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Abstract—The Video traffic has seen a surge in the last decade
due to the widespread use of smartphones and the abundance
of video streaming applications in the market. Considering the
time varying characteristics of today’s networks, ensuring high
quality of experience (QoE) to all video traffic users has become
a daunting challenge for most service providers. The dynamic
adaptive streaming over HTTP (DASH) standard enables the
adjustment of video bitrates to match the network conditions,
therefore guaranteeing smooth video playback. Different DASH-
based approaches have been proposed. Nonetheless, most of these
schemes incur substantial bitrate oscillations due to their quick
reactions to changes in bandwidth, which negatively impact the
users’ QoE. In this paper, we propose EDRA, a DASH-based
bitrate adaption solution that aims at averting video playback
interrupts while reducing the number of bitrate switches. EDRA
dynamically adjusts the bounds of available video bitrates based
on bandwidth estimations. It then selects the most suitable bitrate
for each video segment taking into consideration the current
and previous bandwidth measurements, the buffer level and the
bitrate variation with respect to the previously downloaded seg-
ments. Simulation results show that EDRA outperforms existing
commercial schemes as it incurs between 6% and 22% higher
accumulated played utility and between 30% and 77% lower
bitrate switches, ensuring a smooth video streaming experience
at high throughput levels.

I. INTRODUCTION

According to Cisco’s Visual Networking Index [1], Internet
video traffic (i.e., 56% in High Definition while 20% in Ultra
High Definition) will reach 282.3 Exabytes per month by
2022, accounting for 80% of all Internet traffic. Given the
limited and highly fluctuated bandwidth of today’s networks,
video delivery adaptation techniques have been used by video
service providers to ensure high quality of experience (QoE)
for users of video streaming applications. These techniques
adapt the bitrate of the video streams to match the available
bandwidth of the network in order to avoid video stalling
while ensuring a rapid video startup time. They are based on
different protocols and standards, including Microsoft Smooth
Streaming (MSS), HTTP Dynamic Streaming (HDS), HTTP
Live Streaming (HLS), and Dynamic Adaptive Streaming over
HTTP (MPEG-DASH).

MPEG-DASH employs a client-server architecture where
videos are stored in the server in different qualities called
representations, each of which is encoded in a different bitrate.
Every representation is divided into multiple equal length
segments. To stream a specific video from the server, the

DASH client first requests the Media Presentation Description
(MPD), containing the list of all the segments making the
video along with their encoded bitrates. Using an adaptation
algorithm, the client then starts requesting segments with
specific bitrates considering the network condition. Segments
are requested sequentially so that no new segment will be
requested unless the current one is fully downloaded.

Numerous DASH-based adaptive bitrate (ABR) algorithms
[2]-[19] have been proposed in the literature. They differ in
terms of the parameters considered when selecting segment
bitrates. While some solutions only consider bandwidth and
others just consider the buffer levels, most of them are hybrid
techniques that consider both bandwidth and buffer level,
along with other parameters such as energy consumption,
device characteristics, user interest in content, location, etc.
Most of these schemes have good performances. Yet, they still
face a significant challenge when it comes to maintaining a
smooth video quality. This is primarily due to the significant
bitrate oscillations incurred as a result of highly dynamic
changes of available bandwidth, which might affect the users’
QoE.

In this paper, we propose an Elastic DASH-based video
bitRate Adaptation approach, labelled EDRA, that reduces
bitrate fluctuations during on-demand adaptive video stream-
ing. In a two stage process, based on available bandwidth
estimations, EDRA first adjusts dynamically the bounds of
the list of available video bitrates. Afterwards, EDRA selects
within these bounds the most suitable bitrate for transmis-
sion of each video segment. It considers various parameters,
including the previous and current bandwidth measurements,
the buffer level and the video quality variation with respect to
previously downloaded segments. To the best of the authors’
knowledge, no existing work has proposed a similar solution
for smooth video streaming adaptation.

The rest of this paper is organised as follows. Section II
surveys existing DASH-based ABR algorithms, classified into
three categories: bandwidth-based, buffer-based, and hybrid.
Section III describes the system model. Section IV introduces
the proposed elastic DASH-based bitrate adaptation solution.
Section V describes the simulation setting and discusses the
results. Finally, Section VI concludes the paper.



II. RELATED WORK

From a bandwidth and buffer-centric perspective, existing
DASH-based ABR schemes can be divided into three broad
categories: bandwidth-based, buffer-based and hybrid.

Throughput-based algorithms use the estimated available
throughput in order to select the bitrate of the next video
segments. Jiang et al. [12] proposed FESTIVE, an ABR
having two key modules. The harmonic bandwidth estimator
computes the harmonic mean over £ last segments and sends
it to the stateful and delayed bitrate module, which deploys
a gradual bitrate switching strategy to compute the bitrate
for next segments while considering the received bandwidth
estimations. Li et al. [20] proposed a probe-and-adapt ap-
proach that aims at circumventing playback stalls along with
a conservative and a more responsive approaches to deal with
sudden spikes and drops in bandwidth, respectively. Wang et
al. [13] proposed a light-weight QoE tailored bitrate adaptation
algorithm that selects the most suited bitrate for next segments
considering QoE metrics such as average bitrate and bitrate
variation.

Buffer-based algorithms use the buffer level to decide the
bitrate for next segments. When the buffer level is high,
buffer-based algorithms would select a high bitrate to avoid
buffer overflow. When the buffer level is low, these algorithms
choose a low bitrate to avoid buffer underflow, which can
lead to playback interruptions. Spiteri et al. [14] formulated
the video bitrate adaptation as a utility maximization problem
and proposed BOLA, an online algorithm that uses Lyapunov
optimisation techniques, to select the bitrate for next segments
based solely on the amount of data in the buffer. Huang et
al. [15] proposed BBA, a buffer-based approach that defines
two states: startup and steady. To select the bitrate for next
segments, BBA uses the bandwidth estimation and the buffer
level during the startup state, and exclusively uses the buffer
level information during the steady state.

Hybrid algorithms consider both the estimated available
bandwidth and the buffer occupancy when selecting the bitrate
of the next segments. In [16], Spiteri et al. proposed DY-
NAMIC, an ABR algorithm that uses bandwidth estimation
when the buffer level is low and switches to BOLA when the
buffer level is high to minimise rebuffering and bitrate oscilla-
tions while maximising the average video bitrate. Yaqoob et al.
[3] proposed TBOA, a throughput and buffer occupancy-based
adaptation scheme which downloads the first few segments
with the lowest bitrate and adjusts the bitrates of the subse-
quent segments based on bandwidth estimations and buffer
level. Zhou et al. [10] proposed a Markov decision-based
rate adaptation scheme that takes into account video playback
quality, bitrate switching frequency and amplitude, buffer level
and buffer underflow/overflow events. Yin et al. [19] proposed
a model predictive control algorithm that considers bandwidth
estimation and buffer level to make optimal bitrate decisions
for QoE maximisation. Finally, Garcia et al. [11] proposed
a bitrate adaptation solution based on Stochastic Dynamic
Programming that selects the best suited bitrate through a cost
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function considering the buffer level along with the estimated
bandwidth and the bitrate difference.

Despite their performance, the aforementioned schemes still
suffer from considerable bitrate oscillations due to their rapid
reactions to changes in network conditions. Therefore, we
propose EDRA, a DASH-based bitrate adaptation scheme that
dynamically adjusts the bounds of the list of available bitrates
while slowly reacting to bandwidth changes in order to provide
smooth playback quality experience.

III. SYSTEM MODEL

We assume that a video is split into k segments, each
of which is 7" seconds long and is encoded in n different
bitrates, i.e., b = {b1,ba,...,b,}. The DASH-client selects
b,, the bitrate of the " segment of the video, considering the
available bandwidth, the playback buffer level and the quality
variation with respect to previous segments. The next segment
(i.e., v+ 1) is requested once segment ¢ is fully downloaded.
Segment ¢ is then decoded and placed in the playback buffer
to be played when needed.

Fig. 1 illustrates the block architecture of EDRA. It con-
sists of four modules. The Bitrate List Tracker controls the
bounds of the bitrate list based on bandwidth estimations.
The Bandwidth Estimator computes the network’s available
bandwidth while the Bitrate Variation Monitor stores the
difference in bitrates among the previously downloaded seg-
ments. The Bitrate Adaptive Unit selects the bitrate of the next
segment to be requested based on the information received
from the aforementioned modules along with the buffer level
information received from the Playback Buffer. Once the
bitrate is selected, the Bitrate Adaptive Unit informs the Bitrate
Variation Monitor and the Scheduler. The latter sends the
HTTP GET request to the DASH server to start downloading
the segment.

IV. ELASTIC DASH-BASED BITRATE ADAPTATION

This section explains how the available bandwidth, the
buffer level and the bitrate variation are computed and how
they are used to select the bitrate for the video segments.

A. Available Bandwidth

The main challenge of any video bitrate adaptation scheme
is to accurately estimate the available bandwidth given its



stochastic nature over best effort networks. A possible way
to address such a problem is to use a smoothed bandwidth
estimation which stabilizes the predictions over time to reduce
the impact of frequent bandwidth fluctuations [3], [21]. Let
BW,; be the required bandwidth for segment ¢ encoded using
bitrate b;. BW, can be expressed as:

T % bl
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where d; is the download time of segment :. We adopt a
smoothed prediction approach that uses a moving average to
estimate the available bandwidth. It is expressed as follows:

J— {BWi_l, i=1
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where «aj,as > 0 are smoothing coefficients. Note that
Eq. (2) takes into consideration the short spikes (i.e., drops
as well) in bandwidth that may happen over time and which
may influence the bandwidth estimations, yielding high bitrate
variability for video segments.

B. Buffer Level

The DASH client has one playback buffer in charge of
storing the segments once they are downloaded and decoded.
We define the buffer level in this paper as the number of
segments contained in the playback buffer. It expands when
new segments are added to the buffer and shrinks when
segments are played (i.e., removed from the buffer). Let
B; € [0, Byaz] be the buffer level after downloading segment
1. We can express the dynamics of the buffer level as follows:

Bi = Bi,1 +1-— |:dZ:|
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The first term in Eq. (3) represents the buffer level at the
start of segment ¢ download while the second term represents
the increment of the buffer level once segment 7 is fully
downloaded. The third term represents the number of segments
played while downloading segment 4. [.] is used for rounding
the third term to the closest integer. By analyzing Eq. (3), we
can observe that it is dominated by the third term. Indeed,
when d; is long, the playback buffer may run dry (i.e., buffer
underflow) before fully downloading segment ¢, leading to
playback interruptions. In this case, a rebuffering period is
triggered in which the buffer is filled with the video streaming
paused. On the other hand, when d; is short, segments will
be continuously downloaded into the playback buffer, which
might induce buffer overflow. To mitigate these problems, we
introduce two thresholds: B; and Bj,. In case the buffer level
is less than B;, segments will be downloaded at low bitrates
to quickly fill in the buffer, avoiding therefore video stalling.
In case the buffer level is greater than Bj,, segments will be
downloaded with higher bitrates to allow for the buffer level
to be reduced, averting the buffer overflow problem.

C. Quality Variation

Numerous studies [10], [11], [22] have shown that high
bitrate variation among video segments can significantly de-
crease the user’s QoE. Therefore, to reduce the frequent bitrate
switches, we use a moving average approach to keep track of
the bitrate variation. It is computed as follows:
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where § € [0, 1] is a smoothing coefficient. Note that Eq. (4)
captures the short-term bitrate variation and gives higher
weight to bitrate changes of recent segments as they are more
likely to influence the user’s perceived QoE.

D. Bitrate Selection Algorithm

Let b,in and b4, be the dynamic bounds of the bitrates
list b computed by the Bitrate List Tracker based on bandwidth
estimation. Initially, b, and b,,., are both set to by as
no bandwidth estimation exists. After downloading following
segments, the bounds are adjusted based on the bandwidth es-
timation according to Algorithm 1. To this end, the bandwidth
status is checked. If it tends to increase, b,,,; 1S set to the
highest bitrate that is lower than the estimated bandwidth while
bmin is set to the next highest bitrate in the list (lines 9 — 13).
If it decreases, by, is set to the bitrate having an index that is
two decrements from the index of b,,,, (lines 14 — 18). This
is to limit the number of bitrates from which EDRA should
choose in order to avert substantial bitrate oscillations when
sudden short bandwidth spikes/drops occur. Consequently, this
will help enhance the users’ QoE.

Algorithm 1: Dynamic adjustment of b,,;,, and b4

Result: b,,,;, and b4
1 while i # k do

2 if i = 1 then

3 bmin < b1 and bper — b1

4 BWlast 0

5 else

6 if i > 2 then

7 ‘ BWlast — BWi—2

8 end

9 if BW;_1 — BWj,s > 0 then

10 if bmaw < BWi_l then

11 bmagz < max {b] €b ‘ bj < BWi_l}
12 bmin < min {bj ) | bj > bmzn}

13 end

14 else

15 if b5, > BW;_1 then

16 bmaz ¢ max {bj €b ‘ bj < BWi_l}
17 bmin < max {b; € b | mar — j =2}
18 end

19 end

20 end
21 end




Algorithm 2 illustrates the bitrate selection process. At the
start of the streaming session, the DASH client is not aware
of the network condition. Most adaptive schemes adopt a
conservative approach where the first few segments of the
video are downloaded at the lowest supported bitrate. This is to
fill-in the buffer quickly, reducing therefore the startup delay.
Yet, several studies [23], [24] have shown that users are willing
to tolerate larger startup delays; others [25] have also shown
that a low startup bitrate followed by a slow quality increase
clearly degrades the user’s QoE. Unlike existing solutions,
EDRA adopts a more liberal approach where the first segment
is downloaded at the lowest supported bitrate (i.e., b,,:,). The
bitrate of the next segment is selected based on the estimated
download time while ensuring that the buffer level is higher
than 0. The same bitrate is used for the following segments till
the buffer level exceeds Bj. In case the buffer level is between
B; and By, EDRA selects the bitrate for segment ¢ that meets
the following conditions:

bi S BWL'G_I
o =bimal )
qi
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The first condition indicates that the bitrate of segment ¢ should
not exceed the estimated bandwidth while the second specifies
that the bitrate of segment ¢ should be the next element in
the bitrate list with respect to b;_; in either ascending or
descending order. The third condition implies that the buffer
level should be higher than the threshold B; after downloading
segment ¢. Finally, in case the buffer level exceeds B, EDRA
waits for a period of time before requesting the next segment.
This is to avoid the buffer overflow problem. Still, chances of
the buffer underflow occurring during this period cannot be
ignored particularly in the case of a sharp drop in bandwidth
or a low number of segments in the buffer once the this period
expires. As a result, the waiting period is computed as follows:

B+ B
or(a-[242)

V. PERFORMANCE EVALUATION

(6)

To assess the performance of EDRA, we used Sabre [16],
an open-source tool for simulating ABR environments, that
takes three inputs:

o Network trace: contains a sequence of records, each of
which includes the time duration, network throughput,
and latency. We used two network traces in our simula-
tions: nty [26] and nty [27] nt; has four periods, each
one lasts 30 seconds. The first period allows a bandwidth
of 5000Kbps, with a round-trip latency of 75ms. When
the four periods come to an end, Sabre restarts at the top.
nte has multiple periods with the same round-trip latency
(i.e., 100ms) and variable bandwidth.

o Video description: analogous to the DASH manifest
and includes the segment length 7', the encoded bitrates,

Algorithm 2: Bitrate Selection

Result: b;, bitrate of segment %
1 while i # k do

2 if i = 1 then

3 ‘ b1 — bmin

4 else

5 if B;,_1 < B; then

6 | bi <~ max {b; € bs.t. (T x B;) —d; >0}
7 end

8 if B; < B,_1 < By, then

9 | bi < max {b; € bs.t. Eq. (5) holds}
10 end

1 if B,_1 > By then

12 | wait for 7 seconds

13 end

14 end

15 end

TABLE I
SIMULATION PARAMETERS
Parameter | Value
T 3s
Bmax 25s (8 segments)
By 10s (3 segments)
By, 22s (7 segments)

and the segment size matrix C' where C[i, j] represents
the size of the i*" segment of the video encoded at
the j*" bitrate. The video description file [28] used in
the simulations is of the Big Buck Bunny Movie, a 10
minutes movie encoded in ten different bitrates (Kbps),
b = {230, 331, 477, 600, 991, 1427, 2056, 2962, 5027,
6000}.

o ABR algorithm: refers to the algorithm invoked before
downloading a new segment. EDRA, THROUGH (i.e.,
bitrate selected based only on estimated bandwidth),
BOLA [14], and DYNAMIC [16] are used in turn.
The last two are part of the DASH reference player
dash.js [29] and are used commercially by many content
providers (e.g., akamai, edgeware, brightcove).

We evaluate comparatively four ABR algorithms in terms
of the total number of bitrate switches (BTS), the average
incurred throughput (ATH), the total reaction time (TRT), i.e.,
defined as the time it takes to start rendering at the highest sus-
tainable bitrate after the network bandwidth increases, and the
accumulated played utility (AU). The latter is used by Sabre to
reflect the users’ QoE and computed as AU = Ele log(b;).
Other simulation parameters are included in Table I. Note that
a1 = 3 and as = 8 are the default values used in Sabre while
[ was set to 0.3 in these simulations.

Fig. 2 and Fig. 3 3 show the bitrate of the video playback
as a function of the video play time using nt; and nto,
respectively. We observe that both EDRA and THROUGH
provide a smoother video play quality with fewer bitrate
switches compared to DYNAMIC and BOLA. Indeed, using
nty1, both EDRA and THROUGH incur a number of bitrate
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Fig. 2. Bitrate of the video playback as a function of the video play time for the various ABR algorithms using nt1
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switches that is 77% and 67% lower than BOLA and DY-
NAMIC, respectively (see BTS in Table II). When using nts,
THROUGH incurs the lowest number of bitrate switches with
EDRA incurring a number of bitrate switches that is 40%
and 30% lower than BOLA and DYNAMIC, respectively (see
BTS in Table II). Fig. 4 illustrates the accumulated played
utility as a function of the video play time using nt; and nits.
We observe that EDRA provides the highest AU compared to
the other ABR algorithms for both traces. Indeed, using nt;
EDRA provides an average AU which is 6%, 13%, and 20%
higher than DYNAMIC, BOLA, and THROUGH, respectively.
When using nte2, EDRA provides an average AU which is
11%, 13%, and 22% higher than DYNAMIC, BOLA, and
THROUGH, respectively.

The reason EDRA outperforms the remaining ABR schemes
is twofold. First, EDRA limits the number of available bitrates
by dynamically adjusting the values of b,,;, and b,,,, along
with maintaining the selected bitrate as long as the buffer level
allows it to avoid rebuffering events. Second, EDRA is slow
to react to the changes in bandwidth to avoid bitrate oscilla-

TABLE II
QO0S METRICS USING nt1
EDRA | BOLA | DYNAMIC | THROUGH
BTS 29 65 58 29
TRT (s) 86 82 82 225
ATH (Kbps) 2921 2877 2905 1964

tions that may occur due to sudden and short spikes/drops
in bandwidth (see TRT in Tables II and III). As a result,
EDRA generates the lowest number of bitrate switches (i.e.,
as opposed to BOLA and DYNAMIC) and the highest average
throughput (see ATH in Tables II and III), providing higher
AU (i.e., perceived QoE) in comparison to the remaining ABR
algorithms. Note that THROUGH only considers bandwidth
estimations when selecting the bitrate of segments and deploys
a conservative approach that quickly reacts to bandwidth
changes to evade the buffer underflow problem. This leads to
low average throughput and high reaction time. Note also that
none of the simulated ABR schemes incurred any buffering
events when using both network traces.



TABLE III
QOS METRICS USING nta

EDRA | BOLA | DYNAMIC | THROUGH
BTS 78 117 106 22
TRT (s) 21 9.83 11.82 50.7
ATH (Kbps) 1370 1353.4 1323.1 1028.2

VI. CONCLUSIONS

In this paper, we proposed EDRA, a new ABR algorithm
that aims at ensuring a smooth video playback quality through
reducing bitrate oscillations. It starts by dynamically adjusting
the bounds of the available bitrates list based on bandwidth
estimations; then, it selects the most suitable bitrate for every
video segment considering the buffer level, the available
bandwidth and the bitrate difference with respect to previously
downloaded segments. Simulation results demonstrates that
EDRA incurs low bitrate switches compared to well known
commercial ABR schemes (e.g., BOLA, DYNAMIC) while
providing higher throughput.

Future work will focus on deploying EDRA in a production
setting, particularly the DASH reference player. In addition,
EDRA will be integrated in the Co-Creation Stage, a novel
artistic co-creation tool that is one of the results of the EU
Horizon 2020 project TRACTION, to enable the creation and
delivery of collaborative remote Opera performances.
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