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Abstract 
 

Canola, also known as rapeseed (Brassica napus L.), is an oilseed that produces a healthy food-

grade oil, canola meal by-product, and biofuel. It is the fourth most grown grain in Australia. 

Genetically modified (GM) canola currently represents approximately twenty percent of 

national canola production; hence, with clashing public and industry perceptions of genetically 

modified organisms (GMOs), transparency and traceability must be enabled throughout the 

supply chain to protect markets and relationships with consumers. GM canola must not cross-

contaminate non-GM canola as our largest export market, Europe, has extremely strict 

protocols on GMOs. GM and non-GM canola cannot be differentiated by the human eye, with 

polymerase chain reaction (PCR) methods currently the main alternative, which is expensive 

and time-consuming. This thesis evaluates the potential to differentiate GM from non-GM 

canola using the novel, rapid, and non-destructive technique of hyperspectral imaging 

combined with machine learning. 

Hyperspectral imagery captures and processes wavelengths beyond simply red, green, and 

blue. It has a pre-existing multitude of uses including the characterisation and variety 

identification of other grains. In this study 500 images each of non-GM and GM canola seeds 

were captured. Seeds were placed on a black background with two lights sources. Images were 

captured from the 400nm to 1000nm wavelengths, a total of 80 bands, at a 25-millisecond 

exposure time. These images were run through a convolutional neural network in Keras for 

analysis. The high dynamic range and raw files were combined into a NumPy file for the 

hyperspectral image generator. Contrary to expectations, however, the models using the bitmap 

image files performed similarly to the models receiving the hyperspectral images. Regardless, 

both produced high validation accuracies around 90%, indicating a detectable phenotypical 

difference between the two, and further studies could lead to the development of a new 

approach to GM canola detection.  
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Chapter 1. Literature Review 

 

 
1.1 Introduction: Canola in the Agricultural Industry  

 

The agricultural sector in Australia is worth $67 billion (2019-2020 financial year), 

accounts for 11% of the total national exports, and significantly contributes to Australia’s gross 

domestic product (GDP) and workforce (Weragoda & Duver, 2021). As a result of Australia’s 

relatively small population and large production potential, around 70% of agricultural 

commodities are exported annually – a large proportion of which is made up of grains such as 

wheat, barley, oats, and canola.   

 

Characterised by its bright yellow flower, canola (Brassica napus L.) was developed from 

a rapeseed cultivar in Canada in the 1970s. Traditional rapeseed contains high amounts of 

erucic acid (<55%) and glucosinolate compounds (>100μmol/g) which negatively affects 

colour, palatability, and nutritional value - as opposed to canola which contains less than 2% 

and 30μmol/g of the two respectively (ACIL-Tasman, 2007). As an oilseed, modern canola 

produces a healthy and popular food-grade oil and high protein feed source for livestock as a 

by-product. Canola oil is also particularly popular for use as an environmentally friendly and 

renewable biofuel due to its comparatively stable properties, high yield potential, and high oil 

content (Ge et al., 2017; McKeon, 2016).  

 

Canola is also commonly used as a winter rotation break crop for weed and disease 

management (ACIL-Tasman, 2007). In Australia, roughly three million tonnes are produced 

annually, 40-50% of which comes from Western Australia. Increased prices and optimum 

conditions experienced and forecasted recently, however, has seen the area planted and yield 

per hectare both increase, with the 2021/22 season production expected to exceed five million 
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tonnes (ABARES, 2021a). Known for its high quality, food safety, and for being in reliable 

supply, Australian canola contributes 15-20% of the global canola export trade (AEGIC, 2021) 

and has achieved record pricing, averaging over $A600/tonne in the first half of 2021 

(ABARES, 2021b) before reaching highs around $A1000/tonne by the beginning of the 

harvesting season in 2021 (Brann & Prendergast, 2021).  

 

Although there is a competitive global market for canola, demand for both canola oil and 

meal is predicted to continue to overtake supply and drive prices up, especially as Canadian 

and European Union (EU) supplies dwindle after an environmentally challenging year; 

Australian farmers are in a good position to take advantage of this (ABARES, 2021a). 

Concurrent to the climatic/seasonal, and macroeconomic conditions driving supply and 

demand, the uncertainly and unpredictability apparent in the current COVID pandemic will 

also mean biofuel demand will be largely determined by the journey to recovery (ABARES, 

2021a).  

 

The EU is the main market for Australian canola – particularly for use as a biofuel as it 

aligns with the sustainability criteria for the European Union Renewable Energy Directive 

(AEGIC, 2021). The EU market, however, has strict protocols on genetically modified 

organisms (GMOs); the complexity of GMOs and related biotechnology is suggested to be why 

many consumers reject it – they simply do not understand it (Phillips et al., 2001). Regardless, 

it is therefore important to protect this market and all of Australia’s trading relationships by 

maintaining and improving biosecurity standards, transparency, and traceability along the 

agricultural supply chain – and for canola, this includes keeping GM and non-GM canola 

separate (AEGIC, 2021).  
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After gaining approval by the Gene Technology Regulator in 2003, multiple varieties of GM 

canola became available and were adopted in most Australian states after most moratoria lifted 

in 2008 (ACIL-Tasman, 2007; Smyth et al., 2014). Genetically modified canola now represents 

around 20% of the total national canola production (AEGIC, 2021). This figure is expected to 

increase as weed prevalence becomes an increasing issue in cropping systems – as most 

varieties of GM canola have been modified to be herbicide-tolerant (i.e. from glyphosate), 

allowing growers to spray their canola crop to kill the weeds but without significantly affecting 

the plant (Genetically Modified (GM) Canola in Australia, 2018). GM canola in Western 

Australia has historically exhibited slightly lower oil content and slightly higher moisture 

content (Paull, 2019). GM canola adoption has also been reported to provide greater 

management flexibility and crop performance in stressed conditions. Conversely, barriers to 

adoption include cost and market considerations, logistic issues, and product value (Hudson & 

Richards).  

 

GMOs are characterised by having part of their genetic material, e.g., DNA strands are 

altered, removed, or added to (from an external source), in some way (ACIL-Tasman, 2007). 

There continues to be strong clashing public and industry perceptions of GMOs and hence, 

transparency and traceability must exist throughout the supply chain to protect markets and 

relationships with consumers. As our largest export market - the EU, has strict protocols on 

GMOs, GM canola must not cross-contaminate non-GM canola (AEGIC, 2021), and although 

the industry is currently fairly successful at separating the two, it will become more difficult as 

GM canola production increases and market regulations tighten.  

 

In order to uphold Australia’s status of high standards for food safety and consistency, 

biosecurity protocols, standards, and technologies must continue to develop and improve. Most 

of the grain sample checks at collection sites are completed by trained personnel which can be 
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very laborious, subjective, and often inconsistent (Ravikanth et al., 2015). Fraught with 

limitations, the grain inspection processes illustrate a clear gap that could be filled with 

innovative technologies and artificial intelligence. For example, using hyperspectral imagery 

(HSI) and machine learning has the potential to overcome these issues by making grain 

sampling processes more automated. This would also make the process recordable – helpful in 

the event of a trade dispute and illustrates the extreme pre-existing and potential value in 

traceability and trade market relationship protection in the increasing globalisation of products 

(Igne, 2009).  

 

Identifiable barriers to this and other relevant innovations include (bio)technological 

rules and government roles in the canola industry, as well as low market rates of return (of 

research and development investment); conversely, factors such as increasing available canola 

varieties encourage grower confidence and can support holistic technological industry growth 

(Smyth et al., 2014).  

 

1.2 Grain Exportation in Australia  

Australia exports canola all over the world, particularly the EU (i.e. Germany, France, 

and Belgium), China, Japan, the U.A.E, Nepal, and Malaysia (AEGIC, 2021; Kingwell, 2020). 

It is evident after the recent tariff changes to Barley exports into China that disruptive market 

changes to agricultural systems can be detrimental. China has specifically banned the 

importation of barley from Co-operative Bulk Handling (CBH) – the largest exporter of grain 

in Western Australia, supposedly because of the excessive amount of weed seeds and 

contaminates (Central, 2020) – this highlights the need for improved biosecurity and 

contamination identification processes. Like barley, non-GM canola is also exposed by a single 

market dominance – namely the EU, so, the canola industry would be at risk if similar 

contamination claims surface (Kingwell, 2020). Conversely, canola prices and demand are also 
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extremely dependant on other trade country relationships. For example, the Canada-China trade 

dispute in 2019 saw the suspension of Canadian canola to China, with trading levels still below 

average (Wells & Slade, 2021). These international trading events open up opportunities for 

Australian grain markets to fill in. 

 

1.2.1 Grain Sampling and Contaminants 

International quality assurance procedures involve multiple steps throughout the supply 

chain, including collections sites such as the grains exporting company CBH. Australian canola 

quality standards for growers are published by the Australian Oilseeds Federation (AOF) and 

Grain Trade Australia (AEGIC, 2021). Some automated technology such as the Infratec 

Analysis is already performed, which measures protein, moisture, and temperature, however, 

other checks, such as for contaminates, screenings, and weight is manually captured. 

Contaminants and general grain assessment include storage pests, insects, 

soil/earth/rocks/sticks, weed seeds, cross-contamination, fungi, disease, and damaged seeds; 

all of which have upper count/amount limits and can be classified into levels of contamination 

based on their severity (CBH, 2020). Having control methods to remove these contaminants is 

vital to food safety and consumer satisfaction, as well as general seed quality and storage 

longevity i.e. to prevent infestations, mould growth, or quality degradation (Neethirajan et al., 

2007).  

 

1.2.2 Current Methods of GM Canola Detection 

Currently, GM canola grains are identified using molecular testing, such as polymerase 

chain reaction (PCR) detection methods. This process involves collecting and combining 

multiple samples to form a composite sample, before a small subsample is extracted and tested. 

Of course, this method lends itself to sampling error; hence, statistical approaches have been 

utilised to determine the minimum number of samples needed, often using the concept of 
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binomial distribution to provide confidence levels in the data outputted (Emslie et al., 2007). 

Previous studies have explored statistical approaches to develop sampling protocols tailored to 

the different GM level thresholds of different export markets, including the use of enzyme-

linked immunosorbent assays (ELISA) which have been validated to provide up to 99% 

accuracy in some cases (Emslie et al., 2007). Efforts such as this are commendable but still do 

not seem to take enough consideration into overall time-efficiency and availability/accessibility 

for grain receival sites outside of the main ports, suppliers, and growers.  

 

Other studies have tested the sensitivity of multiplex PCR procedures such as 

simultaneous amplification profiling (SAP), which have illustrated to provide reliable GM 

canola identification using a small amount of DNA (James et al., 2003). This technology has 

been described as commercially applicable with detection limits around 0.013-0.025% (Kim et 

al., 2015). However, methods available and possible at all receival sites that can be combined 

with other detection technologies have not been identified or explored to their full potential as 

of yet.  

 

Regardless of the testing method used, it is likely that in the short term, segregation of 

GM and non-GM canola will become more significant as markets become less tolerant and as 

price penalties are expected to increase – historically around seven percent (Paull, 2019). Non-

GM canola receival standards currently allow 0.9% GM canola cross-contamination after 

international markets recognised the difficulty in separating and differentiating the two (Emslie 

et al., 2007). This threshold may decrease in response to market and consumer pressure, 

however (Paull, 2019).  
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1.2.3 Current Methods of Insect detection 

Similar to cross-contamination, insect detection, specifically stored grain insects, is one 

of the most concerning biosecurity risks for the grains industry. Pests such as the khapra beetle, 

Trogoderma granarium, could compromise the whole grains industry if introduced and are 

unfortunately difficult to detect and identify (Agarwal et al., 2020). Current detection 

techniques include grain probes and insect traps, pheromone level readers, visual lures, 

acoustical amplification, electrical conductance, funnel method, near-infrared (NIR) 

spectroscopy, machine vision, and x-ray. All of which have advantages and disadvantages - 

often relating to speed, effectivity, and detection limits relating to life cycle stages (Neethirajan 

et al., 2007). Previous research has indicated that hyperspectral imagery, coupled with deep or 

machine learning and similar technologies, has the potential to be a viable method for insect 

analysis (Agarwal et al., 2020), offering a promising alternative to taxonomical diagnosis. 

Although insect, specifically stored grain insect, detection and identification is extremely 

important, insects, whether field or stored grain, are also routinely fumigated at grain collection 

sites, reducing the risk of insect contamination and export concerns specifically. However, this 

same technology could be applied and tested against contaminations that cannot be neutralised 

via fumigation or simple methods such as sieving, such as grain cross-contamination – i.e., 

wheat in barley or GM in non-GM canola. Although this has not been tested specifically before, 

similar research has outlined its potential for identifying other factors in other grains, 

supporting the idea that hyperspectral imagery could be used to differentiate GM canola from 

non-GM canola. This would be even more valuable if the eventual development of the 

diagnostic tool were able to detect multiple contaminations such as grain and field insects, 

foreign material, and cross-contamination.  
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1.3 Hyperspectral Imagery  

HSI and related technology involves capturing and processing images to predict or 

reveal information (Feng & Sun, 2012).  Similar to a standard camera, a hyperspectral camera 

takes images that are composed of an array of pixels created by scattered or absorbed light at 

different wavelengths (Dale et al., 2013). Standard images are often referred to as arrays of I 

rows and J columns with the intersections or coordinates having a grey value or red, green, 

blue (RGB) triplet colour pixel value. Colour images hence have three bands which provide 

different information; multivariate images split the information up into more wavelength bands 

which then becomes a 3D array (IxJxK) and often will include different modes of information; 

whereas hyperspectral images are characterised by having many bands – in the tens or hundreds 

and can express pixels as a spectrum (Geladi et al., 2007). This three-dimensional data is often 

referred to as a ‘hypercube’ (Caporaso et al., 2018). These numerous and narrow bands of 

information expressed as a spectrum can then be illustrated as a spectral signature which builds 

the foundations of object identification or categorisation and eventually data classification 

(Paoletti et al., 2019). Hyperspectral images are analysed in a variety of ways including the use 

of a principal components analysis (PCA) framework. PCA decomposes these matrices, also 

known as dimension reduction, to increase interpretability and visualisation (Gallagher & 

Lawrence, 2020). The application of HSI includes the subcategories of visible, fluorescence, 

thermal, and spectral imaging (Moghimi, 2019). Most uses for HSI in agriculture uses 

wavelengths above 1000nm, but depending on the use, this can range, with some prediction 

models requiring very specific wavelengths (Erkinbaev et al., 2017).  

  

1.3.1 Near-infrared Hyperspectral Imagery 

Near-infrared hyperspectral imagery covers the visible lights spectrum, but also 

wavelengths beyond that of what the human eye can see on the electromagnetic scale, including 

short wave NIR, near, middle, and far-infrared. NIR HSI can be used to determine chemical 
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and physical compositions (and their spatial distribution) – suggesting significant potential in 

grain inspection and contamination detection, from cross-contamination and insect or weed 

seed detection to variety and quality identification (Caporaso et al., 2018). As opposed to 

molecular testing, near-infrared hyperspectral imagery is also favoured for its ability to be 

easily replicated for research and its object identification/detection capabilities in industry 

practice without needing to destroy or alter the subject (Caporaso et al., 2018). Non-destructive 

analytic assessments are preferable in this, and many other industries, but especially in 

agriculture where the nature of the supply chain dictates multiple testing stages are necessary 

(Feng et al., 2019). Comparative to other methods, it is also a lower cost and more rapid 

analytical method, making it ideal in industry and research. Additionally, HSI systems 

currently used in industries are already renowned for their low power use, heat emission, and 

size, as well as their speed of processing and reliability (Manley, 2014).  

 

1.3.2 Data Collection 

Hyperspectral imagery also addresses one of the greatest bottlenecks restricting the 

efficiency of grain production and processing - data collection and processing. This applies to 

every aspect of the supply chain, from plant breeding and on-farm collection of phenotypic 

data such as crop health, disease susceptibility, or biomass production, to sampling the grain at 

collection sites and ports (Walter et al., 2017). The current laborious, inefficient, and 

inconsistent methods of sampling and analysis highlight the value of technologies, like HSI, in 

significantly increasing the speed and accuracy of processes along the supply chain - driving 

research behind, and the development of, these technologies (Dantes, 2020). This area of 

technology is important as it can protect trade markets and international relationships by 

reducing the risk of contaminations, and therefore disputes and possible market losses. \ 
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1.3.3 Applications in the Agricultural Industry 

Hyperspectral imagery allows for the identification of a material’s spectral signature – 

made up of its physical and chemical properties (Ravikanth et al., 2015). It has been a 

significant focus in many studies as its versatility means it can be used across many areas, 

industries, and disciplines including a large range of applications in the whole agricultural 

supply chain and for food safety and security (Feng & Sun, 2012). As technologies rapidly 

change and develop, HSI technology continues to evolve and move very quickly. Current 

applications cover everything from plant breeding to the pre-farm gate, and then the post-

farmgate.  

  

1.3.3.1 Remote Sensing for Plants 

Remote sensing (RS) was one of the first uses of hyperspectral imagery in and outside 

of agriculture. As the name implies, RS involves collecting spatial and temporal information, 

generally relating to crop productivity/health status, from a distance, without physically 

touching the object/s in question or having to conduct physical or chemical tests, whether this 

is from close range (like a hand-held device) or from far (satellite, drone, or plane) (Weiss et 

al., 2020). Being able to use multi- or hyperspectral imagery on a grand scale and then using 

those images to measure energy reflectance means RS is an ideal tool for researchers and 

farmers, because of its speed and accuracy in conveying information (Aggarwal, 2004). 

 

RS is commonly used to monitor plant health in both urban and rural environments, 

often combined with geographical positioning systems (GPS). In particular, RS is commonly 

used to map normalised difference vegetation index (NDVI), the measure of greenness in cities 

to support council planning and in cropping enterprises (Khanal et al., 2020), which can help 

to identify higher and lower areas of productivity and estimate yield (Weiss et al., 2020). Doing 

so also supports the growing movement of precision agriculture - which entails using spatial 
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and temporal information to make more acute decisions about management practices such as 

fertiliser or irrigation input levels, time of sowing, spraying, or harvesting (Weiss et al., 2020).  

 

The biggest barriers to the adoption of RS technologies generally concerns cost, 

complexity, and the lack of tools available to analyse the data collected (Weiss et al., 2020). 

Although acquiring and processing the large amount of data associated with HSI is still a 

challenge in this area, multiple products and developments have been introduced in the 

industry, mostly only picked up by early adopters and larger corporations however (Weiss et 

al., 2020). There has also been a plethora of studies using unmanned aerial vehicles to capture 

HSI, such as drones, or using close range HSI technologies for estimating biomass and soil 

properties, identifying invasive plant species, detecting disease, and phenotyping (Lu et al., 

2020). Whilst this has been particularly exciting for researchers and farmers alike, on a more 

holistic level, this technology has the capability to completely change how the agricultural 

industry tackles the increasing threat of food insecurity and climate change by supporting 

decision making with the wealth of information it makes accessible (Weiss et al., 2020).  

 

1.3.3.2 Food Content and Compositions  

Another particularly valuable area of HSI use, presently and in future, is food content 

and composition examination. This is inclusive of pre-harvest (crops) to post-harvest (grain) to 

post-processing and production (food items). For example, there has also been research 

conducted to determine if hyperspectral imagery can support the prediction of nitrogen, water, 

and salt levels in wheat – three of the most significant growth determinants or potential growth 

constraints. A study by Bruning, et al. (2020) saw significant potential in using this technology, 

especially as it is non-destructive and efficient. Their data set and range of treatments limited 

the strength of their prediction model, however, and so further research should aim to have a 

larger range of treatments. 
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Similarly, post-harvest focused studies have explored the use of HSI in quality 

assessment. A review by Caporaso et al. (2018) highlights the scientific progress made in 

recent years using HSI, especially NIR, for the quality and character assessment of cereal 

grains. For example, studies have revealed the potential for use in identifying wheat 

contaminates (Ravikanth et al., 2015), grain quality (Caporaso et al., 2018), insect damage 

(Singh et al., 2010), and the ability to predict protein levels or sprouting in cereal grains – this, 

in particular, would be of utmost value along multiple stages of the supply chain, particularly 

as the current quality check at grain receival sites for sprouting includes a falling numbers test 

which requires physically making dough and is considered laboursome and inefficient 

(Shafqat, 2013). Multiple studies in this area have been conducted with mixed results, often 

contributed to misclassified kernels, but illustrates significant potential especially when models 

included PCA and short-wave infrared HSI.  

 

Similar quality assessment studies have also been conducted in the horticultural sector, 

including colour, ripeness, bruising identification, and component distribution in fruit and 

vegetables such as tomatoes, apples, kiwifruits and peaches; as well as in safety and 

contamination including identifying surface defects, bacteria, faecal matter, and soil matter on 

apples (Baeten et al., 2007). 

 

Other studies have focused on the application of HSI to analyse and identify food 

contaminants, in both grains and meat, and predict food compositions – specifically for any 

substances or compounds that risk the food safety of the product. Similarly, many of these 

studies saw potential in this technology but further work was needed to increase the accuracy. 

The reliability of the results can also be questioned in some of the research where HSI has only 

analysed small areas of the food product when contaminations/compositions are not always 

uniform (Dantes, 2020).  
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1.3.3.3 Inspection and Safety 

Beyond food composition identification, near-infrared hyperspectral imagery is also 

used in inspection and safety - the sheer versatility of HSI highlights its value across the food 

supply chain. For example, NIR HSI technology can be used to detect food-borne pathogens 

and physical, chemical, or biological hazards. Studies have previously been conducted to 

identify a range of these factors in food using HSI as it is less limited than other technologies 

and has illustrated immense promise in its potential application (Feng & Sun, 2012).  

 

Although small data sets continue to be problematic for research in this area, further 

research would be very valuable if applied to a larger variety of areas. For instance, there are 

numerous studies on utilising HSI to classify different varieties of grains such as wheat and 

barley (Bao et al., 2019). GM and non-GM maize have also been successfully and accurately 

differentiated through the use of HSI combined with chemometric data analysis (Feng et al., 

2017). If the same technology could be used to identify cross-contamination - different grains 

in a sample (such as wheat in barley, or mixed varieties, or GM canola in non-GM canola) – 

quickly and accurately, it could replace the current time-consuming processes for personnel 

and completely evolve the biosecurity aspects of grain supply chains. 

 

Cross-contamination is a very significant issue, for many reasons. In terms of trading, 

it can dictate if loads are acceptable to export – such as GMO detection for European bound 

shipments, or if the quality is within the acceptable ranges to be sent to a certain market; but 

cross-contamination is also very important for the end-consumers themselves. For example, 

cross-contamination can be life-threatening when considering gluten and non-gluten 

containing grains. A recent study was conducted to test if NIR HSI could be used to 

differentiate oats from other grains for quality control and assurance for non-gluten products 

(Erkinbaev et al., 2017). This study outlines the potential of reducing analysation time and 
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increasing accuracy; however, further research would need to be conducted to improve the 

model created as predictions were only based on limited wavelengths.  

 

Access to technology that can quickly and accurately identify cross-contamination, 

particularly non-destructive methods like HSI, is particularly significant as the risk factors 

leading to cross-contamination events are likely to become more common in future. For 

example, cross-contamination is at a higher risk in circumstances when: growers include 

various cropping rotations in their farm management practices and/or the farm is mixed 

practice; when farmers store grain in response to the threat of natural disasters, such as 

droughts; when grain prices do not reflect a market they want to buy or sell in; and as a result 

of herbicide and pesticide resistance at an on-farm level (Malcolm et al., 2009); all of which 

are becoming increasingly common situations.  

 

1.3.3.4 Red Meat Quality Prediction 

NIR HSI has also been used to develop a non-invasive quality analysis for beef and 

lamb. As eating quality is affected by a range of factors such as visual evaluations, i.e. meat 

and fat colour, and taste factors, such as tenderness, juiciness, and flavour, being able to predict 

these factors – without having to consume the meat – is vital to quality assurance and pricing 

schemes (Qiao et al., 2015). Similar studies have utilised this technology to predict moisture 

content in beef, lamb, and pork and illustrate the significant potential for industry use – as 

similar to grains, a quick but accurate and non-destructive method will always be preferred 

(Kamruzzaman et al., 2016). Dixit, et al (2021) successfully used deep convolution neural 

networks to predict intramuscular fat and pH (two of the main eating quality indicators of meat) 

in beef, lamb, and venison using HSI. Similarly, Hoonsoo, et al.(2018) were able to use HSI to 

determine total volatile basic nitrogen content in pork to a high degree of accuracy, indicating 

its potential to replace the traditional and chemical methods of measurement. 
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Imaging systems have even been tested for use in meat safety. There have been several 

studies demonstrating how HSI technologies could detect contaminations, tumours, defects, 

and diseases in meat, particularly in relation to poultry (Baeten et al., 2007); as well as detecting 

bone fragments and other foreign materials (Lim et al., 2020). A study by Zheng, et al. (2019) 

also reported the determination of coefficients of 0.98 when using HSI technology to detect 

duck meat in minced lamb. The multitude of studies illustrating high accuracies and rapid 

analysis of inputs emphasises the large scope and diversity that HSI technologies could have 

in the agricultural industry.  

 

1.4 Machine Learning 

Machine learning (ML) represents the step between data collection and task performance. 

Where HSI can be used to gather large amounts of important data, ML is the necessary tool to 

utilise this data and create technologies that can complete a task. ML and HSI, together, have 

already been successfully utilised in a number of areas, including agriculture for the 

development of technologies associated with remote sensing, precision agriculture, and 

mapping plant stress and soil erosion (Paoletti et al., 2019). ML is valuable as it is less 

instructional coding orientated, and more teaching inspired, it is the backbone of areas in 

automation, machinery, and artificial intelligence (AI), combining computer science and 

statistics (Patel, 2021). In ML, computer programming is used to sort, process, and learn data. 

ML is the first step of machines/computers imitating human decisions or skills and therefore 

has incredible potential in areas like agriculture that are so heavily reliant on labour, which can 

be especially physically demanding and time-consuming (Liakos et al., 2018). ML can be 

classified under either supervised or unsupervised learning which ultimately concerns if input 

data is labelled or not (Patel, 2021). A supervised ML environment will include a ‘supervisor’ 

inputting training data which is used to train the model to create an algorithm that can then be 
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used to make predictions which direct how the model will retrain itself on that data set and new 

data. Supervised learning is task-driven, grouping data sets using various statistical means and 

patterns by classification or regression to make predictions. Unsupervised learning is equally 

self-explanatory and is used for more complex tasks and when unlabelled data is involved. This 

involves clustering, looking for similarities in subsamples of data, or association, identifying 

unknown patterns (Patel, 2021).  

  

1.4.1 Deep Learning 

Deep learning (DL) is a subfield of machine learning, only it aims to take a step further 

in accuracy and precision, as well as the possible capabilities. Deep learning requires intense 

machine learning and training with large datasets, but once developed, is flexible and more 

adaptable to other similar technologies (Campesato, 2020). Where machine learning is fed 

input data and provided an algorithm or feature classification by the user to then determine 

outputs, deep learning will does not rely on user input for feature classification and instead will 

determine this itself (LeCun, 2015). Algorithms become increasingly complex as the task 

becomes more complex, but stem from the core concept of linear regression and finding 

correlations between data sets; regressions are further used to create a boundary between data 

points and enable decision making (Campesato, 2020).  

 

DL can compose of multiple processing layers which allow for generalisations, data 

representations, and ultimately the artificial intelligence’s ability to perform abstract tasks. It 

begins by entering training data images, into the system in conjunction with an algorithm, 

together forming a complex matrix or neural type network made up of many layers. Each layer 

is transformed or filtered and passed on to another layer for feature detection before 

classifications can be made. From here new data or images are presented to predict related 

outcomes. This process is encompassed under the umbrella term of artificial neural networks 
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(ANN) – inspired by the learning process of the human brain and its neurons (Campesato, 

2020) having an input layer, an output layer, and hidden layers in between making connections 

like biological neurons or a bipartite graph (Campesato, 2020). Machine and deep learning 

support a vast array of technologies in our modern society (LeCun et al., 2015).  

 

1.4.2 Convolution Neural Networks 

Convolutional neural networks (CNN) are one type of ANN that integrates spectral and 

spatial features particularly efficiently. Like other ANN, initial stages detect recognisable 

features and later stages combine to detect abstract features with the kernels supporting this 

extraction. CNNs filter down the image using kernels to reduce the number of parameters, 

therefore considering only the more significant parts of the image (determined by pixel 

placement and weight) and has only partially connected layers. Hence, CNNs require less 

computation training time than ANNs and also recognise spatial significance, using ‘back 

propagation’ to look back on the weights placed upon the neurons and recognise patterns. 

CNNs can be 1, 2, or 3D which defines how many directions the kernels move with the 

resulting output one dimension above that (i.e., a 2D CNN will move in 2 directions but has 

3D in and outputs). It is important to note, however, that the lower dimensional CNN can 

degrade object shapes, avoidable by using a 3D CNN. Granted, CNN algorithms are one of the 

slower ML classifiers due to the computational complexity of the convolutional layers and 

needing more parameters, which is only exaggerated by using a 3D CNN (Paoletti et al., 2019). 

CNN are the data processing components of artificial intelligence and learning whereby 

multilayered neural networks are used as pattern recognition – like ‘connecting the dots’ 

(LeCun et al., 2015).  

 

Many recent papers have combined HSI with deep learning to marry the large amounts of 

data HSI creates with the powerful data analytical power of DL (Paoletti et al., 2019). 
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Specifically, deep neural networks (two or more hidden layers) are considered particularly 

beneficial for the flexibility in their model structure and the type of data entered into the system, 

as well as their ability to extract information from raw data and adapt to different learning 

strategies from fully supervised to unsupervised. Conversely, the limitations identified include 

their coding complexity and the associated training difficulties, as well as being 

computationally expensive and often requiring extremely high processing power and memory. 

Neural networks also tend to overfit when only having a few training parameters combined 

with frequent degradation of data between the convolution layers. Overfitting is the term given 

where training accuracy may be high, increasing over epochs, but validation or test accuracy 

is low or decreasing over the number of epochs. This happens when the model is memorising 

the training data, by fixating on incorrect or insignificant details and therefore not training 

itself, leading to poor performance with new data (Campesato, 2020).  

 

Lastly, although they have illustrated to be a powerful AI technique, the hidden layers in 

DNNs create the problem of having a ‘black box’ nature. This is because this technique takes 

the inputted data and itself creates an algorithm to classify the data, the user or designer does 

not know how the model has analysed or combined the variables. Hence, there have been some 

ambitious efforts made to visualise the parameters of DNNs, as not knowing what variables or 

parameters the model is focusing on means making interpretations is difficult (Paoletti et al., 

2019) as users are not necessarily aware of what features were used to differentiate image 

categories. Regardless, deep learning is an essential component of recent agricultural 

movements like ‘smart farming’ (Kamilaris & Prenafeta-Boldú, 2018) and will continue to 

provide substantial scientific and technological advances in future.  
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1.5 Conclusion 

Agriculture is an economically, socially, and civilly significant industry that is 

multilayered, complex, and ever evolving. With a large exporting market of grains, to countries 

all over the world, Australia needs to maintain high standards and regulations regarding quality 

assurance (Weragoda & Duver, 2021). Hyperspectral imagery and the use of correlated 

technologies are becoming increasingly popular because of their superior accuracy, process 

speed, and reduced labour inputs (Dantes, 2020). Currently, there is a lot of research and 

development in this area, some of which is centred around grain exports as markets become 

increasingly more competitive and stricter with quality regulations (Central, 2020). 

Contamination of grain is a particularly concerning area. Currently, research has been 

conducted in multiple aspects of grain contamination, such as insect identification, foreign 

materials, and food safety and composition. While much of this research illustrates potential, 

there is a pattern of lower than viable accuracies, as a result of limiting factors including sample 

sizes, and a lack of focus on the potential time and resources saved from the use of this 

technology and the accuracies in relation to current best practices. This highlights the 

possibility for new or continued research in areas such as cross-contamination of similar and 

common grains, like GM and non-GM canola. Research regarding cross-contamination of 

grains and identifying grain varieties, in particular, suggests research in other areas, like the 

detection of genetically modified canola, has promising potential. Combined with the power of 

artificial intelligence tools such as deep learning and neural networks which can discriminate 

images based on features that humans may or may not be able to see, hyperspectral imagery 

has the potential to radicalise the food supply chain and support food safety and food security 

all over the world.  
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Research Gap 

Currently, a large proportion of the grain biosecurity and quality assurance protocols 

at grain receival sites are manually conducted by trained professionals. The sampling process 

is often laborious and time-consuming and can be subject to human error and bias, as it 

involves physically collecting a representative sample of grain from the truck, measuring 

hectolitre and admixture material weights, running a chemical analysis, and visually checking 

for contaminants. For example, to the naked eye, GM and non-GM canola cannot be 

differentiated, and as a result, the risk of cross-contamination occurring between the two is 

high. This highlights the need for change and technological innovation to fill this gap.  

Furthermore, the relative success of previous research experiments offers confidence in 

a project using HSI to differentiate between GM and non-GM canola – which to the 

researchers’ knowledge has yet to be done, as most of the research and tools used to detect GM 

canola concerns molecular testing such as real-time polymerase chain reaction methods 

(Akiyama et al., 2010). 

 

Research Aim 

This project aims to assist in the eventual development of a diagnostic tool that can be 

used in the industry to identify different grain contaminants. This study will specifically 

investigate if near-infrared hyperspectral imagery, coupled with machine learning, can 

differentiate between genetically modified and non-GM canola. The main objective will be to 

develop an algorithm using binary coding from the images taken using the hyperspectral 

camera, before testing our hypothesis. 
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Research Hypothesis  

GM canola exhibits different traits and phenotypic changes as a result of a change in 

the DNA structure and chemical composition. Unlike a normal camera or human eye, near-

infrared hyperspectral imagery can detect these chemical constituents’ vibrational changes. 

Hence, we hypothesise near-infrared hyperspectral imagery combined with machine learning 

will be able to differentiate GM and non-GM canola to a high degree of accuracy and precision.  
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Chapter 2. Hyperspectral Imagery Combined with 

Machine Learning to Differentiate Genetically Modified 

(GM) and non-GM Canola 

2.1 Materials and Research Methodology 

2.1.1 Canola Procurement and Storage 

As a novel study of hyperspectral imagery being utilised as a diagnostic tool to 

differentiate GM and non-GM canola, a composite sample (mixed and blended from all places 

and varieties) of canola was used – only separated by its genetic modification status. The GM 

and non-GM canola were donated by Co-operative Bulk Handling (CBH) from composite 

stacks of canola acquired from across the state in the 2020/2021 harvest season. This ensures 

that the grains utilised in this experiment are from a variety of farms in differing climatic zones 

with a variety of soil types. There are many different varieties within these samples, with the 

main ones including the Hyola varieties, Bonito and Bonanza for the non-GM canola sample; 

and the GM Hyola varieties, Cobra, and Viper varieties for the GM canola sample. The non-

GM canola sample came from CBH’s CAN1 stack and the GM canola sample came from their 

CAG1 stack. Both GM and non-GM canola is separated into CAG1/CAG2 and CAN1/CAN2 

respectively. The numerals 1 and 2 denote their quality grade based on chemical composition, 

seed quality, and foreign materials checks such as insects, admixture, or foreign seeds 

performed when sampled at a grading site (CBH, 2020). The Infratec results for protein and 

moisture were 20.8% and 6.2% respectively for the non-GM canola sample and 21.3% and 6% 

respectively for the GM canola sample. This illustrates no significant difference between the 

two samples in regard to protein and moisture that could be affecting the results. The canola 

samples were kept separately in labelled jars in a cool, dark area throughout the experiment. 
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2.1.2 Hyperspectral Imaging System and Image Acquisition 

The visible near-infrared hyperspectral imaging system used to conduct this experiment 

was located at the State Agricultural Biotechnology Centre (SABC) within the Murdoch 

University, Perth, Western Australia, campus. Attached to a microscope to provide an 

additional ten times magnification, the spectral imager (Applied Science Imaging Model: 

CCD-1300DS, Germany) was connected to the SpectraCube Spectral imaging acquisition 

software. To view images, the spectraview software was used. Two light sources were used to 

illuminate the stage and subject matter as well as support extra wavelengths – a 100W intense 

basking spot/heat lamp and a halogen desk lamp. The desk lamp (globe component) was 

situated 18cm vertically from the bench and approximately 20cm from the stage horizontally. 

The basking spot lamp (globe) was 12cm vertically from the bench and approximately 10cm 

from the stage horizontally (Figure 2.1). 80 bands between the wavelength of 400 – 1000nm 

were captured using this system.  

 

Camera and image optimisation was determined after experimenting with the software 

settings and environmental conditions. A black slide background colour was chosen as it 

mostly eliminated the problem of background reflectivity with each individual canola grain 

being placed on the stage using plastic forceps one at a time. Photographed grain was placed 

in a separate jar in order to ensure there were no repeat images of the same grain. Grain yet to 

be photographed was kept out of direct light, to reduce heat absorption, particularly when the 

basking light was on.  
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The image capture parameters are as follows: 256 frames, 45 steps, and with an 

exposure time of 25ms-1. These conditions were used consistently for all captured images. 

Using the SpectraCube imaging acquisition system, images were saved under three file types: 

bitmaps (BMP), high dynamic range (HDR), and raw and stored on a hard drive to be analysed 

on the image processing software Scyven. The BMP images were 128 x 128 pixels and the 

hyperspectral images captured were 496 x 800 x 80 pixels (height by width by 80 wavelengths, 

representing a 3D image or ‘hypercube’ (Caporaso et al., 2018)). A total of 1015 images were 

entered into the CNN (505 non-GM and 510 GM) after eliminating any incorrectly 

photographed/saved images from those captured. Images were generally captured in sets of 

100 (50 of each grain type) on any given day.  

 

 

Figure 2.8: Hyperspectral Imaging System Setup for Image Acquisition 
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2.1.3 Machine Learning 

2.1.3.1 Dataset description 

The full data set of roughly 1000 images, 500 of each grain type with files separated 

based on date and GM status, were divided randomly into training (70%), validation (20%), 

and test (10%) data subsets using a python script – ensuring that the GMO and non-GMO files 

were kept separate. The training data is used to teach the network the two classes before the 

network will then attempt to correctly identify the validation data, making alterations to the 

network in order to reduce the losses and incorrect classifications. This cyclical process is 

known as an epoch. Once the best model is identified, with the greatest validation data accuracy 

and lowest losses, it is used to run the test data set to determine the model’s final accuracy. 

This was done this way as a study by Hänsch et al. (2017) highlighted concern surrounding the 

randomisation method to separate data by pixels into the train, validate, and test data sets in the 

model as it may compromise the model’s reliability if the network has previously processed all 

the images and data sets are overlapping or very similar. This can be avoided by pre-processing 

the data set into train, validate, and test, and directing them as independent sources for the 

model to use, as done in this study (Hänsch et al., 2017). Furthermore, Bitmap files were kept 

separately and used as the RGB reference. The HDR and RAW file types were combined and 

resized into a NumPy, which is a python library package for matrices and arrays, 224 x 224 x 

80 array to be used as the hyperspectral images for the model. 

2.1.3.2 Image Analysis 

Analysis of bitmap and hyperspectral images were completed using Python code as 

well as in the Scyven software program, which analyse HSI under a principal component 

analysis. Analysing the images in Scyven allowed the light/wavelength intensities or colour 

values to be mapped using the pixel irradiance or ‘illuminate’ function which then graphs the 

images’, or a single pixel’s, spectral signature. This information was used to remove the 
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background, by determining the wavelength with the greatest intensity and removing pixels 

that had a low intensity of that wavelength and isolate the canola grain in Python so further 

image traits could be determined. Maximum vertical and horizontal diameters of the grain were 

determined to roughly estimate the centre of the grain so a 20 x 20-pixel square could be used 

for a basic investigation into the spectral signatures of the grains. This 400-pixel square 

provided numerical intensities at each wavelength for every image. From this data, a mean 

spectral signature for the GM canola images and the non-GM canola images was determined. 

These diameters were also used to calculate the grain size (area and diameter), with results 

mapped as a distribution curve (Figures 2.5 to 2.7).   

2.1.3.3 Convolution Neural Network  

A convolution neural network-based approach was used in this study to determine if 

machine learning can accurately differentiate GM and non-GM canola. CNNs are currently a 

popular tool in machine learning for areas such as pattern recognition  and image classification 

as their deep hidden layers, such as convolution, pooling, and connected, prove highly 

successful (Albawi et al., 2017). The biggest advance of this network is its ability to 

automatically extract features from raw, pre-processed images as it trains itself to classify said 

images (Niu & Suen, 2012). Furthermore, a spatial and spectral classifier provides less ‘noise’ 

so accounting for the spectral data in relation to its spatial context creates more accurate feature 

maps (Paoletti et al., 2019) and hence should be beneficial for this project. The coding software, 

Python3, was run on Google Colab, an online platform to write and execute python coding 

whilst accessing the powerful google computers, using the various opensource machine 

learning libraries NumPy, TensorFlow, and Keras, to develop this binary classifier model. Two 

different scripts were written to create the CNN models for the hyperspectral and bitmap 

images. The skeleton code is based on Francois Chollet’s image classifier script that was altered 

on the GeeksforGeeks.org website. Chollet is a French software engineer who created the 
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machine learning library Keras. Both the HSI and bitmap model included 2D convolution layer 

functions (3 x 3 weighted matrices/kernels move across the image) and rectified linear (relu) 

activation functions with max-pooling (subregions are mapped and the largest existing value 

is outputted) to create a total of three layers with the final fully connected dense layer (all 

neurons from the previous layer are connected to the next) having a dropout rate (randomly 

chosen neurons) of 0.5 to avoid overfitting (Figure 2.2). In the bitmap model, images were 

rescaled to 1/255 with a zoom factor of 0.2 and randomly horizontally flipped in the image data 

generator as a way of augmenting the original data set. Augmentation is used to prevent 

overfitting, where the network memorises the training data set and can classify those images 

well but cannot accurately classify new data, by artificially increasing the data set by adding 

altered versions of the original images. These pre-processing tools, as well as other alterations 

between designs, improved the performance of the CNN model. Augmentation was not used 

in the final HSI model, although a hyperspectral image generator code based on an article by 

Nilesh (2018) was sourced and written, because of a lack of computational power. Chollet’s 

code was designed for jpeg files and so whilst image generator scripts for standard images are 

common, HSI generators/augmentation is not as readily available. A total of 100 epochs 

(number of times the dataset is run through the neural network) were run on both models with 

batch size (how many images were run at once) up to 100 depending on the available ram.  

 
Figure 2.8. Simplified diagrammatic representation of a convolution neural network. 
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2.1.4 Performance Measurement  

2.1.4.1 Confusion Matrix 

Performance measurement is vital in defining the effectiveness of a program. Confusion 

matrixes are a common evaluation tool used in machine learning (An, 2020). Generally, they 

consist of a n x n table plotting actual class against predicted class (n denoting the number of 

classes, so a binary classifier would utilise a 2 x 2 table), to which the true and false (determined 

by the actual classes) positives and negatives (determined by the predicted classes) fit within 

(Visa et al., 2011) (Figure 2.3). True positives (TP) and true negatives (TN) signify the model 

correctly identified the class, or in this case the genetic modification status of the canola grain 

in the image. False positives (FP) and false negatives (FN) signify that the model incorrectly 

identified the class (Zhu et al., 2010). The data within can then be used to mathematically 

calculate various performance measurements such as precision, the proportion of identified 

positive cases (GMOs) that were correct; recall/sensitivity, the proportion of actual positive 

cases (GMOs) that were correctly identified; and specificity, the proportion of actual negative 

cases (non-GMOs) that were correctly identified (An, 2020) (Figure 2.3). High sensitivity 

equates to a high true positive rate which is conservative in predicting negatives (non-GM 

canola). High specificity is the opposite and will be conservative in predicting a positive (GM 

canola) class (Zhu et al., 2010).  

 

Figure 2.9. Breakdown of a confusion matrix including the formulas used to 

determine their respective performance measure. 
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2.1.4.2 Measures of Accuracy 

Further evaluations can be made using the data from the confusion matrix and these 

calculations themselves. Accuracy and F1, or F-score, are two common performance 

indicators, especially in machine learning. 

• Accuracy =  
𝛴𝑇𝑃+𝑇𝑁 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠)

𝛴𝑇𝑃+𝑇𝑁+ 𝐹𝑃 +𝐹𝑁 (𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑠)
 

• F1 score =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 = A balancing metric to find a harmonic mean between 

precision and recall between 0 and 1.  

Accuracy (total correct divided by the total number of assessments), however, does not 

consider the significance of misidentified classes (Halimu et al., 2019) and tends to be an overly 

optimistic performance indicator. Likewise, F1 scores do not consider the amount of correctly 

identified false, or in this case non-GMO, classes (Chicco & Jurman, 2020), only the precision 

and recall proportions which are plotted against each confidence threshold (cut-off for a 

decision to be made; between 0 and 1). However, both measures do not consider differences in 

the number of samples in the different classes and hence cannot account for sample size 

imbalances.  

 

2.1.4.2.1 Mathew Correlation Coefficient  

 

𝑇𝑃 ∗  𝑇𝑁 −  𝐹𝑃 ∗  𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
 

The Mathew correlation coefficient (MCC) is used to overcome sample size imbalances 

(Chicco & Jurman, 2020) in that it is a measure of strength between the actual and predicted 

classes with 1 denoting perfect strength/prediction, 0 indicating there is no class separation/it 

is random, and -1 meaning an inverse prediction is evident (Halimu et al., 2019). The MCC 

accounts for the number of positively versus the number of negatively classed inputs in the 

event they are unbalanced, in this case, GM versus non-GM canola images, and will only 
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produce a high result (close to 1) if the model produced good scores in all categories of the 

confusion matrix (high TP and TN and low FP and FN). It has been suggested as the most 

reliable indicator of performance for binary classification (Chicco & Jurman, 2020).  

 

2.1.4.2.2 Area Under the Receiver Operating Characteristic 

Lastly, the area under the curve (AUC) for the receiver operating characteristics (ROC) 

curve illustrates the true and false positive rates for every confidence threshold between 0 and 

1 of binary classifiers (An, 2020). It maps sensitivity, also known as the true positive rate 

(TPR), (y-axis), against 1-specificity, also known as the true negative rate (TNR), (x-axis). 1-

specificity/TNR could also be defined as the false positive rate (FPR) calculated by the number 

of false positives divided by the sum of the false positives and true negatives (Figure 2.4). 

 

If a model correctly classifies all the positives, then the AUC would be 1 and the ROC 

would run up the y-axis and go through the ‘ideal coordinate’ of (0,1) (Figure 2.4). If a model 

can only randomly guess between binary classes, then a linear diagonal line between the 

coordinates (0,0) and (1,1), would exist with an AUC of roughly 50%. AUCs are good 

indications of performance and are commonly used in machine learning (Halimu et al., 2019). 

Studies have suggested that AUCs are much better than a simple accuracy formula and its 

consistent and discriminatory nature lends it to be a better measure than MCC when comparing 

model algorithms in a more holistic sense (Halimu et al., 2019). Strictly speaking, however, 

AUC and MCC results cannot be compared directly as AUC is measured on a spectrum from 

0 to 1, with the classification thresholds outlined in Table 2.1 and MCC results are measured 

on a spectrum of -1 to 1. 

 

 



31 
 

These various performance evaluations can yield significantly different estimations and are 

only a few examples of the many alternative performance metrics used in biostatistics and 

machine learning. Hence, it is important to consider more than one performance measurement 

to have a solid indication of a model’s true ability to make predictions.  

 

 

 

 

 

 

 

 

 

 

Figure 2.10. ROC diagram mapping sensitivity against 1 - specificity. The diagonal line represents a 

model performing as a random classifier, the grey space represents anything better than a random 

classifier, and the ideal coordinate represents where a perfectly performing model would go through. 

Sourced from Zhu et al. (2010). 

Table 2.3. Classifications describing the various area under the curve (AUC) 

values achieved by a model 
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2.2 Results 

2.2.1 Image Analysis 

Using the mean spectral signatures for the middle 400 pixels to analyse the images, 

through Python and Scyven, revealed the wavelength with the greatest intensity on average for 

all the images was 766nm – light intensity of 306 for non-GM and 313 for GM. The average 

light intensity for the GM canola grains was equal to or greater than the non-GM canola at 

every wavelength. Whilst there appeared to be a minimal visual difference between the two 

average spectral signatures (Figure 2.5), the wavelength with the greatest intensity difference 

between the two classes (713.536nm) was found by using the mean wavelength intensities and 

used to run an ANOVA and t-test with the values from all 1010 images for that wavelength to 

check for a statistically significant difference. Against a null hypothesis whereby there is no 

difference in the spectral signature, the associated p-value for the data set from this wavelength 

was 0.041 which is less than 0.05 and, hence, it can be concluded that there is a statistically 

significant difference between the two spectral signatures for GM and non-GM at that specific 

wavelength (Appendix Table B1). All other wavelengths did not provide a statistically 

significant difference, however.  
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Figure 2.11. Average spectral signatures of non-GM canola in grey and GM canola in black. 
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In terms of grain size, there was a slightly greater distinction between the two classes, 

but still a significant cross-over. In terms of diameter, non-GM canola had an average 

diameter of 219.14 pixels (standard deviation (SD) of 19.00) versus GM canola, which had 

an average diameter of 228.55 pixels (SD of 20.92) – illustrated in the normal distribution 

curve in Figure 2.6. Regarding area, non-GM canola had an average area of 3.15 x 10-4 (SD 

of 5.51 x 10-3) versus GM canola with an average area of 3.48 x 10-4 pixels (SD of 6.80 x 10-

3). Irrespective of the cross over, the p-values for both diameter and area of GM and non-GM 

were well below 0.01 (Appendix Table B2 and B3), indicating statistical significance. 

 

 

 

 

Figure 2.13. Normal distribution curve of non-GM canola (grey) and GM canola (black) 

for grain diameter in pixels. 
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2.2.2 Convolution Neural Network 

 

2.2.2.1 Hyperspectral Image Classifier 

Figure 2.8 illustrates the loss (prediction error) graph over epochs. This suggests 

minimal loss can be quickly achieved using a CNN and also signifies that the network can 

adapt quickly and produce reliable results within a short amount of time. Concurrently, Figures 

2.9 and 2.10 indicate that accuracy can be achieved quickly for both the training and validation 

data set, plateauing between the 50th and 60th epoch at a reasonable validation accuracy 

percentage. Figure 2.11 highlights the relationship between precision and recall over the 

confidence thresholds which can be used to determine the F1 score. Figures 2.12 and 2.13 

illustrate the ROC on the validation model and the test model respectively. The test model has 

an AUC of 87% which can be considered a ‘good’ result (Table 2.1). 

 

 

Figure 2.15. Normal distribution curve of GM canola (black) vs non-GM canola (grey) 

for grain area in pixels (thousands). 
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Figure 2.8. Hyperspectral image 

classifier loss over epochs. 

Figure 2.9. Hyperspectral image classifier 

accuracies over epochs for the training data 

set. 

Figure 2.10. Hyperspectral image classifier 

accuracies over epochs for the validation 

Figure 2.11. Hyperspectral image classifier 

Precision against recall for the validation 

data set with an AUC of 91.21%. 

Figure 2.13. Hyperspectral image 

classifier sensitivity against 1 - Specificity 

for the test data set with an AUC of 

86.47%. 

Figure 2.12. Hyperspectral image 

classifier sensitivity against 1 - Specificity 

for the validation data set with an AUC of 

90.54%. 
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The test set model outputs are illustrated in a confusion matrix (Figure 2.14) that includes 54 

TP, 40 TN, 10 FP, and 8 FN. These values give an overall accuracy of 84% and precision, 

sensitivity/recall, and specificity all above 80%.  These values were also used to calculate the 

F1 score (0.86) and MCC (0.67) (Table 2.2).  

 

 

 

 

Table 2.4. F1, Mathews correlation coefficient, and validation area under the curves for the 

validation and test data set for the bitmap and hyperspectral image classifiers. 

 

 

 

 

 

 

 

 

Model BMP HSI 

F1 score 0.8974 0.8571 

MCC  0.8256 0.6740 

Validation AUC  

(Sensitivity x 1-specificity) 
98.23 90.54 

Test AUC  

(Sensitivity x 1-specificity) 
97.06 86.47 

Figure 2.14. Confusion matrix for the hyperspectral image classifier against the test data set. 

Target class against the outputted class, outlining the true and false positives and negatives. 

Values are also used to calculate precision, sensitivity, and specificity and overall accuracy. 
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2.2.2.2 Bitmap Image Classifier 

With regards to the image classifier CNN designed for the bitmap images, Figure 2.15 

illustrates the loss graph over epochs, which, from the first epoch, were less than 1. Figures 

2.16 and 2.17 indicate accuracy levels beginning to plateau roughly around the 50th epoch. 

Figure 2.18 shows the relationship between precision and recall over confidence thresholds 

which can be used to determine the F1 score for the bitmap image classifier evident in Table 

2.2. Figures 2.19 and 2.20 show the ROC (sensitivity versus 1-specificity) for the validation 

and test data sets respectively. Mapped against the HSI results Table 2.2 also outlines the 

validation and test data set AUCs, 98% and 97% respectively. These AUC values would be 

classified as excellent according to Table 2.1. 

 

 

 

 

Figure 2.15. Bitmap image classifier loss 

over epochs. 

Figure 2.16. Bitmap image classifier 

accuracies over epochs for the training 

data set. 

Figure 2.17. Bitmap image classifier 

accuracies over epochs for the validation 

data set. 

Figure 2.18. Bitmap image classifier. 

Precision against recall for the validation 

data set with an AUC of 98.49% 
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The test set model outputs for the bitmap image classifier convolution neural network 

are illustrated in a confusion matrix (Figure 2.21) that includes 35 TP, 51 TN, 5 FP, and 3 FN. 

These values give an overall accuracy of 92% and precision, sensitivity/recall, and specificity 

all above 87%. These values were also used to calculate the F1 score (0.9) and MCC (0.83) 

(Table 2.2).  

 

 

Figure 2.20. Bitmap image classifier 

sensitivity against 1 - Specificity for the 

test data set with an AUC of 97.06%. 

Figure 2.19. Bitmap image classifier 

sensitivity against 1 - Specificity for the 

validation data set with an AUC of 

98.23%. 

Figure 2.21. Confusion matrix for the bitmap image classifier against the test data set. Target 

class against the outputted class, outlining the true and false positives and negatives. Values 

are also used to calculate precision, sensitivity, and specificity and overall accuracy. 
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2.3 Discussion 

This study aimed to investigate if a machine learning model fed hyperspectral images 

would be able to accurately differentiate genetically modified and non-GM canola grain. 

Achieving accuracies close to 90% using a hyperspectral image classifier supports the research 

hypothesis that machine learning can be used to accurately differentiate hyperspectral images 

of GM and non-GM canola and indicates a significant performance standard that suggests this 

area of technology could be used as a novel, non-destructive and rapid tool in the agricultural 

industry. With further training and development, the machine learning aspect could effortlessly 

analyse enormous quantities of data quickly and efficiently, and at low cost. Contrary to 

expectations, however, the CNN model trained on the standard bitmap images performed 

similarly to the HSI CNN, suggesting the hyperspectral components of the images are not 

necessary for accurate classification and defining features are more likely to be spatial than 

spectral, since bitmap images primarily account for spatial differences. This is supported by 

Figure 2.5 where there is little significant difference shown between the spectral signature of 

GM and non-GM canola, the only wavelength with a p-value less than 0.05, and suggesting 

any significance, was at 713nm; but again, this is unlikely to be a major defining feature as 

there are substantial crossovers in reflectance values at that wavelength in GM and non-GM 

grains which would not support the high accuracies obtained by the HSI CNN or explain the 

high performance produced by the bitmap image classifier. However, this spectral signature is 

also very similar to the heat lamp’s wavelength output provided on the packaging of the globe; 

hence, further research should be conducted to determine a more accurate spectral signature of 

GM and non-GM canola grain by either using a different or combination of light sources and 

increasing the spectral wavelengths captured beyond the small range of 400 to 1000nm as this 

only captures visible light and a small proportion of the NIR wavelengths.  
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Similarly, although the data sets for grain diameter and area are statistically 

significantly different with p-values below 0.01 (Figures 2.5 and 2.7), the cross over evident in 

their distribution curves also does not completely explain the model’s ability to differentiate 

the two classes to the extent illustrated in the confusion matrixes for the bitmap and HSI CNN 

(Figures 2.14 and 2.21). Whilst this suggests GM canola is larger than non-GM canola grains 

on average, it also means the model would be able to predict class based on two grains of the 

same size. Since grain size is partly correlated to the environmental conditions in its respective 

growing season, it is important the model does not heavily rely on grain size as this would vary 

between seasons and climatic areas.  

 

This emphasises that whilst the automatic feature selection abilities of CNN models are 

often hailed as their greatest advantage, the downfall is the difficultly in deciphering what the 

model is analysing. Although the results from this study are exciting and promising, replicated 

experiments with different grain and different coding CNN models are necessary to verify that 

this technology is able to predict GM and non-GM grains of the same size and different 

varieties. 

 

2.3.1 Model’s Performance Against Current Standards 

Since current guidelines only allow non-GM canola to have cross-contamination levels 

up to 0.9% of GM canola, detection methods need to have extremely high accuracies (Emslie 

et al., 2007). Current methods are thought to provide up to 99% accuracy, hence, for another 

technology to be implemented in the industry, it would either have to match the accuracy or be 

significantly cheaper to implement. It is surprising that both models produced accuracies 

around 90%, with limited grain variability, strongly highlighting the potential for this 

technology to achieve the commercial 99% benchmark with further research. For instance, a 

larger data set, different circumstances, or a more complex neural network may have more 
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success. In saying that, methods such as PCR rely on taking a small subsample from a large 

composite stack which contributes to a level of uncertainty surrounding the associated results 

(Emslie et al., 2007). Since image classification is much more rapid and does not require 

sample preparation or destruction, it would be practical to have multiple assessments conducted 

which would increase overall reliability and confidence in the collected data i.e., a camera 

periodically taking photos of grain as it passes on a conveyor belt. Hence, statistically speaking, 

even an accuracy of 90% would be favourable if this technology could cover a much larger 

proportion of the grain than the very small subset that PCR tests, thus increasing the likelihood 

of detecting GMOs overall, especially as grain handling companies such as CBH largely rely 

on the honesty of growers to declare GM canola loads when delivering grain to their sites. 

Being able to identify truckloads quickly and easily using something as simple as a camera, as 

either GM or non-GM, also reduces the risk of loads being delivered under an incorrect 

classification – whether purposely or accidently and helps to prevent the contamination of 

stacks altogether. 

 

2.3.2 Performance Evaluation of Models 

 As there is not a sole performance measurement used in machine learning (Chicco & 

Jurman, 2020), it is important to consider multiple measures, and their advantages and 

disadvantages, when evaluating and comparing models. Most related studies in grain 

contamination use accuracy as an overarching term, generally referring to the accuracy as the 

number of correct identifications over total assessments or the F1 score. In saying that, the 

MCC is considered to be more holistically truthful as it incorporates all aspects of the confusion 

matrix and accounts for any data imbalances (Chicco & Jurman, 2020). This is important as 

the focus for identifying contaminations is less so on how many a method can get right and 

more so on how many were incorrectly identified or completely missed in the quality check 

process. With MCC scores of 0.83 and 0.67 for the BMP and HSI CNN respectively, there is 



42 
 

clear promise within this technology, but more work needs to be done to reduce the false 

positive and negative classifications.  

 

Similarly, on a more specific level, it is extremely important for grain handling 

companies like CBH to strongly consider both sensitivity (the percent of true positives 

identified) and specificity (the percent of positive identifications that were correct) as the 

priority of either would vary based on who the target group is. For example, false negatives – 

missing GM canola, would be of greater concern to exporters as opposed to growers who would 

be more concerned with a false positive and unnecessarily losing money on a truckload of 

canola. It is important to quantify this balance as using misclassifications rates as a measure of 

performance can be misleading when the wrong assumptions are made (Hand & Till, 2001).  

     

2.3.3 Convolution Neural Networks 

 Concurrent to having a large dataset of training images, a considerable determiner of 

accuracy and performance relates to the type and design of the machine learning tool used. 

This is evident both in this study itself and also in literary sources evaluating the strength of 

different types of neural networks currently used for image classification (Paoletti et al., 2019). 

Convolution neural networks are a relatively recent development in machine learning and have 

illustrated superior performance to previous networks. One aspect that facilitated this 

improvement was the replacement of the sigmoid activation function with a rectified linear 

(relu) activation function which simplifies learning and reduces computational time (Wu, 

2017). Relu functions makes all values zero when they are less than zero and does not activate 

all neurons at the same time (Paoletti, 2019). 
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2.3.3.1 Convolution Neural Networks with Hyperspectral Images 

It is fairly universally agreed in literature that the combination of HSI with powerful data 

analysis tools such as machine or deep learning has extremely significant potential to improve 

efficiency and reduce resource use (time, labour, and money) in a large scope of areas in 

agriculture (Lu et al., 2020); although the costs (financial and computational) and complexity 

associated with HSI continues to be an obstacle to larger uptake in the industry (Weiss et al., 

2020). Out of the main features extracted from an image, e.g., colour, morphological, and 

textural, colour is often highlighted as having the greatest and most straightforward 

discrimination potential for ML classifiers (Singh et al., 2010). For many studies this has 

certainly been the case, with colour features dominating the classificational parameters used, 

for example, in a study by Singh, et al.(2010) using HSI and neural networks to identify insect 

damage in wheat; however, detection using this method frequently resulted in a high number 

of false positives – which is not reflected in their high accuracies, often above 90%.  

 

Another study by Agarwal, et al. (2020) also used HSI but relied on unsupervised CNN 

and experienced similar accuracies levels (above 90%), such as identifying grain insect bodies 

and fragments. This study also compared these results against a capsule network (a variant of 

CNN that preserves structures/capsules during training) – which produced higher accuracies; 

and could hence, be a promising option to try for other material identification studies in grain 

biosecurity. Other studies involving insect detection in cereal grains also produced results of 

around 90% (Neethirajan et al., 2007). The identified limitations, however, include lower 

accuracies at low levels of infestation, the effect of moisture levels in samples, and the 

difficultly sometimes associated with calibration of the needed equipment; alternative imagery 

methods of insect detection include x-ray (Neethirajan et al., 2007).  
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This is fairly consistent with the accuracy levels achieved in this study using a HSI CNN 

(84%). Looking at the graphs produced by the model for loss, accuracy, and sensitivity over 1-

specificity (Figures 2.8 to 2.13), a HSI CNN shows promise as a diagnostic tool in the grains 

industry. The drop in AUC between the validation data set to the test data set for the ROC space 

(Figures 2.12 and 2.13) is to be expected but it would be interesting to see the effect of changing 

the proportion of training, validation, and test samples.  

 

A study similar to this one by Feng, et al. (2017) also used NIR HSI to distinguish GM 

maize from non-GM maize. The combination of using principal component analysis with a 

least-squares discriminant analysis illustrates the use of machine, as opposed to deep, learning; 

regardless, results were also significantly promising with accuracies close to one hundred 

percent. This study also saw slightly different average spectral reflectance between the GM 

and non-GM grains, however, in the case of maize, the non-GM kernels reflected more, 

whereas GM canola in this study reflected more than non-GM canola.  

Using PCA and associated scores, they were able to create a visualisation of the difference 

between the GM and non-GM maize – evident in PC3 (Figure 2.22). Attempts to map similar 

differences in GM and non-GM canola grain for this study did not find a similar pattern, 

possibly because of the light sources used, hence, it would be interesting for further research 

to endeavour with confirming if there is a spectral difference between the two classes.  

Figure 2.22. Visualisation of the PCA scores for the first three principal components of the 

maize kernels from a study by Feng, et al. (2017). 
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Lastly, it is important to note, however, the additional processing challenges involved with 

HSI CNN as opposed to standard images. Whilst the wealth of information within a 

hyperspectral image is unparalleled and has contributed to outstanding advances, especially in 

areas such as remote sensing, the larger dimensions not only take up more storage space and 

time to process but also add complexity to the model by increasing the number of parameters 

to consider and hence could explain why the HSI CNN performed slightly poorer than the 

bitmap CNN (Paoletti et al., 2019). The lack of image augmentation (flipping or zooming in 

on sections of the image to artificially increase the data set) in the HSI CNN that was present 

in the bitmap CNN is likely to be another explanatory factor in this difference as it artificially 

increases the number of training samples and improves the architecture of the model (Paoletti 

et al., 2019). 

 

2.3.3.2 Convolution Neural Networks with Standard Images 

Although the HSI CNN performed well, the similar and better performance exhibited 

through the use of the black and white bitmap images only in a similarly constructed CNN 

suggests the main differentiating parameters identified by the model are spatial, not spectral. 

The bitmap model showed more consistent and lower losses over the 100 epochs and greater 

scores in all the performance measures used in this study. This is particularly exciting as it 

suggests that differentiation could be done using a normal camera and hence, in the future could 

lead to the possibility of something as simple as using a phone application to identify if the 

grain is genetically modified or not. The possibility of an extremely accessible and user 

friendly, portable, easy to install, and cheap detection option is extremely exciting. The bitmap 

image model was also significantly quicker to run as well. The greatest challenges within this 

study included acquiring the images on the hyperspectral camera and running them in the 

model as processing the large and complex files is very time-consuming. Hence, if normal 
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images can be used instead, it would be beneficial on many fronts, particularly as it decreases 

the need for image processing, making the data easy to handle.  

 

2.4 Conclusion 

Canola is an important crop nationally and internationally. Keeping genetically modified 

canola from non-GM canola separate, and identifying how successfully this has been done, is 

an important step along various aspects of the supply chain. This research project aimed to 

determine if machine learning and hyperspectral imagery could be used as a rapid and non-

destructive tool in discriminating GM from non-GM. Over 1000 images were used to train and 

test a convolution neural network model for standard bitmap images and hyperspectral images. 

Surprisingly, both models produced extremely promising results for a novel study, with the 

bitmap CNN outperforming the HSI CNN. Further research explaining why there is a clear 

difference between the two classes is needed, as is further projects testing the differentiation 

under different conditions such as different lighting, deep learning models, piles of grain 

instead of individual grains, and from different seasons and geographical areas. Although the 

data suggests that using HSI is not theoretically necessary in this instance, since many advances 

have been made in other areas of grain contamination, it would be beneficial – in the long term, 

to see a product that could detect and identify a multitude of contaminants in a sample, most 

likely using a HSI camera anyway. Regardless, just considering GM and non-GM canola, 

however, these results highlight the potential for identification to be possible using something 

as simple as an application on a mobile phone. For instance, there would be a significant benefit 

in future studies focusing on developing models that could identify the genetic modification 

status of a handful of grain for use in sampling huts, at ports for export, and by farmers, and 

assess the neural network’s ability to accurately predict GM grains whilst they are moving on 

a conveyor belt. Overall, this illustrates that artificial intelligence, specifically machine/deep 

learning is the way forward in biosecurity for market export and safety reasons. 
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Appendix A 
 

HSI CNN SCRIPT 
 

Original file is located at 

    https://colab.research.google.com/drive/1r759Yj1TNgeuRcas3j0PNrSRs6-BTNlw 

 

Based off Francois Chollet’s Image Classifier script (Chollet, 2016)  

 

Set up model and parameters 
 

from google.colab import drive drive.mount('/content/drive') 

 

Import all necessary libraries 
from keras.preprocessing.image import ImageDataGenerator 

from keras.models import Sequential 

from keras.layers import Conv2D, MaxPooling2D 

from keras.layers import Activation, Dropout, Flatten, Dense 

from keras import backend as K 

import os 

 

img_width, img_height = 224, 224  

 

train_data_dir = '/content/drive/MyDrive/combinednumpy/train' 

validation_data_dir = '/content/drive/MyDrive/combinednumpy/valid' 

test_data_dir = '/content/drive/MyDrive/combinednumpy/test' 

nb_train_samples = len([i for i in os.listdir(train_data_dir+'/GMO') if 'npy' in i]) + 

len([i for i in os.listdir(train_data_dir+'/nonGMO') if 'npy' in i]) 

nb_validation_samples = len([i for i in os.listdir(validation_data_dir+'/GMO') if 'npy' 

in i]) + len([i for i in os.listdir(validation_data_dir+'/nonGMO') if 'npy' in i]) 

nb_test_samples = len([i for i in os.listdir(test_data_dir+'/GMO') if 'npy' in i]) + len([i 

for i in os.listdir(test_data_dir+'/nonGMO') if 'npy' in i]) 

 

epochs = 100 

batch_size = 60 

 

valid_x = [] 

print('Train Samples:',nb_train_samples) 

print('Validation Samples:',nb_validation_samples) 

print('Test Samples:',nb_test_samples) 

 

input_shape = (img_width, img_height, 80) 

 

Convolution Neural Network Model 
model = Sequential() 

model.add(Conv2D(32, (3, 3), input_shape=input_shape, dtype='float16')) 

https://colab.research.google.com/drive/1r759Yj1TNgeuRcas3j0PNrSRs6-BTNlw
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model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Conv2D(32, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Conv2D(64, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Flatten()) 

model.add(Dense(64)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(1)) 

model.add(Activation('sigmoid')) 

 

import os 

import tensorflow 

try: 

  shutil.rmtree('checkpoints') 

except: pass 

try: 

  os.mkdir('checkpoints') 

except: pass 

model_checkpoint_callback = tensorflow.keras.callbacks.ModelCheckpoint( 

    filepath='./checkpoints/model(Nilesh).h5', 

    save_weights_only=False, 

    monitor='val_accuracy', 

    verbose=1, 

    save_best_only=False) 

csv_logger = tensorflow.keras.callbacks.CSVLogger('training.log') 

 

!pip install pympler 
 

Custom hyperspectral image generator 
 

Based off script written by Nilesh (2018). 

 
import time 

import gc 

from skimage.transform import AffineTransform, SimilarityTransform, warp 

from numpy import deg2rad, flipud, fliplr 

from numpy.random import uniform, random_integers 

from random import choice 

import numpy as np 

def hyper_generator(files, batchSize, augment = False, rotation_range = 0, 

scale_range = 0, transform_range=0, hori_flip = False, verti_flip = False, shear_range 

= 0): 

  epochIndices = [] 
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  while True: 

    if len(epochIndices) == 0:  

      epochIndices = list(range(len(files))) 

      #print('Epoch reset!!!!') 

    batchIndices = np.random.choice(a = epochIndices, size = 

min(batchSize,len(epochIndices)), replace=False) 

    for i in batchIndices: epochIndices.remove(i) 

    batchX = [] 

    for inputI in batchIndices: 

      img = (np.load(files[inputI], mmap_mode='r')/255).astype(np.float16) 

       

Augmentation (not run for final results) 

 
Based off script published on Git Hub (Hyperspectral Image Generator, 2020) 

 

      if augment: 

        if hori_flip and choice([True, False]): img = flipud(img) 

        if verti_flip and choice([True, False]): img = fliplr(img) 

        rotation_angle = uniform(low=-abs(rotation_range), high=abs(rotation_range)) 

        shear_angle = uniform(low=-abs(shear_range), high=abs(shear_range)) 

        scale_value = uniform(low=abs(1 / scale_range), high=abs(scale_range)) 

        translation_values = (random_integers(-abs(transform_range), 

abs(transform_range)), 

                            random_integers(-abs(transform_range), abs(transform_range))) 

        transform_toorigin = SimilarityTransform(scale=(1, 1), rotation=0, translation=(-

img.shape[0], -img.shape[1])) 

        transform_revert = SimilarityTransform(scale=(1, 1), rotation=0, 

translation=(img.shape[0], img.shape[1])) 

        transform = AffineTransform(scale=(scale_value, scale_value), 

rotation=deg2rad(rotation_angle), 

                                    shear=deg2rad(shear_angle), translation=translation_values) 

        img = warp(img, ((transform_toorigin) + transform) + transform_revert, 

mode='edge', preserve_range=True) 

         

      batchX.append(img) 

    batchY = [int(not ('non' in files[inputI].lower())) for inputI in batchIndices] 

 

    batchX = np.array(batchX) 

    batchY = np.array(batchY) 

 

    yield(batchX, batchY) 

 

import os 

import numpy as np 

import random 

import gc 

from pympler.asizeof import asizeof 

 

def loadGMOData(directory, printOutput=True, maxSize = None): 

 outData = [] 

 gmPath = directory+'/GMO/' 
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 noGmPath = directory+'/nonGMO/' 

 imageCount = len([a for a in os.listdir(gmPath)+os.listdir(noGmPath) if 'npy' 

in a]) 

 if printOutput: print("Getting",imageCount,"images from",directory) 

 for gm in os.listdir(gmPath): 

  if 'npy' in gm: 

   if printOutput: print("\tLoading:",gm) 

   loaded = (np.load(gmPath+gm)/255).astype(np.float16) 

   outData.append((loaded,1)) 

   if printOutput: print("\t",asizeof(outData)/1024/1024,"MB") 

   if maxSize != None:  

    if asizeof(outData)/1024/1024 > maxSize / 2: break 

 for nogm in os.listdir(noGmPath): 

  if 'npy' in nogm: 

   if printOutput: print("\tLoading:",nogm) 

   loaded = (np.load(noGmPath+nogm)/255).astype(np.float16) 

   outData.append((loaded,0)) 

  if printOutput: print('\t',asizeof(outData)/1024/1024,"MB") 

  if maxSize != None:  

    if asizeof(outData)/1024/1024 > maxSize: break 

 random.shuffle(outData)  

 x = [] 

 y = [] 

 for i in outData: 

  x.append(i[0]) 

  y.append(i[1]) 

 return np.array(x), np.array(y) 

valid_x = [] 

 

Training the Model 
 

model.compile(loss='binary_crossentropy', 

   optimizer='rmsprop', 

   metrics=['accuracy']) 

 

if len(valid_x) == 0: valid_x,valid_y = loadGMOData(validation_data_dir) 

print("Validation GMO number:",len([a for a in valid_y if a == 1])) 

print("Validation Non-GMO number:",len([a for a in valid_y if a == 0])) 

 

 

trainFiles = [train_data_dir+'/GMO/'+f for f in os.listdir(train_data_dir+'/GMO/') if 

'npy' in f ] + [train_data_dir+'/nonGMO/'+f for f in 

os.listdir(train_data_dir+'/nonGMO/') if 'npy' in f ] 

validFiles = [validation_data_dir+'/GMO/'+f for f in 

os.listdir(validation_data_dir+'/GMO/') if 'npy' in f ] + 

[validation_data_dir+'/nonGMO/'+f for f in 

os.listdir(validation_data_dir+'/nonGMO/') if 'npy' in f ] 

trainGen = hyper_generator(trainFiles, batch_size, False, 0, 0.2, 0, True, False) 

#trainGen = hyper_generator(trainFiles, batch_size) 

validGen = hyper_generator(validFiles, batch_size) 
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model.fit(x=trainGen, 

          batch_size = batch_size, 

          steps_per_epoch=nb_train_samples / batch_size, 

     validation_steps=nb_validation_samples / 

batch_size, 

     validation_data=validGen, 

     epochs=epochs, 

     callbacks=[model_checkpoint_callback, 

csv_logger]) 

 

!cp training.log "/content/drive/MyDrive/combinednumpy/training.log" 

 

Training Graphs 
 

Loss graph 
from matplotlib.pyplot import * 

 

x = [] 

y = [] 

with open("/content/drive/MyDrive/combinednumpy/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[2])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Loss') 

xlim(0,epochs) 

ylim(0,10) 

show() 

 

Accuracy (Training set) graph 
x = [] 

y = [] 

with open("/content/drive/MyDrive/combinednumpy/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[1])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Accuracy (Training set)') 

xlim(0,100) 

ylim(0,1) 

show() 

 



57 
 

Accuracy (Validation set) graph 
x = [] 

y = [] 

with open("/content/drive/MyDrive/combinednumpy/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[3])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Accuracy (Validation set)') 

xlim(0,100) 

ylim(0,1) 

show() 

 

Save Model 
 

from shutil import copyfile 

BEST_MODEL = "95" (based on the best model produced in the 100 epochs) 

copyfile("checkpoints/model"+BEST_MODEL+".h5", 

"/content/drive/MyDrive/combinednumpy/Best_Model.h5") 

 

Metrics Function 
 

from keras.models import load_model 

import numpy as np 

 

def calcMetrics(eval_x, eval_y, conf_thresh, printOutput): 

  fp = 0 

  tp = 0 

  fn = 0 

  tn = 0 

 

  i = 0 

  for x in eval_x: 

    gmoLabels = model.predict(np.array([x])) 

    if eval_y[i] == 1: 

      if gmoLabels[0][0] >= conf_thresh: tp += 1 

      else: fn += 1 

    elif eval_y[i] == 0: 

      if gmoLabels[0][0] < conf_thresh: tn += 1 

      else: fp += 1 

    i+=1 

 

  sensitivity = tp/(tp+fn) 

  specificity = tn/(tn+fp) 

  precision = tp/(tp+fp) 

  accuracy = (tp+tn)/(tp+tn+fp+fn) 
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  if printOutput: 

    print("True Positives:", tp) 

    print("True Negatives:", tn) 

    print("False Positives:", fp) 

    print("False Negatives:", fn) 

    print("Sensitivity/Recall:",sensitivity) 

    print("Specificity:",specificity) 

    print("Precision:", precision) 

    print("Accuracy:", accuracy) 

 

  return sensitivity, specificity, precision, accuracy 

 

 

Check the model on the validation set 
 

valid_dir = validation_data_dir 

model = load_model("/content/drive/MyDrive/combinednumpy/Best_Model.h5") 

steps = 100 

 

sen_rec = [] 

spec = [] 

prec = [] 

eval_x, eval_y = loadGMOData(valid_dir, False) 

for i in range(0,steps+1): 

  sen, sp, pr, acc = calcMetrics(eval_x, eval_y, i/steps, False) 

  sen_rec.append(sen) 

  spec.append(1-sp) #Is actually 1-specificity 

  prec.append(pr) 

  print("Confidence:",i/steps,"| Metrics:",sen,sp,pr,acc) 

 

from matplotlib.pyplot import * 

from sklearn.metrics import * 

 

Plot ROC and calculate validation AUC 

 
plot([1]+spec+[0], [1]+sen_rec+[0], label = 'Canola') 

xlabel('1-Specificity') 

ylabel('Sensitivity') 

xlim(0,1) 

ylim(0,1) 

show() 

 

print("Validation AUC",auc(spec, sen_rec)) 

 

Precision vs Recall graph 
 

from matplotlib import * 

 

plot([1]+sen_rec+[0], [0]+prec+[1], label = 'Canola') 
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xlabel('Recall') 

ylabel('Precision') 

xlim(0,1) 

ylim(0,1) 

show() 

 

print("Validation AUC:",auc([1]+sen_rec+[0], [0]+prec+[1])) 

 

 

Check the model on the test set 
 

conf_thresh = 0.45 (based on validation ROC) 

 

test_dir = test_data_dir 

model = load_model("/content/drive/MyDrive/combinednumpy/Best_Model.h5") 

 

test_x, test_y = loadGMOData(test_dir, True) 

sen, spec, prec, acc = calcMetrics(test_x, test_y, conf_thresh, True) 

 

from matplotlib.pyplot import * 

from sklearn.metrics import * 

 

sen_rec = [] 

spec = [] 

prec = [] 

eval_x, eval_y = loadGMOData(test_dir, True) 

for i in range(0,steps+1): 

  sen, sp, pr, acc = calcMetrics(eval_x, eval_y, i/steps, False) 

  sen_rec.append(sen) 

  spec.append(1-sp) #Is actually 1-specificity 

  prec.append(pr) 

  print("Confidence:",i/steps,"| Metrics:",sen,sp,pr,acc) 
 

Test ROC 
plot([1]+spec+[0], [1]+sen_rec+[0], label = 'Canola') 

xlabel('1-Specificity') 

ylabel('Sensitivity') 

xlim(0,1) 

ylim(0,1) 

show() 

 

Test AUC  
print("Validation AUC",auc(spec, sen_rec)) 
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BMP Image Classifier Script 
 

Original file is located at 

    https://colab.research.google.com/drive/1ernRNCveup_VrB2S36KBRbCOb0H6LXXn 

 

Based off Francois Chollet’s Image Classifier script (Chollet, 2016) 

 

Set up model and parameters 
 

from google.colab import drive drive.mount('/content/drive') 

 

Import all necessary libraries 
 

from keras.preprocessing.image import ImageDataGenerator 

from keras.models import Sequential 

from keras.layers import Conv2D, MaxPooling2D 

from keras.layers import Activation, Dropout, Flatten, Dense 

from keras import backend as K 

 

img_width, img_height = 128, 128 #changed 

 

train_data_dir = 'drive/MyDrive/bmpall/trainbmp' 

validation_data_dir = 'drive/MyDrive/bmpall/validbmp'  

test_data_dir =  'drive/MyDrive/bmpall/testbmp'  

nb_train_samples = 722 

nb_validation_samples = 199 

nb_test_samples = 94 

epochs = 100 

batch_size = 100 

 

if K.image_data_format() == 'channels_first': 

 input_shape = (3, img_width, img_height) #Should be 80 bands in 

hyperpectral 

else: 

 input_shape = (img_width, img_height, 3) 

 

import os 

import tensorflow 

try: 

  os.mkdir('checkpoints') 

except: pass 

model_checkpoint_callback = tensorflow.keras.callbacks.ModelCheckpoint( 

    filepath='./checkpoints/model{epoch:02d}.h5', 
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    save_weights_only=False, 

    monitor='val_accuracy', 

    verbose=1, 

    save_best_only=False) 

csv_logger = tensorflow.keras.callbacks.CSVLogger('training.log') 

 

Convolution Neural Network Model 
 

model = Sequential() 

model.add(Conv2D(32, (3, 3), input_shape=input_shape)) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Conv2D(32, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Conv2D(64, (3, 3))) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=(2, 2))) 

 

model.add(Flatten()) 

model.add(Dense(64)) 

model.add(Activation('relu')) 

model.add(Dropout(0.5)) 

model.add(Dense(1)) 

model.add(Activation('sigmoid')) 

 

model.compile(loss='binary_crossentropy', 

   optimizer='rmsprop', 

   metrics=['accuracy']) 

Augmentation 
 

train_datagen = ImageDataGenerator( 

  shear_range=0.2, 

  zoom_range=0.2, 

  horizontal_flip=True, 

 rescale=1. / 255) 

 

test_datagen = ImageDataGenerator(rescale=1. / 255) 

 

train_generator = train_datagen.flow_from_directory( 

 train_data_dir, 

 target_size=(img_width, img_height), 

 batch_size=batch_size, 

 class_mode='binary') 
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validation_generator = test_datagen.flow_from_directory( 

 validation_data_dir, 

 target_size=(img_width, img_height), 

 batch_size=batch_size, 

 class_mode='binary') 

 

model.fit_generator( 

 train_generator, 

 steps_per_epoch=nb_train_samples // batch_size, 

 epochs=epochs, 

 validation_data=validation_generator, 

 callbacks=[model_checkpoint_callback, csv_logger]) 

!cp training.log "/content/drive/MyDrive/bmpall/training.log" 

 

from shutil import copyfile 

BEST_MODEL = "98" (best iteration number) 

copyfile("checkpoints/model"+BEST_MODEL+".h5", 

'/content/drive/MyDrive/bmpall/model.h5') 

 

Training Graphs 
 

Loss graph 

from matplotlib.pyplot import * 

 

x = [] 

y = [] 

with open("/content/drive/MyDrive/bmpall/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[2])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Loss') 

xlim(0,epochs) 

ylim(0,1) 

show() 

 

Accuracy (Training set) graph 

x = [] 

y = [] 

with open("/content/drive/MyDrive/bmpall/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 



63 
 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[1])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Accuracy (Training set)') 

xlim(0,100) 

ylim(0,1) 

show() 

 

Accuracy (Validation set) graph 

x = [] 

y = [] 

with open("/content/drive/MyDrive/bmpall/training.log") as trainFile: 

  trainFile.readline() 

  for line in trainFile: 

    lineParts = line.strip().split(',') 

    x.append(float(lineParts[0])) 

    y.append(float(lineParts[3])) 

 

plot(x,y, label = 'Loss') 

xlabel('Epoch') 

ylabel('Accuracy (Validation set)') 

xlim(0,100) 

ylim(0,1) 

show() 

 

Metrics Function 

 

from keras.models import load_model 

import numpy as np 

 

def calcMetrics(eval_x, eval_y, conf_thresh, printOutput): 

  fp = 0 

  tp = 0 

  fn = 0 

  tn = 0 

 

  if calcMetrics.lastModel != model or conf_thresh == 0: 

    print("Performing predictions...") 

    calcMetrics.labelConfs = [] 

    for x in eval_x: 

      gmoLabels = model.predict(np.array([x])) 

      calcMetrics.labelConfs.append(gmoLabels) 

    calcMetrics.lastModel = model 

 

  i = 0 
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  for gmoLabel in calcMetrics.labelConfs: 

    if eval_y[i] == 1: 

      if calcMetrics.labelConfs[i][0][0] >= conf_thresh: tp += 1 

      else: fn += 1 

    elif eval_y[i] == 0: 

      if calcMetrics.labelConfs[i][0][0] < conf_thresh: tn += 1 

      else: fp += 1 

    i+=1 

 

  sensitivity = tp/(tp+fn) 

  specificity = tn/(tn+fp) 

  precision = tp/(tp+fp) 

  accuracy = (tp+tn)/(tp+tn+fp+fn) 

 

  if printOutput: 

    print("True Positives:", tp) 

    print("True Negatives:", tn) 

    print("False Positives:", fp) 

    print("False Negatives:", fn) 

    print("Sensitivity/Recall:",sensitivity) 

    print("Specificity:",specificity) 

    print("Precision:", precision) 

    print("Accuracy:", accuracy) 

 

  return sensitivity, specificity, precision, accuracy 

 

calcMetrics.lastModel = None 

 

Check the model on the validation set 
 

valid_dir = validation_data_dir 

model = load_model("/content/drive/MyDrive/bmpall/model.h5") 

steps = 100 

 

 

import os 

import numpy as np 

import random 

import gc 

import cv2 

 

def loadGMOData(directory, printOutput=True, maxSize = None): 

 outData = [] 

 gmPath = directory+'/GMO/' 

 noGmPath = directory+'/nonGMO/' 

 imageCount = len([a for a in os.listdir(gmPath)+os.listdir(noGmPath) if 'bmp' 

in a]) 
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 if printOutput: print("Getting",imageCount,"images from",directory) 

 for gm in os.listdir(gmPath): 

  if 'bmp' in gm: 

   if printOutput: print("\tLoading:",gm) 

   loaded = cv2.imread(gmPath+gm)/255 

   outData.append((loaded,0)) 

 for nogm in os.listdir(noGmPath): 

  if 'bmp' in nogm: 

   if printOutput: print("\tLoading:",nogm) 

   loaded = cv2.imread(noGmPath+nogm)/255 

   outData.append((loaded,1)) 

 random.shuffle(outData) #Make sure to randomise, otherwise training is 

lopsided 

 x = [] 

 y = [] 

 for i in outData: 

  x.append(i[0]) 

  y.append(i[1]) 

 return np.array(x), np.array(y) 

 

sen_rec = [] 

spec = [] 

prec = [] 

eval_x, eval_y = loadGMOData(valid_dir, True) 

for i in range(0,steps+1): 

  sen, sp, pr, acc = calcMetrics(eval_x, eval_y, i/steps, False) 

  sen_rec.append(sen) 

  spec.append(1-sp) #Is actually 1-specificity 

  prec.append(pr) 

  print("Confidence:",i/steps,"| Metrics:",sen,sp,pr,acc) 

 

from matplotlib.pyplot import * 

from sklearn.metrics import * 

 

Plot ROC 

plot([1]+spec+[0], [1]+sen_rec+[0], label = 'Canola') 

xlabel('1-Specificity') 

ylabel('Sensitivity') 

xlim(0,1) 

ylim(0,1) 

show() 

 

Validation AUC 

print("Validation AUC",auc(spec, sen_rec)) 

 

from matplotlib import * 

plot([1]+sen_rec+[0], [0]+prec+[1], label = 'Canola') 

xlabel('Recall') 
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ylabel('Precision') 

xlim(0,1) 

ylim(0,1) 

show() 

 

Test AUC 

 

print("Validation AUC:",auc([1]+sen_rec+[0], [0]+prec+[1])) 

 

test_dir = test_data_dir 

model = load_model("/content/drive/MyDrive/bmpall/model.h5") 

conf_thresh = 0.5 #CHANGE THIS BASED ON VALIDATION ROC 

 

test_x, test_y = loadGMOData(test_dir, True) 

sen, spec, prec, acc = calcMetrics(test_x, test_y, conf_thresh, True) 

 

test_dir = test_data_dir 

model = load_model("/content/drive/MyDrive/bmpall/model.h5") 

steps = 100 

 

import os 

import numpy as np 

import random 

import gc 

import cv2 

 

def loadGMOData(directory, printOutput=True, maxSize = None): 

 outData = [] 

 gmPath = directory+'/GMO/' 

 noGmPath = directory+'/nonGMO/' 

 imageCount = len([a for a in os.listdir(gmPath)+os.listdir(noGmPath) if 'bmp' 

in a]) 

 if printOutput: print("Getting",imageCount,"images from",directory) 

 for gm in os.listdir(gmPath): 

  if 'bmp' in gm: 

   if printOutput: print("\tLoading:",gm) 

   loaded = cv2.imread(gmPath+gm)/255 

   outData.append((loaded,0)) 

 for nogm in os.listdir(noGmPath): 

  if 'bmp' in nogm: 

   if printOutput: print("\tLoading:",nogm) 

   loaded = cv2.imread(noGmPath+nogm)/255 

   outData.append((loaded,1)) 

 random.shuffle(outData) #Make sure to randomise, otherwise training is 

lopsided 

 x = [] 

 y = [] 

 for i in outData: 
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  x.append(i[0]) 

  y.append(i[1]) 

 return np.array(x), np.array(y) 

 

from matplotlib.pyplot import * 

from sklearn.metrics import * 

 

sen_rec = [] 

spec = [] 

prec = [] 

eval_x, eval_y = loadGMOData(test_dir, True) 

for i in range(0,steps+1): 

  sen, sp, pr, acc = calcMetrics(eval_x, eval_y, i/steps, False) 

  sen_rec.append(sen) 

  spec.append(1-sp) #Is actually 1-specificity 

  prec.append(pr) 

  print("Confidence:",i/steps,"| Metrics:",sen,sp,pr,acc) 

 

Plot ROC 

plot([1]+spec+[0], [1]+sen_rec+[0], label = 'Canola') 

xlabel('1-Specificity') 

ylabel('Sensitivity') 

xlim(0,1) 

ylim(0,1) 

show() 

 

Calculate test AUC 

print("Test AUC",auc(spec, sen_rec)) 
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Appendix B 
 

Table B1: Single factor ANOVA test for GM and non-GM wavelength reflectance at 713nm illustrating a p-value below 

0.05. 

SUMMARY       
Groups Count Sum Average Variance   
Non 505 142503 282.1841584 6610.99578   

GMO 507 149047 293.9783037 10192.03313   

       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 35192.63417 1 35192.63417 4.187077073 0.04099178 3.850682268 

Within Groups 8489110.635 1010 8405.060034    
       
Total 8524303.269 1011         

  

Table B2: Single factor ANOVA test for GM and non-GM diameter illustrating a p-value below 0.01. 

Table B3: Single factor ANOVA test for GM and non-GM diameter illustrating a p-value below 0.01. 
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