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Abstract
Raw soil core physical data used in machine learning algorithms with corresponding

spatial remotely sensed data is an emerging science. Using data derived from soil core

samples previously collected in Universal Transverse Mercator zone 50 (Western

Australia) and remotely sensed data, a model that predicted ground movement (GM)

was developed specific to Australian Standards manual AS 1726–2017. This is the

first approach for Australian soils and first in the world for soils older than 200 mil-

lion yr. The model developed reliably predicted GM with 91.1% accuracy. The error

obtained from the prediction is within acceptable limits currently used by engineers

in calculations concerning soil classification for engineering purposes. Concerning

the remotely sensed data analyzed, accuracy of the Atterberg limits method might

be improved if additional information about soil structure (layering and horizon) or

other variables (seasonal data) are built into this model. This model can be used to

save on construction material costs, reduce the potential for human error associated

with data collection and sample manipulation, but also fast-track (by up to 6 wk based

on current wait times) building approvals while ensuring compliance to the relevant

legislation. This platform also reduces the environmental effects of invasive drilling

techniques. A requirement within principles of sustainable building practices, and

associated with current standards commonly used by structural engineers who may

seek better understanding of soil properties in Australia as a software service (with

application potential in North America).

1 INTRODUCTION

The surface geology and geomorphology of soils habiting the

Swan Coastal Plain in Western Australia are ancient, highly

weathered, and diverse. The parent material, which includes

an igneous formation located west of the Darling Range dat-

ing back at least 2,600 million yr, informs the soil physi-

cal and geological landscape of that locality; broadly, frame-

Abbreviations: GM, ground movement; ISRIC, International Soil

Reference and Information Centre; SaaS, software as a service; UTM,

Universal Transverse Mercator.
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work silicate–based, iron-rich sands that gradually increase

to more calcareous mixtures near the wave-affected coast-

line (McArthur, 2004). Modeling of geological age within

this geographical location constitutes a broad range in terms

of soil era and thus has had limited uptake concerning the

building of new AI-based models, unlike other industries

where computational advancements may be rapidly outstrip-

ping concise data collection strategies but conversely are hav-

ing significant positive statistical gains in the order of 5–10%

(improvement in prediction accuracy) (Arama et al., 2020;

Guo et al., 2021; Yu et al., 2021) (Figure 1).

Soil Sci. Soc. Am. J. 2022;1–8. wileyonlinelibrary.com/journal/saj2 1

https://orcid.org/0000-0003-1468-0601
https://orcid.org/0000-0003-3383-8902
mailto:k.svatos@murdoch.edu.au
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/saj2


2 SVATOS ET AL.

F I G U R E 1 The soil lithology map of Western Australia

(McArthur, 2004) and overlaying RGB Landsat satellite Universal

Transverse Mercator zone 50 images (black background, soil core

logged, and geo-referenced *.tiff; location data coordinates) for

laboratory samples used to create the polygon of the representative

dataset GPS points for predicting ground movement based on Atterberg

values (McBride, 2002) determined for the laboratory core logged

datasets (left). Constructed images of the various inputs and data

sources that can be used to program an algorithmic model based on

laboratory datasets from any number of potential sources (real-time

API’s, satellite data, SQL databases, etc.) (right). The layer cake nature

shows how multiple indices, including imagery and weather

forecasting, can be used to create statistical models to assess effects of

multiple co-factor environmental parameters (e.g., on physical or

chemical association with ground movement), which can then be used

to determine the influence on any constructed algorithm(s) or for future

prediction based on prevailing conditions at any given time. The two

main approaches include machine learning and statistical modeling. In

each case, to enable real-time decision making the data must be

converted to digital formats and then instances created to process the

data

The accepted legislated standards used to classify soils to

determine site suitability in the building and construction

industry in Australia are listed in Appendix A of the Aus-

tralian Standards manual AS 1726–2017 (Australian Stan-

dards, 2017), which focuses on consistency limits and soil

plasticity that and is broadly related to physical properties of

some fine grained soils and provides information about their

engineering properties (e.g., shear strength and compressibil-

ity). These parameters are the standard input for many soil-

based investigation programs. Their correct definition and

usage in such programs are essential. (Osman, 2007).

Concerning calculating how much any soil might move

over any given period or number of seasons throughout the

life of a building structure, a general term currently in use

is ground movement (GM) (Cameron, 1989). Ground move-

ment is based on traditional geological classification of a type

of “problem soil” that may exhibit expansion or shrinkage

that damages foundations and building structures. This phe-

nomenon occurs in many parts of the world, including in Aus-

tralia and North America, although, technically there is no

such thing as a “problem soil type” per se. There are several

publications related to sampling techniques for the purpose of

classifying and defining the properties of such problem soils.

Core Ideas
∙ High-resolution spatial analysis gives deep soil

insights about an ancient Mediterranean soil.

∙ We discuss a new soil machine learning engineer-

ing prediction method and corresponding software

platform.

∙ Eliminating misconceptions about machine learn-

ing through sound statistics consolidates Atterberg

values used to determine “ground movement” in

the context of Australian (and international) stan-

dards.

One such example is “heave” as it relates to plasticity index

and percentage clay fraction (Jones, 2017; Van der Merwe,

1964).

Simulations of GM concerning unsaturated clay in North

America (Rees & Thomas (1993, 7) and is analogous to Terza-

ghi’s classical theory of one-dimensional consolidation for

saturated soils. They conclude that the approach they adopted

“was capable of producing realistic predictions of seasonal

ground movement.” This summary of soil and structural

engineering related representations (GTM-7, 2015; McBride,

2002) coupled with review (Johnson et al., 2020; Vorwerk et

al, 2015) related to the physical calculation of Atterberg lim-

its generally represent GM hereinafter for the purpose of the

software as a service (SaaS) platform (Table 1).

Concerning the calculation of GM used in the building and

construction industry (for calculations and legislation pur-

T A B L E 1 Typical ground movement (GM) values between 0

and >75 cm used to help determine soil classification

Ground movement Soil classification
cm

0 A

1–20 S

20–40 M

40–60 H1

60–75 H2

>75 E

Problem site P

Note. A, mostly sand and rock sites with little or no GM expected; E, extremely

reactive sites that can experience extreme GM from moisture changes; H, highly

reactive clay sites that can experience high GM from moisture changes; M, mod-

erately reactive clay or silt sites that can experience moderate GM from moisture

changes; P, problem sites, which can include soft soils, such as soft clay or silt,

varying depths of fill, loose sands, landslips, mine subsidence, collapsing soils,

soils subject to erosion, reactive sites subject to abnormal moisture conditions, or

sites that cannot be classified otherwise; S, slightly reactive clay sites with only

slight GM from moisture changes expected.
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poses), several mixed-use models have been presented but

with little or no clear focus on the industry requirements con-

cerning noninvasive drilling approaches, or standardization.

As companies and scientists look to move more data to the

cloud SaaS to benefit from opportunities related to building

sustainability and data sharing, herein lies both a knowledge

gap and an opportunity (Svatos, 2021). More recent research

has provided insights and potential database metadata clusters

(and metrics) for correlations (Armstrong et al., 2007 Suther-

land et al., 2014; Qu et al., 2018; Tan et al., 2021), but these

may also fall short concerning industry standards on data col-

lection.

The International Soil Reference and Information Cen-

tre (ISRIC) SoilGrids (a java-based cloud *.html console

API) provides predictions for standard numeric soil proper-

ties (organic C, bulk density, cation exchange capacity, pH,

soil texture fractions, and coarse fragments) at seven standard

depths (0, 5, 15, 30, 60, 100, and 200 cm). Based on the Amer-

ican soil classification system (taking into account that the

majority of American soils are <200 million yr old), averages

for depth intervals are derived by taking a weighted average

of the predictions using numerical integration of the trape-

zoidal rule (Hengl et al., 2017). This algorithm then provides

a generalized surface and subsurface prediction of the afore-

mentioned soil properties based on current geological era cor-

relation data (Hengl et al., 2017). However, where the classi-

fication of ancient soils skews correlation outside allowable

model tolerances, many or all data points have to be omit-

ted to populate the algorithm map. This omission may also

be partly due to areas incorrectly reflecting significant differ-

ences in era and age between the Australian and American

classification systems that does not account for occurrences

of soils >200 million yr in geological time (McArthur, 2004).

An ISRIC spokesperson recently said that the ISRIC is not

working on the prediction of soil classes at the global scale.

The number of profiles with assessed classification in each of

the three systems is not very large; at this moment, it is not yet

possible to substantially improve on the class prediction (Luís

Moreira de Sousa, personal communication, 16 July 2020).

And yet, the entire global reference dataset (GPS grid points)

is kept on the map grid for use. This nonstandardized method

(for prediction at the global scale) is not limited to soil pre-

diction models. Concerning vector-based algorithms for sta-

tistical applications (including for soil) or other quantitative

modeling methods, including those utilizing machine learn-

ing, biases (considering predictive significance) appear to be

underreported in the scientific literature, yet are increasingly

used to explain the significance of the methods. (Louca et al.,

2018).

Data-driven machine learning techniques have increasingly

been used for modeling and prediction of the composition

and rates of sedimentation (e.g., in sedimentary basins). As

such, the existing mathematical and machine learning mod-

els for forecasting river sediment deposition is oft driven by

non-remotely sensed data without the required complemen-

tary ground-truthing for calculating tolerances or absolute sig-

nificance (Qu et al., 2018). This soil moisture investigation

uses a machine learning approach based on experimental data

and Landsat5-thematic mapper images, specific for the Mega-

City Beijing. Qu et al. (2018) aims to demonstrate that remote

sensing and unsupervised machine learning techniques, cou-

pled with an appropriate validation metric, can be used to

quickly forecast regions that are subject to future river sed-

iment deposition environments. They claim that their support

vector classifier (SVC) method trained with remote sensing

and grayscale data achieved an accuracy of 76.69%. However,

without the support vector classifier, it is a fair assumption

that the predictive accuracy of such a model would be signifi-

cantly less biased concerning predictive significance, but also

considerably less accurate (Awan et al., 2021; Huang et al.,

2019; Sheffield et al., 2012).

But, to what extent do computer libraries and available

statistical visualization and computational hardware setups

allow for predictions (with or without ground-truthing of

algorithmically extrapolated data) independent of “accuracy”

concerning applied AI used in soil analyses? The Python3

geospatial data abstraction library may be used for converting

satellite image *.tiff files to *.csv files, and R (computer lan-

guage) is used for unsupervised learning algorithms includ-

ing those used by AI currently. Increasingly the R libraries

can optimize numbers of clusters for pairwise plotting of

feature bands and cluster validation (Karmakar et al., 2019;

R Core Team, 2022). However, where vast distances need

classification for soil physical and chemical properties via

index correction or vector algorithms, these big-data clus-

ters create significant processing bottlenecks (compared with

genetic data clustering, which also use this type of approach).

These types of models use substantial graphical processing

unit resources, and thus are inefficient or not Turing com-

plete. (Fong et al., 2018; Keight et al., 2018; Reynolds et al.,

2019).

The aims of this study are: (a) to characterize the major

landforms, surface features, and physical specifications of a

standardized set of core sample logs (based on a laboratory

database used to calculate GM) specific to Western Australia’s

ancient and unique soils, including those along Swan Coastal

Plain; (b) to validate the formulated equations and indices

using complementary statistical modeling and machine learn-

ing methods; (c) to validate GM soil equation(s) using exist-

ing remote sensing databases and software, to correlate or

extrapolate information concerning GM for areas without lab-

oratory data in the data polygon, to simulate lack of access

to the site, and to minimize future site destruction; and (e)

to embed the kernel into a cloud-based container for high-

speed computation and software as a service (SaaS) API

access.



4 SVATOS ET AL.

2 MATERIALS AND METHODS

2.1 Validation of the laboratory-based
geotechnical data

Ground movement values (determined from the accurate

conversion of physical laboratory measurements based on

Atterberg limits), using the industry standards (Australian

Standards, 2017; McBride, 2002) were first completed on

5,000 core samples collected from Western Australia’s Swan

Coastal Plain and surrounding areas (Table 1). The raw results

data were then uploaded to an online database AWS S3 bucket

(Amazon Web Services). The entire dataset of laboratory

samples stored in the AWS bucket consisted of 3,000 datasets

that were formatted from *.pdf format into *.xlsx and then

*.csv. These datasets were also cross-referenced by suburb

and general location to remove inconsistent GPS locations

from their physical addresses and plotted over the Western

Australian lithology map (Figure 1).

The laboratory database GM*.csv files were then decon-

structed to look for relationships between the sample obser-

vations (based on the theoretical algorithm vs. the calcu-

lated values) to verify the Atterberg method. Relationships

between approximately 30 soil characteristics (from the labo-

ratory *.csv files) and an additional 20 characteristics from the

available remote sensed geo-referenced *.tiff and GPS logged

satellite or online databases (Landsat, Sentinel I and II, and

ISRIC) were then determined for the Universal Transverse

Mercator (UTM) zone 50.

2.2 Remote geospatial ground movement
prediction based on statistical relationships

The methods used for machine learning and statistical mod-

eling (Tan et al., 2021; Yu et al., 2021) implemented here

have previously been described (Ahmed et al., 2019; Recaldes

et al., 2020; Svatos, 2021). The theory behind the installa-

tion and configuration of such implementations for environ-

mental simulation has also previously been described (Svatos,

2018). Briefly, the two complementary methods were set up

and preconfigured to be remotely accessible from a remote

secure shell terminal. The methods included a statistical mod-

eling approach using the QGIS graphical user interface and

command-line interface through the QGIS software suite

(QGIS Development Team), and a machine learning approach

using a *.py (python file) with preconfigured commands

implemented through the command-line of a pythonic kernel

and console API, running on the long-term support version

of the Ubuntu 18.04 operating system. To enable near real-

time automation of these statistical methods, a pipeline for the

baseline implementation (workflow in the cloud) was created.

Using Amazon EC2, the instance was set up and installed with

access to an S3 bucket containing the laboratory database and

remotely sensed raw datasets (Amazon).

From the cloud shell, the statistical models were used to

determine GM based on the relationships between soil char-

acteristics and GM (using 80% of the data for training and

20% for testing); the two analytical approaches compiled

algorithms for downstream supervised learning assessments

(within the GPS polygon). Finally, to determine the effective-

ness of the statistical modeling and machine learning pipeline,

the workflow algorithms were used to see how accurate the

correlations were with open-source geospatial data for deter-

mining GM (Table 1).

3 RESULTS AND DISCUSSION

The scientific models developed through this research (based

on laboratory datasets of the Atterberg limit industry stan-

dards) are the first to incorporate machine learning into

GM calculations in Western Australia, and the first for soils

older than 200 million yr due to the age of soils studied

(Figure 1). Based on the statistical modeling approach, the

best determining correlation variables for GM were liquid

limit, plasticity, plasticity index, and linear shrinkage, due to

the nature of the relationships between GM and soil phys-

ical properties that support its measurement (as expected).

The generalized additive model output from the QGIS ter-

minal, which was set for spatial and temporal autocorrela-

tion, with additional smoothing, fitting, weight, and flexibility

parameters, explained 91.1% of total deviation of the dataset

(Figure 2). Similarly, for the machine learning approach,

the overall prediction potentials for R2 = .05 and R2 =
.10 were 65 and 83%, respectively. The prediction poten-

tial of both statistical methods supports their use (and the

dataset) for making estimates of GM in the determination

of foundation thickness (in the building and construction

industry) within the GPS polygon, and possibly remotely,

without the need for core samples and additional laboratory

analyses.

Using the 30 remotely sensed spatially available datasets

to determine GM showed inconsistent results (Figure 3). The

remote sensing data models that were identified via both the

machine learning and statistical modeling approaches do not

support the models developed (Dastbaz et al., 2018), even

though the same Landsat datasets were used in our mod-

els. Our models were less than 50% as accurate, which leads

to questions concerning the significant deviation concerning

similar models used by others (Arama et al., 2020; Arm-

strong et al., 2007; Louca et al., 2018; Qu et al., 2018).

In our spatial model, the data were not significant enough

to warrant the use of the model in its current form with a
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F I G U R E 2 Potential for ground movement (GM) in cm from the

generalized additive model based on the laboratory dataset (within the

GPS polygon Figure 1.) was best described by the “moisture equation”

log{E(Yij)} = β0 + β1Ll + β2Pl + β3Year + β4Season +
β5GeologicalZone + β6Friabilty + β7USC + β8Colour + β9Moistue +
β10P0.425 + β11Latitude + β12Longitude, which explained 91.1% of

deviation from expected values (P < .05)

high enough level of certainty concerning industry standards.

Although, we were able to predict whether the ground would

move or not, more data are needed to predict the extent of

the movement confidently (without introducing qualitative

bias).

Detailed information about built-up areas is valuable for

mapping complex urban environments. Although many clas-

sification algorithms for surface areas have been developed,

they are rarely tested from the perspective of feature engi-

neering and feature learning for predictions of subsurface soil

parameters (Sheffield et al., 2012). Better accuracy of the spa-

tial model might be obtained if soil structure (layering) and

other variables analyzed in future data collections of Atter-

berg limits (McBride, 2002) are factored in concerning the

geological effects of time. The ground moves as the seasons

change; therefore, there is a correlation between this amount

of movement and soil type, including the subsurface satura-

tion zone.

However, for a significant correlation to be made, the

model data need additional stratigraphic observations about

the soil horizon so that two-dimensional soil lithology maps

can then be used to piece together a four-dimensional geo-

logical time stratigraphic soil map for the creation of larger

four-dimensional time-stamped polygons (outside of UTM

zone 50). For example, the model gave a better result in

classifying movement vs. nonmovement, which might indi-

cate smaller scale influences. Traditionally, seasonality is

used in agricultural field modeling where small-scale cal-

culations are improved with field measurements to validate

aspects of crop morphology with remotely sensed data (Alex-

akis et al., 2017; Cai et al., 2019). Significant improvements of

the accuracy may thus be obtained when categorical outputs

corresponding to site classification (surface water mapping

or groundwater bore logs) are built into the Atterberg limit

laboratory data collection and geotechnical procedures, irre-

spective of physical time deviation between measurements.

Although, this has yet to be demonstrated as effective con-

cerning standardized data collection protocols (Guo et al.,

2021; Tan et al., 2021; Yu et al., 2021).

Remotely sensed big-data sets, in terms of the structural,

spectral, and textual features, correspond to the satellites gen-

erating the data and is a sophisticated science (Dey et al.,

2018; Fong et al., 2018; Peng et al., 2020; Svatos, 2021; Tan

et al., 2021). Investigating the character of remotely sensed

big-data becomes an essential need to help verify (if available)

laboratory datasets for improved model accuracy, especially

where data are scarce. These are the first models to predict

ground movement in soils older than 200 million yr, a first for

Mediterranean climates, a first for Australia, and possibly a

first for the Southern Hemisphere (Arama et al., 2020). The

model developed from laboratory data is reliable for industry

use concerning ground movement within the GPS coordinates

of the UTM zone 50 polygon (Figure 1). However, even better

accuracy of the spatial model might be obtained if additional

information on soil structure (layering) and other variables

(that may be sourced) are built into the continually improving

automated machine learning pipeline with software improve-

ments (ARM, 2019; Hagendorff, 2020; Oracle, 2020). The

future of building and construction is now. The success of

this type of model can potentially save tens of thousands of

dollars in construction materials, reduce the potential human

error associated with data collection and samples manipula-

tion, and save up to 6 wk of building time while ensuring

the compliance of the relevant local, state, and federal legisla-

tion. In summary, this approach can: (a) allow designers and

engineers to prepare better quality and more accurate quotes

by providing more information prior to site visits; (b) save

time through less maintenance of on-site equipment; (c) pro-

vide a potential for less construction wastage, less materials

required, and less site works–preparation through cost savings

on engineering contingency fees (potential saving of up to

34% of construction materials required); (d) provide less sub-

jective, more consistent estimates; create the possibility for

further full data capture and analytics improvements; and (e)

reduce down-time and bottlenecks within the overall design

building and approval process, which has been amplified by

COVID-19.
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F I G U R E 3 The combined heat map for a total of 30 soil physical and chemical properties concerning remotely sensed datasets used (including

additional derivates): AlOH_Group_Content; False_Color; Ferric_Oxide_Composition; Ferrous_Iron_Index; GM, ground movement);

Green_Vegetation_Content; gravity; K, potassium; Kaolin_Group_Index; Lat, latitude; Lon, longitude; Mag, magnesium; Opaque_Index;

Regolith_Ratio; Silica_Index; Th, thorium; U, uranium. Ground movement in cm (Table 1) with red border with its corresponding prediction

potential for the Universal Transverse Mercator zone 50 based on the 29 other properties metrics (including outside the GPS polygon from Figure 1)
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