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Simple Summary: Feeding our growing population is one of the primary concerns of plant breeders.
Plant breeding needs to deliver a steady stream of modern cultivars in a time- and resource-efficient
manner. This review discusses the speed breeding (SB) techniques which allow breeders to advance
the crop generation in a shorter period of time. In addition, we highlight the current SB applications
in major crops and explore ways to integrate SB with new breeding techniques for efficient and faster
production of stable lines for basic and applied research.

Abstract: Breeding crops in a conventional way demands considerable time, space, inputs for
selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is
one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed
breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest,
has the potential to accelerate the rate of plant improvement. Well demonstrated in the case of
long-day plants, the SB protocols are being extended to short-day plants to reduce the generation
interval time. Flexibility in SB protocols allows them to align and integrate with diverse research
purposes including population development, genomic selection, phenotyping, and genomic editing.
In this review, we discuss the different SB methodologies and their application to hasten future plant
improvement. Though SB has been extensively used in plant phenotyping and the pyramiding of
multiple traits for the development of new crop varieties, certain challenges and limitations hamper
its widespread application across diverse crops. However, the existing constraints can be resolved by
further optimization of the SB protocols for critical food crops and their efficient integration in plant
breeding pipelines.
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1. Introduction

The current human population is around 7.8 billion and is estimated to reach nearly
9.9 billion by 2050 [1]. Climatic fluctuations involving rising temperatures, more frequent
floods, and drought are predicted to lead to novel diseases and more frequent pest out-
breaks, requiring an agile plant breeding response [2]. Lin et al. [3] highlighted the urgent
need for increasing the current rate of genetic gain of critical food crops to safeguard global
food security. Improving the rate of genetic gain will rely on accelerated crop breeding
pipelines in order to allow rapid delivery of improved crop varieties. As inferred by
the breeder’s equation [4], plant breeding can be accelerated by improving factors that
influence the genetic gain per unit time [5–7], crucially, the breeding cycle time (t) [8].

Since the 1940s, the speed of plant lifecycle turnover has been manipulated in plant
breeding using techniques such as single-seed descent [9,10] and shuttle breeding [11]. More
recently, researchers have manipulated controlled-environment (CE) growth conditions to
further truncate plant lifecycle time. Techniques to enhance the cycle turnover are widely
grouped under the term speed breeding (SB) (Figure 1) [12] and include accelerated single-
seed descent (aSSD: rapid development of homozygous lines), rapid generation cycling
(RGC: more breeding cycles per year using DNA marker technology), fast generation
cycling (FGC: more generations per year using stressed conditions and in vitro culture of
immature embryos), and rapid generation turnover (RGT: increasing number of generations
per year using immature seed harvest and photoperiod response). Since the early 21st
century, this suite of SB techniques has been applied across economically and scientifically
important model, crop, and pasture families, including Poaceae, Fabaceae, and Brassicaceae,
to achieve up to three-fold improvement in annual generation turnover compared to
conventional generation advancement systems (Table 1).
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Figure 1. Timelines of varietal development with (a) conventional breeding and (b) speed breeding.
The image was created using BioRender (https://biorender.com/ accessed on 20 January 2022).

Speed breeding techniques can be used to expedite breeding outcomes including the
generation of crosses, mapping populations, and evaluation of agronomic traits of interest.
Plants are grown under CE conditions, and researchers manipulate day/night temperature,
available light spectrum and intensity, and photoperiod duration in order to reduce time
to floral initiation and hasten embryo development and seed maturity [13–17]. Particular

https://biorender.com/
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emphasis is placed on light, with plants responding to changes in light duration and quality
by compressing their time to flowering. The use of artificial electric lamps for accelerating
plant growth and development has been long established [18,19]. Photoperiod extension
has since been used widely in long-day species to manipulate time to flowering [20]. The
advent of advanced LED lighting systems complemented efforts to accelerate lifecycle
turnover, enabling manipulation of wavelength composition to trigger light responses,
such as shade avoidance, and encourage rapid progression to flowering [21–25].

Table 1. List of crops where speed breeding has increased generation turnover.

Type of
Photoperiod Family Species Generations/Year Reference

Long day Poaceae Oat (Avena sativa) ~7 generations Liu et al. [26]
Barley (Hordeum vulgare) ~6 generations Hickey et al. [15]
Wheat (Triticum aestivum) 4–6 generations Mukade et al. [27]

Fabaceae Clover (Trifolium
subterraneum) 2.7–6.1 generations Pazos-Navarro et al. [21]

Lentil (Lens culinaris) ~8 generations Mobini et al. [28]
Chickpea (Cicer arietinum) ~6 generations Watson et al. [29]; Atieno et al. [30]

Pea (Pisum sativum) 6.8 generations Ochatt et al. [31]; Ribalta et al. [22]
5 generations Mobini and Warkentin [32]

Faba bean (Vicia faba) 7 generations Mobini et al. [28]
Narrow-leaf lupin (Lupinus

angustifolius) 5 generations Croser et al. [14]

Brassicaceae Rapeseed (Brassica napus) ~5 generations Watson et al. [29]
Linaceae Flax (Linum usitatissimum) ~3 generations Sysoeva et al. [20]

Short day Poaceae Rice (Oryza sativa) ~4–5 generations Rana et al. [33]; Collard et al. [34]
Sorghum (Sorghum bicolor) 4 generations Forster et al. [35]

Fabaceae Soybean (Glycine max) ~5 generations Nagatoshi and Fujita [36];
Jahne et al. [17]

Pigeonpea (Cajanus cajan) ~4 generations Saxena et al. [37]
Bambara groundnut (Vigna

subterranea ) ~4 generations Ochatt et al. [31]

Groundnut (Arachis
hypogaea) ~4 generations O’Connor et al. [38]

Amaranthaceae Grain amaranthus
(Amaranthus spp.) ~6 generations Stetter et al. [39]

The availability of a low-cost growth room design highlights the versatility of the
SB ‘recipe’, which can be tailored according to the local resources and purposes [29]. SB
technology has facilitated rapid phenotyping in wheat and the analysis of multiple disease-
resistance traits in European two-rowed barley [15,30]. A combination of SB technology
and marker-assisted selection (MAS) has accelerated development of herbicide-tolerant
chickpea [40] and the introgression of valuable allelic variation from wild relatives in
lentil [41]. These practical breeding outcomes highlight the potential of the global suite of
SB techniques to substantially accelerate genetic gain.

2. Flexible SB Systems for Fast-Tracking Applied and Basic Research

Early SB activities relied on in vivo–in vitro cycling or full in vitro lifecycle turnover [7,14].
However, it is the fully in vivo systems that have been most widely applied in improvement
programs. Watson et al. [29] presented three different SB facilities, customizable according
to the resource availability. SB I consisted of CE plant growth chambers with a photoperiod
of 22 h provided by white LED bulbs, far-red bulbs, and ceramic metal hydrargyrum
quartz iodide bulbs and 22 ◦C day/17 ◦C night temperature. When grown under these
conditions, wheat (Triticum aestivum, T. durum), barley (Hordeum vulgare), and purple false
brome (Brachypodium distachyon) flowered in half the time of controls grown in unregulated
glasshouse conditions during spring and early summer. Germination rates and seed
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viability remained unaffected by the accelerated growth conditions, validating the potential
of this technology for rapid crop improvement. A slightly modified setup, referred to as SB
II, employed the same temperature conditions as SB I with a 22 h photoperiod provided
by high-pressure sodium vapor lamps. Harvesting of immature seeds and cold treatment
were additionally performed under SB II to further reduce generation time. Results from
the growth stage for wheat, barley, canola, and chickpea plants demonstrated accelerated
plant development and uniformity in time to anthesis under SB conditions compared to the
control genotypes grown under identical glasshouse settings without supplemental lights.
Under SB II conditions, wheat plants produced significantly more spikes, maintained
grain number, and had early maturity within 14 days after flowering. An alternative,
cost-effective SB III system included a 3 m3 insulated room, seven LB-8 LED light crates,
and a 1.5 HP inverter split system domestic air conditioner. The lighting was adjusted to a
12 h photoperiod for four weeks followed by 18 h. The temperatures were maintained at
18 ◦C during dark and 21 ◦C during light. Temperature control systems should be carefully
considered in SB systems to influence the rate of plant development. Several generations
can be achieved in a plant breeding program in a short time by elevating temperature, and
SB techniques, in general, adopt late-spring-type temperatures. Likewise, 60–70% humidity
is recommended for optimum plant growth and accelerated breeding. The combination
of photoperiod, temperature, and humidity in a greenhouse chamber increases the rate
of plant development in comparison to the field conditions or conventional glasshouse
conditions [22,25].

3. SB Applications in Research and Breeding

Applications of SB include the development of biparental and more complex mapping
populations, pyramiding traits, hastening backcrosses, phenotyping adult plant traits,
mutant studies, and genetic transformation experiments [7,29]. Recent research has shown
the power of combining emerging techniques, such as gene editing, high-throughput phe-
notyping and genotyping, genomic selection (GS), and MAS, with SB for accelerating crop
improvement [30,40,42–46]. Furthermore, the cost and space requirements for producing
a large number of inbred lines can be minimized by planting them at high plant densi-
ties [47]. SB helps overcome challenges associated with double haploid (DH) technology
such as low germination rate, poor vigor, and sometimes distorted growth [48]. For genetic
mapping purposes, recombinant inbred lines (RILs) developed after multiple generations
of self-fertilization can be advantageous over DH due to the multiple meiotic events that
occur during the repeated fertilization and the resulting higher recombination frequency.
Similarly, advancement and evaluation of segregating generations can be done with SSD in
a short period under SB conditions [6], which is time saving and cost efficient compared to
the conventional pedigree breeding method [17]. This technique was effective for short-
ening the generation period, resulting in a three times higher generation turnover than
shuttle breeding [49].

4. Model Species

In Arabidopsis thaliana, seed germination on medium incorporating phytohormone
benzylaminopurine and plant auxin-mimic picloram led to seed set approximately 40 to
45 days after sowing. The second-generation seeds were sown on half-strength, hormone-
free MS medium resulting in accelerated time to flowering and fruiting compared to the
first generation. The length of the second and subsequent cycles could, thus, be cut in
half compared to the first generation, allowing for up to 13 generations per year [10]. For
pea, Ribalta et al. [22] standardized a protocol to achieve up to six generations per year
and identified markers for ascertaining physiological maturity of embryos. Immature
seeds, in which embryos had reached physiological maturity, could be reliably harvested
and germinated without in vitro intervention. Further study identified a shift in the
expression pattern of hormones related to embryo development, with compression of the
development when grown under accelerated SSD, CE conditions. In woody, perennial
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plants, environmental conditions affect the length of the juvenile phase. In apple, field-
grown seedlings typically require 5 years to flower, but growth can be accelerated to the
adult reproductive phase in a comparatively short time such as 10 months [50]. However,
such approaches face challenges at later stages when managing big plants under CE
becomes very difficult. The dormancy of temperate-zone trees can also be overcome by
maintaining low temperature under high moisture conditions [51], providing a way to
hasten the breeding cycle.

4.1. Cereals

Researchers have explored novel approaches to reduce the time required to obtain
homozygous lines after hybridization to expeditiously breed cereal varieties. For example,
four to six generations of wheat were obtained following the harvesting of immature seeds
after 15–20 days of anthesis and the treating of the seeds with H2O2 at a low tempera-
ture [27]. A later study by De Pauw and Clarke [52] improved the germination response of
wheat seeds by extending the duration of H2O2 treatment at a low temperature (11 ◦C) and,
depending upon the cultivar, the generation time was reduced by 12–23 days. Similarly,
Robertson and Curtis [53] also observed more than 90% germination for air-dried seeds
harvested after 21 days of anthesis. In rice, Japanese researchers used generation advance-
ment methods to breed ‘Nipponbare’ and several other cultivars [54]. A breakthrough in
the generation acceleration procedure of rice was the development of the biotron breeding
system (BBS) that accelerates the breeding cycle by regulating temperature, photoperiod,
and CO2 level, in combination with embryo rescue and tiller removal [55]. The utility of the
BBS was evidenced by the marked reduction in the generation intervals (two months) of
‘Nipponbare’. Tanaka et al. [54] reduced the generation intervals of ‘Nipponbare’ by three
months using the BBS without embryo rescue and tiller removal, thus, enhancing the feasi-
bility of the BBS adoption for rapid generation advancement. More recently, researchers
obtained four to five generations of rice per year [12].

The SB technique has been used efficiently in wheat for the rapid screening of multiple
traits related to diseases, such as leaf rust, and root architecture and for evaluating plant
height and flowering time [12,56]. SB has been implicated for screening drought-tolerance
traits in barley [12,57]. A modified, backcrossing methodology, in combination with SB,
was used for two years in the development of resistant lines of barley that were otherwise
susceptible to different diseases including rust and spot blotch [15]. Similarly, the embryo
rescue method and direct germination of immature seeds can be applied in sorghum to
significantly reduce the time required for the breeding cycle [58]. Increasing the photoperiod
and a foliar mineral supplement are also shown to reduce time to anthesis for a higher
generation turnover in oats [54].

4.2. Oilseeds

The possibility of viable seed production through precocious germination was shown
in soybean [59]. Later, Roumet and Morin [60] demonstrated a growth cycle truncated
from 130–140 to 65–70 days using precocious germination of immature, pre-treated pods.
Nagatoshi and Fujita [36] developed a standardized rapid generation advancement protocol
for high-quality, Japanese, soybean cultivar Enrej, which reduced crop duration from
102–132 days to 70 days. The availability of such methods enables five generations per year
instead of one to two generations in a year. In the same way, Watson et al. [29] optimized
an SB protocol in canola to enhance the generation turnover and facilitate phenotyping of
the pod-shattering trait. For this, five canola cultivars susceptible to pod shattering were
grown in environment-controlled growth chambers. Using the embryo rescue technique,
Dagustu et al. [61] established a short breeding period protocol for sunflower that can be
used to shorten the generation time in a breeding program. For this, seed embryos were
cultured in MS media with 2% sucrose and 0.8% agar at pH 5.6–5.7 after 10–12 days of
pollination, as previously used in tobacco [62].



Biology 2022, 11, 275 6 of 14

4.3. Legumes

An in vitro-assisted SSD technique in clover (Trifolium subterraneum L.) accelerates the
generation cycle by minimizing time to flowering by growth under regulated temperature,
along with an expanded photoperiod, truncated seed-filling period, and embryo rescue.
Growing immature seed helps overcoming the problem of seed dormancy. This technique
enables 2.7–6.1 generations per year over a wide range of clover genotypes [21].

Generation acceleration protocols have been optimized in many legume species, espe-
cially temperate pulses that positively respond to photoperiod extension owing to their
facultative, long-day nature [14]. For example, continuous light in conjunction with optimal
temperature and humidity in a greenhouse facility led to an increased rate of plant growth
in peanut [17]. Compared to greenhouse conditions, the in vitro protocols, in combination
with in vivo manipulation, worked better for shortening generation cycles in pea and
bambara groundnut, whereas an in vivo-only strategy showed promising results in the case
of peas and grass peas [7]. Similarly, Espósito et al. [63] devised an in vitro-only strategy to
generate an adequate number of F2 plants in pea breeding programs. Lentil can be grown
in vitro using a tissue culture method with agar as the substrate and MS as the medium
or a hydroponic system with perlite as the substrate and HS as the medium or agar as the
substrate and Hestrin–Schramm (HS) as the medium, which enables eight generations of
lentil within one year [28]. This study expanded the in vitro rapid generation technology
of lentil to faba bean and evaluated the effect of the hydroponic method, tissue culture, and
intermediate method on accelerating anthesis time and seed set rates. The generation time
was 54 days, including 18 days for immature seeds to be ready for embryo rescue, resulting
in 6.8 generations each year as opposed to one in the field and three in the greenhouse. A
more recent study in chickpea (Cicer arietinum L.) reduced seed-to-seed cycle time based
on induction of early flowering and germination of immature seeds [64]. In pigeonpea,
a rapid generation advancement strategy demonstrating 100% germination from imma-
ture seeds harvested from 35-day-old plants provided novel avenues for growing three
to four generations in a year [37]. Considerations of light quality allowed researchers to
extend these SB protocols to soybean, a short-day legume crop. A 10 h photoperiod using
a blue-light-enriched, far-red-deprived light spectrum enabled plants to mature within
77 days after sowing, thus, allowing five generations of soybean in a year [17]. A recent
study in groundnut combined the single-seed chipping (SSC) process with high-throughput
genotyping (HTPG) and SB. A small portion of cotyledon from the posterior end of the
seed was used for DNA extraction. A germination rate of 95–99% was observed from the
chipped seeds. The study led to a time saving of 6–8 months following the implementation
of this integrated approach in groundnut research and breeding [65]. Since 2016, SB has
been integrated within all cool-season legume public breeding programs in Australia, with
more than 45,000 individuals processed through an aSSD platform at the University of
Western Australia. The resulting RILs have been used for gene-trait associations [43–46],
and SB has been integrated with other technologies to accelerate cultivar development
pipelines [40].

The growing numbers of examples of SB in long-day and more recently in short-day
plants attest to its broad utility in breeding programs, allowing faster homozygosity, the
creation of mapping populations, and a significant reduction in time, space, and resources
for cultivar development.

4.4. Fruit Crops

Many fruit crops undergo a long juvenile phase before flowering, in some cases,
taking >20 years [51]. SB techniques have led to vigorous vegetative growth and early
flowering in apple (ten months instead of five years) and chestnut (two years instead of
seven years) [51,66]. The development of a new cultivar with desirable traits was achieved
in apple using SB technology, which is based on transgenic, early-flowering plants and
MAS [67]. Several of the clonally propagated crops, such as banana, roots, and tubers
(not fruit crops), have begun to utilize SB in order to reduce flowering time and increase
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flowering rate, as well as the predictability of flowering, for the introduction of disease-
resistance traits, as exemplified by bacterial wilt in banana [68,69].

4.5. Vegetable Crops

Extending the photoperiod has shortened generation intervals in vegetables, such
as pepper, tomato, and amaranth, which respond effectively to increased daylight [39,70].
In tomato, germination of immature seeds from different maturity levels provided new
possibilities to achieve five generations instead of the conventionally grown three [71]. Sim-
ilarly, in pepper and tomato, in vitro germination of immature embryos enabled authors to
obtain one more generation compared to conventional breeding practice [72,73]. In grain
amaranth, photoperiod manipulation was reported to be helpful in flowering synchroniza-
tion in different germplasm lines, which, in combination with DNA marker technology,
led to the development and identification of true hybrids, thus, accelerating the breeding
program [39]. Other methodologies that can improve generation turnover in vegetables
by promoting early flowering involve higher expression of flowering genes such as the
CaFT-LIKE gene in pepper [74]. Similarly, as demonstrated by Velez-Ramirez et al. [75], in
tomato, introgression of the gene CAB-13 can impart tolerance to continuous light, thus,
adapting plants to extended photoperiods.

5. Opportunities for Combining SB with Modern Breeding and Phenotyping Tools

In the 21st century, crop improvement was revolutionized by DNA marker technology
and genomics-assisted breeding. More recently, genome editing techniques, based on
site-specific nucleases, are being applied to improve agricultural procedures by developing
superior plant varieties. The current genome editing protocols can be enhanced by integra-
tion with SB as the edited plants can be grown under SB conditions to rapidly attain edited
seeds, thereby accelerating homozygosity and the potential rate of genetic gain. Given this,
genome editing using a CRISPR/Cas9 system and SB will likely become popular as the
technology is adapted to new species. Desirable lines produced from genome editing can
be preselected at the T1 generation with strict evaluation conducted at the T2 generation for
elimination of off-target genotypes (Figure 2). The application of SB in combination with
genome editing has been demonstrated in Brassica napus, B. oleracea, and soybean [76–78].

Integration of SB into MAS/marker-assisted backcrossing (MABC) can also serve
as a platform for the introgression of beneficial alleles in various crops. MAS/MABC is
an established method for improving yield, biotic stress, and abiotic stress among major
crops [7]. For example, pi21 is known to confer quantitative resistance to rice blast. This gene
has been successfully introgressed in select rice cultivars [79]. The DNA-marker-assisted
approaches help minimize the problem of linkage drag, i.e., unintended introgression of
unfavorable alleles with target loci. Backcrossing procedures demand considerable time for
improvement of the recipient genotypes. Through the integration of SB, the progress of
backcrossing or MABC can further be accelerated for quick transfer of the target trait(s).

SB has been applied for evaluating various stages in plant breeding programs. Ge-
nomic selection (GS) was combined with SB in spring wheat to increase genetic gain
vis-à-vis complex traits [80]. SB was used in the phenotyping of specific traits in the
training population of wheat, selection candidate development, and selection candidate
phenotyping steps. Concerning the indirect selection in targeted-population SB envi-
ronments, it was concluded that plant height and flowering time can be predicted with
accuracy comparable to direct field selection. Speed breeding also facilitates a higher rate of
genetic gain compared to direct field phenotyping [81]. Multi-trait phenotyping protocols
have been optimized for evaluating crown root resistance and leaf rust tolerance in wheat
under a SB system. The effectiveness of the early-generation selection of F2 population for
multiple traits was tested in order to estimate phenotypic response. The method illustrates
efficient exploitation of resources by analyzing multiple traits for the same group of plants.
Selection in the early generation under SB improves genetic gain in breeding programs,
as well as curtailing the time required to incorporate desirable traits in breeding popula-
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tions [40,49]. Phenotyping of wheat or other important crops under SB conditions can be
further improved through MAS.
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image was created using BioRender (https://biorender.com/ accessed on 20 January 2022).

High-throughput phenotyping is among the key breakthroughs of 21st-century agri-
cultural research that have substantially overcome long-standing obstacles in the progress
of plant breeding. Conducting high-throughput phenotyping under SB conditions creates
novel avenues for discovery and incorporation of beneficial traits in a resource-efficient
manner [82]. For example, targeting proxy traits, such as seminal root number and angle
of wheat seedlings, under SB conditions (higher planting density, temperature control,
and extended photoperiod) facilitated rapid selection for improved root architecture of
mature plants [83]. Similarly, imaging technology permitted collection of field plot images
at 7400 plots/h based on color traits in wheat [84]. The technology using non-human-

https://biorender.com/
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operated aerial vehicles showed strong correlation with increased grain yield compared to
terrestrial sensing.

For the breeding of salt-tolerant rice, Rana et al. [33] applied SB to rapidly derive a
BC3F3 population from highly tolerant and high-yield parents. The population was assayed
with SNP markers and provided promising salt-tolerant variety candidates [33]. Plants
grown under SB demonstrated significant differences from the control plants in terms
of various yield-predicting component traits, viz., panicle length, tiller number, spikelet
number per panicle, and normalized difference vegetation index during panicle initiation
until mid-grain panicle filling [85]. Hence, these studies can be considered as a means to
gain more extensive knowledge on plant growth and developmental processes for further
crop trait improvement studies.

The single-seed descent (SSD) method under SB conditions enables the generation of
near-homozygous lines in a single year and provides a greater scope for preserving genetic
diversity in a crop breeding program. Likewise, rapid development of recombinant inbred
lines (RILs) using SB technology has given impetus to studies aiming at identification of
gene-trait associations for breeding applications [22,43–46]. Again, DNA marker technology
in combination with SB helps design new strategies for basic and applied research; for
instance, SB can allow the quick development of new generation mapping populations
derived from multi-parental populations such as MAGIC and NAM [86,87].

6. Challenges and Limitations

As described above, SB is a powerful tool for accelerating the rate of genetic gain in
different plant species; however, it has limitations (Figure 3). A key limitation is access
to CE conditions suited to the rapid cycling of the target species. SB settings become
expensive if sophisticated CE facilities are not readily available and combining SB with
other techniques, such as embryo rescue and MAS, requires additional resources and
expertise. Other challenges include continuous supply of electricity and temperature
maintenance, for example, during winter [38]. While not so problematic in developed
countries, routine use of SB for research and breeding remains a challenge in resource-poor
countries due to limited infrastructures, poor expertise, and limited collaborations with
international organizations [88].
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Once SB is established, species can exhibit genotypic differences in response to inten-
sive growth conditions [54,85]. The intensive growth conditions often result in limited seed
yield, which can constrain subsequent field evaluations [89]. The use of next-generation
sparse phenotyping field trial designs can assist in overcoming low seed numbers [29]. An
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excessive photoperiod can limit plant growth and may be correlated to photo-oxidation,
high starch production, and elevated levels of stress hormones [16,90]. Similarly, the har-
vesting of immature seed may interfere with the phenotyping of seed traits. Importantly,
in pushing for speed, plants are grown at the edge of their physiological capability, and
conditions conducive to fast cycle turnover are often detrimental to the plants ability to
defend itself and, without careful management, can lead to catastrophic losses of valuable
breeding material. Mitigation comes from adaptation of conditions to determine photope-
riod saturation and temperature limits for each species and, in some cases, for genotypes
within species. Maintaining back-up seed from each individual through each generation
also provides insurance against genetic loss in the event of one generation being affected
by disease, pests, or power loss in CE or similar.

Phenotyping for agronomic traits can be undertaken in conjunction with SB; however,
care is required as phenotypic expression can be biased under CE conditions. As a result,
phenotyping of field crops under SB should be validated in the field to certify that trait
expression is associated to the field environment. For example, boron tolerance was
reliability discriminated in pea grown hydroponically to integrate with SB conditions,
and, in wheat, SB techniques were combined with phenotype screening such as disease
resistance [81,91]. Several agronomic characters, namely flowering time and plant height,
when recorded in SB conditions, are related to field-based determination and production,
thus, can facilitate indirect selection [81]. Nevertheless, several characters may not be
consistently phenotyped due to the cross-over interaction between genotypes and growth
systems, as observed in the case of plant height and flowering time in oat [89]. Other major
challenges while growing plants in SB conditions include pest and disease management
under such intensive conditions and the need for tracking of individuals when developing
mapping populations for gene-discovery purposes.

7. Conclusions

The plant research community has yet to achieve the scale and speed of plant im-
provement required to effectively feed a burgeoning world population in the face of a
changing climate. The coupling of emerging genomics techniques with methods for rapid
gene fixation offers the potential to transform the rate of genetic gain in breeding pro-
grams [6,90]. Since its introduction, SB has accelerated the breeding programs of many
economically important species. Relying on light and temperature manipulation, along
with physical containment, SB impacts different phases of plant breeding by hastening the
breeding cycle. SB enables rapid progression to homozygosity and evaluation of already
developed or transformed lines, viz., gene-edited crops and transgenic crops. The SB
techniques also facilitate resource-efficient genotyping and phenotyping; however, further
research is required to assess and mitigate the negative effects of SB conditions on plant
growth and development. The SB protocols are now available for small- or broad-scale
adoption and further modifications based on local needs/innovations. The SB protocols
can, thus, be progressively improved and combined with modern breeding techniques to
realize their potential for the identification and transfer of genes critical to crop resilience
and adaptation [92]. Collaborative international partnerships involving multi-disciplinary
teams are needed to encourage the integration of SB systems in basic and applied research,
particularly in developing countries.
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