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Abstract

African swine fever (ASF) has spread to many countries in Africa, Europe and Asia in the

past decades. However, the potential geographic extent of ASF infection is unknown. Here

we combined a modeling framework with the assembled contemporary records of ASF

cases and multiple covariates to predict the risk distribution of ASF at a global scale. Local

spatial variations in ASF risk derived from domestic pigs is influenced strongly by livestock

factors, while the risk of having ASF in wild boars is mainly associated with natural habitat

covariates. The risk maps show that ASF is to be ubiquitous in many areas, with a higher

risk in areas in the northern hemisphere. Nearly half of the world’s domestic pigs (1.388 bil-

lion) are in the high-risk zones. Our results provide a better understanding of the potential

distribution beyond the current geographical scope of the disease.

Introduction

African swine fever (ASF) is an acute, contagious swine disease that is becoming a global threat

due to its devastation on pig production [1]. Its causative pathogen is African swine fever

virus, which is a DNA virus belonging to the family Asfarviridae, genus Asfivirus. The virus

can survive for a long time in the contaminated environment [2, 3], which leads to a broad

range of clinical signs in sick domestic pigs, such as sudden death, high fever, haemorrhage,

anorexia, dyspnea and vomiting, with the lethality rates approaching 100% when highly patho-

genic strains infect pigs [4]. ASF is listed by the World Organization for Animal Health (OIE)

as a notifiable animal disease (https://www.oie.int/en/disease/african-swine-fever/).
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African swine fever was first reported in eastern Africa in 1921 [5]. Since then, additional

cases have been reported in most of the Sub-Saharan countries [6, 7]. In 1957, ASF was found

in Europe, arriving in Portugal from Angola via contaminated swill from aircraft [8]. It then

continued to spread to Western European countries (i.e., Spain), the Caribbean, and Brazil.

The disease was eradicated in these places in the mid-1990s through culling and movement

bans of live pigs and pig products, except for the Italian island of Sardinia [9–11]. In 2007, the

disease was reported in the Republic of Georgia, a transportation hub of Europe, and then it

spread widely in the vast areas of Eastern Europe, including Russia (2007), Ukraine (2012),

Belarus (2013), Lithuania (2014), Estonia (2014), Poland (2014), Latvia (2014), and Romania

(2017), and Czech Republic (2017) [6, 12–15]. In 2018, ASF was detected in China for the first

time [16]. Since then it spread to more Asian countries, including Vietnam, Cambodia, North

Korea, Laos, Indonesia, Myanmar, Philippines and South Korea [17–19]. No commercial vac-

cines and effective treatments are available to control the disease [20, 21].

In order to predict and control for the further spread of the disease beyond the existing geo-

graphic range, predictive models linking the locations of the reported cases to environmental

risk factors were adopted to improve the risk-based surveillance and control [9, 22–24]. For

example, Cappai et al. combined biological and socio-economic factors with the negative bino-

mial regression model to estimate the ASF risk in Sardinia [9]. A study conducted by Liang

et al. showed that ASF is associated with precipitation based on several machine learning

methods [23]. Based on the data of 98 ASF cases reported from 2018 to 2019 in China, Ma

et al. employed a maximum entropy model using pig density and various meteorological

covariates to identify the high risk areas for the disease outbreaks in China [24]. Although sev-

eral environmental risk factors have been identified in previous studies, the difference in the

risk of ASF in domestic pigs and wild boars was not assessed.

To address these limitations, we assembled contemporary records of ASF in both domestic

pigs and wild boars, and paired them with a set of livestock density, anthropogenic and habitat

correlates to quantify the risk factors. The risk of ASF was predicted at a global scale using a

modeling framework. Additionally, we estimated the potential burden of ASF in countries,

providing novel insights to inform global, regional and national health authorities who are

developing control strategies for the disease.

Materials & methods

Data

ASF cases. The data on ASF cases were downloaded from the website of the EMPRES

Global Animal Disease Information System (EMPRES-i) of the Food and Agriculture Organi-

zation (FAO) of the United Nations (http://empres-i.fao.org/eipws3g/), which has been

designed to support veterinary services by facilitating the organization and access to regional

and global disease information. The cases of ASF were collected from European Commission,

FAO officers, national authorities and OIE. In this study, the ASF cases (16,550) spanned from

2005 to 2019 were used, of which 12,089 occurred in wild boars, 4,502 occurred in domestic

pigs and 41 co-occurred in both wild boars and domestic swine over the world.

Spatial predictor variables. Livestock factors. Domestic pigs play a key role in the trans-

mission of ASF [25]. Direct contact between sick and susceptible domestic pigs have been con-

sidered to be an effective and important transmission route for this disease, which are likely to

be significant in the disease persistence in endemic areas as well as sporadic outbreaks or intro-

duction into disease-free zones [26–28]. In addition, previous literature have suggested that

pig density distribution is associated with the occurrence of ASF [24, 29]. Thus, in this study,

the density of domestic pigs was considered to be an important livestock factor, and was
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downloaded from the Food and Agriculture Organization (http://www.fao.org/livestock-

systems/global-distributions/pigs/en/).

Anthropogenic factors. Human activity (e.g. trade and travel) can lead to transmission of

ASF over both short and long distances [25, 30]. African swine fever virus in infected animals

and contaminated fomites or products may lead to transboundary or even transcontinental

spread of ASF [31]. For example, an ASF outbreak in Georgia in 2007 was caused by improper

disposal of contaminated pork meat from a ship at docks [31]. Moreover, a study conducted

by Gulenkin et.al also suggested that the density of road networks was one of the risk factors

for disease spread [32]. Population density and night-time lights could reflect the level of

urbanization, and urban accessibility could imply the frequency of trade to some extent. In the

present study, we assumed that population density, night-time lights and urban accessibility as

three anthropogenic factors that may affect the disease transmission in our boosted regression

tree (BRT) model. The data sets of urban accessibility, population density and night-time

lights, can be obtained free from the European Commission Joint Research Centre (ECJRC)

(http://forobs.jrc.ec.europa.eu/), the Socio-economic Data and Applications Center, NASA

(https://earthdata.nasa.gov/eosdis/daacs/sedac), and the Earth Observation Group, NOAA

(http://www.earthobservations.org) respectively.

Habitat factors. Habitat factors play important roles in limiting the distribution of hosts,

thereby affecting the risk of disease transmission. Domestic pigs, wild boars and soft tick vec-

tors as hosts for ASF virus, have been shown to be significantly associated with the presence

ASF [25, 28, 32]. On this basis, the habitat distribution of these hosts is supposed to be influ-

enced by climate conditions such as precipitation and temperature according to some previous

literatures [24, 33–36]. In addition, land cover, elevation and NDVI also probably influence

the distribution of hosts by affecting the food and habitats of hosts, for example, the bushes

created habitats for ticks [37]. Hence, land cover, elevation, NDVI and climate conditions

(mean temperature, water vapor pressure and annual cumulative precipitation) were supposed

to be potential habitat variables for ASF presence in this study. The dataset of land cover, eleva-

tion and normalized difference vegetation index (NDVI) were obtained from NASA’s Earth

Observatory Group (https://earthobservatory.nasa.gov/), the CGIAR Consortium for Spatial

Information (http://srtm.csi.cgiar.org), and the Global Inventory Modelling and Mapping

Studies (GIMMS) group (https://ecocast.arc.nasa.gov/). Climate data including mean tempera-

ture, water vapor pressure and annual cumulative precipitation can be downloaded from

WorldClim database, version 2 (http://www.worldclim.com/).

Modelling analysis

A ensemble BRT modeling framework, that has been successfully used for predicting potential

geographic extent of several diseases (i.e., visceral leishmaniasis and scrub typhus), was adopted

due to the ability to effectively capture complex response functions [38–41]. The “gbm” and

“dismo” extent packages were used to perform modelling procedures based on the R v 3.3.3 pro-

gramming environment. The BRT model adopted in this study can be described as follows (Eq 1):

ftðXÞ ¼ ft� 1ðXÞ þ l � rthðX; atÞ l 2 ð0; 1� ð1Þ

Lðy; f ðXÞÞ ¼ logð1þ expð� 2yf ðXÞÞÞ ð2Þ

Where y is the response, X = {x1,x2,� � �,xn} denotes livestock, anthropogenic and habitat fac-

tors, ft(X) refers to the mapping function from X to y during the t-th iteration, λ is the learning

rate, ρt is the weight parameter, h(X;at) represents an individual tree. The parameters were esti-

mated by minimizing a binomial loss function (Eq 2).
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The assembled contemporary records of ASF cases of both domestic pigs and wild boars

were rasterized to grid cells to match the spatial resolution of predictor variables (S1 Table) of

approximately 5 km × 5 km. According to the contingency plan (http://www.moa.gov.cn/

govpublic/xmsyj/202104/t20210429_6367009.htm) published by Ministry of Agriculture and

Rural Affairs of the People’s Republic of China, regions extending 13km radially away from

where ASF cases are reported are designated high-risk zones for domestic pigs, while in wild

boar infection areas, they require 40km further extension. In total, we obtained 1,914 and

3,520 samples of high ASF risk for domestic pigs and wild boars respectively. In the present

study, areas outside the high-risk zones are determined to be low-risk, which were used as

basis for pseudo-absence samples. In order to reduce the impact of the number of pseudo-

absence samples on modeling procedure, the ratio of pseudo-absences to occurrence high risk

samples is set to 0.5, 0.75, 1, 1.25, 1.5 and 2, respectively [42]. For each ratio, pseudo-absences

samples were selected at random, and the process was conducted 25 times. During each

modeling procedure, pseudo-absences samples and occurrence high risk samples were merged

into a total sample, then divided into training samples (75%) and validation samples (25%).

According to the suggestion of Jiang et al. [43], the main parameters were set as follows: tree.

complexity as 4, learning.rate as 0.005 and max.trees as 10,000. In order to avoid over-fitting,

the 10-fold cross-validation method was employed to select the optimal number of trees for

each BRT model. An ensemble BRT was constructed using 150 sub-models, which was used to

generate the mean infection risk level map (risk level ranging from 0 to 1) for domestic pigs

and wild boars respectively. In the present study, the area under the curve of the receiver oper-

ating characteristic plot (AUC-ROC) and the relative contribution (RC) were adopted to quan-

tify the performance of the ensemble BRT models and the importance of spatial predictor

variables, respectively.

Results

Global distribution of African swine fever

Fig 1A shows the locations of all the 16,550 ASF cases spanning from 2005 to 2019, from

which we could conclude that the disease mainly occurred in western Europe, Africa, and east-

ern Asia, affecting 52 countries. There have been cases of domestic pigs infected with ASF in

48 countries (accounting for 92% of the total number of infected countries), and wild boars

infected with ASF in 23 countries (accounting for 44% of the total number of infected coun-

tries). Fig 1B shows the number of reported ASF cases globally by year (from 2005 to 2019).

During this period, the number of ASF cases showed an overall increasing trend, from 3 cases

in 2005 to 6,357 in 2019. Among all ASF cases, 27% of them were derived from domestic pigs,

and 73% were from wild boars.

Relative contribution of risk factors

The relative contribution (RC) of livestock, anthropogenic and habitat predictor variables

were quantified by the ensemble BRT models, as shown in Table 1. For the risk of ASF derived

from domestic pigs, the most noteworthy predictor variables were, in decreasing order of RC

values, domestic pig density (RC 43.807%), water vapor pressure (RC 13.678%), urban accessi-

bility (RC 11.512%), land cover (RC 10.255%), mean temperature (RC 6.173%) and elevation

(RC 4.483%). Whilst annual cumulative precipitation (RC 2.855%), population density (RC

2.811%), NDVI (RC 2.371%) and nighttime light (RC 2.054%) did not substantially contribute

to the ensemble BRT models fitted from ASF cases in domestic pigs. For the risk of spread of

ASF derived from wild boars, water vapor pressure (RC 56.388%), mean temperature (RC

28.547%), NDVI (RC 4.138%), urban accessibility (RC 3.803%) and elevation (RC 3.097%)
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were the main predictor variables, and the RC rate of the remaining variables was less than 3%.

In total, livestock factor (RC 43.807%) had high relative influence statistics for the spread risk

level of ASF derived from domestic pigs, while the RC of habitat predictor variables (95.015%)

was higher in the ensemble BRT models fitted from wild boars ASF cases. In the present study,

correlation matrix and variance inflation factor (VIF) were calculated for collinearity test, as

shown in S2 and S3 Tables. Generally, the values of VIF are less than 10, indicating that there

is no collinearity between independent variables.

Global spread risk of ASF

Maps showing the predicted global potential infection risk of ASF are presented in Fig 2. The

potential high spread risky zones of ASF derived from domestic pigs are predicted to occur in

all continents except Antarctica, with hot spots in western Europe, tropical and sub-tropical

areas of Africa and South America, tropical and temperate North America, southern and east-

ern Asia, and coastal Oceania. By contrast, the distribution of predicted risk areas derived

from wild boars will be confined to Europe, central North America (mainly concentrated in

the United states), and relatively few areas in eastern Asia (parts of China, Korea and Japan).

In total, the potential distribution of predicted risk areas derived from domestic pigs shows a

Fig 1. (A) The global distribution of 16,550 African swine fever cases from 2005 to 2019. Locations are classified by

the type of pigs: domestic pigs (blue dots); and wild boars (yellow triangles). (B) The number of African swine fever

cases globally over time (2005–2019).

https://doi.org/10.1371/journal.pone.0267128.g001
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Table 1. Relative contribution of livestock, anthropogenic and habitat covariates derived from the ensemble BRT models.

Mean relative contribution ± SD

Domestic pigs Wild boars

Livestock† 43.807 0.822

Domestic pig density 43.807 ± 6.533 0.822 ± 0.248

Anthropogenic† 16.377 4.163

Urban accessibility 11.512 ± 2.904 3.803 ± 2.391

Population density 2.811 ± 2.735 0.275 ± 0.096

Nighttime light 2.054 ± 0.725 0.085 ± 0.045

Habitat† 39.816 95.015

Water vapor pressure 13.678 ± 3.921 56.388 ± 6.339

Land cover 10.255 ± 4.126 2.191 ± 2.318

Mean temperature 6.173 ± 1.827 28.547 ± 2.848

Elevation 4.483 ± 1.496 3.097 ± 0.896

Annual cumulative precipitation 2.855 ± 0.757 0.655 ± 0.286

NDVI 2.371 ± 0.573 4.138 ± 1.099

� BRT: boosted regression tree; NDVI: normalized difference vegetation index.

†Sum of the relative contribution for each category.

https://doi.org/10.1371/journal.pone.0267128.t001

Fig 2. Maps of global spread risk level for African swine fever, ranging from 0 (grey) to 1 (red), which were derived

from domestic pigs (A) and wild boars (B) respectively.

https://doi.org/10.1371/journal.pone.0267128.g002
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wider geographical distribution than that derived from wild boars. Validation statistic index

revealed that the ensemble 150 BRT models indicate a high performance in quantifying the

spread risk level of ASF derived from domestic pigs (AUC-ROC of training dataset 10-fold-

cross: 0.957 ± 0.003; AUC-ROC of validation dataset: 0.957 ± 0.007) and wild boars

(AUC-ROC of training dataset 10-fold-cross: 0.992±0.001; AUC-ROC of validation dataset:

0.991±0.002). We also generated the predicted spread risk maps using the 95% confidence

intervals of the ensemble BRT models, as shown in S1 and S2 Figs.

The number of domestic pigs at risk

We calculated the number of domestic pigs located in an area at risk of ASF by combining the

global predicted disease infection risk map with the fine-scale global domestic pig population

surface. First, the threshold predicted risk values of 0.63 and 0.88 were adopted to convert our

predicted infection risk maps (Fig 2) into binary surfaces (S3 Fig), which were determined to

incorporate 90% of all the ASF case locations derived from domestic pigs and wild boars

respectively. Every 5 km x 5 km pixel in the risk map with a value above the threshold value

was considered at risk for ASF infection. Next, we multiplied the generated binary risk maps

by the global domestic pig population surface, and finally we summed across all grids by conti-

nents (countries) to estimate the population at risk. Table 2 listed the domestic pig population

(thousands) at risk of ASF transmission for each continent and the top five countries contrib-

uting to the potential domestic pig population at risk. We summed the swine populations at

risk and have identified about 1,388 million (52% of the total swine population) swine globally

living within areas that are suitable for ASF transmission. Asia contributes most of the pig pop-

ulation at risk globally, with 588.6 million head, of which China holds an important share (423

million). There are about 433 million pigs at risk in Europe, with half of those living in Ger-

many, Spain, Poland, France and Demark. In the Americas, more than 340 million pigs live in

the ASF risk zones, with approximately 48 percent of the population living in the United States.

About 22 million pigs living in Africa are at risk of ASF, of which countries of Nigeria, Uganda

and South Africa accounting for 50 percent. In Oceania, roughly 4.8 million pigs are living in

risky areas for ASF, the largest proportion of which live in Australia (about 4 million).

Discussion

ASF is sweeping the global pig industry [44]. However, the potential geographic extent of ASF

infection zones is unknown, as are the risk factors associated with it. Based on a modelling

framework, we paired the assembled contemporary records of ASF cases with a set of livestock,

anthropogenic and habitat correlates to quantify the risk factors and the risk of potential

Table 2. The domestic pig population (thousands) exist in the predicted potential risk areas for African swine fever within each continent and the top five countries

contributing to these population at risk.

Country Population Country Population Country Population Country Population

Scenario A.

America

(340,352)

United

States

163,471 Asia

(588,633)

China 423,245 Europe

(433,094)

Germany 59,676 Oceania (4,796)

& Africa (22,000)

Nigeria 6,333

Brazil 74,149 Vietnam 64,101 Spain 45,973 Australia 3,944

Mexico 31,092 South

Korea

19,488 Poland 40,260 Uganda 2,674

Canada 24,195 India 17,893 France 38,533 South

Africa

2,021

Colombia 7,212 Japan 14,721 Denmark 33,611 Cameroon 1,739

https://doi.org/10.1371/journal.pone.0267128.t002
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spread of ASF worldwide. Given the high cost of active surveillance and the limited resources

of veterinary services in some countries [45, 46], risk-based surveillance can save costs and

help allocate limited resources reasonably to maximize utility. This study provided an impor-

tant baseline for monitoring the risk of spread of ASF by estimating a possible range of infec-

tion zones and the number of domestic pigs in at-risk areas.

The predicted infection risk maps reveal that ASF has the potential to be spread to many

parts of the world, especially in the northern hemisphere. For instance, in the United States,

the potential geographic extent of ASF derived from domestic pigs or wild boars are mainly

distributed in several states in the northeast, such as Wisconsin, Illinois, Indiana, Michigan,

Ohio, Pennsylvania and New Hersey. The potential geographic extent of ASF derived from

domestic pigs is different from that for wild boars. The former is influenced strongly by density

of domestic pigs, while the latter is associated with natural habitat covariates. In addition, the

pixel-level uncertainty of the ensemble BRT models was also quantified using the standard

deviation method, as shown in S4 and S5 Figs. The uncertainty maps suggest that the uncer-

tainty of the ensemble BRT approach is low as a whole.

Several previous literatures have linked climate-related covariates to the presence of ASF

[23]. These climate factors affect the habitat distribution of wild boars and soft ticks [24, 33–

36], which could reflect the spatial distribution of the diseases to a certain extent. Compared

with these studies, we used more abundant spatial covariates (i.e., anthropogenic and natural

habitat factors), and combined with BRT modeling procedure to specifically mine the complex

relationships between spatial covariates and the presence of African swine fever, as presented

in S6 and S7 Figs. For example, domestic pig population is positively associated with the occur-

rence of ASF in domestic pigs, while there is a negative relationship between domestic pig pop-

ulation and ASF derived from wild boars.

By combining the domestic pig population maps with the estimated risk maps, we esti-

mated that nearly half of the world’s domestic pigs (1.388 billion) is raised in the predicted

high-risk zones. Given there are no commercial vaccines available to eradicate ASF, improving

biosafety in pig farms is currently the best way to prevent the disease [47]. For the endemic

zones, it is suggested that all pigs in the case farms should be slaughtered quickly, and safe dis-

posal should be applied to all dead and slaughtered pigs and relevant products. The contami-

nated materials (i.e., excreta, leftover feed and sewage) should be cleaned and disposed of

safely. The importation and exportation of susceptible animals and related products should be

suspended when needed. For the areas belonging to the predicted high-risk zones, it is neces-

sary to strengthen biosafety education to not only pig farmers but the public. This is important

for the prevention of ASF and to improve the awareness of biosafety in pig farms. For example,

protection measures should be taken to prohibit feeding of unheated swill to pigs, and avoid

domestic pigs having contact with wild boars and soft ticks. In addition, quarantine should be

carried out in pig farms during introduction, to reduce the risk of ASF.

There are some limitations in this study. First, considering not all continents have the same

sensitive surveillance system, the notified cases in several zones (i.e., Africa) may be under-esti-

mated, which may bring some uncertainty to the analysis. Secondly, the estimated spread risk

maps can be interpreted to predict the potential geographic extent of ASF in the world, rather

than where the disease will be spread in the future. A strong spatio-temporal prediction of the

geographic distribution of ASF spread requires data on the movement of live pigs and pork

products, farm management and migration of wild boars, which were not yet available when

conducting this study. For future work, we will cooperate with multiple business units to col-

lect more data (i.e., the movement of pigs and pork products, and farm management) to

improve the model. Besides, we will combine the profits and costs of domestic pig production

to evaluate the economic losses that ASF may lead to on country and global scale.
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Supporting information

S1 Fig. The global spread risk level for African swine fever derived from domestic swine.

(TIF)

S2 Fig. The global spread risk level for African swine fever derived from wild boar.

(TIF)

S3 Fig. Binary maps of global spread risk level for African swine fever.
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45. Urner N, Seržants M, Užule M, Sauter-Louis C, Staubach C, et al. (2021) Hunters’ view on the control of

African swine fever in wild boar. A participatory study in Latvia. Prev Vet Med 186: 105229. https://doi.

org/10.1016/j.prevetmed.2020.105229 PMID: 33291039

46. Gilbert M, Golding N, Zhou H, Wint GRW, Robinson TP, et al. (2014) Predicting the risk of avian influ-

enza A H7N9 infection in live-poultry markets across Asia. Nat. Commun. 5: 4116–4116. https://doi.

org/10.1038/ncomms5116 PMID: 24937647

47. Denstedt E, Porco A, Hwang J (2020) Detection of African swine fever virus in free-ranging wild boar in

Southeast Asia. Transbound Emerg Dis. 68(5):2669–2675. https://doi.org/10.1111/tbed.13964 PMID:

33351995

PLOS ONE Risk factors and potential geographic extent of African swine fever

PLOS ONE | https://doi.org/10.1371/journal.pone.0267128 April 21, 2022 12 / 12

https://doi.org/10.1051/parasite/2009163191
https://doi.org/10.1051/parasite/2009163191
http://www.ncbi.nlm.nih.gov/pubmed/19839264
https://doi.org/10.1186/s12879-016-2019-8
https://doi.org/10.1186/s12879-016-2019-8
http://www.ncbi.nlm.nih.gov/pubmed/27881079
https://doi.org/10.1016/j.ttbdis.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/24183576
https://doi.org/10.1016/j.prevetmed.2021.105317
https://doi.org/10.1016/j.prevetmed.2021.105317
http://www.ncbi.nlm.nih.gov/pubmed/33744674
https://doi.org/10.1016/j.scitotenv.2020.144275
http://www.ncbi.nlm.nih.gov/pubmed/33385656
https://doi.org/10.1186/s13071-019-3778-z
http://www.ncbi.nlm.nih.gov/pubmed/31703720
https://doi.org/10.1093/cid/ciy1050
https://doi.org/10.1093/cid/ciy1050
http://www.ncbi.nlm.nih.gov/pubmed/30535175
https://doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
https://doi.org/10.1016/j.tvjl.2017.12.025
http://www.ncbi.nlm.nih.gov/pubmed/29486878
https://doi.org/10.1016/j.prevetmed.2020.105229
https://doi.org/10.1016/j.prevetmed.2020.105229
http://www.ncbi.nlm.nih.gov/pubmed/33291039
https://doi.org/10.1038/ncomms5116
https://doi.org/10.1038/ncomms5116
http://www.ncbi.nlm.nih.gov/pubmed/24937647
https://doi.org/10.1111/tbed.13964
http://www.ncbi.nlm.nih.gov/pubmed/33351995
https://doi.org/10.1371/journal.pone.0267128

