
The Next 700 Program Transformers

Geoff Hamilton[000−0001−5954−6444]

School of Computing, Dublin City University, Dublin, Ireland
geoffrey.hamilton@dcu.ie

Abstract. In this paper, we describe a hierarchy of program transform-
ers, capable of performing fusion to eliminate intermediate data struc-
tures, in which the transformer at each level of the hierarchy builds on
top of those at lower levels. The program transformer at level 1 of the
hierarchy corresponds to positive supercompilation, and that at level 2
corresponds to distillation. We give a number of examples of the appli-
cation of our transformers at different levels in the hierarchy and look at
the speedups that are obtained. We determine the maximum speedups
that can be obtained at each level, and prove that the transformers at
each level terminate.

Keywords: transformation hierarchy · supercompilation · distillation · speedups

1 Introduction

It is well known that programs written using functional programming languages
often make use of intermediate data structures and thus can be inefficient. Sev-
eral program transformation techniques have been proposed to eliminate some of
these intermediate data structures; for example partial evaluation [14], deforesta-
tion [30] and supercompilation [27]. Positive supercompilation [26] is a variant of
Turchin’s supercompilation [27] that was introduced in an attempt to study and
explain the essentials of Turchin’s supercompiler. Although strictly more pow-
erful than both partial evaluation and deforestation, Sørensen has shown that
positive supercompilation (without the identification of common sub-expressions
in generalisation), and hence also partial evaluation and deforestation, can only
produce a linear speedup in programs [24]. Even with the identification of com-
mon sub-expressions in generalisation, superlinear speedups are obtained for
very few interesting programs, and many obvious improvements cannot be made
without the use of so-called ‘eureka’ steps [4].

Example 1. Consider the function call nrev xs shown in Fig. 1. This reverses
the list xs, but the recursive function call (nrev xs′) is an intermediate data
structure, so in terms of time and space usage, it is quadratic with respect to
the length of the list xs. A more efficient function that is linear with respect to
the length of the list xs is the function qrev shown in Fig. 1.

A number of algebraic transformations have been proposed that can perform
this transformation (e.g. [29]), making essential use of eureka steps requiring



nrev xs
where
nrev xs = case xs of

Nil ⇒ Nil
Cons x ′ xs ′ ⇒ append (nrev xs ′) (Cons x ′ Nil)

append xs ys = case xs of
Nil ⇒ ys
Cons x ′ xs ′ ⇒ Cons x ′ (append xs ′ ys)

qrev xs
where
qrev xs = qrev ′ xs Nil
qrev ′ xs ys = case xs of

Nil ⇒ ys
Cons x ′ xs ′ ⇒ qrev ′ xs ′ (Cons x ′ ys)

Fig. 1. Alternative Definitions of List Reversal

human insight and not easy to automate; for the given example this can be
achieved by appealing to a specific law stating the associativity of the append
function. However, none of the generic program transformation techniques men-
tioned above are capable of performing this transformation.

The distillation algorithm [9, 11] was originally motivated by the need for auto-
matic techniques that avoid the reliance on eureka steps to perform transforma-
tions such as the above. In positive supercompilation, generalisation and folding
are performed only on expressions, while in distillation, generalisation and fold-
ing are also performed on recursive function representations (process trees). This
allows a number of improvements to be obtained using distillation that cannot
be obtained using positive supercompilation.

The process trees that are generalised and folded in distillation are in fact
those produced by positive supercompilation, so we can see that the definition
of distillation is built on top of positive supercompilation. This suggests the
existence of a hierarchy of program transformers, where the transformer at each
level is built on top of those at lower levels, and more powerful transformations
are obtained as we move up through this hierarchy. In this paper, we define such
a hierarchy inductively, with positive supercompilation at level 1, distillation
at level 2 and each new level defined in terms of the previous ones. Each of
the transformers is capable of performing fusion to eliminate intermediate data
structures by fusing nested function calls. As we move up through the hierarchy,
deeper nestings of function calls can be fused, thus removing more intermediate
data structures.

The remainder of this paper is structured as follows. In Section 2, we define
the higher-order functional language on which the described transformations are
performed. In Section 3, we give an overview of process trees and define a number
of operations on them. In Section 4, we define the program transformer hierarchy,

2



where the transformer at level 0 corresponds to the identity transformation, and
each successive transformer is defined in terms of the previous ones. In Section 5,
we give examples of transformations that can be performed at different levels in
our hierarchy. In Section 6, we consider the efficiency improvements that can be
obtained as we move up through this hierarchy. In Section 7, we prove that each
of the transformers in our hierarchy terminates. In Section 8, we consider related
work and Section 9 concludes and considers possibilities for further work.

2 Language

In this section, we describe the call-by-name higher-order functional language
that will be used throughout this paper.

Definition 1 (Language Syntax). The syntax of this language is as shown
in Fig. 2.

prog ::= e0 where h1 = e1 . . . hn = en Program

e ::= x Variable
| c e1 . . . en Constructor Application
| λx .e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 ⇒ e1 . . . pn ⇒ en Case Expression

h ::= f x1 . . . xn Function Header

p ::= c x1 . . . xn Pattern

Fig. 2. Language Syntax

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. An expression can be a variable, constructor application, λ-
abstraction, function call, application or case. Variables introduced by function
definitions, λ-abstractions and case patterns are bound; all other variables are
free. We assume that bound variables are represented using De Bruijn indices.
An expression that contains no free variables is said to be closed. We write e ≡ e′
if e and e′ differ only in the names of bound variables.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons has
arity 2. In an expression c e1 . . . en , n must equal the arity of c. The patterns
in case expressions may not be nested. No variable may appear more than
once within a pattern. We assume that the patterns in a case expression are
non-overlapping and exhaustive. It is also assumed that erroneous terms such
as (c e1 . . . en) e where c is of arity n and case (λx.e) of p1 ⇒ e1 . . . pk ⇒ ek
cannot occur.

3



Definition 2 (Substitution). We use the notation θ = {x1 7→ e1, . . . , xn 7→
en} to denote a substitution. If e is an expression, then eθ = e{x1 7→ e1, . . . , xn 7→
en} is the result of simultaneously substituting the expressions e1, . . . , en for
the corresponding variables x1, . . . , xn, respectively, in the expression e while
ensuring that bound variables are renamed appropriately to avoid name capture.
A renaming denoted by σ is a substitution of the form {x1 7→ x′1, . . . , xn 7→ x′n}.
Definition 3 (Shallow Reduction Context). A shallow reduction context C
is an expression containing a single hole • in the place of the redex, which can
have one of the two following possible forms:

C ::= • e | case • of p1 ⇒ e1 . . . pn ⇒ en

Definition 4 (Evaluation Context). An evaluation context E is represented
as a sequence of shallow reduction contexts (known as a zipper [13]), representing
the nesting of these contexts from innermost to outermost within which the redex
is contained. An evaluation context can therefore have one of the two following
possible forms:

E ::= 〈〉 | 〈C : E〉

Definition 5 (Insertion into Evaluation Context). The insertion of an ex-
pression e into an evaluation context κ, denoted by κ•e, is defined as follows:

〈〉•e = e
〈(• e′) : κ〉•e = κ•(e e′)
〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ〉•e

= κ•(case e of p1 ⇒ e1 . . . pn ⇒ en)

Definition 6 (Language Semantics). The normal order reduction semantics
for programs in our language is defined by Np[[p]] as shown in Fig. 3, where it
is assumed the program p contains no free variables. Within the rules Ne, κ
denotes the context of the expression under scrutiny and ∆ is the set of function
definitions. We always evaluate the redex of an expression within the context κ.

Np[[e0 where h1 = e1 . . . hn = en]] = Ne[[e0 ]] 〈〉 {h1 = e1, . . . , hn = en}

Ne[[c e1 . . . en ]] 〈〉 ∆ = c (Ne[[e1 ]] 〈〉 ∆) . . . (Ne[[en ]] 〈〉 ∆)
Ne[[c e1 . . . en ]] 〈(case • of p1 ⇒ e ′

1 . . . pk ⇒ e ′
k ) : κ〉 ∆ =

Ne[[e ′
i{x1 7→ e1 , . . . , xn 7→ en}]] κ ∆

where ∃i ∈ {1 . . . k}.pi = c x1 . . . xn
Ne[[λx .e]] 〈〉 ∆ = λx.(Ne[[e]] 〈〉 ∆)
Ne[[λx .e]] 〈(• e ′) : κ〉 ∆ = Ne[[e{x 7→ e ′}]] κ ∆
Ne[[f ]] κ ∆ = Ne[[λx1 . . . xn .e]] κ ∆

where (f x1 . . . xn = e) ∈ ∆
Ne[[e0 e1 ]] κ ∆ = Ne[[e0]] 〈(• e1 ) : κ〉 ∆
Ne[[case e0 of p1 ⇒ e1 . . . pn ⇒ en ]] κ ∆ =
Ne[[e0]] 〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ〉 ∆

Fig. 3. Language Semantics

4



3 Process Trees

The output of each of the transformers in our hierarchy are represented by process
trees, as defined in [25]. Within these process trees, the nodes are labelled with
expressions. We write e → t1, . . . , tn for a process tree where the root node is
labelled with the expression e, and t1, . . . , tn are the sub-trees of this root node.
We also write e → ε for a terminal node that has no sub-trees. We use root(t)
to denote the expression labelling the root node of process tree t. Process trees
may also contain three special kinds of node:

– Unfold nodes: these are of the form h→ t, where h is a function header and t
is the process tree resulting from transforming an expression after unfolding.

– Fold nodes: these are of the form h → ε, where folding has been performed
with respect to a previous unfold node and the corresponding function head-
ers are renamings of each other.

– Generalisation nodes: these are of the form (x0 x1 . . . xn) → t0, t1, . . . , tn.
This represents the result of a process tree generalisation, where the sub-trees
t1 . . . tn have been extracted and replaced by the corresponding variables
x1 . . . xn in the process tree t0 that is represented by x0.

Variables introduced by λ-abstractions, case patterns and generalisation nodes
in process trees are bound; all other variables are free. We assume that bound
variables are represented using De Bruijn indices. We use fv(t) to denote the
free variables of process tree t.

Definition 7 (Renaming of Process Trees). If t is a process tree, then the
renaming tσ is obtained by applying the renaming σ to the expressions labelling
all nodes in t, while ensuring that bound variables are renamed appropriately to
avoid name capture.

When transforming an expression with a function in the redex at level k+1, the
expression is first transformed using a level k transformer. The resulting process
tree is then compared to previously encountered process trees generated at level
k. If it is a renaming of a previous one, then folding is performed, and if it is an
embedding of a previous one, then generalisation is performed. The use of process
trees in this comparison allows us to abstract away from the number and order
of the parameters in functions, and instead focus on their recursive structure.
We therefore define renaming, embedding and generalisation on process trees.

Definition 8 (Process Tree Renaming). Process tree t is a renaming of
process tree t′ if there is a renaming σ (which also renames functions) such that
tσ ∼= t′, where the relation ∼= is defined as follows:

(φ(e1 . . . en)→ t1, . . . , tn) ∼= (φ(e′1 . . . e
′
n)→ t′1, . . . , t

′
n), if ∀i ∈ {1 . . . n}.ti ∼= t′i

Two process trees are therefore related by this equivalence relation if the pair
of expressions in the corresponding root nodes have the same top-level syntactic
constructor φ (a variable, constructor, lambda-abstraction, function name, appli-
cation or case), and the corresponding sub-trees are also related. This includes

5



the pathological case where the nodes have no sub-trees (such as free variables
which must have the same name, and bound variables which must have the same
de Bruijn index).

In order to ensure the termination of our transformation, we have to perform
generalisation. This generalisation is performed when a process tree is encoun-
tered that is an embedding of a previous one. The form of embedding which we
use to determine whether to perform generalisation is known as homeomorphic
embedding. The homeomorphic embedding relation was derived from results by
Higman [12] and Kruskal [19] and was defined within term rewriting systems [5]
for detecting the possible divergence of the term rewriting process. Variants of
this relation have been used to ensure termination within positive supercompila-
tion [25], partial evaluation [21] and partial deduction [3, 20]. The homeomorphic
embedding relation is a well-quasi-order.

Definition 9 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation ≤S such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si ≤S sj .

The homeomorphic embedding relation on process trees is defined as follows.

Definition 10 (Process Tree Embedding). Process tree t is embedded in
process tree t′ if there is a renaming σ (which also renames functions) such that
tσ E t′, where the relation E is defined as follows:

(φ(e1 . . . en)→ t1, . . . , tn) E (φ(e′1 . . . e
′
n)→ t′1, . . . , t

′
n), if ∀i ∈ {1 . . . n}.ti E t′i

t E (e→ t1, . . . , tn), if ∃i ∈ {1 . . . n}.t E ti

The first rule is a coupling rule, where the pair of expressions in the root nodes
must have the same top-level syntactic constructor φ, and the corresponding
sub-trees of the root nodes must also be related to each other. This includes the
pathological case where the root nodes have no sub-trees (such as free variables
which must have the same name, and bound variables which must have the same
de Bruijn index). The second rule is a diving rule; this relates a process-tree with
a sub-tree of a larger process tree. We write t � t′ if t E t′ and the coupling rule
can be applied at the top level.

The use of this embedding relation ensures that in any infinite sequence of
process trees t0, t1, . . . encountered during transformation there definitely exists
some i < j where ti is embedded in tj , so an embedding must eventually be
encountered and transformation will not continue indefinitely without the need
for generalisation or folding.

Definition 11 (Non-Decreasing Variable). Variable x is non-decreasing be-
tween process trees t and t′ if there is a renaming σ such that tσ � t′ and
(x 7→ x) ∈ σ.

Example 2. Consider the two process trees in Fig. 4 that are produced by our
level 1 transformer for the expressions append xs (Cons x Nil) and append

6



(append xs′ (Cons x′ Nil)) (Cons x Nil) respectively. The renaming {f 7→
f ′, x 7→ x, xs 7→ xs′} can be applied to process tree (1) so that it is embedded
in process tree (2) by the relation �. The variable x is therefore non-decreasing
between these two process trees.

(1) f x xs

case xs of Nil ⇒ . . . Cons x ′ xs ′ ⇒ . . .

Cons x ′ . . .

f x xs ′x ′

Cons x Nil

Nilx

xs

(2) f ′ x x ′ xs ′

case xs ′ of Nil ⇒ . . . Cons x ′′ xs ′′ ⇒ . . .

Cons x ′′ . . .

f ′ x x ′ xs ′′x ′′

Cons x ′ (Cons x Nil)

Cons x Nil

Nilx

x ′

xs′

Fig. 4. Embedded Process Trees

The generalisation of a process tree involves replacing sub-trees with generalisa-
tion variables and creating process tree substitutions.

Definition 12 (Process Tree Substitution). We use the notation ϕ = {X1 7→
t1, . . . , Xn 7→ tn} to denote a process tree substitution. If t is an process tree,
then tϕ = t{X1 7→ t1, . . . , Xn 7→ tn} is the result of simultaneously substituting
the sub-trees t1, . . . , tn for the corresponding tree variables X1, . . . , Xn, respec-
tively, in the process tree t while ensuring that bound variables are renamed
appropriately to avoid name capture.

Definition 13 (Process Tree Instance). Process tree t′ is an instance of
process tree t if there is a process tree substitution ϕ such that tϕ ∼= t′.

Definition 14 (Generalisation). A generalisation of process trees t and t′ is a
triple (tg, ϕ, ϕ

′) where ϕ and ϕ′ are process tree substitutions such that tgϕ ∼= t
and tgϕ

′ ∼= t′.

7



Definition 15 (Most Specific Generalisation). A most specific generalisa-
tion of process trees t and t′ is a generalisation (tg, ϕ1, ϕ2) such that for every
other generalisation (t′g, ϕ

′
1, ϕ
′
2) of t and t′, tg is an instance of t′g. When a process

tree is generalised, sub-trees within it are replaced with variables which implies a
loss of information, so the most specific generalisation therefore entails the least
possible loss of information.

Definition 16 (The Generalisation Operator u). The most specific gener-
alisation of two process trees t and t′, where t and t′ are related by �, is given
by t u t′, where the following rewrite rules are repeatedly applied to the initial
triple (X, {X 7→ t}, {X 7→ t′}): tg,

{X 7→ (φ(e1 . . . en)→ t1, . . . , tn)} ∪ ϕ,
{X 7→ (φ(e′1 . . . e

′
n)→ t′1, . . . , t

′
n)} ∪ ϕ′


⇓ tg{X 7→ (φ(e′1 . . . e
′
n)→ X1, . . . , Xn)},

{X1 7→ t1, . . . , Xn 7→ tn} ∪ ϕ,
{X1 7→ t′1, . . . , Xn 7→ t′n} ∪ ϕ′


(tg, {X 7→ t,X ′ 7→ t} ∪ ϕ, {X 7→ t′, X ′ 7→ t′} ∪ ϕ′)

⇓
(tg{X 7→ X ′}, {X ′ 7→ t} ∪ ϕ, {X ′ 7→ t′} ∪ ϕ′)

In the first rule, if the process trees associated with the same variable in each
environment have the same top-level syntactic constructor φ, then the root node
of one of the process trees is added into the generalised tree. New generalisation
variables are then added for the corresponding sub-trees of these root nodes. Note
that it does not matter which of the original two process trees the expressions
in the resulting generalised process tree come from, so long as they all come
from one of them (so the corresponding unfold and fold nodes still match);
the resulting residualised program will be the same. The second rule identifies
common substitutions that were previously given different names.

Theorem 1 (Most Specific Generalisation). If process trees t and t′ are
related by �, then the generalisation procedure t u t′ terminates and calculates
the most specific generalisation.

Proof. To prove that the generalisation procedure terminates, we show that
within each rewrite rule, either the size of the environments ϕ and ϕ′ is re-
duced, or the size of the terms contained in these environments is reduced. Since
the values are well-founded, the rewrite rules can only be applied finitely many
times.

The proof that the result of the procedure is indeed a generalisation is by
induction. The initial triple is trivially a generalisation, and for each of the
rewrite rules, if the input triple is a generalisation, then the output triple must
also be a generalisation.

8



The proof that the result of the procedure is a most specific generalisation is
by contradiction. If the resulting triple (t, ϕ1, ϕ2) is not a most specific generali-
sation, then there must exist a most specific generalisation (t′, ϕ′1, ϕ

′
2) and a tree

substitution ϕ such that tϕ ∼= t′, but no tree substitution ϕ′ such that t′ϕ′ ∼= t.
This will be the case if either ϕ is not a renaming, so contains a substitution of
the form X 7→ (φ(e1 . . . en)→ t1, . . . , tn, or it identifies two variables within t. In
the first case, the first rewrite rule would have been applied to further generalise,
and in the second case, the second rewrite rule would have been applied to iden-
tify the variables. Thus there is a contradiction, so the generalisation computed
by the procedure must be the most specific.

Example 3. The result of generalising the two process trees in Fig. 4 is shown in
Fig. 5, with the mismatched nodes replaced by the generalisation variable X.

f ′ x x ′ xs ′

case xs ′ of Nil ⇒ . . . Cons x ′′ xs ′′ ⇒ . . .

Cons x ′′ . . .

f ′ x x ′ xs ′′x ′′

Cons x ′ . . .

Xx ′

xs′

Fig. 5. Generalised Process Tree

Definition 17 (Generalisation Node Construction). The construction of
a generalisation node for process tree t′, where there is a process tree t such that
t � t′, is given by t ↑ t′, which is defined as follows.

t ↑ t′ = (x0 x1 . . . xn)→ t0, t1, . . . , tn
where t u t′ = (t′0, {X1 7→ t′1, . . . , Xn 7→ t′n}, {X1 7→ t′′1 , . . . , Xn 7→ t′′n})

{x0 7→ t0, x1 7→ t1, . . . , xn 7→ tn} = Gn(t u t′)

G0(t0, {}, {}) = {x0 7→ t0} (x0 is fresh)
Gk(t0, {Xk 7→ x x1 . . . xn} ∪ ϕ, {Xk 7→ t} ∪ ϕ′) =
{x 7→ λx1 . . . xn.t} ∪ Gk−1(t0{Xk 7→ (x x1 . . . xn)→ ε}, ϕ, ϕ′),

if x is non-decreasing
Gk(t0, {Xk 7→ t} ∪ ϕ, {Xk 7→ t′} ∪ ϕ′) =
{xk 7→ λx1 . . . xn.t

′} ∪ Gk−1(t0{X 7→ (xk x1 . . . xn)→ ε}, ϕ, ϕ′) (xk is fresh)
where {x1 . . . xn} = fv(t)

The rules Gn return an environment {x0 7→ t0, x1 7→ t1, . . . , xn 7→ tn} from
which the corresponding generalisation node (x0 x1 . . . xn) → t0, t1, . . . , tn is

9



constructed. The rules are applied to the triple (t0, ϕ, ϕ
′) resulting from the

generalisation of the process trees t and t′. They work through each of the
corresponding generalisation variables in the environments ϕ and ϕ′ in turn.
In the first rule, when both generalisation environments are exhausted, we are
left with the generalised process tree t0 in which appropriate values have been
substituted for the generalisation variables; this is associated with the fresh
variable x0. In the final rule, the extracted sub-tree is abstracted over its variables
(so that these are not extracted outside of their binders), and associated with
the fresh variable xk; the generalisation variable in the generalised process tree
is replaced with a corresponding application of xk. In the second rule, if we have
an instance of the application of the variable x, and x is non-decreasing, then
the same variable is reused in the generalisation.

Example 4. The result of applying the generalisation node constructor to the
result of generalising the two process trees in Fig. 4 is shown in Fig. 6.

x0 x1

Cons x Nil

Nilx

f ′ x x ′ xs ′

case xs ′ of Nil ⇒ . . . Cons x ′′ xs ′′ ⇒ . . .

Cons x ′′ . . .

f ′ x x ′ xs ′′x ′′

Cons x ′ . . .

x1x ′

xs′

Fig. 6. Generalised Process Tree With Generalisation Node

We now show how a program can be residualised from a process tree.

Definition 18 (Residualisation). A program can be residualised from a pro-
cess tree t as Rp[[t ]] using the rules as shown in Fig. 7.

Within the rules Re, the parameter ρ contains the unfold node function headers
and the corresponding new function headers that are created for them. The
rules return a residual expression along with a set of newly created function
definitions. In rule (2), on encountering an unfold node, a new function header
is created, associated with the unfold node function header, and added to ρ.
Note that this new function header may not have the same variables as the one
in the unfold node, as new variables may have been added to the sub-tree as a
result of generalisation. In rule (3), on encountering a fold node, a recursive call

10



(1) Rp[[t ]] = e0 where h1 = e1, . . . , hn = en
where Re[[t]] {} = (e0, {h1 = e1, . . . , hn = en})

(2) Re[[h → t ]] ρ = (h′, {h′ = e} ∪∆)
where Re[[t ]] (ρ ∪ {h = h′}) = (e,∆)

h′ = f x1 . . . xn (f is fresh, {x1 . . . xn} = fv(t))
(3) Re[[h → ε]] ρ = (h′′σ, {})

where (h′ = h′′) ∈ ρ ∧ h ≡ h′σ
(4) Re[[x → ε]] ρ = (x, {})

(5) Re[[(c e1 . . . en)→ t1 , . . . , tn ]] ρ = (c e′1 . . . e
′
n,

n⊎
i=1

∆i)

where ∀i ∈ {1 . . . n}.Re[[ti ]] ρ = (e′i,∆i)
(6) Re[[(λx .e)→ t ]] ρ = (λx .e ′,∆)

where Re[[t ]] ρ = (e′,∆)

(7) Re[[(e0 e1 )→ t0 , t1 ]] ρ = (e′0 e
′
1,

2⊎
i=1

∆i)

where ∀i ∈ {0 . . . 1}.Re[[ti ]] ρ = (e′i,∆i)
(8) Re[[(case e0 of p1 ⇒ e1 . . . pn ⇒ en)→ t0 , . . . , tn ]] ρ =

(case e ′
0 of p1 ⇒ e ′

1 . . . pn ⇒ e ′
n ,

n⊎
i=0

∆i)

where ∀i ∈ {0 . . . n}.Re[[ti ]] ρ = (e′i,∆i)

(9) Re[[(x0 x1 . . . xn)→ t0, t1, . . . , tn]] ρ = e0{x1 7→ e1, . . . , xn 7→ en},
n⊎
i=0

∆i)

where ∀i ∈ {0 . . . n}.Re[[ti ]] ρ = (ei,∆i)

Fig. 7. Rules For Residualisation

of the function associated with the unfold node function header in ρ is created.
In rule (9), on encountering a generalisation node, the sub-trees of the node are
residualised separately, and then the expressions residualised from the extracted
sub-trees t1 . . . tn are substituted back into the result of residualising the main
body t0.

Example 5. The program shown in Fig. 8 is obtained by applying the residuali-
sation rules to the process tree shown in Fig. 6.

f x ′ xs ′ (Cons x Nil)
where
f x xs ys = case xs of

Nil ⇒ Cons x ys
Cons x ′ xs ′ ⇒ Cons x ′ (f x xs ′ ys)

Fig. 8. Result of Residualisation

11



4 A Hierarchy of Program Transformers

In this section, we define our hierarchy of transformers. The level k transformer
is defined as T kp [[p]], where p is the program to be transformed. It is assumed
that the input program contains no λ-abstractions; these can be replaced by
named functions. The output of the transformer is a process tree from which the
transformed program can be residualised.

4.1 Level 0 Transformer

Level 0 in our hierarchy just maps a program to a corresponding process tree
without performing any reductions as shown in Fig. 9.

(1) T 0
p [[e0 where h1 = e1, . . . , hn = en]] = T 0

e [[e0]] {} {h1 = e1, . . . , hn = en}

(2) T 0
e [[x ]] ρ ∆ = x→ ε

(3) T 0
e [[c e1 . . . en ]] ρ ∆ = (c e1 . . . en)→ (T 0

e [[e1 ]] ρ ∆), . . . , (T 0
e [[en ]] ρ ∆)

(4) T 0
e [[λx .e]] ρ ∆ = (λx.e)→ (T 0

e [[e]] ρ ∆)

(5) T 0
e [[f ]] ρ ∆ =


f → ε, if f ∈ ρ
f → (T 0

e [[λx1 . . . xn .e]] (ρ ∪ {f}) ∆), otherwise
where (f x1 . . . xn = e) ∈ ∆

(6) T 0
e [[e0 e1 ]] ρ ∆ = (e0 e1)→ (T 0

e [[e0 ]] ρ ∆), (T 0
e [[e1 ]] ρ ∆)

(7) T 0
e [[case e0 of p1 ⇒ e1 . . . pk ⇒ ek ]] ρ ∆ =

(case e0 of p1 ⇒ e1 . . . pk ⇒ ek )→ (T 0
e [[e0 ]] ρ ∆), . . . , (T 0

e [[ek ]] ρ ∆)

Fig. 9. Level 0 Transformation Rules

Within the rules T 0
e , ρ is the set of previously encountered function calls

and ∆ is the set of function definitions. If a function call is re-encountered, no
further nodes are added to the process tree. Thus, the constructed process tree
will always be a finite representation of the program.

4.2 Level k + 1 Transformers

Each subsequent level (k + 1) in our hierarchy is built on top of the previous
levels. The rules for level k + 1 transformation of program p are defined by
T k+1
p [[p]] as shown in Fig. 10.

Within these rules, κ denotes the context of the expression under scrutiny and
ρ contains memoised process trees and their associated new function headers.
For most of the level k+1 transformation rules, normal order reduction is applied
to the current term, as for the semantics given in Fig. 3.

In rule (3), if the context surrounding a variable redex is a case, then infor-
mation is propagated to each branch of the case to indicate that this variable
has the value of the corresponding branch pattern.

12



(1) T k+1
p [[e0 where h1 = e1, . . . , hn = en]] = T k+1

e [[e0]] 〈〉 {} {h1 = e1, . . . , hn = en}

(2) T k+1
e [[x ]] 〈〉 ρ ∆ = x→ ε

(3) T k+1
e [[x ]] 〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ〉 ρ ∆ =

T k+1
κ [[x→ ε]] 〈(case • of p1⇒ (κ•e1){x 7→ p1} . . . pn⇒ (κ•en){x7→ pn}) : 〈〉〉 ρ ∆

(4) T k+1
e [[x ]] 〈(• e) : κ〉 ρ ∆ = T k+1

κ [[x→ ε]] 〈(• e) : κ〉 ρ ∆
(5) T k+1

e [[c e1 . . . en ]] 〈〉 ρ ∆ =

(c e1 . . . en)→ (T k+1
e [[e1 ]] 〈〉 ρ ∆), . . . , (T k+1

e [[en ]] 〈〉 ρ ∆)

(6) T k+1
e [[c e1 . . . en ]] 〈(case • of p1 ⇒ e ′

1 . . . pk ⇒ e ′
k ) : κ〉 ρ ∆ =

T k+1
e [[e ′

i{x1 7→ e1 , . . . , xn 7→ en}]] κ ρ ∆
where ∃i ∈ {1 . . . k}.pi = c x1 . . . xn

(7) T k+1
e [[λx .e0 ]] 〈〉 ρ ∆ = (λx .e0 )→ (T k+1

e [[e0 ]] 〈〉 ρ ∆)

(8) T k+1
e [[λx .e0 ]] 〈(• e1 ) : κ〉 ρ ∆ = T k+1

e [[e0{x 7→ e1}]] κ ρ ∆

(9) T k+1
e [[f ]] κ ρ ∆ =


hσ → ε, if ∃(h = t′) ∈ ρ, σ.t′σ ∼= t

T k+1
ϕ [[t ′σ ↑ t ]], if ∃(h = t′) ∈ ρ, σ.t′σ � t
h→ T k+1

e [[λx1 . . . xn .e]] κ (ρ ∪ {h = t}) ∆, otherwise
where (f x1 . . . xn = e) ∈ ∆

h = f ′ x′1 . . . x
′
k (f ′ is fresh, {x′1 . . . x′k} = fv(t))

where t = T ke [[f ]] κ {} ∆
(10) T k+1

e [[e0 e1 ]] κ ρ ∆ = T k+1
e [[e0 ]] 〈(• e1 ) : κ〉 ρ ∆

(11) T k+1
e [[case e0 of p1 ⇒ e1 . . . pn ⇒ en ]] κ ρ ∆ =

T k+1
e [[e0 ]] 〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ〉 ρ ∆

(12) T k+1
κ [[t ]] 〈〉 ρ ∆ = t

(13) T k+1
κ [[t ]] (κ = 〈(• e) : κ′〉) ρ ∆ =

T k+1
κ [[(κ•root(t))→ t, (T k+1

e [[e]] 〈〉 ρ ∆)]] κ′ ρ ∆

(14) T k+1
κ [[t ]] (κ = 〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ′〉) ρ ∆ =

(κ•root(t))→ t, (T k+1
e [[e1]] κ′ ρ ∆), . . . , (T k+1

e [[en]] κ′ ρ ∆)

(15) T k+1
ϕ [[(x0 x1 . . . xn)→ t0, t1, . . . , tn]] = (x0 x1 . . . xn)→ t′0, t

′
1, . . . , t

′
n

where ∀i ∈ {0 . . . n}.t′i = T k+1
p [[Rp[[ti]]]]

Fig. 10. Level k + 1 Transformation Rules

In rule (6), if the context surrounding a constructor application redex is a
case, then pattern matching is performed and the appropriate branch of the
case is selected, thus removing the constructor application. This is where our
transformers actually remove intermediate data structures.

In rule (9), if the redex of the current term is a function, then it is transformed
by the transformer one level lower in the hierarchy (level k) producing a process
tree; this is therefore where the transformer builds on all the transformers at
lower levels. This level k process tree is compared to the previous process trees
produced at level k (contained in ρ). If the process tree is a renaming of a previous
one, then folding is performed, and a fold node is created using a recursive call
of the function associated with the renamed process tree in ρ. If the process tree
is an embedding of a previous one, then generalisation is performed; the result of

13



this generalisation is then further transformed. Otherwise, the current process
tree is memoised by being associated with a new function call in ρ; an unfold
node is created with this new function call in the root node, with the result of
transforming the unfolding of the current term as its sub-tree.

The rules T k+1
κ are defined on a process tree and a surrounding context.

These rules are applied when the normal-order reduction of the input program
becomes ‘stuck’ as a result of encountering a variable in the redex position. In
this case, the surrounding context is further transformed.

The rule T k+1
ϕ is applied to a newly constructed generalisation node; all the

sub-trees of the node are residualised and further transformed.

5 Examples

In this section, we look at some examples of the transformations that can be
performed at different levels in our program transformation hierarchy.

Example 6. Consider the following program from [6]:

f x x
where
f x y = case x of

Zero ⇒ y
Succ(x )⇒ f (f x x ) (f x x )

This program takes exponential time O(2n), where n is the size of the input
value x. If we transform this program at level 1 in our hierarchy, we obtain the
following program:

f x
where
f x = case x of

Zero ⇒ Zero
Succ(x )⇒ f (f x )

This program takes linear time O(n) on the same input, so an exponential
speedup has been achieved. If we transform the original program at level 2 in
our hierarchy, we obtain the following program:

f x
where
f x = case x of

Zero ⇒ Zero
Succ(x )⇒ f x

A very slight further improvement has therefore been obtained. No further im-
provements are obtained at higher levels in the hierarchy.

14



Example 7. Consider the transformation of the näıve reverse program shown
in Fig. 1, which has O(n2) runtime where n is the length of the list xs. If
we transform this program at level 1 in our hierarchy, we obtain the following
program:

f xs
where
f xs = case xs of

Nil ⇒ Nil
Cons x xs ⇒ case (f xs) of

Nil ⇒ Cons x Nil
Cons x ′ xs ⇒ Cons x ′ (f ′ xs x )

f ′ xs x = case xs of
Nil ⇒ Cons x Nil
Cons x ′ xs ⇒ Cons x ′ (f ′ xs x )

There is very little improvement in the performance of this program over the
original; it still has O(n2) runtime. However, if we transform the näıve reverse
program at level 2 in our hierarchy, we obtain the following program:

case xs of
Nil ⇒ Nil
Cons x xs ⇒ f xs x Nil

where
f xs x ys = case xs of

Nil ⇒ Cons x ys
Cons x ′ xs ⇒ f xs x ′ (Cons x ys)

This program takes linear time O(n) on the same input, so a superlinear speedup
has been achieved. No further improvements are obtained at higher levels in the
hierarchy.

Example 8. Consider the following program:

map inc (qrev xs)
where
map f xs = case xs of

Nil ⇒ Nil
Cons x xs ⇒ Cons (f x ) (map f xs)

inc n = Succ n
qrev xs = qrev ′ xs Nil
qrev ′ xs ys = case xs of

Nil ⇒ ys
Cons x xs ⇒ qrev ′ xs (Cons x ys)

15



This program requires 2n allocations, where n is the length of the list xs. If
we transform the original program at level 1 in our hierarchy, we obtain the
following program:

f xs Nil
where
f xs ys = case xs of

Nil ⇒ f ′ ys
Cons x xs ⇒ f xs (Cons x ys)

f ′ xs = case xs of
Nil ⇒ Nil
Cons x xs ⇒ Cons (Succ x ) (f ′ xs)

This program also requires 2n allocations, and not much improvement has been
made. If we transform the original program at level 2 in our hierarchy, we obtain
the following program:

f xs Nil (λxs.f ′ xs)
where
f xs ys g = case xs of

Nil ⇒ g ys
Cons x xs ⇒ f xs (Cons x ys) g

f ′ xs = case xs of
Nil ⇒ Nil
Cons x xs ⇒ Cons (Succ x ) (f ′ xs)

This program still requires 2n allocations, so again not much improvement has
been made. However, if we transform this program at level 3 in our hierarchy,
we obtain the following program:

f xs (λxs.xs)
where
f xs g = case xs of

Nil ⇒ g Nil
Cons x xs ⇒ f xs (λxs.Cons (Succ x ) (g xs))

This program now requires n allocations, so we can see that improvements can
still be made as high as level 3 in our hierarchy (and indeed even higher in some
cases). For this example, no further improvements are obtained at higher levels
in the hierarchy.

6 Speedups

In this section, we look at the efficiency gains that can be obtained at different
levels in our program transformation hierarchy.

16



Theorem 2 (Exponential Speedups). Exponential speedups can only be ob-
tained above level 0 in our hierarchy if common sub-expression elimination is
performed during generalisation.

Proof. An exponential speedup can only be obtained if a number of repeated
computations are identified, so the computation need only be performed once.
This can only happen in our transformations if the repeated computations are
identified by the common sub-expression elimination that takes place during
generalisation.

If we consider the transformation of the program at level 1 in our hierarchy
given in Example 6, the term (f x x) is extracted twice during generalisation, but
then identified by common sub-expression elimination, thus allowing an expo-
nential speedup to be achieved. In practice, we have found that such exponential
improvements are obtained for very few useful programs; it is very uncommon
for the same computation to be extracted more than once during generalisation
to facilitate this improvement. It is also very unlikely that a programmer would
write such an inefficient program when a much better solution exists.

We now look at the improvements in efficiency that can be obtained without
common sub-expression elimination.

Theorem 3 (Non-Exponential Speedups). Without the use of common
sub-expression elimination, the maximum speedup factor possible at level k > 0
in our hierarchy for input of size n is O(nk−1).

Proof. The proof is by induction on the hierarchy level k. For level 1, the proof
is as given in [24]; since there can only be a constant number of reduction steps
removed between each successive call of a function, at most a linear speedup is
possible. For level k + 1, there will be a constant number of calls to functions
that were transformed at level k between each successive call of a level k + 1
function. By the inductive hypothesis, the maximum speedup factor for each
level k function is O(nk−1), so the maximum speedup factor at level k + 1 is
O(nk).

Consider the transformation of the näıve reverse program at level 2 in our hi-
erarchy given in Example 7. During this transformation, we end up having to
transform a term equivalent to the following at level 1:

append (append xs ′ (Cons x ′ Nil)) (Cons x Nil)

Within this term, the list xs′ has to be traversed twice. This term is transformed
to one equivalent to the following at level 1 (process tree (2) in Fig. 4 is the
process tree produced as a result of this transformation):

append xs ′ (Cons x ′ (Cons x Nil))

Within this term, the list xs′ has only to be traversed once, so a linear speedup
has been obtained. This linear improvement will be made between each successive
call of the näıve reverse function, thus giving an overall superlinear speedup and
producing the resulting accumulating reverse program.

17



7 Termination

In order to prove that each of the transformers in our hierarchy terminate, we
need to show that in any infinite sequence of process trees encountered during
transformation t0, t1, . . . there definitely exists some i < j where ti � tj , so an
embedding must eventually be encountered and transformation will not continue
indefinitely without folding or generalising. This amounts to proving that the
embedding relation � is a well-quasi order.

Lemma 1 (� is a Well-Quasi Order). The embedding relation � is a well-
quasi order on any sequence of process trees that are encountered during trans-
formation at level k > 0 in our hierarchy.

Proof. The proof is by induction on the hierarchy level k.

For level 1, the proof is similar to that given in [15]. This involves showing
that there are a finite number of syntactic constructors in the language. The
process trees encountered during transformation are those produced at level
0, so the function names will be those from the original program, so must be
finite. Applications of different arities are replaced with separate constructors;
we prove that arities are bounded, so there are a finite number of these. We also
replace case expressions with constructors. Since bound variables are defined
using de Bruijn indices, each of these are replaced with separate constructors;
we also prove that de Bruijn indices are bounded. The overall number of syntactic
constructors is therefore finite, so Kruskal’s tree theorem can then be applied to
show that � is a well-quasi-order at level 1 in our hierarchy.

At level k+ 1, the process trees encountered during transformation are those
produced at level k and must be finite (by the inductive hypothesis). The num-
ber of functions in these process trees must therefore be finite, and the same
argument given above for level 1 also applies here, so � is a well-quasi-order at
level k + 1 in our hierarchy.

Since we only check for embeddings for expressions which have a named function
as redex, we need to show that every potentially infinite sequence of expressions
encountered during transformation must include expressions of this form.

Lemma 2 (Function Unfolding During Transformation). Every infinite
sequence of transformation steps must include function unfolding.

Proof. Every infinite sequence of transformation steps must include either func-
tion unfolding or λ-application. Since we do not allow λ-abstractions in our
input program, the only way in which new λ-abstractions can be introduced
is by function unfolding. Thus, every infinite sequence of transformation steps
must include function unfolding.

Theorem 4 (Termination of Transformation). The transformation algo-
rithm always terminates.

18



Proof. The proof is by contradiction. If the transformation algorithm did not
terminate, then the set of memoised process trees in ρ must be infinite. Every
new process tree which is added to ρ cannot have any of the previous process
trees in ρ embedded within it by the homeomorphic embedding relation �, since
generalisation would have been performed instead. However, this contradicts the
fact that � is a well-quasi-order (Lemma 1).

8 Related Work

The seminal work corresponding to level 1 in our hierarchy is that of Turchin on
supercompilation [27], although our level 1 transformer more closely resembles
positive supercompilation [26]. There have been several previous attempts to
move beyond level 1 in our transformation hierarchy, the first one by Turchin
himself using walk grammars [28]. In this approach, traces through residual
graphs are represented by regular grammars that are subsequently analysed and
simplified. This approach is also capable of achieving superlinear speedups, but
no automatic procedure is defined for it; the outlined heuristics and strategies
may not terminate.

A hierarchy of program specialisers is described in [7] that shows how pro-
grams can be metacoded and then manipulated through a metasystem transition,
with a number of these metasystem transitions giving a metasytem hierarchy in
which the original program may have several levels of metacoding. In the work
described here, a process tree can be considered to be the metacoding of a
program. However, we do not have the difficulties associated with metasystem
transitions and multi-level metacoding, as our process trees are residualised back
to the object level.

Distillation [9, 11] is built on top of positive supercompilation, so corresponds
to level 2 in our hierarchy, but does not go beyond this level. Klyuchnikov and
Romanenko [16] construct a hierarchy of supercompilers in which lower level
supercompilers are used to prove lemmas about term equivalences, and higher
level supercompilers utilise these lemmas by rewriting according to the term
equivalences (similar to the “second order replacement method” defined by Kott
[18]). Transformers in this hierarchy are capable of similar speedups to those in
our hierarchy, but no automatic procedure is defined for it; the need to find and
apply appropriate lemmas introduces infinite branching into the search space,
and various heuristics have to be used to try to limit this search.

Preliminary work on the hierarchy of transformers defined here was presented
in [10]; this did not include analysis of the efficiency improvements that can be
made at each level in the hierarchy. The work described here is a lot further
developed than that described in [10], and we hope simpler and easier to follow.

Logic program transformation is closely related, and the equivalence of par-
tial deduction and driving (as used in supercompilation) has been argued by
Glück and Sørensen [8]. Superlinear speedups can be achieved in logic program
transformation by goal replacement [22, 23]: replacing one logical clause with
another to facilitate folding. Techniques similar to the notion of “higher level

19



supercompilation” [16] have been used to prove correctness of goal replacement,
but have similar problems regarding the search for appropriate lemmas.

9 Conclusion and Further Work

We have presented a hierarchy of program transformers, capable of performing
fusion to eliminate intermediate data structures, in which the transformer at each
level of the hierarchy builds on top of those at lower levels. We have proved that
the transformers at each level in the hierarchy terminate, and have characterised
the speedups that can be obtained at each level. Previous works [17, 2, 1, 31, 24]
have noted that the unfold/fold transformation methodology is incomplete; some
programs cannot be synthesised from each other. It is our hope that this work
will help to overcome this restriction.

There are many possible avenues for further work. Firstly, we need to de-
termine what level in the hierarchy is sufficient to optimise a program as much
as is possible using this approach. We have seen that it is not sufficient to just
transform a program until no further improvement is obtained; improvements
may still be still possible at higher levels. We would therefore like to find some
analysis technique which would allow us to determine what level in the hier-
archy is required. Ultimately, we would like the process trees produced by our
transformers to be in what we call distilled form t{}, which is defined as follows:

tρ ::= (x0 x1 . . . xn)→ t
(ρ∪{x1,...,xn})
0 , tρ1, . . . , t

ρ
n

| (case x0 of p1 ⇒ e1 . . . pn ⇒ en)→ (x0 → ε), tρ1, . . . , t
ρ
n (x0 /∈ ρ)

| φ(e1 . . . en)→ tρ1, . . . , t
ρ
n

Within this definition, generalisation variables are added to the set ρ, and cannot
be used in the selectors of case expressions, so the resulting programs must not
create any intermediate data structures. Each of the example programs that we
transformed using our transformation hierarchy are ultimately transformed into
distilled form before no further improvement is obtained. We could therefore
apply successively higher levels in our hierarchy until a process tree in distilled
form is obtained. However, at present, we have no proof that this must eventually
happen. Work is continuing in this area.

If we can obtain process trees that are in distilled form, then there are many
areas in which our work can be applied, as distilled form is much easier to anal-
yse and reason about. These areas include termination analysis, computational
complexity analysis, theorem proving, program verification and constructing pro-
grams from specifications. Work is also continuing in all of these areas.

Acknowledgements

The author would like to thank the anonymous referees, who provided very
useful feedback and suggested improvements to this paper. This work owes a lot
to the input of Neil D. Jones, who provided many useful insights and ideas on
the subject matter presented here.

20



References

1. Amtoft, T.: Sharing of Computations. Ph.D. thesis, DAIMI, Aarhus University
(1993)

2. Andersen, L.O., Gomard, C.K.: Speedup Analysis in Partial Evaluation: Prelimi-
nary Results. In: ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation. pp. 1–7 (1992)

3. Bol, R.: Loop Checking in Partial Deduction. Journal of Logic Programming 16(1–
2), 25–46 (1993)

4. Burstall, R., Darlington, J.: A transformation system for developing recursive pro-
grams. Journal of the ACM 24(1), 44–67 (Jan 1977)

5. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 243–320. Elsevier, MIT Press (1990)

6. Glück, R., Klimov, A., Nepeivoda, A.: Non-linear configurations for superlinear
speedup by supercompilation. In: Proceedings of the Fifth International Workshop
on Metacomputation in Russia (2016)

7. Glück, R., Hatcliff, J., Jørgensen, J.: Generalization in Hierarchies of Online Pro-
gram Specialization Systems. In: Workshop on Logic-Based Program Synthesis and
Transformation. pp. 179–198 (1998)

8. Glück, R., Jørgensen, J.: Generating Transformers for Deforestation and Super-
compilation. In: Proceedings of the Static Analysis Symposium. Lecture Notes in
Computer Science, vol. 864, pp. 432–448. Springer-Verlag (1994)

9. Hamilton, G.W.: Distillation: Extracting the Essence of Programs. In: Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. pp. 61–70 (2007)

10. Hamilton, G.W.: A Hierarchy of Program Transformers. In: Proceedings of the
Second International Workshop on Metacomputation in Russia (2012)

11. Hamilton, G.W., Jones, N.D.: Distillation with labelled transition systems. In: Pro-
ceedings of the ACM Workshop on Partial Evaluation and Program Manipulation.
pp. 15–24. ACM (2012)

12. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings of the
London Mathemtical Society 2, 326–336 (1952)

13. Huet, G.: The Zipper. Journal of Functional Programming 7(5), 549–554 (1997)
14. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program

Generation. Prentice Hall (1993)
15. Klyuchnikov, I.: Supercompiler HOSC 1.1: Proof of Termination. Preprint 21,

Keldysh Institute of Applied Mathematics, Moscow (2010)
16. Klyuchnikov, I.: Towards Higher-Level Supercompilation. In: Proceedings of the

Second International Workshop on Metacomputation in Russia. pp. 82–101 (2010)
17. Kott, L.: A System for Proving Equivalences of Recursive Programs. In: 5th Con-

ference on Automated Deduction. pp. 63–69 (1980)
18. Kott, L.: Unfold/Fold Transformations. In: Nivat, M., Reynolds, J. (eds.) Algebraic

Methods in Semantics, chap. 12, pp. 412–433. CUP (1985)
19. Kruskal, J.: Well-Quasi Ordering, the Tree Theorem, and Vazsonyi’s Conjecture.

Transactions of the American Mathematical Society 95, 210–225 (1960)
20. Leuschel, M.: On the Power of Homeomorphic Embedding for Online Termina-

tion. In: Proceedings of the International Static Analysis Symposium. pp. 230–245
(1998)

21. Marlet, R.: Vers une Formalisation de l’Évaluation Partielle. Ph.D. thesis, Univer-
sité de Nice - Sophia Antipolis (1994)

21



22. Pettorossi, A., Proietti, M.: A Theory of Totally Correct Logic Program Transfor-
mations. In: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM). pp. 159–168 (2004)

23. Roychoudhury, A., Kumar, K., Ramakrishnan, C., Ramakrishnan, I.: An Un-
fold/Fold Transformation Framework for Definite Logic Programs. ACM Trans-
actions on Programming Language Systems 26(3), 464–509 (2004)

24. Sørensen, M.H.: Turchin’s Supercompiler Revisited. Master’s thesis, Department
of Computer Science, University of Copenhagen (1994), dIKU-rapport 94/17

25. Sørensen, M.H., Glück, R.: An Algorithm of Generalization in Positive Supercom-
pilation. Lecture Notes in Computer Science 787, 335–351 (1994)

26. Sørensen, M.H., Glück, R., Jones, N.D.: A Positive Supercompiler. Journal of Func-
tional Programming 6(6), 811–838 (1996)

27. Turchin, V.F.: The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems 8(3), 90–121 (Jul 1986)

28. Turchin, V.F.: Program Transformation With Metasystem Transitions. ACM
Transactions on Programming Languages and Systems 3(3), 283–313 (1993)

29. Wadler, P.: The Concatenate Vanishes (Dec 1987), fP Electronic Mailing List
30. Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Lecture

Notes in Computer Science 300, 344–358 (1988)
31. Zhu, H.: How Powerful are Folding/Unfolding Transformations? Journal of Func-

tional Programming 4(1), 89–112 (1994)

22


