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Abstract
We apply a multivariate mixed-data sampling (MIDAS) conditional quantile regres-
sion technique to understand the dairy commodity exposure of European dairy firms.
Leveraging a theoretically sound hedonic dairy pricing framework, we show that our
approach is able to identify both market and operational risk. Profit margins for butter
and milk price are particularly important for operational performance. Additional tests
are provided, including an application of MIDAS quantile on a period of amplified
dairy market risk. Our approach thus allows dairy firms to gain new perspectives on
the significant risks posed by the current structure of dairy production in Europe.
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markets
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1. Introduction

The production decisions of dairy firms in Europe are increasingly driven by
underlying dairy commodity prices. This move, caused by market deregula-
tion, as well as newly globalised trading of dairy products, has introduced
fresh risk to European dairy firms. In this paper, we propose a methodology to
understand these risks. Our research thus addresses the under-researched area
of risk in agrifirms (Cornaggia, 2013).

In little over a decade, milk production in the European Union (EU) has
moved from a situation of heavy regulation that favoured stability and state
intervention, to a process that favours free-market production and price-
setting. Regulatory reform started in earnest in 2003 with a significant reduc-
tion in intervention prices originally put in place to guarantee minimum
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prices for dairy products, and the deregulation culminated in 2015 with the
removal of production quotas, which had acted as a restraint on milk sup-
ply. These changes have posed challenges to European dairy firms as they
adapt from a situation of stable supply and input and output prices, to one in
which free supply and demand make dairy prices and margins highly volatile
(Cechura et al., 2017; Hirsch and Hartmann, 2014; Kersting, Hüttel and
Odening, 2016; Läpple, Barham and Chavas, 2020). A key focus of this
study is to provide a method to understand the impact this price and margin
instability has on firm performance.

Against the backdrop of the above market changes that have increased
the volatility of dairy commodity prices, the EU is under-served currently
in respect of markets and products for risk-hedging purposes. In particular,
futures markets are particularly immature, while opportunities for tailored
exotic financial engineering are extremely limited. This highlights why it is
important to be able to more effectively model and assess operational risk in
the EU dairy firm industry. We demonstrate in this study how firms can better
understand their exposure to shocks and thus potentially manage these impacts
on operations internally. Thus, while our research has a different approach to
the subject, it does fit with the general direction of prior research emphasising
the importance of EU dairy firm flexibility in terms of both production deci-
sions (Hirsch et al., 2020) and product choice decisions (Renner, Glauben and
Hockmann, 2014).

In seeking to understand the relationship between dairy prices and firm
performance, we start with a hedonic dairy pricing model from Chavas and
Kim (2005). This model proposes that individual dairy product price is a
function of the nutritional characteristics of these products. That is, the price
of a dairy product is a function of the prices of fat and protein (casein and
milk serum) content, among other nutritional content. Any residual between
observed prices and modelled hedonic prices is suggested to be a proxy for
shocks, including innovation and competition in the marketplace. The model
has previously been applied in other agricultural economic contexts, such as
Gobillon, Wolff and Guillotreau (2016) who consider the same type of model
for fish prices and Ortiz-Bobea (2020) for farmland asset prices. This mod-
elling approach, therefore, provides us with a fundamental model from which
we can estimate the operational shocks we seek to explain.

Our testing technique is an adapted mixed-data sampling (MIDAS) con-
ditional quantile regression technique developed from Ghysels, Plazzi and
Valkanov (2016). We apply this to model the sensitivity of European dairy
transformers’ operational performance as a function of dairy prices and mar-
gins. The MIDAS component (Ghysels, Santa-Clara and Valkanov, 2004;
Ghysels, Santa-Clara and Valkanov, 2006) of the technique allows for the full
spectrum of dairy prices and margins to be used, which are available at higher
frequency (weekly and monthly) than our operational performance measures
(semi-annual). Common alternatives such as Autoregressive Distributed Lag
(ARDL) cointegration and Vector Autoregression (VAR) models cannot feasi-
bly estimate in this manner. The primary advantage of being able to utilise the
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full range of higher-frequency input prices is that we arrive at greater precision
in our quantile estimates, even over short time frames. This higher frequency
provides more timely information to the dairy firm on their commodity risk
exposures.

The primary contribution of our study is in demonstrating the impact of
dairy prices on the performance of dairy firms. This impact has not previ-
ously been formally studied despite the important role that commodity dairy
prices now play in determining market and operational risk in these firms.
Despite this, there is evidence of a link between commodity price move-
ments and firm performance for other groups of commodities (Bartram, 2005;
Narayan and Sharma, 2014; Phan et al., 2020). A further contribution we
make is in the methodology, developing a formal misspecification test tailored
to assess the adequacy of the MIDAS conditional quantile regression model,
and a related model comparison test that facilitates our benchmarking exer-
cise. This approach allows us to show empirically the conditions under which
the joint use of mixed-frequency data and conditional distributional modelling
are important. We also show how the MIDAS quantile (MQ) approach can be
leveraged to give insights into dynamic changes over time and how to utilise
MIDAS parameter estimates to perform reliable out-of-sample data tests of
firm impact from dairy price movement.

In the next section, we formally present themultivariateMIDAS conditional
quantile regression technique, and we develop our proposed misspecification
and model comparison test. Section 3 describes the data and variables used.
Section 4 provides the research findings and analysis, and Section 5 concludes
the study.

2. MIDAS quantile regression modelling

We first introduce the rationale for the MIDAS conditional quantile regression
modelling that we utilise in our analysis of dairy firm performance. We then
discuss a model misspecification test we have developed that formally allows
us to ascertain whether our MQ regression model is well-specified in explain-
ing dairy firm performance. We also show how this misspecification test can
be applied as a model comparison test to determine the relative performance
of the MQ regression model compared to other popular models.

2.1. MIDAS conditional quantile regression

The lower tail distribution of a firm’s cash flows is commonly used to assess
the extent of operational risk associated with production processes. To effec-
tively capture this exposure, we require a technique that explicitly allows for
modelling the likelihood of these extreme downside operational outcomes.
We uniquely exploit the power of targeted conditional quantile regressions to
analyse this operational risk in dairy firms.

Profitability in milk transformation business depends on the margins associ-
ated with the sale of transformed products, in particular the processing of milk
into butter or cheese. Another important feature of the market is the availability
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of prices for both input and output products, allowing us to investigate dairy
transformers’ operational reactions to exogenous shocks from both wholesale
and retail prices (Gan, Sethi and Yan, 2005). As production managers are most
averse to downside risk, our assessment of their capacity to minimise this risk
relies on the left tail of the marginal distribution of the firm’s operating rev-
enue as a function of the physical dairy transformation margins. The ability of,
and speed at which, a management board can manage sudden movements in
the input and output markets and thus control the so-called ‘chance constraint’
(Charnes and Cooper, 1959; Gan, Sethi and Yan, 2005) has been extensively
examined in the literature. Furthermore, this ability has been adopted to pro-
vide a comparison of firms’ capacity to set up operational devices limiting
downside risk and thus keep operational risk associated with their industrial
activity under control (Weiss and Maher, 2009).

In this context, several advantages of quantile regression are identifiable:
the ability to capture response–predictor variable dependencies that classical
conditional mean regression may either fail to capture or capture quite dif-
ferently; the flexibility for predictor variables to exert influence on the mean,
variance and shape of the response variable distribution; and the capability to
account for the heterogeneous variance that results from the complex interac-
tions between factors that might not all be measurable or accounted for within
the model (Cade and Noon, 2003). Quantile regression has been considered in
the modelling of operational risk by Konstantinidi and Pope (2016). However,
Konstantinidi and Pope (2016) consider only percentile time-series models
with the regressors consisting of past discrete realisations of the random vari-
able under scrutiny, or of other accounting variables with similar frequency.
Furthermore, a lead–lag effect is observable for European milk observatory
dairy prices when you compare the EU weighted average milk price paid to
the farmers with the EU milk equivalent price based on the combination of the
skimmed milk powder (SMP) and the butter prices, at a given time. This phe-
nomenon stems from the nature of the contracts signed betweenmilk producers
and processors as the milk price paid to the farmers by the manufacturers and
collected by the European milk market observatory is generally calculated
based on the average combined prices of the butter and the SMP prevailing
on the previous months1.

Our contribution in this regard is to implement a method that copes with a
mixed-frequency data set resulting from the combination of individual weekly
and monthly exogenous market prices with accounting performance data sam-
pled semi-annually. In this way, we get a more accurate and exhaustive insight
into the operational risk dynamic augmented with the appropriate modelling
of the company’s cash flow sensitivity to exogenous price variables. Moreover,

1 This is graphically noticeable if you consider the dashboard published on a regular basis by the
EU commission’s department Directorate-General for Agriculture and Rural Development where
they compare the weighted EU average price of rawmilk with the EUmilk equivalent price based
on SMP and butter prices, available at: https://ec.europa.eu/info/sites/default/files/food-farming-
fisheries/farming/documents/dashboard-dairy_en.pdf.
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this MIDAS component in our statistical model effectively captures the lead–
lag effect previously described by allowing for the differentiation of weights
associated with the most recent prices of raw milk from those linked to SMP
and butter prices.

We go further and propose a way to exploit available data optimally to
meet the objective of effectively modelling extreme downside operational out-
comes. This need creates a technical challenge, commonly faced in studies
of commodity price influences, whereby there is a mismatch of data frequen-
cies between variables of interest. In the context of the dairy industry, this
mismatch is between dairy prices and measures of firm operational perfor-
mance. In our situation, dairy prices are available at weekly frequency for milk
by-products and monthly frequency for raw milk. In contrast, the account-
ing information on performance is published semi-annually. Addressing this
data mismatch is not trivial, as price transformation functions, which either
extrapolate out to the highest frequency or interpolate down to the lowest
frequency, while returning a common data frequency, either lead to a loss
of information or the introduction of bias. Such price transformations also
typically entail assumptions about the production process, from collection to
storage, associated with each company. To avoid as much as possible such lim-
iting assumptions and to keep our model flexible, we utilise quantile regression
modelling that allows for MIDAS.

We adopt, therefore, as our core model the MIDAS approach pioneered by
Ghysels (Ghysels, Santa-Clara and Valkanov, 2004; Ghysels, Santa-Clara and
Valkanov, 2005; Ghysels, Santa-Clara and Valkanov, 2006; Ghysels, Plazzi
and Valkanov, 2016; Andreou, Ghysels and Kourtellos, 2010), which allows
for mixed-data frequency series, and blend this with the quantile regression
model proposed by Koenker and Bassett (1978). To this end, we first assume
that the j-th quarter observation xj of the predictor variable is the vector of
higher-frequency samples xτi,j within the j-th quarter, observed at the time τi,j,
i= 1, . . . ,nj. Then we introduce a continuous weighting function B(Lτi,j ;θ),
which offers the advantage of parsimony and tractability, through includ-
ing only a limited number of hyperparameters θ into the quantile conditional
regression as follows:

Qyj (ξ|X= xj) = α+βB(Lτi,j ;θ)xj + ϵt

where on the left-hand side the ξ-th conditional quantile of yj is regressed
on the covariates xj using a MIDAS-weighting scheme. More formally,
B(Lτi,j ;θ) =

∑nj
i=1B(i;θ)L

τi,j is a finite lag operator of length nj, applica-
ble for quarter j, where Lτi,jxj = xτi,j . It follows therefore that B(Lτi,j ;θ)xj =∑nj

i=1B(i;θ)L
τi,jxj =

∑nj
i=1B(i;θ)xτi,j . θ defines a set of hyperparameters.

We discuss a particular specification of B(i;θ) below.
Several applications of the MIDAS models in mixed-frequency settings

have demonstrated the interesting properties of this model (Clements and
Galvão, 2009; Marcellino and Schumacher, 2010; Kuzin, Marcellino and
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Schumacher, 2011; Valadkhani and Smyth, 2017; Mei et al., 2020). For exam-
ple, there is mitigation of the discretisation bias when higher frequency data
are not available for the dependent variable. Furthermore, the MIDAS model
allows to mitigate measurement error or at least to preserve more flexible and
parsimonious models as mixing high frequency with low frequency instead
of aggregating the highest-frequency data would amount to imposing specific
restrictions on the dependant and independent variable relationships. Initially
developed by Ghysels, Santa-Clara and Valkanov (2004), the essence of a
MIDAS model is that any MIDAS expression can be compared under certain
conditions to a state-space formulation such as the Kalman filter (Bai, Ghysels
and Wright, 2013), which frequently serves as a solution for inaccurate obser-
vations modelling or to handle missing data. As this is the first application
of MIDAS in agricultural finance, we apply a standard MQ model, choosing
default choices such as the standard positive beta lag function for lagged data2:

B(i;θ) =
f
(

i
nj
;θ
)

∑nj
i=1 f

(
i
nj
;θ
)

with the hyperparameters vector θ = {θ1,θ2}, where

f(z;θ1,θ2) =
zθ1−1(1−z)θ2−1Γ(θ1+θ2)

Γ(θ1)Γ(θ2)

where Γ is the standard Gamma function. This framework is readily extended
to a multivariate setting.

2.2. Model misspecification test and model comparison

While there are inherent merits in using mixed-frequency data in a quantile
regression model setting, as outlined in the previous section, we also formally
assess the adequacy of the MQ regression model. We accordingly develop a
formal misspecification test. Towards this objective, we appeal to the study
of Rothe and Wied (2013), who introduce a general misspecification test that
applies in the context of conditional distribution models, including quantile
regression models. Our test is premised on the Cramer–von Mises measure
of distance between an unrestricted empirical cumulative distribution function
and a restrictedmodel derived cumulative distribution function. We extend this
misspecification test to ourmixed-frequency quantile regressionmodel setting.
Appendix A provides a full technical derivation of the misspecification test we
develop.

The misspecification test allows us to consider the adequacy of the mixed-
frequency quantile regression on a stand-alone basis. A more complete assess-
ment requires an appropriately designed model comparison. We leverage the
misspecification test to devise a model comparison exercise that serves to high-
light the importance of the respective MIDAS and quantile features of the

2 There are other parameter choices that can be made, which we leave for future studies.
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MQ regression and clarifies under what conditions these combined features
are relevant.

We consider the standard quantile regression and the standard MIDAS
regression as benchmark models, given how the MQ regression model
combines mixed-frequency data and conditional distribution modelling fea-
tures in a unified model. However, direct comparison is not possible
given that the quantile regression and MIDAS regression models are con-
ditioned on different space dimensions than the MQ regression model. To
address this, we marginalise the MIDAS-based joint distributions, such
that we end up with a unique space dimension for all of the para-
metric models. That is, in the case of the high-frequency MQ regres-
sion and MIDAS regression models, it is necessary to integrate the
associated high dimensional distributions in order to reduce the space
dimension for the sake of comparability with the low-frequency quantile
regression. The low-frequency quantile regression model can then be more
fairly compared with these dimensionally reduced MIDAS regression and
MQ regression models. This dimension reduction amounts to the projec-
tion from a high-dimensional model specification onto a low-dimensional
space, and thus the model comparison test is considered to be conserva-
tive. Appendix A provides a technical description of our model comparison
approach.

3. Data and estimation

3.1. Financial and Market Variables

The firm data set we use comprises semi-annual operational performance mea-
sures for 15 publicly-listed dairy companies in Europe from 2005 to 2018.
Dairy firms are identified as firms with the Standard Industrial Classification
(SIC) Code 2020 on Compustat Global. We exclude firms that have a dairy
division but where this is not their main business.

For our analysis of operational performance, we consider measures based
on prior literature (Konstantinidi and Pope, 2016; Hirsch and Hartmann, 2014;
Novy-Marx, 2010). As the core operational performance measure, we calcu-
late Operating Income (OI) scaled by assets. For robustness purposes, we also
use Net Profit (NP) scaled by assets as an additional measure.

To gain a deeper market insight, we divide the firms along a couple of
dimensions. First, we divide firms into small and large size based on having
total assets above or below Є300million. We expect small firms to be more
vulnerable to dairy market shocks due to having smaller portfolios of activi-
ties and, importantly, having lower power when it comes to negotiating with
milk producers on the supply side and retailers on the demand side. Indeed,
upstream and downstream marketing contracts play an important role in the
distribution of bargaining power in the dairy supply chain (Borodin et al.,
2016; Melhim and Shumway, 2013). Second, we divide firms by Degree of
Operating Leverage (DOL) as ameasure of restrictions on operating flexibility.
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We calculate DOL following the literature (Bhojraj et al., 2020; Aboody, Levi
and Weiss, 2018; Banker, Byzalov and Plehn-Dujowich, 2013; Kallapur and
Eldenburg, 2005) as 1−β, where β is the slope estimate from the equation:

OCi = α+βREVi + ϵi. (1)

OCi is the natural logarithm of total operating costs per semi-annual period
and REV i is the natural logarithm of total revenue. The 1−β estimate allows
us to distinguish between high and low operating leverage firms, with high
DOL firms being those with the most positive numbers for the measure and,
therefore, cost structures that have the highest proportion of fixed to variable
cost. We expect that high DOL firms will be most affected by dairy price and
margin volatility due to their more limited operational flexibility. This aligns
with an established literature that confirms a positive association between
DOL and systematic risk (Bhojraj et al., 2020; García-Feijóo and Jorgensen,
2010; Novy-Marx, 2010; Cooper, 2006; Carlson, Fisher and Giammarino,
2004).

In constructing ourMQmodel specification, we recognise a data availability
constraint in our data set of firms. That is, that we would ideally like empiri-
cal measures of some factors that could impact operational performance, such
as different levels of market power, technological innovation and government
intervention, across firms. We therefore augment our model with a control
variable derived from a structural model proposed by Chavas and Kim (2005).
Drawing on grounded hedonic pricing theory, Chavas and Kim (2005) pro-
poses a functional relationship between individual dairy product prices and
the nutritional characteristics of these products. In particular, the price of a
dairy product is deemed to be derived from the prices of fat and protein con-
tent, along with other nutritional components. This allows decomposing dairy
product prices into a fundamental hedonic price component, and a non-hedonic
price component that we utilise to capture the effects of unobserved market
variables.

The non-hedonic price variable plays a critical role as a control variable
in our setting, resolving concerns over missing variable bias and providing
greater confidence in the statistical approach. As we include product margins
in our main analysis and these may partly capture non-hedonic price effects
(e.g. technological innovation may increase margins through production cost
efficiencies), we propose a two-stage least square regression approach. We
first disentangle the effect of the product margin fluctuations on the non-
hedonic regressor. The derived residuals from this first-stage MQ regression
are subsequently and jointly considered with cheese and butter margins in
the second stage. This allows us to separate out the impact of non-hedonic
components.

Dairy prices are sourced from theEUMilkMarket Observatory and include,
on the input side, monthly raw milk, and, on the output side, weekly butter
and emmental cheese (as a suitable European proxy for all cheese, and hence-
forth just referred to as ‘cheese’) as key value-added products. For our hedonic
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Fig. 1. Milk production and transformation choices per 1,000 kg of 4 per cent fat content raw standard
milk. (i) Sell as milk, (ii) transform to butter with side product of SMP and (iii) transform to cheese
with side product of whey powder. Source for transformation proportions is industry connections of
the authors.

pricing analysis andmargins calculationwe also collect weekly SMP andwhey
powder prices.

As our method is a multivariate analysis of the impact of various dairy price
movements on operational performance, we make a choice that the impor-
tant explanatory variables are raw milk prices, and gross profitability margins
for butter and cheese are determinants of operational performance. Using
production ratios sourced from a large French dairy processor, we first note
that processing standard milk into butter produces both butter and SMP as a
by-product, leading to the following profitability ratio:

Butter margin= 48.8∗Butter+ 94∗SMP− 1000∗Milk.

Cheese processing, on the other hand, produces whey powder as a by-
product creating a profitability ratio:

Cheese margin= 94∗(Emmental)Cheese+ 59∗Whey− 1000∗Milk.

Figure 1 shows these dairy product processing relationships. In Table 1 we
provide descriptive statistics for both dairy firms and dairy prices and mar-
gins. We see from this table that large firms are more profitable and have less
risk associated with that profitability than small firms. Similarly, high DOL
firms are less profitable and more risky. This provides some empirical support
for our decision to consider data decomposition based on size and operational
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Table 1. Descriptive statistics

Panel A: Dairy firms

OI/Assets NP/Assets

Mean Std. Dev. Mean Std. Dev.

All firms 0.0500 0.0400 0.0150 0.0415
Large size 0.0513 0.0203 0.0237 0.0217
Small size 0.0492 0.0492 0.0090 0.0500
Low DOL 0.0409 0.0223 0.0158 0.0253
High DOL 0.0563 0.0476 0.0144 0.0497

Panel B: Dairy products

Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Milk price 32.21 3.79 0.05 −0.67 24.39 40.21
Butter margin 51.61 46.89 0.92 1.58 −53.36 226.20
Cheese margin 127.87 36.71 1.09 0.73 64.30 265.74

Note: Panel A provides descriptive statistics for our sample of 15 listed European dairy firms from 2005(Q4) to
2018(Q4) grouped by firm sub-category. Data sourced from Compustat Global. Primary dependent variables are OI
scaled by assets. Secondary dependent variables are NP scaled by assets. Large/small firms defined based on having
over/underЄ300million total assets. DOL is the degree of operating leverage as defined in Section 3. Panel B contains
descriptive statistics for milk prices and dairy margins. Raw dairy data sourced from the EUMilk Market Observatory
for the period 01 July 2005 to 31 December 2018. Dairy margins as defined in Section 3.

leverage. Figure 2 charts the time series of the dairy margins over the sample
period, with cheese appearing more stable.

3.2. Estimation approach

The main tests are multivariate MIDAS conditional quantile regressions3,4 to
determine the sensitivity of operating performance to milk prices and dairy
margins. These are estimated for the 5 per cent quantiles of operational per-
formance from 0.05 to 0.95. To conserve space, in the tables we report the
set: {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95}. Taking the example of the 0.05
quantile, this means that we examine in a multivariate analysis the impact of
milk prices and dairy product margins over the relevant operational period on
the fifth-lowest percentile ranked semi-annual operational performance. The
full range of quantiles considered gives us a holistic, distributional assessment
of operational performance.

Dairy data are incorporated into the model at weekly frequency for product
margins and monthly frequency for raw milk prices. Thus, for a given semi-
annual operational performance measure there are up to 26 weekly dairy data

3 We use the standard positive beta lag function in our implemented model. There are other lag
choices available, including long-memory kernels. We leave these non-standard choices to future
studies as the standard model appears appropriate for our context.

4 We do not consider a panel testing structure for the data as we are primarily interested in the
dynamics of our group of firms as a whole, rather than individual firm-relative performances.
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Fig. 2. Time-series plots of dairy margins. Data sourced from the EU Milk Market Observatory for the
01 July 2005 to 31 December 2018 period. Calculations are as outlined in Section 3 with all margins
based on processing 1,000 kg of standard raw milk.

points, with the weight attached to each being determined within the model as
part of the MIDAS technique as defined in Section 2. Our reported estimations
are based on group average performance in a period with the groups: all firms;
large- and small-size firms; and low and high DOL firms.

Following the main tests, we run a range of additional tests. First, we carry
out in-sample model misspecification tests on the MQ model following the
testing we develop in Section 2. We also leverage the misspecification test
to benchmark the MQ model against two reasonable alternatives: a MIDAS
regression model without quantiles and a quantile regression model without
MIDAS. We then follow this with two further sets of robustness checks. In the
first, we re-run our analysis on an alternative measure of operational perfor-
mance. Specifically, NP scaled by assets is used as this alternative performance
measure to determine if the results are dependent on the operational measure.
In the second, we re-estimate the main tests just for the 2005Q4 to 2014Q2
period and use these trained estimates to establish the associated value for the
quantile given the actual dairy prices and margins over the period of 2015–
2018. We chose this time division as a number of critical operational events
that happened in the 6months following 2014Q2—the imposition of Russian
sanctions on the import of EU dairy products into Russia (a large growing
market for EU dairy products at the time) in September 2014 and the complete
removal of EU dairy production quotas in January 2015. The Kupiec (1995)
framework is used to test if the parameter estimates are consistent before and
after these shocks.

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/49/1/151/6429331 by guest on 19 February 2022



162 G. Bagnarosa et al.

4. Findings and analysis

4.1. Dairy pricing and operational performance

The main results are reported in Table 2, which gives MQ model findings
for the operating performance measure of OI scaled by assets. This measure
captures short-term reactivity to operational shocks through the OI numer-
ator, comprising revenue effects, and long-term impacts through the assets
denominator. Milk prices, butter margin and cheese margin are included in
the multivariate model, with the beta parameters and the significance of these
parameters reported. We present results by categories of grouped firms: all
firms; large versus small firms; and low versus high DOL firms.

We further investigate the magnitude of influence of dairy prices and mar-
gins. Figure 3 contains subplots of the in-sample sensitivity of a one standard
deviation positive shock of any dairy price or margin, on firm operational per-
formance. In these charts the black solid line shows the initial (non-shocked)
operational performance across each 5 per cent quantile. We then observe how
this moves subsequent to a given dairy price or product margin shock. The
greater the magnitude of movement away from the initial position, the greater
the operational performance impact.

Overall, we identify some important relationships between dairy prices
and margins and operational performance, suggesting the value of the MQ
approach. For our initial all-firms analysis we find that milk prices generally
have a negative impact across the operational performance distribution, while
product margins have a positive impact. The butter margin has a stronger pos-
itive effect than the cheese margin. We find, however, that the most interesting
findings are at the between-firm level.

For example, it can be seen that high DOL firms are far more exposed to
dairy risk than low DOL firms. Given the high levels of fixed costs relative
to variable costs for such firms, increases in milk prices can be seen to have a
greater detrimental impact on operational performance. On the flip side, for the
same reason, high DOL firms are well positioned to exploit increases in prod-
uct margins. This sensitivity aligns with our earlier expectation that high DOL
firms havemuchmore limited operational flexibility to respond to dairy market
volatility. Indeed, DOL is seen as a determinant of systematic risk, measur-
ing as it does a firm’s reliance on fixed costs García-Feijóo and Jorgensen
(2010). So our finding aligns with an established observation in the literature
that high DOL firms have high systematic risk and are often associated with
high book-to-market ratios and, hence, a value premium (Carlson, Fisher and
Giammarino, 2004; García-Feijóo and Jorgensen, 2010; Bhojraj et al., 2020).

In a similar manner to high DOL, we find that small firms are more exposed
to dairy market movements than large firms. Indeed, we see a very similar
pattern in terms of economic significance across the operational performance
distribution for small and large firms when compared, respectively, to high
DOL and low DOL firms. This is somewhat unsurprising as many of the high
DOL firms are also classified as small firms. This suggests additional reasons
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for the impact we demonstrate. Firstly, large firms are more likely to have bet-
ter channels through which to manage dairy market risk, particularly through
more diverse portfolios of activities and more sophisticated use of market risk
strategies. Secondly, large firms have much greater negotiating powers on both
the supply side and demand side. Small firms, on the other hand, are at a com-
petitive disadvantage in this respect. The dairy supply chain is characterised
by upstream operators (milk producers) and downstream operators (retailers)
who exert, through marketing contracts, both price- and quantity-based pres-
sure on dairy transformers. In such a context, it is probably just the largest
dairy companies who can cope with the growing bargaining power of retailers
(Borodin et al., 2016). Loy et al. (2015) discuss how prices adjust for dairy
products in retailers as a result of these European dynamics.

4.2. Model misspecification and model comparison

The previous section underscores our argument for the use of the MIDAS
Quantile model to better understand the operational performance distribution.
Now we more formally examine the specification of the MIDAS Quantile
model, ideally with benchmarking against alternative model specifications.
We perform model misspecification tests for the MIDAS Quantile regressions
across all firms and sub-groups of firms. We also report comparisons with rea-
sonable alternative models; namely, a MIDAS model without quantiles and a
quantile regression model without MIDAS. These results support the strength
of the MIDAS Quantile approach.

Looking first at the misspecification results in Table 3, which are reported
for OI scaled by assets, we see the findings of the test developed in Section 2.
This is an in-sample verification of the multivariate joint distribution of the test
of high-frequency dairy data and low-frequency performance data. The scores
for the MIDAS quantile model are comfortably above the 5 per cent signifi-
cance level for all groups of firms, suggesting the model has strong in-sample
specification.

When we examine the model comparisons tests, we make some observa-
tions. The first observation is that there is a large drop in p-values for the
MIDAS Quantile in the model comparison tests for all firm categories. As
noted in Section 2 the model comparison method imposes a limitation on
the MIDAS Quantile, in that in order to allow comparability with the lower-
frequency quantile model, the method marginalises the effect of using high-
frequency dairy prices and margins, which is a core strength of the MIDAS
Quantile approach. This imposed limitation explains the drop in p-values for
certain categories and shows the importance of the MIDAS component in
explaining operational performance.

A second observation is made when comparing the MIDAS Quantile, albeit
in reduced form, with the separate MIDAS and quantile regressions. We see
evidence that aligns with our observations from the previous section. The
MIDAS Quantile model can be seen to be well specified for all groups. Sec-
ondly, while the alternative MIDAS and quantile models are also deemed well
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Table 3. MIDAS Quantile model: Model misspecification test and model comparison

All Large Small Low DOL High DOL

OI/Assets
Misspecification 0.735 0.775 0.715 0.69 0.645
Model comparison:
MIDAS Quantile 0.29 0.225 0.3 0.32 0.14
MIDAS 0.1 0.535 0.145 0.26 0.04
Quantile 0.275 0.32 0.06 0.355 0.05

Note: Reports p-value associated with the MIDAS Quantile misspecification test as developed in Section 2. The
table also reports p-values from model comparison tests following Rothe and Wied (2013) with alternative models
of MIDAS and Quantile regressions. Three comparative models are included: (1) a MIDAS Quantile model, except
without lagged values; (2) a MIDAS model, estimated on mean values rather than quantiles; (3) a Quantile model,
without MIDAS weighting of dairy prices and margins.

specified for large and low DOL firms, this is not the case for small and high
DOL firms. Indeed, the quantile model can be seen to be misspecified for small
and high DOL, while the MIDAS model is misspecified for high DOL firms.
Even in its reduced form, the MIDAS Quantile offers a superior specification.

4.3. Dynamics analysis

We now focus on the dynamics of the dairy firms’ business operations. We
primarily examine the profitability as a function of the DOL. Our analysis,
in contrast to Section 4.1 which examined the tail quantile performances, now
takes the median performance and examines the dynamics of this performance.
To do so, we consider as a proxy of conditional expected profitability, the
weekly estimated conditional median throughout this analysis and compute the
standardised difference between the high and low operating leverage compa-
nies. This provides us with a dynamic representation of expected performance
difference among these two sets of companies over time.

This dynamic study reinforces our results in Section 4.1 by showing that
sensitivity to dairy product pricing (we rely on butter production and its by-
product, SMP) is different for high DOL companies relative to low DOL
companies. Figure 4 indeed shows that in environments with high SMP and
butter prices, and hence high revenues, the high DOL companies tend to out-
perform the low DOL companies. This dynamic is observed in the context that
the relative weight of the fixed costs (for example large productive investment
expenses) is proportionally less important for high DOL companies, hence a
better profitability. This aligns with our previous claim that the risk profile of
high DOL companies is directly linked to the butter margin.

Another core finding is that the way dairy by-products evolve relative to
each other also plays an important role in these firms’ relative performance.
Following the recent decoupling between SMP and butter prices (cf. upper
panel of Figure 5) it is interesting to differentiate two types of high-revenue
environment. First, and as observed before 2017, we see that both SMP and
butter prices spike up simultaneously, following a low production of milk or
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Fig. 4. DOL spread and butter products prices

a positive shock on demands for both by-products. However, in the second
scenario, the high milk equivalent price environment is characterised by a
decoupled evolution of the two by-products, such as recently observed with
historically high butter prices since 2017 driven by strong demand which has
implicitly led to a larger production of SMP without demand to absorb it,
providing downward pressure on SMP prices. To represent these two environ-
ments we computed the price difference between butter and SMP, respecting
the proportion of by-product we obtained from 1,000 kg of rawmilk. The lower
panel of Figure 5 compares this price difference with the high DOL versus low
DOL median performance spread and shows that high DOL companies tend
to underperform when SMP depreciates relative to butter as the firms have
potentially less leeway to adjust their cost of production. Inversely, when the
SMP appreciates relative to butter, companies with high operating leverage
outperform and suffer less from the fixed cost burden.

We suggest that these findings could have important implications for poli-
cymakers deliberating European dairy market supports. Measures such as milk
price floors or production quotas tend to favour high DOL over low DOL com-
panies and could potentially motivate companies to increase their operating
leverage, for instance by investing in fixed assets. The same outcome should
be expected with public interventions directly sustaining the price of the SMP.
On the contrary, any support from the European Commission for the butter
price will be of greater benefit to low DOL companies.

4.4. Additional robustness tests

To support ourmain analysis, we run two further sets of robustness checks. The
first set of checks involves changing the performance measure to a reasonable
alternative. NP is chosen as an appropriate alternative to OI. The results for
NP normalised by assets are reported in Table 4, while the magnitude of influ-
ence of dairy prices and margins on this performance measure are investigated
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Fig. 5. DOL spread and butter products spreads

in Figure 6. There is little notable change in direction in these results com-
pared to the main results. We generally find again a negative impact of milk
on performance, while the products margins have a positive impact. For small
firms and high DOL firms, the magnitudes of the effects are more pronounced.
These observations are made again across the profitability performance distri-
bution underscoring the importance of the quantile component of the MIDAS
Quantile model.

Our second set of robustness tests is reported in Table 5 and involves esti-
mating parameters for dairy price and margin sensitivity over an in-sample
period of 2005Q4 to 2014Q2. We then determine if these estimates hold up
over an out-of-sample period of 2015Q1 to 2018Q4. The reason for this separa-
tion is that in the period 2014Q3 to 2015Q1 two significant operational events
for dairy firms occurred. Firstly, the banning of EU dairy imports into Russia
in September 2014, and secondly, the full lifting of dairy quotas in January
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Table 5. MIDAS Quantile model: Kupiec tests of parameter stability

0.05 0.10 0.25 0.50 0.75 0.90 0.95

OI/Assets
All 0 0 1 1 0 1 1
Large size 0 1 1 1 1 1 0
Small size 1 0 1 1 1 1 1
Low DOL 1 1 1 1 1 1 0
High DOL 0 0 1 0 1 1 1

Note: The Kupiec (1995) framework is used to test the use of MIDAS conditional quantile regression parameters
estimated during the 2005Q4 to 2014Q2 period, in modelling the sensitivity of OI scaled by assets to milk prices
and processing margins, during the 2015Q1 to 2018Q4 period. ‘1’ indicates significant parameter stability at the 5
per cent level. MIDAS Quantile model as per Table 2.

2015. Until 2014, Russia had been a major export destination for European
dairy firms, and while the quota lifting had been clearly signalled in advance of
its implementation, it still represented a significant change in supply dynamics
for the dairy market.

Our testing approach involves Kupiec (1995) tests of the 5 per cent quan-
tile parameters of operating performance estimated during the pre-sanctions
period. In our results, parameters that show significance at the 5 per cent
level are denoted as 1, with other parameters denoted as 0. A 0 indicates that
the pre-event period trained parameters do not effectively estimate the actual
operating performance during the post-event period. The findings in Table 5
show decent parameter stability even during this extreme period. The dynam-
ics of operational performance parameters, as measured by OI/assets, remains
generally consistent. There are a few breaks in parameter stability on the down-
side, but upside performance parameters are generally significantly consistent.
These findings therefore show reasonably consistent parameter estimates from
the MIDAS Quantile model even during an extreme period of operational
volatility.

5. Implications and conclusions

In this study we have shown, for the first time, a direct connection between
dairy prices and margins and the operational performance of European dairy
firms. This connection means that operational performance, right across the
distribution, is influenced by dairy market factors. Firms appear to be inef-
fective in managing this risk, especially small companies with high operating
leverage. We show the advantages of a MIDAS Quantile technique that allows
for extracting information from the weekly and monthly prices of dairy prod-
ucts compared to semi-annual operational performance measures. Parameter
estimates based onMIDASQuantile also have intertemporal consistency, even
in times of operational stress, as illustrated by our successful use of 2005–2014
estimates for the 2015–2018 period. This was a period with significant changes
in the industry with the imposition of Russian dairy import sanctions and the
lifting of dairy production quotas.
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The MIDAS method therefore has strong benefits as a tool for dairy firms,
enabling them to understand their dairy commodity exposures and manage
these risks in a timely manner. More generally, the technique highlights that
European dairy firms are exposed to dairy product risks that can be managed.
We find this to be pronounced for small firms that lack, in particular, the nego-
tiating power that large firms can exert on both the demand and supply sides
of the value chain. It would be worth exploring whether these risks are accept-
able or whether these risks should be operationally or financially hedged. The
strong exposure of small dairy transformers, in particular, to movements in the
margins for butter are an example of this risk. Butter margins can be partially
hedged through futures on SMP and whole milk powder, but there is little habit
of doing so in Europe due to the prices of dairy products being historically sta-
ble. Yet, the financialisation of dairy commodities and the deregulation of the
European dairy market has created price instability that should be addressed
and managed and is unlikely to become anything other than more significant
over time, especially with new and upcoming EU free trade agreements with
major dairy exporters, such as New Zealand and Canada. The global prices of
dairy by-products and increased protectionism also introduce risk due to the
ability of global shocks to reflect back on performance. This was illustrated
by the imposition of Russian sanctions preventing dairy exports to Russia that
has impacted on European dairy producers since 2014.

We further show that operating leverage (DOL) matters for dairy firms in
Europe. Firms with a high DOL, signifying lower operational flexibility, are
vulnerable to the impact of dairy prices and margins. Such firms are more
exposed to the negative impacts of milk prices, while their fixed-variable cost
structure can benefit from the widening of product margins. Consideration
could be given to adjusting such cost structures to better suit the new reality of
volatile underlying prices. This highlights the importance of both looking at a
MIDASweighting of input prices and also of examining quantile performance.
A major finding of this study is the variation of influence across quantiles.

There are some limitations to this study, the first of which is that we mainly
study a small subset of European dairy firms; those that are listed on a stock
market. A more detailed examination of further dairy firms would allow for a
wider understanding of the extent of operational exposure of the broader set
of dairy firms to dairy commodity risk, although data constraints are an issue.
We also do not have much public information on the extent to which Euro-
pean dairy firms are using flexible contracting with suppliers and consumers
to manage these risks, and that would be useful to understand in order to gauge
how firms are starting to manage this new set of market and operational risks.
Related to this, more direct information on specific firm impacts of shocks and
innovations in the industry would be useful for firm-specific modelling.

A last issue that would be pertinent to understand is whether the newly
developed European dairy commodity futures market can offer sufficient depth
and liquidity to financially hedge dairy risk. The use of such hedging is becom-
ing common in other major dairy markets such as the USA and New Zealand,
but European dairy futures are very much in their infancy and might need to
develop substantially to meet the demands of a newly volatile European dairy

D
ow

nloaded from
 https://academ

ic.oup.com
/erae/article/49/1/151/6429331 by guest on 19 February 2022



Commodity risk in European dairy firms 175

industry. Notwithstanding these limitations, we suggest that our study pro-
vides a practical and rigorous framework for understanding the impact of dairy
prices on the performance and risks of dairy firms.
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Appendix A Technical appendix

A.1. Model misspecification test

Towards a test statistic for the misspecification test, we consider the distance between the
empirical joint distribution Ĥ and the estimator Ĥ0 calculated by integrating the conditional
cumulative distribution obtained through the MIDAS quantile regression F̂ (̂f denoting the
associated density) with respect to the marginal distributionG(x) (g denoting the associated
density) of the explanatory random variable X. To account for the full set of high-frequency
observations within the MIDAS quantile regression model, we integrate the conditional
distribution with respect to the weekly covariate observations Xτi,t , i= 1, . . . ,m, within the
t-th semi-annual period. Appealing to the chain rule, the joint density may be decomposed
into the following product of conditional densities:

H 0(y,xτ1:m) =

∫ xτ1

0
· · ·

∫ xτm

0

∫ y

0
h(ω,ζm, . . . , ζ1)dω dζm . . .dζ1 (A1)

=

∫ xτ1

0
· · ·

∫ xτm

0

∫ y

0
f(ω|ζm, . . . , ζ1)gm|m−1:1(ζm|ζm−1, . . . , ζ1)

. . .g(ζ1)dω dζm . . .dζ1 (A2)

where, for example, the notation gm|m−1:1 is introduced to define the conditional probability
distribution of xτm given the high-frequency explanatory variables observed within a given
semi-annual period xτ1:m−1 = xτ1 , . . . ,xτm−1 . Defining 1{·} to be the indicator function, we
can then write the joint cumulative distribution as:

H 0(y,xτ1:m) =

∫
· · ·

∫
F(y|ζm, . . . , ζ1)1{ζm ≤ xτm} . . .1{ζ1 ≤ xτ1}

gm|m−1:1(ζm|ζm−1, . . . , ζ1) . . .g(ζ1) dζm . . .dζ1.
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This can then be discretised for the weekly covariate observations Xτi,t , i= 1, . . . ,m

within each of t= 1, . . . ,n semi-annual periods, to give:5

H 0(y,xτ1:m) =
n∑

tm=1

· · ·
n∑

t1=1

F(y|Xτm,tm
, . . . ,Xτ1,t1

)1{Xτm,tm
≤ xτm} . . .1{Xτ1,t1

≤ xτ1}

gm|m−1:1(Xτm,tm
|Xτm−1,tm−1

, . . . ,Xτ1,t1
) . . .g(Xτ1,t1

).

Note that to distinguish the layered summations, we subscript the semi-annual period
index t with a weekly index j such that tj = 1, . . . ,n refers to week j in each of the semi-
annual periods. If we denote Xτ1:m,t = Xτ1,t , . . . ,Xτm,t and assume that the observations are
not time independent, we can demonstrate, for instance for the first conditional density
above, that gm|m−1:1(Xτm,tm

|Xτm−1,tm−1
, . . . ,Xτ1,t1

) equals 1 when t1 = · · ·= tm, i.e. when the
sequence is as observed within a given semi-annual period, and 0 otherwise. This follows
from the fact that it is only on one occasion in our sample, i.e. for semi-annual period t, that
we obtain the value Xτm,t given the sequence of high-frequency data Xτm−1,t , . . . ,Xτ1,t . This
same logic follows for the subsequent conditional probabilities.

We thus obtain the estimates of the joint distribution Ĥ0
n :

Ĥ0
n (y,xτ1:m) =

∑n
t=1 F̂(y|Xτm,t , . . . ,Xτ1,t)1{Xτm,t ≤ xτm} . . .1{Xτ1,t ≤ xτ1}

n
(A5)

where we subscript H with n to emphasise the dependency on the number of semi-annual
periods, and the estimated conditional cumulative density F̂(y|Xτ1:m,t) can be expressed as
the integration of the quantile regression function using a change of variable:

F̂(y|Xτ1:m,t ;Θ̂) =

∫ 1

0
1{α̂(u)+ β̂(u)

m∑
i=1

B(i; θ̂(u))Xτi,t ≤ y} du (A6)

where we let Θ̂u = {α̂(u), β̂(u), θ̂(u)} be the set of hyperparameters estimated for each
u-quantile regression with u defined over [0,1], such that Θ̂= (Θ̂u)u∈[0,1], and where
we retain the positive beta lag function B(i;θ) as suggested by Ghysels, Santa-Clara and

5 Given the observations (Xi)i=1,...,n of a d-dimensional random vector X = (X1, . . . ,Xd) ∈ Rd

with a joint distribution µ, the k-element empirical marginal distribution function Fkn (x) based
on the observations Xi = (X1i, . . . ,Xdi) is provided by:

Fkn (x) =
1

n
card{i ≤ n : Xki ≤ x}

=

∑n
i=11{Xki ≤ x}

n
(A3)

while the empirical joint distribution Fn(x) of x ∈ Rd is defined as:

Fn(x) =
1

n
card{i ≤ n : Xi ≤ x}

=

∑n
i=11{X1i ≤ x} . . .1{Xdi ≤ x}

n
. (A4)
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Valkanov (2006). Moreover, Ĥ0
n (y,xτ1:m) verifies the asymptotic properties defining a joint

cumulative distribution:

lim
y,xτ1:m→∞

Ĥ0
n (y,xτ1:m) = 1, lim

y,xτ1:m→−∞
Ĥ0

n(y,xτ1:m) = 0. (A7)

With the model-derived cumulative distribution function established, we now build the
empirical cumulative distribution function through the following summation:

Ĥn(y,xτ1:m) =

∑n
t=11{Yt ≤ y}1{Xτm,t ≤ xτm} . . .1{Xτ1,t ≤ xτ1}

n
. (A8)

Finally, with these definitions in place, we can now define the quantile regression
adapted test statistics Tn underlying our misspecification test. Aligning with the Cramer–
von Mises concept of distributional distance, this test statistic is given by:

Tn = n
∫ (

Ĥ0
n (y,xτ1:m)− Ĥn(y,xτ1:m)

)2
dĤn(y,xτ1:m)

=
n∑

t=1

(
Ĥ0

n (Yt,Xτ1:m,t)− Ĥn(Yt,Xτ1:m,t)
)2

. (A9)

A.2. Model comparison

Comparing the results of the misspecification test as applied to the MIDAS quantile
regression, with the analogous results of the misspecification test as applied to the quan-
tile regression, and the dimensionally reduced MIDAS regression and MIDAS quantile
regression models, provides some important insights.

The misspecification test offers interesting advantages provided that we can assess, for
each model, a distance based on the same density of the probability measure Ĥn(y,x), with-
out making any assumption about the original data-generating processes. The distances
measured between the empirical joint distribution and any parametric model implied that
multivariate probability distribution are comparable as long as the same marginal joint
distribution can be estimated through each parametric model. We proceed with the tech-
nical details pertaining to the dimensional reduction required around the MIDAS quantile
regression and MIDAS regression models.

We begin with the MQ regression. The associated joint distribution is defined as:

H 0
MQ(y,xτ1:m) =

∫ xτ1

0
· · ·

∫ xτm

0

∫ y

0
f(ω|ζm, . . . , ζ1)gm|m−1:1(ζm|ζm−1, . . . , ζ1)

. . .g(ζ1)dω dζm . . .dζ1.
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We can shrink this expression to a low-dimensional joint distribution by marginalising
the high-frequency components of the MQ joint distribution:

H 0
MQ(y,x) =

∫ y

0

∫ x

0
f(ω,ζm)dζm dω

=

∫ y

0

∫ x

0

∫
· · ·

∫
f(ω|ζm, . . . , ζ1)gm|m−1:1(ζm|ζm−1, . . . , ζ1)

. . .g(ζ1) dζ1 . . .dζm−1 dζm dω (A10)

=

∫ yt

0

∫ xt

0

n∑
t1=1

· · ·
n∑

tm−1=1

f(ω|ζm,Xτm−1,tm−1
, . . . ,Xτ1,t1

)

gm|m−1:1(ζm|Xτm−1,tm−1
, . . . ,Xτ1,t1

) . . .g(Xτ1,t1
)dζm dω

=
n∑

t1=1

· · ·
n∑

tm=1

F̂MQ(y|Xτm,tm
, . . . ,Xτ1,t1

;Θ̂MQ)gm|m−1:1(Xτm,tm
|Xτm−1,tm−1

, . . . ,Xτ1,t1
)

. . .g(Xτm,tm
)1{Xτm,tm ≤ x}

=

∑n
t=1 F̂MQ(y|Xτm,t , . . . ,Xτ1,t ;Θ̂MQ)1{Xτm,t ≤ x}

n

where F̂MQ(y|Xτm,t , . . . ,Xτ1,t ;Θ̂MQ) is the MQ-based conditional cumulative distribution,
and the final result follows from our observation in the previous section that the conditional
densities are equal to 1 when the sequence is as observed within a given semi-annual period,
and 0 otherwise.

We can do similarly for the MIDAS (M) regression model. We follow the same steps
and marginalisation technique, which leads to the following expression:

H0
M(y,x) =

∫ y

0

∫ x

0

∫
· · ·

∫
f(ω|ζm, . . . , ζ1)gm|m−1:1(ζm|ζm−1, . . . , ζ1)

. . .g(ζ1) dζ1 . . .dζm−1 dζm dω (A11)

=

∑n
t=1 F̂M(y|Xτm,t , . . . ,Xτ1,t ;Θ̂M)1{Xτm,t ≤ x}

n

where the conditional density amounts to the properly shifted distribution retained for the
innovation term, which in our case is assumed to be Gaussian. Accordingly, we can write
the expression of the conditional cumulative distribution as:

F̂M(y|Xτm,t , . . . ,Xτ1,t ;Θ̂M) =

∫ y

0
ϕ(ω; µ̂M, σ̂M)dω

where ϕ is the normal density with (i) mean

µ̂M = E[y|Xτm,t , . . . ,Xτ1,t ] = α̂M + β̂M

m∑
i=1

B(i;θM)Xτi,t

whereB(i;θM) corresponds to the beta lag function and (ii) standard deviation σ̂M associated
with the white noise of our MIDAS model, estimated using the overall data sample.
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In the case of the quantile (Q) regression model, we are of course already working with a
low-dimensional joint distributionHQ

0(y,x), associated with the quantile-regression-based
conditional distribution F̂Q (with associated density f̂Q) such that:

H0
Q(y,x) =

∫ y

0

∫ x

0
f̂Q(ω|t0)g(t0)dt0 dω

=

∑n
t=1 F̂Q(y|Xt,Θ̂Q)1{Xt ≤ x}

n

where

F̂Q(y|x,Θ̂Q) =

∫ 1

0
1{αQ(u)+βQ(u)x≤ y} du.

We can then compute the statistic Tn associated with each of these models using the
dimensionally reduced version of (A9), while the critical values are estimated for each
model following the same bootstrap method as in Rothe and Wied (2013). We can compare
the standardised performances of the models through the resulting p-values from the mis-
specification test. This allows us to ascertain the performance of the dimensionally reduced
MIDAS quantile regression model relative to the dimensionally reducedMIDAS regression
and the standard quantile regression models. More insight is gained, however, by means of
comparing these p-values with the corresponding p-value from the misspecification test
applied to the full MIDAS quantile regression model. When the p-values are both above
the Rothe and Wied (2013) 5 per cent significance level and are comparable in terms of
magnitude, this suggests that there may not be much merit to extending to the more com-
plex MIDAS quantile regression specification. On the other hand, when the p-value of the
MIDAS quantile regression is higher, this suggests that jointMIDAS and quantilemodelling
is important.
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