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Abstract
Jaime Boanerjes Fernandez Roblero

Moving Object Path Prediction for Traffic Scenes

Accurate and efficient inference and prediction are important elements in
intelligent systems. Knowing in advance the behaviour of an entity, such as the
price of a product in the future, the weather in the next few days or the position of
an object in the near future, is important for several applications like stock
market, weather forecasting, robotics and more recently for autonomous vehicles.
The aim of this work is to investigate and develop a novel approach for predicting
the path of moving objects such as pedestrians and vehicles in the context of
ego-cameras, like those mounted on a vehicle or a person. Due to the sequential
nature of the data presented in paths, Recurrent Neural Networks (RNNs) are
exploited, specifically Long Short-Term Memory Networks (LSTMs), due to their
ability to process this type of data. LSTMs have the limitation of only predicting
a single path per tracklet. Path prediction requires predicting with a level of
uncertainty. Predicting multiple future paths instead of a single one is therefore a
more realistic manner of approaching this task. In this work, predicting a set of
future paths with associated uncertainty was achieved by combining LSTMs and
MDNs. One of the objectives of this work is to include more information than
simple position in the path prediction task, such as velocity of the ego vehicle and
contextual information of the surroundings. Though the main interest of this work
is on egocentric cameras experiments were also conducted using fixed cameras for
a surveillance perspective. Two public datasets were used: KITTI and CityFlow.
In summary, this thesis extends moving object path prediction methods in the
context of traffic scenes for objects such as pedestrians, vehicles, cyclists.
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Chapter 1

Introduction

1.1 Chapter Overview

This chapter provides a general introduction to this thesis, presents the motivation

and states the purpose of this research. Section 1.2 presents the motivation behind

this research. Section 1.3 gives an overview of the problem of path prediction.

Section 1.4. presents the main objective of the work. Section 1.5 Lists the

hypotheses and research questions derived from the previously reported works on

path prediction. Section 1.6 describes the research contributions. Finally, section

1.7 outlines the organisation and structure of this thesis.

1.2 Motivation

Road traffic collisions are an important cause of death and disability worldwide.

Every year around the world 1.2 million people are killed and up to 50 million are

injured or disabled as a result of road traffic collisions [9, 21, 82]. According to

a recent technical report by the National Highway Traffic Safety Administration

(NHTSA), 94% of road accidents are caused by human errors [123].

Autonomous vehicles are becoming a reality. Automobiles equipped with

ADAS (Advanced Driver Assistance Systems) and sensors such as cameras, radars

and LIDARs are now common place, as shown in the Figure 1.1. Many of the

accidents on the road can be avoided or at least can be mitigated by acting seconds

in advance [30]. For this reason, safety on the road is one of the main objectives in
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the development of ADAS. Predicting where a pedestrian or a vehicle will be in

the near future in a scene, termed path prediction in this thesis, can provide useful

information that allows for an ADAS to react in those seconds. Advances in

computer vision and machine learning techniques can help to improve prediction

accuracy, efficiency and speed. In this research, these new techniques will be

leveraged to create a novel approach for path prediction in moving cameras.

Figure 1.1: Sensors on a vehicle [26]

1.3 Path Prediction Overview

Advanced Driver Assistance Systems (ADAS) refer to those systems that provide

aid to a driver at a certain level [35, 96]. For instance, at a low level of automation

(e.g., Level 1 and 2), ADAS can warn a distracted driver that a pedestrian or a

vehicle is approaching the front on the vehicle. At a higher level (e.g., Level 3 or

4), ADAS activates the brakes of the vehicle with the purpose of avoiding or

mitigating the collision. In order to act, ADAS require awareness of the

surrounding scene. For that reason, nowadays vehicles are also equipped with
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sensors such as cameras, radars and LIDARs. Amongst these, because of the low

cost and the richness of information it can offer, the camera is becoming the most

important sensor and a significant amount of research papers are based on visual

information. Prediction is a task that refers to the process of knowing in advance

the behaviour of an entity such as the price of a product in the future, the weather

in the next few days or the position of an object in the near future. Predicting

future behaviour is important for several application like the stock market [10],

weather forecasting [20], robotics [24] and more recently for autonomous

vehicles [41]. Autonomous navigation requires accurate and detailed models of the

static and dynamic environment where the vehicle is moving. Significant advances

has been achieved in scenarios free of moving (dynamic) objects such as in

robotics. In contrast, environments with moving objects, for instance pedestrians

cars, and cyclists, still pose significant challenges for navigation [37, 17, 7].

Techniques for vehicle and pedestrian detection have also made significant progress

in recent years, see 1.2, and methods that allow for the detection of these are

increasingly reliable [34, 23, 26]. Detection of moving objects is useful in order to

be aware of the surroundings of a vehicle since this information cannot be

captured by a static road map.

Figure 1.2: Object Detection and Tracking

Path prediction refers to predicting the possible trajectory that an object could

follow in the future and thus determine its future location. Much research has been

conducted on static cameras like those used in surveillance videos. However, working
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with cameras located on a mobile platform, for example on a vehicle, a robot or a

person poses several challenges including the movement of the platform where the

camera is mounted, dynamic background, shorter observed paths.

The approaches developed to address the problem of path prediction from a

moving platform can be classified according to the type of information considered

and the assumptions made when developing the approach. From the simplest to the

most complex, the following classification approaches can be used: physical-based,

manoeuvre-based and interaction-aware [41]. Physical-based approaches only take

into account basic information such as the observed previous location of the object

and its velocity. Manoeuvre-based approaches first classify the action that the object

is likely to carry out, e.g. stopping, accelerating. Given this, these approaches

assume that the next action will match the current manoeuvre. Finally, interaction-

aware approaches take into account both the object as an isolated identity and also

how its action and the action of other objects will affect its possible future path.

Several techniques are commonly used to process the data required in each

approach, from the well-known Kalman filter [91] to more complex machine

learning techniques. Most recently, deep neural networks are being used to capture

and process all the information in an end-to-end architecture. The more

information included in an approach the more reliable the result is likely to be.

My research is based on the premise that whilst knowing where an object is

currently located is already useful, predicting its location in the future is of great

importance for autonomous vehicles for safe and efficient driving. It is also necessary

for many Advanced Driver Assistance Systems (ADAS) where both the trajectory of

the ego vehicle ( vehicle equipped with the ADAS and sensors) and the trajectory of

other objects on the road have to be predicted. Whilst considered within the context

of ADAS in this thesis, path prediction has many other applications, for example,

in assistive technology such as navigation aids for blind people to avoid collision.

Considerable research has been done in tracking moving objects or predicting a

path using static or fixed cameras, e.g., in surveillance [58, 62, 69]. However, in this
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research the main focus is on egocentric, moving cameras, such as those mounted

on a vehicle or a person. In addition, an holistic approach is targeted to incorporate

more information in the prediction task – information such as the object type, ego-

motion, a segmented map of the road to know where an object is located or data

about its surroundings in the prediction task. Finally, different to several works on

intent or behavior prediction, which can be modeled as classification problems, i.e.

crossing, stopping, our main objective is to predict future path (x, y) positions for

the target object, which is a regression problem. In this research the term tracklet

,tr, as explained in 2.2.4 Tracklets, will be used to refer to the past or prior spatial

trajectory of a moving object as in [99] and [85].

1.4 Objective

The objective of this research is to develop a novel technique to accurately predict

the Average Displacement Error (ADE) and Final Displacement Error (FDE) of the

probable path of moving objects, such as pedestrians and vehicles, based on data

from egocentric cameras from a moving vehicle and incorporating contextual map

data.

1.5 Hypotheses and Research Questions

The hypothesis of this research is specified as follows: LSTMs are an effective tool

for path prediction and existing work can be extended to predict multiple paths and

to include contextual information, creating a holistic approach leading to improved

performance in terms of ADE and FDE.

To investigate the hypothesis, the following questions are considered:

• Q1 How should the observed object position (tracklets) be best

represented? In this research, the prediction of the future path of a moving

object is based on its past observed path (tracklets) along with more

information of the scene (context) where this prediction is happening. This
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first research question aims to investigate how positional information can be

best represented to be fed to our LSTMs-Based approach. RQ1 question was

analysed in chapter 2, and explored and evaluated in chapter 3. From

chapter 2 and 3 it was evidenced that representing the position of objects as

time series and as Relative Tracklet Position (RTP) was suitable to predict

the future path of an object. Furthermore, in chapter 6 was concluded from

section 6.7 Exploration of multimodal features that representing the object

position first in a latent space led to error reduction.

• Q2 How can LSTMs be extended to predict multiple paths?

Predicting a set of paths with associated uncertainty is a more realistic way

of predicting the future position of objects instead of a single one. LSTMs

are only able of predicting a sigle path per observed tracklet, because of that

this research question aims to explore a way to extend LSTMs to predict a

set of paths. RQ2 is initially explored in chapter 4, where a study of several

variants of LSTMS was performed on predicting the future path of objects in

traffic scenes, this with the objective of understanding their behaviour and

the way in which each variant processes the input sequential data. RQ2 was

also studied in chapter 5 where LSTM architectures are successfully used

along with MDN (Mixture Density Networks) for predicting a set of paths

per observed tracklet along with its associated uncertainty.

• Q3 Are Long Short-Term Memory (LSTM) architectures suitable

for sequential and enriched trajectory information? LSTMs have

shown good performance when dealing with sequential information such as

time series. However, this research aims to include contextual information

such as visual features, ego-vehicle information, other objects position

leading this way to a holistic approach. The purpose of this RQ3 is to

evidence that LSTMs are able to process all these type of information. The

initial exploration of LSTM architectures was done in chapter 3, where a
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single-shot approach was developed using object position only. RQ3 is

explored in chapter 5 and more deeply in chapter 6. In chapter 5, an initial

exploration of adding more features to the tracklets was done showing that

these extra features improved the overall performance of the model. Finally,

in chapter 6, a more complete exploration was done by adding additional

contextual features to the tracklets. Starting from only using object position

to using visual-object (images) features, ego-vehicle information, other object

position, and scene-image features different combinations were evaluated.

The results showed that LSTMs models are able to process sequences of

enriched trajectory information.

• Q4 How can contextual information of a scene be used to improve

path prediction results over only using x, y positional features? How

to process/fuse the available features inside a model is an important point

when trying to use different type of information. The fact that a set of

features does not lead error reduction does not mean this set is not working,

the reason could be the way this set of features are being fused inside a

model. This research question aims to find a way to best fuse contextual

features for the path prediction task. RQ4 was deeply explored in chapter 6

where additional features describing the environment were included using

different fusion strategies. Three fusion strategies were evaluated – Early

fusion of raw features, Early fusion of latent space features, and Middle

fusion of latent space features. An interesting observation here is that both

the information available and the fusion method are highly important. This

was observed in each combination where using middle fusion on latent space

features leads to better performance.

1.6 Research Contributions

The novel contributions of this work are:
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1. Thorough evaluation of different variants of LSTM models to understand

their behaviour and performance on the task of predicting the future path of

three different objects – pedestrians, vehicles and cyclists on four prediction

horizons.

2. Proposing the use of LSTMs with MDN to predict multiple paths with

associated uncertainty.

3. Extensive exploration combining several contextual features in traffic

scenarios to assess their impact in the path prediction task against only

using x, y positional information.

4. Exploration of different fusion strategies to evaluate their performance gain in

the overall prediction task.

5. Proposing an end-to-end architecture to represent and fuse contextual

information normally present in traffic scenarios to predict the path of

moving objects using LSTM and CNN architectures.

6. Improvement of the performance of individual models in path predictions by

building ensembles.

1.7 Thesis Outline

The overall structure of the thesis takes the form of seven chapters organised as

follows.

Chapter 2 describes the necessary technical background and presents a

comprehensive summary of the related work on the field of path prediction. The

chapter begins by laying out the theoretical dimensions of the research with some

important preliminary concepts such as a formal definition of tracklets, semantic

information, local dynamic map. The chapter also analyses the state-of-the-art

works presented in the literature, and finally the chapter presents a description of

the datasets and the evaluation metrics used in this research.
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Chapter 3 presents the evaluation of the performance of two baseline

methodologies specifically the Kalman Filter and the vanilla LSTM. This chapter

also presents the experimental methodology followed to process the data in order

to be able of predicting a future path.

Chapter 4 presents an evaluation study of several RNNs variants on the path

prediction task. The chapter begins by explaining the motivation of this study. It

then goes on to a description of the RNNs variants used. Finally, the evaluation

performance of the models is presented along with a discussion on the results

obtained.

Chapter 5 describes the use of Mixture Density Networks for prediction of

multiple paths. The chapter begins by explaining how to overcome the problem

of only predicting one path per tracklet. The following part explains the model

architecture used along with the process followed to extract the multiple paths from

the output of the network. It finishes by presenting the evaluation results.

Chapter 6 presents a novel approach to path prediction using contextual

features to enrich the training information for path prediction. It starts by stating

the reason for using enriched tracklets. The contextual features used are then

explained. Following this, the methodology is discussed along with the objective

model to be developed. Finally, the results obtained along with a detailed

discussion is presented.

Chapter 7 concludes this thesis by summarising the research methodology,

discussing the solutions to the research questions, highlighting the contributions,

and providing future directions of research based on the learnings arising from the

research carried out.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter describes the technical background of this research and presents a

comprehensive summary of the related work in the field of path prediction. The

chapter begins by laying out the theoretical dimensions of the research with some

important preliminary concepts such as a formal definition of tracklets, semantic

information, local dynamic map and other key terms in Section 2.2. Section 2.3

describes important techniques in path prediction. Section 2.4 analyses the state-of-

the-art work presented in the literature. Section 2.5 describes the available datasets.

Section 2.6 describes the evaluation metrics used in this research and Section 2.7

discusses the overall state of path prediction from moving cameras. Finally, in

Section 2.8 a summary is given.

2.2 Preliminary Concepts

2.2.1 Ego vehicles

Ego vehicle or ego car is a term that is widely used in intelligent transportation and

autonomous vehicles literature to refer to the vehicle that is carrying the sensors and

any intelligent processing systems [123, 43]. The ego vehicle is the centre of attention

and the scene is observed from its perspective. This research focuses on predicting

the paths of the moving objects around an ego vehicle and not on predicting the

path of the ego vehicle itself.
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2.2.2 Egocentric Cameras

The reduction in size of cameras allows for them to be carried or installed in almost

any platform such as a wearable on a person or on a mobile platform like a vehicle

or drone [18], Figure 2.1. This type of camera provides a first-person point of

view recording and is the primary type of data used in this research. This is in

contrast to fixed cameras used in applications such as surveillance that operate from

a single view point perspective. Working with egocentric cameras poses a challenge

to the task of path prediction due to the ego-motion. [73] define ego-motion as “the

camera’s motion within an environment, relative to a rigid scene, where the motion

can be 3D”.

Figure 2.1: Mobile platforms with ego-centric cameras [18]

2.2.3 Holistic Approach

When addressing a problem, many approaches focus only on one source of

information when trying to find a solution. In the path prediction research

literature, even when they use different approaches such as the Kalman Filter [33,

40], or LSTM architectures such as Vanilla LSTMs [66], Stacked LSTMs [79, 114],

and Encoder-Decoder Architectures [94] they base the prediction task on only

positional information. However, a holistic approach will try to solve this problem

by taking into account all available information on a scene. In this research, a

holistic approach is used to develop a novel path prediction technique by including
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information such as the visual information of objects, ego-vehicle features, position

of other object on the scene and its surroundings rather than only considering the

position of the moving object in isolation.

2.2.4 Tracklets

A spatial trajectory is a trace generated by a moving object in space [56], usually

represented by a series of chronologically ordered points, p, p1, p2, ···, pn, where

each point consists of a spatial coordinate set and a time stamp:

p = (x, y, t) (2.1)

where x, y are Cartesian coordinates and t indicates the point in time or

timestamp (absolute, relative or frame number). In this research the term tracklet

,tr, is used to refer to the past or prior spatial trajectory of a moving object as

in [99] and [85]. Example of complete trajectories (composed of tracklets) in

different contexts are depicted in Figure 2.2 and Figure 2.3.

Figure 2.2: Trajectory generated by
GPS tracking devices [86].

Figure 2.3: Trajectory generated from
camera device [86].

2.2.5 Path as Time Series

A path P is a set of tracklets, tr, that contains information such as tr(x, y) position

(coordinates) of an object that travels a given space, P = {trt1, trt2, ......, trtlength}.

Each tr is a measure given for a sensor in intervals of time and in an ordered manner,

tr(x, y, time). This means that a path is a sequence of measurements of the same
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variable collected over time, where the order matters, resulting in a time series.

Because of this, a path can be seen as a multivariate time series that has two time-

dependent variables. Each variable depends on its past values, and this dependency

is used for forecasting future values. So the task of path prediction can be seen as

forecasting a multivariate multi-step time series, Figure 2.4.

Figure 2.4: Path as time series prediction

2.2.6 Sliding Window

Looking at a path as time series data, it can be processed with the sliding window

method to extract the observed trO and ground truth tracklet trG segments that can

be used to train a sequential model. This method consists in splitting the sequence

data in fixed-length segments by a fixed-length time window that advances one step

at time along the sequence, as depicted in Figure 2.5. trO is the input data to fit

the model and trG is the target output of the model.
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Figure 2.5: Using sliding window to construct supervised learning examples from a
path seen as time series data. Blue: observed tracklet. Red: ground truth tracklets.

2.2.7 Image Coordinates and 3D Information

An image coordinate is the position of the object in the 2D plane of an image. These

are given in pixels as (x, y) points. KITTI, one of the data sets used in this research

(see Section Traffic Datasets), gives the bounding boxes of the objects in this plane

as (x1, y1, x2, y2).

3D information refers to the position of the objects in the real world with respect

to the camera. KITTI provides this information as the position in x, y, z along with

the dimensions of each object height, width and length – (x, y, z, h, w, l). These

measurements are given in metres. In this research, this information was leveraged

to create a “birds-eye view” (BEV) of the objects to consider their positions in 3D

space. The BEV is created as it gives a better understanding of the position of the

objects on the Z axis (depth positional information), and the X axis(lateral position

). In other words, it gives the positional information of the objects standing on the

ground. Fig. 2.6 depicts the objects of a selected frame in both image coordinate

and BEV with the object class label number and object identifier number.
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Figure 2.6: Image coordinate (top) and bird’s-eye view (bottom) perspective with
the class label and object identifier.

2.2.8 Semantic or Contextual Information

Semantic or contextual information refers to all types of information about the

surrounds of the ego vehicle and the object whose path is being analysed and

predicted. The increasing availability of sensors on vehicles and the technology to

process the data coming from them, enables a range of information to be reliably

detected and classified. This information includes [103]:

• Static: road lanes, traffic lights, signs and buildings..

• Temporary: weather, object velocity, orientation.

• Dynamic: pedestrians, cyclists, other vehicles in a scene.

• Geographical and Local context: GPS, road map, urban/rural.
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In a scene, when trying to predict the future path of an object, all these types of

information that surround an ego vehicle can be used together as a whole to create

a more robust approach (holistic) that leverage the relationship of all these features.

2.2.9 LDM (Local Dynamic Map)

LDM, which is now being standardized in Europe, is an aggregation of data for

use by cooperative ITS (Intelligent Transport Systems) [53]. It adopts a four-layer

model as shown in Figure 2.7. The first or bottom layer consists of static data such

as road data, the second layer consists of static data such as signals not included

in map data, the third layer consists of data such as congestion and other traffic

conditions, and the fourth or top layer consists of dynamic data such as automotive

sensor information [53]. In this work we focus on using information that belong to

the fourth layer, which is information obtained by means of sensors such as cameras.

Figure 2.7: The four layers of the LDM [53].
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2.2.10 Sequential and Enriched Tracklet Information

Sequential information, such as time series or a path created by the spatial location

visited by an object, have an important characteristic: they are time dependant.

In other words, they are a sequence taken at successive equally spaced points in

time and have an order. Considering a path specifically, this is a set of tracklets

,P = {trt1, trt2, ......, trtlength}, representing the past location of an object in a given

space. These paths normally are characterised by tr(x, y, time) position at a given

time. However, with the availability of semantic and contextual information these

tracks can be enriched by adding more features such as the orientation, velocity

or where the object is located in the scene, and its surroundings. Enriched tracks

represent the fusion of different sources of information. A challenge in getting this

fusion of information is the synchronization of all different sources. At a sensor

level, the synchronization is difficult due to the the timestamp (frequency) at which

each sensor sample a signal from a scene. At a feature level, as these features are of

different types and are not normally used together, they have to be first linked to

belong to the same timestamp in a scene.

2.3 Important Techniques in Path Prediction

This research work makes use of some existing approaches in the literature of path

prediction and computer vision to create an holistic path prediction approach able

to input and fuse different type of information. The exploration started from the

Kalman filter that help us to understand the processing of sequential x, y

positional information (trackelts) as time series and predict the next position in

the sequence. Then, this led us to explore more complex architectures called RNNs

(Recurrent Neural Networks) specifically Long Short-Term Memory architectures

(LSTMs) which is a neural network able to process sequential data taking into

account long and short dependencies in the sequence to predict the next n future

positions. While exploring LSTMs it was found that they have the limitation of
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only able to predict one single path per observed tracklet, so in the search for

facing this limitation MDNs (Mixture Density Networks) were found to be suitable

to be used along with LSTMs. This way, the LSTMs gives memory to the input

network to process sequential data and the mixture model contributes to produce

multiple paths with associated uncertainty. Finally as the objective is to create a

holistic approach able to process different type of information including visual

information, Convolutional Neural Networks (CNNs) are used as feature extraction

techniques. These techniques are described in detail in the next sections.

2.3.1 The Kalman Filter

The Kalman filter is a traditional approach widely used for predicting the position

of an object in the near future. The Kalman filter, based on the measurements

given about the position of a given object, is able to modify its internal parameters

during operation and according to that predict the future position, see Figure 2.8.

The Kalman filter model predicts the status of a system according to the previous

state at time t− 1 [25]:

xt = Ftxt−1 +Btut + wt (2.2)

where

• xt is the state vector containing the terms of interest for the system (e.g.,

position, velocity, heading) at time t.

• ut is the vector containing any control inputs (steering angle, throttle setting,

braking force).

• Ft is the state transition matrix which applies the effect of each system state

parameter at time t − 1 on the system state at time t (e.g., the position and

velocity at time t− 1 both affect the position at time t).

• Bt is the control input matrix which applies the effect of each control input

parameter in the vector ut on the state vector (e.g., applies the effect of the
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throttle setting on the system velocity and position).

• wt is the vector containing the process noise terms for each parameter in the

state vector. The process noise is assumed to be drawn from a zero mean

multivariate normal distribution with covariance given by the covariance

matrix Qt.

Figure 2.8: The Kalman filter’s behaviour. Top: Path prediction on image
coordinates. White: actual path. Red: predicted path. Middle-left): Path of the
object on the x axis. Middle-right: Path of the object on the image y axis. Bottom:
Prediction on x, y axis. Blue: Measurements. Orange: Kalman filter prediction and
update.
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In other words, the Kalman filter is an algorithm that uses a series of data

observed over time, which contains noise and other inaccuracies, to estimates future

measurements with more accuracy [50]. Because of its efficiency the Kalman filter

has been used in several application such as navigation [11, 59], object tracking [22,

32] and of course path prediction [33, 40]. Because of its wide application and

availability of information to understand its algorithm, the Kalman filter is used as

a baseline in this research. However due to its limitation to process different type of

information its exploration led us to look for more complex techniques, specifically

Long Short-Term Memory architectures (LSTMs).

2.3.2 RNN and LSTM Architectures

RNN (Recurrent Neural Network) and Long Short-Term Memory (LSTM)

architectures are of special interest to this research, since these types of Neural

Networks are widely used in sequential data problems where observed sequence of

data is processed to predict the next data in the given sequence, so it is important

to have a clear understanding of how they work. Because of that, this section

describe these two types of networks putting more emphasis on LSTMs, which are

leveraged in this research thesis.

Overview

If we are looking at a set of sequences of numbers, i.e. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

, 11, 12], [0, 2, 4, 6, 8, 10, 12], [0, 3, 6, 9, 12] and we want to say what is likely to come

next, this is a prediction problem where for a given number the goal is to predict

the next number in the sequence. For example here, if we only see the number 12

it is difficult to determine what is next, but given some context, looking back in

the sequence, the next number becomes easier and easier to predict as the sequence

is analyzed backwards. Recurrent neural networks (RNNs) and Long Short-Term

Memory Networks (LSTMs) are designed for applications where the input is an

ordered sequence and where data from earlier in the sequence may be important.

RNNs are networks that reuse the output from the previous step as an input for
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the next step. Like a normal neural network the nodes perform a calculation using

the input and returns an output value. In an RNN, this output is used along with

the next element in the sequence as input for the next step and so on.

LSTMs are a type of RNNs that have recurrent nodes but they also have an

internal state. The nodes use this internal state as a working memory space. Which

means that the information can be stored and retrieved over many time steps. In

an LSTM, 1) the input value, 2) the previous output and 3) the internal state are

all used in the node’s calculations. The results of the calculation are used not only

to provide an output value but also to update the internal state. Like any neural

network, LSTMs nodes have parameters that determine how the inputs are used in

the calculation. But LSTMs have parameters known as gates that control the flow

of information within the node, in particular, how much the saved state information

is used as an input to the calculations. The gate parameters are weights and biases,

which mean their behaviour depends on the inputs. For example, an input of 11

does not need much past information as the next number is certainly a 12, but an

input of 6 might need to recall greater examples of past information.

Similarly there are gates to control how much of the current information is saved

to the state and gates that control how much the output is determined by the current

calculation versus the saved calculation. Hence, LSTMs’ nodes are certainly more

complex than the regular Recurrent nodes but this makes them better at learning

the inter-dependencies in sequences of data. This previous description was adapted

from [95].

Recurrent neural networks (RNNs)

Recurrent neural networks are feedforward neural networks augmented by the

inclusion of edges that span adjacent time steps, introducing a notion of time to the

model. At time t, nodes with recurrent edges receive input from the current data

point xt and also from hidden node values ht−1 in the network’s previous state. The

output yt at each time t is calculated given the hidden node values ht. Input xt−1

at time t− 1 can influence the output yt at time t and later by way of the recurrent
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connections [51].

RNNs have been widely used in many sequence-based prediction tasks such as:

handwriting imitation, human gait analysis, human-human interactions. Unlike

traditional multilayer perceptron (MLP) neural networks, traditional RNNs have a

feedback loop connection that can efficiently capture the temporal dependency in

their input time series sequences by maintaining an internal state, called “hidden

unit”, as shown in Figure 2.9 and Figure 2.10. However, traditional RNNs have

difficulties in giving an accurate prediction when it comes to memorizing previous

lengthy sequences. Thus, the Long Short-term Memory (LSTM) RNN architecture

was introduced to help address this problem of traditional RNNs [79].

Figure 2.9: Folded and unfolded representations of RNNs [121].

The simple RNN illustrated in Figure 2.10 can be expressed as follows:

ht = σ(Wxxt +Whht−1 + bh) (2.3)

yt = softmax(Wyht + by) (2.4)

Where xt is the current input vector, ht−1 is the previous hidden state, ht is
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Figure 2.10: Core of a RNN unit.

the current hidden state. Wx, Wh, Wy, bh, by are the weight matrices and variable

biases. σ is the activation function normally a tanh function. yt is the output vector,

which is ht passed through a softmax. [51, 121].

Figure 2.11: Long Short-Term Memory network and LSTM unit [121].

Long Short-Term Memory networks (LSTMs)

While an RNN has internal memory to process sequence data, it suffers from

gradient vanishing and exploding problems when processing long sequences. LSTMs

(Long Short-Term Memory networks) were specifically developed to address this

limitation. Introduced first by [3], several variants were proposed. The “forget gate”
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for example, that was not included in the original architecture was proposed by [5],

and because its use improved the performance of the original LSTMs this gate is

standard in most modern implementations.

LSTM Key Concepts

The term “long short-term memory” comes from the following intuition. Simple

recurrent neural networks have long-term memory in the form of weights. The

weights change slowly during training, encoding general knowledge about the data.

They also have short-term memory in the form of ephemeral activations, which pass

from each node to successive nodes. The LSTM model introduces an intermediate

type of storage via the memory cell. A memory cell is a composite unit, built

from simpler nodes in a specific connectivity pattern, with the novel inclusion of

multiplicative nodes [51].

The main component of LSTMs is the cell state, which is the horizontal line

running through the top of the diagram in Figure 2.11. The cell state transports

information and it is responsible for carrying long-term dependencies or patterns.

It goes straight through the entire LSTM unit, with only some minor linear

interactions. It is by means of these interactions that an LSTM removes or adds

information to the cell state. The interactions are performed by an internal

mechanism called “gates”. As mentioned by [79], each gate is a composition of a

sigmoid neural network layer and an element-wise multiplication operation. The

sigmoid layer converts its input into a value between 1 and 0 – in this way having

the role of a gate. These gates regulate the flow of information and are responsible

for learning which information in the sequence is relevant and should be kept. 1

means that the gate is fully open, so information flows through while 0 indicates

that the gate is closed so information will be blocked.

LSTM architectures

LSTMs employ three gates, including a forget gate, input gate, and output gate,

to modulate the information flow across the cells and prevent gradient vanishing

and explosion [121], as presented in Figure 2.11. The forget gate is responsible for
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deciding which information from the current input and the previous cell state flows

into the current cell state. The input gate is responsible for deciding which values

from current input update the current cell state. The output gate is responsible for

deciding what to output as the next hidden state based on the current input and

the current cell state [79], which is formulated as:

ft = σ(Wf [ht−1, xt] + bf ) (2.5)

it = σ(Wi[ht−1, xt] + bi) (2.6)

C̃t = tanh(WC [ht−1, xt] + bC) (2.7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.8)

ot = σ(Wo[ht−1, xt] + bo) (2.9)

ht = ot ∗ tanh(Ct) (2.10)

where ft, it, ot, C̃t and ct are the activations for the forget, input, output, cell

state candidate and cell state gates at time t respectively. While Wf , Wi, Wo,

Wc, bf , bi, bo, bc are their respective weight matrices and variable biases. xt is the

memory cell input and ht is the next hidden state and final output at time t. σ

represents the activation function sigmoid, and tanh is the activation function tanh.

Intuitively, in terms of the forward pass, the LSTM can learn when to let

activation into the internal state. As long as the input gate takes value zero, no

activation can get in. Similarly, the output gate learns when to let the value out.

When both gates are closed, the activation is trapped in the memory cell, neither

25



Chapter 2. Background and Related Work

growing nor shrinking, nor affecting the output at intermediate time steps. In

terms of the backwards pass, the constant error carousel enables the gradient to

propagate back across many time steps, neither exploding nor vanishing. In this

sense, the gates are learning when to let error in, and when to let it out. In

practice, the LSTM has shown a superior ability to learn long-range dependencies

as compared to simple RNNs [51]. A detailed description of RNNs and LSTMs is

given by [51, 119].

LSTMs step by step

LSTMs process information in four steps that can be termed:

1. Forget: discards irrelevant historical information,

2. Store: keeps relevant parts of new information,

3. Update: using information of the steps one and two, selectively update the

cell state.

4. Output: generate an output.

The first step in an LSTM, as shown in Figure 2.12, is to decide what information

is going to be thrown away from the previous cell state Ct−1. This decision is made

by the forget gate ft. To do that, ft looks at the previous hidden state ht−1 and

information of the current input xt. ft outputs a number between 0 and 1 for each

number in the cell state Ct−1. Remember that a 0 means to forget or throw away

and a 1 means to remember or to keep such information.

The second step, depicted in Figure 2.13, is to decide what new information

is going to be stored in the cell state. This has two parts, first the input gate,it,

decides which values are going to be updated by looking at ht−1 and xt. Next, the

tanh function creates a vector of new candidate values, C̃t that could be added to

the new cell state Ct, by processing the same ht−1 and xt. In the next step, these

two will be combined to create an update to the state.
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Figure 2.12: Long Short-Term Memory network process: step one.

Figure 2.13: Long Short-Term Memory network process: step two.

At this point, the third step has enough information to calculate the new cell

state, Ct. This next step, illustrated in Figure 2.14, is to update the previous

cell state, Ct−1, into the new cell state Ct. First, the previous cell state, Ct−1, is

multiplied by the forget gate, ft, forgetting the things already decided in the first

step. Then, by a point-wise addition, it × C̃t is added to that. Remember, it × C̃t

are the new candidate values, scaled by how much it was decided to update each

state value. This step gives the new cell state, Ct.
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Figure 2.14: Long Short-Term Memory network process: step three.

Finally step four, shown in Figure 2.14, has to decide what is going to be the

next hidden state, ht, and output, yt. This is based on the new cell state Ct,

but is multiplied by the output gate ot. ot decides which part of the new cell

state is going to be the output. First the previous hidden state and current input

information,Ct−1 + xt, are passed to the input gate, ot. Next, the cell state goes

through tanh (to push the values to be between -1 and 1). Then ot and the tanh

output are multiplied to decide which information the next hidden state should carry

and what information is output at that time step. Finally, the next hidden state,

ht, and the new cell state, Ct, are passed to the new time step.

Some important characteristics to remember about LSTMs are that they:

• Maintain a separate cell state from what is output

• Use gates to control the flow of information.

– Forget gate discards irrelevant information from past in the sequence.

– Store gate saves important information from the input at the current

time step.

– Update gate selectively calculates the new cell state.
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– Output gate gives the new hidden state that goes to the next time step

and also say what information is actually output at that time step.

• Perform back-propagation through time with uninterrupted gradient flow by

modulating the information flow across the cells and prevent gradient

vanishing and explosion.

This previous description was adapted from [125, 124].

Figure 2.15: Long Short-Term Memory network process: step four.

LSTM architectures are currently used in areas such as language

translation [45, 51], time series prediction [64, 76] and trajectory prediction [85,

57, 66, 84, 74]. Becase LSTMs are capable of getting information from sequences

and then predicting using that previous information.

To predict the future path of an object in a scene, we have to analyse the previous

information of such object, i.e. previous x, y positions (tracklets) or any available

information around the object as shown in 2.16. Instrumented vehicles provide a

rich set of information that can be leveraged for path prediction. An important

characteristic is that this information is given sequentially in an ordered manner,

this means that the information is time dependant and as such past information

can be leveraged to predict future information (in this case future path of objects).

Due to the characteristics of path prediction data, LSTM architectures are suitable
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to tackle this problem, since this type of networks are able to process sequential

data and leverage information through time, and based on that perform a better

prediction.

As described in this subsection, LSTM architectures are capable of leveraging

past information in a sequence to predict future values, i.e observed past path to

predict a future path. However, LSTMs have the limitation of only able of predicting

a single path per observed tracklet. Regarding that, the next subsection describes

how Mixture Density Network can be leveraged along with LSTMs to be able to

predict multiple paths.

Figure 2.16: Contextual information from Ego vehicle view

2.3.3 Mixture Density Networks

LSTM architectures can only predict a single path per observed tracklet, fortunately

work done on Mixture Density Networks (MDN) can be leveraged to overcome this

limitation.

A Mixture Density Network is a type of network introduced by [2] where that

replaces the Gaussian distribution with a mixture model with the flexibility of
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modeling completely general distribution functions. In this way, the probability

density of the target data is represented as a linear combination of kernel

functions, as illustrated in Figure 2.17.

Since then, Mixture Density Networks (MDNs) have been applied on different

works such as modeling of handwriting [27] or for generation of sketch drawings [71].

At this point MDNs were not combined with standard Neural Networks, such as

a multi-layer perception, but with more complex architectures such as Recurrent

Neural Network (RNN), more specifically with LSTMs. In this way, the LSTM

gives memory to the input network and the mixture model contributes uncertainty

to the output. An interesting work is described in [104] where they generate images

based on a sequence of past observed images using LSTMs and MDNs and also make

a study on the role of the different mixture components.

A highly related work is presented in [114], where the authors predict the

intention of the driver (left, straight, right, u-turn) at 5 determined intersections in

a static birds-eye view by predicting the future trajectories. In the intersection the

possible trajectories of a vehicle are constrained to the five scenes and they apply

clustering to the set of trajectories on the dataset to filter the predictions. In [90]

the prediction is using static cameras, from synthetic test conditions and some real

scenarios, but instead of predicting the intention of the driver they predict the

trajectory of pedestrians.

2.3.4 Computer Vision and CNNs

While LSTMs and MDNs can work with only the x, y positional information of

objects, this research thesis is looking to leverage more data available from

instrumented vehicles. Cameras are one of the common used sensors which

provides images of the surrounding of a vehicle, such information is aimed to be

used to give more context in the path prediction task.

Computer vision has become increasingly important and effective in recent years

due to its wide-ranging applications in areas as diverse as smart surveillance and
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Figure 2.17: MDNs consist of a feed-forward neural network whose outputs
determine the parameters in a mixture density model. The mixture model then
represents the conditional probability density function of the target variables,
conditioned on the input vector to the neural network [2].

monitoring, health and medicine, sports and recreation, robotics, drones, and self-

driving cars. Visual recognition tasks, such as image classification, localization, and

detection, see Figure 2.18, are the core building blocks of many of these applications,

and recent developments in Convolutional Neural Networks (CNNs). Introduced

first by [1], have led to outstanding performance in the state-of-the-art of visual

recognition tasks and systems. As a result, CNNs now form the basis of deep learning

algorithms in computer vision [93]. [44] also evidences how CNNs have shown good

performance on feature extraction for several task such as image classification, fine

grained recognition and attribute detection.
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Figure 2.18: What do we want computers to do with the image data? To look at
the image and perform classification, classification plus localization (i.e., to find a
bounding box around the main object (CAT) in the image and label it), to localize
all objects that are present in the image (CAT, DOG, DUCK) and to label them,
or perform semantic instance segmentation, i.e., the segmentation of the individual
objects within a scene, even if they are of the same type [93].

A convolutional neural network usually stacks a sequence of convolutional

(Conv)-ReLU layers, followed by the pooling layers (Pool), and repeats this

pattern until the image has been merged spatially to a small size. At some point,

it is common to transit to fully-connected layers (FC). For clarity, the most

common CNN architecture follows the pattern: Input ⇒ [[Conv ⇒ ReLU] ∗ n ⇒

Pool?] ∗ m ⇒ [FC ⇒ ReLU] ∗ l ⇒ FC, where the ∗ indicates repetition, and the

question mark ? indicates an optional layer. In addition n ≥ 0 (and usually n ≤

3), m ≥ 0, l ≥ 0 (and usually l < 3). We can take the responses from one of the

network’s layers as our CNN feature vector, which can be used for different visual

tasks in combination with some other techniques [107]. [46] presents a work on the

visualization of the learned features of CNN layers and [93] gives a good summary

of that in Figure 2.19.
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Figure 2.19: A CNN learns low-level features in the initial layers, followed by more
complex intermediate and high-level feature representations which are used for a
classification task [93].

2.4 Literature Review on Path Prediction

In the context of autonomous vehicles, reaching the point of being able to predict

the motion of objects in the scene has several previous tasks that have to be solved

first. Tasks such as sensor data synchronization, understanding/sensing of the

surroundings (object detection and classification, tracking, scene segmentation).

Visualizing this task into modules, [75] presents a diagram with the modules that

would constitute an autonomous vehicle, Figure 2.20. According with [75], the

Traffic Prediction module is responsible for predicting the future behavior of

surrounding objects such as pedestrians, vehicles and, cyclists identified by the

Perception module. It outputs predicted behaviours that are fed into downstream

planning and control modules as data input.

Figure 2.20: Planning and control modules under narrow and broad concepts [75].
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Depending on the output information that has to be predicted, prediction can

be seen as a classification or as a regression problem [66].

• Classification of object’s behaviour: the aim is to predict the behaviour of the

observed object such as stopping, going straight, turn left, turn right, etc.

• Regression for path prediction: the information to be predicted is the future

position of the observed object in a given space at at time t,

trP = [trPt1, tr
P
t2, ..., tr

P
tpred]

Both type of information given by the prediction module are important

depending on the downstream task where this is needed.

This research thesis is focused on the problem of prediction as a regression

problem since the aim of this research work is to predict the path of the objects

around the ego vehicle.

Path prediction has been addressed using different approaches according to the

type of information that is taken into account. The purpose of this chapter is to

provide a review of the existing works that have been published in this research

area to identify techniques suitable for further investigation. This literature review

is structured according the approach used: physical-based, manoeuvre-based and

interaction-aware. This classification was adopted from [41], who presented a survey

on motion prediction and risk assessment for vehicles. In this literature review this

classification is adopted and applied to path prediction in general. [41] also mention

the limitation of each approach, such limitations are interesting since they have to

be taken into account in this research thesis.

2.4.1 Physical-based

Physical-based approaches take into account only the object as an isolated identity

and consider the laws of physics that govern it. There are some works like [6] that

use information from the ego-object, i.e: wheel steering angle, vehicle speed for

predicting the path (dynamic models), but that information is hard to obtain if we

35



Chapter 2. Background and Related Work

want to predict the path of the other objects in the scene not only the ego vehicle.

The simplest approach that is widely used is the Kalman Filter (KF) along with

kinematic models and several variants such as the Extended Kalman Filter (EKF),

Unscented Kalman Filter (UKF) [91]. [33] presents a comparative study of the

Kalman filter with some kinematic models in a vehicle context. They studied several

single kinematic models such as Constant Velocity (CV), Constant Acceleration

(CA), and Constant Turn Rate (CT) and interacting multiple models (IMMs) and

the results show no significant performance gain of the more sophisticated IMMs

considered vs. the simpler CV, for current position estimation. They attribute that

to the high sampling rate and the low measurement error. Another example of

using the KF is found in [12] where they use the Extended KF to perform short

term prediction.

Other related work is shown in [40], in this research four different methods were

evaluated for predicting future pedestrian positions accurately: Gaussian process

dynamical models (GPDMs) and probabilistic hierarchical trajectory matching

(PHTM) that use augmented features derived from dense optical flow and KF and

IMM that use positional information only. In this work, they conclude that similar

path prediction performance was reached for the four approaches on walking

motion, with near-linear dynamics. During stopping, however, the newly proposed

approaches (SFlowX/GPDM or HoM/Traj), with nonlinear and/or higher order

models and augmented motion features, achieved a more accurate (longitudinal

and lateral) position prediction of 10–50 cm at a time horizon of 0–0.77 seconds.

In [52] they predict the position of a pedestrian using a particle filter. This

work is interesting to mention because it makes use of a map to warn the driver

when a pedestrian is in a hazardous area. An observation here is that they do

not use the map to constrain the possible movement of a pedestrian. [85] present

interesting work on prediction of pedestrian trajectories from a camera mounted

in a vehicle where they use a Bayesian Recurrent Neural Network as shown in

Figure 2.21. They predict the future bounding boxes by taking into account the past
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bounding box sequence, the past odometry sequence and the future corresponding

odometry sequence. The future odometry sequence is predicted according to the

past odometry sequence and visual information. They compare their results with

Kalman Filter, LSTM, LSTM-Aleatoric, LSTM-Bayesian and LSTM-Bayesian with

odometry information (proposed approach). Experimental results showed that their

approach outperforms all the other methods.

Figure 2.21: Two stream architectures for prediction of future pedestrian bounding
boxes [85].

Another related work is presented in [57], where they address the problem of

predicting the trajectory of pedestrians in crowded spaces using static cameras.

This approach, called Social LSTM, uses one LSTM for each of the pedestrians in

the scene. Social refers to the use of the trajectory of other pedestrians that is taken

into account to predict the trajectory of a single one. They use a separate LSTM

for each trajectory and then connect each LSTM to other through a Social pooling

layer, this pooling layer allows spatially proximal LSTMs to share information. The

hidden states of all LSTMs within a certain radius are pooled together and used

as an input at the next time step. Similar work is presented in [66] where they

use LSTMs to predict the trajectory of vehicles in highways from a fixed top view

perspective. In [84] multiple cameras were used to predict the trajectory of people

in crowded scenes and [74] predict the trajectory of vehicles in an occupancy grid
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from the perspective of ego vehicle. [85, 57, 66, 84, 74] show a trend in using LSTM

architectures to process past observed positions of objects to predicted their future

trajectory. So they treat a path as a sequence of data (time series) and the LSTMs,

which are neural network able to process sequential data taking into account long

and short dependencies in the sequence, help to predict the next n future positions

of objects.

Limitations

Since they only rely on the low level properties of motion (dynamic and kinematic

properties), Physics-based motion models are limited to short-term (less than a

second) motion prediction. Typically, they are unable to anticipate any change in

the motion of the car caused by the execution of a particular manoeuvre (e.g. slow

down, turn at constant speed, then accelerate to make a turn at an intersection),

or changes caused by external factors (e.g. slowing down because of a vehicle in

front) [41].

2.4.2 Manoeuvre-based

These kind of approaches can be based on prototype trajectories or based on

manoeuvre intention estimation. In [8] they perform motion prediction. The

intuition they take as starting point is that “for a given area, moving objects tend

to follow typical motion patterns that depend on the objects’ nature and the

structure of the environment”. In this work they use the

Expectation-Maximization learning algorithm to cluster all the trajectories from a

specific scenario and then using these clusters predict the motion for a partially

observed trajectory. Since cluster-based techniques permit to take into account not

only the current state of the object but also its past states, they are the preferred

approaches when it comes to long term motion prediction. Their weakness lies in

their inability to predict atypical trajectories and also that they are designed for

specific scenarios. A similar work is found in [63] and [16] where they also use

clustering techniques and hidden Markov models (HMM) respectively. A highly
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interesting survey about trajectory clustering can be found in [86].

In [12] the authors address long-term prediction by classifying two actions of

the vehicle: 1) speed profile: Quick Acceleration (QA), Slow Acceleration (SA),

Keep the same Speed (KS), Quick Deceleration (QD), Slow Deceleration (SD) and

2) changing of lane: staying in its lane, going into the right lane, going into the

left lane. For each vehicle on the road, they compute all possible sequences of

action, regarding the current velocity and location. They assign a cost (costs in this

context are determined using a heuristic approach) for each action and unrealistic

action sequences are eliminated. Their algorithm uses the sequences with the highest

probability to determine the future location of vehicles. This work is interesting

because they fuse the results of a short-term and a long-term algorithm to strengthen

or weaken the prediction of the other. A similar approach is found in [29] but in

contrast this work predicts the trajectory of the ego vehicle. In [40] the authors,

classify the action of a pedestrian in the curbside (stopping or walking). They

evaluate four techniques involving Gaussian process dynamical models (GPDMs),

probabilistic hierarchical trajectory matching (PHTM), Kalman filter (KFs), and its

extension interacting multiple model KF (IMM KF). To provide some context, they

also evaluate human performance for the same test. From the experiment results

they noticed, “The humans reach accuracy of 0.8 in classifying the correct pedestrian

action about 570 ms before the event. This accuracy is only reached about 230 ms

before the event by the newly developed SFlowX/GPDM and HoM/Traj systems,

which use augmented visual features. The baseline IMM-KF system does worst,

reaching the corresponding accuracy only about 90 ms before the event”. A similar

work is reported in [31] where they detect the pedestrian’s intention to enter the

traffic lane at intersections.

The previous works are worthwhile mentioning. However for the purpose of this

research they have two main constraints. The first one is that clustering techniques

cannot predict atypical trajectories and they are created for predicting trajectories

in specific scenarios with static background. The second limitation is that for using
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approaches that first classify the actions that the object is performing labeled data

of those actions is needed. Looking at the available datasets in the context of an

ego vehicle in traffic scenes, which is the main focus of this research, they normally

present dynamic back ground since the cameras are mounted on a moving vehicle

and also these datasets do not provide labeled data of the action of the objects.

Limitations

In practice, the assumption that objects move independently from each other

does not hold. Objects share the scene with other objects, and the manoeuvres

performed by one object will necessarily influence the manoeuvres of the other

objects. Disregarding these dependencies can lead to erroneous interpretations of

the situations [41].

2.4.3 Interaction-aware

Interaction-aware approaches take into account not only the object as an isolated

element but also its surroundings [72, 80]. Of course taking into account all elements

in the scene is complex and computationally expensive so, some works only take

into account certain elements such as the type of object, the location, and the static

surroundings.

One related work is shown in [62] where they predict the path of an object based

on a reward map. This reward map is a segmented image of the scene with the

regions that a vehicle or a pedestrian is more like to move through, i.e a pedestrian

is more likely to walk on the side walk than on the road. They transform the problem

of path prediction into a directed graph problem which has to be optimized based

on a reward map. [62] use deep learning to create this reward map and another

similar work [69] address this using HOG. Even though both articles work on static

cameras and 2D images, this idea can be used in a vehicle context by using semantic

segmentation. In [52] for instance, they use information of a map and GPS to see

where the pedestrians are located in the scene, but they only use this information

to warn the driver if the pedestrian is in a dangerous area. Semantic segmentation
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is showing promising results that can be leveraged in this research [18, 26, 60] and

in this way replace the use of a map and a GPS. Semantic segmentation can also be

used to get local information such as dynamic objects that cannot be captured by a

map or GPS. [99] present work on future person localization, but this time they work

with videos from a camera carried by a person. In order to predict future position

of a person they take into account, besides the location of the person, also the scale

of the bounding box, the pose and the ego-motion features of the ego vehicle and

propose a network architecture to fuse such information as shown in Figure 2.22 and

Figure 2.23.

As can be noted, the mentioned works present a trend in using other features

from the scene besides only using x, y positional information of the objects to predict

their future path. This motivates the idea of developing a holistic path prediction

approach able to process more features from the traffic scenes along with the x, y

positional information of the objects leading to improve performance in the path

prediction task.

Figure 2.22: Information taken into account in the prediction of future position [99].
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Figure 2.23: Proposed Network Architecture [99].

Limitations

The Interaction-aware motion models are the most comprehensive models

proposed so far in the literature. They allow longer-term predictions compared to

Physics-based motion models, and are more reliable than Manoeuvre-based motion

models since they account for the dependencies between the vehicles. However,

this exhaustiveness has some drawbacks: computing all the potential trajectories

of the vehicles with these models is computationally expensive and not compatible

with real-time risk assessment [41].

2.4.4 Summary of Path Prediction Approaches

From this literature review, we observed that significant research has been

conducted on path prediction in general but work specifically in the context of

ADAS systems still poses a challenge. Several of the works mentioned use static

cameras, however, these techniques can be adapted for cameras with ego motion.

Approaches ranging from Kalman filters, clustering techniques to deep neural

networks have been identified. This literature review also identifies a trend that

the techniques are following to predict the path of an object where increasing

varieties of data, besides x, y positional information of the objects, are taken into

account when performing path prediction. It can also be noted that current works

tend to fuse different kind of information through deep neural networks. This
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supports one of the central principle of the research hypothesis: that a holistic,

integrated approach will improve prediction performance.

2.5 Traffic Datasets

As mentioned in [109], there are several datasets related to traffic scenes.

CityFlow [113], provides information of vehicles from surveillance cameras in

image coordinates. Cityscapes [60] contains 2D semantic, instance-wise, dense

pixel annotations for 30 classes. BDD100K [122] provides data for object

detection, instance segmentation, driveable area, lane markings. Mapillary [77] is a

dataset for Panoptic Segmentation and Object Detection (Instance Segmentation)

tasks. The Simulation (NGSIM) dataset [13] has trajectory data for cars, but the

scene is limited to highways with similar simple road conditions. KITTI [26] is a

dataset for different computer vision tasks such as stereo, optical flow, 2D/3D

object detection, and tracking. However, the total time of the dataset with

tracklets is about 22 minutes. In addition, there are few intersection between

vehicles, pedestrians and cyclists in KITTI, which makes it insufficient for

exploring the motion patterns of traffic agents in challenging traffic conditions.

Waymo is another interesting dataset, it provides 3D Lidar Labels, 2D Camera

Labels, for two challenges such as object detection and tracking for the objects

pedestrian, vehicle, cyclists [120]. There are some pedestrian trajectory datasets

like ETH (Pellegriniet al.2009) [19], UCY (Lerneret al.2007) [14], etc., but such

datasets only focus on human crowds without any vehicles.

However, there are some limitations with the aforementioned datasets:

• Do not provide annotated tracklets of the object [60].

• Provide data of only one type of object [13, 19].

• Provide data in only one perspective which is not from a camera mounted on

a vehicle [13, 14, 19].
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• These datasets do not provide data specifically for path prediction task.

Very recently, some datasets provide data for prediction challenge.

ApolloScape [89] is a large-scale comprehensive dataset of street views that

contains higher scene complexities, 2D/3D annotations and pose information, lane

markings and video frames. Recently, ApolloScape [109] made available data for

trajectory prediction. It contains highly complicated traffic flows mixed with

vehicles, riders, and pedestrians. They manually selected scenarios where the

interaction among object were complex. Similar, the nuScenes [115] dataset which

is inspired by the pioneering KITTI dataset, is the first large-scale dataset to

provide data from the entire sensor suite of an autonomous vehicle (6 cameras, 1

LIDAR, 5 RADAR, GPS, IMU). Compared to KITTI, nuScenes includes 7x more

object annotations. It provide data for detection and tracking tasks. This year

nuScenes started also to provide data for trajectory prediction. Lift [108], another

dataset for autonomous vehicles, releases this year data for motion prediction [118].

Argoverse [102], provides data for 3D tracking and motion forecasting.

Dataset selection. Several datasets were explored and analysed, however from

them, two datasets were selected, KITTI and CityFlow. KITTI was selected because

most of the datasets that provide data for forecasting give only the positions of the

objects in world coordinates and provide a map of the scenes. However, these

datasets do not provide RGB images of the scenarios and ego vehicle features as

KITTI does. KITTI provides information from different type of sensors that can

be fused and used together, which is desirable in this research work where we are

focused in using different type of information present in a normal traffic scene.

Some of the new datasets provide more information of the surrounding of a vehicle.

However, they started to provide this information too recently to be included in

this research. Besides, this research uses KITTI because it is widely used in the

literature of autonomous vehicle and has been available since the beginning of this

thesis so we are familiar with the structure of the data.

The other dataset used in this research was CityFlow which provides data from
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static cameras. This dataset was selected because it provides annotated data of

vehicles from surveillance cameras from different traffic scenarios. We were already

familiar with the structure of the data on this dataset, so its use did not require

any further analysis on understanding the data and its format. A more complete

description of KITTI and CityFlow datasets is given below:

KITTI [26]: is one of the most popular datasets for use in mobile robotics and

autonomous driving. It has realistic scenarios with a variety of objects such

as in the city, highways, crossing road, vehicle standing, moving, etc. It

consists of traffic scenarios recorded with a variety of sensor modalities,

including high resolution RGB, grayscale stereo cameras, and a 3D laser

scanner. Most recently it provides 200 training images as well as 200 test

images for semantic segmentation. It also provides 21 sequences with the

tracking labels of the objects in image coordinates and 3D information. The

resolution of the videos is 1242x375 and are recorded at 10 FPS.

CityFlow [113]: the data used for City-Scale Multi-Camera Vehicle Tracking was

obtained. This dataset contains 3.25 hours of videos collected from 40

cameras spanning 10 intersections in a mid-sized U.S. city. The dataset

covers a diverse set of location types, including intersections, stretches of

roadways, and highways. The dataset is divided into 5 scenarios. Only 3 of

the scenarios are used for training, and the remaining 2 are used for testing.

The length of the training videos is 58.43 minutes, while testing videos are

136.60 minutes in length. In total, the dataset contains 229,680 bounding

boxes for 666 distinct annotated vehicle identities. Only vehicles passing

through at least 2 cameras have been annotated. The resolution of each

video is at least 1920x1080 and the majority of the videos have a frame rate

of 10 FPS. The three scenarios from training were used, since only these

scenarios contains the labeled objects with ID (tracks).
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2.6 Evaluation Metrics

An important consideration in judging the performance of future path predication

algorithms is the evaluation metric. The aim is to describe how closely the predicted

path matches that observed or ground-truth path. This section describes how these

measures are calculated and some of the issues with using them as a global measure

of path accuracy.

Some works report the results in term of the Mean Squared Error (MSE) [67],

other in terms of the Root of the Mean Squared Error (RMSE) [87], lately, two main

metrics have been used to evaluate the performance of a path prediction approach,

Average Displacement Error (ADE) and Final Displacement Error (FDE) [57, 97,

106, 109]. ADE and FDE are defined as follow:

• Average Displacement Error (ADE): takes into account the difference

between every estimated point of each predicted path and its true path,as

described in Figure 2.24.

Figure 2.24: Average Displacement Error.

• Final Displacement Error (FDE): is the difference between the predicted

final destination and the true final destination,as illustrated in the Figure 2.25.

46



Chapter 2. Background and Related Work

Figure 2.25: Final Displacement Error.

While the definition of both metrics is clear, the calculation of them have varied

over time on the research works made on path prediction. In [57] as ADE they use

the Mean Square Error (MSE) over all estimated points. Similar, in [97], for ADE

they use the MSE, while for FDE they use the Euclidean distance. In [106], as ADE

they use the Root of the Mean Squared Error (RMSE), and as FDE they mention

the use of a distance but they do not specify which one, as in [57]. For this reason,

the metrics used in the first part of this research work are shown in terms of the MSE

for both ADE and FDE, as shown in the equation 2.11 and equation 2.12. Lately,

in some works as in [109] and some challenges as the one for trajectory prediction

given by the apolloScapes, the Euclidean distance is used for both FDE and ADE.

For that reason the results shown in the final chapters are given using the Euclidean

distance, as shown in the equation 2.13 and equation 2.14.

ADE =
∑n

i=1

∑tpred
t=1 [(x̂t

i−xt
i)

2+(ŷti−yti)
2]

n(tpred) (2.11)
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FDE =

∑n
i=1

[
(x̂tpred

i −xtpred
i )2+(ŷtpredi −ytpredi )2

]
n (2.12)

ADE =
∑n

i=1

∑tpred
t=1

2
√

(x̂t
i−xt

i)
2+(ŷti−yti)

2

n(tpred) (2.13)

FDE =
∑n

i=1
2
√

(x̂tpred
i −xtpred

i )2+(ŷtpredi −ytpredi )2

n (2.14)

where (x̂ti, ŷ
t
i) are the predicted positions of the tracklet i at time t, (xti, y

t
i)

are the actual position (ground truth) of the tracklet i at time t, tpred is the final

destination or the last prediction step, and n is the number of tracklets in the testing

set.

ADE is required when we need to know the position of an object at each time

step, this information is important in application such as path planning, assistive

robotics. FDE is important when we only need to know the final position of the

object, this information is important in application such as collision avoidance

systems. However, in the field of autonomous vehicle both FDE and ADE can be

used depend on the task to be executed.

Finally, we adopted the use the weighted sum of ADE (WSADE) and weighted

sum of FDE (WSFDE) as metrics as shown in 1, which are presented in the

equation 2.15 and equation 2.16.

WSADE = DvADEv +DpADEp +DbADEb (2.15)
1http://apolloscape.auto/trajectory.html
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WSFDE = DvFDEv +DpFDEp +DbFDEb (2.16)

2.6.1 Limitations

Even though, FDE and ADE metrics are used in this research work, in seem right to

point out some of their limitations. The limitations listed below are mainly for ADE,

since FDE only take into account the last position of a path in the measurement as

shown in Figure 2.24 and Figure 2.25:

• Very strict evaluation of the distance between the set of tracks that form a

paths. As illustrated in Figure 2.24, ADE measures the distance between two

paths trp and trG track by track. However, what happen if only one or two of

the tracks in trp is really far from their corresponding track in trG, this means

that the whole trp will be evaluated with a high error in the prediction.

• As mentioned in [86], which presents an study about trajectory analysis,

another limitation of ADE, which is based in the Euclidean Distance, is that

it is necessary to have paths of the same length in order to be performed,

Table 2.1. In a real path prediction problem, the paths generated by objects

are not of the same length, which pose a challenge for comparing them.

Overcoming those limitations will allow us to create flexible models for path

prediction. So it would be interesting to evaluate the metrics shown in table 2.1 as

future work.

2.7 Discussion and Conclusions

Path prediction task is important in different application and has been addressed

using different approaches. In the literature, it was observed that path prediction can

be addressed as a time series forecasting problem so considering that fact two main

approaches were identified to process sequential data as time series, The Kalman
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Table 2.1: Summary of common distance measurements.

Measurement Unifying lengths Computational
complexity

Euclidean Yes O(n)
Hausdorff No O(mn)

Bhattacharyya Yes O(n)
Frechet No O(mn)

Longest Common
Subsequence (LCSS) No O(mn)

Dynamic Time
Warping (DTW) No O(mn)

Filter (KF) and the LSTMs (Long Short-TermMemory Architectures). Also, a trend

in using more information than only (x, y) position of the object was identified on the

literature review. This trend motivates in this research work to the development of a

holistic path prediction approach able to process, besides x, y positional information

of the objects, more information of the traffic scenes where the objects are moving.

These extra set of information or contextual information such as visual information

of the object, ego-vehicle features, other objects positions and visual information

of the whole scene can be leveraged to improve performance in the path prediction

against using only x, y positional information of the objects.

Most of the works use datasets where labeled data was not available so they

have to tackle the problem of Object Detection and Tracking in addition to path

prediction. KITTI was the only dataset that included labeled data of Detected and

Tracked objects along with more data of the ego vehicle and the scene. All this

from the perspective of cameras mounted on a vehicle, which is the main focus of

this research, so because of that mainly KITTI was adopted in the work reported in

this research thesis. In the literature of path prediction it was also observed the use

of two metrics Average Displacement Error (ADE) and Final Displacement Error

(FDE) so those two metrics were adopted to report the results.
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Chapter 3

LSTMs for Single Path

Prediction: Baseline Methods

and Proposed Experimental

Methodology

3.1 Introduction

As mentioned in the previous chapter, a path P is a set of tracklets, tr, that contains

information such as tr(x, y) observed position (coordinates) of an object that travels

a given space, P = {trt1, trt2, ......, trtlength}. Each tr is a measure given for a sensor

in intervals of time and in an ordered manner, tr(x, y, time). This means that a

path is a sequence of measurements of the same variable collected over time, where

the order matters, resulting in a time series. This means that by analysing the

measurements, in this case the observed positions of an object, sequentially it is

possible to predict the future position of an object. Because of this, a path can

be seen as a multivariate time series that has two time-dependent variables x, y.

Each variable depends on its past values, and this dependency is used for forecasting

future values. So the task of path prediction can be seen as forecasting a multivariate

multi-step time series.

Regarding the literature review in the previous chapter, two main approaches
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were identified to process sequential data, The Kalman Filter (KF) and LSTMs

(Long Short-Term Memory architectures). The KF updates its internal parameters

and state of the system according to the input data sequence and learns from each

data in the sequence to give an output relate to the given sequence. LSTM

architectures are also able to process sequences of data, its internal memory cell

can learn long and short term dependencies of a sequence of data and taking into

account those dependencies gives an output related to the input sequence. Because

of the capacity to process sequential data, the main focus of this chapter is to

evaluate the performance of the KF and LSTMs to predict the future position of

objects that are normally present in traffic scenarios, such as pedestrians, vehicles

and cyclists, for different time prediction horizons using the KITTI dataset.

KITTI is selected because of its realistic scenes, such as highways, inner city,

vehicles standing, vehicle moving, its different objects and the labeled data in

image coordinate and 3D information. KITTI provides all this information from

the perspective of cameras mouthed on a vehicle which is the main focus of this

research work. We apply the prediction from two perspectives: image coordinate

(pixels) and birds-eye view (metres). Image coordinate is the most common data

used in published datasets while a birds-eye view, which measures in real-world

distance values, is a more realistic measurement.

The experiments performed in this chapter are related to RQ1, since they show

the exploration and results of representing the position of objects as time series and

also as Relative Tracklet Position (RTP).

This chapter contains partial information from work published (peer-reviewed)

in the IPTA 2019 conference. The remainder of this chapter is structured as

follows: Section 3.2 Data Definition, explains the nature of the data used; Section

3.3 presents our approach; Section 3.4 and 3.5 present the experimental setup and

results respectively; in section 3.6 a conclusion is given.
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3.2 Data Definition

In this work we apply a sliding window over one track per time period then these

smaller segments are split into two vectors of equal size. The first vector is the

observed tracklets trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and the second vector is its respective

ground truth tracklet trG = [trGt1, tr
G
t2, ..., tr

G
tpred]. The predicted vector of each trO

is called trP = [trPt1, tr
P
t2, ..., tr

P
tpred]. The aim of this chapter is to predict a trP

based on the observed tracks trO, as illustrated in Figure 3.1.

Figure 3.1: Predicting one path.

3.3 Approach

This section presents the specific methodology followed in this research thesis to

develop a single-shot approach which leverages an LSTM architecture to predict the

future path of moving objects normally present in traffic scenes such as pedestrians,

vehicles and cyclists.

LSTMs have shown good performance when dealing with time series and so in

this approach an LSTM architecture is used for path prediction. LSTMs can be used

in different manners, two of these are Recursive Multi-step Forecast and Multiple

Output Strategy.

Recursive Multi-step Forecast uses a one-step model time by time, where

the prediction from the prior time step is used as an input for making a prediction on
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the following time step, as illustrated in Figure 3.2. Specifically for path prediction,

this can be seen as the generation of a path step by step. This approach can be

used as follows:

1. Input = [trt1, trt2, ..., trtobs]

2. ptrt1 = model.predict(Input)

3. Input = [trt2, ..., trtobs, ptrt1]

4. ptrt2 = model.predict(Input)

5. Input = [..., trtobs, ptrt1, ptrt2]

6. ptrt3 = model.predict(Input)

Figure 3.2: Recursive Multi-step Forecast.

This process is repeated tpred times, where tpred is the number of tracks or

steps to predict ahead.

Multiple Output Strategy develops one model to predict an entire sequence

in a one-shot manner, as presented in Figure 3.3. Like other types of neural network

models, the LSTM can output a vector directly that can be interpreted as a multi-

step forecast. This approach can be used in the following way:

1. Input = [trt1, trt2, ..., trtobs]

2. Output = model.predict(Input)

3. Output = [ptrt1, ptrt2, .., ptrtpred]
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Figure 3.3: Multiple Output Strategy.

In this work, the multiple output strategy was adopted. The reason of selecting

this approach is that at this time in the whole research our objective was to

predicting a whole trajectory at once which makes the prediction phase faster than

using the Recursive Multi-step Forecast approach. To use an LSTM in this

manner the input and ground truth (GT) output data were configured as:

Input data = [NSamples, tobs, Features]
GT output data = [NSamples, PSize]

where NSamples is the number of samples that constitute the training data.

tobs is the size of tracklets used for predicting, i.e., 5 tracks to predict 5 steps

ahead. Features is the number of variables that constitute each track. In this case

two features were used, the position (x, y), and PSize is the number of outputs in

the prediction. As the last dense layer can only be a one dimensional array, this can

be calculated as tpred ∗ Features in the GT output data.

3.3.1 Model Architecture

Due to more availability of documentation, the Keras API 1 was used for the

implementation of the LSTM architecture. To select the parameters a grid search

was executed over the whole dataset, including all objects, and the following

configuration achieved the best result. One layer was selected since adding more

layers does not improve performance, as shown in [66], where they also mention

that due to their recurrent nature, even a single layer of LSTM nodes can be
1https://keras.io/
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considered as a “deep” neural network:

• Number of layers: 1.

• Number of neurons: 128.

• Loss: MSE

• Optimizer: Adam.

3.4 Experimental Setup

A first question to answer in this research work is: Q1 How should the observed

object position (tracklets) be best represented? . Regarding this question, this

section details the steps followed to evaluate the two selected approaches on the

KITTI dataset by representing the positional information of the objects as time

series and also as Relative Tracklet Position (RTP). RQ1 is initially explored in this

chapter, a further study is performed in chapter 6.

As mentioned in chapter 2, section Traffic Datasets, several datasets can be

found in the literature that can be used for path prediction. However, each datasets

has its limitation, [60] do not provide annotated tracklets of the object, [13, 19] only

provide data of one type of object, [13, 14, 19] provide data in only one perspective

which is not from a camera mounted on a vehicle. Because of that KITTI [26] was

selected since is the dataset that provides the positional information (labeled data in

image coordinate and 3D information) and tracking labels of three types of objects

– pedestrian, vehicles and cyclists, along with other features of the scene which will

be leveraged further in this work. KITTI also has realistic traffic scenes, such as

highways, inner city, vehicles standing, vehicle moving. More importantly, KITTI

provides all this information from the perspective of cameras mouthed on a vehicle

which is the main focus of this research work. Furthermore, at the time of developing

these experiments KITTI was a widely used dataset in the literature of autonomous

vehicle research such as object detection, tracking and depth estimation.
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First, the methodology followed to extract the path of the object from the KITTI

dataset is explained. Next, the two evaluated approaches are described. Then, the

steps followed to train the LSTM are given. Finally, the process applied to the

output of the model to get the predicted paths is explained.

3.4.1 Data Pre-processing

A crucial phase of dealing with time series prediction is understanding and preparing

the data. In this chapter, the KITTI dataset was used and pre-processed as follows:

1. The KITTI data set was parsed to a simpler format with each track described

by seven features: [Frame Number, Object Type, ID, XMin, YMin, XMax,

YMax].

2. Trajectories were extracted for each object per sequence. KITTI contains

several type of objects such as pedestrians and vehicles. This step is necessary

to not mix tracks of other objects.

3. Tracklets (sub-trajectories) were created of a certain consistent length. For

each object trajectory, tracklets of size 10, 20, 30 and 40 tracks were extracted,

these tracklets constitute the data set used for training and testing. This was

done because the approaches are tested to predict 5, 10, 15 and 20 steps/frames

in the future. The half of each tracklet is used as observed tracklet and the

other half as ground truth.

4. The center of the bounding boxes for the objects were extracted.

5. The tracklets were translated to relative positions. This process consists of

setting the first (x, y) position of each tracklet to (0, 0) and all the following

tracks are adjusted relative to this point. Tracklets that have been adjusted

will be referred to as Relative Tracklet Position (RTP) and the original, un-

adjusted tracklets, as Absolute Tracklet Position (ATP). Experiments were

done for both type of tracklets.
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A total of 853 objects were extracted from all the sequences – 167 pedestrians,

649 vehicles and 37 cyclists – for the four prediction horizons of 5, 10, 15 and 20

frames. The number of tracklets are shown in Table 3.1 for each object on the four

prediction horizons (P.H.).

Table 3.1: Size of the training data for all four prediction horizons.

Number of Tracklets
P.H. Pedestrian Vehicle Cyclist All
±5 6,933 18,662 1,282 28,138
±10 5,933 14,591 1,028 22,907
±15 5,076 11,365 831 18,714
±20 4,371 9,172 665 15,658

3.4.2 Comparative Study

From the literature review, two approaches were identified to process sequential

data. The Kalman filter (KF) and Long Short-Term Memory architectures

(LSTMs). The Kalman filter is an algorithm that uses a series of data observed

over time to estimates future measurements with more accuracy [50]. Because of

its efficiency the Kalman filter has been used in several application such as

navigation [11, 59], object tracking [22, 32] and path prediction [33, 40]. Because of

its wide application and availability of information to understand its algorithm, the

Kalman filter is used as a baseline in this research. However due to its limitation

to process different type of information its exploration led us to look for more

complex techniques, specifically Long Short-Term Memory architectures (LSTMs).

LSTM architectures are currently used in areas such as language translation [45,

51], time series prediction [64, 76] and trajectory prediction [85, 57, 66, 84, 74].

LSTMs are capable of getting long and short term dependencies from sequences

and then based on those dependencies predicting future information. To predict the

future path of an object in a scene, we have to analyse the previous information

of such object, i.e. previous x, y positions (tracklets). Due to the characteristics of
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path prediction data, LSTM architectures are suitable to tackle this problem, since

this type of networks are able to process sequential data and leverage information

through time, and based on that perform a better prediction.

The application of LSTM architectures on sequential data such as time series

forecasting and language translation problems was novel at the beginning of this

research and its performance on path prediction still required further exploration.

Because of that, to understand the potential of LSTMs for path prediction in the

context of moving cameras in traffic scenes and to establish the way of using them in

a model, an LSTM-based model is evaluated against the Kalman Filter. We compare

our approach with one baseline methodology using the Average Displacement Error

(ADE) 2.11 and Final Displacement Error (FDE) 2.12:

The Kalman Filter (KF): the KF was used with the Constant Velocity (CV)

model. This model has shown good performance when dealing with linear

movements.

Vanilla LSTM One-Shot(VLSTMOS): this consists of a one layer LSTM

with 128 neurons. In the literature, when an LSTM is used with its basic

configuration it is called Vanilla LSTM.

3.4.3 Training

During training, from the available data a random training and test split was done;

70% of the data was used for training and the rest for testing. Also, to feed the

model correctly, the next steps were followed:

1. Specify the length of tracklets to be processed (10-40).

2. Scale data [0,1]: un-scaled input variables can result in a slow or unstable

learning process, whereas un-scaled target variables on regression problems

can result in exploding gradients causing the learning process to fail.

3. Split data into observed tracklet, trO, and ground truth (tracklet) path to be

predicted, trG.
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4. trO is shaped as [Nsamples, tobs, features-in-trO] and trG as [Nsamples,

OutputLength]. Where Nsamples is the number of samples in the dataset,

tobs is the number of tracks in each observed tracklet (trO), features-in-trO

is the number of features in each observed track. Finally, OutputLength is

the size of the output of the model. In this case, OutputLength = tpred ∗

features-in-trG. Here tpred is the steps to predict in the future (the prediction

horizon) and features-in-trG is the number of features to predict in each step.

3.4.4 Single Path Prediction

For this phase, the output of the model was processed as follow:

1. The model outputs a single array trP per trO of size OutputLength.

2. trP is re-shaped to [tpred, features− in− trG].

3.5 Results

This set of experiments evaluates the performance of a Kalman filter with Constant

Velocity model (baseline) and an LSTM network on the KITTI dataset. For the

LSTM results, two sets of experiments were executed. One where the tracklets keep

their absolute position (ATP) and other where the tracklets are translated to a

relative position (RTP). For the Kalman filter the same two set of experiments was

carried out but the comparison is not shown since the results using ATP vs RTP

showed no difference. The performance was calculated on four different prediction

horizons (P.H.) and for three different objects – pedestrians, cyclists and vehicles

(labeled as Cars, Vans and Trucks). The data for training and testing consists of

the center of the object. The results are also provided in image coordinate (pixels)

and in birds-eye view (metres). Due to the size of the image (1224 × 370 pixels),

the results show large values in the case of image coordinates. Fig. 3.4 illustrates

the approximate real world implication of variations in pixels as applied to the

KITTI dataset. Finally, the relative improvement (error reduction) values shown in

60



Chapter 3. LSTMs for Single Path Prediction: Baseline Methods and Proposed
Experimental Methodology

Table 3.4 and 3.5 were calculated by [(newV alue−originalV alue)/originalV alue]∗

100 where newV alue is the LSTM RTP methodology and originalV alue is the

approach to be compared with. The negative values means that there was an error

reduction using the LSTM RTP approach.

Figure 3.4: Heat maps of 10-100 pixels (left to right) illustrating pixel differences in
the real world.

3.5.1 The Kalman Filter vs LSTM RTP

Table 3.2, in columns three and four, shows the results on image coordinates

obtained by the Kalman Filter and LSTM RTP and Table 3.4 depicts the

improvement comparing both approaches.

Table 3.3, in the columns three and four, shows the results on birds-eye view

obtained when executing the Kalman Filter and LSTM RTP, whilst table 3.5

presents the improvement of LSTM RTP over the Kalman Filter. As in table 3.4,

the negative values indicate that there was error reduction using LSTM RTP.

The results show that LSTM RTP outperforms the simple Kalman Filter on

most cases, specifically for vehicle and pedestrians. Also, it can bee seen that LSTM

RTP performs better when predicting in birds-eye view compared to using image

coordinates.

3.5.2 LSTM ATP vs LSTM RTP

Table 3.2, in the columns two and three, shows the results on image coordinates

obtained when executing the LSTM using the two different type of tracklets (ATP
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Table 3.2: Path Prediction accuracy using Image Coordinates

Image Coordinate (Pixels)
Approach LSTM ATP LSTM RTP The KF
Metric ADE ADE ADE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 100 119 137 76 98 94 111 225 143
±10 375 297 3,242 244 353 160 259 585 287
±15 936 734 38,16 802 668 1163 549 1,019 807
±20 1,305 1,127 35,085 1,755 1,065 6,856 970 1,553 1,944
Metric FDE FDE FDE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 217 289 397 169 252 271 214 501 385
±10 988 947 7,189 727 1,163 538 778 1,914 1,022
±15 2,859 2,507 8,602 2,483 2,412 4,452 1,907 3,695 3,408
±20 4,219 4,114 15,7686 6,251 4,040 25,743 3,567 5,808 8,539

Table 3.3: Path prediction accuracy using birds-eye view (real world measures)

Birds-Eye View (metres)
Approach LSTM ATP LSTM RTP The KF
Metric ADE ADE ADE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 0.026 0.085 0.124 0.007 0.065 0.023 0.062 0.465 0.236
±10 0.048 0.332 0.484 0.051 0.248 0.105 0.104 0.752 0.356
±15 0.120 1.184 1.021 0.121 0.872 0.413 0.213 1.122 0.544
±20 0.240 2.027 4.580 0.219 1.679 1.011 0.412 1.791 0.904

FDE FDE FDE
P. H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 0.052 0.179 0.254 0.016 0.153 0.043 0.075 0.575 0.272
±10 0.131 0.953 1.271 0.145 0.721 0.271 0.246 1.666 0.637
±15 0.385 3.290 2.745 0.378 2.685 1.289 0.688 3.285 1.416
±20 0.732 6.660 11.219 0.767 5.479 3.062 1.490 6.036 2.953
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and RTP) and Table 3.4 depicts the relative improvements.

Table 3.3, in the columns two and three, shows the results on the birds-eye view

obtained when executing the LSTM using the two different type of tracklets (ATP

and RTP), whilst Table 3.5 presents the improvement.

This set of results show clearly that there was error reduction in most of cases

when translating the tracklets to relative position (RTP). In a few cases, mostly

pedestrians, a slight increase in error was found.

Table 3.4: Improvements using image coordinates

Image Coordinate (Pixels) Improvement %
LSTM ATP

vs
LSTM RTP

The Kalman Filter
vs

LSTM RTP
Metric ADE ADE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 -24.22 -17.24 -31.32 -31.77 -56.25 -34.43
±10 -34.92 19.05 -95.06 -5.94 -39.58 -44.27
±15 -14.23 -9.05 -69.51 46.14 -34.49 44.11
±20 34.51 -5.46 -80.46 81.00 -31.41 252.76
Metric FDE FDE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 -22.37 -12.63 -31.69 -21.06 -49.60 -29.64
±10 -26.37 22.73 -92.52 -6.46 -39.26 -47.37
±15 -13.13 -3.79 -48.24 30.19 -34.73 30.65
±20 48.15 -1.81 -83.67 75.26 -30.44 201.47

To have a better understanding of the quantitative results, a visualization of

the predicted paths was created. Visualizations of results in image coordinates are

shown in the figures 3.5 , 3.6 , 3.7 , 3.8 for the four time prediction horizon and

for the object vehicle. The first 1,000 samples were printed. The first image (GT)

displays the ground truth paths and the rest present the paths predicted by each

model. If the ADE and FDE of each approach were close to zero their predicted

paths shown in the RTP, ATP and KF image should be similar or equal to the GT

image. However as the ADE and FDE of each approach increase the dissimilarity

of their paths also increase compared to the GT Image. Regarding that, for each

63



Chapter 3. LSTMs for Single Path Prediction: Baseline Methods and Proposed
Experimental Methodology

Table 3.5: Improvements in Bird-Eye View.

Bird-Eye View (Meters) Improvement %
LSTM ATP

vs
LSTM RTP

The Kalman Filter
vs

LSTM RTP
Metric ADE ADE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 -74.04 -24.05 -81.80 -89.19 -86.05 -90.40
±10 8.04 -25.19 -78.35 -50.76 -66.97 -70.52
±15 0.52 -26.35 -59.61 -43.07 -22.26 -24.10
±20 -8.74 -17.16 -77.92 -46.77 -6.26 11.78
Metric FDE FDE
P.H. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 -68.13 -14.30 -83.02 -78.14 -73.39 -84.16
±10 10.25 -24.35 -78.64 -41.30 -56.73 -57.41
±15 -1.86 -18.38 -53.05 -45.06 -18.24 -8.97
±20 4.82 -17.73 -72.71 -48.52 -9.22 3.71

approach, it can be seen that for large PH the error increase and the predicted paths

diverge from the ground truth. The same happens for the results in BEV, which

are visualized in the figures 3.9, 3.10, 3.11, 3.12. In both cases, image coordinates

and BEV, the paths predicted by LSTM using RTP are more similar to the paths

in GT in most of the PH.

Figure 3.5: IPTA Img Vehicle 0.5Sec
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Figure 3.6: IPTA Img Vehicle 1 Sec

Figure 3.7: IPTA Img Vehicle 1.5 Sec

Figure 3.8: IPTA Img Vehicle 2 Sec
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Figure 3.9: IPTA BEV Vehicle 0.5Sec
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Figure 3.10: IPTA BEV Vehicle 1 Sec
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Figure 3.11: IPTA BEV Vehicle 1.5 Sec
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Figure 3.12: IPTA BEV Vehicle 2 Sec
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3.6 Discussion and Conclusions

This chapter presents a single-shot prediction approach that uses one LSTM to

predict the future position of objects commonly present in traffic scenes. The

selected data set was KITTI because of its realistic scenes, such as highways, inner

city, vehicles standing, vehicle moving, its different objects and the labeled data in

image coordinate and 3D information. The objective of this work was to compare

the performance of the commonly used Kalman Filter (baseline) with the newer

options offered by LSTM architectures and analyze some of the potential

influences on their trajectory prediction accuracy by looking at three object

classes, four prediction horizons and two different perspectives (image coordinate

and birds-eye view).

The results obtained in this chapter show that LSTM approaches perform well

for predicting the near future paths of objects in the context of cameras mounted on

a moving vehicles. It shows also that the performance of this approach is affected

by the prediction time horizon, the largest the prediction horizon resulting in the

largest errors.

For the LSTM architecture, it can be clearly seen that translating the tracklets

to a relative position (RTP) helps the model to learn. The reason for this could

be that, RTP makes the tracklets to be similar in that space and produces more

examples for learning. Another important point to note is that predicting in birds-

eye view is better than predicting using image coordinate, however 3D information

is not always available.

The results also indicate that this approach is affected by the size of the training

data. For instance, for the class Vehicle, LSTMs outperforms the Kalman Filter

for all prediction horizons. One probable reason is that there is a bigger dataset to

train for this object class , while for the other objects the size of the training data

is small.

The results have shown that using an LSTM achieves good performance for a
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P.H ±5 of up to an ADE of 0.01m for pedestrians, 0.06m for vehicles and 0.02m for

cyclists and up to a FDE of 0.016m, 0.15m, 0.04m for the same objects improving

the performance of the baseline Kalman Filter. The prediction horizon where the

approach is most reliable is for ±5 and ±10 for image coordinate and for ±5 to ±15

for birds-eye view perspective.

Finally, the processing inference time per tracklet for the LSTMs approach was

0.02 ms/tr, 0.032 ms/tr, 0.045 ms/tr, 0.057 ms/tr for prediction time horizon (P.H.)

of ±5 to ±20 respectively. The Kalman Filter processing time was 3.627 ms/tr,

6.961 ms/tr, 11.012 ms/tr, 13.553 ms/tr for PH of ±5 to ±20 respectively. All

this using a computer with the following features: GPU GeForce GTX 980, CPU

Intel R© CoreTM i5-4690K CPU @ 3.50GHz x 4, RAM 24GB.
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Chapter 4

Single Path Prediction: LSTMs

Variants

4.1 Introduction

To understand the potential improvement in path prediction that a holistic approach

can bring, we first look at the performance of a range of approaches to establish

a baseline performance without using more features. In addition, the literature

about LSTMs networks describes a number of alternative architectures that seek to

outperform Vanilla LSTM [49, 61]. Therefore this chapter explores the variants of

the Vanilla LSTM called stacked, bidirectional, return sequence, Gated Recurrent

Unit (GRU), LSTMs as encoder-decoder and adding attention layers. A Conv1D

model was also evaluated as an alternative method for processing time series data.

These architectures were selected because they process the input data in different

manners that a vanilla LSTM. This study can be seen as a second stage in the

exploration of LSTMs because it allows us to understand better how to use LSTM

architectures in its different ways, since this is needed in the next chapters where

more complex model are designed for predicting multiple paths and for processing

multimodal data. The purpose of this chapter is to present the performance of

these models for the path prediction task using only positional information (x, y)

of objects in birds-eye view (BEV) from the KITTI dataset. As mentioned in the

previous chapter, KITTI is selected because of its realistic scenes, such as highways,

inner city, vehicles standing, vehicle moving, its different objects and the labeled data
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in image coordinate and 3D information. All this information from the perspective

of cameras mouthed on a vehicle which is the main focus of this research. However,

only BEV was used because in this perspective the measurements are given in metres

which represents better the position of the object in the real life than pixels in image

coordinates.

This chapter is related to RQ2, by exploring several variants of LSTMs and the

way the input data is processed by each of them, it helped to understand better

the LSTM architectures and the knowledge obtained contributed to the creation of

chapter 5 and chapter 6 where more complex models were used.

In the remainder of this chapter, Section 4.2 presents some related studies

made on RNN architectures, Section 4.3 describes the models used in this study.

Section 4.4 and 4.5 present the experimental setup and results respectively.

Finally, conclusions are drawn in section 4.6.

4.2 Related Work

In [49] the authors aim to determine whether the LSTM architecture is optimal or

whether better architectures exist. To do this, they conducted a thorough

architecture search where they evaluated over ten thousand different RNN

architectures, and identified architectures that outperform both the LSTM and the

recently-introduced Gated Recurrent Unit (GRU) on three tasks, 1) Arithmetic, 2)

XML modeling, and 3) Penn Tree-Bank (PTM). Finally, they added Music

datasets to measure the generalization ability of the architecture search procedure

(the music datasets was not used in the search procedure). In [61] they also

perform an evaluation of the most popular LSTM architecture (vanilla LSTM)

against eight different variants on three benchmark problems: acoustic modeling,

handwriting recognition, and polyphonic music modeling. Each variant differs

from the vanilla LSTM by a single change.

Both works [49, 61] conclude that none of the variants of LSTMs significantly
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outperform the LSTM. But most importantly, they determined that adding a

positive bias to the forget gate greatly improves the performance of the LSTM.

Given that this technique is the simplest to implement, they recommend it for

every LSTM implementation. They found that adding a bias of 1 to the LSTM’s

forget gate closes the gap between the LSTM and the GRU. Adding a bias of size

1 significantly improved the performance of the LSTM on tasks where it fell

behind the GRU and MUT1. Thus they recommend adding a bias of 1 to the

forget gate of every LSTM in every application; it is easy to do and often results in

better performance in those tasks. Interestingly, this idea has already been stated

in the paper that introduced the forget gate to the LSTM [5]. This forget bias

configuration is already included as a default in the Keras LSTM layer 1

4.3 Models

The following architectures were selected because they process the input data in

different manners that a vanilla LSTM. This study can be seen as a second stage

in the exploration of LSTMs because it allows us to understand better how to use

LSTM architectures in its different ways, since this is needed in the next chapters

where more complex model are designed for predicting multiple paths and for

processing multimodal data.

4.3.1 LSTM Vanilla

The Long Short-Term Memory (LSTM) unit was initially proposed by [3]. The

LSTM Vanilla model consist of one LSTM layer with 128 units. The default values

given by the keras LSTM layer is used. As shown in the table 4.1, the default

configuration already includes the discovery made by [49, 61], where they recommend

adding a bias of 1 to the forget gate at initialization. In the Keras API 2 this is

done by setting unit_forget_bias=True.

1https://keras.io/api/layers/recurrent_layers/lstm/
2https://keras.io/
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Table 4.1: LSTM Keras layer default configuration.

tf.keras.layers.LSTM(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
implementation=2,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
time_major=False,
unroll=False,
**kwargs
)
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4.3.2 LSTM Vanilla Backwards

This model is similar to the Vanilla LSTM, the unique modification is that from the

parameters shown in the table 4.1, the go_backwards parameter has to be set to

True. This indicate to the model to process the input sequence backwards.

4.3.3 LSTM Bidirectional

Bidirectional RNN is another variant of RNN introduced by [4]. Similarly,

bidirectional LSTM is an extension of an LSTM. Bi-LSTMs train two LSTMs

layers instead of one on the input sequence, as illustrated in Figure 4.1. The first

layer is trained on the input sequence in normal order and the second one on a

reversed version. In other words, Bi-LSTMs runs the input sequence in two ways,

one from past to future as normal LSTM and one from future to past. The results

of both layers are then merged. This way it preserves information from past to

future and from future to past. In this work the results were merged using the

concatenated method. The Keras API was used to obtain the implementation of

this model.

Figure 4.1: Bidirectional LSTM [83].
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4.3.4 Stacked LSTMs

The Stacked LSTM was introduced by [28], where they found that stacking RNNs

lead to better performance on speech recognition. RNNs are inherently deep in time,

since their hidden state is a function of all previous hidden states. The question

that inspired this paper was whether RNNs could also benefit from depth in space;

that is from stacking multiple recurrent hidden layers on top of each other, just

as feed forward layers are stacked in conventional deep networks. However in two

more related works [66, 78], it is found that adding more layers to an LSTM model

does not lead to significant improvement over a single LSTM layer. Actually, [78]

clearly mentions the following, “The increased model complexity combined with the

variable performance suggests some degree of overfitting. By using fewer units and

layers, the R128by2 model, which is the model using 2 stacked LSTMs with 128

units, maintained the advantages of learning long-term dependencies while limiting

the model complexity and keeping it simple. This hypothesis is further supported by

the outcomes described in the article, where R128by2 utilized fewer features than the

more complicated models, allowing it to learn more general trends”. Based on these

studies, in this work we decided to use a model with two stacked LSTMs.

Stacked LSTMs consist of using more than one LSTM layer in a model. Different

to using only one LSTM layer, the layer that connects with other LSTM layer has

to return a sequence in order to be processed for the next one. Using the Keras API

this can be done by only changing the parameter return_sequences=True, from the

parameters shown in the table 4.1.

4.3.5 LSTM Encoder-Decoder

An RNN encoder-decoder was proposed by [38] for machine translation problems,

this type of network consists of two RNNs. One RNN encodes a sequence of symbols

into a fixed length vector representation, and the other decodes the representation

into another sequence of symbols. The encoder and decoder of the proposed model
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are jointly trained to maximize the conditional probability of a target sequence given

a source sequence. The same applies for LSTM encoder-decoder as used in [94] for

predicting the trajectory of vehicles on a occupancy grid map.

The Encoder-Decoder LSTM can be implemented directly in the Keras deep

learning library. One or more LSTM layers can be used to implement the encoder

model. The output of this model is a fixed-size vector that represents the internal

representation of the input sequence. The number of memory cells in this layer

defines the length of this fixed-sized vector. The decoder must transform the learned

internal representation of the input sequence into the correct output sequence.

One or more LSTM layers can also be used to implement the decoder model.

This model reads from the fixed sized output from the encoder model. As with

the Vanilla LSTM, a Dense layer is used as the output for the network. The same

weights can be used to output each time step in the output sequence by wrapping

the Dense layer in a Time Distributed wrapper.

There is a problem though, we must connect the encoder to the decoder, and

they do not fit. That is, the encoder will produce a 2-dimensional matrix of outputs,

where the length is defined by the number of memory cells in the layer. The decoder

is an LSTM layer that expects a 3D input of [samples, time steps, features] in order

to produce a decoded sequence of some different length defined by the problem. We

can solve this using a Repeat Vector layer. This layer simply repeats the provided

2D input multiple times to create a 3D output. The Repeat Vector layer can be

used like an adapter to fit the encoder and decoder parts of the network together.

The Repeat Vector can configure to repeat the fixed length vector one time for each

time step in the output sequence.

In this work the LSTM encoder-decoder consist of one LSTM layer as encoder

and one LSTM layer as decoder.
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4.3.6 GRU

The gated recurrent unit (GRU) was introduced by [38]. It can be said that is a

simplified version of an LSTM network as show in Figure 4.2. [39] indicates some

interesting difference between LSTM and GRU. One feature of the LSTM unit that

is missing from the GRU is the controlled exposure of the memory content. In

the LSTM unit, the amount of the memory content that is seen, or used by other

units in the network is controlled by the output gate. On the other hand the GRU

exposes its full content without any control. Another difference is in the location

of the input gate, or the corresponding reset gate. The LSTM unit computes the

new memory content without any separate control of the amount of information

flowing from the previous time step. Rather, the LSTM unit controls the amount

of the new memory content being added to the memory cell independently from

the forget gate. On the other hand, the GRU controls the information flow from

the previous activation when computing the new, candidate activation, but does

not independently control the amount of the candidate activation being added (the

control is tied via the update gate). In short, GRU is like an LSTM with a forget

gate but has fewer parameters than LSTM, as it lacks an output gate.

In [39] they evaluate LSTM and GRU units on the tasks of polyphonic music

modeling and speech signal modeling. Based on their experiments, they concluded

that by using fixed number of parameters for all models on some datasets GRU, can

outperform LSTM units both in terms of convergence in CPU time and in terms of

parameter updates and generalization.

The work of [68] presents an evaluation of three variants of GRU units on the

MNIST and IMDB datasets. Their final conclusion is that the three variant models

perform as well as the original GRU RNN model while reducing the computational

expense. Taking into account the conclusion of this work, in this experiments it was

decided to use a simple GRU network.

79



Chapter 4. Single Path Prediction: LSTMs Variants

Figure 4.2: Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o
are the input, forget and output gates, respectively. c and c̃ denote the memory cell
and the new memory cell content. (b) r and z are the reset and update gates, and
h and h̃ are the activation and the candidate activation [39].

4.3.7 LSTM Attention

Long input sequences can lead the model to a bottleneck situation in terms of

modeling performance. This can be avoided by applying the attention mechanism

proposed by [36]. The attention method extends the Seq2Seq model by informing

the decoder of the positions of the elements in the encoder’s input sequence where

the most significant information could be located at each time step. This

contributes to an improved performance [92]. The Encoder-Decoder architecture is

popular because it has demonstrated state-of-the-art results across a range of

domains. However, a limitation of this architecture is that it encodes the input

sequence to a fixed length internal representation. This imposes limits on the

length of input sequences that can be reasonably learned and results in worse

performance for very long input sequences. Attention is the idea of freeing the

encoder-decoder architecture from the fixed-length internal representation. This is

achieved by keeping the intermediate outputs from the encoder LSTM from each

step of the input sequence and training the model to learn to pay selective

attention to these inputs and relate them to items in the output sequence. For

that reason using attention layers in models has become a trend. It has been used

in works such as machine translation [36], speech recognition [47], Image

Captioning [54] and trajectory prediction [92]. In these experiments a model with
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one attention layer was used3.

4.3.8 Conv1D

Motivated by the success of CNN architectures in various domains, researchers

have started adopting them for time series analysis such as in [70]. Convolutional

Neural Network (CNN) models were developed for image classification, in which

the model accepts a three-dimensional input representing an image’s pixels and

color channels, in a process called feature learning. This same process can be

applied to one-dimensional sequence of data. The model extracts features from

sequences data and maps the internal features of the sequence. Here, a convolution

can be seen as applying a filter over the time series (Convolution across time

rather than space). Unlike images, the filters exhibit only one dimension (time)

instead of two dimensions (width and height). The filter can also be seen as a

generic non-linear transformation of a time series. For example, if convolution

(multiplying) of a filter of length 3 is applied to a univariate time series, by setting

the filter values to be equal to [1/3, 1/3, 1/3], the convolution will result in

applying a moving average with a sliding window of length 3. The result of a

convolution (one filter) on an input time series X can be considered as another

univariate time series C that underwent a filtering process. Thus, applying several

filters on a time series will result in a multivariate time series whose dimensions

are equal to the number of filters used. An intuition behind applying several filters

on an input time series would be to learn multiple discriminative features [105]. In

this work, a model with one Conv1D layer was adopted.

4.4 Experimental Setup

This chapter is related toQ2 How can LSTMs be extended to predict multiple

paths? , by exploring several variants of LSTMs and the way the input data is
3The implementation of such layer was obtained from https://pypi.org/project/keras-self-

attention/
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processed by each of them, it helped to understand better the LSTM architectures

and the knowledge obtained contributed to the creation of chapter 5 and chapter 6

where more complex models were used.

As in chapter III, the dataset used for evaluating the models was the KITTI

dataset because of its realistic traffic scenes, such as highways, inner city, vehicles

standing, vehicle moving, its different objects and the labeled data in image

coordinate and 3D information. All this information from the perspective of

cameras mouthed on a vehicle which is the main focus of this research. Also, the

models were evaluated on three objects – pedestrian, vehicles, and cyclists, for four

prediction horizons (P.H.) from ±5 to ±20 steps and only on the BEV perspective,

since this is a real measurement of the real world, where the measurements are in

meters which represents better the position of the object in the real life than pixels

in image coordinates.

The same data pre-processing steps were used to extract the paths of the

KITTI dataset, and the same sliding window method to create the observed

tracklets trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and its respective ground truth tracklet

trG = [trGt1, tr
G
t2, ..., tr

G
tpred]. The predicted vector of each trO is called

trP = [trPt1, tr
P
t2, ..., tr

P
tpred]. As in chapter III, the aim is to predict a trP based on

the observed tracks trO. Also, the same 70%/30% random split was done and the

same steps during training and testing were followed.

Finally, Average Displacement Error (ADE) 2.11 and Final Displacement Error

(FDE) 2.12 were used to evaluate the performance of each model.

4.5 Results

4.5.1 Performance on Each Type of Object

The performance of each model is depicted in Figure 4.3 and Figure 4.4 for the ADE

and FDE metrics. The performance is given for four time prediction horizons (P.H.)

from ±5 to ±20 and for each object, pedestrian, vehicles, and cyclist. The error is
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presented in range of color from white to red, where white means that model got

the best result (min error) and red means that the model got the worst result (max

error). Take for instance the column Ped. for P.H. of ±5 and metric ADE, where

the model that got the worst result for the object pedestrian and P.H of ±5 was

LSTM Vanilla Backwards (marked in red) and the model that obtained the best

result was GRU (marked in white).

Figure 4.3: Results ADE. Four P.H. Three Objects.

Figure 4.4: Results FDE. Four P.H. Three Objects.

From these results, it can be seen that LSTM Vanilla Backwards shows the worst

performance, and the best performance is reached by GRU and LSTM Encoder-

Decoder. LSTM Vanilla seems to have have an average performance as in none of

the cases is marked with bright red color.

Looking a bit closer by time prediction horizon, GRU seems to keep good

83



Chapter 4. Single Path Prediction: LSTMs Variants

performance along the whole P.H., LSTM Encoder-Decoder appears to struggle

with short P.H., from ±5 to ±10, but its performance improves for long P.H., from

±15 to ±20. Conv1D shows similar behaviour that LSTM Encoder-Decoder.

LSTM Attention, also tends to get better performance for long P.H., from ±15 to

±20; this goes with the nature of attention models, since they were created to deal

with long sequences. LSTM Bi does not present any specific pattern in its

behaviour. LSTM Stacked and LSTM Vanilla, both show an average performance

performance across P.H. Finally LSTM Vanilla Backwards shows to have better

performance for short P.H of ±5.

The results ordered by type of object and time prediction horizon is depicted in

Figure 4.5, Figure 4.6 and Figure 4.7. For the object pedestrian in Figure 4.5, the

best models are GRU, LSTM Encoder-Decoder, and LSTM Stacked. LSTM Vanilla

still shows an average performance, followed by Conv1D and LSTM Attention. For

the object vehicle, as depicted in Figure 4.6, it can be seen that GRU reach good

results for P.H. from ±5 to ±15, and for long P.H. from ±15 to ±20, LSTM Encoder-

Decoder got good results. LSTM Vanilla and LSTM Attention keeps an average

performance similar to LSTM Bidirectional. LSTM Stacked and LSTM Vanilla

Backwards show the worst performance. Finally for the object Cyclist in Figure 4.6,

the best model is GRU. LSTM Stacked got the best results but it struggles for long

P.H. from ±15 to ±20. LSTM Vanilla, LSTM Encoder-Decoder, Conv1D and LSTM

Attention present an average performance along with LSTM Bi. LSTM Vanilla Back

shows the worst performance.

Considering the type of object, all the models appear to struggle when predicting

trajectories for the object vehicle, followed by the object cyclist and for the object

pedestrian, as shown in Figure 4.8 and Figure 4.9. From these figures it can be seen

as well that performance of all the models decreases when they have to predict for

long time prediction horizons.

84



Chapter 4. Single Path Prediction: LSTMs Variants

Figure 4.5: Results ADE and FDE. Four P.H. Pedestrians.

Figure 4.6: Results ADE and FDE. Four P.H. Vehicles.

Figure 4.7: Results ADE and FDE. Four P.H. Cyclists.

4.6 Discussion and Conclusions

The objective if this chapter was to compare the performance of some models against

the LSTM Vanilla model on predicting the future position of objects commonly

presents in traffic scenes. The models were tested on predicting in a birds’ eye view

map. The following conclusions can be drawn:
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Figure 4.8: Results ADE. Four P.H. Three Objects.

Figure 4.9: Results FDE. Four P.H. Three Objects.
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1. LSTM Vanilla have an average performance compared with the other models.

2. The performance of all the models decrease when predicting for long time

prediction horizons (P.H).

3. None of the model is the best in all the cases.

4. GRU is the model that performs better in most of the cases.

5. Some models are better for predicting long time P.H. such as LSTM Encoder-

Decoder and ConV1D which would be interesting to analyse in further work.

6. Different to the studies shown in the introduction, in this experiments the

improvement in performance of some models against the vanilla is significant

and this significance increase when longer the time prediction horizon is.

However, it is important to say that non of the models perform better than

the vanilla LSTM in all the cases.

7. Considering the type of object, all the models appear to struggle when

predicting trajectories for the object vehicle, followed by the object cyclist

and for the object pedestrian.

8. Table 4.2 and Table 4.3 present the average performance of the models for the

metrics ADE and FDE respectively. The average performance is by object

type on the four time P.H. and ordered in a ascending manner. Remember,

small error values means that the model performs better.

9. Finally, this chapter allows us to understand better how to use LSTM

architectures in its different ways, since this will be needed it in the next

chapters where more complex model are designed for predicting multiple

paths and for processing multimodal data.
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Table 4.2: Performance of the models by average in each of the objects. Metric:
ADE

ADE
Pedestrian Vehicles Cyclists

Model Average Model Average Model Average
LSTM Stacked 0.093 LSTM Enc-Dec 0.737 GRU 0.303
GRU 0.100 Conv1D 0.842 LSTM Vanilla 0.413
LSTM Enc-Dec 0.103 GRU 0.857 LSTM Enc-Dec 0.464
LSTM Vanilla 0.111 LSTM Attention 0.876 Conv1D 0.648
LSTM Attention 0.185 LSTM Bi 0.899 LSTM Stacked 0.740
Conv1D 0.204 LSTM Stacked 0.912 LSTM Attention 0.749
LSTM Bi 0.249 LSTM Vanilla 0.919 LSTM Bi 0.768
LSTM Vanilla Back 0.314 LSTM_Vanilla_Back 1.097 LSTM Vanilla Back 2.089

Table 4.3: Performance of the models by average in each of the objects. Metric:
FDE.

FDE
Pedestrian Vehicles Cyclists

Model Average Model Average Model Average
LSTM Stacked 0.307 LSTM Bi 2.336 GRU 0.944
GRU 0.320 Conv1D 2.351 LSTM Enc-Dec 1.297
LSTM Enc-Dec 0.328 LSTM Enc-Dec 2.447 LSTM Vanilla 1.499
LSTM Vanilla 0.352 LSTM Attention 2.523 Conv1D 1.672
LSTM Attention 0.596 GRU 2.742 LSTM Stacked 1.696
Conv1D 0.640 LSTM Vanilla 2.879 LSTM Bi 2.356
LSTM Bi 0.693 LSTM Stacked 3.011 LSTM Attention 2.470
LSTM Vanilla Back 0.945 LSTM Vanilla Back 3.366 LSTM Vanilla Back 6.263
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Chapter 5

LSTMs and MDN for Multiple

Path Prediction

5.1 Introduction

As established in the previous chapters, path prediction using RNNs has shown good

performance. However, most of the approaches have the limitation of only predicting

a single path per tracklet. Path prediction is not a deterministic task and requires

predicting with a level of uncertainty. In addition, generating a set of paths instead

of a single one is a more realistic manner of predicting the possible position of

objects. Some works only focus on specific scenarios such as intersections, crossing

roads and highways from a top view where the movements of the objects are limited

by the shape of the scenarios. Nevertheless, real-life traffic scenarios are more diverse

and consequently the movements of the objects in that environment are also diverse.

This chapter focus on extending LSTM architectures to predict multiple paths per

observed tracklet along with with associated uncertainty. The approach is evaluated

on two datasets, KITTI that gives annotated data from cameras mouthed on a

vehicle and CityFlow that provide data from surveillance cameras. Both datasets

content realistic and diverse scenarios from traffic scenes.

This chapter is mainly related to RQ2 since here MDN (Mixture Density

Networks) are used to extend LSTM architecture to predict a set of paths instead

of a single one.

This chapter contains partial content published (peer-reviewed) in the VEHITS
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2020 conference. In this chapter, Section 5.2 describes the data and the aim of

this chapter. Section 5.3 presents our approach. Section 5.4 and 5.5 present the

experimental setup and results respectively. Finally, in section 5.6 a discussion and

conclusions are given.

5.2 Data Definition

In this work we apply a sliding window over one track per time period then these

smaller segments are split into two vectors of equal size. The first vector is the

observed tracklets trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and the second vector is its respective

ground truth tracklet trG = [trGt1, tr
G
t2, ..., tr

G
tpred]. The predicted vector of each trO

is called trP = [trPt1, tr
P
t2, ..., tr

P
tpred]. We aim to predict trP based on the observed

tracks trO but instead of only predicting one trP we want to predict a set, trPS , ofm

trP per each trO with its respective probability such that trPS = [trP1 , tr
P
2 , ..., tr

P
m]

and trPx = [trP , P robability], as illustrated in Figure 5.1.

Figure 5.1: Predicting one path (A) vs predicting a set of paths (B).
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Figure 5.2: General Proposed Approach.

5.3 Approach

As discussed in Chapter 4, LSTMs have previously shown good performance when

dealing with sequential or time series data, so in this approach an LSTM architecture

is used. LSTMs can be used in different ways, one of which is the Multiple Output

Strategy (MOS). MOS develops one model to predict an entire sequence in a one-

shot manner, outputting a vector directly that can be interpreted as a multi-step

forecast. However, at this stage the problem of only being able to predict a single

path per observed tracklet still remains. To overcome this limitation, we use the

well known properties of Mixture Density Models (MDMs) and inspired by [2], we

propose to use LSTMs with MDMs as a MDN layer, as shown in Figure 5.2.

5.3.1 Model Architecture

The core of the model are two stacked LSTMs with a final MDN layer. The number

of inputs and outputs depends on the length of the observed tracklet, trO, and the

number of steps to be predicted ahead, trP . The Keras API 1 and the Keras MDN

Layer library 2 were used to implement the LSTM architecture and the MDN Layer

respectively. Figure 5.3 shows the architecture used.
1https://keras.io/
2https://pypi.org/project/keras-mdn-layer/
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Figure 5.3: LSTM and MDN Architecture.

5.3.2 Training

During training, from the available data a random training and test split was done;

70% of the data was used for training and the rest for testing. Also, to feed the

model correctly, the next steps were followed:

1. Specify the length of tracklets to be processed and the number of mixtures to

be used, NMixes. The number of mixtures NMixes is the number of paths

to be predicted per observed tracklet, trO. Experiments using 2, 3, 4 and 5

NMixes were performed.

2. Scale data [0,1]: un-scaled input variables can result in a slow or unstable

learning process, whereas un-scaled target variables on regression problems

can result in exploding gradients causing the learning process to fail.

3. Split data into observed tracklet, trO, and ground truth path (tracklet) to be

predicted, trG.

4. trO is shaped as [Nsamples, tobs, features-in-trO] and trG as [Nsamples,

OutputLength]. Where Nsamples is the number of samples in the dataset,

tobs is the number of tracks in each observed tracklet (trO), features-in-trO

is the number of features in each observed track. Finally, OutputLength is
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the size of the output of the model. In this case,

OutputLength = tpred ∗ features-in-trG. Here tpred is the steps to predict

in the future and features-in-trG is the number of features to predict in

each step.

5.3.3 Multiple Trajectory Extraction

As mentioned before, during training we have to specify the number of paths to be

predicted per observed tracklet trO by setting NMixes. In this work experiments

using 2, 3, 4 and 5 NMixes were performed to analyse the behaviour of the model.

During testing it is not necessary to specify how many path we want since the model

have been trained to predict NMixes or N paths per observed tracklet trO.

During prediction, instead of having as output a single array of [tpred, x, y]

positions, the model outputs an array with the parameters of a Mixture Density

Model, which are mean, standard deviation (SD) and mixing coefficients or

proportions (Mp). These parameters are given in the format of

[Mean1,Mean2, ....,MeanN , SD1, SD2, ...., SDN ,Mp1,Mp2, ....,MpN ]. Where

MeanN is a set of [tpred, x, y] positions of each predicted paths. SDN is a set of

[tpred, SDx, SDy] values for each MeanN . Finally, MpN contains per column an

individual value per each MeanN . All this is given as a flattened array. An

example of the flattened array output by the model when predicting 1 step ahead

and 5 possible paths is given in Figure 5.4.

Figure 5.4: Multiple trajectory extraction: example predicting 1 step ahead and 5
possible paths. OutputLength = 1 ∗ 2. 1 step predicted ahead and 2 features (x,y).
Nmixes = 5 possible paths.

Regarding the mentioned array and taking into account the structure of the

data in it, the output of the model was processed as follow to extract the multiple
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trajectories:

1. Extracting mean: the first NMixes ∗ OutputLength columns are extracted

as means and the array is resized to an array of

MeanPredictedPaths = [NMixes, tpred, featuresintrG] which can be read as

Path number, steps to predict in the future, the number of features to

predict in each step (x, y).

2. Extracting standard deviation (SD): the second NMixes ∗ OutputLength

columns are extracted as SDs and similar to the means the array is resized to

an array of SDsPredictedPaths = [NMixes, tpred, featuresintrG] which can

be read as Path number, steps to predict in the future, the number of

features to predict in each step (x, y).

3. Extracting mixing proportions (Mp): the last NMixes columns are the Mp

of each predicted path and are stored in an array MpPredictedPaths.

4. Finally, once each array is set up, each row in MeanPredictedPaths is

considered as a possible path and their mixing proportion, stored as columns

in MpPredictedPaths, are the probabilities of each path. SDsPredictedPaths was

not used in this experiments as the standard deviation was not needed for

further analysis of the results or for visualization purpose as it was the case

of the means and the Mps.

5.4 Experimental Setup

A second question to answer in this research work is: Q2 How can LSTMs be

extended to predict multiple paths? . As explained above LSTMs are used along

MDN (Mixture Density Networks) to predict a set of paths instead of a single one.

Also, an initial exploration of Q3 Are Long Short-Term Memory (LSTM)

architectures suitable for sequential and enriched trajectory information?
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is performed by adding 3 features more to the positional information of the tracklets

(LMDN5). These experiments are related to explore these two research questions.

The datasets used for evaluating the models is KITTI and CityFlow. KITTI

because of its realistic scenes, such as highways, inner city, vehicles standing,

vehicle moving, its different objects and the labeled data in image coordinate and

3D information. All this from cameras mouthed on a vehicle which is the main

focus of this research work. CityFlow is used in this chapter as well because it is a

dataset that contains annotated data of images from static surveillance cameras

from traffic scenes. The dataset covers a diverse set of location types, including

intersections, stretches of roadways, and highways. The surveillance perspective

can be seen as a birds-eye view of the objects and it is perfect to visualize the

predicted paths gotten from the multiple path prediction approach. Another

reason to use CityFlow in this chapter is that at the time of exploring LSTMs and

MDN, we were using this dataset to perform other research task called object

re-identification so we got familiarized with this dataset and we already know

which information could be used and how to used, so its use did not implicated

any more analysis on understandings the data. However, it was not used in the

following chapters because it only provides positional information of the object

vehicle from static cameras in image coordinates (pixels), besides it does not

provide other type of information such as ego motion as KITTI does.

As in chapter 3, the models were evaluated on three objects – pedestrian,

vehicles, and cyclists for KITTI and vehicles for CityFlow. Four prediction

horizons (P.H.) from ±5 to ±20 steps were used.

The same data pre-processing steps were used to extract the trajectories from

the datasets, and the same sliding window method was used to create the observed

tracklets trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and its respective ground truth tracklet

trG = [trGt1, tr
G
t2, ..., tr

G
tpred]. Finally, Average Displacement Error (ADE) 2.11 and

Final Displacement Error (FDE) 2.12 were used to evaluate the performance of

each model.
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Table 5.1 summarizes the number of tracklets extracted in each dataset. 70%

were used for training and the rest for testing:

Table 5.1: Size of data for all P.H. and objects.

Number of Tracklets
KITTI CityFlow

P.H. Pedestrian Vehicle Cyclist Vehicle
± 5 9,992 26,112 1,605 37,480
±10 8,551 20,454 1,285 31,164
±15 7,330 16,031 1,028 25,936
±20 6,312 13,027 802 21,923

The comparative study was performed with two baselines methodologies –

Kalman Filter (KF) with Constant Velocity (CV) model and Vanilla LSTM

(VLSTM) with 128 neurons – to establish that our approach does not lose

accuracy when predicting a set of paths.

For our proposed model (LSTM with MDM), we performed two experiments

for image coordinates. Instead of only using two features, (x, y) position of objects

(LMDN2), we included three additional features: height (h), object area (objectA)

and object area with respect to the image (objectAImg). This produced a feature

vector of (x, y, h, objectA, objectAImg) (LMDN5).

5.5 Results

The performance was calculated on four different prediction horizons (P.H.) and for

three different objects – pedestrians, cyclists and vehicles (Cars, Vans or Trucks).

The results are also provided in image coordinates (pixels) and in birds-eye view

(metres). Due to the size of the images, the results show large numerical values

in the case of image coordinates. Finally, the approach was also evaluated on the

generation of different numbers of paths, two to five. The results (Tables 5.2, 5.3

& 5.4) show the accuracy of the mixture component with the highest probability

compared with the baseline methods. Examples of predicting different numbers of

paths are shown in the visualizations (Fig. 5.5 & 5.6). Where it is depicted how
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the predicted paths differ gradually from the ground truth according to the given

probability. It is also shown that predicting up to three paths per observed tracklet

still gives consistent paths.

5.5.1 Performance on the KITTI Dataset

Table 5.2 shows the performance of the approach for image coordinates. As expected,

all methods show the error increases directly with the predicted horizon: the larger

the P.H., the larger the error. Table 5.2 shows that our approach, LMDN2, achieves

better accuracy than the two baseline methods. It can also be observed that the

approach LMDN5 showed improvement for short P.H. in ADE and in several cases

for FDE, mostly for the objects pedestrian and vehicle.

Table 5.3 presents the results calculated using birds-eye view (BEV). For most

cases, our approach, LMDN2, achieves better accuracy than the two baseline

methods. An exception is a significant error increase in the case of the vehicle class

for the P.H. of ±10 for both ADE and FDE.

Figure 5.5 shows the resulting set of paths predicted when configuring the model

to have five mixtures. The first 1,000 samples are displayed. The first image (GT)

displays the ground truth paths and the following images from MDN 1 to MDN 5

present the paths predicted by each mixture component. The mixtures were ordered

according to descending probability of their components – MDN 1 (high probability)

to MDN 5 (low probability). The predicted paths diverge from the ground truth

when the probability of the the components used for predicting go from high to low.

5.5.2 Performance on the CityFlow Dataset

Table 5.4 presents the performance of the methods on the CityFlow dataset. For all

approaches, similar behaviour to that in KITTI can be observed – the error increases

directly with the P.H. Table 5.4, shows that our approach, LMDN2, achieves better

accuracy than the two baseline methods. The approach LMDN5 (using 5 features)

showed significant improvement over the method LMDN2 for the P.H. of ±5, ±10,
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Figure 5.5: Set of paths predicted using five mixtures. Dataset: KITTI. P.H.:±5.
Point of view: BEV.
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Table 5.2: Path prediction accuracy on KITTI. Image coordinates.

KITTI. Image Coordinate (Pixels)
Method LMDN5 LMDN2 VLSTM KF

ADE ADE ADE ADE
P. H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 79 65 232 106 84 107 76 98 94 111 225 143
±10 286 272 329 362 267 261 244 353 160 260 585 287
±15 466 591 1596 660 614 467 802 668 1163 549 1019 807
±20 1407 1035 15673 1185 723 2854 1755 1065 6856 970 1554 1944

FDE FDE FDE FDE
P. H. Ped. Veh. Cyc. Pe. Veh. Cyc Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 168 161 502 237 220 277 169 252 271 214 501 385
±10 721 896 1124 1098 924 946 727 1163 538 778 1914 1022
±15 1517 2265 3742 2231 2230 1917 2483 2412 4452 1907 3695 3408
±20 5061 3678 38492 4100 2828 12346 6251 4040 25743 3567 5808 8539

and ±15 for both ADE and FDE.

To predict a set of paths, from 2 to 5, similar behaviour to that in the KITTI

dataset is observed. The predicted paths diverge from the ground truth when the

probability of the components used for predicting goes from high to low. Figure 5.6

depicts one example of predicting from 2 to 5 sets of paths for a P.H. of ±5. When

the predicted paths are near the ground truth, the probability of such a path is

high, in contrast, when the predicted paths are far from the ground truth, their

probability is low. In some cases, as in figure 5.6 at row 3 and 4 left, the paths are

not displayed because the probability of that path is too low.
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Table 5.3: Path prediction accuracy on KITTI. BEV.

KITTI. Bird-Eye View (Meters)
Method LMDN2 VLSTM KF

ADE ADE ADE
P. H. Ped. Veh. Cyc. Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 0.01 0.06 0.02 0.01 0.06 0.02 0.06 0.47 0.24
±10 0.04 0.55 0.11 0.05 0.25 0.10 0.10 0.75 0.36
±15 0.10 0.73 0.285 0.12 0.87 0.41 0.21 1.12 0.54
±20 0.31 1.31 0.805 0.22 1.68 1.01 0.41 1.79 0.90

FDE FDE FDE
P. H. Ped. Veh. Cyclist Ped. Veh. Cyc. Ped. Veh. Cyc.
±5 0.02 0.13 0.03 0.02 0.15 0.04 0.08 0.58 0.27
±10 0.13 1.24 0.29 0.14 0.72 0.27 0.25 1.67 0.64
±15 0.32 2.16 1.08 0.38 2.69 1.29 0.69 3.28 1.42
±20 1.13 4.21 2.21 0.77 5.48 3.06 1.49 6.04 2.95

Table 5.4: Path prediction accuracy on CityFlow. Image coordinates.

CityFlow. Image Coordinate (Pixels).
Method LMDN5 LMDN2 VLSTM KF
P.H. ADE ADE ADE ADE
±5 486 582 634 1369
±10 665 905 893 1948
±15 891 1094 1134 1846
±20 1613 1371 1587 2202
P.H. FDE FDE FDE FDE
±5 878 1125 1209 2492
±10 1792 2659 2525 5167
±15 3084 3817 4135 6585
±20 5749 5197 6121 8382
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Figure 5.6: From top to bottom, predicting two (row 1), three (row 2), four (row
3) and five (row 4) sets of paths. Left: shows the predicted set of paths with their
respective probability (the larger the circle, the larger the probability of that path).
Middle and right: present a close-up of the set of paths without their probabilities.
Dataset: CityFlow. P.H.:±5. Point of view: Image Coordinate.
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5.6 Discussion and Conclusions

This chapter presents an approach for predicting multiple paths with associated

uncertainty for forecasting near future positions of objects commonly present in

traffic scenes. The objective of this work was to explore the performance of the

combination of LSTM and MDN architectures and analyze the parameters output

by these models for predicting a set of paths. The evaluation was made for three

object classes, four P.H. and two different points of view.

The comparative study shows that LSTMs do not decrease their performance

when combined with the MDN. Regarding the method LMDN5, the experiments

showed that the extra features lead to better results overall. This was evidenced in

KITTI for short prediction horizons for the object pedestrian and vehicle and for

CityFlow for the object vehicle for P.H. of less than ±15. The relationship between

the accuracy of the predicted set of paths and the probability of each component in

the MDN model can be seen in Figure 5.5 and Figure 5.6. As expected, the predicted

paths are more similar to the ground truth when the component that is predicting

them gives high probability. However, those paths that are being predicted for the

components with low probability are increasingly different to ground truth. This

conclusion is desirable when predicting paths, because based on the probability of

each predicted path we can relay more in those paths with high probability.

The approach was also evaluated for predicting multiple numbers of paths per

input tracklet. It was observed that when predicting two to three paths per input,

the approach works well as the predicted paths are still related to the ground truth.

However, in some cases, when predicting four and five paths, some of the predicted

paths begin to deviate further from the ground truth. This cannot be seen as a

disadvantage since each path has a probability, so by looking at the probability of

each path, those paths with very low probability can be discarded.

The approach performs better when predicting in birds-eye view than when

predicting in image coordinates. However, such 3D information is not always
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available. The reason for this could be that using pixels is not the best way of

representing the position of the object in an image since is too sensitive to small

movements of the camera and also of the object detection. Something to consider

here is that when predicting in image coordinates, further normalisation is needed

to counter the size of the images in the dataset. Results in pixels were provided

here to be consistent with other published results. As shown in our experiments,

the errors in pixels are large but that does not mean that the predictions are far

from the ground truth paths.

The results have shown that the use of LSTM with a Mixture Density Model

achieves good performance of up to an ADE of 0.01m for pedestrians, 0.06m for

vehicles and 0.02m for cyclists and up to an FDE of 0.02m, 0.13m, 0.03m for the

same objects using BEV and P.H. of ±5. The results also show that the performance

is affected by the P.H. where longer horizons result in a larger displacement error.

The P.H. where the approach is more reliable is for ±5 and ±10 for image coordinate

and up to ±15 for birds-eye view. The FPS in both datasets is 10 therefore we are

predicting from (± 0.5s) to (±2s) seconds ahead.

Finally, the processing inference time per tracklet for our approach was

0.044ms/tr, 0.055ms/tr, 0.084ms/tr, 0.102ms/tr for P.H. of ±5 to ±20 respectively.

This was measured using a PC with the following features: GPU GeForce GTX

980, CPU Intel R© CoreTM i5-4690K CPU @ 3.50GHz x 4, RAM 24GB
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Chapter 6

Path Prediction Using

Contextual Information

6.1 Introduction

In previous chapters only the past position of the observed object in a scene have

been used to predict its future path. However, in traffic scenarios there is a rich

set of additional information available about the environment of the ego vehicle and

each object in the scene. For example, this information could be an image of a

moving object, the velocity of the ego vehicle, the position of other objects or an

image of the scene itself. Nowadays, instrumented vehicles are capable of sensing

and providing this information that could be leveraged in the path prediction task.

This information (contextual information or cues) are used along with the tr(x, y)

positional information of the object whose future path is to be predicted [101, 110,

98, 81].

However, using this contextual information still poses a challenge. Since this

information comes in different types of data, including numerical and image data,

and from different sources, several problems have to be faced such as synchronization

and availability of data, feature extraction, multimodal data management, and data

fusion strategies. This chapter presents the approach developed in this research

thesis to use this contextual information in the path prediction task.

This chapter is related to RQ1, RQ3 and RQ4 since this chapter explore the

representation of positional data in a latent space (RQ1) and the processing of
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context information (RQ3) along with its different representations and fusion

strategies (RQ4).

For the remainder of this chapter, Section 6.2 introduces the contextual

information used. Section 6.3 defines the nature of the data. Section 6.4 presents

our approach. Section 6.5 describes the experimental setup. Section 6.6 presents

an initial exploration of the ego-vehicle features along with the obtained results.

Followed by section 6.7 where a deeper exploration of multimodal features is

detailed. Section 6.8 describes the use of ensembles to improve the performance of

individual models. Finally, in Section 6.9 conclusions are given.

6.2 Contextual Information

For traffic scenes, and specifically from cameras mounted on a moving vehicle (ego

vehicle), the following cues or features were used: object, ego-vehicle telemetery

data, scene, and interaction aware or social context features (other objects), as

visualised in Figure 6.1. These four type of features were selected since they cover

most of the information that can be obtained from the perspective of an ego vehicle.

More details about these features are given below.

6.2.1 Object

Besides the x, y position of the object, regions of the objects from the RGB images

are used. These images can potentially give better understanding of the object such

as the pose or orientation that can be leveraged as additional features, Figure 6.2.

6.2.2 Ego vehicle

Some data sets provide the dynamics of the vehicle used to record the scene. KITTI

provides telemetry of the ego vehicle, such as orientation, velocity in [x,y,z] and

acceleration in [x,y,z]. The configuration of the axes are shown in Figure 6.3.
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Figure 6.1: Contextual information from Ego-vehicle view.

Figure 6.2: RGB image patches.

6.2.3 Scene

Including information about the scene and context can potentially help to

understand the type of traffic scene where the prediction is happening. These

images could be raw RGB images or pre-processed semantic maps of the scenes, as
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Figure 6.3: Ego-vehicle features [26]

presented in Figure 6.4.

Figure 6.4: Scene features.
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6.2.4 Interaction aware

Taking into account the position of other objects is an important feature for path

prediction that is called interaction aware features. In this work three

representations of the position of the objects in a scene are used – a grid map, a

polar map (relative position), and the local map of objects.

Grid Map

As in [98], the grid map was implemented to encode the position of other objects

around the object of interest in a rectangular grid, where each square of the grid

represents one position. If no object is found in that position the square contains a

value of 0. The Figure 6.5 shows an example of 6 frames (1 to 6) where each frame

shows the RGB image of a scene, the created BEV representing that scene, and the

grid map. In this example the object of interest is the cyclist (colored blue in the

BEV), and the near object is the pedestrian (red). In the grid map visualisation,

the position of the pedestrian object is shown in yellow.

Polar Map

The polar map was implemented as in [98]. In this type of map, instead of

representing the position of the other objects in a rectangular grid, they are

represented by polar coordinates, by the distance to the center of the object of

interest and the angle, as depicted in the Figure 6.6. The polar map is divided into

circles and by angle. The polar map shown in Figure 6.6 is divided in three circles

and the total angle of the circumference (360◦ is divided into 4 sections. The

positions of the objects are then represented by these circles and sections.

Local Bird’s-Eye View Map

The Local BEV Map encodes the position of other objects in a scene, and assigns

a color to each object type as depicted in Figure 6.7. This image map represents

in pixels the position of the objects in the real world. The map encodes the type

of each object in a specific color; red for pedestrian, green for vehicles, and blue

for cyclists. The image in Figure 6.8 shows the global BEV map at different scales
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Figure 6.5: Grid map.

Figure 6.6: Polar map.
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to better represent the spatial position and separation of objects. In the example

shown the two pedestrians cannot be distinguished at scale 1px:1m but start to

become more distinct at scale 1px:0.5m.

Figure 6.7: Interaction aware features: BEV map of objects in a scene. Red:
pedestrian; Green: vehicles; Blue: cyclist.

Figure 6.8: Global BEV Scales.
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However, the BEV contains all the objects in a scene, but for predicting the

path of an object, adjacent or near by objects are the most influential. Therefore,

a local BEV is extracted from the global BEV. This is illustrated in Figure 6.9. It

shows the lateral image of a scene, the global BEV representing that scene and the

local BEV of the object of interest.

Figure 6.9: Local BEV for Object ID 126.
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6.3 Data Definition

A path, P , is a set of tracks, tr, that contains information such as tr(x, y) position

(coordinates) of an object that travels a given space or scene,

P = {trt1, trt2, .......trtlength}. However, besides the spatial location of the object,

there are other features that can be extracted from the object itself, the ego

vehicle, the other objects and the scene. This information can be also extracted

sequentially so a track can be represented as a set of features such as tr(x, y,

RGBObject, OtherObjects, EgoV ehicle, Scene, T ime).

In this work we extracted all this information and it was used to predict the

future path of objects. Again, we used the sliding window approach to create

observed tracklets: trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and its respective ground truth

tracklet: trG = [trGt1, tr
G
t2, ..., tr

G
tpred]. The predicted vector of each trO is called

trP = [trPt1, tr
P
t2, ..., tr

P
tpred]. The aim of this chapter is to predict a trP based on the

observed tracks trO, as illustrated in Figure 6.10.

Figure 6.10: Path prediction using contextual information.
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6.4 Approach

Now that we are dealing with more data, including numerical and visual information,

and from different sources, we have to face three problems: a) Feature extraction,

b) Multimodal data and c) Fusion strategies. This section presents a description of

these problems and how they were addressed in this research. Firstly, explaining first

how features were extracted from images using CNN models. Secondly, describing

how models with multiple inputs can be created. And thirdly, a description of some

fusion strategies that help to combine the different contextual features is given.

Finally, the architectures of the models are given along with the steps followed

during training and testing to obtain the future predicted path of objects.

6.4.1 Feature Extraction

Feature extraction has an important role in several applications in the computer

vision area and CNN models have shown good performance on feature extraction

for several tasks such as image classification, fine grained recognition and attribute

detection [44] and several pre-trained models exist such as AlexNet, VGG16,

VGG19, etc. In this application we are still dealing with sequential data so LSTM

architectures are used. The combination of CNN and LSTMs are called

CNN+LSTMs models. Besides CNN+LSTMs models there is a new variant called

ConvLSTMs that fuse CNN+LSTMS internally. The Figure 6.11 and 6.12 depicts

a general idea of the two approaches.

In this work, because of its wider use in the literature, the CNN+LSTMs

approach was used. It is also important to mention that this application is

different to classification problems. In this work the CNN models are trained from

scratch together with an LSTM specifically for path prediction. So, it is expected

that the CNN model used should capture features relevant for this task [98].

One of the limitations when dealing with a sequence of images is that the CNN

models could be highly resource consuming, particularly with large images.
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Figure 6.11: CNN+LSTM general approach

Figure 6.12: ConvLSTM general approach

Therefore in this work we focus on working with subsampled images of sizes such

as 40×40, 64×64 and 124×37 pixels based on the size of the map. For that reason

some research was done on tiny images classification. An interesting work is

detailed in [112], where they present a 4Block-4CNN model that performs well on

tiny images of 32x32 pixels from the CINIC-10 dataset which is a combination of

CIFAR-10 and Tiny ImageNet. The model shown in this work can be seen as a

deep model since it has 16 CNN layers grouped in 4 blocks. Another related work

is done in [55] where they used the Tiny ImageNet dataset with images of 64x64.

In this work they conclude that the use of deep models (8CNNs) lead to better

performance. Similar conclusions were made in [100, 126]. Something in common

in previous works is the use of several layers of CNNs in the model architecture.
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Besides the use of deep CNN models, another aspect to consider is the use of

Dropout or Batch Normalization. Based on the conclusions of the works presented

in [48, 117], it was decided to use batch normalization.

Another point to consider is the use of a Global Average Pooling Layer (GAP)

that allows the model to generate more generic features and also helps to expose

the regions where the CNN are paying more attention [65]. This is a desirable

characteristic since we are not aiming to classify an image but to predict the future

path of objects based on them.

Taking into account the experience of previous works, three CNN models were

created to process each type of image in this work. Table 6.1, Table 6.2 and Table 6.3

detail the models used to process the object image, the interaction-aware image and

the scene image respectively.

For comparison purpose, based on information in [65] – “The responses from the

higher-level layers of CNN (e.g.,fc6, fc7 from AlexNet) have been shown to be very

effective generic features with state-of-the-art performance on a variety of image

datasets” (p.5) – and for its use in [98], we decided to use AlexNet to compare

performance with our proposed CNN models. AlexNet was also used with a final

GAP layer to process the object image, the interaction-aware image map and the

scene image as described in Table 6.4, Table 6.5 and Table 6.6.
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Table 6.1: 4block3convGAP for object image.

Layer Kernels Kernel Size Strides Output shape
conv1 32 3x3 1 64x64x32
conv2 32 3x3 2 32x32x32
conv3 32 3x3 1 32x32x32

maxPool1 - 3x3 2 16x16x32
batchNorm1 - - - 16x16x32

conv4 64 3x3 1 16x16x64
conv5 64 3x3 1 16x16x64
conv6 64 3x3 2 8x8x64

maxPool2 - 3x3 2 4x4x64
batchNorm2 - - - 4x4x64

conv7 128 3x3 1 4x4x128
conv8 128 3x3 1 4x4x128
conv9 128 3x3 1 4x4x128

batchNorm3 - - - 4x4x128
conv10 256 3x3 1 4x4x256
conv11 256 3x3 1 4x4x256
conv12 256 3x3 1 4x4x256
GAP - - - 256

dense1 - - - 256

Table 6.2: 4block3convGAP for interaction-aware image.

Layer Kernels Kernel Size Strides Output shape
conv1 32 3x3 1 40x40x32
conv2 32 3x3 2 20x20x32
conv3 32 3x3 1 20x20x32

maxPool1 - 3x3 2 10x10x32
batchNorm1 - - - 10x10x32

conv4 64 3x3 1 10x10x64
conv5 64 3x3 1 10x10x64
conv6 64 3x3 1 10x10x64

maxPool2 - 3x3 2 5x5x64
batchNorm2 - - - 5x5x64

conv7 128 3x3 1 5x5x128
conv8 128 3x3 1 5x5x128
conv9 128 3x3 1 5x5x128

batchNorm3 - - - 5x5x128
conv10 256 3x3 1 5x5x256
conv11 256 3x3 1 5x5x256
conv12 256 3x3 1 5x5x256
GAP - - - 256

dense1 - - - 256
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Table 6.3: 4block3convGAP for scene image.

Layer Kernels Kernel Size Strides Output shape
conv1 32 3x3 1 37x124x32
conv2 32 3x3 2 19x62x32
conv3 32 3x3 1 19x62x32

maxPool1 - 3x3 2 9x31x32
batchNorm1 - - - 9x31x32

conv4 64 3x3 1 9x31x64
conv5 64 3x3 1 9x31x64
conv6 64 3x3 2 5x16x64

maxPool2 - 3x3 2 2x8x64
batchNorm2 - - - 2x8x64

conv7 128 3x3 1 2x8x128
conv8 128 3x3 1 2x8x128
conv9 128 3x3 1 2x8x128

batchNorm3 - - - 2x8x128
conv10 256 3x3 1 2x8x256
conv11 256 3x3 1 2x8x256
conv12 256 3x3 1 2x8x256
GAP - - - 256

dense1 - - - 256

Table 6.4: AlexNetGAP for object image.

Layer Kernels Kernel Size Strides Output shape
conv1 96 11x11 4 16x16x96

maxPool1 - 3x3 2 7x7x96
batchNorm1 - - - 7x7x96

conv2 256 5x5 1 7x7x256
maxPool2 - 3x3 2 3x3x256

batchNorm2 - - - 3x3x256
conv3 384 3x3 1 3x3x384
conv4 384 3x3 1 3x3x384
conv5 256 3x3 1 3x3x256
GAP - - - 256

dense1 - - - 256
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Table 6.5: AlexNetGAP for interaction-aware image.

Layer Kernels Kernel Size Strides Output shape
conv1 96 11x11 4 10x10x96

maxPool1 - 3x3 1 8x8x96
batchNorm1 - - - 8x8x96

conv2 256 5x5 1 8x8x256
maxPool2 - 3x3 2 3x3x256

batchNorm2 - - - 3x3x256
conv3 384 3x3 1 3x3x384
conv4 384 3x3 1 3x3x384
conv5 256 3x3 1 3x3x256
GAP - - - 256

dense1 - - - 256

Table 6.6: AlexNetGAP for scene image.

Layer Kernels Kernel Size Strides Output shape
conv1 96 11x11 3 13x42x96

maxPool1 - 3x3 2 6x20x96
batchNorm1 - - - 6x20x96

conv2 256 5x5 1 6x20x256
maxPool2 - 3x3 2 2x9x256

batchNorm2 - - - 2x9x256
conv3 384 3x3 1 2x9x384
conv4 384 3x3 1 2x9x384
conv5 256 3x3 1 2x9x256
GAP - - - 256

dense1 - - - 256
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6.4.2 Multimodal Data

Multimodal data refers to the concept of having multiple types or modes of data.

Our model must be able to ingest this “multimodal data” and make (accurate)

predictions using it.

The information we are processing comes from different sources and in different

types as shown in Figure 6.10. We want to build an end-to-end model capable of

processing all this information. To achieve this requirement, we are using the Keras

functional API 1 which is a way to create models that is more flexible than the Keras

Sequential API 2. The functional API can handle models with non-linear topology,

models with shared layers, and models with multiple inputs or outputs. Figure 6.13

shows the architecture of a model with several inputs and outputs.

Figure 6.13: Keras functional API: models with multiple inputs and outputs.

6.4.3 Fusion Strategies

The availability of features from different sources poses a challenge that is still open

to further investigation. Fusion strategies define the way that different streams

of available features will be joined in the model architecture. Three main fusion
1https://keras.io/guides/functional_api/
2https://keras.io/api/models/sequential/
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strategies are described in [88, 111]:

Early fusion: the stream of features are combined at the beginning of the network,

at the input level, before any layer such as CNN or LSTM [88].

Mid-level fusion: the information exchange takes place at the feature maps level

of the intermediate network layers, so that useful early feature

extraction/encoding are taken into account. First, separate streams of

features are processed at early layers and then they are fused into a joint

model in a later stage [111].

Late fusion: this strategy consists of separate streams of features, where no

interaction or information exchange is carried out between them. The fusion

is done only in the final prediction layer (i.e., after the softmax

normalization) where the confidences for each class, or the predicted values,

are averaged between the streams [111].

A clear illustration is given by [88] and shown in Figure 6.14 and more complex

multimodal data fusion deep learning models are recently analysed in [116].

Figure 6.14: Illustration of different fusion strategies [88].
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6.4.4 Model Architecture

The main focus of this research is to measure the performance gain of using more

features to predict the object’s path and two foundational architectures were used:

Vanilla LSTM: an LSTM using the default Keras’ configuration.

Encoder-Decoder: the encoder is comprises a vanilla LSTM for numerical data

and a CNN+LSTM for image data. The decoder is a vanilla LSTM that is fed

with the features or concatenation of features from the encoder.

Each LSTM has 128 units using the default Keras’ configuration. The Adam

optimizer was used, also with the default values. For regression loss, Mean Squared

Error (MSE) was used. The architecture of the models change according to the

features and are illustrated in their respective sections below.

6.5 Experimental Setup

The dataset used to evaluate the models was KITTI. KITTI because of its realistic

scenes, such as highways, inner city, vehicles standing, vehicle moving, its different

objects and the labeled data. All this from cameras mouthed on a vehicle which is

the main focus of this research work. Most of the datasets that provide data for

forecasting give only the positions of the objects in world coordinates and provide

a map of the scenes. However, these datasets do not provide RGB images of the

scenarios and ego vehicle features as KITTI does. KITTI provides information from

different type of sensors that can be fused and used together, which is desirable

in this research work where we are focused in using different type of information

present in a normal traffic scene. Besides positional information of the objects

in metres, KITTI also provides different contextual information that surrounds a

vehicle such as visual information of the objects, ego motion, different type of scenes

and other objects position. Some of the new datasets provide more information of
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the surrounding of a vehicle. However, they started to provide this information too

recently to be included in this research.

The size of the dataset is 20,141 samples with class distribution of cyclists (802),

pedestrians (6,312) and vehicles (13,027). As in chapter 3, the models were evaluated

on three objects – pedestrian, vehicles, and cyclists – for a prediction horizon (P.H.)

of ±20 steps. The available dataset is not big and no standard test/train split is

available. For this reason a 5-fold cross validation was done and the mean results

are reported. All experiments were run for 1000 epochs, except for those where an

initial evaluation of CNN models was done (300 epochs). The batch size used was

32 due to hardware limitations and because using small batch size leads to a better

trained model.

The same sliding window method as reported in previous chapters was used to

create the observed tracklets, trO = [trOt1, tr
O
t2, ..., tr

O
tobs] and its respective ground

truth tracklet, trG = [trGt1, tr
G
t2, ..., tr

G
tpred].

6.5.1 Data Pre-processing

Each type of data was processed as follows:

Object: (x,y,z) position in metres were extracted. RGB features: patches of the

objects were extracted and resized to 64×64 pixels.

Ego vehicle: orientation, velocity in [x,y,z], acceleration in [x,y,z] features were

extracted from the oxt files which are the dynamics of the ego vehicle.

Scene: RGB images from the scenes were resized to 124×37 pixels.

Interaction aware: for grid and polar map they were flattened first to feed an

LSTM. The local image BEV map was resized to 40×40 pixels.

The mentioned information is provided by KITTI in different files, to able of

using these features together, all the information was synchronized taking as time

stamp/ID reference the frame number of each measurement.
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6.5.2 Training

During training, a cross validation with K = 5 was done and for each fold a training

and test split was done with 70% of the data used for training and the rest for

testing. Also, to feed the model correctly, the next steps were performed:

1. Specify the length of tracklets to be processed.

2. Select the features to use. Besides x, y positional information, other features

such as object image, ego-vehicle information, scene image and interaction-

aware information can be used.

3. Scale data [0,1]: un-scaled input variables can result in a slow or unstable

learning process, whereas un-scaled target variables on regression problems

can result in exploding gradients causing the learning process to fail. Images

were divided by 255 before being fed to the CNN models.

4. Split data into observed tracklet, trO, and ground truth (tracklet) path to be

predicted, trG.

5. trO is shaped as [Nsamples, tobs, features-in-trO] and trG as [Nsamples,

OutputLength]. Where Nsamples is the number of samples in the dataset,

tobs is the number of tracks in each observed tracklet (trO), features-in-trO

is the number of features in each observed track. Finally, OutputLength is

the size of the output of the model. In this case, OutputLength = tpred ∗

features-in-trG. Here tpred is the steps to predict in the future (the prediction

horizon) and features-in-trG is the number of features to predict in each step.

6.5.3 Single Path Prediction

In chapter 5, it was shown that LSTM architectures can be extended to predict

multiple paths by combining them with Mixture Density Models (MDMs) as a final

layer. However, in this chapter a single path was predicted to better analyse the
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impact of the contextual features. To obtain a single path, the output of the model

was processed as follow:

1. The model outputs a single array, trP , per trO of size OutputLength.

2. trP is re-shaped to [tpred, features-in-trG].

6.6 Exploration of Ego-vehicle Features

Ego-vehicle features are an interesting source of information that can help to improve

the path prediction results. Besides, KITTI provide this features with out any pre-

processing stage that can be used to enrich the tracklets. So in this first set of

experiments the dynamics of the vehicle (ego vehicle) is fused with the position of the

objects. The KITTI dataset provides several dynamics and from them the following

mentioned below were selected; They were selected because are more related to the

movement of the vehicle on the ground:

Yaw: heading (rad), 0 = east, positive = counter clockwise (-pi..pi)

VF: forward velocity, i.e. parallel to earth-surface (m/s)

VL: leftward velocity, i.e. parallel to earth-surface (m/s)

VU: upward velocity, i.e. perpendicular to earth-surface (m/s)

AF: forward acceleration (m/s2)

AL: leftward acceleration (m/s2)

AU: upward acceleration (m/s2)

The experiment consists in the use of different combinations of the ego-vehicle

features and assessment the performance of the model when using each set of

combinations. For these experiments the model used was the vanilla LSTM. The

results are presented for each object independently and one where all objects are
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included (multiclass). The ADE and FDE metrics used are defined in

equation 2.11 and equation 2.12.

An initial exploration of using more features along with x, y positional

information, which is related to RQ3 was done in chapter 5. In this chapter 6,

these experiments provide a second exploration to Q3: Are Long Short-Term

Memory (LSTM) architectures suitable for sequential and enriched

trajectory information? by adding ego-motion information to the vector of

features to process.

6.6.1 Results

The results are shown in Figure 6.15. A cross validation with K = 5 was done and

the mean predicted path error values are depicted (in metres). It can be seen that

the ego-vehicle features do not improve the performance of the model for short P.H.

(row 1 and 2) but they do for longer P.H. (row 3 and 4). This is clear for the object

vehicle and also for the multiclass prediction though this can be attributed to the

higher number of vehicle objects compared with cyclists and pedestrians.

It can also be noted that the combination of [X,Y, V F, FL] and

[X,Y, V F, FL,AF, AL] leads to better overall performance. The reason that these

features improve the performance mostly for longer P.H. could be because the

error is higher when we predict more than 1s in the future, so more information is

need to reduce that error. Also, the reason that forward velocity (VF), leftward

velocity (VL) and its related acceleration (AF, AL) contribute more to reduce the

error could be because those features are more related to the plane (birds-eye view

map) where the prediction is taking place.

6.6.2 Discussion of Exploring Ego-vehicle Features

This exploration of ego-vehicle information as extra features combined with solely

positional information, gave us an initial sense of how the combination of features

may help to reduce the errors in the prediction task. The following experiments
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Figure 6.15: X,Y and ego-vehicle features early fusion.

expand this to use visual features from images, which does increase the time to

train a model and, based on the learnings here, some decisions were made to be

applied to the next experiments:

• Perform experiments over the longer prediction horizon, which is ±20.

• Use the dataset that includes all types of objects.
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• Use the metrics from the equation 2.13 and equation 2.14 which use Euclidean

Distance.

• These experiments used a basic fusion strategy (early fusion), since we only

concatenated the x, y features with the ego-vehicles information at the input

level. This opens a new question about the use of other fusion strategies and

internal feature encoding/representation.

6.7 Exploration of Multimodal Features

Q3: Are Long Short-Term Memory (LSTM) architectures suitable for

sequential and enriched trajectory information? is deeply explored in this

set of experiments where more features are combined with the positional

information of the objects. Along with this, another question to answer in this

research work is: Q4 hlHow can contextual information of a scene be used

to improve path prediction results? For that reason, the aim of this set of

experiments is to find evidence that using more features with appropriated fusion

strategies can lead to better performance in the prediction task. Also, specifically

section X,Y Features relates to explore further Q1 How should the observed

object position (tracklets) be best represented? , those experiments explore

the representation of positional information in a latent space to feed an LSTM

instead of using those features directly as raw features.

First, several combinations of pairs of features were tested, then, from here those

features that led to better performance were selected to create a combination of three

features:

1. x, y position.

2. x, y and ego-vehicle features.

3. x, y and object image.

4. x, y and interaction aware map.
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5. x, y and scene image.

6. x, y and object image and ego-vehicle features.

In the previous set of experiments, Exploration of ego-vehicle features, a

basic fusion of features was done. The fusion there consisted of only a concatenation

of the two types of features at input level (early fusion), in the following experiments

the following fusion strategies were evaluated:

1. Early fusion of raw features (RF).

2. Early fusion of latent space (LS) features.

3. Middle fusion of latent space (LS) features.

As mentioned in previous section, Exploration of ego-vehicle feature, which

showed that using ego-vehicle features leads to better performance for longer P.H.

and considering the time required to process images, the following experiments are

done for the P.H. of ±20 and on a dataset where all the objects are included. The

metrics used are from the equation 2.13 and equation 2.14, for ADE and FDE

respectively. The Euclidean variant was chosen as recent works such as [109] and

some evaluation challenges, use Euclidean distance for both FDE and ADE.

The results are visualised using colour scaling where a red background color

means that model got the worst performance and a white background color means

that model got the best performance. This encoding of color makes easy to identify

which model performs better for each metric and for each type of object. The first

column of the figures contains the name of the model. The second column shows

the weighted sum of ADE (WSADE), followed by the individual ADE for each type

of object. The fifth column presents the weighted sum of FDE (WSFDE), followed

by the individual FDE for each type of object.
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6.7.1 Results

6.7.1.1 X,Y Features

This experiment consists of feeding an LSTM with raw features versus first encoding

the raw features in a latent space by an LSTM (the encoder) and then feeding this

to another LSTM (the decoder). The results are depicted in Figure 6.16. It can

be seen that encoding the raw features in latent space improves performance over

using the raw features to feed the Vanilla LSTM. This can be seen as two stacked

LSTMs, however, the first LSTM is acting as an encoder of the raw features in its

latent space and the second LSTM is leveraging this representation.

Figure 6.16: Raw features vs latent space features for x, y features.

The Vanilla LSTM and the Encoder-Decoder models used in these experiment

are depicted in Figure 6.17 and Figure 6.18.

Figure 6.17: Vanilla LSTM for x, y features.
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Figure 6.18: Encoder-Decoder for x, y features.

6.7.1.2 X,Y, Ego-vehicle Features

A first exploration of ego-vehicle features was done in section Exploration of ego-

vehicle features. In these next experiments, a deeper exploration is carried out. Here,

three combinations of ego-vehicle information were evaluated – 1. [x, y, V F, V L],

2. [x, y, V F, V L,AF,AL] and 3. [x, y,HEADING, V F, V L,AF,AL] – since these

three combinations gave better performance in the previous section. Also, to explore

further these features, the three fusion strategies mentioned in the beginning of

this section were tested. The results are shown in Figure 6.19. From there, two

observations can be drawn:

1. Combination of features: the results indicate that using x, y and VF, VL, AF

and AL reduce the error in the prediction.

2. Fusion strategy: in most of the cases using middle fusion of features’ latent

space improves performance. On the contrary, using the raw features directly
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to feed the LSTM leads to a higher error.

Figure 6.19: Early fusion raw features vs early fusion latent space vs middle fusion
latent space for x, x and ego-vehicle features.

The models used to fuse x, y positional information and the ego-vehicle

features in three different strategies – Early fusion no latent space, Early fusion

latent space and, Middle fusion latent space – are presented in Figure 6.20,

Figure 6.21, Figure 6.22, respectively. The figures show the fusion of four features

– VF, VL, AF, AL of the ego vehicle – the fusion with the other two combinations

– VF, VL and Heading, VF, VL, AF, AL – following the same architecture, the

only difference is the number of features in each combination.

Figure 6.20: Early fusion no latent space for x, y and VF, VL, AF, AL features.
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Figure 6.21: Early fusion latent space for x, y and VF, VL, AF, AL features.

Figure 6.22: Middle fusion latent space for x, y and VF, VL, AF, AL features.
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6.7.1.3 X,Y, Object Image

A well known methodology to extract features from images is the use of CNN models.

These models act as a feature extractor then these features are fed to a classifier

or neural network. The intial approach to include deep features was to use the

model from SSLSTM [98], where they provide the code at [127]. Looking at the

CNN they use, it is AlexNet without the two layers of Conv2D(384), which creates

a shallow and narrow CNN model (AlexNet light). The results of this evaluation

is shown in Figure 6.23. Comparing against the baseline (using only x, y positional

information), there is no improvement, except for the object Cyclist where there is

a small reduction in error.

Figure 6.23: Middle fusion latent space for x, y and Object Image using CNN from
SSLSTM [98].

The next step was to find out if using a different CNN would improve the

performance so based on available literature [112, 98, 65], we selected two CNNs as

explained in subsection 6.4.1. The two models are:

4block3convGAP: this is a four block model, each block with 3 conv layers and

a final GAP layer. It can be seen as a deep model.

AlexNetGAP: AlexNet with all layers and a final GAP layer. It can be seen as a

shallow but wide model.

Due to the computational requirements, to initially test the performance of the

models they were run for 300 epochs, using the k-folds numbers 1, 3 and 5. The

results are shown in Figure 6.24. The results indicate that using the CNN model

4block3convGAP gives better results.

For the second stage of this experiment, the model 4block3convGAP was

selected to be run for 1000 epochs and for all the k-folds. The results are shown in
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Figure 6.24: 4block3convGAP vs AlexNetGAP for object image.

Figure 6.25. It can be observed that the 4block3convGAP CNN improves

significantly the performance of the model compared to using the CNN from

SSLSTM. Additionally, the 4block3convGAP CNN also improves the performance

against the base line model (using only x, y positional information). The

improvement is mostly for FDE, which means an error reduction in the prediction

of the final position of an object. The improvement reached by using the

4block3convGAP against the model from SSLSTM gives evidence that refining the

CNN model used in the feature extraction leads to an improvement in the

prediction task so future work can be done on this.

Figure 6.25: x, y and object image. x, y only vs AlexNet light vs 4block3convGAP
for object image.

The Encoder-Decoder model used to fuse x, y positional information and object

image is presented in Figure 6.26.

6.7.1.4 X,Y, Interaction-aware Map

Another important aspect to take into account when predicting the future path of

an object is the position of other nearby objects. In this set of experiments, three

types of maps were explored to include other objects positional information using a

grid, a polar map, and one local BEV image map as explained in section 6.2.4.

The first two maps, grid and polar, can be seen as handcrafted features, since
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Figure 6.26: Fusion model for x, y and object image.

they were created and the maps are fed into the model with any previously extracted

features. The results are presented in Figure 6.27. The following observations can

be made:

1. Grid Map vs Polar Map: using a grid map shows better performance.

2. Fusion strategy: there is a significant error reduction when using middle fusion

of features in the latent space. Early fusion however leads to a higher error.

This is observed for both grid and polar map.

Figure 6.27: Early fusion raw features vs early fusion latent space vs middle fusion
latent space for x, y and interaction-aware features.

The third map, BEV, is an image which encode the position of other object, so

to include the Local BEV in the prediction task, first this map was processed for a

CNN model to extract deep features, then this deep features were fed to the model.
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As in X,Y, Object Image, first, to find out if using a different CNN would improve

the performance of the prediction, two CNNs models were selected as explained in

subsection 6.4.1.

4block3convGAP: this is a four block model, each block with 3 conv layers and

a final GAP layer. It can be seen as a deep model.

AlexNetGAP: AlexNet with all layers and a final GAP layer. It can be seen as a

shallow but wide model.

The two CNNs were run for 300 epochs, using the k-folds numbers 1, 3 and 5

and the mean are reported. The results are shown in Figure 6.28. It can be seen

that AlexNetGAP is slightly better than 4block3convGAP.

Figure 6.28: 4block3convGAP vs AlexNetGAP for Interaction-aware local BEV
map.

The next step was to train the AlexNetGAP for 1000 epochs on the 5 folds.

The results are depicted in Figure 6.29. It can be observed that using the local

BEV with AlexNetGap improves the performance slightly over the use of grid with

middle fusion on latent space. However, the use of local BEV with AlexNetGap,

does not lead to error reduction over the base line model (using only x, y positional

information). The reason that interaction-aware information did not add any

improvement when combined with x, y positional information could be because

KITTI dataset does not have many crowded scenes where the objects interact with

each other.

Three different models were used to fuse positional information and the created

handcrafted maps – early fusion with no latent space, early fusion with latent space

and middle fusion with latent space. These are illustrated in Figure 6.30, Figure 6.31,
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Figure 6.29: x, y and Interaction-aware features. x, y only vs POLAR vs GRID vs
AlexNetGAP for local BEV map.

Figure 6.32. The figures show the fusion with grid maps and the fusion with polar

maps follows the same architecture. The only difference is number of features that

compose each type of map.

Figure 6.30: Early fusion no latent space for x, y and grid map.

The Encoder-Decoder model used to fuse positional information and the local

BEV map image is presented in Figure 6.33.

6.7.1.5 X,Y, Scene Image

With the objective of including more context about traffic scenes where the path

prediction task is happening, this experiment combines RGB images of the scenes
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Figure 6.31: Early fusion latent space for x, y and grid map.

Figure 6.32: Middle fusion latent space for x, y and grid map.

with the x, y positional information of the objects. Similar to the experiments where

image features are used, in this set of experiments we first trained two CNN models
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Figure 6.33: Fusion model for x, y and local BEV map image.

for 300 epochs on the k-fold numbers 1, 3 and 5. This way we can select the one

that performs better, the two models are listed bellow:

4block3convGAP: this is a four block model, each block with 3 conv layers and

a final GAP layer. It can be seen as a deep model.

AlexNetGAP: AlexNet with all layers and a final GAP layer. It can be seen as a

shallow but wide model.

The mean results are presented in Figure 6.34. It can be seen that

AlexNetGAP has better performance for ADE. However, for FDE

4block3convGAP is better though the difference in error is not significant.

Therefore AlexNetGAP was selected as the most promising model.

Figure 6.34: 4block3convGAP vs AlexNetGAP for scene image.

The next step was to train the AlexNetGAP for 1000 epochs on the 5 folds. The

results are depicted in Figure 6.35. It can be observed that the use of AlexNetGAP
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to extract features from scene images leads to a slight error reduction against the

baseline model (using only x, y positional information). The improvement is for

FDE and mostly for the object cyclist (the worst performing object class).

In this experiment the images were resized to 124×37 pixels and it’s possible

that an increase in image size could lead to an increase in performance as having

bigger images could give more context to the prediction. Another possible

improvement could be to feed the model with images already pre-processed by a

semantic segmentation model. In this way the model can focus only on high

potential areas such as road and sidewalks.

Figure 6.35: x, y and scene image: x, y only vs AlexNetGap for scene image.

The Encoder-Decoder model used to fuse x, y positional information and scene

image is presented in Figure 6.36.

Figure 6.36: Fusion model for x, y and scene image.
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6.7.1.6 Comparison of Deep Features

This section presents the performance using deep features in the prediction task. A

summary of the results is presented in Figure 6.37. The first row shows performance

of the baseline model where it uses only x, y positional information. The following

three rows present the results obtained when combining x, y with one of the three

types of deep features available – object image, local BEV image map and scene

image. The following observations were made:

• The deep features that lead to a better performance when combining with x, y

positional information come from the object image (object bounding box).

• The deep features from the whole scene image lead to a slight error reduction

for FDE and mostly for the object cyclist.

• The deep features from the local BEV image map does not give any error

reduction. This could be due to the fact that KITTI dataset has few crowded

scenes where objects interact.

• From the three experiments where deep features were used, something

important to point out is the impact that a CNN model has in the overall

path prediction task. It would be interesting to evaluate more CNN models

and see if some of them with common characteristics such as number of CNN

layers, filter size, or specific type of layers (GAP, Attention, etc) perform

better in the path prediction task.

Figure 6.37: Comparison of deep features.
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6.7.1.7 Combinations of Features that Lead to a Better Performance

This section presents the combinations of features that improve the performance

over the baseline model using only x, y positional information. The Figure 6.38

shows the performance of the baseline model in the first row compared to the two

best combination of features. It can be seen that combining the x, y features with

the ego-vehicle information (VF, VL, AF, AL) (second row) leads to better

performance mostly for ADE metric. The combination of x, y features with Object

image also improves the performance against the baseline model for both ADE and

FDE. However, the reduction in error is greater for FDE.

Figure 6.38: Combinations of features that lead to a better performance.

6.7.1.8 X,Y , Object Image, Ego-vehicle Features

From the previous experiments where two types of features were combined, it can be

observed that ego-vehicle information and visual information of the object lead to an

error reduction in the path prediction task. So in this experiment those two features

are combined with the x, y positional information in an end-to-end architecture to

see if further improvement can be reached. The model architecture is shown in the

Figure 6.39

The results are presented in Figure 6.40. Comparing the result of this last

combination against the baseline model (row 1), it is clear that no improvement

is achieved. One reason for this could be that as the model complexity is higher,

because more features are now being fused, more epochs are required to achieve

better results.
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Figure 6.39: Model architecture of Combination of three features: x, y , object
image, and ego-vehicle information.

Figure 6.40: Combination of three features: x, y , object image, and Ego-vehicle
information.

6.7.1.9 Impact of Fusion Strategies

The way in which the available features are combined in a model is called fusion

strategies and it is still an open challenge. In this chapter, the impact of the fusion

strategies was evident when evaluating three combinations of features. The first

initial evidence was presented in X,Y features in the Figure 6.16, the results

showing that representing the features in a latent space improves the performance

compared to using the features directly to the LSTM used. The second evidence was

presented in X,Y, Ego-vehicle features, the results in the Figure 6.19 indicate

that middle fusion of features represented in latent space got better performance,

on the contrary early fusion of raw features led to higher error in path prediction.

The third evidence was presented in X,Y, Interaction-aware map, the results

exhibited in the Figure 6.27 revealed that there is error reduction when using middle

fusion of features in the latent space. Early fusion however leads to a higher error.

This is observed for both grid and polar map.
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Looking at the impact of the evaluated fusion strategies, it would be interesting

to explore more in this area, since not only the features are important but also the

way in which these features are joined in a model architecture.

6.7.2 Discussion of Exploring Multimodal Features

Exploring multimodal features to improve the path prediction task was an

entertaining journey that gave interesting results. The following observations can

be drawn:

• Latent space representation. The first interesting observation to point

out is that representing the raw features first in a latent space improves the

performance compared with using the raw features directly to feed an LSTM.

This was clearly seen in most of the combination of features.

• Fusion strategies. It can also be noted that the way in which the features

are fused in the model architecture has a significant impact on the

prediction. This means that, besides paying attention to the features used, it

is also recommended to explore different fusion strategies to combine the

chosen features. The best performing fusion strategy was middle fusion of

features in latent space. Using directly the raw features led to higher error.

• CNN models. Choice and configuration of CNN models to extract features

from images have an impact in the overall model, so when dealing with images

an evaluation of different CNN models is desirable.

• Best combination of features. It can be seen that combining the x, y

features with the ego-vehicle information (VF, VL, AF, AL) leads to better

performance mostly for ADE metric. The combination of x, y features with

Object image also improves the performance against the baseline model for

both ADE and FDE. However, the reduction in error is greater for FDE.

• The use of interaction-aware features did not lead to any improvement over
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the baseline method, this could be due to the fact that KITTI dataset has few

crowded scenes where the objects interact with each other.

6.8 Ensembles

Ensemble building is a common way to improve the performance of individual models

and an ensemble of individual predictor can outperform a single predictor in the

average [15]. Ensemble methods, which work on a higher level to improve the

performance of “unstable” predictors such as decision tree and neural networks,

have been successfully employed for solving pattern classification, regression, time

series forecasting and fault prediction problems [42].

There are several ways of building ensembles. It could be by varying the choice

of the data used to train each model in the ensemble (e.g., bootstrap aggregation

or bagging), varying the choice of the models used, or by varying the way in which

the outcomes from each model in the ensemble are combined.

In this section, looking at the models showed greatest improvement in

performance compared to our baseline methodology, the following ensembles were

built:

• Ensemble 1: [Enc-Dec: X, Y], [Enc-Dec: X,Y, VF, VL, AF, AL]. This groups

the baseline model with the model combining x, y features and ego-vehicle

information. Figure 6.41 details the architecture of this ensemble.

• Ensemble 2: [Enc-Dec: X, Y], [Enc-Dec: X,Y, Object image

(4block3convGAP)]. The second ensemble constitutes the baseline model and

the model that combines x, y features and the object image. The

architecture of this ensemble is illustrated in the Figure 6.42.

• Ensemble 3: [Enc-Dec: X, Y], [Enc-Dec: X,Y, VF, VL, AF, AL], [Enc-Dec:

X,Y, Object image (4block3convGAP)]. The third ensemble uses three

models: 1. Baseline model; 2. Model combining x, y features and ego-vehicle

145



Chapter 6. Path Prediction Using Contextual Information

information; 3. Model which combines x, y features and the object image.

The Figure 6.43 presents the architecture of this ensemble.

As shown in Figure 6.41, Figure 6.42, and Figure 6.43, each ensemble uses

different features, different models and the output of each model is combined in

the ensemble by averaging in the final output layer.

Figure 6.41: Ensemble 01: x, y only with x, y and ego-vehicle data.

Figure 6.42: Ensemble 02: x, y only with x, y and object image.
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Figure 6.43: Ensemble 03: x, y only with x, y and ego-vehicle data with x, y and
object image.
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The results of each ensemble are presented in the Figure 6.44. It can be observed

that the three ensembles reach better performance than the baseline model (row

1). The three ensembles also reach better performance that the two individual

combinations of features (row 2 and 3). The ensemble with better results is the

Ensemble 3 which leverages three models, the baseline model and the two best

models that use ego-vehicle features and deep features from object image.

Figure 6.44: Ensembles results.

Finally, Figure 6.45 presents the mean results of the best models and their

standard deviation as error bars. In general, for the weighted metrics, WSADE

and WSFDE, the results obtained in each K fold for the 2 best models and the

three ensembles seems to be close to the mean. For the metric WSDE and

WSFDE the SD is low which means that the performance of each model in each

Kfold is clustered around the mean. This means that the models keep their

performance along the 5 folds. Looking individually per object type, the

performance of all the models are more dispersed from the mean for the object

vehicle and cyclist specifically for the metric FDE. This means that for that type

of objects and metric the performance of the models are not constant along the 5

folds. This means that the models are fragile for the object Vehicle and Cyclist

when predicting further ahead which is captured by the Final Displacement Error

(FDE) metric.
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Figure 6.45: Mean and Standard Deviation of the best models.

6.9 Discussion and Conclusions

This chapter presents the exploration of using contextual information in the path

prediction task. Several features were evaluated to see if they help to reduce the

prediction error. Additionally some different fusion strategies were evaluated to see

which performs better when using the different types of features. Also, some CNN

architectures were explored to extract features of images. All this was put together

in a end-to-and architecture. Finally, an exploration of basic ensembles was carried

out to see if any improvement can be obtained on the performance of individual

models. Observing the obtained results, several conclusions can be drawn.

LSTMs for sequential and enriched trajectory information. The initial

exploration of LSTM architectures was done in chapter 3, where a single-shot
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approach was developed to process x, y positional information only. In this

chapter, a deeper exploration was done by adding more contextual features to the

tracklets in an end-to-end architecture. The results showed that LSTMs are able

to process sequences of enriched trajectory information and in some cases improve

the performance by using these enriched trajectories.

Use of contextual information of a scene to improve path prediction

results. This point was deeply explored in chapter 6 and not only several features

that describe a vehicle and its surrounds were evaluated but also combined using

different fusion strategies. Starting from using only x, y positional information to

using features extracted from images, different combinations were done. One

interesting observation here is that both the information available and the method

of fusing that information is highly important. This could be observed in each

combination, where using middle fusion on latent space leads to better

performance. To extract features from images CNN models were used. This

chapter also showed that the CNN used to extract features has an impact on the

prediction results. From here, it can be said that, besides paying attention to the

features used, it is also recommended to explore different fusion strategies to

combine the used features. Also, if it is the case of using deep features, an

evaluation of different CNN models is desirable.

Use of ego-vehicle information to improve path prediction. In this

chapter, ego-vehicle features were added to the positional information x, y. The

features used were orientation, velocity in [x,y,z] and acceleration in [x,y,z]. A

combination of them was evaluated. The results in section 6.6 showed that the

ego-vehicle features does not improve the performance of the model for short P.H.

but they do for longer P.H. Also, the results in section 6.7 showed that the

combination of [X,Y,VF,VL,AF,AL] leads to better performance for the objects

pedestrian and vehicle for ADE as shown in the subsection X,Y, Ego-vehicle

features and Combinations of features that lead to a better performance.

The best fusion strategy was middle fusion of features in latent space. Using
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directly the raw features leads to higher error (presented in (X,Y, Ego-vehicle

features)).

Ensembles. Interesting results were achieved by the ensemble methods. It is

known that ensembles improve the performance of individual classifiers or

methods, and in the section 6.8 this was evident in the context of path prediction

in traffic scenes. The three ensembles that were built in this final section improved

the performance of the baseline methodology and the two other best individual

models. The ensemble with the best results is the Ensemble 3: [Enc-Dec: X, Y],

[Enc-Dec: X,Y, VF, VL, AF, AL], [Enc-Dec: X,Y, Object image

(4block3convGAP)], which includes the baseline methodology and the two best

individual models.

Processing time. Using a computer with the following features: GPU

GeForce GTX 980, CPU Intel R© CoreTM i5-4690K CPU @ 3.50GHz x 4, RAM

24GB. The processing time per epoch using the 4block3convGAP model was 137s

for object image, 97s for interaction-aware image, and 166s for scene image. Using

the AlexNetGAP model the processing time per epoch was 97s, 75s, and 140s for

object, interaction-aware and scene image respectively. During inference, the

average processing time per tracklet is 21.069 ms/tr with 4block3convGAP model

and 20.564 ms/tr with the model AlexNetGAP. That compared with time taken

by the baseline model that was 1.859 ms/tr. Finally, the processing time for each

ensemble during inference was, 25.327 ms/tr, 29.151 ms/tr , and 42.990 ms/tr for

the ensemble 1, 2 and 3 respectively. All this for prediction time horizon (P.H.) of

±20. It can be noticed that using ensembles increases the processing time during

inference. Of course, the processing time depends on the size of the images used.

In this work images of size 64×64, 40×40 and 124×37 pixels were used for object

image, interaction-aware local BEV map image, and scene image.
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Conclusion

7.1 Thesis Overview

In this research thesis, the aim was to analyse the problem of path prediction in

traffic scenes, specifically in the context of traffic scenes from ego cameras such as

those mounted on a vehicle, with the objective of exploring existing techniques and

improving state-of-the-art methods in this research area. In existing works, path

prediction has been addressed as a regression problem, looking at a path as time

series data and the prediction of a future path is based on the previously observed

path.

A significant outcome of this thesis is on the evaluation of LSTMs on the path

prediction task and the fusion of features. Starting from constructing path prediction

information as a time series data. Different variants of LSTMs were evaluated

specifically in this task to understand their behaviour and performance. Also, as

LSTMs have the limitation of only predicting one path per observed input tracklet,

LSMTs were extended to predict multiple paths with associated uncertainty by

combining them with a Mixture Density Network (MDN) as a final layer. Then, a

deep exploration was done on combining different types of contextual information

with the normally used positional information of objects. During the exploration

of this contextual information different fusion strategies were evaluated showing

interesting results. In addition, as deep features were used in some models, the

impact of CNNs were analysed in the context of path prediction. Finally, to conclude

this research thesis journey, ensemble models were investigated.
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A summary of the investigations, research findings, experimental results, and

the proposed solutions in this thesis is as follows.

Chapter 1 presents the motivation and importance of tackling the problem of

path prediction in traffic scenes along with a brief overview of the challenge. This

chapter also presents the main objective of this research and lists the hypotheses

and research questions that are the basis of this thesis.

Chapter 2 defines the important concepts required to understand the context

of this research followed by the analysis and classification of related works that

constitute the state of the art in the area of path prediction. The available datasets

and evaluation metrics used for evaluation are also discussed in this chapter.

From the literature review, it was observed that significant research has been

done on path prediction in general, mostly using static cameras, but work specifically

in the context of cameras mounted on vehicles, such as those used in modern ADAS,

still requires work to be done. Some interesting points were drawn from the literature

review:

• Several approaches were documented in the analysed works, ranging from the

well known Kalman filter through to clustering techniques and more recently

to deep neural networks. From here two main approaches were identified, The

Kalman Filter (KF) and the LSTMs (Long Short-Term Memory Networks).

• There is trend to use more features along with the x, y positional information

of the object that should be considered when predicting a path.

• No specific way of representing and fusing additional features in this context

was identified – we describe this as an “enriched tracklet”. What could be

noted is that deep neural networks are used as a means of fusing different

types of information in other contexts.

Regarding the analysis of the available datasets, most of the works use datasets

where labeled data was not available so they have to also tackle the problem of
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Object Detection and Tracking. KITTI was the dataset that included labeled data

of detected and tracked objects along with more data of the ego-vehicle and the scene

so this dataset was adopted. However, this data was not specifically annotated for

path prediction. Recently some datasets such as ApolloScape [109], nuScenes [115],

Lift [108, 118], and Argoverse [102], started to provide data specifically for the task of

path prediction along with the standardisation of two metrics to rate performance,

Average Displacement Error (ADE) and Final Displacement Error (FDE). Even

though those datasets were not used, the two metrics were adopted.

Chapter 3 From the literature review, two main approaches were identified,

the Kalman Filter (KF) and LSTMs (Long Short-Term Memory Networks). The

objective of this chapter was to evaluate the performance of a baseline LSTM and

the KF to predict the future position of objects that are normally present in traffic

scenarios, such as pedestrians, vehicles and cyclists, for different time prediction

horizons using the KITTI dataset. The data definition is also given in this chapter

to construct the data as time series.

This chapter presents a single-shot prediction approach, which consists of using

an LSTM in a multiple output strategy, developing this way a model to predict an

entire sequence in a one-shot manner.

The following conclusions were reached in this chapter:

1. LSTM vs KF: The results show that LSTM Relative Tracklet Position (RTP)

outperforms the simple Kalman Filter in most cases, specifically for vehicle

and pedestrians. An LSTM achieves good performance for a P.H. ±5 of up

to an ADE of 0.01m for pedestrians, 0.06m for vehicles and 0.02m for cyclists

and up to a FDE of 0.016m, 0.15m, 0.04m for the same objects improving

the performance of the baseline Kalman Filter with an ADE of 0.06m 0.46m

0.23m and FDE of 0.07m 0.57m 0.27m for pedestrians, vehicles and cyclists

respectively.

2. LSTM Relative Tracklet Position (RTP) VS LSTM Absolute Tracklet Position
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(ATP): This set of results show clearly that there was error reduction in most

cases when translating the tracklets to relative position (RTP). In a few cases,

mostly pedestrians, a slight increase in error was found.

3. Long P.H.: As expected, the results also indicated that the performance is

affected by the prediction horizon where the longer the prediction horizon, the

bigger the displacement error. The prediction horizon where the approach is

most reliable is for ±5 and ±10 for image coordinates and for ±5 to ±15 for

birds-eye view perspective.

4. Birds-eye view vs image coordinates: the approach performs better when

predicting in birds-eye view, since this is a measurement of the real world

(metres), compared to using image coordinates (pixels). However, this

perspective is not always available when using only standard cameras.

Chapter 4 Considering the performance of the Vanilla LSTMs in the previous

chapter and looking at the literature about LSTMs and how this architecture has

been applied, the objective of this chapter was to compare the performance of some

models against the baseline LSTM Vanilla model to predict the future position of

objects in traffic scenes. The dataset used for evaluating the models was KITTI.

As in chapter 3, the models were evaluated on three objects – pedestrians, vehicles,

and cyclists, for four prediction horizons (P.H.) from ±5 to ±20 steps and only on

the BEV perspective. The objective of each model was also the same as chapter

3 which is to predict a single path, trP , based on the past observed tracks of one

object, trO.

The following conclusions were drawn:

1. Best model: non of the models perform better in all the cases. GRU seems to

be one the model that performs better in most of the cases. However, Vanilla

LSTM have an average performance compared with the other models.

2. P.H: the performance of all the models decrease when predicting for long time
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prediction horizons (P.H). Some models such as LSTM Encoder-Decocer and

the one using 1D convolution are better for predicting long time P.H which

worth further work.

3. Type of object: Considering the type of object, all the models appear to

struggle when predicting trajectories for the object vehicle, followed by the

object cyclist and for the object pedestrian.

4. Finally, different to the studies shown in the introduction of this chapter, in

this experiments the improvement in performance of some models against the

vanilla LSTM is significant and this significance increase when longer the time

prediction horizon is. However, it is important to say that non of the models

perform better than the vanilla LSTM in all the cases. This means that Vanilla

is still a good choice.

Chapter 5 As shown in the previous chapters, path prediction using LSTMs

has shown good performance. However, most of the approaches are limited to only

predicting a single path per observed tracklet. Path prediction is better structured

as a non-deterministic task and requires predicting with a level of uncertainty. In

addition, generating a set of paths instead of a single one is a more realistic manner

of predicting the possible position of objects, since a set of paths can be used more

extensively for both route optimisation and object avoidance applications. Because

of that, this chapter presented an approach that allows for predicting a set of paths

with associated uncertainty per observed tracklet.

This approach uses an LSTM with a MDN layer which is called Mixture

Density Models (MDMs) and was compared against two baselines methodologies –

The Kalman Filter (KF) with Constant Velocity (CV) model and a Vanilla LSTM,

to establish that our approach does not lose accuracy when predicting a set of

paths. In addition, an initial exploration of including more features to the tracklets

was done to see if this lead to any improvement. The datasets used for evaluation

were KITTI and CityFlow. As in chapter III, the models were evaluated on three
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objects –pedestrian, vehicles, and cyclists for KITTI and on vehicles for CityFlow.

For four prediction horizons (P.H.) from ±5 to ±20 steps and RTP data was used.

Finally, the approach was also evaluated on the generation of different numbers of

paths, two to five. From the experiments the following observation were noted:

1. Overall performance: LSTMs combined with MDM do not decrease the

performance, in some cases the approach even got better results than the two

baseline methods.

2. Use of extra features: The experiments showed that the extra features lead

to better results overall. This was evidenced in KITTI for short prediction

horizons for the object pedestrian and vehicle and in CityFlow for the object

vehicle for P.H. of less than ±15.

3. Relationship between the accuracy of the predicted set of paths and its

probability: it was evidenced that the predicted paths are more similar to

the ground truth when the component that is predicting them has high

probability. However, paths that are predicted for the components with low

probability are increasingly different to the ground truth. This conclusion is

desirable when predicting paths, because based on the probability of each

predicted path we can relay more in those paths with high probability.

4. Inconsistency when predicting more than three paths per input tracklet: the

approach was also evaluated for predicting multiple numbers of paths per

input tracklet. It was observed that when predicting two to three paths per

input, the approach works well as the predicted paths are still related to the

ground truth. However, in some cases, when predicting four and five paths,

some of the predicted paths begin to deviate further from the ground truth.

This cannot be seen as a disadvantage since each path has a probability, so by

looking at the probability of each path, those paths with very low probability

can be discarded.
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5. Finally, it was shown that LSTMs can be extended from predicting a single

path per input tracklet to predict multiple paths with associated uncertainty

by combining it with a Mixture Density Network (MDN) layer. However,

proper understanding of the output parameters is required.

Chapter 6 examines the use of contextual information in the path prediction

task. Several features were evaluated to see if they reduce the error when

predicting. In addition, different fusion strategies were evaluated to assess

performance when using the different type of features. With the constraints of

available GPU resources, some CNN architectures were explored to extract

features of images. These approaches were finally amalgamated in a end-to-end

architecture and the features that best contributed to reducing the prediction error

were identified together with the fusion strategy that gives better results.

• LSTMs for sequential and enriched trajectory information. The initial

exploration of LSTM architectures was done in chapter 3, where a single-shoot

approach was developed to process x, y positional information only. In this

chapter 6 a deeper exploration was done on adding more contextual features

to the tracklets by an end-to-end architecture. The results evidenced that

LSTMs are able to process sequence of enriched trajectory information and in

some cases improve the performance by using this enriched trajectories.

• Use of contextual information of a scene to improve path

prediction results. This point was deeply explored in chapter 6 and not

only several features that surrounds a vehicle were evaluated but different

fusion strategies. Starting from using only x, y positional information to use

features extracted from images, different combinations were done. One

interesting observation here is that both, the information available and the

way of fusing that information is highly important. This could be observed in

each combination, where using middle fusion on latent space leads to better

performance. To extract features from images CNN models were used. In
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this chapter was also evidenced that the CNN used to extract features have

an impact on the prediction results. From here, it can be said that, besides

paying attention to the features used, it is also recommended to explore

different fusion strategies to combine the used features. Also, if it is the case

of using deep features, an evaluation of different CNNs models is desirable.

• Use of ego-vehicle information to improve path prediction. In this

chapter 6, ego-vehicle features was added to the positional information x, y.

The features used were orientation, velocity in [x,y,z], acceleration in [x,y,z]. A

combination of them was evaluated. The results in section 6.6 Exploration

of ego-vehicle features shown that the ego-vehicle features do not improve

the performance of the model for short P.H. but they do for longer P.H. Also,

the results in section 6.7 Exploration of multimodal features shown that

the combination of [X,Y,VF,VL,AF,AL] leads to better performance for the

object pedestrian and vehicle for ADE as shown in the subsection X,Y, Ego-

vehicle features and Combinations of features that lead to a better

performance. The best fusion strategy was middle fusion of features in latent

space. Using directly the raw features leads to higher error (presented in X,Y,

Ego-vehicle features).

• It is important to point out that representing first the raw features in a latent

space improve the performance against using the raw features directly to feed

an LSTM. This was clearly seen in most of the combination of features. It

was also observed that the way in which the features are fused in the model

architecture has a significant impact in the prediction. The best fusion strategy

was middle fusion of features in latent space. Using directly the raw features

lead to higher error. In addition, the combinations of features that lead to

better performance were 1) x, y, ego-vehicle (VF, VL, AF, AL) features and

2) x, y, Object image features.

• Ensembles. To conclude, interesting results were gotten by ensemble
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methods, it is known that ensembles improve the performance of individual

classifiers or methods, and in the sections 6.8 Ensembles this was

evidenced in the context of path prediction in traffic scenes. The three

ensembles that were built in this final section improve the performance of the

baseline methodology and the two other best individual models. The

ensemble with the best results is the Ensemble 3: [Enc-Dec: X, Y], [Enc-Dec:

X,Y, VF, VL, AF, AL], [Enc-Dec: X,Y, Object image (4block3convGAP)],

which includes the baseline methodology and the two best individual models.

7.2 Research Questions and Proposed Solutions

This thesis focuses on the evaluation of LSTM architectures for path prediction and

that its performance can be improved by using contextual information and extended

to predict multiple paths. The hypothesis and research questions are reviewed and

analysed according to the the experimental results.

Hypothesis: LSTMs are an effective tool for path prediction and existing work

can be extended to predict multiple paths and to include contextual information,

creating a holistic approach leading to improved performance in terms of ADE and

FDE

To investigate the hypothesis, the following questions were explored as follows:

• Q1 How should the observed object position (tracklets) be best

represented? In this research, the prediction of the future path of a moving

object is based on its past observed path (tracklets) along with more

information of the scene (context) where this prediction is happening. This

first research question aims to investigate how positional information can be

best represented to be fed to our LSTMs-Based approach. RQ1 question was

analysed in chapter 2, and explored and evaluated in chapter 3. From

chapter 2 and 3 it was evidenced that representing the position of objects as

time series and as Relative Tracklet Position (RTP) was suitable to predict
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the future path of an object. Furthermore, in chapter 6 was concluded from

section 6.7 Exploration of multimodal features that representing the object

position first in a latent space led to error reduction.

• Q2 How can LSTMs be extended to predict multiple paths?

Predicting a set of paths with associated uncertainty is a more realistic way

of predicting the future position of objects instead of a single one. LSTMs

are only able of predicting a sigle path per observed tracklet, because of that

this research question aims to explore a way to extend LSTMs to predict a

set of paths. RQ2 is initially explored in chapter 4, where a study of several

variants of LSTMS was performed on predicting the future path of objects in

traffic scenes, this with the objective of understanding their behaviour and

the way in which each variant processes the input sequential data. RQ2 was

also studied in chapter 5 where LSTM architectures are successfully used

along with MDN (Mixture Density Networks) for predicting a set of paths

per observed tracklet along with its associated uncertainty. Chapter 5

evidenced that combining LSTMs with a Mixture Density Networks (MDN)

as a final layer does not reduce overall performance and, in some cases, the

accuracy was improved. It was also evidenced that this approach performs

well for predicting up to three paths per input tracklet. However, in some

cases, when predicting four and five paths, some of the predicted paths begin

to deviate further from the ground truth. This can be solved by looking at

their probabilities, the path with low probability can be discarded.

• Q3 Are Long Short-Term Memory (LSTM) architectures suitable

for sequential and enriched trajectory information? LSTMs have

shown good performance when dealing with sequential information such as

time series. However, this research aims to include contextual information

such as visual features, ego-vehicle information, other objects position

leading this way to a holistic approach. The purpose of this RQ3 is to
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evidence that LSTMs are able to process all these type of information. The

initial exploration of LSTM architectures was done in chapter 3, where a

single-shot approach was developed using object position only. RQ3 is

explored in chapter 5 and more deeply in chapter 6. In chapter 5, an initial

exploration of adding more features to the tracklets was done showing that

these extra features improved the overall performance of the model. Finally,

in chapter 6, a more complete exploration was done by adding additional

contextual features to the tracklets. Starting from only using object position

to using visual-object (images) features, ego-vehicle information, other object

position, and scene-image features different combinations were evaluated.

The results showed that LSTMs models are able to process sequences of

enriched trajectory information.

• Q4 How can contextual information of a scene be used to improve

path prediction results over only using x, y positional features? How

to process/fuse the available features inside a model is an important point

when trying to use different type of information. The fact that a set of

features does not lead error reduction does not mean this set is not working,

the reason could be the way this set of features are being fused inside a

model. This research question aims to find a way to best fuse contextual

features for the path prediction task. RQ4 was deeply explored in chapter 6

where additional features describing the environment were included using

different fusion strategies. Three fusion strategies were evaluated – Early

fusion of raw features, Early fusion of latent space features, and Middle

fusion of latent space features. An interesting observation here is that both

the information available and the fusion method are highly important. This

was observed in each combination where using middle fusion on latent space

features leads to better performance.

The experiments in chapter 6 also showed that the CNN used to extract
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features can have an impact on the prediction results. This means that the

overall model relay on the deep features extracted from images. So attention

should be put as well on the selection of a specific CNN.

7.3 Research Contributions

The novel contributions of this work are:

1. Thorough evaluation of different variants of LSTM models to

understand their behaviour and performance on the task of

predicting the future path of three different objects – pedestrians,

vehicles and cyclists on four prediction horizons. The mentioned

architectures were selected because they process the input data in different

manners that a vanilla LSTM. This study allows us to understand better

how to use LSTM architectures in its different ways, since this was needed to

build more complex model for predicting multiple paths and for processing

multimodal data.

2. Proposing the use of LSTMs with MDN to predict multiple paths

with associated uncertainty. Combining LSTMs with a Mixture Density

Networks (MDN) as a final layer does not reduce overall performance and, in

some cases, the accuracy was improved. The results shown that this approach

performs well for predicting up to three paths per input tracklet. However, in

some cases, when predicting four and five paths, some of the predicted paths

begin to deviate further from the ground truth. This cannot be seen as a

disadvantage since each predicted path has an associated uncertainty, so by

looking at their probabilities the path with low probability can be discarded.

3. Extensive exploration combining several contextual features in

traffic scenarios to assess their impact in the path prediction task

against only using x, y positional information. Four different type of
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context features were selected – object, ego-vehicle, social, and scene. These

four type of features were selected since they cover most of the information

that can be obtained from the perspective of an ego vehicle. The results

shown that visual features of the objects and ego-vehicle features improved

the performance against using only positional information.

4. Exploration of different fusion strategies to evaluate their

performance gain in the overall prediction task. Three fusion

strategies were evaluated – Early fusion of raw features, Early fusion of

latent space features, and Middle fusion of latent space features. It was

observed that both the information available and the fusion method are

highly important. For each combination of features, using middle fusion on

latent space features leads to better performance.

5. Proposing an end-to-end architecture to represent and fuse holistic

and contextual information normally present in traffic scenarios to

predict the path of moving objects using LSTM and CNN

architectures. The proposed architecture consist in three main

consideration. 1) To use latent space features to feed the used LSTMs. 2) To

use middle fusion. 3) To use CNN models to extract visual features from

images. The results evidenced that including those consideration in your

model leads to error reduction in the path prediction task.

6. Improvement of the performance of individual models in path

predictions by building ensembles. Three ensembles were built with the

best models. Each ensemble uses different features, different models and the

output of each model was combined in the ensemble by averaging in the final

output layer. The results shown that the three ensembles improved the

performance over the baseline methodology and the two other best individual

models.
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7.4 Future Work

Exploring the problem of predicting the future path of objects in traffic scenes led to

interesting findings. However further work is needed in regard of these discoveries.

This section outlines the aspects of this research thesis that can be extended as

future work.

Use of more sophisticated architectures

• In the literature, more sophisticated architectures such as transformers or

graph-based models can be found, this model can be explored to process the

features used in this research.

• It was evidenced the impact that a CNN model has in the overall path

prediction models. It would be interesting to evaluate more CNN models and

see if some of them with common characteristic such as number of CNN

layers, filter size, or specific type of layers (GAP, Attention, etc) perform

better specifically in the context of path prediction task.

• In this research thesis only basic fusion strategies were explored. However,

evaluation of more complex fusion strategies can be done. As a next step,

it would be interesting to add a layer that automatically learns to select the

important features fed to the model, instead of testing the combinations one

by one, as it was done in this research work.

Explore more features that surround a vehicle in real life

• Representation of the interaction-aware features still pose a challenge. Explore

better interaction-aware map features to encode the information of the other

objects is needed.

• Encode static information of a scene, in this research the raw image of the

scenes was used. There are now datasets were more information is given of a

scene such as traffic lines, or raster images.
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• Evaluate on bigger images to see if this improve the richness of the extracted

features by CNNs models.

• Definitely, explore and understand the other existing datasets that provide

information of trajectories of objects.

Intelligent filtering of multiple path prediction

An initial exploration of predicting multiple paths was shown in chapter 5.

However, the approach used there only takes into account the previous observed

tracklets to predict the multiple future paths. Future work is need to refine the

predicted paths and discard those that are in regions no reachable by an object or

type of object, i.e no object can be over a building, a tree or non reachable areas.

New evaluation metrics

As mentioned in 2.6 Evaluation metrics, the metrics used in this research thesis

have certain limitations that are necessary to analyse and improve. Overcoming

those limitation will allow us to create flexible models for path prediction. So it

would be interesting to evaluate the metrics shown in [86] as future work.

7.5 Concluding Remarks

Road traffic collisions are an important cause of death and disability worldwide.

Every year around the world 1.2 million people are killed and up to 50 million are

injured or disabled as a result of road traffic collisions. According to the National

Highway Traffic Safety Administration (NHTSA), 94% of road accidents are caused

by human errors. Automobiles equipped with ADAS (Advanced Driver Assistance

Systems) and sensors such as cameras, radars and LIDARs are now common place.

Many of the accidents on the road can be avoided or at least can be mitigated

by acting seconds in advance. For this reason, safety on the road is one of the

main objectives in the development of ADAS. This thesis focused on developing a

novel technique to accurately predict the future path of moving objects, such as

pedestrians, vehicles, and cyclists based on data from egocentric cameras from a
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moving vehicle and incorporating contextual information normally found in traffic

scenes.

In the author’s opinion the most interesting findings are as follow. First, path

prediction information can be treated as time series data, this way the prediction of

the future locations of objects can be done by analysing the previous information

of such objects. Second, LSTM architectures are suitable for path predictions due

to their ability to leverage past information in a sequence to predict future values,

i.e. observed past path to predict a future path. Third, LSTMs can be extended to

predict multiple paths with associated uncertainty by combining them with Mixture

Density Networks (MDNs) as a final layer. Fourth, it is very interesting that using

different fusion strategies results in different results even when the same contextual

information is being used. From here it could be seen that the two combination of

features that improve the baseline model was 1. x, y, ego-vehicle features and 2. x, y,

object image. In both cases, the fusion strategy that led to better performance was

middle fusion on latent space representation. Finally, it was also highly interesting

how using ensembles further improves the performance of the baseline model and

the two best combination of features. The ensemble with the best results is the

Ensemble 3 which includes the baseline methodology and the two best individual

models.

The main constraints and challenges found in this research were the lack of

annotated and synchronized object trajectory data. In addition, due to the use

of sequential data with different contextual information limited hardware resources

restricted the scale of experiments that could be completed. However, research in

this important domain continues to advance with new techniques and datasets and

will contribute to improved vehicle safety.
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