparison with the Allen Atlas revealed broad similarities, there were also
substantive discrepancies. In some aspects, Allen Atlas mapping used a different approach;
their geomorphic maps also incorporated wave modelling and their benthic maps only
presented dominant marine cover. It is likely that the differences, particularly in capturing
the occurrence of coral, sand, or macroalgae, may be related to sensor differences and
possibly also seasonal differences.

When capturing biomass changes in the macroalgal cover, seasonal differences must
be considered [44]. The differences in biomass of some algal species at Ningaloo were as
high as 18-fold over a 26 month study [45,46]. Data for our analysis were acquired during
the early austral autumn, a period optimal for airborne surveys in the region, with very
low wind, wave, and swell, and a minimum cloud cover. Imagery dates used for Allen
Atlas mapping are unknown, so any further comparisons would need to consider this.

The presence of a separate seagrass category in the Allen Atlas, compared to our study,
is surprising, as seagrasses are not common as extensive meadows in NMP. Nevertheless, a
recent study [46] has noted that seagrass cover, although sparse, is higher in early summer;
the study recommended monitoring seagrasses in the NW region of Australia between
November to February. Over the years, there may have also been a change in benthic cover,
as the region was impacted by a marine heatwave (2011–2012) and cyclones subsequent to
our study [2].

Besides the obvious use of the marine habitat data in conservation planning, the
topographic and geomorphic classifications have additional applications for managers. The
results of this study could allow for monitoring by topographic or geomorphic variables to
ensure that monitoring sites represent the full range of ecological settings in the park.

The topographic classification provides managers with the information required to
locate and study biota that has specific requirements (e.g., slope, aspect, or depth range) or
to stratify ecological sampling locations by these topographic variables; for example, the
distribution of sea urchins [47] or grazing halos around coral bommies [48].

A future review of the protected area boundaries and level of protection status could
incorporate our datasets to reflect reef resilience parameters such as those captured by our
geomorphic classification [28]. Future changes, even small sea-level changes, are likely
to affect water circulation in the shallow lagoons [49], and our data can be used in such
modelling. If, as predicted, extreme weather events such as cyclones, storm surges, or
marine heatwaves will be more common and severe [2,30,50,51], monitoring and reviewing
the current protection of the Ningaloo Reef should be aided by our topographic and
geomorphic classifications.
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5. Conclusions

Hyperspectral sensors provide a timely, non-invasive and, compared to the field sur-
veys, cost-effective approach to mapping and monitoring the extent and condition of reefs
over large areas. This is because of their ability to identify reef components based on their
spectral response. Processing of high-resolution hyperspectral data provided an efficient,
operational approach to retrieving benthic cover, bathymetry, and subsequent topographic
variables at the Ningaloo Reef. Object-based classification combined benthic cover with the
topographic variables to create a geomorphic layer. Combining benthic habitat classes with
topographic classification highlighted the value of processing the hyperspectral data for
habitat and bathymetry in one seamless process. The ruleset developed for the Ningaloo
Reef was demonstrated at three different focal areas (Muiron Islands, Point Maud, and
Gnaraloo Bay) and allowed for consistent mapping of these seascapes. Through the use of
examples, such classifications were demonstrated to potentially assist in the management
and monitoring of the reef.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14081827/s1, Table S1. Benthic cover types and their codes in
field data of Ningaloo Reef based on [52]; Table S2. Definition of the ruleset and the class ranges
using bathymetry data of Ningaloo Reef at the 9 × 9 majority kernel scale. (Slope (degrees), aspect
(0–360 degrees) and bathymetry (cm)); Table S3. The ruleset for geomorphic classes was developed
using topographic and habitat classes for the Ningaloo Reef. Area = the object area; tx_variance = the
texture variance of the object; tx_entropy = the entropy of the object; maxSLOPE = the maximum
value of the slope and so on. Some parameter/variable names refer to the properties of the objects
and others to the slope or aspect or benthic class number; Table S4 Results of the validation of the
pixel-based classification against the field data. Table S5 Results of the validation of the geomorphic
classification against field data; Figure S1. Validation of the bathymetry dataset.
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