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Abstract 

Yellow tailflower mild mottle virus is a species in the internationally-distributed genus 

Tobamovirus, other species of which are some of the most damaging plant viruses known. 

Yellow tailflower mild mottle virus (YTMMV) is the first tobamovirus described only from 

Australia and only from native plants. Because of the bad reputation of related tobamoviruses 

such as tobacco mosaic virus and cucumber green mottle mosaic virus as destroyers of valuable 

crops, we studied YTMMV to understand aspects of its biology and to assess its potential to 

spillover from the indigenous flora and threaten crops on national and international stages. 

Unlike many damaging plant viruses, tobamoviruses are not transmitted host-to-host by vectors 

such as aphids. Thus, understanding how YTMMV is transmitted between host plants is key to 

understanding aspects of its epidemiology. A further aim of our work was to assess the damage 

we might expect to see in some susceptible crops should YTMMV spillover. 

Sexual transmission - seed: After manual transmission, YTMMV readily infected the 

solanaceous species and varieties we tested, which were Solanum lycopersicum (tomato), two 

cultivars of Capsicum annuum (bell pepper, chili), Nicotiana tabacum and two accessions of 

Nicotiana benthamiana (tobacco species). Genotypes of C. annuum and N. benthamiana quickly 

died after becoming infected while others displayed milder symptoms, and some produced 

flowers and set viable seed. We grew the seed and tested for presence of YTMMV in the 

seedlings. Rates of transmission of the virus via seed to the next generation were high—from 3% 

in N. tabacum 'Wisconsin 38' to 57.5% in N. benthamiana accession MtA-6.  In some other 

tobamoviruses, the virus adheres to the external surface of the testa and infects the seedling as it 

germinates. We surface-sterilised seeds and tested the resulting seedlings for infection. Rates of 
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transmission remained the same, providing evidence that seedlings were infected by virus 

particles located within the testa.  

YTMMV was transmitted via seed produced from an infected mother plant. Surface-sterilisation 

of seed cannot be used to control YTMMV. 

Sexual transmission - pollen: Pollen was transferred from the stamens of virus-infected ‘father’ 

N. tabacum ‘Wisconsin 38’ plants to the stigmas of emasculated flowers of uninfected ‘mother’ 

plants. The virus was transmitted in pollen. A surprising finding was that virus-infected pollen 

transmitted YTMMV both vertically and horizontally with the rate below 1%, sometimes in the 

same pollination event. Vertical transmission occurred when the pollen tube delivered the virus 

directly to the developing ovule and seeds became infected. Rarely, the mother plant also became 

systemically-infected after pollination, demonstrating horizontal transmission. Thus, both 

vertical and horizontal virus transmissions occur at pollination. Subsequent seed produced by 

horizontally-infected mother plant was virus-infected, demonstrating vertical transmission of 

virus sourced from both the male gamete (pollen) and the female gamete (ovule). Pollinators 

such as bees may act as agents of virus transmission as they carry infected pollen from flower to 

flower, but they are not classed as viral vectors per se because there is no direct molecular 

interaction between the virus and the pollinator.  

YTMMV is transmitted vertically and hortizontally via pollen. 

Transmission via direct contact: Direct leaf-to-leaf contact transmission is well described for 

other tobamoviruses, and it occurs for YTMMV. Transmission via roots is less well-described 

although root contact between plants occurs in close-planted agricultural and horticultural crops. 

We grew virus-infected and virus-free plants of two species side-by-side in pots. Above-ground 
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contact was prevented but root contact underground was encouraged. Transmission between the 

plants occurred in both species at 83% and 50% for N. benthamiana and C. annuum ‘Jalapeno’, 

respectively. When seedlings were planted in soil containing decaying root materials of virus-

infected plants, transmission was not detected. When uninfected scions were grafted onto 

rootstocks of infected plants, and vice verse, transmission occurred in both directions.  

Root contact between live plants growing close together is a direct route of YTMMV 

transmission.   

Potential yield losses: S. lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’ and C. 

annuum ‘Jalapeno’ plants were infected at a young seedling stage, a mid-development stage, and 

immediately pre-flowering stage. In general, early infection induced more severe symptoms and 

sometimes death of the plant compared with later infection. In some plants, notably S. 

lycopersicum and one variety of C. annuum, late infection induced very few symptoms and 

fruit/seed was produced.  When infection occurred in young C. annuum ‘Californian Wonder’ 

plants, fruit was damaged and yield reduced, but in mature-infected plants, average weight and 

length of fruits was similar to virus-free plants. C. annuum ‘Jalapeno’ plants reacted with 

hypersensitivity to YTMMV infection and rapidly died. In contrast, Solanum lycopersicum 

‘Tigerella’ plants were mildly affected, irrespective of the age of virus infection, and yield and 

quality were not significantly reduced.  

YTMMV infection caused minimal symptoms and yield loss in the C. annuum ‘Californian 

Wonder’ and S. lycopersicum ‘Tigerella’ varieties tested, which made it difficult to detect by 

symptom expression alone. 
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Conclusions: YTMMV is probably primarily a pollen-transmitted and seed-transmitted virus in 

wild systems. YTMMV is able to perpetuate itself through host generations via seed from both 

infected and uninfected mother plants that have been fertilised by YTMMV-infected pollen 

sourced from another plant of the same species.  Our study showed that if infected S. 

lycopersicum ‘Tigerella’ and C. annuum ‘Californian Wonder’ plants, and probably other 

varieties of these species, were exported as fruit or seed from Western Australia, they could carry 

YTMMV to other places because symptoms are not clearly visible and YTMMV is transmitted 

in their seeds. Insects that carry infected pollen are potential agents of transmission. Thus, we 

consider that spillover of YTMMV to commercial solanaceous crops in the regions where 

YTMMV is endemic is likely, and spread to new areas, including internationally, via trade in 

infected plants and seed is possible. This should be confirmed by surveys, and antibodies to the 

YTMMV coat protein should developed for this purpose. Whether YTMMV has breached 

Australia’s international borders is unknown, and the risk posed by YTMMV to the global food 

supply is less certain. More work is needed to assess effects of infection on a wider range of 

commercial solanaceous species and varieties. Of particular urgency is the need to assess 

YTMMV risk in potato. A significant proportion of the WA potato crop is exported as ‘seed’ and 

ware potatoes.  
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Chapter 1: Introduction, Literature Review, Aims 
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1.1. Introduction 

Viruses are tiny (nanometre scale) acellular parasites that consist of one or more fragments of 

nucleic acid, often enclosed in a protein or lipoprotein capsid, encoding one or more genes. As 

we have seen with the spillover in late 2019 of severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), probably from a wild animal in China, to infect and kill millions of humans all 

over the world, viruses have the potential to cause enormous damage. Most, if not all, viruses 

that infect species that we have bred and domesticated for our purposes evolved in wild species 

before infecting domesticated species. This process is known as spillover or emergence, and it 

has undoubtedly happened many times over the evolutionary history of life on Earth. Given that 

there may be billions of virus species present on Earth (Domingo, 2020), spillovers appear to be 

relatively rare events because most viruses are constrained to one or a limited number of host 

species. Successful spillover depends on the simultaneous or near-simultaneous occurrence of 

several factors, and the small statistical likelihood of them co-occurring in space and time goes a 

long way to explaining the relative rarity of spillover events (Elena et al., 2014).  

In this study, one plant virus, yellow tailflower mild mottle virus (YTMMV), was studied. The 

species Yellow tailflower mild mottle virus belongs to an ancient group of plant-infecting virus 

species classified in genus Tobamovirus (from Tobacco mosaic virus). These viruses have 

probably evolved with their hosts for over at least 110 million years (Gibbs et al., 2015). Even 

though tobamoviruses have no known vectors to transmit them, several of them cause serious 

economic damage to crops. YTMMV is the first member of this internationally-distributed group 

to be identified only from Australia’s indigenous flora. Besides one isolated case where 

YTMMV spilled over to capsicum plants grown commercially in the Carnarvon region of 

Western Australia, this virus does not appear to have spilled over into other domesticated 
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solanaceous crops. Given the serious crop losses and costs of biosecurity measures to contain 

other internationally-distributed tobamoviruses, here we will attempt to gather information on 

means of transmission and potential to damage some domesticated solanaceous plant species. 

Almost all recorded research on other tobamoviruses has occurred “after the horse has bolted”—

they have already emerged and become pathogens of domesticated species—whereas in this 

case, as far as we know, YTMMV remains principally within the wild flora of Australia. 

Previous research in our group showed YTMMV was capable of infecting a wild range of exotic-

to-Australia solanaceous plants, and so there is evidence that YTMMV may be in a pre-spillover 

stage.  Our research aims to identify the possible mechanism(s) of spillover of YTMMV, and to 

understand the potential costs of such an event.   
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1.2. Literature review 

1.2.1. Viruses 

Viruses are acellular but are considered to be biological entities because they possess genomes 

and are able to adapt/evolve to infect particular hosts (Van Regenmortel et al., 2013). Because 

they are subject to evolution like all other biological entities, they have recently been classified 

into the same taxonomic categories—from realm to species—as all other forms of life (Walker et 

al, 2020). Some viruses have DNA genomes, but unlike other forms of life, many viral genomes 

are based on RNA, tobamoviruses being one group with RNA genomes that resemble messenger 

RNAs (mRNAs). Even more unusual, the genomes of a subset of RNA-based virus are in the 

negative-sense—complementary to the mRNA sense. The genomes of viruses may or may not be 

enclosed in protein capsids with or without lipid membranes. Viruses cannot replicate alone and 

must infect cells and use components (enzymes, membranes) of the host cell (animals, plants, 

bacteria) to make copies of themselves (Hegde et al., 2009). Thus, they are obligate parasites.  

According to the International Committee on Taxonomy of Viruses (ICTV), there were 9110 

virus species belonging to 189 families from 59 orders officially recognised in 2021 

(https://talk.ictvonline.org). This number undoubtedly underrepresents the extent of virus 

diversity. Because they are obligate parasites, viruses have intimate links with all cellular life, 

and may play important roles in ecosystem function. 

1.2.1.1.  Spillover 

Pathogen spillover (also known as emergence) is a term that describes the infection of a new host 

species from a natural reservoir population (Power & Mitchell, 2004). Spillover is more likely to 

https://talk.ictvonline.org/
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occur within species of the same genus, but it may also occur between members of a family or 

order. 

For a virus spillover to occur, several barriers must be overcome: 

1. Encounter: The original source of the virus and the potential new host must come into close 

proximity and exposure must occur. 

2. Vector: For some viruses, but not tobamoviruses, a vector is required to transmit the virus 

between the original host and the new host. 

3. Cellular contact: The virus must interact with cellular receptors on the surface of the cell in 

the new host. 

4. Nuclear/cytoplasmic entry, replication, systemic spread: the virus’s genome must be 

imported into the cell of the new host and replicate there. Some virus genomes must be 

imported into the nucleus of the cell.  

5. Overcoming host immunity: During replication, the host may mount an immune response 

against the virus. The virus must overcome these. 

6. Virion release/systemic spread within the host: The virus is released from the cell to infect 

other cells.  

7. New host to new host infection: The virus is transmitted to another individual of the new 

species. 



6 

There may be a requirement for several genetic changes to occur within the viral genome to 

achieve all or most of the above steps.  

The only reported spillover of YTMMV from the indigenous flora to an exotic species was 

recorded by Wylie & Li, 2017, in this case two plants of Capsicum annuum collected from a 

commercial crop located near the town of Carnarvon, Western Australia. The vegetable farm is 

located adjacent to natural vegetation where wild solanaceous plants occur, including species of 

Solanum, Physalis, Nicotiana and Anthocercis. It seems likely that the original source of the 

virus was the indigenous solanaceous plants growing nearby, although this was not tested. It 

remains to be seen whether YTMMV has emerged as a pathogen in solanaceous crops or in 

exotic weeds of the same family. 

1.2.1.2. Tobamoviruses  

Tobamoviruses have coevolved with angiosperms for about 110 million years ago (Gibbs et al., 

2015). They are characterized by a typical rod-shaped particle morphology with a diameter of 18 

nm, 300-310 nm in length (Adams et al., 2017). The single-stranded RNA (+ssRNA) sense 

genome of 6.2 to 6.4 kb encoding four Open Reading Frames (ORF). ORF1 and ORF2 are 

separated by a leaky stop codon and encode non-structural proteins that have a mass of 126 and 

183 kDa, respectively. ORF3 on the large sub-genomic RNA encodes the non-structural 

movement protein (MP) of 30 kDa. ORF4 on the small sub-genomic RNA encodes coat protetin 

(CP) subunits of 17-18 kDa (Luria, 2017). 

Tobamoviruses infect plants of the Solanaceae, Brasscicaceae, Cactaceae, Apocynaceae, 

Cucurbitaceae, Malvaceae, Leguminosae, Passifloraceae, and Orchidaceae. The viruses are 

subdivided based on host range and phylogeny (Dorokhov et al., 2018). According to the ICTV, 
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in 2020, genus Tobamovirus comprised 37 ratified species (https://talk.ictvonline.org/ictv-

reports/ictv_online_report/positive-sense-rna-viruses/w/virgaviridae/672/genus-tobamovirus 

online meeting, October 2020 ).  Based on genome organization and phylogenetic clustering, 

tobamoviruses are classified into three subgroups (Lartey et al., 1996). One includes most of the 

viruses with rosid primary hosts (blue branches in Fig. 1.1), and the other two have asterid and 

caryophyllid hosts (pink and green, respectively in Fig. 1.1) (Gibbs et al., 2015). 

  

https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/virgaviridae/672/genus-tobamovirus
https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/virgaviridae/672/genus-tobamovirus
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Figure 1.1 The phylogeny of twenty-nine tobamoviruses calculated from 100 percent consensus 

concatenated amino acid sequences of their three main proteins; replicase, MP and CPs (Gibbs et 

al., 2015)  

Tobamoviruses are among the most studied plant viruses and are used as models for the study of 

virus evolution (Fraile & García-Arenal, 2018). Several tobamovirus species are considered very 

damaging pathogens of some crops, especially those infecting members of the Solanaceae and 

Cucurbitaceae (Dombrovsky & Smith, 2017). Tobacco mosaic virus (TMV) is a major viral 

pathogen across 200 hosts from 30 families, especially in solanaceous plants, including tobacco 

(Nicotiana tabacum) and food crops like tomato (Iftikhar et al., 2015). Currently, yield losses for 

tobacco due to TMV are estimated at only 1% because the N gene from the South American 

tobacco species N. glutinosa was introgressed and provides resistance to TMV in most 

commercial varieties of N. tabacum (Lewis et al., 2005). In contrast, yield loss in bell pepper 

caused by TMV have been reported to be as high as 90% (Chitra et al., 2002). Furthermore, poor 
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fruit quality may reduce the value of the crop on the commercial fresh market. Chewing insects 

such as grasshoppers and caterpillars do occasionally transmit the virus on their mouthparts 

(Parizipour & Shahriari, 2020; Mphuthi, 2017). They are not considered important vectors. 

Virus-contaminated soils may play a role in transmission of TMV (Yang et al., 2012). 

Tomato mosaic virus (ToMV) was reported for the first time on tomato in 1909 in the US and 

was the most persistent virus in terms of its ability to survive outside plant cells and in dead 

tissues (Broadbent, 1976). ToMV is the most troublesome viral disease of tomatoes, distorting 

leaves and fruit and stunting of growth. Besides that, this virus also infects pepper, potato, apple, 

pear, cherry, and numerous weeds, including pigweed and lamb's quarters. ToMV is transmitted 

on the surface of seeds on tomato (external contamination).  

Tomato mottle mosaic virus (ToMMV) was first described in 2013 infecting tomato in Mexico. 

This new species caused rapid necrosis on the upper leaves of tomato seedlings or mosaic 

patterns and deformation on leaves on mature plants (Li et al., 2013). After the first report, this 

virus was quickly detected in the United States (Webster et al., 2014; Fillmer et al., 2015), Spain 

(Ambrós et al., 2016), Israel (Turina et al., 2016), and China (Li et al., 2014), indicating that it 

had been spreading for some time. It was also detected recently by Australia on capsicum seeds 

for sowing exported from the Netherlands (https://www.agriculture.gov.au/import/goods/plant-

products/seeds-for-sowing/emergency-measures-tommv-qa#to-which-host-species-do-the-

emergency-measures-apply). The close phylogenetic relationship between this new viral species 

to ToMV and TMV has been demonstrated (Li et al., 2017). To respond to the emerging risk of 

ToMMV, Australia has implemented emergency measures for tomato and capsicum seed. ToMV 

and ToMMV are both considered major viral threats to tomato production (Nagai et al., 2019). 

https://www.agriculture.gov.au/import/goods/plant-products/seeds-for-sowing/emergency-measures-tommv-qa#to-which-host-species-do-the-emergency-measures-apply
https://www.agriculture.gov.au/import/goods/plant-products/seeds-for-sowing/emergency-measures-tommv-qa#to-which-host-species-do-the-emergency-measures-apply
https://www.agriculture.gov.au/import/goods/plant-products/seeds-for-sowing/emergency-measures-tommv-qa#to-which-host-species-do-the-emergency-measures-apply
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Cucumber green mottle mosaic virus (CGMMV) was discovered in England in 1935 by 

Ainsworth (as described in Hollings, 1975). The most problematic of cucurbit-infecting 

tobamoviruses, CGMMV is currently considered a significant threat to the production of 

cucumber, melon, watermelon, gherkin, and pumpkin (Dombrovsky, 2017). The typical 

symptoms of CGMMV include mosaic patterning of infected leaves and fruit distortions 

(Komuro, 1971). The occurrence of CGMMV has been reported in Europe (e.g., Denmark, 

Finland, Germany, Greece, Holland, Norway, Russia, and Spain), United States, Asia (e.g., 

China, India, Indonesia, Japan, Korea, Pakistan, Thailand), Australia and the Middle East (Iran, 

Israel, and Saudi Arabia) (Moradi & Jafarpour, 2011; Zhang et al., 2009; Yoon et al., 2008; 

Zhou et al., 2008; Ali et al., 2004; Varveri et al., 2002; Vani & Varma, 1993; Antignus et al., 

1990; Inoue et al., 1967). In Australia, CGMMV was first detected in the Northern Territory in 

2014 (Tran-Nguyen et al., 2015; Tesoriero et al., 2016) and is now widespread there. 

Queensland (2015 and 2017) and Western Australia (2016) have also had outbreaks of CGMMV. 

CGMMV also detected in New South Wales in 2019 (https://www.dpi.nsw.gov.au). 

CGMMV is an economically significant seed-transmitted virus, which causes yield losses of 

about 15% in cucurbitaceous crops (Antignus et al., 2001; ISTA, 2010; Shang et al., 2011). 

CGMMV can be transmitted through contaminated water and soil, and sap of the plants infected 

with the virus.  Seed and soil transmissions are recognized as the primary sources for epidemic 

development of CGMMV disease (Tan et al., 2000; Choi, 2001; Mandal et al., 2008; Liu et al., 

2013; Nematollahi et al., 2013). The early spread pattern in cucumber, which is different in the 

fruit-harvesting stage, shows that infected plants are scattered throughout the field (Choi, 2001; 

Mandal et al., 2008).  
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Tomato brown rugose fruit virus (ToBRFV) is a novel tobamovirus, spreading rapidly since 

reported in Jordanian tomato greenhouses in 2015 (Salem et al., 2016) and has posed an 

emerging threat to tomato and pepper production around the world in recent years (Chanda et al., 

2021).  The wide distribution of ToBRFV has been attributed to the global movement of seed. 

The major resistance genes (Tm-1, Tm-2, Tm-22) in tomato that provide broad resistance to this 

group of viruses is not effective against ToBRFV (Luria et al., 2017). Recent greenhouse 

experiments have shown ToBRFV is transmission in pollen carried by bumblebees (Bombus 

terrestris) (Levitzky et al., 2019). Therefore, ToBRFV not only can be transmitted through 

contact, seeds, seedlings, grafts and cuttings, but also spreading by insect pollinators. 

1.2.1.3. Yellow tailflower mild mottle virus 

Yellow tailflower mild mottle virus (YTMMV) was first reported in 2014 from a wild plant of 

yellow tailflower (Anthocercis littorea, Family Solanaceae), a member of a genus endemic to 

Western Australia (WA) (Wylie et al., 2014). Wild-infected plants may be difficult to identify 

from symptoms alone. It is the first member of the Tobamovirus genus to be identified only from 

the Australian flora. Its natural distribution amongst indigenous plants, and lack of reports of its 

occurrence elsewhere, suggest it is indigenous to Australia (Wylie et al., 2015). The closest 

relatives of YTMMV are obuda pepper virus (OPV) and paprika mild mottle virus (PaMMV), 

both of which are transmitted naturally by contact in pepper (Hancinský et al., 2020). The first 

detection of PaMMV was in C. annuum in the Nertherlands in 1977 and then in Bulgaria and 

Japan (Yordanova & Stoimenova, 2008; Hamada, et al., 2003). This raises the question of the 

origin of YTMMV. Was it ‘marooned’ in Australia after the split up of the super-continent 

Gondwanaland, or did it arrive after the continent of Australia was formed?  
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Under experimental conditions the virus infected plants of Solanum lycopersicum, S. betaceum, 

S. melongena, S. nigrum, C. annuum, Nicotiana (19 species), and Physalis (3 species) (Li et al., 

2016; Wylie et al., 2015). Many of the indigenous solanaceous species present in the WA are 

desert plants. Indigenous solanaceous plants include species of Solanum, Nicotiana (Fig 1.2) and 

Anthocercis (Frontispiece). 
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Figure 1.2 Nicotiana benthamiana plant (foreground) growing in Karijini National Park, 

Western Australia. Photo taken by Steve Wylie, July 2020 
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A survey of distribution and natural host range of YTMMV was carried out on 89 wild and 

cultivated plants from Anthocercis littorea, Cuscuta epithymum, Datura inoxi, Hardenbergia 

comptoniana, Nicotiana rotundifolia, N. occidentalis subsp. obliqua, A. ilicifolia subsp. ilicifolia, 

A. gracilis, A. viscosa, N. occidentalis subsp. hesperis, Solanum lasiophyllum, S. oldfieldii, an 

unidentified species of Solanum, and C. annuum in Western Australia, from Coral Bay in the 

north to Esperance in the south. The survey revealed nine solanaceous plant species that were 

naturally infected with YTMMV, including two C. annuum plants from a commercial planting 

located in Carnarvon, Western Australia (Wylie & Li, 2017).  

The resilience of YTMMV virions was tested in dry leaf tissue over-time periods from one hour 

to one year under temperatures ranging from -80oC to 160oC (Koh et al., 2018). Infectivity was 

maintained for at least a year when incubated at -80 or 22°C, or at fluctuating ambient 

temperatures of 0.8 to 44°C, but incubation under dry conditions at 160°C for >4 days eliminated 

infectivity. 

1.2.2. Tobamovirus transmission between plants 

Plant viruses spread naturally through four main transmission pathways: vectors, seed, pollen 

and contact (Hamelin et al., 2016). Vectors provide the most important means of horizontal 

transmission from host to host for many virus species (Bragard, 2013). Vectors are 

taxonomically very diverse, with most being arthropods, but including some fungi and 

nematodes (Hull, 2014). The virus–vector interaction occurs at the protein level where a specific 

viral protein(s) interacts with a specific vector protein(s) (Froissart et al., 2002).  

The tobamoviruses are unusual among plant viruses in that vectors for them have not been 

described (Almeida et al., 2018). Arthropods are known to transmit some tobamoviruses 
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mechanistically as virions on contaminated mouthparts (Hoggan, 1931; Walters, 1951; Newton, 

1953; Chant, 1959; Rao & Varma, 1984), but this form of transmission is not vectored because 

no specialised protein-protein interaction occurs. Tobamoviruses utilise other means by which to 

transmit to new hosts. Many tobamoviruses are seed-borne, and so are able to transmit between 

generations within seed. As international trade in plant propagules has become a major industry, 

tobamoviruses have been transported around the world in contaminated seed (Revers & Garcia, 

2015). Many are also pollen-borne, using bees or other pollinators to carry infected pollen to new 

hosts (Mink, 1993).  

These modes of tobamovirus transmission are discussed below. 

1.2.2.1. Contact: leaves, roots, humans 

Tobamoviruses can be transmitted to new hosts by contact between plants.  This mode of 

transmission makes human beings an agent of transmission of tobamoviruses in crops (Carlye & 

Scott, 2000). The virions are stable and survive in sap for many years and can remain infectious 

on contaminated surfaces such as farm equipment for long periods (Holdings et al., 1975; 

Antignus, 2012; AUSVEG, 2017;). Virions persist on clothing and workers’ hands.  TMV is 

known to survive in cigarettes and cigars made from infected N. tabacum leaves and to be 

transmitted from the hands of a smoker to susceptible plants (Baker & Adkins, 2000). In natural 

settings, sublethal wounding of plant cells occurs during normal leaf abrasion in the wind and 

possibly root contact, as well as contact with animals (Franc & Bantarri, 2001; Sacristán, 2011).   

Critical factors for successful transmission by contact include:  

1. High concentrations of virus particles within the epidermal cells of infected plants. 
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2. The leaf is slightly damaged and enables virus particles to penetrate its cuticle and cells 

where the virus can replicate (Bawden, 1964; Matthews, 1981).  

1.2.2.2. Seed transmission 

Tobamoviruses such as TMV, ToMV and pepper mild mottle virus (PMMoV) can be transmitted 

on the surface of seeds harvested from infected plants. Many factors affect to seed transmission 

rates such as the host cultivar, the virus isolate, environmental conditions, the timing of infection, 

vector characteristics, and viral synergism which is happened by co-infection of two unrelated 

viruses, causing more severe symptoms or increased titres of one or both viruses (Simmons & 

Munkvold, 2014). Some tobamoviruses adhere to the outside surfaces of the seed and infect the 

emerging seedling. Tobamovirus infection of the internal seed layers, which rarely includes the 

embryo, may partially follow the direct invasion pathway of potyviruses such as pea seed-borne 

mosaic virus (PSbMV) to the pea embryo (Dombrovsky & Smith, 2017). 

Incidences of seed transmission of specific viruses vary between host plant species and between 

cultivars. Infection of the vegetative tissues and the maternal testa occurred irrespective of the 

virus's capability to be transmitted via seeds. A high incidence of seed transmission occurred in 

direct relation to virus invasion of an immature embryo (Fabre et al., 2014). 

Even seed transmission at very low rates can have a significant effect on the epidemiology of 

tobamoviruses in crops. Virus in field plants can spread initially to neighbouring plants by 

contact and then by pollen at flowering time (Coutts et al., 2009). Vertically-infected seedlings 

often do not exhibit symptoms of viral infection (Simmons & Munkvold, 2014).  
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1.2.2.3. Pollen transmission 

Pollen and seed transmission are closely related (Mink, 1993; Hull, 2004). Pollen-transmitted 

viruses are generally also transmitted by seed, but not necessarily vice versa, e.g., broad bean 

stain virus is seed-transmitted but not pollen-transmitted (Brunt et al., 1996). Considerably more 

research has focused on seed transmission because the seed is an important means of virus 

dissemination for several economically important vegetable and potential worldwide spread and 

fruit crops (Mink, 1993). Seed transmission occurs either through contamination of the seed 

surface or maternally derived seed parts, or, more commonly, through embryo infection. The 

embryo may become infected either directly during embryogenesis or indirectly via infection of 

the reproductive tissues (i.e., ovule, megaspore mother cell or pollen mother cell) before 

embryogenesis (Johansen et al., 1994). 

Pollen transmission of tobamoviruses is a more effective mechanism of long-distance 

transmission than contact because it does not require direct contact between closely-growing 

plants.  

The tobamovirus CGMMV is transmitted by pollen under laboratory conditions (Liu et al., 2014; 

AUSVEG, 2017). TMV is transmitted via pollen by bumblebees between tomato plants in 

greenhouses (Okada et al., 2000). When a virus is transmitted by pollen, it may systemically-

infect the plant through the fertilized flower (horizontal transmission), or more commonly, it may 

infect the ovule and thus the seedling that will grow from the seed that develops from the ovule 

(vertical transmission) (Hull, 2004).  
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1.3. Aims of this research 

Currently we know YTMMV naturally infects indigenous host plants along a long coastal strip 

that extends 1600 km from Coral Bay in the north to Esperance in the south. How it achieved 

this wide distribution is unclear, but it was probably not by leaf contact alone. The main aim of 

this project is to study modes of transmission of yellow tailflower mild mottle virus, including 

contact by roots, mechanistically by insect feeding, and pollen- and seed-borne transmission. 

Initial work in our group showed there was uneven root transmission of the virus, but nothing is 

presently known about pollen and seed transmission for YTMMV.  We will also undertake study 

to understand epidemiological aspects of a possible spillover event of YTMMV in a field trial 

and to study the influence of host plant species and age-at-infection on symptomology and 

potential crop losses. We are in the unusual position to study modes of transmission and to 

hypothesise about the risks of this wild-plant tobamovirus before it spills over to exotic 

solanaceous species in the region. 

I. Modes of YTMMV transmission 

• Investigate vertical transmission of YTMMV through seed (Chapter 2) 

• Investigate transmission of YTMMV through pollen (Chapter 2) 

• Investigate root contact and graft transmission of YTMMV (Chapter 3) 

• Investigate mechanistic insect transmission of YTMMV (Chapter 4) 

II. Influence of YTMMV infection on symptomology and yield of plants such as: 

• Solanum lycopersicum ‘Tigerella’  

• Capsicum annuum ‘Californian Wonder’ 
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• Capsicum annuum ‘Jalapeno’? (Chapter 5) 



20 

Chapter 2: Seed and pollen transmission  
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2.1. Introduction 

The term “seed transmission” refers to the passage of viruses through seeds to plants in the 

subsequent generation (Sastry, 2013). There are two distinct types of seed transmission of plant 

viruses: embryonic and non-embryonic. Viruses that undergo embryonic seed transmission are 

able to infect the embryo either directly from maternal tissue or indirectly from paternal pollen. 

There is usually a high rate of infection among new seedlings. Non-embryonic seed transmission 

occurs when viruses are carried on the surface of seeds, and not in the embryo.  

Tobamoviruses are usually described as residing in the seed coat and the endosperm but not the 

embryo (Broadbent, 1965; Crowley, 1957; Demski, 1981; Nagai, 1974; Taylor et al., 1961; 

Agarwal & Sinclair, 1996; Hull, 2002; Reingold et al., 2015; Dombrovsky & Smith, 2017). This 

mechanism allows the seeds to remain infectious for a long period (Reingold et al., 2015). When 

the seeds are contaminated, the virions found on the outer layers of the seed coat infect the 

cotyledons through wounds that form during germination, although this does not occur for all 

tobamovirus-contaminated seeds (Dombrovsky et al., 2017). Ellis et al., (2020) detected TMV in 

embryos in tobacco seed, demonstrating that TMV undergoes embryonic seed transmission in 

tobacco. The information known about the location of tobamoviruses in infected seed is listed in 

Table 2.1.
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Table 2.1 Tobamovirus virion location in the seed 

Tobamovirus species Host Location References 

Tobacco mosaic virus Capsicum annuum Seed coat Crowley, 1957; Sakamoto & Matsuo, 1972 

Tobacco mosaic virus Solanum lycopersicum Seed coat, endosperm Broadbent, 1965 

Tomato mosaic virus S. lycopersicum Seed coat, endosperm Broadbent, 1976 

Tobacco mosaic virus Arabidopsis thaliana Seed coat De Assis Filho & Sherwood, 2000 

Cucumber green mottle mosaic virus Cucumis sativus Seed coat, endosperm Shargil et al., 2019 

Tobacco mosaic virus Nicotiana tabacum Embryo  Ellis et al., 2020 

Tomato brown rugose fruit virus S. lycopersicum Seed coat, endosperm Davino et al., 2020 

Pepper mild mottle virus C. annuum Seed coat Genda et al., 2005; Genda et al., 2011 
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Other factors affecting rate of transmission are host cultivar, virus isolate, environment, and the 

lifecycle stage of the host when infection occurs (Sastry, 2013; Simmons & Munkvold, 2014). 

CGMMV, the most economically important of the five main cucurbit-infecting tobamoviruses 

(Gibbs et al., 2015; Reingold et al., 2016), can transmit by seed in eight different cucurbit crop 

species (Dombrovsky et al., 2017). Seed transmission tends to reduce over time as seed is stored. 

For example, CGMMV seed transmission rate after one month in storage was 8%, reducing to 

0.1% after five months (Demski, 1981; Nagai, 1981; Nishimura, 1962). 

Chemical and physical measures can be used to control the seed transmission of tobamoviruses. 

However, chemical treatment alone is not sufficient to eradicate the virus from infected seeds, 

and physical treatment can have serious consequences on seed longevity depending upon the 

seed condition (Demski, 1981; Nagai, 1981; Rast & Stijger, 1987). 

Pollen transmission is a means of long-distance tobamovirus transmission. Pollen transmission is 

divided into two possible modes of transmission: horizontal, where virions in the pollen infect 

somatic tissue and spread within the mother plant, and vertical, where the ovule or other parts of 

the seed are infected via the pollen (Mink, 1993; Card et al., 2007; Isogai et al., 2017). In vertical 

transmission, there are two possible routes the virus can take to infect the seed. The virus may 

enter the seed through the placenta from the mother plant’s vascular system, or it may enter from 

the pollen tube from infected pollen. This virus-infected pollen may either originate from the 

mother plant (self-pollination) or from another plant (cross-pollination). It may even be possible 

for virus-infected pollen from another plant species to transmit a virus to the ovule. It should be 

noted that virus-infected pollen may also transmit viruses horizontally from an infected to an 

uninfected plant (Fig 2.1) (Matsushita et al., 2018). 
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Figure 2.1 Two possible transmission routes of a viroid via pollen. Vertical transmission 

involves infection of seedlings in the subsequent generation via seed that has been infected by 

virus in pollen. Horizontal transmission occurs when virus-infected pollen transmits the virus to 

somatic cells of the recipient plant.  This image describes the transmission of a viroid, but the 

same routes apply to tobamovirus-infected pollen (Matsushita et al., 2018) 

Pollen transmission occurs in viruses from several plant virus genera. Vertical transmission 

occurred more prequently than horizontal transmission. While more than 45 plants are vertically 

transmitted by pollen, 18 of these viruses are horizontally transmitted by pollen (Mink, 1993; 

Card et al., 2007; Isogai et al., 2020). 

Some tobamovirus species were reported to be pollen transmitted. CGMMV was transmitted in 

pollen to cucumber with the rate from 17 to 51% of fruit compared with 33.3–100% for 

mechanically inoculated plants (Lui et al., 2014). Under protected cropping conditions, 

CGMMV, TMV, and PePMV, were spread by pollinating bumble bees or honeybees (Darzi et 
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al., 2018; Lacasa et al. 2003; Okada et al., 2000; Shipp et al., 2008; De Assis Filho & Sherwood, 

2000). 

The experiments described in this chapter were designed to answer if YTMMV is transmitted 

through seed and pollen. We wished to determine if treatment of the external surface of the seed 

eliminated infection, and if horizontal and vertical transmission occurred at pollination. 

Aims of the experiments: 

1. Study YTMMV transmission by seed of solanaceae plants 

2. Evaluate the effectiveness of commercial disinfectants against seed transmission of 

YTMMV 

3. Determine whether YTMMV can be transmitted via pollen in Nicotiana tabacum  
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2.2. Materials and Methods 

2.2.1. Virus 

YTMMV inoculum used in all experiments of this project was collected originally from a mature 

yellow tailflower plant (Anthocercis littorea Labill.) growing close to the entrance to of 

Nambung National Park (GPS -30.60346, 115.15467), and located about 15 km to the south-east 

of the township of Cervantes in South-Western Australia (Wylie et al., 2014). The isolate was 

named YTMMV-Cervantes and its genome sequence is retained in GenBank under accession 

KF495564. The isolate was maintained mechanically on Nicotiana benthamiana accession RA-4 

and Solanum betaceum seedlings by manual inoculation after grinding infected leaves in 0.1 M 

sodium phosphate buffer (pH 7.0) and diatomaceous earth (Sigma). Plants were grown in a 

temperature-controlled and insect-proof greenhouse (22°C days, 17°C nights). 

To avoid contamination of other plants with the virus, infected plants were maintained apart 

from uninfected plants, and handwashing before and after entering the facility was practiced. 

2.2.2.  RNA extraction, cDNA synthesis, and PCR amplification 

500 µl Trizol Reagent (ThermoFisher) was used to extract RNA from 40 mg leaf samples, 

following the manufacturer’s protocol, and then re-suspended in 30 µL of RNase-free water and 

stored at -20°C until reverse-transcription (RT) using random primers. Samples were prepared 

using GoScript reverse transcriptase (Promega) with a random primer (Table 2.1), that produces 

products of 574 nucleotide (nt) fragments of the coat protein (CP) gene was amplified using 

MP1R and CP1R with synthesize the coat protein region of 917 nt and 612 nt, respectively. PCR 

primers were MP1R and MP1F; CP1R and CP1F (Table 2.1) (Koh et al., 2017). 
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PCR was conducted using GoTaq Green Mastermix (Promega) following the cycling steps of 

95°C for 3 min; 25 cycles of 95°C for 30 s, 55°C for 45 s, 72°C for 90 s; and a final extension of 

72°C for 10 min. The resulting amplification products were analyzed on a 1% TAE agarose gel. 

Table 2.2 Primers used to detect YTMMV (Koh et al., 2017) 

Primer Sequence (5’ to 3’)                     Purpose/target Expected size of 

amplicon (bp) 

Random 

primer 

CGTACAGTTAGCAGGCNNNNNNNN NNNN 

(Where N represents any nucleotide) 

Synthesize cDNA 574 

MP1F 

MP1R 

ACGAGGCAATAGGGGAAGTT 

GCAAACTGCTTAGGTGAAGTGA 

Synthesize movement protein 

region 

917 

CP1F 

CP1R 

CGCTTAAAGAGCGAATTGATG 

CCAAACAGCCAAACCCTTC 

Synthesize coat protein region 612 

 

2.2.3. Seeds 

Six solanaceous species/lines were used in this project, namely N. benthamiana accessions RA-4 

and MtA-6 (Wylie et al., 2015), Solanum lycopersicum ‘Tigerella’, Capsicum annuum 

‘Californian Wonder’; Capsicum annuum ‘Jalapeno’; Nicotiana tabacum ‘Wisconsin 38’. Plants 

were grown as below:  

1. Soil: Potting mix (60:40 rotted bark: sand mix) to which 5 g each of lime and dolomite 

and 40 g each of slow-release NPK fertilisers Osmocote and Grower’s Blue were added 

per 40 L. 
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2. Sowing: Seed of all of the above plants except those of N. benthamiana MtA-6 (which 

was treated with 10 ppm GA3 overnight prior to sowing to break dormancy) was sown 

directly in pots filled with damp potting mix and then covered with a polythene bag to 

keep moisture in until germination, upon which time the polythene was removed.  

3. Transplanting: Seedlings were transplanted at the 4-leaf stage.   

4. Producing seeds for transmission experiments: To produce virus-infected seeds of N. 

benthamiana accessions RA-4 and MtA-6, S. lycopersicum ‘Tigerella’, C. annuum 

‘Californian Wonder’; C. annuum ‘Jalapeno’; N.  tabacum ‘Wisconsin 38’ we inoculated 

seedlings (usually at the 6-8 leaf stage) but later and for N. benthamiana accessions RA-4 

and C. annuum ‘Jalapeno’ (before flowering) in order to keep infected plant still alive 

and produce seeds, confirmed presence of YTMMV in plants by symptoms and RT - 

PCR test, and collected seeds from fruit and dried in room temperature. 

2.2.4. Seed transmission experiment 

2.2.4.1. Is YTMMV transmitted by seed? 

One thousand seeds of uninoculated and inoculated plants of N. benthamiana accessions RA-4 

and MtA-6, S. lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’, C. annuum 

‘Jalapeno’, and N. tabacum ‘Wisconsin 38’ were collected. Five hundred seeds were harvested 

from YTMMV-infected plants and 500 seeds harvested from uninfected plants of each species. 

Seeds were divided into 20 groups of 50 seeds per group and sown separately. All seeds were 

sown directly (without any treatment) except seeds of N. benthamiana MtA-6, which were 

treated with gibberellic acid (as above). Seedlings numbers were recorded 7 days post-
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germination (dpg). Fifty seedlings per species were selected randomly and then tested for the 

presence of YTMMV by RT- PCR (Table 2.1). 

2.2.4.2. Do commercial disinfectants protect against seed transmission of YTMMV?  

1250 seeds per species of uninoculated and inoculated plants of N. benthamiana accessions RA-4 

and MtA-6, S. lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’, C. annuum 

‘Jalapeno’, and N. tabacum ‘Wisconsin 38’ were used.  

Disinfection treatments were: 

1) Water: The seeds were washed three times in sterile distilled water before sowing. 

2) Bleach and ethanol (EtOH): Seeds were soaked in bleach (1% sodium hypochlorite) for 2 

min, then the bleach was replaced with a solution of 75% EtOH. After 1 min, the ethanol 

was poured off, and the seeds were washed five times in sterile distilled water. 

Five hundred seeds were from uninfected plants, and these were divided into two treatments: 250 

seeds were used for controls (treatment 1) and 250 seeds were treated by bleach + EtOH 

(treatment 2). Of the remaining 750 seeds from infected plants, 250 seeds were used for controls 

(treatment 3), 250 seeds were treated with water (treatment 4), and 250 were treated by bleach + 

EtOH (treatment 5). The 1250 seeds were divided into 25 groups of 50 seeds per group. 

Seedlings were counted at 7 dpg and 50 seedlings per species were collected randomly and tested 

for the presence of YTMMV by RT-PCR (Table 2.1). 
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2.2.5. Pollen transmission 

Twenty N. tabacum ‘Wisconsin 38’ plants (sixteen plants for cross pollination and four plants for 

control – self-pollinated) were grown in 5 L pots in laboratory conditions free of natural 

pollinators. And ten YTMMV-infected N. tabacum ‘Wisconsin 38’ plants were produced by 

manual inoculation and maintained in the separated greenhouse. To eliminate self-pollination, 

flowers were emasculated before anthers dehisced. Pollination was done by collecting pollen 

from dehisced anthers to a petri dish with a cotton bud. Pollination of emasculated flowers was 

done by transferring pollen on a new cotton bud. Each flower was pollinated once only and then 

covered by a new paper bag until fruits were mature.  
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 Figure 2.2 Flowers of Nicotiana tabacum ‘Wisconsin 38’ plants were isolated by paper bags 

after pollination 

Three weeks after pollination, plants were tested for the presence of YTMMV. There were two 

possible outcomes: 1) plants remained virus-free virus yet transmitted the virus in seed (vertical 

transmission), and 2) plants became systemically-infected with YTMMV (horizontal 

transmission). Seedlings from seeds of fruits in both situations were checked for YTMMV. The 

number of seeds from each fruit was counted. Seeds from each fruit were sown separately and 

then seedlings were collected in groups of 100 seedlings per group. RT–PCR assays were used to 

evaluate the virus vertical and horizontal transmission rate. The data for control was analysed 

from 10 fruits of four uninfected YTMMV plants including the criteria such as number of seeds 

per fruit, seed germination rate and seedlings transmission rate.
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2.3. Results 

2.3.1. Seed germination 

YTMMV infection did not significantly affect seed germination rates (Fig 2.3). 

Germination rates varied between species, the highest rate of 94.4%, was seen in S. 

lycopersicum ‘Tigerella’ and N. tabacum ‘Wisconsin 38’, while N. benthamiana MtA-6 

showed the lowest rate of 10%. The surface treatments of water and bleach plus ethanol 

did not significantly affect seed germination (Figs 2.3-2.9). 

 

 

Figure 2.3 Comparison of germination rates of seed harvested from YTMMV-free 

(uninfected) plants (in blue) and YTMMV-infected plants (in orange) of six 

species/accessions 
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Figure 2.4 Comparison of the germination rate of Nicotiana benthamiana RA-4 seeds 

harvested from YTMMV-free plants and YTMMV-infected plants under five different 

treatments 

Treatment 1 (U-Untreated): Seeds from uninfected plants, no treatment (control – 

uninfected seed – untreated chemical) 

Treatment 2 (U-Bleach+EtOH): Seeds from uninfected plants treated by bleach and 

ethanol 

Treatment 3 (I-Untreated): Seeds from infected plants germinated naturally (control – 

infected seed – untreated chemical) 

Treatment 4 (I-Water): Seeds from infected plants and cleaned by water before sowing 

Treatment 5 (I-Bleach+EtOH): Seeds from infected plants treated by bleach and ethanol 
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Figure 2.5 Comparison of the germination rate of Nicotiana benthamiana MtA-6 seeds 

harvested from YTMMV free plants and YTMMV infected plants under five different 

treatments  

 

Figure 2.6 Comparison of the germination rate of Sonalum lycopersicum ‘Tigerella’ 

seeds harvested from YTMMV free plants and YTMMV infected plants under five 

different treatments 
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Figure 2.7 Comparison of the germination rate of Capsicum annuum ‘Jalapeno’ seeds 

harvested from YTMMV free plants and YTMMV infected plants under five different 

treatments  
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Figure 2.8 Comparison of the germination rate of Capsicum annuum ‘Californian 

Wonder’ seeds harvested from YTMMV free plants and YTMMV infected plants under 

five different treatments 
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Figure 2.9 Comparison of the germination rate of Nicotiana tabacum ‘Wisconsin 38’ 

seeds harvested from YTMMV free plants and YTMMV infected plants under five 

different treatments  

2.3.2. Seed transmission 

YTMMV transmission rates through seed were highest in N. benthamiana RA-4 and S. 

lycopersicum ‘Tigerella’ plants at 40% and 36%, respectively, and lowest in N. 

tabacum ‘Wisconsin 38’ at 2.5% (Fig 2.10). Surface treatment of seeds with bleach and 

ethanol did not significantly change the seed transmission (Fig 2.11). Seed transmission 

of YTMMV occurred in all five species tested. Bleach and ethanol did not eradicate 

YTMMV from infected seeds. 
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Figure 2.10 Comparison of seed transmission rates of YTMMV to six 

varietes/accessions species  

 

Figure 2.11 Comparison of effects of treatments on seed transmission rates of 

YTMMV to six species/accessions 
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2.3.3. Pollen transmission  

After 16 virus-free N. tabacum ‘Wisconsin 38’ plants were pollinated with pollen from 

virus-infected plants, 26 fruits were produced in which YTMMV was present in the 

seedlings grown from the seeds. Of these 26 fruits, 20 were the result of vertical 

transmission because the mother plants remained uninfected, while six fruits (from two 

plants) were the result of horizontal and vertical transmission, where the mother plant 

was systemically-infected by pollination.  

2.3.3.1.Vertical transmission  

Twenty fruits from virus-pollinated plants that were not systemically-infected were 

collected. The data including number of seeds per fruit, germination rate and 

transmission rate were shown in Table 2.3 and compared to the control in the Table 2.4 

Virus transmission occurred in less than 1% (0% of 9 fruits; 0.2% of 6 fruits; 0.4% of 2 

fruits; 0.6% of 1 fruit; 0.8% of 1 fruit; 1% of 1 fruit) of the seed in the fruits in which 

vertical transmission occurred. Transmission did not occur in all fruits pollinated with 

virus-infected pollen.  
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Table 2.3 Pollen transmission of YTMMV to seed of twenty fruits derived from YTMMV-uninfected Nicotiana tabacum ‘Wisconsin 38’ 

flowers that were fertilised with pollen sourced from YTMMV-infected parent plants. Pollinated plants were not systemically infected with 

YTMMV, confirming vertical transmission 

Fruit number 1 2 3 4 5 6 7 8 9 10 

Number of seeds per fruit  3000 2889 1333 556 978 2897 2444 2333 3111 2556 

Number of seedlings that germinated 2952 2224 1097 470 940 2750 2300 2300 2500 2230 

Rate of germination (%) 98.4 76.9 82.2 84.5 96.1 94.9 94.1 98.5 80.3 87.2 

Number of seedlings tested by RT- PCR 500 500 500 470 500 500 500 500 500 500 

Number of seedlings positive for YTMMV 1 3 0 2 0 0 0 1 0 0 

Rate of vertical virus transmission (%)  0.2 0.6 0 0.4 0 0 0 0.2 0 0 

Table 2.3 Continued 

Fruit number 11 12 13 14 15 16 17 18 19 20 

Number of seeds per fruit 3100 1625 2211 2989 1878 3089 1211 3433 3522 878 

Number of seedlings that germinated 2523 1449 1847 2667 1625 2973 1099 3196 3271 716 

Rate of germination (%) 81.3 89.1 83.5 89.2 86.5 96.2 90.7 93.0 92.8 81.5 
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Number of seedlings tested by RT- PCR 500 500 500 500 500 500 500 500 500 500 

Number of seedlings positive for YTMMV 0 1 5 4 1 1 0 2 1 0 

Rate of vertical virus transmission (%) 0 0.2 1 0.8 0.2 0.2 0 0.4 0.2 0 

 

Table 2.4 Comparison of the data of twenty Nicotiana tabacum ‘Wisconsin 38’ fruits from Table 2.3 to the control 

 Fruit number (range from 1-20) Control (range from 1-10) 

Number of seeds per fruit  556 - 3522 1263 - 3175 

Number of seedlings that germinated 470 - 3271 1051 - 2978 

Rate of germination (%) 76.9 - 98.5 81.9 – 96.7 

Number of seedlings tested by RT- PCR 470 - 500 500 

Number of seedlings positive for YTMMV 0 - 5 0 

Rate of vertical virus transmission (%)  0 - 1 0 
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2.3.3.2. Horizontal transmission 

Flowers of virus-free mother plants were fertilised by pollen sourced from YTMMV-infected father plants.  Both horizontal and vertical 

transmission of virus can occur after pollination. There were six fruits produced from two these infected plants (Tables 2.5, 2.6). 

Table 2.5 Pollen transmission of YTMMV to seed of six fruits derived from YTMMV-uninfected Nicotiana tabacum ‘Wisconsin 38’ flowers 

that were fertilised with pollen sourced from YTMMV-infected parent plants. The result after cross pollination is the pollinated plants become 

infected with YTMMV, horizontal transmission occurs 

Fruit number 1 2 3 4 5 6 

Number of seeds per fruit 3189 1889 2922 1867 2214 3546 

Number of seedlings 2846 1441 2575 1572 1993 3214 

Rate of germination (%) 89.2 76.2 88.1 84.1 90.0 90.6 

Number of seedlings tested RT- PCR 500 500 500 500 500 500 

Number of seedlings positive for YTMMV 2 2 0 0 2 1 

Rate of transmission (%)  0.4 0.4 0 0 0.4 0.2 
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Table 2.6 Comparison of the data of six fruits of Nicotiana tabacum ‘Wisconsin 38’ from Table 2.5 to the control 

 Fruit number (range from 1- 6) Control (range from 1-10) 

Number of seeds per fruit  1867 - 3546 1263 - 3175 

Number of seedlings that germinated 1441 - 3214 1051 - 2978 

Rate of germination (%) 76.2 – 90.6 81.9 – 96.7 

Number of seedlings tested by RT- PCR 500 500 

Number of seedlings positive for YTMMV 0 - 2 0 

Rate of vertical virus transmission (%)  0 – 0.4 0 



44 

2.4. Discussion 

Tobamoviruses are considered a major threat to a range of economically-important 

plant species and their cultivars, especially those in the families Cucurbitaceae and 

Solanaceae. Cucurbits are threatened internationally by CGMMV, and in localities by 

KGMMV, ZGMMV and CFMMV. The most important tobamoviruses in the 

solaneceous crops are TMV, TMGMV, ToMV, PMMoV and tomato brown rugose fruit 

virus (ToBRFV). Currently, YTMMV is not a tobamovirus of concern in solanaceous 

crops and amenity plants, and the hope is it remains this way. However, it is important 

that we understand aspects of its biology, transmission being a critical factor in its 

potential for spillover. Most, if not all, tobamoviruses are seed-borne, and even at very 

low rates this is of concern to growers because contact between plants can transmit the 

virus quickly throughout a closely-planted crop from a few foci of infection. In this 

study we confirmed that YTMMV resembles other tobamoviruses in that it too is seed-

borne.  Pollen transmission also appears to be a trait shared by most, if not all, 

tobamoviruses. Here we also confirmed YTMMV is a pollen-transmissible virus.  

These experiments confirmed that YTMMV is transmitted in the seed of all the host 

species tested: N. benthamiana accessions RA-4 and MtA-6, S. lycopersicum 

‘Tigerella’, C. annuum ‘Californian Wonder’, C. annuum ‘Jalapeno’, and N. tabacum 

‘Wisconsin 38’. Our confirmation of YTMMV as seed-borne in at least some of its 

hosts reveals that it is potentially capable of being spread by the international trade in 

vegetable seed should it emerge in plants being grown for seed.  

The lowest YTMMV seed transmission rate was 2.5% in N. tabacum ‘Wisconsin 38’ 

and the highest rate was 57.5 % of N. benthamiana (MtA-6). This is quite similar to 

other tobamovirus species and expresses the role of interactions with the host in rates of 
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seed transmission. For example, seed transmission rates of PMMoV in two C. annuum 

cultivars and one C. frutescens genotype were 30.4%, 100%, 18.6%, respectively 

(Jarret et al., 2008), strongly suggesting a host factor regulating transmission by seed.  

A ToMV seed transmission rate of 16% of tropical soda apple mosaic virus (TSAMV) 

in Solanum viarum (Adkins, 2007), or the low seed transmission rate which recorded in 

ToBRFV of 2.8% in cotyledons and 1.8% in the third true leaf of S. lycopersicum 

(Davino et al., 2020).  

Treatment by bleach and ethanol was not effective at eliminating seed transmission of 

YTMMV, showing that the virus was protected from these treatments, likely because 

virions were located within the seed coat.  No significant difference was observed in 

germination between YTMMV-infected seeds and non-infected seed, with the 

expection of S. lycopersicum ‘Tigerella’. This is in contrast to some other research. For 

instance, 4.2% sodium hypochlorite was reported as one of solutions in reduction but 

not elimination of PMMoV in contaminated pepper seed (Crowley, 1957; Lamb et al., 

2001; Stommel et al., 2021). A slight reduction was recorded when applying sodium 

hypochlorite 2% treatment for 20 min and 4% in 30 min to TMV-infected tomato seed 

(Milinko, 1956; Broadbent, 1965). Sodium hypochlorite concentrations of 5.25-6% 

were suggested by Bratsch (2018) to treat ToMMV-infected seed.  

Chemical treatment of the external seed surfaces was ineffective at reducing or 

eliminating YTMMV in the host species tested. Heat treatments have been utilized to 

reduce the incidence of PMMoV and other tobamoviruses in contaminated pepper seed 

and ToBRFV in tomato (Stommel et al., 2021; Salem et al., 2021). Ozone treatment 

was used to against viral pathogens on various substrates. Stommel et al., (2020) 

applied ozone treatment PMMoV-infected C. annuum seed to eliminate reduce 
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infection rate of seedlings. Heat and ozone treatments are possible methods of reducing 

YTMMV transmission in seeds. 

The effects of YTMMV infection on potato, S. tuberosum, are unknown. Potato 

production contributes $619 million or 15% of the total value of vegetables in 

Australia, and followed by tomatoes ($547 million) 

(https://www.agriculture.gov.au/abares/research-topics/surveys/vegetables. While 

Australian tomato production is only approximately 30 percent as large as potato 

production by volume, it is nearly 90 percent as significant when measured by value 

(https://ausveg.com.au/resources/economics-statistics/australian-vegetable-production-

statistics/). Control of viruses is centered on the use of virus-free seeds.  

Seed transmission in annual plants is a means by which the virus can survive when the 

host plant dies, leaving only the seed as propagules to begin the next generation. In 

addition, seed transmission, in conjunction with secondary spread by insect vectors, can 

result in the introduction of viruses into new areas and can produce viral disease 

epidemics (Dinant & Lot, 1992). Furthermore, seeds cannot be treated easily and major 

management practices are not known and applied efficiently by farmers. These are the 

reasons seed-borne viruses cause huge loses in crop production and quality (Paylan, 

2011).  

In order to clarify the mechanism of YTMMV transmission and spread of seedborne 

virus disease, the location of this virus inside the seed should be researched. 

Fluorescence is applied widely to tobamovirus research. For example, by using 

fluorescence microscopy, Genda et al., 2005 observed two things about PMMoV in C. 

annuum: 1) PMMoV was present in the epidermis and parenchyma but not in the 

endosperm or embryo; 2) The virus was restricted to the surface of the epidermis and 

https://www.agriculture.gov.au/abares/research-topics/surveys/vegetables
https://ausveg.com.au/resources/economics-statistics/australian-vegetable-production-statistics/)
https://ausveg.com.au/resources/economics-statistics/australian-vegetable-production-statistics/)
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parenchyma. Other application is implemented by Salem et al. (2021) to determine the 

localization of ToBRFV within tomato seeds.  

Modes of transmission of YTMMV via pollen were studied. Pollen collected from 

systemically-infected pollen donor plants was infected with YTMMV, although we did 

not test the rate of infection of pollen grains. Virus-infected pollen was capable of 

infecting both the whole recipient plant through horizontal transmission and the 

recipient ovule through vertical transmission.  

There were three different leaf infection outcomes recorded: 

1) The leaves were infected with YTMMV because the whole plant had 

become infected via YTMMV-infected pollen.  

2) The leaves were uninfected with YTMMV because no part of the plant 

had become infected via YTMMV-infected pollen.  

3) The leaves were uninfected with YTMMV but the ovule had become 

infected, thereby transmitting the virus to the seed from a plant free of 

systemic virus infection.  

To distinguish between outcomes 2 and 3, seedlings germinating from the seed of the 

recipient plant were tested for YTMMV. Where no seedlings were infected, it was 

assumed outcome 2 had occurred, and pollen free of virus had fertilized the ovule. 

Where some seedlings were infected, it was assumed outcome 3 had occurred, and 

virus carried in the pollen tube had infected the ovule.  

Transmission of YTMMV by pollen-borne virus was confirmed in N. tabacum 

‘Wisconsin 38’under laboratory conditions. This result enables us to consider the 
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hypothesis that YTMMV is spread over long distances from infected plants to 

uninfected plants through pollination. Pollen grains are probably carried by arthropod 

pollinators, but birds and other creatures are also potential pollinators (Ortega-

Olivencia et al., 20025; Castellanos et al., 2006). Further research is required to 

investigate whether pollen transmission of YTMMV occurs naturally.  

Pollen transmission may occur between species. For instance, raspberry bushy dwarf 

virus (RBDV) can be horizontally transmitted to Torenia fournieri plants by penetration 

of germinating pollen tubes originating from RBDV-infected Rubus idaeus (Isogai et 

al., 2014).  Bees may visit flowers of several plant species, thereby transmitting viruses 

to vulnerable species other than the original host species. 

Transmission did not occur in all fruits pollinated with virus-infected pollen. In N. 

tobacum plants pollinated with virus-infected pollen, there was no virus detection in 11 

fruits, equal to 42.3% of escapes. The reason may be because an insufficient number of 

virions reached the ovary or the virus does not always survive the pollination process 

(Liu et al., 2014; Isogai et al., 2017). This result confirms those of Mink (1993), who 

found that vertical transmission was less common than vertical transmission through 

ovules. Future research should use quantitative real-time RT-PCR to determine the rate 

of pollen infection by YTMMV.  

Although the rate of YTMMV seed infection of N. tabacum ‘Wisconsin 38’ via pollen 

occurred at a low rate (1%) comparing the high rate of the same species from seed 

transmission (from 3 % to 29%). Zucchini yellow mosaic virus (ZYMV) (genus 

Potyvirus) seed infection via pollen occurred at a rate of 0.13 % (Harth et al., 2017). 

Within potyviruses the evidence suggests that vertical transmission via the maternal 
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parent through the ovule or embryonic tissue is less common (Simmons & Munkvold, 

2014).   

The transmission of YTMMV from leaf to flower, pollen to seed, and seed to seedlings 

was demonstrated in this study. YTMMV is transmitted via pollen and is seed-borne in 

N. tabacum and is seed-borne in N. benthamiana accessions RA-4 and MtA-6, S. 

lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’; C. annuum ‘Jalapeno’; N. 

tabacum ‘Wisconsin 38’. 

YTMMV transmission via seed and pollen is confirmed by RT-PCR tests of seedlings. 

Another test that could be done is to visualise YTMMV particles in the cells of seed or 

pollen using Transmission Electron Microscopy (TEM). TEM study would enable 

localisation of virus particles in the organ of interest and might help to explain why 

plants differ in transmission rates. 
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Chapter 3: Yellow tailflower mild mottle virus transmission 

by root and graft contact 
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3.1. Introduction 

Tobamovirus species are reportedly transmitted by foliage contact, seed and soil 

contamination. Transmission of tobamoviruses occurs by root contact and root-grafting 

(Schwarz et al., 2010). Tobamoviruses such as CGMMV, ToMV and TMV are 

infectious in water and are able to transmit between plants through root contact 

(Beijerinck, 1898; Paludan, 1985; Jacobi & Castello, 1991; Vani & Varma, 1993; Pares 

et al., 1992; Pares et al., 1996). Antignus et al. (2005) studied cucumber fruit mottle 

mosaic virus (CFMMV) on cucumber plants and concluded that virus invasion occurred 

in the root cells is via wounds inflicted through the disturbance of the root system 

during transplanting. 

Koh et al. (2018) showed infrequent YTMMV transmission by root contact between 

plants growing in a hydroponics system. These authors found that root transmission of 

YTMMV between infected and uninfected plants growing in the same pot, where the 

leaves were not in contact, was uncommon and inconsistent. When transmission did 

occur, the virus could be detected in the leaves of plants, but the usual symptoms of leaf 

infection (stunting, curling, mosaic, mottle) were absent for the 45 days in which plants 

were observed. Roots from uninoculated plants that were in contact with inoculated 

plants tested positive for YTMMV, but the shoots of the same plants did not.  

Grafting is a standard practice for many perennial fruit trees and vines, but also for 

some annuals, especially tomatoes and some cucurbits. Grafting technology has 

evolved into a unique component in the production of several solanaceous and 

cucurbitaceous vegetables for disease management and for improvement of crop 

productivity (Guan et al., 2012). By choosing resistant rootstock, some of the well-

known examples include controlling tristeza on citrus, fire blight and collar rot on 
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apples (Mudge et al., 2009). Where the scion or rootstock is virus-infected, the virus 

may cross the graft union to the uninfected tissue.  

Cucurbits are commonly grafted either on intraspecific rootstocks (Cohen et al., 2007) 

or interspecific rootstocks (Lee & Oda, 2010). In Japan and Korea, grafted seedlings 

were used approximately 92% and 95% of the area cultivated with watermelon, 

respectively (Lee et al., 2010). Importantly, cucurbit grafting could reduce viral 

infection from contaminated soil (Cohen et al., 2007; Cohen et al., 2017; Edelstein et 

al., 2017; Smith et al., 2018). For example, it is estimated that grafted tomatoes account 

for 20% to 40% of worldwide tomato production, and grafting is increasing to control 

soil-borne pathogens and to mitigate abiotic stresses (Lee et al., 2010). 

Among vegetable crops, tomato, eggplant, sweet pepper, watermelon, melon, and 

cucumber are commonly and economically grafted in Asia, Europe, and North America 

(Gaion et al., 2018). Naturally-occurring grafts are uncommon and mainly found in 

roots (Dijkstra & de Jager, 1998).  

Koh et al. (2018) showed the potential of YTMMV transmission via root in 

hydroponics system in an inconsistent manner. Because transmission through roots is 

less studied than for above-ground organs, we will further evaluate YTMMV 

distribution in the infected plant and in grafted plants.  

Aims of the research described in this chapter were to study:  

1. YTMMV distribution in the infected plant. 

2. Movement of virus from shoots to roots and vice versa in grafting 

experiments.   

3. Further test the role of root contact in YTMMV transmission.  
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3.2. Materials and Methods 

N. benthamiana accessions (RA-4 and MtA-6) plants infected by YTMMV isolate 

Cervantes were used as the source of virus. RNA extraction, cDNA synthesis, PCR 

amplification and primers used to detect YTMMV by RT-PCR were as described in 

Chapter 2. The methods of planting and inoculating N. benthamiana accessions RA-4 

and MtA-6, N. tabacum ‘Wisconsin 38’, and S. lycopersicum ‘Tigerella’ are described 

in Chapter 2. 

3.2.1. Virus distribution  

N. benthamiana accessions RA-4 and MtA-6 and N. tabacum ‘Wisconsin 38’ plants 

were used as the indicators to investigate virus distribution in infected plants. While N. 

tabacum ‘Wisconsin 38’ exhibited mild responses to YTMMV infection, young 

seedlings of N. benthamiana RA-4 plants deteriorated very quickly. Therefore, 

inoculation of N. benthamiana RA-4 plants was conducted on older seedlings at the 5-7 

leaf stage. 

At 60 days post-inoculation (dpi), tissue samples were tested by RT-PCR for the 

presence of YTMMV. One leaf sample and two root samples for each plant were tested 

from each of twelve N. benthamiana and nine N. tabacum ‘Wisconsin 38’ plants using 

virus-specific primers as described previously (Table 2.1, Chapter 2). Two root samples 

were collected from opposite sides of the root ball (if present), or if roots were stunted, 

from upper and lower parts of the root (Figure 3.1). 
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Figure 3.1 Development of root system in YTMMV-infected plants of Nicotiana 

tabacum ‘Wisconsin 38’ (left) and Nicotiana benthamiana RA-4 (right) and the 

positions where root samples were collected from the roots 

3.2.2. Grafting  

S. lycopersicum cv Tigerella plants were used as scions and rootstocks for the grafting 

experiment. Virus-free seed was sown in potting mix and transplanted into pots at the 

third true leaf stage. Some plants were mechanically inoculated with sap from 

YTMMV-infected N. benthamiana RA-4 plants. Infected plants and uninfected plants 

were grown in different glasshouse compartments to avoid inadvertent cross-infection. 

RT-PCR (as above) was used to test leaves and roots samples of inoculated plants. 

Tomato plants were 6-weeks old when prepared for grafting. Rootstocks were prepared 

by removing the shoots above the two basal leaves and then creating a vertical cut of 

1.5–2 cm at the center of the stem. Scions (5-7 cm in length) were prepared by 

removing leaves and trimming the base of the scion to a wedge. The scion/rootstock 

junction was wrapped with Parafilm® (American National Can.). Eighteen uninfected 

scions were grafted to eighteen YTMMV-infected rootstocks (treatment 1), and 

Root - Infected Nicotiana tabacum plant Root - Infected Nicotiana benthamiana plant 
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eighteen YTMMV-infected scions were grafted to eighteen uninfected rootstocks 

(treatment 2) (Fig 3.2). The treatments were repeated twice (repeats 1 and 2).  

 

 

 

 

 

 

Figure 3.2 Both YTMMV-infected and uninfected rootstocks and scions of Solanum 

lycopersicum ‘Tigerella’ plants were grafted to test transmission to and from roots 

Grafted plants were grown for four weeks (Fig 3.3).  After four weeks, leaf, stem and 

root samples were collected and tested for YTMMV by RT-PCR. 

  

Figure 3.3 One day after grafting (left) and 15 days after grafting (right) Solanum 

lycopersicum ‘Tigerella’ plants where axillary buds have germinated 

3.2.3. Root contact 

Three experiments were done:  

1) In experiment 1, decaying roots of an infected plant cut at ground level 7 days 

previously were present in the soil when N. benthamiana RA-4 seedlings were 

Treatment 1 Treatment 2 
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transplanted into the soil. Seedlings were tested for YTMMV transmitted to the 

live roots from the dead roots.  

2) In experiment 2 

Treatment 1: two N. benthamiana RA-4 seedlings were grown in the same pot. As they 

matured, one of the two plants was inoculated with YTMMV. The uninfected plant was 

covered with a polythene bag to prevent leaves touching. 

Treatment 2: resembled treatment 1, but there were two uninfected seedlings and one 

inoculated seedling covered with a polythene bag to prevent leaves touching in each 

pot. N. benthamiana RA-4 and C. annuum ‘Jalapeno’ were used. 

3.2.3.1. Experiment 1: infection from decaying roots 

After YTMMV infection was confirmed in seedling N. benthamiana RA-4 plants, the 

above-ground parts of the plant were removed, and virus-free seedlings were planted in 

the same soil. Symptoms were observation and leaf samples were collected after 35 

days. Plants were tested for the presence of YTMMV by RT-PCR.  

3.2.3.2. Experiment 2: infection from live roots  

3.2.3.2.1. Treatment 1 (one infected plant and one uninfected plant grown on the same 

pot) 

N. benthamiana RA-4 seedlings were grown with two plants per pot. One plant was 

mechanically inoculated with YTMMV. The uninoculated plant was covered by a 

polythene bag. Symptoms were observed and leaf and root samples collected at 35 dpi. 

Roots of uninoculated plants were tested for YTMMV. 
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Figure 3.4 Root transmission experiment. One Nicotiana benthamiana RA-4 plant was 

inoculated with YTMMV and the other one was uninoculated. The polythese bag 

prevented shoot/leaf contact 

 3.2.3.2.2. Treatment 2 (one infected plant and two uninfected plants grown on the same 

pot) 

N. benthamiana RA-4 and C. annuum ‘Jalapeno’ were used as indicator plants in 

experiment 3. Three seedlings were grown in one pot. At the vegetative stage, one plant 

was inoculated manually with YTMMV and then covered by a polythene bag. Two 

weeks after inoculation the leave of infected plants were tested by RT-PCR to confirm 

the infected source plants. Root samples of both infected and uninfected (tested) plants 

were collected at 35 dpi and tested for the presence of YTMMV by RT-PCR test. 

Length of roots at 35 dpi of both infected and tested plants was measured.  
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3.3. Results 

3.3.1. Distribution of YTMMV within the leaves and roots 

YTMMV was always detected in the leaf of N. tabacum ‘Wisconsin 38’ (Table 3.1) and 

N. benthamiana (Table 3.2) plants tested, and in the two root samples of N. tabacum 

‘Wisconsin 38’ plants, but were not uniformly-distributed in roots of N. benthamiana 

plants. 

Table 3.1 Results of RT-PCR tests of leaves and roots of nine inoculated Nicotiana 

tabacum ‘Wisconsin 38’ plants at 60 dpi. There were three samples per plant including 

one young leaf sample and two root samples collected in two different positions on the 

pot 

Plant number 1 2 3 4 5 6 7 8 9 

Leaf + + + + + + + + + 

Root – position 1 + + + + + + + + + 

Root – position 2 + + + + + + + + + 

Presence (+) of virus in the leaves and roots of plants were recorded 
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Table 3.2 Results of RT-PCR tests of leaves and roots of twelve infected Nicotiana 

benthamiana plants including ten N. benthamiana RA-4 plants (pots 1 - 10) and two   

N. benthamiana MtA-6 plants (pots 11 and 12). One leaf and two root samples per plant 

Plant number 1  2 3 4 5 6 7 8 9  10 11 12 

Leaf + + + + + + + + + + + + 

Root – position 1 + + + - - + + - + + + - 

Root – position 2 - NT + - - + + - + + - - 

Presence (+) or absence (−) of virus in the leaves and roots of plants were recorded; 

NT: not tested 

3.3.2. Grafting 

S. lycopersicum ‘Tigerella’ is a suitable rootstock in grafting. However, of these 

eighteen plants for each experiment, only five to six scions of survived and grew in the 

first treatment compared to seventeen in the repeat treatment. S. lycopersicum 

‘Tigerella’ is mild response to the YTMMV. There was no symptom by observation. 

The results for two repeats of the first and second grafting treatments are shown in the 

Tables 3.3 and 3.4, respectively. Our data (Tables 3.3 and 3.4) show that YTMMV was 

transmitted via grafting in S. lycopersicum ‘Tigerella’ in both directions, from leaf to 

root and from root to leaf. Also, from these data (Table 3.3 and 3.4) expressed the same 

result about virus distribution in S. lycopersicum ‘Tigerella’to the N. benthamiana and 

N. tobacum that when plants become infected with YTMMV it always appeared on the 

leaf, but was inconsistently present in the root, except to N. tabacum ‘Wisconsin 38’. 
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3.3.2.1. Treatment 1 

When infected rootstocks were grafted to uninfected scions, YTMMV was transferred from root to stem, leaf. Although the virus was not 

detected in the roots in pots 7, 8, 9, 14, 16, 17, 19, 20, and 23.  These results were similar to the results of the virus distribution experiment. The 

virus was present in stems and leaves. YTMMV was transmitted from roots to scion (Table 3.3). 

Table 3.3 YTMMV transmission through graft union in Solanum lycopersicum from root to scion: the uninfected scions were grafted to infected 

rootstocks. Six plants (number 1 – 6) and seventeen plants (number 7 - 23) were grafted successfully in repeats 1 and 2 

Plant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Leaf of tested plant + + + + + + - + + + NT + - + + - + + NT NT + + NT 

Stem of tested plant NT NT + + + + + + + + + + + + + + + + + + + + + 

Root of infected plant + + + + + + - - - + + + + - + - - + - - + + - 

Presence (+) or absence (−) of virus in the leaves and roots of plants were recorded; NT: not tested 
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3.3.2.2. Treatment 2 

When the scion of infected plants was grafted to uninfected rootstocks, YTMMV transferred from the stem to the root. The virus was not always 

detected in roots (Table 3.4). 

Table 3.4 YTMMV transmission through graft union in Solanum lycopersicum from scion to root: The infected scion was grafted to rootstock of 

uninfected rootstock. Five plants (number 1 – 5) and seventeen plants (number 6 - 22) were grafted successfully in repeats 1 and 2 

Plant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Leaf of tested plant NT + + + + + + + + + + + + + + + + + + + + + 

Stem of tested plant NT + + + + + NT + + + + + + + + + + + + + + + 

Root of tested plant + + + + + - - - - - - - - - - - - + - - + + 

Presence (+) or absence (-) of virus in the leaves, stems and roots of plants were recorded; NT: not tested 
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3.3.3. Root contact 

3.3.3.1. Experiment 1 

RT-PCR was applied to test YTMMV from the leaf samples of tested plants. No 

YTMMV was detected from leaf samples on 19 Nicotiana benthamiana RA-4 plants 

grown in soil containing dead roots of infected plants. 

3.3.3.2.Experiment 2 

3.3.3.2.1. Treatment 1 

There was no detection of YTMMV on 19 root samples from 19 N. benthamiana RA-4 

plants which were grown in the same pot with YTMMV-infected plants where no leaf 

contact between plants was permitted. 
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3.3.3.2.2. Treatment 2 

At 35 dpi, C. annuum ‘Jalapeno’ YTMMV-infected roots were still growing well but N. 

benthamiana infected roots were small and weak. The size of the root system of 

infected plants was very small and short compared to uninfected plants (Fig. 3.5; 3.6).  

Roots of infected N. benthamiana RA-4 and C. annuum ‘Jalapeno’ plants all survived 

and grew (Fig 3.6, 3.7; 3.8) although infection resulted in smaller root systems. The 

highest values of length root of infected N. benthamiana and C. annuum were 6 cm and 

15 cm, respectively compared to the uninfected plants of these two species of 48 cm 

and 52 cm, respectively. 
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Figure 3.5 Roots status and root contact images of infected and uninfected Nicotiana 

benthamiana RA-4 plants (right) and Capsicum annuum ‘Jalapeno’ plants (left) at 35 

dpi 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Roots of two uninfected and one infected plant of Capsicum annuum 

‘Jalapeno’ growing in the same pot (left) and Nicotiana benthamiana RA-4 (right). 

Length of roots of infected plant always shorter than that of uninfected plants  

 

Infected plant 

Uninfected plant 

Infected plant 

Uninfected plant 

Uninfected roots Infected root Uninfected roots Infected root 

Uninfected plant 

Uninfected plant 
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Figure 3.7 Comparison the length roots (cm) of Nicotiana benthamiana infected plants and uninfected plants when one infected plant grown the 

same pot with two uninfected plants. There were 12 infected plants (equal 12 pots) and 23 uninfected plants (there was only one uninfected 

plant, number 21 belong to pot 11 recorded 
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Figure 3.8 Comparison the length roots (cm) of Capsicum annuum ‘Jalapeno’ infected plants and uninfected plants when one infected plant 

grown the same pot with two uninfected plants. There were 12 pots including 12 infected plants and 24 uninfected plants  
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Presence of YTMMV in the roots of infected plants of N. benthamiana RA-4 and C. 

annuum ‘Jalapeno’ are shown in Table 3.7. The virus was not always detected in roots 

of YTMMV-infected plants.  

One pot had two uninfected plants and one infected plant in it. We considered that root 

transmission had occurred if the virus was detected in least one root of an uninfected 

plant. Tables 3.8 and 3.9 showed contact transmission via roots of N. benthamiana RA-

4 and C. annuum ‘Jalapeno’ plants. Root transmission in both species was 83% (10 per 

12 pots) and 50% (6 per 12 pots) for N. benthamiana and C. annuum ‘Jalapeno’, 

respectively.  
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Table 3.5 Virus detection on the roots of infected Nicotiana benthamiana RA-4 and Capsicum annuum ‘Jalapeno’ plants. YTMMV was not 

uniformly distributed in roots of infected plants. Plant infection was confirmed by a leaf RT-PCR test for each plant 

Pot 1 2 3 4 5 6 7 8 9 10 11 12 

Infected Nicotiana benthamiana 

plants 
+ + NS NS + NS + + NS NS NS - 

Infected Capsicum annuum 

‘Jalapeno’ plants 
+ + - - - - + - + - + - 

Presence (+) or absence (-) of virus in the roots were recorded.  NS: not sampled because plant was dead 

Table 3.6 Virus transmission to roots of uninoculated Nicotiana benthamiana plants. In one pot were two tested plants and one infected plant. If 

the virus was detected in at least one uninoculated plant, we considered root transmission occurred 

Pot 1 2 3 4 5 6 7 8 9 10 11 12 

Tested plants 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

- + + + + + + + - - - + + - NS + + + + + - - + + 

Presence (+) or absence (-) of virus in the roots were recorded; NS: not sampled 
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Table 3.7 Virus transmission to roots of tested Capsicum annuum ‘Jalapeno’ plants. Each pot had two uninfected plants and one infected plant. 

If the virus was detected in at least one uninoculated plant, we consider that root transmission occurred 

Pot  1 2 3 4 5 6 7 8 9 10 11 12 

Tested plants 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

 + - NS + - - - - + - - - - - - + - - + - - + - - 

Presence (+) or absence (-) of virus in the roots were recorded. NS: not sampled 
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3.4. Discussion 

We tested whether YTMMV was transmitted through roots in soil. YTMMV was 

transmitted at 50% and 83% for C. annuum ‘Jalapeno’ and N. benthamiana, 

respectively. Both roots and shoots of infected plants were tested by RT-PCR and we 

found that YTMMV was unevenly distributed within the roots of plants of N. 

benthamiana, C. annuum and S. lycopersicum. Surprisingly, shoots of plants infected 

by root contact did not exhibit symptoms typical of YTMMV infection, even though 

virus was present in the shoots. This phenomenon happened in N. tobaccum and S. 

lycopersicum plants that usually show mild symptoms of YTMMV infection, and in 

plants of N. benthamiana and C. annuum that exhibit severe symptoms. 

The results of this study suggest that YTMMV is transmitted through roots although the 

rate in which this occurs may vary with host species. In a hydroponics system, Park et 

al. (1999) indicated that TMV could be transmitted from tobacco, tomato and hot 

pepper plants to healthy plants mainly via natural root-tip grafting.  

The results of this study showed that RT-PCR assays of the leaves for YTMMV were 

more reliable than the roots, because distribution was less even in roots for unknown 

reasons. Similar results were found with CGMMV in grafted watermelon (Chen et al., 

2009; Yoon et al., 2008; Komuro et al., 1971). More extensive study is required to 

determine possible mechanisms.  

Analysis of virus distribution of other tobamovirus species in infected plants revealed 

that while hibiscus latent fort pierce virus moved from the place of inoculation to the 

roots first and then toward the bottom (oldest) leaves of the plants (Kamenova & 

Adkins, 2004), TMV also moved from the place of inoculation to the roots first but then 
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toward to the young, apical leaves before infecting the middle-aged and older leaves 

(Hull, 2002). Although it is often assumed that viruses infected systemically and 

detected in all leaves, the distribution of virus in infected plants has not been widely 

studied.  

The distribution of a virus in infected plants depends on several factors such as host 

genes, viral genes, the host defense system, and environmental factors (Hull, 2002). In 

this experiment YTMMV was detected in all leaf samples of infected N. tobacum, N. 

benthamiana, C. annuum, S. lycopersicum plants, but only in all root samples of N. 

tobacum plants. Host-encoded factors may be at play in root distribution of YTMMV. 

We did not detect transmission to seedlings planted in soil containing the roots of 

infected plants. Other tobamoviruses are reported to be stable under some 

circumstances in soil and crop residues in the soil, and to be transmissible (Gülser et 

al., 2008; Candemir et al., 2012). Similarly, YTMMV virions are highly resilient (Koh 

et al., 2018). CGMMV had a survival of 50% in soil without host plants for 17 months 

and had high infectivity in the debris of infected plants over one year (Park et al., 

2010). Li et al. (2016) suggested that contaminated soil, pruning and irrigation could 

transmit CGMMV at different efficiencies. Broadbent (1965) confirmed that tomato 

plants can acquire TMV through their roots from debris in the soil. Thus, they are 

capable of infecting newly established plants through roots injuries. It seems likely that 

YTMMV could be transmitted in the soil to injured roots, but this may occur 

uncommonly. These experiments should be done by also planting seed in YTMMV-

contaminated soil to test if transmission occurs at germination. 
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The effects of virus-infection on root systems are not well-studied. Here, the effects on 

roots were mirrored by effects on shoots. For instance, N. benthamiana RA-4 shoots are 

severely affected by YTMMV infection, as are the roots.  
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Chapter 4: Mechanistic transmission of YTMMV during insect 

feeding   
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4.1. Introduction 

The interactions between vector, virus and plant have important epidemiological 

implications. Understanding this three-way relationship is integral to understanding 

epidemiology and for developing control strategies (Krenz et al., 2015).  

Many plant viruses are transmitted by arthropods, with aphids in the subfamily 

Aphidinae (Order: Homoptera) being the most important, transmitting nearly 30% of all 

plant virus species described to date (Brault et al., 2010), including some large virus 

groups such as potyviruses (Ng & Perry, 2004; Herrbach et al., 2016). Other large 

groups such as begomoviruses are transmitted by whiteflies (Zerbini et al., 2017), and 

thrips are vectors of orthotospoviruses and ilarviruses (King et al., 2012; Bujarski et al., 

2019). 

Specific interactions between virus and vector factors occur regardless of the type of 

virus/vector association. The different modes of viral transmission by vectors include 

non-persistent, semi-persistent and persistent, whereby the transmission window to 

disseminate the virus to a new host plant after feeding on an infected plant by the vector 

lasts from seconds to the lifetime of the vector, depending on the transmission mode.  

Non-persistent, non-circulative viruses bind to the mouthpart/stylet of the vector 

through protein-protein interactions, including the viral capsid or a helper-component 

or a combination of both (Ng & Falk, 2006). They are not transmissible from the gut. 

They enter the plant when saliva enters the cells/phloem. 

Semi-persistent, non-circulative viruses are retained within the insect foregut. Semi-

persistent viruses are internalised in the insect by binding to the chitin lining the gut, 
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but do not move into other tissues (Blanc et al., 2011). They are regurgitated into the 

plant during feeding. 

Persistent viruses are taken up and retained in insect tissues and are characterized by 

invading the salivary glands (Hogenhout et al., 2008). Persistent viruses can be further 

being divided into circulative non-propagative, and circulative propagative (Bragard et 

al., 2013). 

When viruses are transmitted mechanistically by the contaminated mouthparts of 

herbivores, including arthropods, this form of virus transmission is not considered to be 

vectored. With chewing insects, such non-specific transmission mostly occurred when 

insect mouthparts were contaminated with infective sap and ceased as soon as this sap 

was cleaned away during feeding (Hoggan, 1934; Orlob, 1963; Smith, 1965; Walters et 

al.,1951). Tobamoviruses are not vectored by insects per se (Fulton et al., 1987), but 

there are reports of mechanistic transmission by insects in the older literature. For 

example, aphids (Hoggan, 193I), grasshoppers (Walters, 195I) and mealy-bugs 

(Newton, 1953) have all been reported to transmit TMV. Chant (1959) showed that 

Galerucid beetles (Ootheca mutabilis) transmitted TMV from Bengal bean (Mucuna 

aterrima) to Bengal bean and cowpea (Vigna unguiculata), and from cowpea to Bengal 

bean. Similarly, cucumber leaf beetles (Raphidopalpa fevicollis) transmited CGMMV 

in bottle gourd (Lagenaria siceraria) (Rao & Varma, 1984).  

The aim of the current experiment was to examine vector transmission of YTMMV 

through feeding by the sucking insect green peach aphid (GPA) (Myzus persicae) and 

the chewing insect cotton bollworm (Helicoverpa armigera) under laboratory 

conditions.  We also tested transmission under field conditions by any mechanistic 
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means by interplanting infected and uninfected plants in plots and allowing wild 

insects, molluscs, birds etcetera to interact with the plants over time.  



77 

4.2. Materials and Methods 

4.2.1. Laboratory experiment: Feeding by green peach aphids and cotton bollworms  

4.2.1.1.Plants  

N. benthamiana (RA-4), C. annuum ‘Jalapeno’, and Solanum betaceum (tamarillo) 

plants were selected as hosts because green peach aphids and cotton bollworms feed on 

leaves of these species, and symptoms of YTMMV infection are clearly visible.  

When plants were four weeks old they were manually inoculated with YTMMV as 

described in Chapter 2. When symptoms became apparent, they were moved to a 

growth chamber for experiments with insects.   

4.2.1.2. Insects 

Cultures of GPAs and cotton bollworms were obtained from existing cultures 

maintained at Murdoch University. 

4.2.1.2.1. Green peach aphid culture 

Green peach aphids were initially maintained on N. tabacum ‘Wisconsin 38’ plants in a 

growth chamber with a 16/8h (light/dark) cycle. Aphids were brushed onto a petri dish 

to be transferred to virus-virusuninfected plants of N. benthamiana RA-4, S. betaceum 

and C. annuum ‘Jalapeno’ plants using a small paintbrush. All pots were placed on the 

trays and placed inside an insect-proof cage. 

4.2.1.2.2. Cotton bollworm culture 

Foods for larvae and adults were prepared according to the formulae below (Table 4.1, 

4.2). We put 15–20 cocoons per cage. Once adult moths appeared, equal numbers of 
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male and female were kept in a cage.  Larvae were kept in individual cages with 

artificial diet cubes. 

Table 4.1 Larval diet 

 

 

Fraction Components Amount 

A 

Chickpea flour 150 g 

Ascorbic acid 2.3 g 

Sorbic acid 0.75 g 

Yeast extract 24 g 

Vitamin mixture 5 mL 

Antifungal solution 1.3 mL 

Streptomycin (1 g/ml stock) 200 µL 

Sterile distilled water 200 mL 

B 
Agar (powder) 8.625 g 

Sterile distilled water 350 mL 
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Method: 

1. Prepare fraction A separately in 1000 mL beaker.  

2. Prepare fraction B in separate flask/beaker and boil it in microwave till the Agar 

powder is completely digested in water. Make sure that agar doesn’t boil out 

from the container. 

3. Pour the fraction B in fraction A and blend immediately using hand blender or a 

spatula. 

4. Once both fractions are completely mixed and smooth slurry is formed, pour the 

mixture into individual Petri dishes and keep it open for solidification. 

 

 Table 4.2 Adult diet

Components Amount 

Sucrose (10%) 50 g 

Vitamin Mixture 20 mL 

Antifungal Solution 2 mL 

Sterile distilled water Make up to 500 mL 
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4.2.1.3. Insect transmission in laboratory conditions 

4.2.1.3.1. Transmission by green peach aphid  

Step 1: Sixty aphids per each host plant species (N. benthamiana (RA-4), C. annuum 

‘Jalapeno’, S. betaceum) were collected from uninfected plants of N. benthamiana (RA-

4), C. annuum ‘Jalapeno’ and S. betaceum and placed in petri dishes, which were sealed 

by plastic wrap. Aphids were fasted for 1 h.  

Step 2: After fasting aphids were transferred to the infected plants of the same species 

for 3 h (treatment 1), 5 h (treatment 2), 7 h (treatment 3) or 24 h (treatment 4) (the same 

species). 

Step 3: After feeding from the infected plants, 10 aphids were transferred to an 

uninfected (tested) plant of the same species. And then, after 2 days the aphids were 

removed from tested plants. 

Six replicate plants were used for each species. 

Plants were maintained in aphid-proof cages. Control of this experiment was carried out 

on two plants per each species. Twenty aphids which collected from uninfected N. 

benthamiana (RA-4) plants and placed in a petri dish, sealed by plastic wrap and fasted 

for 1 h and then transferring ten aphids per one N. benthamiana (RA-4) plant. The 

similar steps were applied to C. annuum ‘Jalapeno’, S. betaceum. 

The note in this experiment is transferring aphids in the same species from maintaining 

culture to feeding in the infected plant and then to tested plant to ensure that this aphid 

can eat and growth and maintain in these plant species (already adapted). The aim of 

this experiment was to ensure aphids were adapted to the test plant species. 
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The experiment was repeated twice. After 5 d since removing the aphids from tested 

plants, symptoms were observed daily in three weeks (to the date leaf samples 

collected).  Leaf samples were collected after 21 d and RT-PCR assays with YTMMV-

specific primers (Chapter 2) were used to detect the presence of YTMMV. 
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Table 4.3 YTMMV transmission experiments testing green peach aphids as the agent 

of transmission 

Treatment  Species 
Starvation time 

(h) 

Feeding time on infected plants 

(h) 

1 

Nicotiana benthamiana (RA-4) 

1 3 Capsicun annuum ‘Jalapeno’ 

Solanum betaceum 

2 

N. benthamiana (RA-4) 

1 5 C. annuum ‘Jalapeno’ 

S. betaceum 

3 

N. benthamiana (RA-4) 

1 7 C. annuum ‘Jalapeno’ 

S. betaceum 

4 

N. benthamiana (RA-4) 

1 24 C. annuum ‘Jalapeno’ 

S. betaceum 

 

 

   

Figure 4.1 Solanum betaceum plants in insect cages in controlled-temperature room 
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4.2.1.3.2. Transmission by Cotton bollworm  

Step 1: Larva from 4th and 5th instar (the highest feeding stage with very high feeding 

rate) were selected and fasted for 12 h (this time is enough to increase their larvas 

feeding and eats anything after starvation). 

Step 2: After fasting, larvae were transferred to YTMMV-infected plants of N. 

benthamiana (RA-4), C. annuum ‘Jalapeno’ and S. betaceum for 12 h (treatment 1); 24 

h (treatment 2); 48 h (treatment 3). 

Step 3: After feeding on the infected plants, larvae were collected separately by species 

and transferred to tested plants of the same species to ensure these plant species were 

adapted food to this cotton bollworm (three larvae per plant). After two days feeding on 

the tested plants, larvas were removed. 

Control of this experiment was carried out on two plants per each species and only 

included two steps (larvas were fasted and then transferred to uninfected (control) 

plants and then removed after two days feeding). There were six replicate plants per 

species. Plants were maintained in cages. 

The experiment was repeated twice. Tested plants were observed daily for symptoms in 

three weeks (to the date samples collected) since 5d removing the larvas.  Leaf samples 

were collected after 21 d and RT-PCR assays with YTMMV-specific primers were 

used to detect the presence of YTMMV. 
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Table 4.4 YTMMV transmission experiment using larvae of cotton bollworm 

Treatments Species  Starvation time (h) 
Feeding time on 

infected plants (h) 

Feeding time on tested plants 

(h) 

1 

Nicotiana benthamiana (RA-4) 

12 12 

24 

Capsicum annuum ‘Jalapeno’ 36 

Solanum betaceum 72 

2 

N. benthamiana (RA-4) 

12 24 

24 

C. annuum ‘Jalapeno’ 36 

S. betaceum 72 

3 

N. benthamiana (RA-4) 

12 48 

24 

C. annuum ‘Jalapeno’ 36 

S. betaceum 72 
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4.2.2. Testing transmission of YTMMV in field plots under natural conditions 

4.2.2.1.  Plant sources 

Seven species were used to test transmission of YTMMV in the field: N. benthamiana 

RA-4, S. lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’, C. annuum 

‘Jalapeno’, N. tabacum ‘Wisconsin 38’, S. betaceum, S. melongena ‘Long Purple’. All 

infected and tested plants were prepared and transferred in 2 L pots in a glasshouse 

before moving them to the field. Infected plants of all seven species were produced by 

manual inoculation with YTMMV-Cervantes isolate when they were from five to six 

weeks of age. Leaf samples were tested by RT-PCR (Chapter 2) to confirm the 

presence of YTMMV after two weeks since inoculated. The numbers of infected and 

tested plants are listed in Table 4.5.  
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Table 4.5 Plant species used in the field to test for natural transmission of YTMMV  

Plant species 
Numbers of 

infected plants 

Numbers of 

uninfected plants 
Total plants 

Capsicum annuum ‘Jalapeno’ 13 35 48 

Nicotiana benthamiana (RA-4) 24 62 86  

Solanum betaceum 11 30 41 

C. annuum ‘Californian Wonder’ 5 16 21 

S. melongena ‘Long Purple’ 5 14 19 

N. tabacum ‘Wiscosin 38’ 3 10 13 

S. lycopersicum ‘Tigerella’ 14 25 39 

Total plants 75 192 267 

 

4.2.2.2. Field experimental design 

The 192 uninfected (tested) plants (pots) were placed into 16 plots (Fig. 4.2). Each plot 

was organized by 12 tested plants which selected randomly from the source, the detail 

of species and location are listed in the Table 4.6. Infected plants were arranged 

between the plots (Table 4.7). The distance between pots (tested plants) was 50 cm, and 

between tested plant (pot) and infected plant (pot) was 1 m (Fig 4.2). 

 



87 

X1                   X16                   X31                   X46                   X61 

    =   =   =   =       =   =   =   =       =   =   =   =       =   =   =   =     

X2    1               X17    2               X32    3               X47    4     
 

        X62 

  

X3 

  =   =   

  

=   =     

X18 

  =   =   =   =    

X33 

  =   =   =  =     

X48 

  =   =   =   =    

X63 

    =   =   =   =       =   =   =   =       =   =   =   =       =   =   =   =     

X4                   X19                   X34                   X49                   X64 

                                                                                  

X5   =   =   =   =   X20   =   =   =   =   X35   =   =   =   =   X50   =   =   =   =   X65 

     5                    6                    7                    8                 

X6   =   =   =   =   X21   =   =   =   =   X36   =   =   =   =   X51   =   =   =   =   X66 

                                                                                  

X7   =   =   =   =   X22   =   =   =   =   X37   =   =   =   =   X52   =   =   =   =   X67 

                                                                                  

X8                   X23                   X38                   X53                   X68 

                                                                                  

X9   =   =   =   =   X24   =   =   =   =   X39   =   =   =   =   X54   =   =   =   =   X69 

     9                   1

0 

                   1

1 

                   1

2 

                

X10   =   =   =   =   X25   =   =   =   =   X40   =   =   =   =   X55   =   =   =   =   X70 

                                                                                  

X11   =   =   =   =   X26   =   =   =   =   X41   =   =   =   =   X56   =   =   =   =   X71 

50 cm 

1 m 
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Figure 4.2 Field plot design to test for transmission of YTMMV under field conditions. Infected source plants (75 plants) are shown as X. 

Uninfected plants are shown as a dash. There are 16 plots equal to 16 different colours, one plot has 12 uninfected tested plants 

                                                                                  

X12                   X27                   X42                   X57                   X72 

    =   =   =   =       =   =   =   =       =   =   =   =       =   =   =   =     

X13    1

3 

              X28    1

4 

              X43    1

5 

              X58    1

6 

              X73 

    =   =   =   =       =   =   =   =       =   =   =   =       =   =   =   =     

X14                   X29                   X44                   X59                   X74 

    =   =   =   =       =   =   =   =       =   =   =   =       =   =   =   =     

X15                   X30                   X45                   X60                   X75 
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Table 4.6 Uninfected plant species and their position in all 16 plots (equal 16 diferrent colours) to test for transmission of YTMMV under field 

conditions 

1)  

Capsicum annuum ‘Jalapeno’ Solanum melongena ‘Long 

Purple’ 

S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ 

C. annuum ‘Californian Wonder’ Nicotiana benthamiana (RA-4) S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ 

Nicotiana benthamiana (RA-4) S. betaceum C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

 

2) 

N.benthamiana (RA-4) S. melongena ‘Long Purple’ S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ 

C. annuum ‘Jalapeno’ N. benthamiana (RA-4) S. lycopersicum ‘Tigerella’ S. betaceum 

C. annuum ‘Californian Wonder’ S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ N. benthamiana (RA-4) 

 

3) 

N. benthamiana (RA-4) S. betaceum N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ 

S. melongena ‘Long Purple’ S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ S. betaceum 

C. annuum ‘Jalapeno’ N. benthamiana (RA-4) C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 
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4) 

N. benthamiana (RA-4) S. melongena ‘Long Purple’ S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ 

C. annuum ‘Jalapeno’ N. benthamiana (RA-4) N. benthamiana (RA-4) S. betaceum 

S. betaceum N. tabacum ‘Wiscosin 38’ C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) 

 

5) 

C. annuum ‘Jalapeno’ S. melongena ‘Long Purple’ C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) S. betaceum S. lycopersicum ‘Tigerella’ 

N. benthamiana (RA-4) N. tabacum ‘Wiscosin 38’ N. benthamiana (RA-4) S. betaceum 

 

6) 

S. betaceum S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ S. betaceum 

C. annuum ‘Jalapeno’ N. benthamiana (RA-4) N. benthamiana (RA-4) C. annuum ‘Jalapeno’ 

N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ S. melongena ‘Long Purple’ N. benthamiana (RA-4) 
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7) 

S. betaceum N. benthamiana (RA-4) S. melongena ‘Long Purple’ N. benthamiana (RA-4) 

N. benthamiana (RA-4) N. tabacum ‘Wiscosin 38’ S. betaceum C. annuum ‘Jalapeno’ 

C. annuum ‘Jalapeno’ C. annuum ‘Jalapeno’ C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) 

 

8) 

C. annuum ‘Jalapeno’ S. melongena ‘Long Purple’ S. betaceum N. benthamiana (RA-4) 

N. tabacum ‘Wiscosin 38’ S. betaceum C. annuum ‘Jalapeno’ S. lycopersicum ‘Tigerella’ 

N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) N. benthamiana (RA-4) 

 

9) 

N. benthamiana (RA-4) N. benthamiana (RA-4) N. tabacum ‘Wiscosin 38’ C. annuum ‘Californian Wonder’ 

S. lycopersicum ‘Tigerella’ S. betaceum C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

C. annuum ‘Jalapeno’ S. melongena ‘Long Purple’ N. benthamiana (RA-4) S. betaceum 
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10) 

C. annuum ‘Jalapeno’ N. benthamiana (RA-4) N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ 

S. melongena ‘Long Purple’ S. betaceum S. lycopersicum ‘Tigerella’ N. benthamiana (RA-4) 

N. benthamiana (RA-4) N. tabacum ‘Wiscosin 38’ C. annuum ‘Jalapeno’ S. betaceum 

 

11) 

N. benthamiana (RA-4) S. betaceum N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ 

S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ N. tabacum ‘Wiscosin 38’ C. annuum ‘Jalapeno’ 

S. betaceum S. melongena ‘Long Purple’ N. benthamiana (RA-4) N. benthamiana (RA-4) 

 

12) 

N. benthamiana (RA-4) C. annuum ‘Jalapeno’ N. benthamiana (RA-4) S. betaceum 

N. tabacum ‘Wiscosin 38’ S. melongena ‘Long Purple’ S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ 

N. benthamiana (RA-4) S. betaceum C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) 
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13) 

N. benthamiana (RA-4) N. benthamiana (RA-4) S. lycopersicum ‘Tigerella’ N. tabacum ‘Wiscosin 38’ 

S. betaceum S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

C. annuum ‘Jalapeno’ S. melongena ‘Long Purple’ N. benthamiana (RA-4) C. annuum ‘Californian Wonder’ 

 

14) 

N. benthamiana (RA-4) S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ S. melongena ‘Long Purple’ S. betaceum 

N. benthamiana (RA-4) C. annuum ‘Jalapeno’ C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) 

 

15) 

N. benthamiana (RA-4) C. annuum ‘Jalapeno’ N. benthamiana (RA-4) N. benthamiana (RA-4) 

S. lycopersicum ‘Tigerella’ S. betaceum S. lycopersicum ‘Tigerella’ S. betaceum 

C. annuum ‘Jalapeno’ C. annuum ‘Californian Wonder’ N. benthamiana (RA-4) C. annuum ‘Jalapeno’ 
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16) 

N. benthamiana (RA-4) S. lycopersicum ‘Tigerella’ C. annuum ‘Jalapeno’ N. benthamiana (RA-4) 

S. betaceum S. lycopersicum ‘Tigerella’ N. benthamiana (RA-4) S. betaceum 

C. annuum ‘Jalapeno’ S. lycopersicum ‘Tigerella’ S. lycopersicum ‘Tigerella’ N. benthamiana (RA-4) 
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Table 4.7 Lists and position of 75 infected plants (X1-X75) of Nicotiana tabacum ‘Wiscosin 38’; Capsicum annuum ‘Californian Wonder’; C. 

annuum ‘Jalapeno’; Solanum melongena ‘Long Purple’; N. benthamiana RA-4; S. lycopersicum ‘Tigerella’, S. betaceum to test for transmission 

of YTMMV under field conditions 

 

X1 C. annuum ‘Jalapeno’ X16 N. benthamiana (RA-4) X31 S. betaceum X46 N. benthamiana (RA-4) X61 C. annuum ‘Jalapeno’ 

X2 N. benthamiana (RA-4) X17 S. lycopersicum 

‘Tigerella’ 

X32 C. annuum ‘Jalapeno’ X47 N. benthamiana (RA-4) X62 S. melongena ‘Long 

Purple’ 

X3 S. betaceum X18 N. benthamiana (RA-4) X33 C. annuum ‘Californian 

Wonder’ 

X48 S. lycopersicum 

‘Tigerella’ 

X63 N. benthamiana (RA-

4) 

X4 N. benthamiana (RA-4) X19 C. annuum ‘Jalapeno’ X34 N. benthamiana (RA-4) X49 S. lycopersicum 

‘Tigerella’ 

X64 C. annuum ‘Jalapeno’ 

X5 C. annuum ‘Jalapeno’ X20 S. melongena ‘Long 

Purple’ 

X35 S. lycopersicum 

‘Tigerella’ 

X50 S. betaceum X65 N. benthamiana (RA-

4) 

X6 C. annuum ‘Californian 

Wonder’ 

X21 S. betaceum X36 C. annuum ‘Jalapeno’ X51 N. benthamiana (RA-4) X66 S. lycopersicum 

‘Tigerella’ 

X7 N. benthamiana (RA-4) X22 C. annuum ‘Jalapeno’ X37 N. benthamiana (RA-4) X52 C. annuum ‘Californian 

Wonder’ 

X67 S. lycopersicum 

‘Tigerella’ 

X8 S. betaceum X23 N. benthamiana (RA-4) X38 S. lycopersicum 

‘Tigerella’ 

X53 S. betaceum X68 N. benthamiana (RA-

4) 

X9 C. annuum ‘Jalapeno’ X34 S. lycopersicum 

‘Tigerella’ 

X39 N. benthamiana (RA-4) X54 N. benthamiana (RA-4) X69 S. betaceum 

X10 N. tabacum ‘Wiscosin 

38’ 

X25 S. lycopersicum 

‘Tigerella’ 

X40 S. betaceum X55 S. melongena ‘Long 

Purple’ 

X70 S. lycopersicum 

‘Tigerella’ 

X11 N. benthamiana (RA-4) X26 N. benthamiana (RA-4) X41 N. tabacum ‘Wiscosin 

38’ 

X56 S. lycopersicum 

‘Tigerella’ 

X71 N. benthamiana (RA-

4) 

X12 S. melongena ‘Long 

Purple’ 

X27 C. annuum ‘Californian 

Wonder’ 

X42 N. benthamiana (RA-4) X57 S. betaceum X72 C. annuum 

‘Californian Wonder’ 
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X13 S. lycopersicum 

‘Tigerella’ 

X28 C. annuum ‘Jalapeno’ X43 S. lycopersicum 

‘Tigerella’ 

X58 N. benthamiana (RA-4) X73 S. lycopersicum 

‘Tigerella’ 

X14 N. benthamiana (RA-4) X29 S. betaceum X44 N. benthamiana (RA-4) X59 N. tabacum ‘Wiscosin 

38’ 

X74 S. betaceum 

X15 C. annuum ‘Jalapeno’ X30 N. benthamiana (RA-4) X45 S. melongena ‘Long 

Purple’ 

X60 C. annuum ‘Jalapeno’ X75 C. annuum ‘Jalapeno’ 
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4.2.2.3.  Collecting samples 

The leaves of tested plants were collected after 8 weeks since the field experiment exposed. However, many plants did not grow well under the 

natural condition. Some of them died before collecting samples. This experiment finished when collecting the fruits of tested plants such as N. 

tabacum fruits. The experiment was repeated twice. 
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4.3. Results 

No symptoms were recorded and no any RT-PCR test detection to all leaf samples which collected from both transmission experiments of GPAs 

and cotton bollworm. No virus transmission occurred that was caused by GPAs or cotton bollworm larvae under any of the experimental conditions 

tested. 

 

Figure 4.3 Solanum betaceum plants after feeding by cotton bollworm for 72 h  
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In the field experiment, a number of insects and snails were recorded on the plants (Fig 4.4). The numbers of uninfected plants were chosen to test 

the presence of YTMMV by RT-PCR tests as described as the Table 4.8. Total samples per each repeat was 80 and selected randomly in the total 

192 tested plants. It is difficult to realize the symptom because of weather effected. No any transmission was confirmed. 

Table 4.8 Numbers of RT-PCR tests by species in the field for presence of YTMMV after 8 weeks of exposure to source plants 

Species Capsicum 

annuum 

‘Jalapeno’ 

Nicotiana 

benthamiana 

(RA-4) 

Solanum 

betaceum 

C. annuum 

‘Californian 

Wonder’ 

S. melongena 

‘Long Purple’ 

N. tabacum 

‘Wiscosin 38’ 

S. lycopersicum 

‘Tigerella’ 

Total samples 

(80) 

22 6 8 12 6 10 16 
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C D 

A 
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Figure 4.4 Insects and molluscs colonised both virus source plants and uninfected 

plants in the field. Snails were in Capsicum annuum ‘Jalapeno’ (Picture A), Nicotiana 

tabacum ‘Wisconsin 38’ (Picture B & D), Solanum melongena ‘Long Purple’ (Picture 

H); Ladybug in N. tabacum ‘Wisconsin 38’ (Picture E); in S. lycopersicum ‘Tigerella’ 

(Picture C), N. tabacum ‘Wisconsin 38’ (Picture D, F); N. benthamiana RA-4 (Picture 

G)  

E F 

G H 
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4.4. Discussion 

Previous studies showed transmission of tobamoviruses occurred by insects, probably 

through mechanistic transmission of virions still adhering to mouthparts or other parts 

of the arthropod after feeding on infected plants (Hoggan, 1931; Walters, 1951; 

Newton, 1953; Chant, 1959; Rao & Varma, 1984). We tested two insect species, one 

sucking (aphid) and one chewing (moth), to test if there was mechanistic or vectored 

transmission of YTMMV under laboratory conditions. Although green peach aphid 

(order Homoptera) is present in the wild in Western Australia where this research was 

done (https://grdc.com.au), cotton bollworm (order Lepidoptera) is not. No 

transmission was observed for either species, which doesn’t preclude mechanistic 

YTMMV transmission happening if greater numbers of replicates were tested. 

Mechanistic horizontal transmission of YTMMV by other animals in the environment, 

including but not limited to arthropods, molluscs, nematodes, mammals and birds is 

also possible. We endeavoured to test for horizontal transmission by wild agents in the 

field by providing ample sources of infection in the form of infected source plants 

spaced throughout the fields of uninfected plants. We observed snails, aphids, ladybugs 

on both the infected and uninfected plants in the field. Although rabbits lived around 

our field plot, they were excluded to prevent the test plants being eaten. Horizontal 

transmission of YTMMV was not detected in any uninfected bait plant. A limitation of 

this study was that vertical transmission via pollen, perhaps transferred between plants 

by honey bees or native bees, was not tested. Thus, if pollinators transmitted infected 

pollen to the uninfected plants, the seed could be infected but not the mother plant 

(Darzi et al., 2017). In this case, YTMMV would not have been detected because we 

were focused on horizontal transmission of virus in the leaves. Further experimentation 
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into vertical transmission between plants via pollen, whether wind-borne or pollinator-

borne, in the field is a potential mode of transmission of this virus, and so should be 

tested. Very little is known about tobamovirus transmission in wild systems (Jones, 

2018).  

In addition to early reports (above) of apparently mechanistic tobamovirus infections 

caused by invertebrates, Castello et al. (1995) discovered infectious virions of ToMV in 

fog and clouds. They proposed a new mechanistic route of transmission by ToMV, that 

of wet aerosols as the source of infections of red spruce (Picea rubens) in the USA. 

Although they failed to identify site(s) of infection, they proposed it could enter 

through pores in needles or roots. Although it is possible that aerosol-borne 

transmission of YTMMV particles from infected coastal host plants such as 

Anthocercis species occurs, we hypothesise that this would most likely be a rare 

transmission route because, unlike red spruce plants that have huge surface areas and 

grow together in large numbers in coastal forests, the hosts of YTMMV are relatively 

small plants that are naturally usually widely spaced.  Another neglected route of 

possible transmission of tobamoviruses in wild environments is parasitic plants that 

establish vascular bridges between plants, such as Cuscuta species, which occur widely 

in the study area. There are some ~4500 species of parasitic plants (Gogoi et al., 2021) 

described internationally and very little is known about the viromes of most of them   

Although we cannot rule out mechanistic transmission of YTMMV by different 

creatures and parasitic plants, and possibly by air-borne aerosols, we consider these 

routes to be unlikely, or at least minor routes of transmission of this virus between 

plants. Testing these routes in the field is challenging, especially if the agents of 
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transmission are unknown, but an absorbing area of study to understand the relative 

importances of different routes of transmission used by the tobamoviruses.  

Insects were not tested for freedom of virus by RT-PCR before applying them in the 

transmission experiments. They were maintained on virus-free plants in insect-proof 

cages in a separate building from the virus-infected to infected plants. We consider 

these precautions sufficient to prevent inadvertent contamination. Similarly, the 

symptoms of the infected plants of N. benthamiana (RA-4), C. annuum ‘Jalapeno’, S. 

betaceum were clear. The uninfected control plants were maintained in the separate 

room.  
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Chapter 5: Potential implications of YTMMV spillover to 

horticultural production 
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5.1. Intoduction 

Tomato (Solanum lycopericum) evolved in western parts of South America and Central 

America and was introduced to Europe by the Spanish in the sixteenth century 

following their colonization of Mexico (Hanssen & Lapidot, 2012; Knapp & Peralta, 

2016). Tomato has a wide climatic tolerance and is now grown in both tropical and 

temperate regions around the world (Hanssen & Lapidot, 2012). According to the 

FAOSTAT, in 2020, tomato production of Australia was 297,474 tons harvested from 

the area of 3917 ha, with an average yield of 75.9 tons/ha. Tomato presents a limited 

caloric supply but is a source of carotenoids, dietary fiber, minerals, vitamins (mainly 

vitamin A), and flavonoids (Nagai et al., 2019).  

Pepper and chilli (Capsicum species) are also important crop plants in family 

Solanaceae that originated in South and Central America. The genus Capsicum 

comprises about 40 species, five of which are cultivated (Eshbaugh, 2012). China and 

Turkey are the world’s largest producers of Capsicum species (Yaldiz et al., 2010). The 

yield of chili and pepper in Australia has increased in recent years, 21.9; 23.6 and 25.7 

tons/ha in 2017, 2018, 2019, respectively, but decreased to 19.7 ton/ha in 2020 

(FAOSTAT). Production of chillies and pepper in Australia was 40,774 tons harvested 

from the area of 2058 ha (FAOSTAT). 

Damaging tobamoviruses identified from tomato, capsicum and chili include TMV, 

ToMMV, ToMV, tobacco mild green mosaic virus (TMGMV), PMMoV, and ToBRFV 

(Dombrovsky & Smith, 2017; Wetter, 1984). These viruses can cause severe economic 

losses in both field and greenhouse-grown crops.  For instance, yields of capsicum 

decreased by 35-55% in the USA (Villalon, 1981) and by 40% (late infection) to 80% 

(early infection) in Argentina (Feldman et al.,1969) because of tobamovirus infections. 
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ToMV and ToMMV are both considered major viral threats to tomato (Nagai et al., 

2019). To respond to the risk of ToMMV (Li et al., 2017), Australia has implemented 

emergency measures to prohibit infected tomato and capsicum seed entering the 

country.  

The aim of this chapter is to investigate the influence of YTMMV infection on yield in 

tomato and capsicum cultivated varieties under experimental conditions. 
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5.2. Materials and Methods 

5.2.1. Plants 

S. lycopersicum ‘Tigerella’, C. annuum ‘Californian Wonder’ and C. annuum 

‘Jalapeno’ cultivars were selected to evaluate the potential implications of YTMMV 

infection on plant growth and fruit yield of these crop varieties.  

5.2.2. Experimental design 

Experiments were done under laboratory conditions. Plants were grown in temperature-

controlled and insect-proof greenhouses (22°C day and 17°C night). Uninfected plants 

and infected plants of the same varieties were grown under the same environmental 

conditions.  

YTMMV isolate Cervantes was used to challenge plants. Inoculation was done at three 

developmental stages: Stage 1. four-leaf stage (seedling); Stage 2. 8-10 leaf stage 

(vegetative); Stage 3. pre-flower stage. Each experiment was done twice.  

Before each stage of inoculation, every plant was tested by RT-PCR using YTMMV-

random and specific primers (see Table 2.1, Chapter 2) to confirm it was free of virus. 

The method described previously (Chapter 2) was used to confirm the presence of 

YTMMV in the infected plants after two weeks of inoculation and also to mock-

inoculated control plants. 
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5.2.2.1.  Solanum lycopersicum ‘Tigerella’ 

Table 5.1 Treatments of Solanum lycopersicum ‘Tigerella’ plants. The experiment 

was replicated twice. The first experiment included 40 infected plants and 40 

uninfected plants compared to 36 infected plants and 36 uninfected plants in the 

repeat experiment. Tomato fruits were harvested when the skin changed to red 

colour in the period of 44 to 48 days 

Inoculated 

stage 
Replicate 

Inoculation 

date (days 

post sowing 

– dps) 

Infected 

plants 

Uninfected 

plants 

(control) 

Harvesting 

time 

1. Seedling  

1 30 days  13 13 44 days 

2  28 days  12 12 48 days 

2. 

Vegetative 

1 37 days 13 13 44 days  

2 35 days 12 12 48 days  

3. Pre-

flowering 

1 43 days 14 14 44 days 

2  42 days 12 12 48 days 
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5.2.2.2.  Capsicum annuum ‘Californian Wonder’ 

Table 5.2 Treatments of Capsicum annuum ‘Californian Wonder’ plants. The 

experiment was replicated twice. The first experiment included 30 infected plants and 

30 uninfected plants compared to 60 infected plants and 60 uninfected plants in the 

repeat experiment. Capsicum fruits were harvested in one time including both red and 

green colour 

Inoculated 

stage 

Replicate Inoculation 

date (days 

post sowing 

– dps) 

Infected 

plants 

Uninfected 

plants 

(control) 

Harvesting 

time 

1. Seedling  1 31 days 10 10 One time 

2  33 days 20 20 One time 

2. 

Vegetative 

1 45 days 10 10 One time 

2 46 days 20 20 One time 

3. Pre-

flowering 

1 56 days 10 10 One time 

2  57 days 20 20 One time 
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5.2.2.3. Capsicum annuum ‘Jalapeno’ 

Table 5.3  Treatments of Capsicum annuum ‘Jalapeno’ plants. The experiment was 

replicated twice. The first experiment included 30 infected plants and 30 uninfected 

plants compared to 48 infected plants and 48 uninfected plants in the repeat experiment. 

Chili fruits were harvested in two months when the skin changed to red colour

Inoculated 

stage 
Replicate 

Inoculation 

date (days 

post sowing 

– dps) 

Infected 

plants 

Uninfected 

plants 

(control) 

Harvesting 

time 

1. Seedling  

1 31 days  10 10 64 days 

2 36 days 16 16 65 days 

2. 

Vegetative 

1 68 days 10 10 64 days 

2  68 days 16 16 65 days 

3. Pre-

flowering 

1 93 days 10 10 64 days 

2 98 days 16 16 65days 
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5.2.3. Infection damage 

There were five measurements to evaluate damage on infected plants: height (cm), 

number of branches, number of fruits, weight fruit (gram), and length fruit (cm) (except 

to fruits of S. lycopersicum ‘Tigerella’ because of small size). Data of height, number of 

branches were recorded at the harvesting stage. The periods when fruit data was 

collected were 44-48 days for S. lycopersicum ‘Tigerella’, one time for C. annuum 

‘Californian Wonder’ and 64-65 days for C. annuum ‘Jalapeno’. Fruits of S. 

lycopersicum ‘Tigerella’ and C. annuum ‘Jalapeno’ were harvested and recorded when 

their colour was red. All fruits, red and green, of C. annuum ‘Californian Wonder’ were 

havvested at one time and data recorded. 

5.2.4. Data analysis 

5.2.4.1.  Software 

The statistical software package SPSS 22.0 (IBM, Armonk, NY, USA) was used to 

analyse the data.  

5.2.4.2. Group analysis 

Data was on height (cm), number of branches, number of fruits, weight fruit (gram), 

and length fruit (cm) between infected plants of three stages of inoculation and 

uninfected plants. Tomato fruit of this species is small so length of fruit was not 

recorded. The data were analysed as six groups (Appendix 1). The aim was to compare 

the difference between control (uninfected plant) and plants infected at three growth 

stages. 
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1) Group 1: Comparison of average height (cm), number of branches, number of 

fruits, weight of fruit (g), and length fruit (cm) of uninfected plants (control) 

between the first and the second replicate in stage 1/ stage 2/ stage 3 of 

inoculation. 

2) Group 2: Comparison of average height (cm), number of branches, number of 

fruits, weight fruit (g), and length fruit (cm) of infected plants between the first 

and the second replicate in stage 1/ stage 2 / stage 3 of inoculation – three tables 

per species of S. lycopersicum ‘Tigerella’ and C. annuum ‘Californian Wonder’.  

3) Group 3: Comparison of average height (cm), number of branches, number of 

fruits, weight fruit (g), and length fruit (cm) of between uninfected plants 

(control) and infected plants in stage 1 / stage 2 / stage 3 of inoculation - three 

tables per species of S. lycopersicum ‘Tigerella’, C. annuum ‘Californian 

Wonder’ and one table for C. annuum ‘Jalapeno’ in stage 3 of inoculation. 

4) Group 4: Comparison of average height (cm), number of branches, number of 

fruits, weight fruit (g), and length fruit (cm) of between all uninfected plants 

(control) and infected plants in stage 1 / stage 2 / stage 3 of inoculation – three 

tables per each species of S. lycopersicum ‘Tigerella’, C. annuum ‘Californian 

Wonder’ and one table for C. annuum ‘Jalapeno’ in stage 3 of inoculation. 

5) Group 5: Comparison of average height (cm), number of branches, number of 

fruits, weight fruit (g), and length fruit (cm) of between all uninfected plants 

(control) and infected plants of stage 1 / stage 2 / stage 3 of inoculation in first 

replicate – three tables per each species of S. lycopersicum ‘Tigerella’, C. 

annuum ‘Californian Wonder’. 

6) Group 6: Comparison of average height (cm), number of branches, number of 

fruits, weight fruit (g) between all uninfected plants (control) and infected plants 
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of stage 1 / stage 2 / stage 3 of inoculation in the second replicate – three tables 

of each species of S. lycopersicum ‘Tigerella’, C. annuum ‘Californian 

Wonder’. 
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5.3. Results 

5.3.1. Solanum lycopersicum ‘Tigerella’  

Four measurements were: average height (Fig 5.1), number of branches (Fig 5.2), 

number of fruits (Fig 5.3), weight fruit (Fig 5.4). The symptoms of YTMMV infection 

on S. lycopersicum ‘Tigerella’ was mild (Fig 5.5); all the measures resembled those of 

virus-free plants, and no clear symptoms of infection were visible.  

 

Figure 5.1 Comparison of the average height of Solanum lycopersicum ‘Tigerella’ 

plants between uninfected plants and infected plants in three stages of inoculation 

between two replicates 
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Figure 5.2 Comparison of the average numbers of branches per Solanum 

lycopersicum ‘Tigerella’ plant between uninfected plants and infected plants in 

three stages of inoculation between two replicates 

 

Figure 5.3 Comparison of the average numbers of fruits per of Solanum 

lycopersicum ‘Tigerella’ plants between uninfected plants and infected plants in 

three stages of inoculation between two replicates 
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Figure 5. 4 Comparison of the average weight fruit of Solanum lycopersicum 

‘Tigerella’ plants between uninfected plants and infected plants in three stages of 

inoculation between two replicates 

 

Figure 5.5 There is no disease symptom observed from the Solanum lycopersicum 

‘Tigerella’ infected plants (right) and the same growth when compared to uninfected 

plants (left) (The infected plants were inoculated by YTMMV at the seedling stage) 
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5.3.2. Capsicum annuum ‘Californian Wonder’ 

Five criteria were used to evaluate the effect of YTMMV to C. annuum ‘Californian 

Wonder’, namely, height (Fig. 5.6), number of branches (Fig. 5.7), number of fruits 

(Fig. 5.8), weight of fruit (Fig. 5.9), length of fruit (Fig. 5.10). The average number of 

fruits of C. annuum ‘Californian Wonder’ infected plants was the same between three 

inoculation stages, but lower than average number of fruits of uninfected plants.  

Infection at the seedling stage of growth affected subsequent development of the plant, 

including fruit numbers and quality (Fig 5.8; 5.9; 5.10; 5.12). Infection at the two later 

stages of vegetative and pre-flowering also affected fruit quality, but to a lesser extent 

(Fig 5.9; 5.10).  

This did not happen to all criteria, however, the data of stage 1 inoculation of height, 

number of fruits, weight of fruit, length of fruit were lower than that of the other stages 

of inoculation as well as to the control. Although the symptoms are very clear in the 

stage one inoculation (Fig. 5.11), the infected C. annuum ‘Californian Wonder’ plants 

still grew and produced fruits. However, the disease expressed very strongly in some 

fruits Fig. 5.12.  
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Figure 5. 6 Comparison of the average height of Capsicum annuum ‘Californian 

Wonder’ plants between uninfected plants and infected plants in three stages of 

inoculation between two replicates 

 

Figure 5.7 Comparison of the average numbers of branches per Capsicum annuum 

‘Californian Wonder’ plants between uninfected plants and infected plants in three 

stages of inoculation between two replicates 
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Figure 5.8 Comparison of the average number of fruits per Capsicum annuum 

‘Californian Wonder’ plants between uninfected plants and infected plants in three 

stages of inoculation between two replicates 

 

Figure 5. 9 Comparison of the average weight of fruit of Capsicum annuum 

‘Californian Wonder’ plants between uninfected plants and infected plants in three 

stages of inoculation between two replicates 
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Figure 5.10 Comparison of the average length of fruit of Capsicum annuum 

‘Californian Wonder’ plants between uninfected plants and infected plants in three 

stages of inoculation between two replicates 
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Figure 5.11 Capsicum annuum ‘Californian Wonder’ uninfected plants (left) and plants 

6 days post inoculation (right) showing necotic patches and leaf distortion 

 

                 

 

 

Figure 5.12 Capsicum annuum ‘Californian Wonder’ fruits in the harvesting stage: fruits 

in uninfected plants (left) compared to the infection symptoms of deformation, necrotic 

spots on fruits of infected plants (right) 
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5.3.3. Capsicum annuum ‘Jalapeno’ 

The response of C. annuum ‘Jalapeno’ to YTMMV depended on the time of 

inoculation. Symptoms were severe on young C. annuum ‘Jalapeno’ plants. The 

average height, numbers of branches, numbers of fruits, average weight of fruit, 

average length of fruit are shown in Figures 5.13; 5.14; 5.15; 5.16; 5.17, respectively. 

Although two infected plants from stage 1 inoculation remained alive, no fruit was 

produced and all inoculated plants in the second experiment (repeat) died after three 

weeks post-inoculation. All infected plants of stage 2 inoculation died. In the stage 3 of 

inoculation, not every plant died, (Fig. 5.18).  

 

Figure 5.13 Comparison of the average height of Capsicum annuum ‘Jalapeno’ plants 

between uninfected plants and infected plants in three stages of inoculation between 

two replicates 

 

0

20

40

60

80

100

120

140

U.IF-Rep.1 IF-Rep.1-Stage 1 IF-Rep.1-Stage 3 U.IF-Rep.2 IF-Rep.2-Stage 3

H
ei

g
h
t 

o
f 

p
la

n
t 

(c
m

)

Treatments - Replicates



124 

 

Figure 5.14 Comparison of the average number of branches per Capsicum annuum 

‘Jalapeno’ plant between uninfected plants and infected plants in three stages of 

inoculation between two replicates 

 

Figure 5.15 Comparison of the average number of fruits per Capsicum annuum 

‘Jalapeno’ plant between uninfected plants and infected plants in three stages of 

inoculation between two replicates 

0

1

2

3

4

5

6

7

8

9

10

U.IF-Rep.1 IF-Rep.1-Stage 1 IF-Rep.1-Stage 3 U.IF-Rep.2 IF-Rep.2-Stage 3

N
u
m

b
er

 o
f 

b
ra

n
ch

es

Treatments - Replicates

0

2

4

6

8

10

12

14

U.IF-Rep.1 IF-Rep.1-Stage 3 U.IF-Rep.2 IF-Rep.2-Stage 3

N
u
m

b
er

 o
f 

fr
u
it

s

Treatments - Replicates



125 

 

 

 

Figure 5.16 Comparison of the average weight fruit of Capsicum annuum ‘Jalapeno’ 

plants between uninfected plants and infected plants in three stages of inoculation 

between two replicates 
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Figure 5.17 Comparison of the average length of fruits of Capsicum annuum 

‘Jalapeno’ plants between uninfected plants and infected plants in three stages of 

inoculation between two replicates 
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Figure 5.18 The pictures of the uninfected plants (control) in the left (A, C, E) 

compared to the infected plants (B, D, F) of Capsicum annuum ‘Jalapeno’ after 10 days 

post inoculation of each stage: seedling, vegetative, pre –flowering, respectively. The 

symptoms of fruits of infected plants compared to the virus free (G) 

A B 

C D 

E 
G 

F 
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5.4. Discussion 

Responses by the plants tested of genus Solanum were generally milder than those of 

genus Capsicum when infected with YTMMV. 

The plant height, number of branches, number of fruits, weight of fruit, length of fruit 

from YTMMV-infected S. lycopersicum plants were similar to those of uninfected 

plants at all inoculation stages. The Tigerella cultivar of tomato we tested exhibited 

mild symptoms that may not be noticed by growers. If this species is used as an 

asymptomatic vehicle by which the virus is spread, then the risk is that it could emerge 

from tomato and cause significant damage to other solanaceous crops, or infect other 

solanaceous plants such as Solanum nigrum, which also exhibit relatively mild 

symptoms and could act as a reservoir of YTMMV (Koh et al., 2017).  There are over 

83,000 tomato accessions stored in germplasm collections (Figas et al., 2015) and the 

effects of YTMMV infection on all but one of them is unknown. No doubt some will 

respond with more severe symptoms than cv Tigerella.  

Of interest is that C. annuum appears to be severely infected, with large black lesions 

appearing on fruits, when fruits are produced. Such obvious symptoms alert growers to 

the presence of the virus, and plants will be removed from fields. As with tomatoes, 

more varieties should be tested.  

Although of the same species, the two cultivars of C. annuum we tested responded 

similarly to YTMMV infection only when at the pre-flowering stage. While almost all 

infected C. annuum ‘Jalapeno’ plants died when plants were inoculated at the young 

and vegetative stages, C. annuum ‘Californian Wonder’ plants developed and produced 

fruits of reduced number, size and weight. The reasons for the differential responses of 
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varieties of the two genera are unclear but probably related to tobamovirus tolerance 

genes introgressed during breeding.  

The effect of plant age at infection by pathogenic viruses is well known. For instance, 

Matthews (1970) and Chant (1960) showed that the earlier a virus infects a plant, the 

more severe the symptoms and lower the commercial yeild. Gilmer et al., 1974 showed 

that inoculation of cowpea cultivars with the comovirus cowpea yellow mosaic virus 

(CpMV) 7-days after emergence reduced yield by 40% - 60% compared to the 10% - 

15% loss in yield when plants were inoculated at the flowering stage. The tobamovirus 

CGMMV induced yield losses of up to 15% in cucumber crops when infected at the 

seedling stage.  However, plants six weeks old when infected exhibited less yield loss 

(Fletcher, 1969). 

We did not test response to infection under different air temperatureas and soil moisture 

regimes, and this should be done. Clearly, there is potential for yield loss under 

commercial conditions, but if transmission occurs by pollen, the plants will be mature 

and damage will be less than if infected as young seedlings.  

Furthermore, only one virus isolate, YTMMV isolate Cervantes, was used to challenge 

plants here. Although other YTMMV isolate, YTMMV isolate Kalbarri (GenBank 

Accession KJ683937) is close genetically to YTMMV isolate Cervantes and the 

symptom revealed small differences in virulence on solanaceous hosts (Li et al., 2016).  

Resistance genes are powerful tools to control plant viral diseases. However, viruses 

can sometime gain the ability to overcome those resistance gene(s) through changes in 

their genomes. For example, ToBRFV was able to break Tm-2-mediated resistance in 

tomato that had lasted 55 years (Maayan et al., 2018). A resistance-breaking strain of 
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PMMoV was capable of infecting previously-resistant varieties (Hamada et al. 2007; 

Tsuda et al. 1998). On the other hand, the TMV-resistance gene N has proved highly 

durable. N was introgressed into N. tabacum from N. glutinosa and continues to provide 

resistance to TMV in that species (Lewis et al., 2005). The effect of tobamovirus 

resistance genes against YTMMV are unknown and should be tested. 
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Chapter 6: General Discussion 

The wild-plant tobamovirus yellow tailflower mild mottle virus (YTMMV) was studied 

to determine the modes of its transmission between plants and the potential risk it poses 

to solanaceous plants of horticultural value. YTMMV is unusual among tobamoviruses 

in that it was first identified in a wild plant, not a crop, and that it was described in 

Australia, not a continent previously known to host indigenous tobamoviruses. In the 

wild, YTMMV was detected in widely-spaced plants of several solanaceous species 

along a 1600 km coastal strip. It is assumed that it occupies a larger area and may infect 

many of the species of indigenous solanaceous plants found throughout Australia, 

although, to our knowledge, no one has looked for it. The study of viruses of wild 

plants almost everywhere in the world is a neglected area, virtually unfunded by 

governments. This is understandable because research dollars are limited and viruses of 

cultivated crops can threaten international food security. Most viruses of wild plants 

will never be identified and named because they will forever remain in those wild 

plants and not become bothersome or threatening to the incomes of commercial 

producers.  

However, a small proportion, probably a fraction of a percent of the millions of (mostly 

undescribed) plant viruses that undoubtedly exist in the planet’s wild flora (Roossinck 

et al., 2015), will spillover into crops, some to remain latent and unsuspected, others to 

cause minor losses in production. An even smaller proportion of these will cause 

substantial or devastating losses. Similar scenarios exist in fauna. The spillover of 

SARS-CoV-2 from an animal to a human initiated the Covid pandemic that began 

while I was undertaking my own experiments to try to understand how YTMMV might 

spillover to crops. This terrible event reminded me of the importance of my work, but 
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also of the futility in attempting to predict which of the potentially millions of wild 

viruses might one day cause terrible losses in crops or farm animals or humans. To 

predict which viruses will spillover and cause substantial disease and death is an 

impossible and futile exercise. Potentially we could identify and study members of the 

genera or families of viruses that have previously spilled-over, such as tobamoviruses 

as I have done, but there is a risk that to concentrate only on groups from which known 

pathogens have arisen may blind us to other groups with as yet unrealized spillover and 

destructive potential. High-throughput sequencing and bioinformatics have enabled us 

to identify large numbers of viruses in organisms that show no apparent symptoms of 

infection in their hosts, revealing that viruses may be part of the beneficial microbial 

flora of many species (Jo et al., 2017). As our ability to identify viruses has increased 

greatly, are understanding of how these viruses interact with their hosts has not kept 

pace with their discoveries. In this study we have attempted to study some aspects of 

the biology of one wild-plant virus, YTMMV. The time and effort involved in such 

detailed study of one virus is prodigious, and cannot possibly be achieved for every 

virus discovered by high-throughput approaches.  

It is probable that many undescribed viruses exist in the indigenous flora and fauna of 

Australia. Some may indeed emerge and infect crops, and resources will be expended to 

understand how to control them, but the remainder will probably never be identified nor 

studied. It is uncertain if my study of YTMMV will ever be of commercial value. As 

far as we know, ZGMMV has not emerged into commercial crops at a level where it 

has come to the attention of growers and biosecurity authorities. Currently, the value of 

this study has been as a training tool for this young virologist.  If YTMMV does 

emerge, I hope that my research will be of value in controlling it. My most important 

findings were: 
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1) YTMMV is transmitted in seed produced from an infected parent and the rate is 

species/variety-dependent. Host genetics effects seed transmission rate of 

YTMMV to these six solanaceae species. The other factors controlling rate of 

transmission are currently unknown.  

At least some of the virions including TMV, ToMMV, CGMMV are located 

within the seed coat; surface-sterilisation of whole seeds did not prevent 

infection of seedlings that emerged from the seed. Thus, surface treatment of the 

seed of Solanum, Capsicum, Nicotiana will probably not be an effective means 

of control, but other species should be considered individually. The national and 

international trades in seed is a possible route of dissemination of YTMMV. 

2) YTMMV is transmitted both vertically and horizontally via pollen. Thus, bees 

and other pollinators may spread this virus from plant to plant as they do with 

other tobamoviruses such as ToBRFV, CGMMV (Darzi et al., 2018; Levitzky 

et al., 2019; Chanda et al. 2021). Transmission of YTMMV occurred after 

pollination 

3) Transmission of YTMMV through root contact between plants growing close 

together occurs, and may be a factor in commercial production, but is probably 

not a major transmission route in widely-spaced wild plants.     

4) YTMMV infection caused minimal symptoms and yield loss in the tomato and 

tobacco varieties tested, but more severe symptoms or death in two N. 

benthamiana accessions and two C. annuum varieties.  The factors controlling 

these very different responses in the plants tested are likely to be genetic ones. 

For example, the N gene of tobacco confers resistance to TMV in transgenic 

tomato (Whitham et al., 1996). And the R genes Tm-2 and Tm-22 (Tm-2a) 

introduced by introgression resulted in resistance to TMV and ToMV in tomato, 
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respectively (Pelham, 1966; Hall, 1980; Meshi et al., 1989; Lanfermeijer et al., 

2005; de Ronde et al., 2014). However, tomato cultivars certified to harbor 

the Tm-22 resistance gene are susceptible to ToMMV (Luria et al., 2017). 

 

We studied YTMMV in the controlled environments of the laboratory and one field 

trial, not in the wild per se, so our findings do not necessarily apply to transmission of 

the virus in its natural environment—the vast solanaceous flora of Australia. It is 

hypothesized by some, e.g., Roossinck and Garcia-Arenal (2015), that indigenous 

viruses naturally infecting their wild hosts induce few, if any, symptoms. Co-existence 

over evolutionary time may limit or eliminate severe pathogenesis, and in some cases, a 

mutualistic relationship evolves (Fraile & Garcia-Arenal, 2016). Indeed, there was no 

obvious symptom development on the original wild host of YTMMV-Cervantes, a 

plant of Anthocercis littorea (Wylie et al., 2014, Li et al., 2016, Wylie et al., 2017). In 

contrast, wild-plant viruses are thought to often induce moderate to severe pathogenesis 

when they spillover to the simplified ecosystem of the cultivated crop (Roossinck & 

Garcia-Arenal, 2015), although the reasons for this are unclear. However, we found 

during the course of this project that this scenario did not always apply to YTMMV. 

We used six species or genetic variants of plants as experimental hosts for YTMMV. 

Four of these host species evolved on other continents and had never before 

encountered this virus. Of these, S. lycopersicum ‘Tigerella’ and N. tabacum 

‘Wisconsin 38’, both of which evolved in the Americas, exhibited no to very slight 

symptoms of infection, while C. annuum ‘Jalapeno’ and C. annuum ‘Californian 

Wonder’ from the same continents suffered more severe pathogenesis and even 

systemic necrosis. YTMMV is closely related to paprika mild mottle virus (PaMMV) 

and obuda pepper virus (ObPV), both viruses of possible European origins and of 
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special concern to growers of C. annuum species because they induce strong symptoms 

and may overcome resistance genes (Genda et al., 2007; Katsutochi et al., 2009; 

Velasco et al., 2002). Of the two accessions of the Australian indigenous plant species 

tested, N. benthamiana RA-4 and MtA-6, the former accession displayed severe 

symptoms, including death, while MtA-6 displayed only moderate symptoms. Thus, the 

geographical origin of the host plant was not a clear predictor of pathogenicity when 

exposed to YTMMV.  

A major aim of this project was to assess whether YTMMV posed a risk to horticultural 

crops. There was good reason to ask this question. There have been a number of recent 

international range-expansions by very damaging tobamoviruses, including the 

solanaceous-infecting tomato mottle mosaic virus (ToMMV) (Webster et al., 2014) and 

tomato brown rugose fruit virus (ToBRFV) (Ling et al., 2019) and the cucurbit-

infecting cucumber green mottle mosaic virus (Tesoriero et al., 2016; Dombrovsky et 

al., 2017).  Humans facilitate tobamovirus movement around the world in seeds and 

fresh produce (Chanda et al., 2021), so a virus that readily infects species of the 

critically-important Solanaceae should be watched carefully.  

What are the chances that YTMMV will emerge from the indigenous flora of Australia 

and follow some of its cousins to become serious international plant pathogens? To 

answer this question, we undertook experiments to understand its transmission. Before 

we undertook these experiments, it was unknown whether YTMMV was transmitted 

via pollen to healthy plants, and if so, was it transmitted vertically to the seed and/or 

horizontally to the mother plant. It was unknown whether YTMMV was seed-borne as 

are some other tobamoviruses. There were early reports of mechanistic transmission of 
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tobacco mosaic virus by chewing insects and other pathways (Jones, 2018). Could this 

happen with YTMMV? 

We found that YTMMV was indeed transmitted via pollen in two ways, horizontal 

transmission, and more commonly, by vertical transmission. TMV can be detected in 

pollen (Brunt et al. 1996), and CGMMV can be transmitted both horizontally and 

vertically via cucumber pollen under experimental conditions (Liu et al., 2014) 

We propose pollen transmission is probably the main means of transmission over long 

distances in the wild, although this has yet to be investigated experimentally. Most 

solanaceous plants are pollinated by arthropods, many of which can fly (Knapp, 2010). 

Some viruses make infected plants more attractive to arthropod vectors (Mauck et al., 

2010), but whether tobamovirus infection makes plants more attractive to arthropod 

pollinators is unknown, and a potentially fruitful line of study.  

Although we showed YTMMV to be transmitted via pollen, we did not test this with 

‘real’ pollinators such as bees. In our experiemtns the pollen was transmitted via cotton 

buds. Working with bees is challenging in the laboratory. In our field trial, vertical 

transmission by ‘real’ pollinators such as bees and flies etc. may have occurred, but we 

did not test it. It is possible that pollinators transmitted infected pollen from the virus 

source plants in the field to the uninfected plants, but unfortunately the seeds were not 

collected from the uninfected plants, germinated and tested for YTMMV. Again, future 

researchers should consider testing this.  

Seed and pollen transmission of TMV and CGMMV occurs in some virus-plant 

combinations, but not in all (Mink, 1993). Pollen transmission of YTMMV could 

enable this tobamovirus to travel far more rapidly and widely than if it were confined to 

contact transmission. Like other tobamoviruses, YTMMV probably lacks specific 
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vectors, such as the aphids, mites and whiteflies etc. used by other viral groups. 

Nevertheless, it is potentially spread over long distances on flying insects. Similarly, 

nectar-feeding birds foraging for pollen or nectar may transmit infective pollen over 

kilometres between flowers, and we hypothesis that YTMMV gradually extended its 

range over a distance of at least 1600 km in Western Australia on the wings of 

arthropods and nectar-eating birds, coopted as agents of virus transmission.  

It is probable that non-pollinators also spread YTMMV in another way.  Larger animals 

such as kangaroos, emus, and even humans eat the fruit of indigenous wild solanaceous 

plants such as Solanum centrale (bush tomato) (Lee, 2012) and spread infected seed by 

defecating the seed elsewhere. These hypotheses have not been tested by sampling 

insect or bird pollinators, or fruit-eaters leaving infected plants, or by testing plants 

pollinated by arthropods and birds in the wild, or by testing for infected solanaceous 

seed in animal faeces. This is all work that could be done to more deeply understand 

natural transmission of wild-plant tobamoviruses. 

The outcome of the pollination experiment was the discovery that vertical transmission 

sometimes occurred via the seed without horizontal transmission to the mother plant. 

Consequently, systemically-uninfected mother plants could bear infected seed. In other 

cases, pollination via infected pollen resulted in the mother plant’s systemic infection, 

upon which, a proportion of subsequent seed produced would be infected via the 

maternal tissue. Thus, what we refer to as ‘vertical transmission’ of YTMMV could 

occur by two distinct pathways: one via the paternal gamete (pollen) and the other via 

the maternal gamete, the ovule. Every plant species/accession tested was able to 

transmit the virus to the next generation in the seed. In annual solanaceous plants, the 
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consequence of seed transmission is that all the infected host plants in the population 

die each year, yet the virus remains in the seed bank to re-emerge in the following year.  

Foraging Eurasian honey bees (Apis mellifera) that carry virus-infected pollen may visit 

two or more flowering plant species on one flight (Woodcock et al., 2013), therefore, 

they can potentially transmit the virus to other compatible plant species by horizontal 

and/or vertical transmission. Eurasian honey bees can forage up to 12 km from their 

hive (Ratnieks, 2007), but this species has been present in Australia only since the 

1800s. There are up to 5000 species of bees indigenous to Australia (Halcroft et al., 

2012), all of which are potential carriers of infected pollen, but little is known about 

their roles in pollination of the Australian flora prior to the introduction of honey bees, 

and nothing is known about their roles in spreading viruses through infected pollen.  

In crops, plants are usually closely spaced and leaf-to-leaf contact occurs. This is an 

ideal situation for contact-transmissible tobamoviruses to spread. Little work has been 

done to elucidate the role of root-to-root transmission. A surprising finding was that 

although YTMMV appeared to occur on all leaves of an infected plant, this was not 

always true for the root system. Some parts of the root system were infected while other 

parts apparently were not. We could find no information on mechanisms in root 

systems that might prevent systemic spread of tobamoviruses, and this is yet another 

fascinating area of future research. We may consider the role of RNA silencing which 

has been proven to be transmitted between scions and rootstocks through grafting, 

mostly using transgenic plants. For example, RNAi of tobacco endogenous genes such 

as NtTOM1 and NtTOM3 which were required for tobamovirus multiplication, resulted 

in high resistance against several tobamoviruses (Ali et al., 2013). Is this unique to the 

system we studied? Another tobamovirus, Hibiscus latent Fort Pierce virus (HLFPV) 

appeared to be evenly distributed in the roots (Kamenova et al., 2004).  
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As roots grow through soil, root tips are micro-abraded against mineral particles. We 

wondered if these small wounds might serve as sites of entry to YTMMV that existed 

in the soil from previously infected plants, but we did not detect this in our experiment. 

Others found that transplantation of seedling cucumber plants (Cucumis sativus) from 

trays to pots filled with perlite infested with the tobamovirus cucumber fruit mottle 

mosaic virus (CFMMV), resulted in high disease incidence. However, when the 

seedlings were first removed and the root wounds allowed to heal in individual pots 

before transplanting into CFMMV-infected perlite, there was no infection. Newly-

formed roots that penetrated into the virus-infested medium did not allow infection by 

the virus (Antignus et al., 2005). Thus, invasion of roots through microabrasion sites 

may not to be a common route of tobamovirus transmission.  

Could YTMMV emerge from the indigenous flora and become a pathogen of 

international concern? We found that of the plants we tested, tomato was the host at 

greatest potential risk, not to the tomato crop itself, but because this host may act as an 

asymptomatic intermediary host from which YTMMV could emerge into other hosts. 

However, in Western Australia where this study was undertaken, we feel that the risk of 

YTMMV emerging through tomato (or capsicum) may be minimal. The reason is that 

in this region, tomato and capsicum/chili growers do not keep seed from the previous 

crop and plant it for the next crop. If this were the case, the virus could build up, and 

spread could occur when seed was planted elsewhere or exported. Growers in this 

region buy seedlings from specialist producers. We spoke to a grower in Jandabup, 

Perth, who grows capsicum and tomato commercially. His plants are always grown 

from seedlings bought from a nursery because buying seedlings saves growing time. 

Nursery producers grow millions of tomato seedlings in covered glasshouses from 

imported seed. This means of production prevents YTMMV infection that could occur 
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during the growing season to perpetuate the following season. Thus, the practices of 

commercial growers inadvertently prevent YTMMV getting a foothold in these species, 

even if it is emerging from the indigenous flora via bees and other pollinators.  

Perhaps the biggest potential risk of YTMMV emergence is in a crop we did not 

study—potato. Potato is a vegetative-propagated crop that already is vulnerable to 

accumulation of a number of viruses (Wang et al., 2011). Importantly for Western 

Australia, potato is exported from the state as both ‘seed’ potato to growers in 

Indonesia, and as ware (eating) potatoes to consumers in other international markets. If 

potato is infected asymptomatically, YTMMV could already have hitched a ride 

beyond the Australian borders, in much the same way several viruses have become 

internationally-distributed in ‘seed’ and ware garlic (Wylie et al., 2015). In our opinion, 

this research should be undertaken urgently. If YTMMV-infected seed potatoes are 

being grown, the potato crop will quickly become infected and the virus will become 

widespread. Even if potato, like tomato, is an asymptomatic carrier of YTMMV, it will 

be only a matter of time before it emerges into other solanaceous species, where it 

could become a serious pathogen. In WA, potatoes are the third-largest vegetable crop 

by value and second highest by tonnage. This sector accounted for 13% of the of the 

state’s total vegetable crop in 2015–16 by tonnage. Production was worth an estimated 

$42m that year. This represented 8% of total WA vegetable industry value.  Fresh 

potatoes are the fourth biggest vegetable export from WA by value, representing just 

above 3% at a value of $3.3m. Major markets for WA fresh potatoes are Singapore, 

which was worth 44% of the value of total exports in 2017, and Malaysia and the UAE, 

which were worth 24% and 13% of total value respectively. 
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Tobamoviruses are versatile and adaptive viruses that employ multiple modes of 

transmission over short and long distances. They have resilient capsids and have the 

ability to invade pollen and ovule cells, abilities that many other plant RNA viruses 

lack. Although they are unable to utilize vectors per se, instead they use pollinators to 

essentially do the same job of vectors, that is to transmit the virus to new hosts. They 

may also transmit to roots in infested soil and perhaps even in airborne aerosols. 

YTMMV is a successful tobamovirus that probably evolved in Australia from the 

common ancestor of viruses found in Europe and Asia. It exists over a large section of 

south-west Australia, and possibly far further. In our estimation YTMMV certainly has 

the potential to spillover to exotic plants, if it hasn’t already done so. Surveys of exotic 

wild and domesticated plants for YTMMV in Western Australia and elsewhere should 

be a high priority for plant virologists in Australia. An antibody-based assay would be 

the ideal means by which to screen large numbers of plants to test this. An estimation of 

the relative risks of spillover of YTMMV into local and international agriculture is 

presented in Figure 6.1.
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Figure 6.1 An estimation of the relative risks of three different modes of YTMMV transmission from indigenous hosts to local 

agricultural/horticultural crops to solanaceous plants, both domesticated and wild, in countries beyond Australia
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1. Solanum lycopersicum ‘Tigerella’ 

Table 1 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ uninfected plants (control) between the first and the second (repeat) experiment in stage 1 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 13 248.23 28.865 8.006 

2 12 257.50 27.553 7.954 

NOB 1 13 8.15 1.463 .406 

2 12 7.42 1.240 .358 

NOF 1 13 12.38 3.305 .917 

2 12 14.92 2.193 .633 

Wf 1 13 23.820 1.555 .431 

2 12 20.231 2.480 .715 

 

Table 2 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ uninfected plants (control) between the first and the second (repeat) experiment in stage 2 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 13 248.08 34.606 9.598 

2 12 236.83 36.456 10.524 
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NOB 1 13 8.00 1.780 .494 

2 12 6.92 .996 .288 

NOF 1 13 11.54 4.352 1.207 

2 12 16.33 3.576 1.032 

Wf 1 13 25.335 2.073 .574 

2 12 20.284 2.349 .678 

 

Table 3 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ uninfected plants (control) between the first and the second (repeat) experiment in stage 3 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 14 266.36 38.775 10.363 

2 12 236.33 26.276 7.585 

NOB 1 14 8.43 1.158 .309 

2 12 8.33 1.073 .310 

NOF 1 14 10.71 3.561 .952 

2 12 15.08 3.175 .917 

Wf 1 14 26.243 1.757 .469 

2 12 20.892 2.749 .793 
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Table 4 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ infected plants between the first and the second (repeat) experiment in stage 1 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 13 249.23 41.716 11.570 

2 12 260.50 32.380 9.347 

NOB 1 13 7.23 1.301 .361 

2 12 5.58 .515 .149 

NOF 1 13 11.38 3.754 1.041 

2 12 12.50 1.834 .529 

Wf 1 13 23.946 1.623 .450 

2 12 17.376 1.792 .517 

 

Table 5 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ infected plants between the first and the second (repeat) experiment for treatment 2 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 13 237.69 36.865 10.225 

2 12 243.33 27.164 7.842 

NOB 1 13 6.54 1.450 .402 

2 12 5.92 .669 .193 

NOF 1 13 11.15 3.760 1.043 
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2 12 11.83 3.157 .911 

Wf 1 13 24.343 2.448 .679 

2 12 19.559 3.439 .992 

 

Table 6 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ infected plants between the first and the second (repeat) experiment for in stage 3 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 14 257.93 44.545 11.905 

2 12 236.42 33.427 9.650 

NOB 1 14 6.36 1.336 .357 

2 12 5.75 1.138 .329 

NOF 1 14 9.86 2.825 .755 

2 12 12.33 2.839 .820 

Wf 1 14 24.531 2.263 .604 

2 12 19.910 3.280 .947 

 

Table 7 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between uninfected plants (control) and infected plants in stage 1 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 25 252.68 28.052 5.610 
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Infected plants 25 254.64 37.198 7.440 

NOB Uninfected plants 25 7.80 1.384 .277 

Infected plants 25 6.44 1.294 .259 

NOF Uninfected plants 25 13.60 3.055 .611 

Infected plants 25 11.92 2.985 .597 

Wf Uninfected plants 25 22.097 2.716 .543 

Infected plants 25 20.792 3.7430 .748 

 

Table 8 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between uninfected plants (control) and infected plants in stage 2 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 25 242.68 35.225 7.045 

Infected plants 25 240.40 32.031 6.406 

NOB Uninfected plants 25 7.48 1.531 .306 

Infected plants 25 6.24 1.165 .233 

NOF Uninfected plants 25 13.84 4.616 .923 

Infected plants 25 11.48 3.429 .686 

Wf Uninfected plants 25 22.911 3.363 .672 

Infected plants 25 22.047 3.790 .7580 
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Table 9 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between uninfected plants (control) and infected plants in stage 3 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 26 252.50 36.312 7.121 

Infected plants 26 248.00 40.534 7.949 

NOB Uninfected plants 26 8.38 1.098 .215 

Infected plants 26 6.08 1.262 .248 

NOF Uninfected plants 26 12.73 3.996 .784 

Infected plants 26 11.00 3.046 .597 

Wf Uninfected plants 26 23.774 3.511 .688 

Infected plants 26 22.398 3.594 .704 

 

Table 10 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants in stage 1 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 76 249.33 33.322 3.822 

Infected plants 25 254.64 37.198 7.440 

NOB Uninfected plants 76 7.89 1.382 .158 

Infected plants 25 6.44 1.294 .259 

NOF Uninfected plants 76 13.38 3.919 .450 
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Infected plants 25 11.92 2.985 .597 

Wf Uninfected plants 76 22.938 3.251 .372 

Infected plants 25 20.792 3.743 .748 

 

Table 11 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants in stage 2 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 76 249.33 33.322 3.822 

Infected plants 25 240.40 32.031 6.406 

NOB Uninfected plants 76 7.89 1.382 .158 

Infected plants 25 6.24 1.165 .233 

NOF Uninfected plants 76 13.38 3.919 .450 

Infected plants 25 11.48 3.429 .686 

Wf Uninfected plants 76 22.938 3.251 .372 

Infected plants 25 22.047 3.790 .758 

 

Table 12 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants in stage 3 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 76 249.33 33.322 3.822 
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Infected plants 26 248.00 40.534 7.949 

NOB Uninfected plants 76 7.89 1.382 .158 

Infected plants 26 6.08 1.262 .248 

NOF Uninfected plants 76 13.38 3.919 .450 

Infected plants 26 11.00 3.046 .597 

Wf Uninfected plants 76 22.938 3.251 .372 

Infected plants 26 22.398 3.594 .704 

 

Table 13 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 1 of inoculation in first experiment 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 40 254.53 34.689 5.485 

Infected plants 13 249.23 41.716 11.570 

NOB Uninfected plants 40 8.20 1.454 .230 

Infected plants 13 7.23 1.301 .361 

NOF Uninfected plants 40 11.53 3.728 .589 

Infected plants 13 11.38 3.754 1.041 

Wf Uninfected plants 40 25.161 2.031 .321 
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Infected plants 13 23.946 1.623 .450 

 

Table 14 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 2 of inoculation in first experiment 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 40 254.53 34.689 5.485 

Infected plants 13 237.69 36.865 10.225 

NOB Uninfected plants 40 8.20 1.454 .230 

Infected plants 13 6.54 1.450 .402 

NOF Uninfected plants 40 11.53 3.728 .589 

Infected plants 13 11.15 3.760 1.043 

Wf Uninfected plants 40 25.161 2.031 .321 

Infected plants 13 24.343 2.448 .679 

 

Table 15 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 3 of inoculation in first experiment 
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 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 40 254.53 34.689 5.485 

Infected plants 14 257.93 44.545 11.905 

NOB Uninfected plants 40 8.20 1.454 .230 

Infected plants 14 6.36 1.336 .357 

NOF Uninfected plants 40 11.53 3.728 .589 

Infected plants 14 9.86 2.825 .755 

Wf Uninfected plants 40 25.161 2.031 .321 

Infected plants 14 24.531 2.263 .6041 

 

Table 16 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 1 of inoculation in second experiment 

(repeat) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 36 243.56 31.198 5.200 

Infected plants 12 236.42 33.427 9.650 

NOB Uninfected plants 36 7.56 1.229 .205 
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Infected plants 12 5.75 1.138 .329 

NOF Uninfected plants 36 15.44 3.018 .503 

Infected plants 12 12.33 2.839 .820 

Wf Uninfected plants 36 20.469 2.477 .412 

Infected plants 12 19.910 3.280 .947 

 

 

Table 17 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 2 of inoculation in second experiment 

(repeat) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 36 243.56 31.198 5.200 

Infected plants 12 243.33 27.164 7.842 

NOB Uninfected plants 36 7.56 1.229 .205 

Infected plants 12 5.92 .669 .193 

NOF Uninfected plants 36 15.44 3.018 .503 

Infected plants 12 11.83 3.157 .911 
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Wf Uninfected plants 36 20.469 2.477 .412 

Infected plants 12 19.559 3.439 .992 

 

Table 18 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g) of S. 

lycopersicum ‘Tigerella’ between all uninfected plants (control) and infected plants of stage 3 of inoculation in second experiment 

(repeat) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 36 243.56 31.198 5.200 

Infected plants 12 260.50 32.380 9.347 

NOB Uninfected plants 36 7.56 1.229 .205 

Infected plants 12 5.58 .515 .149 

NOF Uninfected plants 36 15.44 3.018 .503 

Infected plants 12 12.50 1.834 .529 

Wf Uninfected plants 36 20.469 2.477 .412 

Infected plants 12 17.376 1.792 .517 
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2. Capsicum annuum ‘Californian Wonder’ 

Table 19 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit (Lf) (cm) of 

C. annuum ‘Californian Wonder’uninfected plants (control) between the first and the second (repeat) experiment in stage 1 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 57.400 5.815 1.839 

2 20 58.300 5.831 1.304 

NOB 1 10 2.600 .516 .163 

2 20 2.550 .510 .114 

NOF 1 10 4.200 .632 .200 

2 20 3.700 .571 .127 

Wf 1 10 85.462 8.191 2.590 

2 20 78.090 14.392 3.218 

Lf 1 10 7.099 .454 .1438 

2 20 6.725 .446 .099 

 

Table 20 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ uninfected plants (control) between the first and the second (repeat) experiment in stage 

2 of inoculation 
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 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 57.200 6.663 2.107 

2 20 59.150 6.466 1.446 

NOB 1 10 2.400 .516 .163 

2 20 2.500 .513 .114 

NOF 1 10 4.300 1.337 .423 

2 20 3.500 .7609 .170 

Wf 1 10 92.371 17.690 5.594 

2 20 84.312 13.069 2.922 

Lf 1 10 6.732 .473 .149 

2 20 7.437 2.759 .617 

 

Table 21 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ uninfected plants (control) between the first and the second (repeat) experiment in stage 

3 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 60.300 6.165 1.949 

2 20 58.650 5.650 1.263 

NOB 1 10 2.500 .527 .1667 
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2 20 2.550 .510 .114 

NOF 1 10 4.700 .948 .300 

2 20 3.400 .680 .152 

Wf 1 10 90.594 13.410 4.240 

2 20 85.512 12.842 2.871 

Lf 1 10 6.907 .593 .187 

2 20 6.920 .621 .138 

 

Table 22 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ infected plants between the first and the second (repeat) experiment in stage 1 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 54.000 11.897 3.762 

2 20 43.400 14.925 3.337 

NOB 1 10 2.600 .516 .163 

2 20 2.500 .513 .114 

NOF 1 10 1.900 1.449 .458 

2 20 1.600 1.046 .234 

Wf 1 7 75.377 10.012 3.784 
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2 17 65.694 31.243 7.577 

Lf 1 7 6.177 .550 .208 

2 17 6.756 1.199 .290 

 

Table 23 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ infected plants between the first and the second (repeat) experiment in stage 2 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 59.900 4.148 1.311 

2 20 50.900 11.125 2.487 

NOB 1 10 2.500 .527 .166 

2 20 2.400 .598 .133 

NOF 1 10 3.000 1.333 .421 

2 20 1.750 .9665 .216 

Wf 1 10 88.420 21.054 6.658 

2 19 82.021 42.260 9.695 

Lf 1 10 6.915 .605 .191 

2 19 6.942 1.346 .308 
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Table 24 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ infected plants between the first and the second (repeat) experiment in stage 3 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 60.900 5.445 1.722 

2 20 50.200 9.833 2.198 

NOB 1 10 2.700 .483 .152 

2 20 2.550 .510 .114 

NOF 1 10 2.400 .843 .266 

2 20 1.450 .759 .169 

Wf 1 10 80.180 26.667 8.433 

2 19 90.683 34.551 7.926 

Lf 1 10 7.147 1.096 .346 

2 19 7.347 1.460 .335 

 

Table 25 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between uninfected plants (control) and infected plants in stage 1 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 58.000 5.741 1.048 

Infected plants 30 46.933 14.687 2.681 



177 

NOB Uninfected plants 30 2.567 .504 .0920 

Infected plants 30 2.533 .507 .092 

NOF Uninfected plants 30 3.867 .628 .114 

Infected plants 30 1.700 1.178 .215 

Wf Uninfected plants 30 80.548 13.001 2.373 

Infected plants 24 68.518 26.934 5.497 

Lf Uninfected plants 30 6.850 .476 .086 

Infected plants 24 6.587 1.073 .219 

 

Table 26 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between uninfected plants (control) and infected plants in stage 2 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 58.500 6.484 1.183 

Infected plants 30 53.900 10.249 1.871 

NOB Uninfected plants 30 2.467 .507 .092 

Infected plants 30 2.433 .568 .103 

NOF Uninfected plants 30 3.767 1.040 .189 

Infected plants 30 2.167 1.234 .225 

Wf Uninfected plants 30 86.998 14.965 2.732 
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Infected plants 29 84.227 36.058 6.695 

Lf Uninfected plants 30 7.202 2.274 .415 

Infected plants 29 6.932 1.133 .210 

 

Table 27 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between uninfected plants (control) and infected plants in stage 3 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 59.200 5.773 1.054 

Infected plants 30 53.767 9.943 1.815 

NOB Uninfected plants 30 2.533 .507 .092 

Infected plants 30 2.600 .498 .091 

NOF Uninfected plants 30 3.833 .985 .179 

Infected plants 30 1.767 .897 .163 

Wf Uninfected plants 30 87.206 13.030 2.379 

Infected plants 29 87.061 31.966 5.935 

Lf Uninfected plants 30 6.916 .601 .109 

Infected plants 29 7.278 1.329 .246 

 

Table 28 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants in stage 1 of inoculation 
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 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 90 58.567 5.962 .628 

Infected plants 30 46.933 14.687 2.681 

NOB Uninfected plants 90 2.522 .502 .052 

Infected plants 30 2.533 .507 .092 

NOF Uninfected plants 90 3.822 .894 .094 

Infected plants 30 1.700 1.178 .215 

Wf Uninfected plants 90 84.917 13.894 1.464 

Infected plants 24 68.518 26.934 5.497 

Lf Uninfected plants 90 6.989 1.378 .145 

Infected plants 24 6.587 1.073 .219 

 

Table 29 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants in stage 2 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 90 58.567 5.962 .628 

Infected plants 31 52.871 11.592 2.082 

NOB Uninfected plants 90 2.522 .502 .052 

Infected plants 31 2.419 .564 .101 
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NOF Uninfected plants 90 3.822 .894 .094 

Infected plants 31 2.129 1.231 .221 

Wf Uninfected plants 90 84.917 13.894 1.464 

Infected plants 30 82.190 37.147 6.782 

Lf Uninfected plants 90 6.989 1.378 .1453 

Infected plants 30 6.885 1.143 .208 

 

Table 30 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants in stage 3 of inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 90 58.567 5.962 .628 

Infected plants 30 53.767 9.943 1.815 

NOB Uninfected plants 90 2.522 .502 .052 

Infected plants 30 2.600 .498 .091 

NOF Uninfected plants 90 3.822 .894 .094 

Infected plants 30 1.767 .897 .163 

Wf Uninfected plants 90 84.917 13.894 1.464 

Infected plants 29 87.061 31.966 5.935 

Lf Uninfected plants 90 6.989 1.378 .145 
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Infected plants 29 7.278 1.329 .246 

 

Table 31 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 1 of inoculation in 

first experiment 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 58.300 6.176 1.127 

  Infected plants 10 54.000 11.897 3.762 

NOB Uninfected plants 30 2.500 .508 .092 

  Infected plants 10 2.600 .5164 .163 

NOF Uninfected plants 30 4.400 1.003 .183 

  Infected plants 7 2.714 .7559 .2857 

Wf Uninfected plants 30 89.476 13.514 2.467 

  Infected plants 7 75.377 10.012 3.784 

Lf Uninfected plants 30 6.913 .516 .094 
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  Infected plants 7 6.177 .550 .208 

 

Table 32 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 2 of inoculation in 

first experiment 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 58.300 6.176 1.127 

Infected plants 10 59.900 4.148 1.311 

NOB Uninfected plants 30 2.500 .508 .092 

Infected plants 10 2.500 .527 .166 

NOF Uninfected plants 30 4.400 1.003 .183 

Infected plants 10 3.000 1.333 .421 

Wf Uninfected plants 30 89.476 13.514 2.467 

Infected plants 10 88.420 21.054 6.658 

Lf Uninfected plants 30 6.913 .516 .094 
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Infected plants 10 6.915 .605 .191 

 

Table 33 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 3 of inoculation in 

first experiment 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 58.300 6.176 1.127 

Infected plants 10 60.900 5.445 1.722 

NOB Uninfected plants 30 2.500 .508 .092 

Infected plants 10 2.700 .483 .152 

NOF Uninfected plants 30 4.400 1.003 .183 

Infected plants 10 2.400 .843 .266 

Wf Uninfected plants 30 89.476 13.514 2.467 

Infected plants 10 80.180 26.667 8.433 

Lf Uninfected plants 30 6.913 .516 .094 
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Infected plants 10 7.147 1.096 .346 

 

Table 34 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 1 of inoculation in 

second experiment (repeat) 

 

Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 60 58.700 5.901 .761 

Infected plants 20 43.400 14.925 3.337 

NOB Uninfected plants 60 2.533 .503 .064 

Infected plants 20 2.500 .513 .114 

NOF Uninfected plants 60 3.533 .675 .087 

Infected plants 17 1.882 .857 .208 

Wf Uninfected plants 60 82.638 13.623 1.758 

Infected plants 17 65.694 31.243 7.577 

Lf Uninfected plants 60 7.027 1.652 .213 

Infected plants 17 6.756 1.199 .290 
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Table 35 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 2 of inoculation in 

second experiment (repeat) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 60 58.700 5.901 .761 

Infected plants 20 50.900 11.125 2.487 

NOB Uninfected plants 60 2.533 .503 .064 

Infected plants 20 2.400 .598 .133 

NOF Uninfected plants 60 3.533 .675 .0872 

Infected plants 19 1.842 .898 .206 

Wf Uninfected plants 60 82.638 13.623 1.758 

Infected plants 19 82.021 42.260 9.695 

Lf Uninfected plants 60 7.027 1.652 .213 

Infected plants 19 6.942 1.346 .308 
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Table 36 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Californian Wonder’ between all uninfected plants (control) and infected plants of stage 3 of inoculation in 

second experiment (repeat) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 60 58.700 5.901 .761 

Infected plants 20 50.200 9.833 2.198 

NOB Uninfected plants 60 2.533 .503 .064 

Infected plants 20 2.550 .510 .114 

NOF Uninfected plants 60 3.533 .675 .0872 

Infected plants 19 1.526 .696 .15 

Wf Uninfected plants 60 82.638 13.623 1.758 

Infected plants 19 90.683 34.551 7.926 

Lf Uninfected plants 60 7.027 1.652 .213 

Infected plants 19 7.347 1.460 .335 
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3. Capsicum annuum ‘Jalapeno’ 

Table 37 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of uninfected plants (control) between the first and the second (repeat) experiment in stage 1 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 90.400 9.732 3.077 

2 16 98.588 11.607 2.901 

NOB 1 10 6.30 1.059 .335 

2 16 6.69 .704 .176 

NOF 1 10 10.00 2.211 .699 

2 16 10.38 1.746 .437 

Wf 1 10 28.839 5.115 1.617 

2 16 23.579 3.180 .795 

Lf 1 10 8.889 1.641 .519 

2 16 8.103 .888 .222 
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Table 38 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of uninfected plants (control) between the first and the second (repeat) experiment in stage 2 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 92.100 8.949 2.830 

2 16 97.625 25.329 6.332 

NOB 1 10 6.50 1.080 .342 

2 16 6.44 .964 .241 

NOF 1 10 9.90 2.807 .888 

2 16 8.38 1.746 .437 

Wf 1 10 24.784 6.293 1.990 

2 16 24.193 4.995 1.248 

Lf 1 10 8.078 2.069 .654 

2 16 8.989 1.342 .335 

 

Table 39 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of uninfected plants (control) between the first and the second (repeat) experiment in stage 3 of 

inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 10 92.100 10.397 3.287 
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2 16 101.875 12.274 3.068 

NOB 1 10 7.00 1.155 .365 

2 16 6.69 .946 .237 

NOF 1 10 10.60 2.675 .846 

2 16 7.63 2.527 .632 

Wf 1 10 24.707 4.735 1.497 

2 16 28.782 9.434 2.358 

Lf 1 10 8.981 1.720 .544 

2 16 9.222 1.832 .458 

 

Table 40 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of infected plants between the first and the second (repeat) experiment in stage 3 of inoculation 

 Repeat Number Mean Std. Deviation Std. Error Mean 

H 1 7 89.143 9.805 3.706 

2 3 93.333 8.736 5.044 

NOB 1 7 6.43 1.718 .649 

2 3 6.00 2.000 1.155 

NOF 1 7 6.14 3.891 1.471 

2 3 5.00 1.732 1.000 
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Wf 1 6 22.578 4.447 1.815 

2 3 27.803 14.906 8.606 

Lf 1 6 8.977 1.827 .746 

2 3 10.072 3.704 2.139 

 

Table 40 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of stage 1 inoculation between uninfected plants (control) and infected plants (only two infected 

plants survived from both two experiments and no fruit produced)  

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 26 95.438 11.464 2.248 

Infected plants 2 57.000 32.526 23.000 

NOB Uninfected plants 26 6.54 .859 .169 

Infected plants 2 5.00 4.243 3.000 

NOF Uninfected plants 26 10.23 1.904 .373 

Infected plants 0 . . . 

Wf Uninfected plants 26 25.602 4.722 .926 

Infected plants 0 . . . 

Lf Uninfected plants 26 8.405 1.263 .247 

Infected plants 0 . . . 
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Table 41 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of stage 3 inoculation between uninfected plants (control) and infected plants. There were total 10 

infected plants survived including seven plants of experiment 1 and three plants of second experiment (repeat) when they were 

inoculated in stage 3 (before flowering) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 26 98.115 12.362 2.424 

Infected plants 10 90.400 9.228 2.918 

NOB Uninfected plants 26 6.81 1.021 .200 

Infected plants 10 6.30 1.703 .539 

NOF Uninfected plants 26 8.77 2.930 .575 

Infected plants 10 5.80 3.327 1.052 

Wf Uninfected plants 26 27.215 8.096 1.587 

Infected plants 9 24.319 8.645 2.881 

Lf Uninfected plants 26 9.129 1.759 .345 

Infected plants 9 9.342 2.412 .804 

 

Table 42 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ between all uninfected plants (control) and infected plants of stage 1 inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 78 96.351 15.1873 1.7196 
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Infected plants 2 57.000 32.526 23.000 

NOB Uninfected plants 78 6.60 .958 .108 

Infected plants 2 5.00 4.243 3.000 

NOF Uninfected plants 78 9.32 2.468 .279 

Infected plants 0 . . . 

Wf Uninfected plants 78 25.746 6.274 .710 

Infected plants 0 . . . 

Lf Uninfected plants 78 8.724 1.591 .180 

Infected plants 0 . . . 

 

Table 43 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ between all uninfected plants (control) and infected plants of stage 3 inoculation 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 78 96.351 15.187 1.719 

Infected plants 10 90.400 9.228 2.918 

NOB Uninfected plants 78 6.60 .958 .108 

Infected plants 10 6.30 1.703 .539 

NOF Uninfected plants 78 9.32 2.468 .279 

Infected plants 10 5.80 3.327 1.052 
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Wf Uninfected plants 78 25.746 6.274 .710 

Infected plants 9 24.319 8.645 2.881 

Lf Uninfected plants 78 8.724 1.591 .180 

Infected plants 9 9.342 2.412 .804 

 

 

Table 44 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of experiment 1 between all uninfected plants (control) and infected plants of inoculation stage 1 

(only two plants survived but no fruit produced) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 91.533 9.405 1.717 

Infected plants 2 57.000 32.526 23.000 

NOB Uninfected plants 30 6.60 1.102 .201 

Infected plants 2 5.00 4.243 3.000 
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Table 45 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of experiment 1 between all uninfected plants (control) and infected plants of inoculation stage 3 

(only six infected plants produced fruits of seven plants survived) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 30 91.533 9.405 1.717 

Infected plants 7 89.143 9.805 3.706 

NOB Uninfected plants 30 6.60 1.102 .201 

Infected plants 7 6.43 1.718 .649 

NOF Uninfected plants 30 10.30 2.535 .463 

Infected plants 6 7.17 3.061 1.249 

Wf Uninfected plants 30 26.074 5.775 1.054 

Infected plants 6 23.042 4.557 1.860 

Lf Uninfected plants 30 8.641 1.807 .330 

Infected plants 6 9.152 1.811 .739 
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Table 46 Comparison of average height (H) (cm), branch numbers (NOB), fruit numbers (NOF), weight fruit (Wf) (g), length fruit 

(Lf) (cm) of C. annuum ‘Jalapeno’ of experiment 2 (repeat) between all uninfected plants (control) and infected plants of inoculation 

stage 3 (only four infected plants survived and produced fruits) 

 Treatment Number Mean Std. Deviation Std. Error Mean 

H Uninfected plants 48 99.363 17.297 2.496 

Infected plants 4 91.750 7.804 3.902 

NOB Uninfected plants 48 6.60 .869 .125 

Infected plants 4 6.25 1.708 .854 

NOF Uninfected plants 48 8.81 2.385 .344 

Infected plants 4 5.50 1.732 .866 

Wf Uninfected plants 48 25.335 7.199 1.039 

Infected plants 4 31.109 13.851 6.925 

Lf Uninfected plants 48 8.882 1.476 .213 

Infected plants 4 10.536 3.164 1.582 
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