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Acronyms and Abbreviations

This section provides a glossary of the main acronyms and abbreviations used in the

thesis:

NN Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

GD Gradient Descent

SGD Stochastic Gradient Descent

CE Cross-Entropy

OOD Out-of-distribution

ID In-distribution

GMM Gaussian Mixture Model

BMM Beta Mixture Model

AUC Area Under the Curve

EM Expectation Maximization

RN ResNet

WR Wide-ResNet

PR Pre-activation-ResNet

MSE Mean Square Error

ReLU Rectified Linear Unit

PCA Principal Component Analysis

HSV Hue Saturation Value
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RGB Red Green Blue

SVM Support Vector Machine

HAC Hierarchical Agglomerative Clustering

k-NN k-Nearest Neighbours

NCE Noise-Contrastive Estimation

GPU Graphic Processing Unit



Mathematical notation

This section provides a glossary of the notation used through the thesis, which closely

follows the notation used in [21]:

x Scalars are denoted in italic lowercase Roman or Greek letters.

x = (x1, ...xn)T Vectors are denoted in lower case bold Roman letters and are

assumed to be column vectors. Note that the elements inside

a vector are contained between brackets and that (x1, x2, ...xn)

denotes the corresponding row vector xT with n scalars.

xT The superscript T indicates the transpose of a vector, matrix, or

tensor.

X Matrices are denoted with uppercase italic Roman letters and

the element Xij corresponds to the row i and column j. Tensors

are also denoted with uppercase italic Roman letters.

X = {x1, ..., xn} Sets are denoted with uppercase italic Roman letters and the

enclosed elements are contained between curly braces.

f(x) Function are denoted with lowercase italic Roman letters, e.g.

f(x) is a function of x.
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Abstract

“Visual Representation Learning with Deep Neural Networks Under
Label and Budget Constraints”

Eric Arazo Sánchez

This thesis presents the work done in the area of semi-supervised learning,
label noise, and budgeted training for deep learning approaches to computer vision.
The improvements seen in computer vision since the successful introduction of
deep learning rely on the availability of large amounts of labeled data and long
lasting training processes. First, this research studies the three main alternatives
to fully supervised deep learning categorized in three different levels of supervision:
unsupervised learning (no label involved), semi-supervised learning (a small set of
labeled data is available), and label noise (all the samples are labeled but some of
them are incorrect). These alternatives aim at reducing the cost of building fully
annotated and finely curated datasets, which in most cases is time consuming and
requires expert annotators. State-of-the-art performance has been achieved in several
semi-supervised, unsupervised, and label noise benchmarks including CIFAR10,
CIFAR100, and STL-10. Additionally, the solutions proposed for learning in the
presence of label noise have been validated in realistic benchmarks built with datasets
annotated from web information: WebVision and Clothing1M. Second, this research
explores alternatives to reduce the computational cost of the training of deep learning
systems that currently require hours or days to reach state-of-the-art performance.
Particularly, this research studied budgeted training, i.e. when the training process
is limited to a fixed number of iterations. Experiments in this setup showed that for
better model convergence, variety in the data is preferable than the importance of
the samples used during training. As a result of this research, three main author
publications have been generated, one more has been recently submitted to review
for a conference, and several other secondary author publications have been produced
in close collaboration with other researchers in the centre.
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Chapter 1

Introduction

Computer vision is the research field that enables the processing of visual data to

extract useful information and gain high-level understanding of the world. The

practical aim is to provide visual sensing autonomy to computer systems to interact

with the world and perform tasks that include face recognition, medical image analysis,

or autonomous driving. To this end, computer vision leverages techniques and

practices from the field of machine learning and, in a more scientific aspect, overlaps

with other research fields such as statistics, optimization, and signal processing

to understand and develop the theory behind digital systems that explore visual

information.

Research in this area has experienced a noticeable transformation in recent

years, particularly regarding algorithm performance and its underlying principles.

These improvements have been mainly fostered by large amounts of data becoming

more easily available, technological advances allowing for the development of more

complex systems (regarding memory and computational speed), and the successful

application of neural networks that enable the extraction of representative features

from real-world data.

The aim of this thesis is to explore neural networks as a tool for learning visual

representations1and focuses on the alternatives to avoid the two main challenges

1Representations of visual concepts in high-dimensional spaces are often referred to as visual
representation. These are projections of input samples (e.g. images) in a space defined by the
parameters of the given model.

3



CHAPTER 1. INTRODUCTION

from current neural network-based visual systems: the need for large amounts of

carefully annotated data and the computational cost that comes with it. This chapter

provides an overview and the motivation of the research presented in this thesis,

states the hypotheses and the main research questions, and lays out the structure of

the document.

1.1 Learning representations with neural networks

Research in representation learning dates back to the 1950s, when neural networks

were invented. As biologically inspired parametric functions, neural networks brought

to machine learning the idea of learning representations directly from the data. From

their invention until the beginning of the last decade, neural network research had

several waves of interest, becoming more popular after every breakthrough. During

this period, the field overcame each of the challenges that made neural networks

unpractical to apply in realistic scenarios: lack of an efficient learning algorithm, low

memory and computational power, or small amounts of data available. Consequently,

at the beginning of the 2000s, neural networks were being used in speech recognition

systems and later in 2012 were successfully applied for the first time to large-scale

computer vision applications. Initially they were applied to image classification

but soon their popularity spread to more complex applications such as semantic

segmentation, object localization, or face recognition.

Before neural networks, models used in machine learning applications consisted

of two main blocks: a feature extractor and a classifier. The feature extractor

was a module that searched for certain manually-predefined features in the data.

This accounted for the main part of the model: better features would describe the

information in the data more accurately. The classifier on the other hand was a

relatively small block that mapped the features to the target task. This was not

handcrafted, but trained on a subset of the data. Neural networks shifted this

paradigm and allowed for completely data-driven models where all the parameters

were randomly initialized and optimized by iterating through the training data.
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1.1.1 High level overview of deep learning

Neural networks consist of a composition of layers, each mapping its input to an

increasing level of abstraction through linear and non-linear operations (involving

matrix multiplications and non-linear functions): from the lowest level in the input

space (e.g. images) to the highest in the output space (e.g. classes). All these layers

constitute a single block, trainable end-to-end with very little human intervention.

This concept of stacking layers upon layers and training them from the data gave

rise to the name of deep learning, and in most cases, outperformed all hand-crafted

alternatives [128, 133, 52] (improving performance as data increased).

The underlying principle behind neural networks is based on empirical risk

minimization2: the parameters are updated based on the performance of the model in

a subset of the data designated for training. More concretely, the model is presented

with batches of samples and its parameters are updated in a direction selected to

reduce the average prediction error in those samples. This process is done several

times over the dataset until convergence to a reasonable error value (often visiting

all the samples several times). Chapter 2 presents the technical details and basic

concepts behind the training of neural networks. Note that the parameters that are

not learned through empirical risk minimization and are manually tuned are called

hyperparameters, e.g. number of training iterations or number of layers in a neural

network.

1.1.2 Neural networks for computer vision

One of the most relevant drives of the advances in the application of neural networks

to computer vision tasks was the ImageNet competition [42]. It provided a setup for

researchers to benchmark approaches for image classification (among other tasks)

2A “risk” value is often defined as a theoretical bound on the algorithm performance for evaluation
purposes. In the training set, this is referred to as the “empirical risk,” which is often called the
“cost” or “loss” value, and serves as a metric to quantify the error of the model. However, since the
true data distribution is unknown, this value – the “true risk” in this case – is also unknown. The
empirical risk minimization principle assumes that minimizing the “empirical risk,” will also result
in a low value of the “true risk.”
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Figure 1.1: Evolution of the top-5 error of the classification task in ImageNet across
time [131, 72]. Note that the top-5 error considers the prediction as correct if the
true label is among the five categories predicted with highest probability.

and the largest set of finely curated data. The full dataset is approximately 14M

images and the subset commonly used is a set of 1.2 million of images distributed

across 1 000 categories that are organized accordingly to WordNet (a lexical database

for English) [121]. This dataset remains of great importance to the computer vision

community; it is a common practice to pretrain neural networks on ImageNet before

fine-tuning them in the target task to obtain a better initialization.

The history of ImageNet and neural networks cross paths for the first time in the

competition of 2012. On this occasion Alex Krizhevsky and his team [1] won the

classification task with a neural network-based approach; this was the first time a

graphic processing unit (GPU) was used to train a neural network in a large-scale

visual dataset. This was not only a milestone for the advance on the technical aspect

of training neural networks, but also a revolutionizing result for the competition: the

proposed model reduced the error by 10%, while other teams were improving previous

submissions to the challenge by a few percentage points (see Figure 1.1). Following

that success, the implementation of Razavian et al. [158] outperformed most of the

previous approaches on several other benchmarks by transferring the features learned

on ImageNet and fine-tuning them on the target task. This result showed that neural
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networks trained on ImageNet were very efficient feature extractors for non-related

visual tasks (interestingly, these features are currently also being used in non-visual

tasks [138]). Note that the neural networks commonly used in computer vision

embed the basic principles behind convolution to leverage the spatial structure in

images, which results in more robust representations and a reduction in the number

of parameters in the model. These networks are called convolutional neural networks

and are discussed in detail in Chapter 2.

The classification task might have been the one that drove the initial success

of neural networks because of its simplicity: each image has to be associated with

a single label. However, convolutional neural networks have shown extraordinary

success in most of the computer vision tasks, including the most complex ones like

panoptic segmentation (where each pixel of an image has to be classified to form

different masks that classify and locate the objects in an image), pose estimation

(were the body pose of different actors has to be predicted) or object detection (where

bounding boxes allocate and classify the objects present on the image). Figure 1.2

shows some examples of applications of convolutional neural networks to computer

vision tasks.

1.2 Motivation

The success of neural networks is tightly linked to the increasing availability of

vast amounts of carefully annotated data and long-lasting training processes where

samples are visited iteratively until convergence to a reasonable performance. These

are also two significant challenges when training neural networks.

By visiting a large variety of examples during training, neural networks learn

complex representations that are robust to visual variations of the input image and

generalize to unseen samples. The data presented to the model, however, have

to be exhaustively annotated: the presence of mislabeled samples or samples that

do not belong to the expected distribution of classes can lead to degradation of

the representations learned by the model. Unfortunately, the construction of large
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Figure 1.2: Examples of computer vision tasks. Top from left to right: image
classification [1], object detection [152], and pose estimation [170]. Bottom: semantic
segmentation [144]
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datasets is very costly and, as the amount of data increases, corruption becomes more

likely to occur. In this scenario, models that learn robust representations when there

are few labels available will help to reduce this dependence on the labelling process.

Similarly, recent large-scale datasets leverage information from web searches and user

tags to reduce the costs of the annotation process, resulting in extensive datasets with

heavily corrupted annotations. In this case, models that learn robust representations

under label noise conditions will be able to leverage these large amounts of easily

accessible data.

This dependence of neural networks on the availability of finely labeled data

presents a significant challenge when the end goal is practical real-world applications

like autonomous driving, food quality estimation, or medical imaging, where the

label availability is scarce (e.g. labels are difficult to obtain or annotations have to

be done by experts). Consequently, robust methods to train under label constraints

(few labels available or corrupted labels) are very important in these setups.

Aside from precise labels, learning complex representations requires typically in

the order of a few hundred iterations through the full dataset. This translates into

one or many GPUs (up to hundreds of them in some applications) computing matrix

multiplications in parallel during hundreds or thousands of hours, and leads to the

second drawback when training neural networks: long-lasting training processes. As

the datasets and model size increase, so do the training times and power requirements.

This is of utmost importance in situations where computational or time resources are

limited, e.g. small companies, and where power consumption is a concern, e.g. mobile

devices. Similarly, as noted by Anthony et al. [8], the strong environmental impact

of training deep neural networks has the potential of making machine learning a

significant contributor to climate change, e.g. the authors estimate, in appendix D,

the energy and carbon footprint of training GPT-3 [25] (a model used in natural

language processing applications) to be equivalent to over 700 000 km travelled by

car. Additionally, aiming at more efficient training processes would benefit the

applicability and spread of neural networks-based systems.
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1.2.1 Representation learning under label and computational

constraints

Solutions to reduce the dependence of neural networks on intensively annotated data

aim at designing robust algorithms to train more efficiently in constrained scenarios

where: no samples are labelled, only a small subset of samples are labelled, or the

samples are incorrectly labelled with a certain probability. In the first scenario,

neural networks train directly on images, dispensing with the labels completely.

These solutions are discussed in Chapter 3 and are commonly referred to as “self-

supervised” or “unsupervised” learning. The second scenario is “semi-supervised”

learning, discussed in depth in Chapter 4, and only a small subset of the samples

are labelled, reducing in this way the annotation requirements. Finally, in the third

scenario the model trains directly with corrupted labels (often referred to as label

noise training), which is discussed in Chapter 5.

A significant body of literature addresses solutions to reduce the computational

costs of training neural networks through more efficient optimization algorithms,

through methods to select the most relevant samples, or through strategies to organize

the samples in a predefined more efficient curriculum. Despite ample work done in

this direction, it is still unclear what are the benefits from these approaches when

the training is constrained to a given budget of iterations. This setup, i.e. budgeted

training, is explored in Chapter 6.

1.3 Hypothesis and research questions

Current research in computer vision is actively exploring the challenges introduced

in this chapter in search of alternatives to reduce the need for carefully labelled

data to train neural networks. However, the best way to capitalize on scarce or

incorrect annotations remains under discussion. Previous to the work explored in

this thesis, the existing methods failed to efficiently propagate the knowledge from a

small subset of labelled data to a much larger unlabeled set and to separate clean
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from noisy samples when they were blended together. Similarly, the literature that

aims to accelerate the convergence of neural networks rarely studies the behavior

of the proposed algorithms when the training is limited to a certain number of

iterations. The following hypotheses have guided the development of this thesis

towards exploring these two challenges in the training of neural networks: strong

dependence on carefully labelled samples and large computational requirements.

H1: Given a large set of unlabeled images, clustering algorithms aid the self-

supervised training of neural networks by enforcing the assumption that images

belonging to the same class, or images with similar visual features, are closer than

those that are from different classes when mapped to the representation space learned

by the neural network.

• Initial approaches to self-supervised learning proposed to solve proxy tasks

as an objective to train neural networks: solving jigsaw puzzles, predicting

colorization, or prediction rotations are some well-known examples [132, 220,

53]. However, these approaches do not consider the clustering assumption

(visually similar images should be mapped close in the embedding space learned

by a neural network). Recent approaches to self-supervised learning use

contrastive learning objectives that go in this direction [70, 29] but still ignore

the relationships between classes and similarity between examples in the learned

representation space.

H2: Neural networks can overcome the dependence on strong supervision from

carefully annotated datasets by leveraging a trustworthy small subset of the data

and extrapolating the features learned to the rest of the data.

• Existing research has shown that when there are few labelled samples in the

dataset, the features learned by neural networks in the small labelled subset

can be leveraged to exploit the unlabeled samples and improve feature quality

[101]. Similarly, when the dataset is corrupted with label noise, the predictions
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of the model can be used to correct the training and to detect a small subset

of correctly annotated samples [150, 44]. In these cases, particularly when the

reliable subset is several orders of magnitude smaller than the whole dataset,

neural networks need strong regularization to reduce the risk of overfitting to

the small trusted set.

H3: In scenarios where the training budget is restricted to a certain amount of

computation, neural networks do not benefit from seeing the most important samples,

but from seeing more variety in the data.

• While it has been proven that a certain sampling strategy is optimal for training

neural networks, the cost of selecting these most important samples to use

during training outweighs the reduction in training time [87]. In practical

scenarios, when the training is restricted to a certain number of iterations, data

augmentation is an effective solution to increases the variety of data shown to

the network.

The following research questions have guided this thesis and shaped the explo-

ration of the proposed hypotheses:

RQ1: How could the clustering assumption be enforced in the self-supervised

training of neural networks? Could neural networks benefit from clustering the

features learned during a self-supervised training?

RQ2: How can neural networks overcome the main limitation when propagating

knowledge from a reliable subset of the data to the remaining larger subset? How

can one determine which subset is reliable?

RQ3: Are there some samples more useful than others when training a neural

network? Is it possible to leverage them to achieve better performance when the

training is limited to a certain budget?
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1.4 Thesis structure

The remainder of the thesis is structured as follows. In Chapter 2, we provide

the technical background of the thesis and explore the related work. This chapter

addresses the principles behind learning representations with neural networks and

includes a review of the different datasets, experimental setup, and notation used in

the rest of the thesis.

In Chapter 3, we present the work done in unsupervised learning through the

proxy task of identifying examples from multiple views generated from each image and

shows how this self-supervised approach can be improved when applying clustering

techniques. This chapter also includes a discussion of the current methods for

unsupervised learning through contrastive learning highlighting the main drawbacks

and suggesting possible solutions based on the observations done in the experiments.

In Chapter 4 we explore how to propagate the knowledge learned in a small subset

of labelled samples to a larger subset of unlabelled samples to further improve the

representations learned. This chapter provides a thorough study of the hyperparam-

eters involved and insights on the training of neural networks in a semi-supervised

setup. Additionally, several model architectures are tested.

The focus of Chapter 5 is the label noise setup, where all the samples are labelled

but some of them have incorrect labels. It proposes a method to identify incorrectly

labelled samples and shows that the corresponding label predicted by the model can

be used to guide the training and achieve a robust method to train neural networks

under label noise. This chapter also introduces the different noise distributions to

be expected in real-world datasets and provides a discussion on the robustness of

different methods and noise detection metrics.

In Chapter 6 we assume proper supervision from the samples, i.e. all the samples

are correctly labelled, and explore approaches to reduce the computational cost of

training neural networks. This chapter presents a comparison of several methods

from the literature under the same setup and experimentally shows the importance

of the variability in the training data to reach a reasonable model performance.
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Finally, Chapter 7 consists of an overview of the research presented in this thesis,

a discussion of the hypotheses and research questions in light of the works presented,

and suggestions of possible directions for further understanding the training of neural

networks under label and computational constraints.



Chapter 2

Neural networks for computer

vision

The first section of this chapter presents the background theory required for the

following chapters, including the foundations of neural networks, the best practices

adopted by the computer vision community when training them, and the assumptions

adopted through the thesis. The literature review section then reviews the relevant

approaches to the challenges introduced in Chapter 1. Finally, the methodology

section introduces the datasets and setup from the experimental chapters of the

thesis.

2.1 Introduction to neural networks for computer

vision

During inference, neural networks map the input data to successive levels of abstrac-

tion until reaching the output space corresponding to the given task (this is often

referred to as prediction stage or forward pass). In classification, for instance, this

mapping generates a class prediction for each example. The comparison of these

predictions to the ground truth annotations (the label associated with each example)

results in a measure of the model prediction quality, which is often represented as

15
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x

hW (x)

hW (·)

y

L(hW (x),y)
Parameter update

Figure 2.1: Schematic of backpropagation: x represents the input vector, y the
ground-truth annotation (label), hw(·) the neural network with w parameters, hw(x)
the prediction of the network for the input x, and L(·) the loss function that computes
the error value L(hw(x),y) used in the parameter update.

an error value. This error then is propagated backwards through the network – a

process known as backpropagation – to guide the updates of the model parameters

towards a configuration that minimizes the error value (Figure 2.1). This subsection

describes in detail the different components of this process: the basic structure of

neural networks, the optimization of their parameters, and the most widely used

neural network architectures.

2.1.1 Neural networks and convolutional neural networks

Neural networks (NN) are compositions of several blocks, often referred to as layers.

The most important of these layers performs two basic operations: a matrix multipli-

cation followed by a non-linear activation function. On top of these two operations

there are several other layers that contribute to the training and generalization of

the model that for simplicity in the explanation are left out and will be introduced

latter in this section. Each block can be seen as a group of neurons, the basic

unit of a neural network. In the most basic form of a neural network, each neuron

receives as an input the output of all the neurons of the previous layer. Each neuron

then linearly combines its input values, applies a non-linear activation function, and
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Figure 2.2: Representation of a single neuron. The input features x1, x2, and x3
are linearly combined and weighted with the corresponding weights w1, w2, and
w3. The weight w0 corresponds to the bias of the neuron and is added to the linear
combination. The non-linear function f(·) is then applied to the output.

provides its output to the neurons in the following layer. As Figure 2.2 shows, the

inputs on the left (x1, x2, and x3) are linearly combined with the weights (w1, w2,

and w3). The non-linear function f(·), known as an activation function, is then

applied to the result. Additionally, each neuron has a bias b that is added to the

matrix multiplication; for the notation in this thesis, the bias term corresponds to

weight w0 and the respective input feature x0 is assumed to be 1. Hence, the output

of a single neuron becomes h(x) = f(wTx), where wT = (w0, w1, w2, w3) are the

weights (and bias) of the neuron and xT = (x0, x1, x2, x3) are the features of the

input vector (with x0 = 1).

When the input is a vector of n features xT = (x0, x1, . . . , xn), each layer of

the neural network can be seen as a matrix multiplication where the input vector

is multiplied by the weights of all the neurons in a layer W = (w0,w1, . . . ,wd),

a matrix of dimensions n × d, where wi
T = (w0, w1, . . . , wn) represents the vector

of weights of the neuron i. This linearly projects the input to a d dimensional

space, that corresponds to the number of neurons in a layer. Then, the element-wise

non-linearity f(·) is applied resulting in the output f(W Tx). Each layer often reduces

the dimension of the previous layer output until the initial feature is mapped to

the dimension corresponding to the output space (e.g. a class probability vector or

a regression value). Note that, since compositions of linear functions, e.g. matrix

multiplications, result in other linear functions, non-linear activations between layers

are necessary to allow neural networks to express non-linear functions.
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Figure 2.3: Multi-layer structure of a neural network with L + 1 layers: an input
layer with 3 elements, L− 1 hidden layers of 4 dimensions each, and an output layer
of 2 dimensions. The features hi−1 of each layer i result from the multiplication of
the layer input features hi−1 by its weights W i.

Figure 2.3 shows a common representation of a neural network. The first layer on

the left constitutes the input layer: a vector of characteristics of the input samples

(e.g. image pixels for image classification or word embeddings from a sentence for

machine translation). The following layers comprise several neurons and are called

hidden layers. The last layer on the right is the output layer that provides the

prediction from the neural network for a particular input.

There are two main drawbacks when this structure is applied to images. First,

the number of connections between layers from these models will increase rapidly

with the increase of the characteristics in the input samples. For example, an image

of 256 × 256 pixels with 3 channels for the colors (RGB) will need 256 × 256 × 3

connections in the first layer (196 608 connections) for every neuron in the following

layer. This is one of the first challenges that neural networks faced: scalability.

Second, to consider each of the individual pixels from an image results in a model

that does not take advantage of the possible local spatial structure from the data.

For example, when a neural network is trained to classify images where the pixels

are shuffled following a fixed random permutation, it performs as well as when it is

trained with the original images. These two challenges motivated the development

of convolutional neural networks (CNNs).
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Figure 2.4: Convolution operation. In the input case, when dealing with images, the
convolution is applied to a 3 dimension tensor, where the width (w) and height (h)
correspond to the number of pixels of the input and the depth or channels (d) to the
RGB color encoding. In this representation, the filter K is depicted in purple and
has 3× 3× 3 dimensions. Figure adapted from [118].

The main characteristic of CNNs is that they show each neuron a group of

adjacent input features (a squared grid of pixels in visual tasks), rather than every

characteristic of the input, and multiply them by a set of weights that are shared

across all the input. This operation is called (discrete) convolution [55] (see Figure 2.4

for an illustration), and formally can be written as

S(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.1)

where, in convolutional neural networks terminology, I is the input and K is called

kernel or filter and corresponds to a set of weights associated to a neuron. Then

m and n correspond to the dimensions of the input. It is often assumed that the

values of K are zero everywhere except where it stores the values of the filters,

which corresponds to the perceptive field of the neuron, i.e. the span of features that

the neuron will take into account for each operation. Despite Eq. (2.1) being the

formal definition of convolution, often in machine learning software libraries this is
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implemented as the cross-correlation function

S(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m, j), (2.2)

where the kernel is not flipped with respect to the image and maps more intuitively

to the filtering concept in image processing. Note that in the applications considered

in this thesis, there is no difference in the functionality of Eq. (2.1) and Eq. (2.2)

The cross-correlation in Eq. (2.2) is often referred to as convolution and is

equivalent to the classic operation of image filtering, where a pattern described by a

filter (constituted by the weights in K in this case) is multiplied by every position

in the image. When the pattern from the filter correlates with a patch from the

image, it results in a high value and activates the corresponding neuron. In other

words, each neuron responds to a specific pattern in the image: the result of applying

one neuron to an image would be a map that indicates where the pattern from

one filter matches the image. This reduces the number of weights from the model.

Additionally, convolutions allow working with variable input sizes and give CNNs a

property called translation equivariance, by which spatial translations in the input

produce equal spatial variations in the output.

The structure of CNNs

Each neuron activation is often considered as an output channel of a layer and

all the activations constitute the input of the following layer. Each layer, then,

receives as an input a tensor with spatial dimensions h× w and a depth or channel

dimension d. In computer vision tasks, in the first layer, this corresponds to the

raw image pixels per row × pixels per column × RGB color encoding. The basic

block of a CNN consists of three parts, a convolutional layer, a non-linearity, and

a pooling layer. The convolutional layer linearly transforms the input by applying

the kernels introduced in Eq. (2.1), which in the image domain can be thought of

as combinations of filtering operations including edge detectors and Gaussian blurs

among others. A non-linearity often follows the convolution layer and allows the
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stack of linear convolutions to represent non-linear functions. The pooling layers

slowly reduce the spatial dimensions of the representations by replacing each element

with summary statistics of its surrounding elements. This gives CNNs invariance to

small translations on the images and is most useful when the final task depends on

the presence of a feature in the input rather than its precise location. A common

usage of pooling operations is to adapt CNNs to the fully connected nature of the

classifiers in the final part of a model, where the input feature dimensions are fixed

regardless of the input image dimensions. Note that sometimes pooling layers are

substituted by larger strides in the convolution process (this corresponds to skipping

input features in the spatial dimensions during the convolution operation), which

also results in a reduction in the spatial dimension of the output.

Other elements often found embedded into CNNs are normalization layers that

aim at stabilizing the training process by keeping the statistics of certain parts of the

network normalized (zero mean and unit standard deviation): the statistics of the

layer input [80], or the layer weights themselves [147]. The following section (2.1.2)

introduces the functionality of normalization layers in more detail and explains the

principles of training CNNs.

2.1.2 Training the model: back-propagation, gradient de-

scent, and commonly used optimizers

The process by which the weights (or parameters) of the models are updated consists

of a series of iterations where the samples from the training set are presented to the

model and the respective outputs are evaluated on the given labels. The error of

these predictions is evaluated through a cost or loss function and used to update the

parameters of the model in the direction that minimizes the value of this function.

The most commonly used loss function for image classification is the cross-entropy

between the prediction and the target label,

L(W ) = − 1

n

n∑
i=1

yTi log(hW (xi)), (2.3)
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where n corresponds to the number of training samples and yi ∈ {1, 0}c is the one-hot

encoding label1 for c classes corresponding to the input image xi, i.e. yi is a vector

with c dimensions, all zero except for the position corresponding to the index given

by the ground truth label associated to the sample xi. hW (xi) correspond to the

normalized output of the last layer of the model: a neural network with parameters

W . The most widely used normalization function in image classification is called

softmax and for the c dimensional output z of the last layer of the model, corresponds

to

softmax (zi) =
ezi∑c
j=1 e

zj
, (2.4)

where zi is the value in the ith position of z. In simple terms, the standard setup

for classification maximizes the probability value assigned by the CNN to the class

indicated by yi.

The optimization of the loss function L(W ) is often guided by gradient-based

methods, which search the directions of the loss landscape defined by the negative

gradients of L(W ) with respect to the model parameters W . Concretely, variations

of gradient descent (GD) are the main algorithms used for this purpose. Gradient

descent starts with a random initialization of the weights W that define an initial

point in the loss landscape. From there, gradient descent computes the derivative or

gradient of the loss function with respect to the weights of the model and updates

the parameters in the opposite (negative) direction of the gradient. This is often

written as

Wt+1 := Wt − αt∇WtL(Wt), (2.5)

where Wt+1 are the weights of the model after the GD update, Wt the current weights

of the model, L(Wt) the loss of the model with the current weights, and ∇Wt denotes

the gradient operation with respect to Wt. The parameter αt defines the size of the

steps that the optimization algorithm will take and is known as learning rate. It is

one of the most important hyperparameters to train neural networks: a large value

1In machine learning, it is common to convert certain categorical data into vectors where each
dimension corresponds to each category of the categorical distribution, the category of the given
data point is encoded with the value 1, and the rest with 0
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will make the optimization algorithm oscillate between points with high loss values

and skip local optima – the optimizer might even diverge and move away from local

minimum towards regions with higher values of the loss – and a low value will result

in slow convergence of the optimization algorithm and could result in convergence to

sub-optimal minimum. A common approach is to select a reasonably high value at

the beginning of the training (typically 0.1) to allow the model to explore the loss

landscape, and reduce it as the training goes on (typically by a factor of 10 at one

third and two thirds of the training).

In a simplified manner, gradient descent computes the steepest direction in the

loss landscape and does a step towards the direction that implies a fastest reduction

of the loss value. Once the weights are updated accordingly, gradient descent takes

another step following the same strategy. This process is iterated until convergence.

The parameters are usually randomly initialized at the beginning of the training,

and is important to note that, due to the nature of the non-convex loss function, the

convergence point will change depending on the initialization.

Gradient descent becomes unpractical when the dataset size increases: for each

step the model needs to process all the samples in the dataset. Additionally, given

the redundancy in the datasets, computing each gradient descent step with all the

samples makes it inefficient: most of the samples will have a similar contribution in

each step. This drawback motivates the introduction of some of the variations of

gradient descent. In particular, stochastic gradient descent (SGD) overcomes this

drawback by approximating the loss gradient of the dataset with the gradient of the

individual loss of each sample:

`i(xi,yi,W ) = −yTi log(hW (xi)). (2.6)

This, however, gives very noisy approximations of the gradients and forces the model

to process each sample individually, updating its parameters for every sample. The

most common alternative of gradient descent is mini-batch SGD [41, 22] and lies in

between GD and SGD: parameter updates are computed from batches of samples.
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This alternative is often referred to as SGD and estimates the real gradient of the loss

function as the average gradient of a randomly selected subset of the samples. The

main advantage of this optimization algorithm comes from the computational point

of view. Since current GPUs are designed to optimize parallelized computations,

the gradient estimation of a batch of samples has the same computational cost as

the estimation of the gradient estimation of a single sample. Hence, the number

of parameter updates can be drastically reduced. Mini-batch SGD often considers

from 10 to 200 samples at every iteration, this also provides a benefit from the

optimization point of view: averaged gradients are less noisy and provide certain

robustness to corruptions or outliers.

SGD can be applied to all kind of models, such as logistic regression, linear

regression, or neural networks. In the case where the prediction function of the model

is a neural network, backpropagation provides an efficient method for calculating the

gradient of the loss. The underlying principle of backpropagation relies on the chain

rule to compute the gradients of the errors from different layers with respect to their

weights. This gradient can be interpreted as how sensitive is the error of one layer to

changes in the weights of that layer and, more importantly, gives the local direction

of steepest ascend. As we are interested in the derivative of the loss function with

respect to the weights, in each layer, the chain rule

∂L(W )

∂W
=
∂L(W )

∂o
× ∂o

∂W
, (2.7)

decomposes this derivative into two terms: the derivative of the loss function L(W )

with respect to the output of the preceding layer o, and the derivative of the output

of the previous layer with respect to the weights of that layer W . For the previous

layer, the gradients are computed similarly using the loss function associated to that

layer. This way, as the name backpropagation suggests, the error computed in the

last layer is propagated backwards through the network to compute the gradients for

each layer.

Despite being the algorithm behind most neural network applications, stochastic
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gradient descent can be sometimes a slow optimization strategy: the gradients from

different batches have a stochastic component that increases the exploration of the

loss landscape through noisy updates of the weights, but discourages a straightforward

convergence towards low loss regions. Particularly, in the presence of ravines, where

the surface curves much more in one direction than in others [171], SGD updates

oscillate and become noisier. To accelerate the convergence of SGD, momentum [145]

is often applied: an exponentially decaying average of past gradients is used to

update the weights of the model. Formally, the variable v accumulates the negative

gradients of the loss with respect to the parameters of the model and accounts for

the update of the model as

vt+1 := mvt − αt∇WL(Wt) (2.8)

Wt+1 := Wt − vt+1, (2.9)

where αt is the learning rate and m ∈ [0, 1) is the momentum parameter that

determines how fast the contribution of previous gradients decay.

More intuitively, momentum is decreasing the effect of a particular update

considering the momentum with which the loss landscape is being explored and

reducing oscillations on the way to the local optimum. Figure 2.5 (b) illustrates the

difference between SGD and SGD with momentum.

Further improvements in the optimization algorithm aim at considering different

step sizes (i.e. learning rates) for different directions in the loss landscape. This is

motivated by the high dimensionality of the loss landscape when training neural

networks. Since higher dimensional spaces present a higher number of saddle points

(points where the loss increases in some directions and decrease in others) than local

optima (points where the loss increases in all directions) higher learning rates in

directions in which the gradients are smaller help the optimization algorithm to

escape those saddle points. Examples of the most used algorithms with adaptive

learning rates are AdaGrad [48], RMSProp, and Adam [96]. However, for simplicity



CHAPTER 2. NEURAL NETWORKS FOR COMPUTER VISION

w2

w1

w(0)

w(1)

w(2)

w(3)

w(4)

w(5)

w(6)

w(7)

w∗

(a) Stochastic gradient descent (SGD)

w2

w1

w∗

w(0)

w(1)

w(2) w(3)

w(4)

w(1)

(b) SGD with momentum

Figure 2.5: Momentum effect on stochastic gradient descent. Black arrows indicate
the SGD step taken, red arrows indicate the step computed from the current gradient
of the loss, and blue arrows indicate the accumulated previous gradients. Figure
adapted from [118].

and to avoid additional hyperparameters, the experiments on this thesis use SGD

with momentum.

It is important to remember that the central challenge of neural networks – and

in machine learning approaches in general – is to perform well on unseen examples,

i.e. samples that are not in the training set. This ability is known as generalization

and is evaluated with the generalization error: an error measure over the testing

set (unseen samples). The two main challenges when approaching generalization are

underfitting and overfitting. The former corresponds to the lack of enough flexibility

or capacity in the model to perform well on either the testing or the training set.

This is usually not a problem in neural networks given their overparametrized

nature: common architectures have enough parameters to memorize the training set

and achieve zero loss (note that this is true even for random samples [216]). The

latter, however, refers to improvements of performance in the training set that do

not corresponds to improvements on the testing set. This difference between test

and training errors is called the generalization gap and is a direct measure of the

overfitting of a model. This challenge is not as straightforward as the lack of capacity

in the model and is strongly affected by the overparametrization of the model.

Regularization techniques play a crucial role to mitigate the effects of this intricate
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relationship between overparametrization and generalization. Current practices in

the field ensure, firstly, enough capacity in the model, and then apply regularization

techniques to bias the model towards certain solutions that are more likely to be

useful in the testing set (i.e. more likely to generalize). Regularization techniques

restrict the capacity of the model and force it to learn certain patterns. Widely

used regularization techniques encourage the parameters of the model to remain

close to zero by including a penalty that keeps the parameters Euclidean norm small

(L2 weight regularization [99]), drop random parameters at each iteration to reduce

the co-dependence between them and leverage the ensemble effect during testing

(dropout [167]), or introduce invariance to particular functions of the input space

by artificially altering the inputs with certain transformations that conserve the

semantics (i.e. data augmentation [160]). In other words, regularization techniques

increase the difficulty of the training set and encourage robustness to some variations

during training to avoid overfitting.

Additional limitations of neural networks concern the preparation of the input

data and the effect this has during training. A common practice in machine learning

and particularly when training neural networks is to standardize the input data:

subtracting the mean and dividing by the standard deviation. This centers the data

in an approximately spherical region (with unity radius) of the space around zero. By

having all the data normalized, the network parameters do not need to compensate

for differences in the ranges of different feature dimensions. This results in initial

weights being closer to the final solution. While this is done in the input, other

techniques aim at maintaining the statistics of the internal representations of the

neural network also near zero mean and unity standard deviation. These are often

seen as normalization layers that keep the activations of previous layers standardized

using the statistics of a mini-batch (batch normalization [80]), normalize the weights

in each layer (weight standardization [147]), or normalize the output features of each

layer grouped by channels (group normalization [199]). While understating the role

of these layers is still an active research topic, they are often used to stabilize the
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training and accelerate convergence.

2.1.3 Widely used model architectures

Initial implementations of convolutional neural networks process the input data

from layer to layer until reaching the output space that, in the classification task,

is normalized to obtain a probability distribution over the classes in the dataset.

AlexNet [1] is an early example of this architecture that has 5 convolutional layers

followed by 2 fully connected layers. Soon after this contribution to the ImageNet

challenge, the number of layers used to design CNNs increased, as more layers meant

more parameters and thus, more representation power. This gave place to VGG

architectures [162] as deeper and refined versions of AlexNet.

Despite the competitive performance of larger architectures such as VGG16

and VGG19 – which increased the number of layers up to 16 and 19 respectively

– training these deeper models became increasingly challenging: larger number of

layers presented a problem for backpropagation, as the gradients become smaller

as they reach deeper layers. Since the weights of the network are encouraged to

be small, this results in the gradients being multiplied by values smaller than one,

which reduces their value to near zero after several multiplications. This is known

as the vanishing gradient problem. Consequently, ResNet [72] architectures include

a skip connection between blocks of convolution layers to avoid this problem. Skip

connections forward the input of each block of typically 4 layers to its output; the

output of each block, then, is the addition of the input and the output features

of the block. This encourages stability between blocks and allows the gradients

to flow backwards during backpropagation and reach deeper layers by avoiding

multiplications that reduce their magnitude. Common ResNet architectures like

ResNet18, ResNet50, and ResNet101, where the numbers indicate the number of

layers, have become the default architectures in several computer vision tasks.

Later innovations in CNNs included skip connections between all the layers in

the network to facilitate feature reuse and gradient propagation, resulting in the
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DenseNet architecture [78]. MobileNet [76] substitutes the convolutional layers for

depth-wise separable convolutions to reduce the number of parameters in the model.

This architecture is designed for optimal performance on mobile devices and includes

two hyperparameters to allow for a trade-off between latency and accuracy. More

recently, Mingxing Tan and Quoc Le [174] proposed EfficientNet as a new architecture

found through model architecture search strategies [229, 173]. Additionally, they

optimize the existing ResNet and MobileNet architectures with respect to the depth,

width, and resolution they use. Note that since the success of AlexNet, the CNN

landscape has been growing with an almost overwhelming variety of architectures.

This thesis does not aim at exploring the different architectures available and, for

simplicity, uses standard variations of ResNet-type and VGG-type networks.

2.2 Literature review: approaches to constrained

training setups

In this section, we introduce the relevant research on neural network approaches to

computer vision under limitations of label availability and computational constraints.

In particular, this section addresses the literature on unsupervised and self-supervised

learning, semi-supervised learning, label noise, and budgeted training.

2.2.1 Unsupervised and self-supervised learning

The initial success of CNNs in unsupervised learning for computer vision was driven

by self-supervised approaches that obtained the training labels directly from the

data. These approaches leveraged some visual property of the images to provide a

signal to train the model. Concretely, they aimed at solving proxy tasks such as

jigsaw puzzles, predicting the color of an image, or identifying rotations [132, 221,

53]. More recently, self-supervised approaches have made a shift towards metric

learning inspired objectives, in particular to contrastive representation learning

frameworks [93, 94, 180] (often referred to as contrastive learning), where similar
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samples are pulled together in the representation space while dissimilar are pushed

apart [29, 70, 201, 31]. When applied to unsupervised learning, contrastive learning

pulls together two or more random transformations of one image and pushes apart

all the other images.

Most self-supervised approaches based on proxy tasks are inspired by intuitive

ideas of how humans learn visual patterns. For instance, Doersch et al. [45] and

Noroozi et al. [132] build a task that encourages the network to understand the

spatial location of certain features from the image. Doersch et al. [45] use as an

input two patches from the same image and train a CNN to predict the location of

one patch with respect to the other. Similarly, Noroozi et al. [132] train a model to

solve Jigsaw puzzles: a 3× 3 grid in the image is reorganized according to a random

permutation from a list and the network is trained to predict the index of the given

permutation in the list, i.e. the list index acts as a class. These works suggest that

this scenario encourages the model to learn a feature mapping of different object parts

and their spatial arrangement with respect to the whole object. Another commonly

used pretext task is colorization. Zhang et al. [221] propose an early approach for

this task that predicts the channels ab given only, as an input, the information from

the L channel in the Lab color space. In this scenario, the model is not predicting

classes anymore, now the predictions are pixel values that account for the color of

the image. Guadarrama et al. [60] bring this a step further and proposes a recursive

colorization to generate a high-resolution image colorization.

While these approaches require considerable modifications to the training process,

Gidaris et al. [53] propose a very simple and effective approach: they train a network

to identify which rotation was applied to an image; in this setup, the model predicts

the rotation applied to an image from fixed given degrees of rotation (e.g. {0, 90, 180,

270}) as if these were classes. The intuition behind this approach is that rotations

force the network to recognize object semantics in order to be able to determine

their orientation.

In a more transformation-agnostic approach, Dosovitskiy et al. [47] propose



CHAPTER 2. NEURAL NETWORKS FOR COMPUTER VISION

Exemplar-CNN to train a CNN to identify augmented patches from one image as

examples belonging to that specific image. These augmented patches are crops of an

image that undergo several random visual transformations (translation, illumination

changes, rotations, scale changes, and horizontal flips) and aim at reproducing

realistic views of the given images. As a result, a group of transformed patches

from the same image form a surrogate class per image. This method is of particular

interest because it is not limited to a given pre-designed proxy task, rather it aims at

training a model that is invariant to generic transformations from the input space.

Exemplar-CNN, however, presents three main weaknesses. First, images from the

same semantic class end up in different classes (see Figure 2.6), generating different

surrogate classes and creating collisions and misguiding the training . As a result the

performance of this approach degrades as the number of available unlabeled samples

increases. To alleviate this effect, Dosovitskiy et al. [47] and the work [9] presented

in Chapter 3 introduce clustering methods that allow them to increase the amount

of unlabeled data used for training. Secondly, the method ignores intra-class and

inter-class relationships: relationships between elements from the same semantic

class and between elements from different classes. This is studied by Bautista et

al. [17], where they design the training mini-batches to contain samples from different

classes. Third, the large number of classes of the resulting dataset makes the softmax

normalization ineffective, which provides a weaker guide for the parameters updates.

Doersch and Zisserman [46] use a triplet loss approach to address this last challenge,

which points towards the recent shift from visual proxy tasks to metric learning

approaches (further discussed in Chapter 3).

Recent approaches include random artificial variations in the images, and shifting

of the training paradigm from classification to metric learning, or more concretely, to

contrastive learning. In this scenario, the underlying idea is to minimize the distance

between similar images in the feature space while maximizing the distance between

dissimilar images. In the case of unsupervised learning, the similar images are

patches of the same image that undergo different random transformations. Oord et
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Figure 2.6: Collisions between surrogate classes. Several patches are extracted and
randomly transformed to create a surrogate class per image, regardless of the true
class. This process results in a dataset with different classes coming from the same
true (unknown) class.

al. [135] and Wu et al. [200] first used contrastive losses for self-supervised visual

representation learning and proposed to adapt noise-contrastive estimation (NCE) as

a strategy to approximate a normalization of the predictions – often used in language

tasks to learn word embeddings [120, 125]. The basic idea of these methods is to

substitute the linear layer and softmax normalization that projects the predictions

to probabilities in the class space, which in this case is constituted by as many

classes as there are samples in the dataset, with a non-parametric classifier, where

the probability assigned to each sample comes directly from computing its distance

to different transformations of this sample and normalizing over the sum of distances

to all the other samples in the dataset. For large datasets, this is infeasible, hence

NCE approximates the normalization over a relatively small subset of samples. This

translates into a loss that minimizes the distance between the given sample and a

positive (itself with a different augmentation) and maximizes the distance of the

given sample with a set of negative samples (e.g. the other samples in the mini-batch

or the samples from a memory bank).

Soon after these initial attempts, other approaches leveraged this idea and

proposed methods to learn representations contrasting distances in the feature
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space [70, 29, 181, 89, 102, 27, 59, 32]. In particular, SimCLR [29] is a method that

considers as positive the second view of each image, i.e. the same image under a

different transformation, and as negatives all the samples in the mini-batch. This

approach introduces stronger data augmentation to obtain more challenging positives,

a large batch size to increase the number of negatives, and a non-linear layer in the

projection module of the network.MoCo [70] and MoCo-v2 [31] introduce a memory

bank and a momentum network to the pipeline, which allows to compute better

representations and to access a higher number of negatives per sample. Tian et

al. [181] explore the influence of the view generated for contrastive learning and

propose InfoMin as an approach to reduce the mutual information between views and

maintain task-relevant information. Caron et al. [27] replace the feature comparisons

by enforcing consistency between clusters assignments of different views from the

same image. Kalantidis et al. [89] and Lee et al. [102] introduce interpolation training

to obtain harder negatives and positives, which plays an important regularization

role in boosting performance.

Slightly different, Grill et al. [59] propose BYOL, which does not contrast repre-

sentations between samples, ignores the negatives, and aims at predicting one view

from another. Chen and He [32] further simplify this setup and proposes a framework

in which all contrastive approaches can be seen as siamese networks [24]. They show

that by stopping the gradient propagation of one of the views of the mini-batch they

avoid collapsed solutions where the model learns to predict constant features and

allows the model to train without memory banks, large mini-batches, or momentum

networks.

Despite the good performance of these methods, they still present several incon-

veniences when training. The number of negatives needs to be considerably large,

which is often solved with a large batch size [29] or with a memory bank [70] that is

updated through training. Both alternatives are computationally demanding. The

second drawback is the typically large number of iterations required to train these

methods, that due to the weak guidance from a single positive for every update, the
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training needs to be extensively long (as seen in supervised contrastive learning [94],

where the availability of several positives per image greatly accelerates convergence).

This is aggravated by the heavy data augmentations applied to the positives and

negatives [102, 29, 31], which make it even harder for the model to learn representa-

tions. Chapter 3 discusses these challenges in the light of Exemplar-CNN [47] as an

approach that contrasts samples with themselves and an early attempt at contrastive

learning for unsupervised learning.

2.2.2 Semi-supervised learning

Semi-supervised approaches propagate label information from a small subset of

labeled data to a larger subset of unlabeled samples and jointly exploit both subsets

to learn discriminative representations. Additionally, semi-supervised learning plays

an essential role in the application of self-supervised representations to downstream

tasks. Hence, the recent trend in self-supervised works of evaluating the learned

representations in semi-supervised benchmarks [29, 59, 27].

For clarity, in this thesis, approaches to semi-supervised learning are divided into

two categories: pseudo-labeling and consistency regularization. Approaches in the

former consider the given labels as the training objective for the labeled set and

estimate pseudo-labels from the predictions of the model as training objectives for

the unlabeled set [101, 81, 11]. The latter, however, does not attempt to generate

labels for the unlabeled samples, but to enforce consistency across the predictions

of a sample under different perturbations (data augmentation, dropout, or other

perturbations) [155, 176, 19]. In the presence of scarce annotated data, these

approaches become vulnerable to confirmation bias [176, 106, 11]. While in humans,

this bias manifests as a tendency of searching for and focusing on the information

that confirms existing beliefs [143], in neural networks this bias manifests as a

propagation of errors through the unlabeled set and as a tendency of the model to

resist new changes [106]. Despite being present in pseudo-label and in consistency

regularization, confirmation bias seems to be more damaging to the former. This is
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further explored in Chapter 4.

Consistency regularization was used by Sajjadi et al. [155] by combining pertur-

bations from randomized data augmentation, dropout, and random max-pooling and

forcing the predictions of the model to be consistent. Similarly, Temporal Ensem-

bles [100] extend these perturbations in time and encourages model predictions to

be similar to a running average of the predictions across epochs, i.e. as a temporal

ensemble. These predictions contain the additional corruptions coming from different

update states of the network. In Mean Teacher [176] the temporal ensemble paradigm

is interpreted as a teacher-student scenario where the main network behaves as the

student by encouraging consistency of its predictions with the predictions provided

by the teacher. The teacher, then, is defined as an exponential moving average

of the weights of the student network. The update speed of this moving average

depends on a hyperparameter and controls the confirmation bias of the model. Li et

al. [106] extend this framework by weighing the unlabeled samples and giving higher

importance to those with low uncertainty, defined as the entropy of the predictions

for each sample. Miyato et al. [124] use virtual adversarial training to corrupt the

samples with adversarial noise and later impose consistency across predictions. More

recently, Luo et al. [113] propose to extend the consistency regularization term by

introducing a graph to consider the connections between samples in the prediction

space and enforce similarity between neighboring nodes and dissimilarity for non-

neighboring nodes. This can be combined with the methods proposed by Tarvainen

and Valpola [176] (Mean Teacher) and Miyato et al. [124] to boost their performance.

Verma et al. [188] propose interpolation consistency training as a method inspired

by mixup [218] data augmentation (further explained in Subsection 2.2.5), that

imposes consistency between the interpolated predictions of unlabeled samples

and the predictions of interpolated unlabeled samples. Similarly, Berthelot et

al. [19] propose MixMatch, that includes mixup to combine labeled and unlabeled

samples, and applies consistency regularization between predictions and guessed labels

obtained from averaging predictions under several augmentations while applying
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a sharpening function to encourage low-entropy guesses. Both Verma et al. [188]

and Berthelot et al. [19] adopt Mean Teacher [176] to estimate better targets for

consistency regularization.

Qiao et al. [146] propose Deep Co-training as a method that simultaneously trains

two (or more) networks, encouraging agreement on their predictions (consistency

regularization) and disagreement on their errors. Those predictions that change when

exposed to adversarial attacks are considered errors: this forces different networks

to learn complementary representations for the same samples. Chen et al. [33]

introduce a memory that store previous representations to be used to measure the

consistency with current predictions. Additionally, they introduce a term to reduce

the contribution of the consistency term for uncertain samples.

Pseudo-labeling methods have been less successful in learning representations.

By using model predictions directly as labels, these methods spread possible errors

in the predictions through the unlabeled set which reinforce learning corrupted

representations. This phenomena, i.e. confirmation bias, has kept approaches to

semi-supervised learning away from pseudo-labeling strategies.

An early attempt at pseudo-labeling [101] used the predictions of the model

as labels for a fine-tuning stage after pre-training the model on the labeled set of

samples. More recently, Shi et al. [159] use the predictions of the model as hard

labels for the unlabeled set (i.e. the class predicted with the highest probability

becomes the label). The authors introduce a per-sample weight that reduces the

contribution to the loss of those samples whose k-nearest neighbors are furthest

in the feature space. They include two additional terms on the loss function, one

to encourage intra-class compactness and inter-class separation, and the other to

encourage consistency between samples with different perturbations. They also

report improved results when combined with Mean Teacher [176]. Recently, Iscen et

al. [81] exploit graph-based label propagation in the pseudo-labeling paradigm: the

labels of the clean set are propagated to the whole dataset to refine the pseudo-labels

for the unlabeled set. Concretely, the method alternates between a stage where the
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network trains on the labeled and pseudo-labeled data, and a stage in which the

representations of the network are used to build a nearest neighbor graph where

label propagation [227] is applied to refine hard pseudo-labels. They further add

an uncertainty score for every sample (based on softmax prediction entropy) and

class (based on class population) to deal, respectively, with the unequal confidence

in network predictions and class imbalance.

Rebuffi et al. [149] combine the pseudo-labeling paradigm with an alternating

optimization method to avoid propagating errors through the dataset (confirmation

bias): In the first stage, the classifier is trained on the clean set of data and produce

pseudo-labels for the unlabeled set that are then used in the second stage to fine-tune

the full network on the unlabeled set. Additionally, similarly to the study by Zhai et

al. [215], they include self-supervised learning in the pipeline, particularly as a warm-

up to initialize the network. This was later adopted by several other approaches [20,

19, 165] and has shown to help to stabilize the training in cases where the number of

labeled samples is very low.

The work proposed in Chapter 4 explores the main weakness of pseudo-labeling

approaches, i.e. confirmation bias, and leverages simple regularization techniques

that address it: a minimum number of labeled samples per batch and mixup data

augmentation. These regularization techniques allow the network to generate reliable

soft pseudo-labels and to learn robust representations, even when the number of

labeled samples is extremely low (down to 0.5% of labeled samples). Additionally, the

loss function proposed leverages existing regularization terms that enforce an equal

prediction of the samples per mini-batch and encourage low-entropy pseudo-labels.

The distinction between pseudo-labeling and consistency regularization approaches

is very useful from a technical point of view, but it has become less evident in recent

approaches. As noted by Rebuffi et al. [149], a pseudo-labeling strategy across epochs

has a consistency regularization effect where predictions for one sample are encour-

aged to be similar from epoch to epoch. Recent research in semi-supervised learning

propose holistic approaches that combine several of the techniques used in previous
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works [19, 20, 165] and in some cases make the distinction between consistency

regularization and pseudo-labeling impossible. Initially, MixMatch [19] combines,

mixup as an interpolation based data augmentation, standard data augmentation

to generate label guesses for the unlabeled set, entropy minimization to sharpen

those guesses, and a teacher model as in Mean Teacher [176] to improve the quality

of the guesses used in a consistency regularization term in the loss function. Soon

after that, Berthelot et al. [20] proposed ReMixMatch, that improves on MixMatch

by introducing stronger data augmentation and a self-supervised term in the loss

to increase stability during training when the number of labeled samples decreases.

Additionally, they substitute the consistency regularization term in the loss function

(the mean square error is used often for this term) by the cross-entropy between

a guessed label and the prediction of the model, as is done in pseudo-labeling ap-

proaches. This relationship between consistency regularization and pseudo-labeling

is further discussed in Chapter 4. To further improve on this, Sohn et al. [165] pro-

pose FixMatch that includes a sample selection step where only the high-confidence

predictions are used.

To increase the efficiency of semi-supervised learning approaches when extremely

scarce annotations are available, Albert et al.[4] propose to learn features in a self-

supervised manner and leverage the relationships between samples in the feature

space to extend the labeled set of samples. This allows semi-supervised training in

challenging scenarios where as few as one single label per class is available.

While in this thesis we assume that unlabeled samples belong to the distribution

of classes in the labeled set, recent semi-supervised learning approaches explore more

realistic scenarios where the unlabeled samples do not necessarily belong to the label

distribution [34, 61, 228]. The research in this direction is still very limited, but

tackles one of the main limitations of current semi-supervised methods. The second

assumption considered in this thesis is that the labeled samples are balanced across

all the classes. Several approaches already consider cases where this is not true [209,

109, 195]. The implications of these two lines of research and their relation with
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existing approaches are further discussed in Chapter 7.

2.2.3 Label noise learning

Neural networks learn corrupt representations when trained under label noise condi-

tions: their expressive power leads them to memorize the corruptions in the labels [216,

14], reducing their generalization abilities to unseen samples. This is a common

scenario, especially in large datasets where the labeling process is automated and the

labels come from existing information such as user tags, text, or web searches [105,

204]. Recently, increased attention in this field [51, 5, 65, 166] has resulted in new

benchmarks [85, 105], approaches [10, 137], and insights on the training of neural

networks under label noise [136, 64].

To facilitate the exploration of label noise approaches, it is common to introduce

label corruptions in classification benchmarks to create controlled scenarios with

known noise distributions and where noisy samples are identified. Label noise

distributions are often grouped into two categories: closed and open set distributions.

These are also known as in-distribution and out-of-distribution label noise respectively:

in the former, the true labels of noisy samples belong to the labels inside the

expected distribution of classes, while in the latter they often do not. An additional

assumption when building synthetically corrupted datasets is the distribution of the

corruptions across the classes: uniformly or non-uniformly distributed. In uniform

noise distributions, the labels are swapped uniformly between all the classes, and

in non-uniform noise distributions, the corruptions follow a certain class-dependent

distribution where some classes might swap labels more often than others. As noted

in Ortego et al. [136] real-world noisy datasets are likely to contain both types of

noise distributions.

The two setups most commonly studied in the label noise literature are uniform

and non-uniform noise distributions under the closed set scenario assumption. The

motivation behind this is the lack of datasets with controlled out-of-distribution

noise. Recently Jiang et al. [85] released a new dataset where the noisy samples are
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obtained from web searches: this allows for the selection of the level of noise and

evaluation of the correct identification of noisy samples. Similarly Ortego et al. [136]

proposed to use a down-sampled version of ImageNet to synthetically simulate these

distributions: the 1 000 classes in ImageNet are divided into in-distribution and

out-of-distribution, and the corruptions are introduced following a class-dependent

distribution given by several pre-trained networks. These works aim at providing

controlled versions of realistic datasets such as WebVision [105] or Clothing1M [204],

that are extremely large, costly to work with, and where the noisy samples are not

identified (which makes the understanding of the methods impossible).

Approaches to label noise follow four main different strategies: detect noisy

samples and discard their labels [175, 213, 44, 95, 136] to, then, apply a semi-

supervised algorithm; directly discard the samples or reduce their contribution to

training [86, 62, 194, 85, 130, 64, 214, 196, 151]; correct the per-sample loss values

or labels observed during training [150, 66, 10, 110, 141, 73, 202, 210, 187, 204]; or

introduce a robust loss function to train in the presence of label noise [218, 103, 68,

177, 223, 207, 114, 186]. Figure 2.7 provides an overview of this literature review

and groups the different methods under their corresponding category.

A conservative approach to label noise is to discard the labels associated to noisy

samples but still leverage the images for representation learning. By discarding

the noisy labels, these approaches avoid overfitting to the noise distribution of the

dataset [175, 213, 44, 95, 136]. In this direction, Tanaka et al. [175] and Yi and

Wu [213] demonstrate that, by replacing clean and noisy labels with the predictions

of the model or with learned label probability distributions, they are able to mitigate

the effect of label noise. Concretely, after a pre-training period, all the labels of the

dataset are substituted by the predictions of the model; this aims at extrapolating

the features learned during the initial stages of the training where the model is

less prone to fit the noise (due to a larger learning rate). Intuitively, this leverages

the observation by Arpit et al. [14] and Zhang et al. [216], of clean samples being

learned earlier than noisy samples, to replace the potentially corrupted labels before
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Figure 2.7: Compilation of label noise approaches.

the model overfits them. Kim et al. [95] introduces negative learning as an indirect

training method to reduce the effect of noisy labels in training: samples are randomly

replaced and contribute negatively to the loss function. In a similar direction, several

works [44, 130, 136] introduce a noise detection step to identify the noisy samples

and discard the associated labels. Then, semi-supervised learning approaches are

applied to learn from both the clean and noisy (now unlabeled) samples.

Other approaches also try to identify the noisy samples, but with a different

objective: remove them or reduce the influence they have on the training loss

function [86, 62, 194, 85, 64, 214, 196, 151]. Particularly, Jiang et al. [86] include

an additional model to the training, a mentor network (which was later combined

with interpolation training Jiang et al. [85], i.e. mixup), to learn a curriculum from

the data and score the probability of the samples of being clean. This curriculum is

then used to present to the main model only the samples with a higher probability

of being clean. Similarly, Guo et al. [62] design a learning curriculum through an

unsupervised measure of the complexity of the data and use that curriculum to

introduce the noisy samples gradually during training. This reduces their impact
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on the representation learning and leverages their regularization effect. Wang et

al. [194] weight the noisy samples to reduce their influence during training, and

introduces a metric learning perspective to train the model to place far away in the

feature space those samples identified as noisy. Some of these approaches include

several networks to improve label noise detection, e.g. Nguyen et al. [130] iteratively

clean the training set by leveraging the prediction agreements of ensemble networks.

Similarly, cross-networks loss values and prediction disagreements have shown be

useful to select which samples to backpropagate from [64, 214]. As an improvement

to this, Wei et al. [196] include a consistency regularization term to force similarity

of the features between both networks to further exploit the samples considered as

noisy and discarded for the backpropagation associated to the labels.

Loss and label correction approaches to label noise often dispense with the noise

detection stage and directly modify the loss values or the labels used during training

to reduce the effect of label noise [150, 66, 10, 110, 141, 73, 202, 210, 187, 204].

Reed et al. [150] modify the loss function to reduce the impact of noisy labels;

effectively the labels become convex combinations of the observed and the predicted

label. This is extended by using prototypes as class estimations [66], and combination

of labels and predictions dynamically weighted based on the clean-noisy per-sample

probability given by an unsupervised modeling of the noise [10] (Chapter 5 expands

on this work). Similarly, Liu et al. [110] introduce a term on the loss function

to maximize the inner product between the model prediction and the targets to

prevent memorization of noisy samples at later stages of the training. In a slightly

different direction [141, 73, 202, 210, 187, 204] aim at estimating the noise rate

in the dataset. In particular [141, 202, 210], estimate a transition matrix T that

specifies the per-class probability of labels being flipped from one class to another.

Patrini et al. [141] propose to correct the loss function by multiplying T by the

softmax probabilities predicted by the model to correct the model predictions. Given

the challenging nature of estimating this matrix, Yao et al. [210] propose a Bayesian

nonparametric approach to estimate the transition probabilities and deduce a label
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regression method to iteratively infer the labels to train the classifier and model the

noise. Also, Xia et al. [202] exploit certain clean detected samples (highly reliable)

as anchor points to estimate the transition matrix.

Approaches that explore robust loss functions [68, 223, 207, 114] provide alterna-

tives to the standard cross-entropy training and explore a more theoretical approach

to mitigate label noise memorization and encourage representation learning. Zhang et

al. [223] present a set of noise-robust loss functions that exploit the mean absolute

error in combination with the standard categorical cross-entropy loss. Xu et al. [207]

propose an information-theoretic loss function based on a generalized version of the

mutual information that is provably insensitive to noise patterns and corruption

levels. Similarly, Ma et al. [114] theoretically show that current loss functions could

be made robust to noisy labels with a simple normalization, but that this is not

enough to train accurate deep neural networks; they propose a combination of two

losses that mutually boost each other. Harutyunyan et al. [68] include a term on the

loss consisting of the Shannon mutual information between the weights of the network

and the vector, and show that minimizing this term corresponds with reductions in

memorization of label noise and better generalization. More generically, Zhang et

al. [218] propose mixup, an interpolation training strategy that reduces memorization

in neural networks and increases robustness in the presence of noisy labels. This

strategy has been extensively adopted in the label noise literature [136, 85, 150, 10,

103].

Other approaches propose mixed strategies [110, 103, 177] and achieve remarkable

results. DivideMix [103] for instance, leverages cross-network agreements, semi-

supervised learning, and interpolation training to train a model and at the same

time refine the labels detected as clean. The approach proposed by Liu et al. [110]

includes regularization terms that leverage the features learned during initial stages;

the authors also use network ensembles and weight averaging, to significantly boost

performance. Slightly differently, Thulasidasan et al. [177] propose a method that

includes an additional class to the training and uses a penalty in the loss function to
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encourage the network to predict noisy samples under that additional class.

In parallel to these approaches, some works relax the noise corruption assumption

and rely on a clean set to enhance some aspects of the training [64, 73, 187, 204, 186].

Han et al. [64] consider the validation set as a clean set available during training

and uses the directions of gradients on the training set compared to those on the

validation set (clean set) to weight the influence of the samples in the loss function.

Hendrycks et al. [73] leverage a small clean set to estimate a better noise transition

matrix T to correct the predicted class probabilities. Veit et al. [187] propose to use

the clean set to learn a mapping between clean and noisy annotations, and argue

that this mapping learns noise patterns and captures the noise structure in the label

space. Xiao et al. [204] propose a probabilistic model to describe the cause of noisy

labels in real-world data and integrate this model with a CNN to improve training

robustness under label noise. Finally, Vahdat [186] propose to use a conditional

random field to represent the relationships between clean and noisy labels and embed

it into the model to make the training robust against label noise.

2.2.4 Budgeted training

The rapid increase in training times given by larger datasets and deeper models

provides a strong motivation to explore alternatives to reduce the computational

costs of training deep neural networks. Some of these avenues include network

compression [40, 107], neural architecture search [174, 26], or parameter quantization

[148, 82]. Despite these efforts, few works have explored budgeted training as a

solution to accelerate the training of deep neural networks [127, 88, 104, 13]. This

setup restricts the number of training iterations available to a given budget.

This thesis addresses budgeted training as an alternative to reduce the computa-

tional cost of training CNN while maintaining high performance. Particularly, given

a training budget, in Chapter 6 the effectiveness of prioritizing some samples over

other is explored, i.e. importance sampling [91, 28, 111], which has not yet been

studied under budget restrictions.
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Similarly, curriculum learning and self-paced learning organize the samples from

easy to difficult to improve model performance by increasing the sample difficulty

through training [18, 197, 63, 198]. Particularly, as shown by Weinshall et al. [197],

curriculum learning improves convergence speed at initial stages of the training

because easier samples provide a less noisy estimation of the real gradient. Wu et

al. [198] experimentally show that curricula are most effective when applied in label

noise or budget constrained scenarios. The main drawback, however, is that in most

cases the curriculum has to be pre-computed, which is a costly task and often involves

manually annotation, transfer learning from a pre-trained model, or pre-training

the model in the given dataset. Some approaches reduce this drawback through a

simple curriculum [108] or by learning the curriculum during training with a teacher

model [86]; these methods do not aim to speed up training but to improve model

robustness by weighting the influence of the samples in the training.

Core-set selection approaches, however, are more effective at reducing the com-

putational requirements of training a CNN model [183, 37, 122]. These approaches

aim at identifying the subset of samples that will retain most of the performance

achieved when training with the full dataset. For that purpose Toneva et al. [183]

define “forgetting events” as a measure of how forgettable is a sample and show

that samples with a higher count of “forgetting events” are more important to the

training. Coleman et al. [37] demonstrate that proxy models with fewer parameters,

despite reaching lower performance still provide useful measures of sample relevance

that can be used to train larger models. Mirzasoleiman et al. [122] propose a method

to select a weighted subset of samples that provably converges to a near-optimal

solution. Work in this direction demonstrates that only a portion of the dataset is

enough to achieve peak performance. The inconvenience of this approaches is that

removing a subset of samples from training brings strong performance degradations.

Additionally, the effectiveness in reducing the computation of this approaches is

limited by the need for a measure of the contribution of the samples, which requires

prior knowledge of the sample contribution to the training, e.g. pre-training the
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model.

In the middle ground between curriculum learning and core-set approaches,

importance sampling [91, 84, 219] aims at selecting the most important samples at

every instant of the training, which has been shown to correspond to the samples

with highest gradient magnitude [225, 3]. Different works have proposed several

alternative measures to approximate this magnitude: Johnson and Guestrin [87]

have shown that the gradients found in the last layer of the model are a good

approximation and easier to obtain, Jiang et al. [84] use the per-sample loss value

during additional forward passes, Chang et al. [28] use the probabilities predicted

during training for the true class, and Loshchilov and Hutter [111] use the ranking

order of these probabilities.

Importance sampling methods propose alternative measures of sample impor-

tance that aim at approximating the optimal sampling distribution, which is very

computationally demanding to compute. The main problem is that this distribu-

tion depends on the state of the model, and measures computed at one iteration

become outdated after few updates. Initial attempts to this challenge included

several hyperparamters to smooth the estimated distribution [28], additional forward

passes to keep the distribution updated [111], or alternative measures to estimate the

sampling distribution [7]. Other approaches add complex support techniques to the

training to estimate a better distribution: robust optimization [87], repulsive point

techniques [217], or a second network trained in parallel with the main model [219].

Recently, several methods leverage a double sampling strategy where a subset of

samples is randomly sampled to reduce the search space from the dataset, and

then an importance sampling measure is computed in this smaller subset. This

technique is often known as random-then-greedy technique [112]. Under this setup

Katharopoulos et al. [91] define a theoretical bound for the gradient magnitudes

which yields a faster computation of the sampling probabilities. With this same

sampling strategy, Jiang et al. [84] and Ioannou et al. [79] use the loss value as a

measure of sample importance. Finally, Kawaguchi and Lu [92] use the top-k loss [50]
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to perform the backpropagation step using only the samples with highest losses. Note

that these methods require a full forward pass every epoch to update the sampling

probabilities.

Parallel to these methods, other approaches explore different learning rate sched-

ules to accelerate the training of CNN: a cyclic learning rate that uses higher learning

rates at intermediate stages of the training and lower at final stages [164, 163], or a

budget-aware schedule that adapts the learning rate value depending on the training

stage [104]. Particularly interesting for this thesis is the findings from Li et al. [104],

that show that in a budgeted scenario, a simple linear decay of the learning rate

outperforms the more complex alternatives.

2.2.5 Data augmentation

To increase the variability of the training data, data augmentation techniques

introduce transformations to the input images (see Figure 2.8 for an illustration of

different augmentation techniques). These often aim to replicate natural variations

found in images: translations, rotations, horizontal flips, and color alterations

are some of the most frequently used transformations [160]. Data augmentation

techniques are being applied to most computer vision applications, but play a key

role when training under label and computation constraints. In these scenarios,

the overparametrization of neural networks tends to become a liability and hinder

generalization by fitting the scarce or corrupted labels. The additional difficulty

introduced by data augmentation techniques helps in preventing this happening.

Recently, DeVries et al. [43] propose Cutout, a data augmentation where con-

tiguous patches of data from the input are dropped, i.e. replaced with zeros. This

prevents the network from relying on certain regions of the image over others and

results in a spread of the network’s attention. Zhang et al. [218] propose mixup, an

interpolation-based data augmentation that uses linear combinations (concretely

convex combinations) of inputs and the respective labels for training (see Chapter 4

for a mathematical formulation of mixup). This strategy has shown to increase
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Figure 2.8: Examples of data augmentation techniques. “Standard” refers to affine
and color transformations, “Cutout” [43] drops contiguous patches of the image,
“Mixup” [218] interpolates two random images (left) and the corresponding labels
(right), and “RICAP” [172] crops and pastes patches from different images (left) –
typically four – and combines the corresponding labels (right). The combination
of labels in “Mixup” and “RICAP” consist of a weighted sum where each label is
weighted proportionally to the influence of the corresponding sample in the image.

robustness to label noise and adversarial corruptions, smooth class boundaries, and

improve model calibration [179]. Similarly, RICAP [172] combines the advantages of

Cutout and mixup by training on images generated from joining multiple patches

and doing the corresponding convex combination of labels. As a more general tech-

nique, RandAugment [38] randomly combines commonly used data augmentation

techniques as a reduction of the search space of the recently proposed methods that

automatically find augmentation policies [75, 39].

2.3 Methodological approach

The experimental chapters of this thesis follow the standard setup found in the

computer vision literature. Hence, for each of the chapters, the main components of

the training (hyperparameters, network architecture, and datasets) are chosen to

enable direct comparison with the most relevant approaches in the literature. In
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Figure 2.9: Sample images from CIFAR-10. Source: https://www.cs.toronto.edu/

~kriz/cifar.html

cases where this was not possible, the reported results come from re-running the

code provided by the authors of the original papers. The majority of the experiments

presented are carried out in some of the toy datasets, CIFAR, STL, and SVHN, to

reduce the duration of the experiments, and then the models are further tested in

larger and more realistic datasets: Mini-ImageNet, WebVision, and Clothing1M.

2.3.1 Datasets

All the datasets used in this thesis are annotated with per-sample labels indicating

the category of the corresponding image. Each of the configurations studied through

the thesis requires a different modification of the labels or the images, which are

described in Subsection 2.3.2. The following list provides a general overview of the

datasets used as provided in the official benchmarks.

• CIFAR-10 and CIFAR-100 [98]. The CIFAR datasets are composed of

50K RGB images for training and 10K for testing divided into 10 classes in

CIFAR-10 and 100 in CIFAR-100. The images in these datasets are collected

from ImageNet and down-sampled to 32× 32 pixels. These are natural images

belonging to classes such as car, dog or bicycle: see Figure 2.9 for example

images from each class in CIFAR-10. In the case of CIFAR-100 the classes

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2.10: Sample images from the unlabeled set in STL-10. Source: https:

//cs.stanford.edu/~acoates/stl10/

Figure 2.11: Sample images from SVHN, each row corresponds to a digit category.
Source: http://ufldl.stanford.edu/housenumbers/

are grouped into 20 meta-classes, 5 classes in each, under a common label, e.g.

the meta-class “fish” contains the classes “aquarium fish”, “flatfish”, “ray”,

“shark”, and “trout”.

• STL-10 [36]. STL-10 was originally designed for unsupervised learning: it

contains a training set of 5K RGB images, a testing set of 8K, and an unlabeled

set of 100K. The training images are grouped into 10 pre-defined overlapping

folds of 1K samples each for a standardized protocol of evaluation that allows

reporting the average and standard deviation of the accuracy in the testing set.

The images are obtained from ImageNet, down-sampled to 96× 96 pixels, and

in the training and testing sets, they are divided into 10 categories (similar to

those in CIFAR-10). Note that the images in the unlabeled subset belong to

a similar distribution of classes (see Figure 2.10) but include classes that are

different from the ones present in the training and testing sets.

https://cs.stanford.edu/~acoates/stl10/
https://cs.stanford.edu/~acoates/stl10/
http://ufldl.stanford.edu/housenumbers/
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Figure 2.12: Images selected from the training set of ImageNet.

• SVHN [129]. SVHN (Street View House Numbers) is composed of 32×32 RGB

images of house numbers obtained from Google Street View images: 73 257

for training and 26 032 for testing distributed into 10 categories corresponding

to the digits from 1 to 10 (see Figure 2.11 for sample images of each class).

Additionally, there are 531 131 images to use as extra training data. All the

samples have class annotations for the central number in the image (often there

are other numbers to the sides) and bounding boxes surrounding each of the

numbers.

• Mini-ImageNet [190]. Created as a computationally affordable benchmark

for few-shot learning, Mini-ImageNet, contains 60K RGB images from ImageNet

down-sampled to 84× 84 pixels distributed into 100 classes (see Figure 2.12).

Outside of few-shot learning, it is often split into 50K and 10k for training and

testing respectively. Recently a version of this dataset has been released [85]

with different types of controlled corruptions to explore label noise algorithms.

This is described in detail in Section 2.3.2.
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Figure 2.13: Images selected from the training set of WebVision.

• Tiny-ImageNet. Similarly to Mini-ImageNet, Tiny-ImageNet is a reduced

version of the ImageNet dataset (only used in the experiments of Chapter 5).

It contains 100K RGB images for training, 10K for validation, and 10K for

testing all down-sampled to 64× 64 pixels and distributed across 200 classes.

• ImageNet (and ImageNet-32/64) [42]. This dataset corresponds to the

data released for the ImageNet competition from 2012 and consist of 1.2M

RGB natural images for training and 50K for validation distributed across 1 000

categories (the testing set is historically left out). The images are of different

resolutions but, for training and validation, they are often downsized and

center-cropped to 256× 256 pixels. In the case of ImageNet-32 or ImageNet-64

the images are further down-sampled to allow for faster experimentation. For

examples of this and the other ImageNet-based datasets, see Figure 2.12. In

this thesis, the down-sampled versions of ImageNet are used in Chapter 5 to

explore different label corruption distributions.

• WebVision [105]. WebVision contains 2.4M images crawled from the Internet

using the 1 000 concepts in ImageNet as query searches (see Figure 2.13). The

labels associated to the images come from captions, user tags, or descriptions

from the web. This results in a noisy labeled dataset. For experimentation

purposes, the 50 first classes are often selected for training, resulting in a set

of 137K samples when considering all the data in WebVision, or 63K samples
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Figure 2.14: Sample images from Clothing 1M.

when considering only the subset collected by Google. The validation set of

ImageNet is often used for testing.

• Clothing 1M [204]. Clothing1M contains 1M images for training with poten-

tially noisy labels, 14K for validation, and 10K for testing. Figure 2.14 shows

several examples of the images in the dataset. The associated labels are all

distributed across 14 classes. Additionally, it contains a subset of 47K correctly

annotated samples.

2.3.2 Experimental setup

Each of the chapters of this thesis explores a setup with different restriction in the

training conditions: label availability, label corruption, or iteration budget. As a

result, the evaluation procedures, data augmentation strategies, and data preparation

differ from chapter to chapter. Certain aspects, however, remain constant across

setups. Concretely, all approaches use the same optimization method: SGD with

momentum of 0.9 and weight decay of 10−5. The training always starts with a

random shuffle of the samples, then at each iteration a random batch of samples is

selected for training until all the samples have been used. This is repeated for several

epochs: one epoch consists of the number of iterations required to see all the samples

in the dataset except for budget training in Chapter 6, where each epoch is restricted
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to a certain number of iterations. The number of epochs to reach convergence to

a reasonable performance depends on the dataset size, training methodology, and

supervision availability. This is further specified in the corresponding chapters.

In cases where there is no label corruption (unsupervised learning, semi-supervised

learning, and budgeted training), a small subset of labeled data is left out from

the training for model selection and hyperparameter tuning. When comparing to

other approaches from the literature, this subset is included in the training set

and the evaluation is done in a set originally designated for testing. In the case

of unsupervised learning with STL-10, this is done using one of the pre-defined

folds of the training set. In the presence of label noise, however, hyperparameter

tuning cannot be done in a clean validation set because the scenarios studied in this

thesis assume that there is no additional clean set of data available. In the case of

unsupervised training, the evaluation is done as suggested by the STL-10 authors:

after representation learning, the classifier is trained individually in each of the 10

pre-defined folds of the training set and the average performance (and standard

deviation) in the test set is reported.

The data preparation in semi-supervised learning is straightforward: the labels

of a class-balanced set of samples are discarded to build the unlabeled set. The size

of this subset spans across different values to explore the robustness of the methods

when different levels of labeled data are available.

In the label noise scenario, however, the data pre-processing depends on the noise

distribution and dataset. In each of the types of noise, in-distribution and out-of-

distribution, there are two options to introduce corruptions to the datasets: uniformly

swapping the labels across classes or following a certain class-dependent distribution.

Often, benchmarks like CIFAR-10 and CIFAR-100 are studied as a proxy for more

realistic label noise distributions. In these cases, the experiments are limited to

in-distribution noise. For uniform noise, the corruptions are randomly introduced,

and for non-uniform, the corruptions are guided by the classes in CIFAR-10 (“truck”

→ “automobile”, “bird” → “airplane”, “deer” → “horse”, “cat” → “dog”) and by
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the meta-classes in CIFAR-100 (label flips are done to the next class circularly within

the meta-class) [213]. Recently, Jiang et al. [85] and Ortego et al. [136] proposed two

benchmarks to study realistic noise distributions under a controlled setup: the noisy

samples are identified and different levels of noise are available for training. Jiang et

al. [85] proposed mini-ImageNet-cwln, as an adaptation of Mini-ImageNet where the

labels of the samples are used as queries to collect data from the Internet and extend

the dataset. The labels associated to the collected samples are potentially corrupted

and account for the controlled noise in the dataset. The authors pre-process the data

and release it with several levels of label noise, where out-of-distribution samples

substitute the clean samples according to the level of noise in each case. Similarly,

Ortego et al. [136] proposed to use a down-sampled version of ImageNet and split

the classes into two distributions and select samples from each of them to adjust the

level of in-distribution and out-of-distribution noise for each case.

Finally, for budgeted training in Chapter 6, the datasets are used with all the

original labels but the duration of an epoch is redefined to a percentage of the number

of iterations required to see all the samples.

2.4 Summary

This chapter contains an introduction to the basic principles of neural networks

and their application to computer vision tasks, particularly for image classification

under label and budget constraints. The literature review provided in Section 2.2

addresses the most relevant works in the areas of self-supervised and semi-supervised

learning, training under label noise, and budgeted training. Finally, in Section 2.3

we introduced the methodology that is followed through the thesis, including the

datasets and the data preparation used in the different setups. Int the following

chapters, we report and analyze the results obtained throughout the development of

this thesis. The corresponding experiments evaluate the validity of the hypotheses

proposed in Chapter 1 through the exploration of the corresponding research questions.

Additionally, each chapter contains a detailed description of the implementation of
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the experiments.



Chapter 3

Unsupervised learning

In this chapter, we explore the self-supervised methodology proposed by Dosovit-

skiy et al. [47], Exemplar-CNN, and introduce a hierarchical agglomerative clustering

algorithm in the pipeline to remedy one of its main drawbacks: scalability. As

unlabeled data increases, so does the redundancy in the training data, which leads

to contradictory SGD updates during training.

While other approaches to self-supervised learning train by solving specific proxy

tasks related to particular visual properties of the samples (e.g. orientation or color),

Exemplar-CNN aims at learning invariant representations to a large variety of

random transformations of the images. This is achieved by training on artificially

created surrogate classes that each contain multiple perturbed patches of the original

image (see Figure 3.1), which aim at simulating multiple views of a single example;

the creation of this surrogate dataset is further explained in Subsection 3.2.2. A

convolutional neural network then trains to classify each patch as belonging to the

original image. This training method, however, results in contradictory signals for the

SGD algorithm that slows down and hiders convergence. By creating one surrogate

class per image, Exemplar-CNN trains to classify images from the same true class as

belonging to different surrogate classes. This is further aggravated by the redundancy

in the dataset: very similar images (near-duplicates) end up belonging to different

surrogate classes and providing different update directions for the model weights.

This results in slower convergence and performance degradation, particularly when

57
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Figure 3.1: Examples of the random transformations in Ti applied to patches extracted
from the unlabeled set of STL-10. The location of the extracted patch (red square)
is given by the anchor pixel location. The patch is extracted according to a set of
different transformations: translations, scaling, rotations, and alterations in color
and illumination.

the number of unlabeled samples increases.

Another drawback for the scalability of this method relates to the training

architecture: since the classifier has a dimension for each sample in the dataset,

as the number of samples increases so does the dimension of the classifier. This

results in a weak training signal for the SGD due to the large softmax normalization

required, and large amounts of parameters in the last layers, that tend to overfit the

training data and require careful hyperparameter tuning.

The last drawback of Exemplar-CNN is the strong data augmentation required.

While this is essential for this methodology, extreme augmentations become unrealistic

and encourage invariance to features that are unlikely in real images. Including such

strong augmentations play a strong role in regularizing the model, which further

slows down the training. Despite being essential for the algorithm, it is unclear

if more realistic alternatives to data augmentation or transformation independent

self-supervised approaches would be more effective. This is further discussed as

possible future work in Subsection 3.3.1.
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This chapter introduces hierarchical agglomerative clustering to the Exemplar-

CNN pipeline to compensate for the redundancy in the dataset and to reduce the

contradictory updates from similar images placed in different surrogate classes. As a

result, the number of unlabeled samples to train Exemplar-CNN can be increased

up to 4 times the original size, avoiding degradation of the learned representation

while still boosting performance.

While Dosovitskiy et al. [47] proposed a clustering algorithm to reduce the

collisions between classes, the approach discussed in this chapter consists of a

conservative complete linkage (maximal distance) strategy that avoids the clustering

of images from different classes and focuses on reducing the redundancy in the dataset

by clustering near duplicates. Particularly, while the clustering in Exemplar-CNN [47]

generates 6 510 clusters with 10 images per cluster to decrease the number of training

surrogate classes, we keep the number of clusters constant and equal to the number

of surrogate classes (16 000), each containing approximately 4 images, thus focusing

on reducing the possible increase of redundancy in the dataset when new unlabeled

data is introduced. This allows Exemplar-CNN to make use of more of the available

unlabeled data to learn better representations.

The experiments and results described in this chapter have been published in

the Irish Machine Vision and Image Processing Conference (IMVIP), 2019, and

the code to replicate the experiments is available at https://git.io/fjP5u. The

following sections are an adaptation of this work [9] that include further exploration

and discussion of Exemplar-CNN. In Section 3.1, the Exemplar-CNN pipeline is

introduced, concrete details of the agglomerative clustering are proposed, and the

technical details of the combination of both are given. Section 3.2 addresses the

experimental part of this part of the thesis: the evaluation methodology and insights

on STL-10, the random transformations applied to the images for Exemplar-CNN

training, the training setup including the hyperparameters used to train the model

and the clustering algorithm, and the experimental results of this chapter. Finally,

Section 3.3 provides a discussion on the connection of Exemplar-CNN with more

https://git.io/fjP5u
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recent self-supervised alternatives and proposes some directions for future work.

3.1 Method

3.1.1 Exemplar-CNN

We define an initial set of images X = {x1, . . . ,xn}, where n is the number of

unlabeled samples xi randomly selected to train the Examplar-CNN; concretely in

STL-10 X ⊆ D and D is the unlabeled set of 100 000 samples. We then define

Ti = {T 1
i , . . . , T

k
i } as the set of transformations applied to the sample xi: these

are compositions of transformations randomly sampled following the descriptions

in 3.2.2. By transforming the samples in X we create the surrogate dataset S =

{Sx1 , . . . , Sxn}, where Sxi
denotes the set of images resulting of applying Ti to xi,

i.e. Sxi
= {T 1

i xi, . . . , T
k
i xi}: the surrogate class corresponding to xi.

Consequently, the cross-entropy loss introduced in Subsection 2.1.2 is adapted as

L(W ) = − 1

n× k

n∑
i=1

k∑
j=1

yTi log(hW (T ji xi)), (3.1)

where yi ∈ {0, 1}n is an n-dimensional one-hot encoded vector that indicates the

index of each sample xi in X with a 1 (all except the ith element are zero), and hW (.)

corresponds to a convolutional neural network with a softmax normalization over

the n surrogate classes. See Dosovitskiy et al. [47] for an analysis of the convergence

guarantees of this loss function.

3.1.2 Agglomerative clustering

Hierarchical agglomerative clustering (HAC) iteratively searches and groups the

closest datapoints in a dataset. To decide which observations should be combined,

HAC uses a measure of similarity between points or clusters. In the experiments
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presented in this thesis we use the Euclidean distance

d(p,q) =

√∑
i

(pi − qi)2, (3.2)

where p and q correspond to datapoints in the dataset. When considering distances

between two clusters (or a cluster and a datapoint) we use the maximal distance

(complete linkage HAC) between all the elements in both clusters:

dmax(Ci, Cj) = max
p∈Ci,q∈Cj

d(p,q). (3.3)

In this case, Ci and Cj correspond to the set of samples in two clusters (when

comparing a datapoint to a cluster, one of these sets contains a single element). The

motivation behind this decision (instead of minimum or average distance between

clusters) is to further encourage conservative combinations of samples: only the

clusters where the most different samples are close enough will be merged.

Once all the samples are inside a single group the clustering can be represented as

a dendrogram or hierarchical tree where relationships between samples are defined by

the distance between them. Then, by defining a maximum distance between samples

or clusters we can select a partition of the data: higher distances will result in fewer

clusters but more internally diverse ones, and lower distances in a higher number of

clusters and more homogeneous elements in each cluster. Figure 3.2 illustrates this

with an example where the dendrogram is cut at a maximum distance to group 11

samples into five clusters.

3.1.3 Agglomerative clustering in Exemplar-CNN

Clustering, in this setup, aims at reducing the number of collisions between surrogate

classes belonging to the same true class. This reduces the redundancy of the dataset

by grouping together the most similar images and creates a different initial point

to build the surrogate dataset: C = {C1, . . . , Cp}, where every Ci corresponds to a

cluster of b original images Ci = {x1, . . . ,xb} and generates a new surrogate class
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Figure 3.2: Dendrogram representing a hierarchical clustering. The height of the
horizontal lines represents the distance between samples of clusters: higher lines link
samples that lie far from each other. The dendrogram is cut at a maximum distance
between samples (dashed line) to define the clusters.

ŜCi
to train the Exemplar-CNN when applying the transformations Ti:

ŜCi
= {T1C1, . . . , TpCp}. (3.4)

The number of cluster created p and the samples in each cluster b depend on the

distance used to cut the dendrogram. This framework allows keeping the number

of surrogate classes constant and increasing the amount of unlabeled data without

increasing collisions between surrogate classes. Additionally, in the setup proposed in

STL-10, this approach introduces robustness to the large number of near-duplicate

images in the unlabeled set in STL-10 (see Subsection 3.2.1).

After an initial stage where the CNN trains as proposed in Exemplar-CNN, the

model is used as a feature extractor to obtain representations from the unlabeled

set and to perform the clustering (the processing of the features is described in

Subsection 3.2.1). This results in variable size clusters Ci whose average size depends

on the minimum distance allowed inside the clusters. Finally, the Exemplar-CNN

approach is applied to the resulting clustered dataset ŜCi
.



CHAPTER 3. UNSUPERVISED LEARNING

3.2 Experiments: Clustering for Exemplar CNNs

3.2.1 Dataset: STL-10

Due to its relatively high resolution (96× 96), STL-10 allows the exploration of the

effect of visual transformations in the Exemplar-CNN framework and still maintains

a reasonably low computational cost. Hence, all the experiments in this chapter are

carried out on STL-10 (details in Subsection 2.3.1).

Evaluation protocol

The evaluation protocol follows the guidelines suggested in the STL-10 benchmark [36]:

we train a set of linear SVM (one-vs-all) in the features extracted from each of the

predefined folds of the training set and report the average accuracy and standard

deviation on the testing set. Concretely, the features come from down-sampling each

channel of the output features of each convolutional layer to 2× 2, flattening them to

a single column vector, and concatenating them all together. With the CNN used in

this chapter, described in Subsection 3.2.3, this process results in 71 536 dimensional

features (Table 3.1 reports the original sizes of the output features of each layer).

Limitations and challenges in STL-10

Visual exploration of the unlabeled set in STL-10 reveals additional challenges that

complicate the process of learning self-supervised representations. The following

observations should be considered in future research directions:

• Out-of-distributions samples: The unlabeled samples are drawn from the

ImageNet [42] dataset but from a wider class distribution. Hence, the unlabeled

set contains samples that do not belong to any of the 10 classes in the training

and tests sets (see Figure 3.3 (b)). This might introduce a shift in the domain

statistics between the unlabeled and labeled sets of STL-10 that might increase

the difficulty of evaluating the representations learned on the unlabeled set.

Additionally, methods that rely on the closed set assumption and try to associate
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(a) (b) (c)

Figure 3.3: Examples of the challenges from STL-10. a) black border artifacts; b)
out-of-distribution samples; c) near duplicates.

labels to unlabeled samples to further guide the training might be particularly

affected by out-of-distribution samples.

• Artifacts in the images: Several images have black borders or corners that

hinder the quality of the images. This is also the case in the training set and

might explain why approaches like Cutout [43] are so successful in STL-10:

they learn features that are invariant to similar artifacts to those existing in

the data. See Figure 3.3 (a) for examples of these artifacts.

• Near duplicates: The unlabeled set contains several instances of the same

image with imperceptible variations (See Figure 3.3 (c)), which increase the

redundancy in the data and exacerbate one of the main limitations of Exemplar-

CNNs: class collisions.

3.2.2 Image transformations

The set of transformations Ti = {T 1
i , . . . , T

k
i } generates the surrogate class Sxi

in S = {Sx1 , . . . , Sxn} by randomly transforming patches around an anchor pixel

location in the image xi. We select the optimal values reported in Dosovitskiy et

al. [47] for k and n, and generate 100 transformations for each surrogate class for

16 000 images in X. Additionally, for validation purposes, we generate 10 more

transformations per surrogate class. The size of the patches correspond to the input

size of the CNN and in the main experiments of this chapter, we use 32× 32 pixels.
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To find relevant anchor locations in the images, we select pixels according to their

probability of being an edge in the image: we use the Sobel operator to find edges in

the images and assign to each pixel a probability proportional to the edge strength

computed for that pixel. The intuition behind this is that strong edges are prevalent

near objects and other interesting regions 1. Figure 3.1 shows some examples of the

patches obtained after applying the transformations.

Following Dosovitskiy et al. [47] we define each transformation T ji as a randomly

sampled composition of the following visual alterations:

• Translations: the central pixel is translated in the x and y axis a number of

pixels given by a Gaussian distribution centered at 0 and with a variance of

0.2 times the size of the original image.

• Scaling: the original image is scaled by a factor sampled from a random

uniform distribution between 0.7 and 1.4.

• Rotation and flip: the original image is flipped horizontally 50% of the time,

and rotated by a factor sampled from a random uniform distribution up to 20

degrees.

• PCA multiplication: the image pixel values are projected into the 3 dimen-

sional PCA transform computed for the pixels of the image and then, each

channel in the PCA space is multiplied, respectively, by a factor between 0.5

and 2 (drawn from a uniform distribution each). Then the image is projected

back to the original space.

• HSV contrast: the channels of saturation (S) and value (V) for all the pixels

in a patch are raised to a power between 0.25 and 4, and the values are

multiplied by a factor between 0.7 and 1.4. Then, a value between −0.1 and

0.1 is added to all the pixels from each of the HSV components (using the same

value for all pixels in a patch).

1We implemented a more semantically driven approach that uses saliency maps (obtained with
Pan et al. [139]) to select the anchors. We do not report the results with this approach because the
improvements are marginal and this introduces a model that required supervision during training.
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Table 3.1: Structure of the CNN used in the main experiments. The descriptions and
output size dimensions correspond to the experiments with 32× 32 input images,
for the experiments with 96× 96 images, we included two additional convolutional
layers before the flatten layer.

Name Description Output size

input 32× 32 RGB image 3× 32× 32
conv1 92 filters, 5× 5, pad = 2, ReLU 92× 32× 32
pool1 Maxpool 3× 3 pixels, stride = 2 92× 15× 15
drop1 Dropout, p = 0.25 92× 15× 15
conv2 256 filters, 5× 5, pad = 2, ReLU 256× 15× 15
pool2 Maxpool 3× 3 pixels, stride = 2 256× 7× 7
drop2 Dropout, p = 0.25 256× 7× 7
conv3 512 filters, 5× 5, pad = 2, ReLU 512× 7× 7
drop3 Dropout, p = 0.25 512× 7× 7
flatten Flatten 512× 7× 7 −→ 25 088 25 088
dense1 Fully connected 25 088 −→ 1 024 1 024
dropD Dropout, p = 0.5 1 024
dense2 Fully connected 1 024 −→ 16 000 16 000
output Softmax 16 000

3.2.3 Training setup

Exemplar-CNN training

The configuration of the training pipeline for the main experiments follows the

descriptions provided by Dosovitsky et al. [47] and the corresponding code. In

particular, we train a 5-layer CNN composed of 3 convolutional layers and 2 fully

connected layers, each followed by a ReLU non-linearity and a dropout layer, with

the probability of dropping a weight of p = 0.25 for convolutional and p = 0.5 for

fully connected layers. Table 3.1 provides a detailed description of the architecture.

For the experiments with larger images (96 × 96) from ImageNet, we adapt the

CNN and add two more convolutional layers before the fully connected layers to

compensate for the increase in the number of parameters in the fully connected layers

caused by the input resolution increase.

We train the CNN with SGD with momentum of 0.9 and optimize the model

parameters to minimize the loss in Eq. (3.1): the cross-entropy between the softmax

normalized output of the CNN and the surrogate class label yi associated with the
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corresponding patch T ji xi. Unlike in a standard supervised configuration, Exemplar-

CNN is highly sensitive to the strength of the L2 regularization and the per-layer

value of the learning rate. Given the large number of parameters in the last two

layers, a common learning rate for all the layers leads to overfitting through the

last fully connected layers and yields poor generalization. Consequently, while the

initial learning rate applied to the weights of the convolutional layers and the first

fully connected layer is 0.1 (0.2 for the bias), the learning rate applied to the last

fully connected layer is 0.025. Similarly, the L2 regularization strength applied to

the weights of the first fully connected layer is 0.004 and 0.016 to the second. The

weights and bias of the convolutional layers do not use L2 regularization. For the

experiments with the larger images from ImageNet (96× 96), we reduced the weight

for the L2 regularization of the weights of the first and second fully connected layers

to 0.003 and to 0.007 respectively. We also applied L2 regularization to the fifth

convolutional layer.

In all the experiments the CNN is trained for 110 epochs and the initial learning

rate is reduced as indicated in Dosovitskiy et al. [47]: by a factor of 0.4 in the epochs

75 and 92, and by 0.25 in the epochs 85 and 100. The images are pre-processed

with a per-channel normalization with the mean and standard deviation from the

surrogate dataset generated with the transformations described in Subsection 3.2.2.

Clustering setup

The agglomerative clustering builds a hierarchical tree on the features extracted

with the pre-trained Exemplar-CNN from 50% of the data in the unlabeled set in

STL-10 (50 000 samples). The processing of the features follow the description in

Subsection 3.2.1. We then cut the hierarchical tree to keep clusters with a maximum

distance between images of 1.25 – we empirically find this value to provide consistent

clusters – and obtain 2 249 clusters of up to 7 samples each. For easier comparison

with previous results, we fix the final number of surrogate classes to 16 000: we select

13 751 of the images not clustered after cutting the dendrogram to create each of the
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remaining clusters. These are completed with the 3 nearest images from the held-out

samples in the unlabeled set (the remaining half of the unlabeled data) according

to the cosine distance between the respective features. Finally, we create the new

surrogate dataset by applying the transformations described in Subsection 3.2.2 and

generating 100 transformations for each image in each cluster (we obtained very

similar results when adapting the number of transformations per surrogate class to

the elements in each cluster to build a surrogate dataset with a balanced number

of samples per class). Note that each cluster has an average of approximately 4

samples.

3.2.4 Results

In this subsection, we present the results of the experimental part of this chapter.

The main two baselines are the ExemplarCNN approach proposed by Dosovitskiy et

al. [47] and our replication of this approach (in the same deep learning programming

libraries as the rest of experiments in this thesis). Similarly, the clustering algorithm

proposed in this chapter is compared to the clustering approach proposed by Doso-

vitskiy et al. [47] as an evidence of conservative clustering algorithms addressing the

main drawback of ExemplarCNN: collisions from near-duplicates samples when this

generate different surrogate classes.

Clustering results

Table 3.2 reports the average accuracy and standard deviation of different configu-

rations of the Exemplar-CNN pipeline on the test set of STL-10. Exemplar-CNN

corresponds to our implementation of Exemplar-CNN [47] and Clustering to the

proposed clustering algorithm described in this chapter. The increase in accuracy

shows that the clustering algorithm allows for an increase in the number of unlabeled

samples while keeping the same number of surrogate classes and avoiding the negative

effect of increasing the redundancy in the dataset. While the original surrogate

dataset used in Dosovitskiy et al. [47] contained 1 600 000 image patches, the dataset



CHAPTER 3. UNSUPERVISED LEARNING

Table 3.2: Performance of the clustering algorithm proposed for Exemplar-CNN
trained on 16 000 samples from the unlabeled set of STL-10 evaluated on the testing
set. The accuracy and standard deviation reported correspond to the performance
over the 10 predefined splits of the training set.

Methodology Accuracy (%)

ExemplarCNN [47] 74.2± 0.4
Cluster ExemplarCNN [47] 75.4 ± 0.3
ExemplarCNN (ours) 74.14± 0.39
Clustering (ours) 76.42± 0.35

Table 3.3: Comparative with the state-of-the-art. The methods marked with * use
the full training set from STL-10 and evaluate on the testing set. Otherwise, the
accuracy and standard deviation reported correspond to the performance over the
10 predefined splits of the training set.

Methodology Accuracy (%)

SWWAE [224] 74.3
ConvClustering [49] 74.10
ExemplarCNN [47] 74.2± 0.4
ExemplarCNN (ours) 74.14± 0.39
Clustering (ours) 76.42 ± 0.35

Cutout* [43] 87.26
IIC* [83] 88.8

resulting from our clustering algorithm is 4 times larger and consist on approximately

6 400 000 patches: 16 000 surrogate classes with an average of 4 images per surrogate

class, each transformed 100 times. Note that Cluster ExemplarCNN reports the

results of the clustering proposed in Dosovitskiy et al. [47] that includes 6 500 000

patches distributed in 6 500 clusters of 10 images each.

Comparison to the state-of-the-art

Since the publication of [47], self-supervised methods have been moving towards

CIFAR, Mini-Imagenet, and ImageNet, as they contain only images from inside the

distribution of expected classes. However, STL-10 is often used as a benchmark for

data efficiency where all the images in the training set are used to learn representations

that are evaluated in the testing set (Cutout and IIC in Table 3.3). Conversely, in

this thesis we focus on learning representations from unlabeled data and use them as
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a prior to train in a very small amount of labeled data: only one of the 10 predefined

folds from STL-10 is used for training after the Exemplar-CNN representation learning

stage. The top part of Table 3.3 compares the proposed clustering algorithm with

relevant state-of-the-art methods for STL-10 and shows that our clustering approach

reports the highest performance among the methods that follow this evaluation

strategy.

The results reported in the last two rows of Table 3.3 show the importance of

labeled data. By using 5 000 labels instead of 1 000 (and no unlabeled data), these

methods report accuracies that are up to 12% above the best performance of the

approaches that use only 1 000 labeled samples. These results motivate some of the

observations in Section 3.3 regarding the advantage that a set of labeled data brings

to the training, i.e. semi-supervised learning.

Further exploration of Exemplar-CNN

Table 3.4 provides the results of additional exploratory experiments of the Exemplar-

CNN setup. ImageNet correspond to the performance of features trained on 96× 96

patches obtained from ImageNet, which allowed us to explore a wider range of

scaling values in the transformations. Despite the higher resolution of the images, the

performance of the features extracted with this model falls far from the Exemplar-

CNN trained on STL-10 with 32× 32 patches. We hypothesize that this is due to

the change in dataset: while the unlabeled set in STL-10 comes from ImageNet, the

pre-processing or the selection of the samples might have introduced a domain shift2

between these two datasets.

As an initial approach to semi-supervised learning, we explore a setup where

we consider a labeled pre-defined fold of the training test in STL-10 as a labeled

set (1 000 images) and all the unlabeled data as the unlabeled set (100 000). We

then train an SVM-based classifier on the features extracted with the pre-trained

2Domain shift often refer to the shift of statistics between two sets of samples from two different
domains. In this case the sets are from the same domain but obtained through different processes,
which might have introduced a shift in the statistics.
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Table 3.4: Exploratory experiments on the Exemplar-CNN setup.

Methodology Accuracy (%)

ExemplarCNN (ours) 74.14± 0.39
ImageNet 70.7± 0.62
Semi-supervised 74.05

Exemplar-CNN on the labeled set and use it to label the unlabeled set. The result

reported in Table 3.4 Semi-supervised corresponds to a ResNet-50 trained on the

resulting dataset: 1 000 labeled samples and 100 000 potentially noisy samples. This

experiment shows that Exemplar-CNN could be used as a pretext task for semi-

supervised learning or label noise approaches; which are further explored in successive

chapters.

Finally, by introducing new transformations, we try to generate new variations

that were not considered in the previously described set of transformations. First,

we applied elastic transformations [161] aiming to artificially simulate perspective

and slight changes in the shape of the objects. Then, we introduced Cutout [43] as a

data augmentation to encourage Exemplar-CNN to learn features that are invariant

to the artifacts present in the unlabeled images. Both of these approaches resulted

in a considerable drop in the generalization of the model and reduced its accuracy

to 70.19 ± 0.50 in the former and 66.98 ± 0.54 in the later. We also observed a

noticeable decrease in the training accuracy of the CNN that suggested that, under

these conditions, the network does not have enough capacity to learn meaningful

representations.

3.3 Conclusions and discussion

In this section, we introduce advances of self-supervised representation learning in the

light of Exemplar-CNN and the framework of learning self-supervised representations

by comparing multiple views of unlabeled images. We also discuss the importance of

labeled data for pick performance and the dependence of the self-supervised training

with the downstream task. Additionally, we introduce some possible avenues for
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future work that are further discussed in Chapter 7.

3.3.1 Contrastive learning for the self-supervised multi-view

training

Recent approaches for self-supervised representation learning, leverage the underlying

idea in Exemplar-CNN of learning features that discriminate each sample from the

others. These, however, solve the main challenges of the training through metric

learning, concretely through contrastive learning: they substitute the final softmax

normalization by a distance measure between representations of different views of

a sample (see Chapter 2 for more details on the literature regarding contrastive

learning approaches).

This paradigm shift solved the inefficient training of Exemplar-CNN: large number

of iterations (e.g. disregarding improvements in performance SimCLR [29] in CIFAR-

10 needs 4 times fewer iterations than Exemplar-CNN), restrictions in the amount of

unlabeled data to be used (to include all the data, Exemplar-CNN needs additional

processing such as clustering algorithms), and the uncommon configuration of the

model (different values for the L2 regularization or different learning rates per-layer).

Contrastive learning solves these challenges while keeping the core idea of learning

representations that are invariant to multiple (all-purpose) image transformations.

Despite addressing the main challenges in Exemplar-CNN and the improvements

in performance and transferability of the representations learned, contrastive learning

approaches still present several challenges. The main one is the computational

requirements to achieve top performance: most of the methods require a large

number of images per mini-batch to better exploit the relationships between image

views. SimSiam [32] proposes a promising solution to this challenge and manages to

reduce the mini-batch size by contrasting only views of the same sample (removing

the negatives in SimCLR) and avoiding degenerated solutions through a stop gradient

operation. Similarly, SwAV [27] approaches the problem through an online clustering

assignment that resembles to the softmax assignments from Exemplar-CNN but
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enforces consistency of the representations across assignments. This approach,

however, requires a small memory bank when reducing the mini-batch size.

A secondary drawback of the current approach to self-supervised learning is the

dependency on data augmentation to generate different views from an image. As

shown in InfoMin [181], the optimal views depend on the downstream task (often

unknown), which further limits the generalization of these methods to other domains

(medical imaging, audio, or text). Additionally, these strong augmentations might

slow down the training process, which requires a large number of iterations [181,

29, 59], by further increasing the redundancy in the dataset without leveraging

relationships between samples that share common features – in this direction, the

cluster assignments in SwAV reduce the number of training iterations considerably.

Contrastive learning approaches to self-supervised learning have been successfully

introduced in other tasks such as label noise [137], semi-supervised learning [30],

image-to-image translation [140], graph neural networks [69], and video representation

learning [67, 2]. This success raises the question: which is the optimal way of

populating the feature space for learning better representations? Contrastive learning

approaches normalize the representations and spread them over the hypersphere of

unity radius by training to push away views from different samples. Despite not having

any encouragement to form groups of similar samples, it has been shown [193, 89] that

the training paradigm maintains features from similar samples closer while spreading

them uniformly through the hypersphere. Intuitively, the end task will dictate the

optimal distribution of the features in the space: when aiming at classification we

want features that preserve class information and disregard the uniqueness of each

sample, but when performing tasks that need some level of reconstruction of the

original image, we want features that preserve unique information of each sample

rather than commonalities across similar samples. We leave the exploration of the

relationship between the distribution of the features and the downstream task for

future work.
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3.3.2 The need for labels in the target domain

Representation learning without labels has the potential of learning very generic

features useful for a large variety of tasks and visual domains. However, once the

representations are learned there are very few downstream tasks that directly benefit

from them (e.g. retrieval). Most of the target tasks need a specific label projection

layer that maps the learned representations to the label space. In that scenario, a

small subset of labeled data is still needed.

The need of adapting the representations to the target domain points in the

same direction as observations regarding optimal views for contrastive self-supervised

learning, and their relationship with the end task. The potential of representation

learning could be further exploited in the presence of a subset of labeled data, i.e. semi-

supervised learning, to adapt the representations to a particular task. Despite certain

self-supervised works evaluating their representations in semi-supervised setups [29,

59, 27], these are not tailored to the specific task; instead, these methods learn generic

representations and adapt them through an additional projection head learned on

the downstream task. This task-specific bias in the training could also be induced

through corrupted labels, i.e. label noise. Even if the guidance is not completely

trustworthy it might be sufficient to steer the representations towards the task at

hand. These two setups are explored in the Chapter 4 and Chapter 5 and the

combination of these with contrastive learning approaches is discussed in Chapter 7

as possible future work.

3.4 Summary

This chapter presented the work done on self-supervised learning. Particularly, it

explores agglomerative clustering as a solution to the main drawbacks of a multi-

view-based approach to self-supervised learning: Exemplar-CNN. Additionally, this

chapters contains insights on the training of Exemplar-CNN, observations on a widely

used benchmark for self-supervised learning (STL-10), and a discussion on how recent
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approaches to self-supervised learning remedy the drawbacks of Exemplar-CNN and

other previous methods.



Chapter 4

Semi-supervised learning

Semi-supervised learning plays a key role in relaxing the human supervision required

to train neural networks: by jointly learning from labeled and unlabeled samples,

semi-supervised learning leverages vasts amounts of unlabeled data to learn better

representations without additional labeling costs. While recent approaches focus

on consistency regularization and encourage network predictions to be consistent

across different perturbations of unlabeled samples, this chapter explores pseudo-

labeling, where network predictions are used as pseudo-labels for the unlabeled

samples. Particularly, experiments show that previous approaches at pseudo-labeling

overfit incorrect pseudo-labels due to the so-called confirmation bias and fail to

learn discriminative representations. This chapter demonstrates that with proper

regularization, pseudo-labeling overcomes this challenge and achieves state-of-the-art

results in CIFAR-10, CIFAR-100, SVHN, and Mini-ImageNet despite being much

simpler than other methods. These results falsify the assumption in recent literature

that consistency regularization outperforms pseudo-label based methods [134].

Semi-supervised learning is a relevant task for several domains including vi-

sion [134], audio [222], time series [54], and text [123]. Consistency regularization

approaches to image classification often exploit the labeled samples through the

standard categorical cross-entropy loss function (described in Eq. (2.3)). These ap-

proaches, then, leverage the unlabeled samples through an additional consistency term

that encourages invariance of network predictions across input perturbations [155,

76
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106, 124], epochs [100], or between other sources of variability in the representations.

Pseudo-labeling approaches, however, define pseudo-labels from the model predic-

tions and assign them to the unlabeled samples. The model, then trains on the full

dataset, containing the labeled and unlabeled samples, with some adaptation of the

cross-entropy loss. These methods often obtain the pseudo-labels directly from the

predictions of the network [101], from label graph-based label propagation [81], or

leveraging the structure of the feature space [159].

Consistency regularization and pseudo-labeling are vulnerable to degenerate solu-

tions where the guidance for unlabeled samples becomes trivial: despite minimizing

the loss function it does not contribute to the training. In other words, the model

memorizes the incorrect predictions for the unlabeled samples. These phenomenon

is known as confirmation bias [176, 106] or noise accumulation [222] and current

approaches to semi-supervised learning apply different techniques to mitigate its

effect: a warm-up phase using labeled data [176, 81], uncertainty weighting [159,

106], adversarial attacks [124, 146], or graph-consistency [113, 81]. This bias stems

from using incorrect predictions on unlabeled data for training in subsequent epochs,

thereby increasing confidence in incorrect predictions and producing a model that

will tend to resist new changes. Pseudo-labeling, unlike consistency regularization

approaches, does not separate the loss function in two terms which impedes assigning

different weights to labeled and unlabeled samples. This makes pseudo-labeling

approaches particularly vulnerable to confirmation bias: predictions for unlabeled

samples dominate the training and become more confident as the model trains

accumulating errors across iterations.

In this chapter we explore pseudo-labeling for semi-supervised learning and show

that, contrary to previous attempts [81, 134, 159], simple modifications to prevent

confirmation bias lead to state-of-the-art results without appealing to consistency

regularization strategies. Following the recent literature [176, 124, 81, 19], we focus

the study on class-balanced datasets. As an initial approach to pseudo-labeling,

we adapt the relabeling approach proposed by Tanaka et al. [175] in the context of
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label noise and apply it to the unlabeled samples only. This naive pseudo-labeling,

however, is limited by confirmation bias as errors propagate across iterations. To

deal with this, the proposed approach includes mixup augmentation [218] as an

effective regularization that helps calibrate deep neural networks [178] and, therefore,

alleviates confirmation bias. mixup alone, however, does not guarantee robustness

against confirmation bias when the number of labeled samples decreases or when

other architectures are used (see Subsection 4.2.2). We show that, when properly

introduced, dropout regularization [167] and data augmentation mitigates this issue.

The purely pseudo-labeling approach proposed in this chapter achieves state-of-the-

art results (see Subsection 4.2.3) without requiring multiple networks [176, 146,

106, 188], nor does it require over a thousand epochs of training to achieve peak

performance in every dataset [16, 19], nor does it need many (ten) forward passes

for each sample [106]. Compared to other pseudo-labeling approaches, the proposed

approach is simpler in that it does not require graph construction and diffusion [81]

or combination with consistency regularization methods [159], but still achieves

state-of-the-art results.

The work reported in this chapter has been published in the International Joint

Conference on Neural Networks (IJCNN) 2020 and the code to replicate the ex-

periments is available at https://git.io/fjQsC; the following sections are an

adaptation of this work [11]. Section 4.1 introduces the pseudo-labeling approach pro-

posed in [11] and explores how the solutions proposed address confirmation bias and

lead to competitive results when the number of available labels decreases. Section 4.2

presents the experimental framework and provide comprehensive studies on the

robustness of this approach to different architectures, hyperparameter configurations

and availability of labeled samples. Finally, Section 4.3 elaborates on the observations

in the experiments and provides a discussion on possible avenues for future work.

https://git.io/fjQsC
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4.1 Pseudo-labeling for semi-supervised learning

In this chapter we formulate semi-supervised learning as training a model hW (x)

on a set D of n samples split into the unlabeled set Du = {xi}nu

i=1 and the labeled

set Dl = {(xi,yi)}nl

i=1, being yi ∈ {0, 1}c the one-hot encoding label for c classes

corresponding to xi and n = nl + nu. Following descriptions in Chapter 2, hW is a

convolutional neural network and W represents the model parameters (weights and

biases). As this chapter focuses on pseudo-labeling, we assume that a pseudo-label ỹ

is available for the nu unlabeled samples. We can then reformulate semi-supervised

learning as training using D̃ = {(xi, ỹi)}ni=1, being ỹ = y for the nl labeled samples.

Then, as in the supervised setup, the model parameters W are optimized using the

categorical cross-entropy loss function defined as

L∗(W ) = − 1

n

n∑
i=1

ỹTi log (hW (xi)) , (4.1)

where, as defined in Chapter 2, hW (x) are the softmax probabilities produced by the

model and log(·) is applied element-wise.

A key element in the pseudo-labeling approaches is the generation of the pseudo-

labels ỹ for the nu unlabeled samples. Previous approaches have used hard pseudo-

labels (i.e. scalars encoding the class index instead of one-hot encoded vectors)

directly using the network output class [101, 159] or the class estimated using label

propagation on a nearest-neighbor graph [81]. We adopt the former approach, but

use soft pseudo-labels, as we have seen this outperforms hard labels, confirming the

observations noted in [175] in the context of relabeling when learning with label noise.

In particular, we store the softmax predictions hW (xi) of the network and use them

to update the soft pseudo-label ỹ for the nu unlabeled samples at the end of every

epoch. We proceed as described from the second to the last training epoch, while

in the first epoch we use the softmax predictions for the unlabeled samples from a

model trained in a 10 epochs warm-up phase using the labeled data subset Du.

Contrastive regularization approaches, conversely, minimize the cross-entropy in
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Eq. (2.3) as a supervised term Ls for the labeled samples, and the mean square error

(MSE) between the predictions hW (x) and a reference ŷ as an unsupervised term

Lu = MSE (hW (x), ŷ) for the unlabeled samples. This often results in a loss function

with two terms

L = Ls + wtLu, (4.2)

which correspond to the supervised and unsupervised loss terms. The latter is often

weighted with a temporal weight wt that increases the contribution of the unlabeled

samples as the training progresses. This term allows for a stable initial training

stage and avoids degenerate solutions where the model overfits the errors made in

the unlabeled set.

4.1.1 Proposed approach to pseudo-labeling

The approach proposed in this chapter incorporate the two regularization terms

used in [175] to improve convergence. The first, is often referred to as the fairness

term and encourages the prediction of all the classes in the distribution in every

mini-batch [23, 77, 175, 20]. This deals with the difficulty of converging at early

training stages when the predictions of the network are mostly incorrect and the

CNN tends to predict the same class to minimize the loss. This is discouraged by

adding

RA =
c∑
i=1

pi log

(
pi

hi

)
, (4.3)

where pi is the prior probability distribution for class i and hi denotes the mean

softmax probability of the model for class i across all samples in the dataset. As

in [175], we assume a uniform distribution pi = 1/c for the prior probabilities (RA

stands for all classes regularization) and approximate hi using mini-batches. Note

that we assume class-balanced datasets (all the classes have the same number of

samples) and expect a mini-batch to be also class-balanced.

The second regularization term sharpens the pseudo-labels assigned to the unla-

beled samples, i.e. it concentrates the probability distribution of each soft pseudo-label
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on a single class. This is a common term used when training with soft labels [58,

150, 175] that avoids the local optima in which the network might get stuck due to a

weak guidance from too flat soft labels:

RH = − 1

n

n∑
j=1

c∑
i=1

hiW (xj) log
(
hiW (xj)

)
, (4.4)

where hiW (xj) denotes the i class value of the softmax output hW (xj) and again

using mini-batches (i.e. n is replaced by the mini-batch size) to approximate this

term. This second regularization is the average per-sample entropy (RH stands for

entropy regularization), a well-known regularization in semi-supervised learning [57].

Finally, the full semi-supervised loss function is:

L = L∗ + λARA + λHRH , (4.5)

where λA and λH control the contribution of each regularization term (see Subsec-

tion 4.2.2 for a study of these hyperparameters).

Section 4.2.2 shows that this pseudo-labeling approach adapted from [175] is far

from the state-of-the-art for semi-supervised learning, but using the mechanisms pro-

posed in this chapter, described in Section 4.1.2, make pseudo-labeling a competitive

alternative.

4.1.2 Confirmation bias in pseudo-labeling

Network predictions are, of course, sometimes incorrect. This situation is reinforced

when incorrect predictions are used as labels for unlabeled samples, as is the case

in pseudo-labeling. Overfitting incorrect pseudo-labels predicted by the network is

known as confirmation bias. It is natural to think that reducing the confidence of the

network in its predictions might alleviate this problem and improve generalization.

Recently, mixup data augmentation [218] introduced a strong regularization technique

that combines data augmentation with label smoothing, which makes it potentially

useful to deal with this bias. Mixup trains on convex combinations of sample pairs
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(xp and xq) and corresponding labels (yp and yq):

x = δxp + (1− δ)xq, (4.6)

y = δyp + (1− δ)yq, (4.7)

where δ ∈ {0, 1} is randomly sampled from a beta distribution Be (α, β), with α = β

(e.g. α = 1 uniformly selects δ). This combination regularizes the network to favor

linear behavior in-between training samples, reducing oscillations in regions far from

them. Additionally, Eq. (4.7) can be re-interpreted in the loss as L∗ = δL∗p+(1−δ)L∗q,

thus re-defining the loss L∗ used in Eq. (4.5) as:

L∗ = −
n∑
i=1

δ
[
ỹTi,p log (hW (xi))

]
+ (1− δ)

[
ỹTi,q log (hW (xi))

]
. (4.8)

As shown in [178], overconfidence in deep neural networks is a consequence of training

on hard labels and it is the label smoothing effect from randomly combining yp and

yq during mixup training that reduces prediction confidence and improves model

calibration. In the semi-supervised context with pseudo-labeling, using soft-labels

and mixup reduces overfitting to model predictions, which is especially important for

unlabeled samples whose predictions are used as soft-labels. Note that training with

mixup generates softmax outputs hW (x) for mixed inputs x, thus requiring a second

forward pass with the original images to compute unmixed predictions to be used as

pseudo-labels.

Mixup data augmentation alone may be insufficient to deal with confirmation

bias when few labeled examples are provided. For example, when training with 500

labeled samples in CIFAR-10 and a mini-batch size of 100, on average, just one clean

sample per batch is seen, which is especially problematic at early stages of training

where little correct guidance is provided. Oversampling the labelled examples by

setting a minimum number of labeled samples per mini-batch k (as done in other

works [176, 33, 19, 81]) provides a constant reinforcement with correct labels during
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training, reducing confirmation bias and helping to produce better pseudo-labels.

The effect of this oversampling can be understood by splitting the total loss

(Eq. 4.1) into two terms, the first depending on the labeled examples and the second

on the unlabelled:

L∗ = nlLl + nuLu, (4.9)

where nl and nu are the number of labelled and unlabelled samples, and the Ll =

1
nl

∑nl

i=1 L
(i)
l is the average loss for labeled samples and similarly Lu for the unlabeled

samples. The first term is a data loss on the labeled samples and the second can be

interpreted as a regularization term that encourages the network to fit the pseudo-

labels of the unlabeled samples. When few labeled samples are available, nl � nu, the

regularization term dominates the loss, i.e. fitting the pseudo-labels is weighted far

higher than fitting the labelled samples. This can be overcome either by upweighting

the first term or by oversampling labeled samples. We use the latter strategy as

it results in more frequent parameter updates to satisfy the first term, rather than

larger magnitude updates.

Subsections 4.2.2 and 4.2.2 experimentally show that mixup, a minimum number

of samples per mini-batch, and other techniques (dropout and data augmentation)

reduce confirmation bias and make pseudo-labeling an effective alternative to consis-

tency regularization.

4.2 Experiments

This subsection contains the experimental part of Chapter 4: first, we describe the

experimental framework including dataset preparation and training details; second,

we study the effect of the proposed approach on reducing the confirmation bias

during semi-supervised training; third, we explore the robustness of the proposed

approach under different architectures, levels of labeled samples, and hyperparameter

configurations. Finally, in Subsection 4.2.3, we provide a comparison of the results

to state-of-the-art approaches.
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4.2.1 Experimental framework

Datasets

The experiments presented in this chapter are carried out on four of the image classi-

fication datasets introduced in Chapter 2, CIFAR-10, CIFAR-100 [98], SVHN [129]

and Mini-ImageNet [190], to validate the proposed approach. As indicated in Subsec-

tion 2.3.1, the pre-processing of the datasets for semi-supervised learning consists on

splitting the training set into two subsets, labeled and unlabeled, and then discarding

the labels of the unlabeled set. Following [134], we leave aside 5 000 samples to use

as a validation set for the hyperparameter studies on CIFAR-10 and CIFAR-100 in

Subsections 4.2.2 and 4.2.2. However, as done in [16], we add the 5 000 samples back

to the training set for comparisons in Subsection 4.2.3, where we report test results

(model from the best epoch).

Concretely, for CIFAR-10, CIFAR-100, and SVHN we perform experiments with

a number of labeled images nl = 250, 500, 1 000, and 4 000 for CIFAR-10, nl =

4 000 and 10 000 for CIFAR-100, and nl = 250, 500, and 1000 for SVHN. We use the

well-known “13-CNN” architecture [16] for CIFAR-10, CIFAR-100, and SVHN. We

also experiment with a Wide ResNet-28-2 (WR-28) [134] and a PreAct ResNet-18

(PR-18) [218] in Subsection 4.2.2 to study the generalization to different architectures.

Similarly, as in [81], we use Mini-ImageNet to explore the scalability of the approach

to higher resolution images. We experiment with a number of labeled images nl =

4 000 and 10 000. Following [81], we use a ResNet-18 (RN-18) architecture [72].

Training setup

The experiments in this chapter follow the typical configuration for CIFAR-10,

CIFAR-100, and SVHN in [100]. The images are normalized with the dataset mean

and standard deviation, and augmented with the standard data augmentation [100]:

random horizontal flips, 2 pixel translations for CIFAR and SVHN, and 6 pixel

translations for Mini-ImageNet. Additionally, we apply color jitter as in [15] in

Subsections 4.2.2 and 4.2.3 for higher robustness against confirmation bias. The
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model trains using SGD with momentum of 0.9, weight decay of 10−4, and batch

size of 100. Training always starts with a high learning rate (0.1 in CIFAR and

SVHN, and 0.2 in Mini-ImageNet) and is divided by ten twice during training. For

CIFAR and Mini-ImageNet we train 400 epochs, reduce the learning rate in epochs

250 and 350, and use a 10 epoch warm-up with the labeled data. For SVHN, we

train 150 epochs (reducing learning rate in epochs 50 and 100) and use a longer

warm-up of 150 epochs to start the pseudo-labeling with good predictions and leading

to reliable convergence (experiments in CIFAR-10 with longer warm-up provided

results in the same error range already reported). Despite the ablation study in

Subsection 4.2.2, we do not select the best configuration for λA and λH and, for

simplicity, just set them to 0.8 and 0.4 as done in [175]. When using dropout, it

is introduced between consecutive convolutional layers of ResNet blocks in WR-28,

PR-18, and RN-18, while for 13-CNN we introduce it as in [100]. Following [16]1, we

use weight normalization [156] in all networks.

4.2.2 Robustness of the proposed approach

This subsection provides experimental evidence of the proposed approach robustness

and demonstrates that pseudo-labeling becomes a competitive alternative for semi-

supervised learning when properly regularized. Figure 4.1 illustrates how the proposed

approach learns successful representations in the “two moons” toy data. The left pane

in Figure 4.1 shows the limitations of a naive pseudo-labeling adapted from [175]

which learns a linear decision boundary and fails to model the structure of the

unlabeled data. The middle pane in Figure 4.1 shows that mixup helps the model

to learn a smother decision boundary that alleviates confirmation bias and better

adapts to the structure of the data. Finally, the right pane in Figure 4.1, shows that

mixup and a minimum number of labeled samples k per mini-batch further improves

the semi-supervised decision boundary.

A naive implementation of pseudo-labeling leads to overfitting the network

1https://github.com/benathi/fastswa-semi-sup

https://github.com/benathi/fastswa-semi-sup
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Figure 4.1: Pseudo-labeling in the “two moons” data (4 labels per class) for 1 000
samples. From left to right: no mixup, mixup, and mixup with a minimum number of
labeled samples per mini-batch. We use an neural network classifier with one hidden
layer with 50 hidden units as in [124]. Best viewed in color.

Table 4.1: Confirmation bias alleviation using mixup and a minimum number of
k labeled samples per mini-batch. Top: Validation error for naive pseudo-labeling
without mixup (Cross-entropy), mixup, and alternatives with minimum k. Bottom:
Study of the effect of k on the validation error.

CIFAR-10 CIFAR-100

Labeled images 500 4 000 4 000

Cross-entropy 52.44 11.40 48.54
Cross-entropy* (k = 16) 35.08 10.90 46.60
Mixup 32.10 7.16 41.80
Mixup*(k = 16) 13.68 6.90 38.78

CIFAR-10 CIFAR-100

Labeled images 500 4 000 4 000

k = 8 13.14 7.18 42.32
k = 16 13.68 6.90 38.78
k = 32 14.58 7.06 39.62
k = 64 19.40 8.20 46.28

predictions and high training accuracy in CIFAR-10 and CIFAR-100. Table 4.1

(top) reports mixup effect in terms of validation error. Naive pseudo-labeling leads

to an error of 11.40 on CIFAR-10 and 48.54 on CIFAR-100 when training with

cross-entropy loss for 4 000 labels. This error can be greatly reduced when using

mixup to 7.16 and 41.80 respectively. However, when further reducing the number

of labels to 500 in CIFAR-10, mixup is insufficient to ensure low error (32.10). We

propose to set a minimum number of samples k per mini-batch to tackle the problem.

Table 4.1 (bottom) studies this parameter k when combined with mixup, showing

that 16 samples per mini-batch works well for both CIFAR-10 and CIFAR-100,

dramatically reducing error in all cases (e.g. in CIFAR-10 for 500 labels error is

reduced from 32.10 to 13.68).

Confirmation bias causes a dramatic increase in the certainty of incorrect pre-



CHAPTER 4. SEMI-SUPERVISED LEARNING

0 100 200 300 400

4

6

8

10 C C*
M M*

Epoch

r
t

0 100 200 300 400

4

6

8

Epoch

r
t

Figure 4.2: Example of certainty of incorrect predictions rt during training when
using 500 (left) and 4 000 (right) labeled images in CIFAR-10. Moving from cross-
entropy (C) to mixup (M) reduces rt, whereas adding a minimum number of samples
per mini-batch (*) also helps in 500 labels, where M* (with slightly lower rt than M)
is the only configuration that converges, as shown in Table 4.1 (top). Best viewed in
color.

dictions during training. To demonstrate this behavior we compute the average

cross-entropy of the softmax output with a uniform distribution U across the

classes in every epoch t for all incorrectly predicted samples {xi}mt

i=1 as: rt =

− 1
mt

∑mt

i=1 UT log (hW (xi)), where mt is the number of incorrectly predicted samples.

Figure 4.2 shows that mixup and minimum k are effective regularizers for reducing

rt, i.e. confirmation bias is reduced. We also experimented with using label noise

regularizations [205], but setting a minimum k proved more effective.

Extended hyperparameter study

We explore the effect of the main hyperparameteres α, λA, and λH in our pseudo-

labeling approach. Table 4.2 reports the validation error in CIFAR-10 using 500

and 4 000 labels for, respectively, α and λA and λH . Note that we keep the same

configuration used in Subsection 4.2.2 with k = 16, i.e. no dropout or additional

data augmentation is used. Table 4.2 results suggest that α = 4 and α = 8 values

might further improve the reported results using α = 1. However, we experimented

on CIFAR-10 with 500 labels using the final configuration (adding dropout and

additional data augmentation) and observed marginal differences (8.54 with α = 4,

which is within the error range of the 8.80 ± 0.45 obtained with α = 1) shown in

Table 4.4, thus suggesting that stronger mixup regularization might not be additive

to dropout and extra data augmentation in our case. Table 4.2 shows that our

configuration (λA = 0.8 and λH = 0.4) adopted from [175] is very close to the best
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Table 4.2: Validation error for different values of the α parameter from mixup, λA,
and λH . Bold indicates lowest error. Underlined values indicate the results of the
configuration used.

Labeled images: 500 4 000

α 0.1 1 4 8 0.1 1 4 8

23.18 13.68 10.60 11.04 8.58 6.90 6.56 6.68

λA/λH 0.1 0.4 0.8 2 0.1 0.4 0.8 2

0.1 22.94 29.64 60.76 83.96 7.22 6.88 7.74 33.98
0.4 20.92 12.88 17.62 38.40 7.18 6.96 7.18 8.82
0.8 23.50 13.68 14.72 25.92 7.24 6.90 7.18 8.78
2 31.30 14.80 14.62 23.40 8.16 7.28 7.40 8.64

performance in this experiment where marginal improvements are achieved. More

careful hyperparameter tuning might slightly improve the results here, but the default

configuration is already good and generalizes well across datasets.

Generalization to different architectures

Recent examples in the literature [97] show that moving from one architecture to

another changes which methods appear to have a higher potential. In particular,

Kolesnikov et al. [97] show that the presence of skip-connections in ResNet architec-

tures directly affects the quality of the representations learned. Similarly, Ulyanov et

al. [185] showed that different architectures lead to different and useful image priors,

highlighting the importance of exploring different networks. We therefore explore

our method on two more architectures: a Wide ResNet-28-2 (WR-28) [153] and a

PreAct ResNet-18 (PR-18) [71]. The former contains around 1.5M parameters and is

typically used in semi-supervised learning [134], and the latter 11M parameters and

is used in the context of learning representations in the presence of label noise [218].

Table 4.3 presents the results for the AlexNet-type architecture, 13-CNN, and

these two ResNet-type architectures, WR-28 and PR-18. The pseudo-labeling

proposed in this chapter with mixup and k = 16 (M*) works well for 4 000 and 500

labels across architectures, except for 500 labels for WR-28 where the error increases

considerably (29.50). This is due to a stronger confirmation bias in which labeled

samples are not properly learned, while incorrect pseudo-labels are fit. Interestingly,
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Table 4.3: Validation error across architectures is stabilized using dropout (p) and
data augmentation (A).

Labeled images 500 4 000

13-layer

M* 13.68 6.90
M* (p = 0.1) 12.62 6.58
M* (p = 0.3) 11.94 6.66
M* (p = 0.1, A) 9.16 6.22

WR-28

M* 29.50 6.40
M* (p = 0.1) 14.14 7.06
M* (p = 0.3) 30.56 11.44
M* (p = 0.1, A) 10.94 6.74

PR-18

M* 13.90 5.94
M* (p = 0.1) 14.78 5.90
M* (p = 0.3) 14.78 6.62
M* (p = 0.1, A) 14.96 6.32

PR-18 (11M parameters) is more robust to confirmation bias than WR-28 (1.5M

parameters), while the 13-layer network (3M parameters) has fewer parameters than

PR-18 and achieves better performance. This suggests that the network architecture

plays an important role, being a relevant prior for semi-supervised learning with few

labels.

Experimental results show that by introducing dropout and additional data

augmentation the proposed pseudo-labeling performs well across architectures. Par-

ticularly, Table 4.3 shows that dropout, p = 0.1 and p = 0.3, helps in achieving better

convergence in CIFAR-10 and that additional data augmentation, i.e. color jitter (as

described in Subsection 4.2.1), further contributes in reducing the error. Note that

to maintain pseudo-label quality, we disable dropout when computing them in the

second forward pass. Similarly, we observe that disabling the data augmentation in

the second forward pass further improves performance. We use this configuration for

the comparison with the state-of-the-art in Subsection 4.2.3.
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Table 4.4: Test error in CIFAR-10 and CIFAR-100 for the proposed approach using
the 13-CNN network. (*) denotes that we have run the algorithm. Bold indicates
lowest error. We report average and standard deviation of 3 runs with different
labeled/unlabeled splits.

CIFAR-10 CIFAR-100

Labeled images 500 1 000 4 000 4 000 10 000

Supervised (C)* 43.64 ± 1.21 34.83 ± 1.15 19.26 ± 0.26 54.49 ± 0.53 41.14 ± 0.26
Supervised (M)* 37.60 ± 0.65 28.59 ± 1.21 15.94 ± 0.26 52.70 ± 0.28 39.42 ± 0.37

Consistency regularization methods

Π model [176] - - 12.36 ± 0.31 - 39.19 ± 0.36
TE [176] - - 12.16 ± 0.24 - 38.65 ± 0.51
MT [176] 27.45 ± 2.64 19.04 ± 0.51 11.41 ± 0.25 45.36 ± 0.49 36.08 ± 0.51
Π model-SN [113] - 21.23 ± 1.27 11.00 ± 0.13 - 37.97 ± 0.29
MA-DNN [33] - - 11.91 ± 0.22 - 34.51 ± 0.61
Deep-Co [146] - - 9.03 ± 0.18 - 38.77 ± 0.28
MT-TSSDL [159] - 18.41 ± 0.92 9.30 ± 0.55 - -
MT-LP [81] 24.02 ± 2.44 16.93 ± 0.70 10.61 ± 0.28 43.73 ± 0.20 35.92 ± 0.47
MT-CCL [106] - 16.99 ± 0.71 10.63 ± 0.22 - 34.81 ± 0.52
MT-fast-SWA [16] - 15.58 ± 0.12 9.05 ± 0.21 - 34.10 ± 0.31
ICT [188] - 15.48 ± 0.78 7.29 ± 0.02 - -

Pseudo-labeling methods

TSSDL [159] - 21.13 ± 1.17 10.90 ± 0.23 - -
LP [81] 32.40 ± 1.80 22.02 ± 0.88 12.69 ± 0.29 46.20 ± 0.76 38.43 ± 1.88
Ours* 8.80 ± 0.45 6.85 ± 0.15 5.97 ± 0.15 37.55 ± 1.09 32.15 ± 0.50

4.2.3 Comparison with the state-of-the-art

This subsection compares our pseudo-labeling approach against related methods that

use the 13-CNN architecture [176] in CIFAR-10 and CIFAR-100: Π model [100],

Temporal Ensemble (TE) [100], Mean Teacher (MT) [176], Π model-SN [113], MA-

DNN [33], Deep-Co [146], TSSDL [159], LP [81], CCL [106], fast-SWA [16] and

ICT [188]. The results reported in Table 4.4 and Table 4.5 are divided into methods

based on consistency regularization and pseudo-labeling. The methods that com-

bine pseudo-labeling with consistency regularization, e.g. MT, are included in the

consistency regularization set.

The proposed pseudo-labeling approach outperforms the consistency regular-

ization alternatives, as well as the other pseudo-labeling approaches (and their

combinations with consistency regularization methods) in CIFAR-10 and CIFAR-100.

Similarly, in SVHN, the proposed approach outperforms most state-of-the-art meth-

ods, especially when there are very few labels available. These results demonstrate
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Table 4.5: Test error in SVHN for the proposed approach using the 13-CNN network.
(*) denotes that we have run the algorithm. Bold indicates lowest error. We report
average and standard deviation of 3 runs with different labeled/unlabeled splits.

Labeled images 250 500 1 000

Supervised (C)* 43.60±3.35 22.67±2.80 13.32±0.89
Supervised (M)* 53.15±6.54 20.74±0.80 11.66±0.17

Consistency regularization methods

Π model [176] 9.69 ± 0.92 6.83 ± 0.66 4.95 ± 0.26
TE [176] - 5.12 ± 0.13 4.42 ± 0.16
MT [176] 4.35 ± 0.50 4.18 ± 0.27 3.95 ± 0.19
Π model-SN [113] 5.07 ± 0.25 4.52 ± 0.30 3.82 ± 0.25
MA-DNN [33] - - 4.21 ± 0.12
Deep-Co [146] - - 3.61 ± 0.15
MT-TSSDL [159] 4.09 ± 0.42 3.90 ± 0.27 3.35 ± 0.27
ICT [188] 4.78 ± 0.68 4.23 ± 0.15 3.89 ± 0.04

Pseudo-labeling methods

TSSDL [159] 5.02 ± 0.26 4.32 ± 0.30 3.80 ± 0.27
Ours* 3.66 ± 0.12 3.64 ± 0.04 3.55 ± 0.08

the generalization of the proposed approach compared to other methods that fail

when decreasing the number of labels. Furthermore, Table 4.6 demonstrates that

the proposed approach successfully scales to higher resolution images, obtaining an

over 10 point margin on the best related work in Mini-ImageNet. Note that all

supervised baselines are reported using the same data augmentation and dropout as

in the proposed pseudo-labeling.

Table 4.7 (right) compares the proposed pseudo-labeling against recent consis-

tency regularization approaches that incorporate mixup. Our approach with WR-28

outperforms ICT [188] and is competitive with MM [19] for 500 and 4 000 labeled

samples. When training with PR-18, we reach a reasonable convergence for 500 and

4 000 labels, whereas for 250 we do not. Finally, the 13-CNN architecture robustly

converges to state-of-the-art results even for 250 labels where we obtain 9.37 test error.

Therefore, these results suggest that it is worth exploring the relationship between the

number of labels, dataset complexity and architecture type. As shown in Subsection

4.2.2, dropout and additional data augmentation help with 500 labels per class across

architectures, but are insufficient for 250 labels. Better data augmentation [74]

or self-supervised pre-training [149] might overcome this challenge. However, it is
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Table 4.6: Test error in Mini-ImageNet. (*) denotes that we have run the algorithm.
Bold indicates lowest error. We report average and standard deviation of 3 runs with
different labeled/unlabeled splits.

Labeled images 4 000 10 000

Supervised (C)* 75.69 ± 0.24 63.24 ± 0.33
Supervised (M)* 72.03 ± 0.21 59.96 ± 0.40

Consistency regularization methods

MT [176] 72.51 ± 0.22 57.55 ± 1.11
MT-LP [81] 72.78 ± 0.15 57.35 ± 1.66

Pseudo-labeling methods

LP [81] 70.29 ± 0.81 57.58 ± 1.47
Ours* 56.49 ± 0.51 46.08 ± 0.11

Table 4.7: Test error in CIFAR-10 with few labeled samples. (*) denotes that we
have run the algorithm. Bold indicates lowest error. We report average and standard
deviation of 3 runs with different labeled/unlabeled splits.

Labeled images 250 500 4 000

MM (WR-28) [19] 11.08 ± 0.87 9.65 ± 0.94 6.24 ± 0.06
ICT* (WR-28) [188] 52.19 ± 1.54 42.33 ± 0.08 7.26 ± 0.04
Ours* (WR-28) 24.81 ± 5.35 14.25 ± 0.86 6.28 ± 0.3

Ours* (13-CNN) 9.37 ± 0.12 8.80 ± 0.45 5.97 ± 0.15
Ours* (PR-18) 23.86 ± 4.82 12.16 ± 1.06 5.86 ± 0.17

already interesting that a straightforward modification of pseudo-labeling, designed

to tackle confirmation bias, gives a competitive semi-supervised learning approach,

without any consistency regularization, and future work should take this into account.

4.3 Conclusions and discussion

In this chapter, we explore semi-supervised learning in image classification through

pseudo-labeling. The experiments demonstrate that when confirmation bias is

addressed, pseudo-labeling approaches are a suitable alternative to the dominant

approach in the literature, consistency regularization, and achieve state-of-the-art

results in several benchmarks. Concretely, our approach uses the network predictions

as soft pseudo-labels for unlabeled data and alleviates confirmation bias by introducing

mixup augmentation, a minimum number of labeled samples per batch, dropout, and

data augmentation.
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In light of further exploration of pseudo-labeling for semi-supervised learning, we

observe that the quality of the pseudo-labels is a key component to stabilize training

for an extremely low number of labeled samples: strong data augmentation strategies

and dropout for the pseudo-label computation damage convergence by providing

imprecise labels. This suggests that pseudo-labels could be further improved with

techniques that refine network predictions such as a momentum network to compute

pseudo-labels as in MT [176] or ensembles of the model in different epochs as in

TE [100].

The proposed approach, however, is simpler and more accurate than most recent

alternatives. Yet, we believe that synergies between consistency regularization

and pseudo-labeling could result in interesting and efficient approaches to semi-

supervised learning, as suggested by recent tendencies to “holistic” approaches that

combine several techniques from the literature [19, 20]. Similarly, future lines of work

that remain unexplored relate to two widely adopted assumptions in the literature:

unlabeled samples belong to the class distribution in the labeled set (i.e. the unlabeled

set is free from out-of-distribution samples), and the number of samples is balanced

across classes. Exploration in this direction is of utmost importance for enabling

further applicability of current methods to realistic semi-supervised scenarios.

Finally, it is worth noting that the performance degradation stemming from

incorrect pseudo-labels also appears in supervised applications where labels cannot

be fully trusted, i.e. as label noise. Despite presenting a different source of cor-

ruption, approaches to label noise could benefit from the insights reported in this

chapter. The exploration presented in the following chapter addresses this setup, by

proposing a robust method to learn under the presence of label noise, and providing

further insights into the training of convolutional neural networks under supervision

constraints.
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4.4 Summary

This chapter addresses the approach developed for semi-supervised image classi-

fication and includes extensive experimental details: descriptions of the technical

framework for the experiments (Subsection 4.2.1), studies of the proposed approach

on several benchmarks (Subsection 4.2.3), and exploration of the robustness to

different hyperparameters, levels of labeled samples, and model architectures (Subsec-

tion 4.2.2). In particular, we identify a crucial challenge in pseudo-labeling approaches

to semi-supervised learning, confirmation bias, and propose a solution to reduce its

effect on representation learning. Experimental results show that when account-

ing for confirmation bias, pseudo-labeling approaches can surpass state-of-the-art

consistency regularization based approaches.



Chapter 5

Label noise

The recent spike in interest in CNN training under label corruptions has resulted in

robust methods able to exploit vast amounts of visual data [103, 196, 110] that avoid

the exhaustive labeling process of the classical fully supervised learning. By relaxing

this dependence on high-quality labels, label noise training reduces the costs in data

annotation stages. To this end, research focuses on synthetic scenarios designed to

replicate the complex characteristics of the noise in the data, i.e. label corruptions

as introduced in Chapter 2 (Subsection 2.3.2). These synthetic scenarios allow for

the replication of experiments, exploration different levels of label corruption, and

study the behavior of the models for clean and noisy samples individually (since

noisy samples are identified beforehand). Two main scenarios dominate the research

landscape where label corruptions are introduced following uniform or non-uniform

distribution. In the former, known as symmetric noise, labels are randomly swapped

between classes. In the latter, asymmetric noise, labels are swapped to another class

depending on the similarity between this new class and the true class of the image;

this is a class-dependent noise. Section 5.3 further explores the assumption that

real-world label noise can be characterized by these two distributions and introduces

research that explores alternative approaches [204, 105, 85].

As noted in [216], the high number of parameters in CNNs allows them to

memorize datasets with random labels when trained for enough time. This results

in high performance on the training set, but poor on the testing set. In a clean

95
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dataset, however, we expect that competitive performance during training precedes

competitive performance in testing, i.e. features generalize outside the known data to

the testing set. It is useful to think of this problem as generalization vs. memorization,

and these two concepts are very intertwined in label noise. Distinctions between these

two concepts become evident on symmetric noise distributions, where noisy samples

do not share structure between them and noisy labels do not depend on the features

in the image. In this scenario, CNNs easily learn features that generalize across

clean samples, which is reflected as a decrease in the loss value of the corresponding

samples. Later in training, however, to keep reducing the average loss, the CNN

starts memorizing the noisy samples, which results in features that do not generalize

across samples (much less to the testing set). This is, consequently, reflected in

the loss values of the noisy samples, which decrease later in training than that of

clean samples (Figure 5.1). Note that this chapter is focused on label noise, but

these observations might extend to other sources of corruption in the dataset such

as biases [6] or fake content [182].

This difference in the behavior of the loss values of clean and noisy samples is

less evident in asymmetric noise distributions. This is probably because incorrect

labels in asymmetric noise contain information of the similarity between classes,

which allows the CNN to leverage certain features shared by noisy samples. As a

consequence, these samples are memorized earlier and make the distinction between

clean and noisy samples more challenging when considering only the loss values (this

is further discussed in Subsection 5.3.1 and illustrated by Figure 5.6).

Regardless of the noise distribution, CNNs learn corrupted representations when

trained under these conditions. Through the development of this thesis we studied

in [136] interactions between different noise distributions and the learning process

of CNNs, and later in [137] we propose a robust alternative to train CNN in

the presence of label noise. The most relevant findings in these publications are

discussed in Section 5.3. This chapter, however, explores the research published in the

International Conference on Machine Learning 2019, in [10] (source code is available
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Figure 5.1: Cross-entropy loss on CIFAR-10 under 80% label noise for clean and
noisy samples. Left: training with cross-entropy loss results in fitting the noisy labels.
Right: using our proposed objective prevents fitting label noise while also learning
from the noisy samples. The heavy lines represent the median loss values and the
shaded areas are the interquartile ranges.

at https://git.io/fjsvE), and extends it by including further exploration of the

approach and additional regularization terms that stabilize the training across noisy

scenarios. Of course, the chapter is written in the light of the latest observations

from [136] and [137] on the effect of label noise in the training of CNNs.

In particular, this chapter presents an unsupervised noise modeling strategy

that estimates the probability of a sample being noisy and leverages it to guide

a bootstrapping mechanism by weighting the contribution of the label and the

prediction. Additionally, we adapt this loss function to the interpolation training

strategy from mixup [218] to build a final approach that is robust to high levels of

noise in the dataset.

5.1 Proposed approach: Dynamic bootstrapping

for label noise

The formulation of image classification under label noise follows the notation described

in previous chapters: a model hW (x) corresponds to a CNN with W parameters that

trains on a set of training examples D = {(xi,yi)}ni=1 with yi ∈ {0, 1}c being the

one-hot encoding ground-truth label corresponding to xi. In particular, for label

noise, the label yi can be noisy, i.e. refer to a class that does not correspond to the

image in xi. Note that for the out-of-distribution noise mentioned in the introduction

https://git.io/fjsvE
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of the chapter (and further discussed in Section 5.2.6), the true label for xi might

not be in the distribution of labels observed in the training set. The CNN trains on

the set D to minimize the categorical cross-entropy loss function (earlier defined in

Eq 2.3):

L(W ) =
1

n

n∑
i=1

`i(W ) = −
n∑
i=1

yTi log (hW (xi)) , (5.1)

where hW (x) are the softmax probabilities produced by the model and log(·) is

applied element-wise, i.e. to the probabilities predicted for each sample.

In this section we review the approach to label noise proposed in [10]: the

label noise modeling technique, the adaptations added to the loss in (5.1), and the

regularizations that help handling label noise. Additionally, in Subsection 5.1.3, we

provide insights into the regularizaztion role of mixup in label noise. For notational

simplicity, we use `i(W ) = `i and hW (xi) = hi in the remainder of the chapter.

5.1.1 Identifying corrupted labels: noise detection

In this subsection, we explore the behavior of the loss function when training under

label noise and how this can be used to separate clean and noisy samples. Other

approaches to noise detection that we have explored through the development of

the thesis are based on loss values of a relabeling stage [136] that aim at mitigating

the memorization of the noisy labels; as well as a discrepancy measure between the

labels of a set of neighbors [137]. Despite focusing on the loss value, this chapter

provides in Section 5.3 a discussion and insights into these other two techniques for

detecting noisy samples.

The main contribution of the approach proposed in [10] lies in the identification

of noisy samples in the dataset D and the proper adaptation of the loss to control

the degree to which parameter updates are influenced by the label of a given sample

(see Subsections 5.1.2 and 5.1.3). The approach relies on the observation that clean

samples are learned earlier in the training, which means that, in those stages, noisy

samples have higher loss values on average (Figure 5.1 left). This allows clean and

noisy samples to be distinguished from the loss distribution alone. As shown in [216],
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CNN trained with SGD are able to fit all samples with random labels. However,

the memorization of noisy labels does not happen until substantial progress has

been made in fitting the clean ones. Since one can infer from the loss value if a

sample is more likely to be clean or noisy, this chapter proposes to use a mixture

distribution model for this purpose. These could be used to split the dataset into

noisy and clean samples or to obtain the probability of a sample being clean or noisy.

The former has shown to be useful in discarding noisy samples or their labels to

apply semi-supervised algorithms [136], while the latter is exploited in this chapter

to obtain a measure of how reliable is a sample, i.e. the probability of being noisy.

Mixture models are a widely used unsupervised modeling technique [168, 142,

116], with the Gaussian Mixture Model (GMM) [142] being the most popular. The

probability density function (pdf) of a mixture model of k components on the loss `

is defined as:

p(`) =
k∑
j=1

λj p(` | j) , (5.2)

where λj are the mixing coefficients for the convex combination of each individual

pdf p(` | j). In our case, we can fit a two component GMM (i.e. k = 2 and assuming

` follows a Gaussian distribution as ` ∼ N
(
µj,
∑

j

)
) to model the distribution

of clean and noisy samples (Figure 5.2). Unfortunately, the Gaussian is a poor

approximation to the clean set distribution, which exhibits high skew toward zero.

The more flexible beta distribution [116] allows modeling both symmetric and skewed

distributions over [0, 1]; the beta mixture model (BMM) better approximates the loss

distribution for mixtures of clean and noisy samples (Figure 5.2). Empirically, we

also found the BMM improves ROC-AUC for clean-noisy label classification over the

GMM by around 5 points for 80% label noise in CIFAR-10 when using the training

objective in Section 5.1.3 (see 5.2.3). The beta distribution over a (max) normalized

loss ` ∈ [0, 1] is defined to have pdf:

p(` | α, β) =
Γ(α + β)

Γ(α) Γ(β)
`α−1 (1− `)β−1 , (5.3)
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Figure 5.2: Empirical PDF and estimated GMM and BMM models for 50% label
noise in CIFAR-10 after 10 epochs with standard cross-entropy loss and learning
rate of 0.1 (the remaining hyperparameters are provided in Subsection 5.2.1). Clean
and noisy samples are colored for illustrative purposes. The BMM model better fits
the skew toward zero loss of the clean samples.

where α, β > 0 and Γ(·) is the Gamma function, and the mixture pdf is given by

substituting the above into Eq. (5.2).

We use an Expectation Maximization (EM) procedure to fit the BMM to the

observations. Specifically, we introduce latent variables γj(`) = p(j|`) which are

defined to be the posterior probability of the point ` having been generated by

mixture component j. In the E-step we fix the parameters λj, αj, βj and update the

latent variables using Bayes rule:

γj(`) =
λj p(` | αj, βj)∑K

m=1 λm p(` | αm, βm)
. (5.4)

Given fixed γj(`), the M-step estimates the distribution parameters αj, βj using

a weighted version of the method of moments:

βj =
αj
(
1− ¯̀

j

)
¯̀
j

, αj = ¯̀
j

(
¯̀
j

(
1− ¯̀

j

)
s2j

− 1

)
(5.5)

with ¯̀
j being a weighted average of the loss values {`i}ni=1 corresponding to each
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training sample {xi}ni=1, and s2j being a weighted variance estimate:

¯̀
j =

∑n
i=1 γj(`i) `i∑n
i=1 γj(`i)

, (5.6)

s2j =

∑n
i=1 γj(`i)

(
`i − ¯̀

j

)2∑n
i=1 γj(`i)

. (5.7)

The updated mixing coefficients λj are then calculated in the usual way:

λj =
1

n

n∑
i=1

γj(`i). (5.8)

The above E and M-steps are then iterated until convergence or a maximum

number of iterations (10 in our experiments) are reached. Note that the above

algorithm becomes numerically unstable when the observations are very near zero

and one. Our implementation simply sidesteps this issue by bounding the observations

in [ε, 1− ε] instead of [0, 1] (ε = 10−4 in our experiments).

Finally, we obtain the probability of a sample being clean or noisy through the

posterior probability:

p(j | `i) =
p(j) p(`i | j)

p(`i)
, (5.9)

where j = 0 denote clean classes and j = 1 noisy.

The loss values used to fit the mixture model correspond to the standard cross-

entropy loss computed over an additional forward pass (Figure 5.1) after every epoch.

We have obtained very similar results with the loss used during training, but we

decide to use the additional forward pass for simplicity when including the dynamic

bootstrapping correction and mixup in the training loss function. Additionally, we

have experimented with different update frequencies of the mixture distribution,

every five epochs or every half epoch, and obtained marginal variations in the results

(see Subsection 5.2.3). It might be of interest, however, to reduce the frequency in

larger datasets to reduce the computational cost.

The initial method proposed in [10] leveraged the additional flexibility of the beta

distribution to better fit skewed components of the loss distribution. Despite recent
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experiments showing that, in some cases, GMM provides competitive results (see

Section 5.2.3) BMM provides, overall, more stable results. Note that recent state-of-

the-art in label noise [103, 136, 196] leverages the observations in this chapters and

includes a loss-based method to select clean and noisy samples.

5.1.2 Dynamically bootstrapping predictions

The quality of the representations learned by a CNN heavily depends on the loss

function used, particularly when training under label noise. The standard categorical

cross-entropy brings competitive results when the dataset is clean, but fails to do

so when labels are corrupted. This loss encourages the model to fit the corrupted

labels and results in features that do not generalize outside the training set [216].

To account for this, [150] proposed the static hard bootstrapping loss function as

a mechanism to reduce the influence of the corrupted labels in the training: a

perceptual term in the loss helps to correct the training objective

LB = −
n∑
i=1

((1− wi) yi + wizi)
T log (hi) , (5.10)

where wi weights the model prediction zi in the loss function. [10] use wi = 0.2,∀i.

We refer to this approach as static hard bootstrapping (ST-H). Additionally, [150]

proposed a static soft bootstrapping loss (ST-S), with wi = 0.05,∀i, that uses the

predicted softmax probabilities hi instead of the class prediction zi. Unfortunately,

using a fixed weight for all samples does not prevent fitting the noisy ones (Table 5.1

in Subsection 5.2.2) and, more importantly, applying a small fixed weight wi to the

prediction zi, or probabilities hi, limits the correction of a hypothetical noisy label

yi.

In this chapter we propose a dynamic bootstrapping strategy that leverages the

modeling of the noise in the dataset to give individual weights to each sample. As

initially proposed in [10] the dynamic hard and soft bootstrapping loss functions set

wi dynamically as p(j = 1 | `i), and the BMM model is estimated after each training
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epoch using the cross-entropy loss for each sample `i. Therefore, clean samples rely

on their ground-truth label yi (1 − wi is large), while in noisy ones their loss is

dominated by their class prediction zi or their predicted probabilities hi (wi is large),

respectively, for hard and soft alternatives. Note that in mature stages of training,

the CNN model should provide a good estimation of the true class for noisy samples.

Subsection 5.2.2 compares static and dynamic bootstrapping, showing that dynamic

bootstrapping gives superior results.

5.1.3 Mixup as an effective regularization for label noise

Interpolation training as proposed in [218] has shown to be very valuable in label

noise [218, 103, 110, 137]. As an initial adaptation to label noise, we (originally [10])

propose an interpolation-based bootstrapping loss function that leverages the regular-

ization and data augmentation effects of mixup to reduce the harm of label noise in

representation learning. Particularly, mixup (introduced in detail in Subsection 4.1.2

and equations (4.6) and (4.7)) provides a mechanism to combine clean and noisy

samples, computing a more representative loss to guide the training process. Even

when combining two noisy samples, the loss computed can still be useful as one of

the noisy samples may (by chance) contain the true label of the other one. As for

preventing overfitting to noisy samples, the fact that samples and their labels are

mixed, favors learning structured data while hindering learning the unstructured

noise.

After the publication of the method proposed in this Chapter [10], several other

approaches have included some adaptation of the interpolation training proposed

in [218], which corroborates the relevance of mixup as a powerful regularization

strategy for label noise training. Moreover, as later explored in [136] and [137], mixup

alone provides top performance in real-world datasets.

Mixup achieves robustness to label noise by appropriate combinations of training

examples. Under high-levels of noise, mixing samples that both have incorrect labels

is prevalent, which reduces the effectiveness of the method. We propose to fuse mixup
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and our dynamic bootstrapping to implement a robust per-sample loss correction

approach:

L∗ = −δ
[
((1− wp) yp + wpzp)

T log (h)
]
− (1− δ)

[
((1− wq) yq + wqzq)

T log (h)
]
,

(5.11)

where δ correspond to the strength of the mixup interpolation. The loss L∗ defines

the hard alternative, while the soft one L∗soft can be easily defined by replacing zp

and zq by hp and hq. These hard and soft losses exploit mixup’s advantages while

correcting the labels through dynamic bootstrapping, i.e. the weights wp and wq that

control the confidence in the ground-truth labels and network predictions are inferred

from our unsupervised noise model: wp = p(k = 1 | `p) and wq = p(k = 1 | `q). We

compute hp, zp, hq and zq by doing an extra forward pass, as it is not straightforward

to obtain the predictions for samples p and q from the mixed probabilities h.

Ideally, the proposed loss L∗ would lead to a better model by trusting in progres-

sively better predictions during training. For high levels of label noise, however, the

network predictions are unreliable and dynamic bootstrapping may not converge

when combined with the complex signal that mixup provides. This is reasonable as

under high levels of noise most of the samples are guided by the network’s prediction

in the bootstrapping loss function, encouraging the network to predict the same class

to minimize the loss value. We apply the regularization term used in [175], which

seeks to prevent the assignment of all samples to a single class, to overcome this

issue:

R =
c∑
j=1

pj log

(
pj

hj

)
, (5.12)

where pj denotes the prior probability distribution for class j and hj is the mean

softmax probability of the model for class j across all samples in the dataset. Note

that we assume a uniform distribution for the prior probabilities (i.e. pj = 1/c),

while approximating hj using mini-batches as done in [175]. We add the term

ηR to L∗ (Eq. (5.11)) with η being the regularization coefficient (set to one in

all the experiments). Subsection 5.2.3 presents the results of this approach and
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Subsection 5.2.5 demonstrates its superior performance in comparison to the state-

of-the-art.

To further increase the robustness of the approach in scenarios with higher levels

of noise, the soft alternative L∗soft overcomes the inconvenience of mixing noisy

samples most of the time by providing a more precise guide. In this case we add

a second regularization term, often used with soft labels [57], that encourages the

network to minimize the entropy of the prediction:

RH = − 1

n

n∑
i=1

c∑
j=1

hji log
(
hji
)
, (5.13)

where hji corresponds to the j class value of the softmax output hi for the sample

xi. This value is, as well, approximated using mini-batches (i.e. n is replaced by the

mini-batch size).

5.2 Experiments and results

In this section, we empirically explore how the dynamic bootstrapping proposed

in [10] addresses the challenges presented by label noise. Additionally, the other two

approaches initially presented in [136] and [137] are studied. The experimental setup

used in this chapter is introduced in Subsection 5.2.1. Experiments in Subsection 5.2.2

demonstrate the effectiveness of bootstrapping in label noise training and how

the proposed dynamic bootstrapping better guides the training and exploits the

potentially corrupted labels. In Subsection 5.2.3, we explore mixup in conjunction

with dynamic bootstrapping. In Subsection 5.2.4, then, we evaluate the proposed

approach in more extreme scenarios and propose adaptations to make it more robust.

Finally, in Subsection 5.2.6 and 5.2.5, we compare the approach to state-of-the-art

methods and explore the generalization to other datasets and across different noise

distributions.
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5.2.1 Experimental framework

Datasets and training setup

The main body of experiments in this chapter explores the behaviors of the proposed

method on CIFAR-10 and CIFAR-100. We use a standard pre-processing for each

image: normalized and augmented by random horizontal flipping and random crops

after zero padding with four pixels on each side. The backbone model is a PreAct

ResNet-18 [71] trained with SGD and momentum (0.9), weight decay of 10−4, and

batch size 128. The initial learning rate is 0.1 and is divided by 10 two or three

times during the training depending on the configuration of the method: when

training without mixup, the model trains for 120 epochs, the learning rate is reduced

in epochs 30, 80, and 110, and the setup has a warm-up of 30 epochs, i.e. the

bootstrapping starts at epoch 31; when training with mixup the model trains for 300

epochs, the learning rate is reduced in epochs 100 and 250, and warm-up for 105

epochs, i.e. bootstrapping starts at epoch 106. We present further experimentation

in Subsection 5.2.6 on TinyImageNet (subset of ImageNet [42]) and Clothing1M [204]

datasets that test the generality of our approach far from CIFAR data.

Experiments across all datasets share the same hyperparameter configuration and

lead to consistent improvements over the state-of-the-art, demonstrating that the

general approach does not require carefully tuned hyperparameters. Consequently,

the results are likely to be suboptimal and could be improved with a label noise-free

validation set, though this set is assumed to be unavailable in this research. Note

that high learning rate values at early stages of the training are important to learn

the structured data (mainly associated to clean samples) and to help separate the

loss values between clean and noisy samples for a better BMM fit. Additionally,

training more epochs leads to better performance, as mixup together with a high

learning rate helps prevent fitting label noise.

The parameter estimation of the BMM consists of 10 EM iterations, but we ran

M-DYR-H (80% of label noise, CIFAR-10) using 5 and 20 EM iterations, obtaining

87.4 and 87.2 for 5 iterations, and 86.9 and 86.3 for 20 iterations for best and last
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epochs, suggesting that the method is relatively robust to this hyperparameter.

Dataset pre-processing: Label noise introduction

By pre-processing the datasets as described in Chapter 2 Subsection 2.3.2, we

create different benchmarks for different noise levels. Initially, for the main body of

experiments in this Chapter, random symmetric noise distributions, we follow [216,

218, 175] criterion: labels are swapped between all the available classes (i.e. the true

label could be randomly maintained). Note that there is another popular label noise

criterion for symmetric distributions [86, 194] in which the true label is not selected

when performing random labeling. We also run our proposed approach under these

conditions in Subsection 5.2.5 for comparison.

To further test the robustness of our model, we introduce asymmetric label noise

in CIFAR-10 to simulate corruptions due to similarities between classes [141, 175].

Concretely we introduce the noise as in [213] by swapping the labels depending on

the classes as follows: “truck” → “automobile”, “bird” → “airplane”, “deer” →

“horse”, and “cat” → “dog”. This is a class-dependent label noise that is known as

non-uniform or asymmetric noise and the noise level corresponds to the probability

of a label being changed to the corresponding noisy class. This scenario is further

studied together with more complex and realistic distributions in [136] and [137],

which also evaluate the method described in this chapter and proposed in [10]. Note

that this thesis also presents and discusses results of this research in Section 5.3.

5.2.2 Static and dynamic loss correction: dynamic boot-

strapping

Table 5.1 compares static (ST) and dynamic (DY) bootstrapping in CIFAR-10 with

different levels of symmetric noise. When evaluating the best performance of the

different approaches, ST achieves comparable results to DY (except for 80% noise

where DY is much better), but the model after the last epoch (last) of DY significantly

outperforms ST. This shows that the dynamic weighting of each sample contributes
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Table 5.1: Validation accuracy on CIFAR-10 for static bootstrapping and the proposed
dynamic bootstrapping. Key: CE (cross-entropy loss), ST (static bootstrapping), DY
(dynamic bootstrapping), S (soft), and H (hard). Bold indicates best performance.

Alg./Noise level (%) 0 20 50 80

CE
Best 93.8 89.7 84.8 67.8
Last 93.7 81.8 55.9 25.3

ST-S
Best 93.9 89.7 84.8 67.8
Last 93.9 81.7 55.9 24.8

ST-H
Best 93.8 89.7 84.8 68.0
Last 93.8 81.4 56.4 25.7

DY-S
Best 93.6 89.7 84.8 67.8
Last 93.4 83.3 57.0 27.8

DY-H
Best 93.3 89.7 84.8 71.7
Last 92.9 83.4 65.0 64.2

to reducing overfitting to label corruptions. The improvements are particularly

remarkable for 80% of label noise (from 25.7% of ST-H to 64.2 of DY-H). Table 5.1

also shows that hard (H) gives superior performance to soft (S) bootstrapping,

which is consistent with the findings of the original paper [150]. The overall results

demonstrate that applying per-sample weights (DY) benefits training by allowing

full correction of noisy labels.

5.2.3 mixup in conjunction with dynamic bootstrap

The proposed dynamic hard bootstrapping exhibits better performance than the

state-of-the-art static version [150]. It is, however, not better than the performance

of mixup data augmentation, which exhibits excellent robustness to label noise (M in

Table 5.2). The fusion approach from Eq. (5.11) (M-DYR-H) and its soft alternative

(M-DYR-S), which combines the per-sample weighting of dynamic bootstrapping and

robustness to fitting noise labels of mixup, achieves a remarkable improvement in

accuracy under high noise levels. Table 5.2 reports outstanding accuracy for 80% of

label noise, a case where we improve upon mixup [218] in best (last) accuracy of 71.6

(46.7) in CIFAR-10 and 30.8 (17.6) in CIFAR-100 to 86.8 (86.6) and 48.2 (47.2) using

the hard alternative (M-DYR-H). Note that the soft alternative alone (M-DYR-S)

fails to surpass these results, but provides state-of-the-art across most noise levels
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Table 5.2: Validation accuracy on CIFAR-10 (top) and CIFAR-100 (bottom) for joint
mixup and boot strapping. Key: CE (cross-entropy), M (mixup), DYR (dynamic
bootstrapping + regularization from Eq. (5.12)), S (soft), H (hard), and S2 (soft +
regularization from Eq. (5.13)). Bold indicates best performance.

Alg./Noise level (%) 0 20 50 80

CE
Best 94.7 86.8 79.8 63.3
Last 94.6 82.9 58.4 26.3

M [218]
Best 95.3 95.6 87.1 71.6
Last 95.2 92.3 77.6 46.7

M-DYR-S
Best 93.3 93.5 89.7 77.3
Last 93.0 93.1 89.3 74.1

M-DYR-H
Best 93.6 94.0 92.0 86.8
Last 93.4 93.8 91.9 86.6

M-DYR-S2
Best 93.5 94.6 93.2 85.6
Last 93.2 94.4 93.0 85.3

Alg./Noise level (%) 0 20 50 80

CE
Best 76.1 62.0 46.6 19.9
Last 75.9 62.0 37.7 8.9

M [218]
Best 74.8 67.8 57.3 30.8
Last 74.4 66.0 46.6 17.6

M-DYR-S
Best 71.9 67.9 61.7 38.8
Last 67.4 67.5 58.9 34.0

M-DYR-H
Best 70.3 68.7 61.7 48.2
Last 66.2 68.5 58.8 47.6

M-DYR-S2
Best 72.1 72.5 67.6 50.5
Last 71.3 72.1 67.6 50.5

in CIFAR-10 and CIFAR-100 when combined with the regularization described

in Eq. (5.13) (M-DYR-S2), which demonstrates the efficiency of encouraging low

entropy predictions to guide the training (as discussed in Chapter 4).

It is important to highlight that we achieve quite similar best and last performance

for all levels of label noise in CIFAR datasets, indicating that the proposed method

is robust to varying noise levels. Figure 5.3 shows uniform manifold approximation

and projection (UMAP) embeddings [119] of the 512 features in the penultimate

fully-connected layer of PreAct ResNet-18 trained using our method and compares

them with those found using cross-entropy and mixup. The separation among

classes appears visually more distinct using the proposed objective. Additionally,

we experimented on CIFAR-10 fitting a BMM per class aiming at obtaining a more
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: UMAP [119] embeddings for training (top) with 80% of label noise and
validation (bottom) on CIFAR-10 with (a)(d) cross-entropy loss from Eq. (5.1), (b)(e)
mixup [218] and (c)(f) our proposed M-DYR-H.

tailored fit to the distribution, which provided very similar results.

Further exploration of the noise modeling approach: BMM configuration

The proposed approach re-estimates the BMM parameters every epoch once the loss

correction begins (i.e. there is an initial warm-up as noted in Subsection 5.2.1 with

no loss correction) by computing the cross-entropy loss from a forward pass with

the original (potentially noisy) labels. We also explored different estimation periods

(every 5 and 0.5 epochs) for M-DYR-H in CIFAR-10 and 80% of label noise and

observed similar results. While the original configuration presented in Figure 5.4 (a)

reaches 86.8 and 86.6 for best and last, every 5 epochs leads to 86.9 and 86.8, and

every 0.5 to 88.0 and 87.5.

We expect a drop in performance in carefully annotated datasets that resemble

the 0% noise scenario in CIFAR datasets: where there is only one component in

the loss distribution to fit the BMM. Despite classifying almost all samples as clean,

estimation errors occur which lead to a reliance on the sometimes incorrect network

prediction instead of the true clean label. Nevertheless, for 20% noise, the approach
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Figure 5.4: M-DYR-H results on CIFAR-10 for (a) image classification and (b)
clean/noisy classification of the BMM.
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Figure 5.5: M-DYR-H results on CIFAR-10: comparison of GMM and BMM for
clean/noisy classification with 80% label noise.
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proposed in this chapter outperforms the compared state-of-the-art at the end of the

training, demonstrating improved robustness for low noise levels.

Additionally, Figure 5.4 (b) shows the clean/noisy classification capabilities of

the BMM in terms of Area Under the Curve (AUC) evolution during training,

demonstrating that performance and robustness are consistent across noise levels.

In particular, the experiment on CIFAR-10 with M-DYR-H exceeds 0.98 AUC for

20, 50, and 80% label noise. AUC increases during training and increases faster for

lower noise levels, showing increasingly better clean/noisy discrimination related to

consistent BMM predictions over time.

Effect of BMM classification accuracy on image classification accuracy

BMM prediction accuracy is essential for high image classification accuracy, as

demonstrated by the tendency for both image classification and BMM accuracy

to increase together in Figure 5.4 (a) and (b), especially for higher noise levels.

Figure 5.5 further verifies this relationship by comparing the BMM with a GMM

(Gaussian Mixture Model) on CIFAR-10 with M-DYR-H and 80% label noise. In this

scenario, with α = 32, the GMM gives both less accurate clean/noisy discrimination

and worse image classification results (clean/noisy AUC drops from 0.98 to 0.94,

while image classification accuracy drops from 82.0 to 80.6). Note that further

experiments have shown that GMM performs on par with BMM in CIFAR-100

and provides slightly better convergence in higher levels of noise, particularly when

decreasing the interpolation strength applied in mixup. Table 5.3 provides more

details on these experiments and shows the dependence between the effectiveness of

the noise detection and the regularization strength imposed by the α parameter of

mixup.

As an additional ablation study to verify the contribution of the BMM estimations,

we remove the BMM and assign fixed weights in the bootstrapping loss (0.8 to the

ground truth label and 0.2 to network prediction, keeping mixup for robustness).

This leads to a drop from 86.6 for M-DYR-H to 74.6 in the last epoch (80% of label
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Table 5.3: Validation accuracy of M-DYR-H (best/last): comparison of BMM and
GMM. Bold indicates best performance.

CIFAR-10 CIFAR-100

BMM GMM BMM GMM

Noise level α = 1

0 % 95.07/79.63 95.01/87.19 76.32/75.66 76.06/67.97
40 % 91.80/91.48 88.91/51.46 64.61/63.81 64.00/61.89
80 % 80.41/67.79 82.66/63.66 27.54/24.49 42.41/42.41

Noise level α = 32

0 % 94.03/93.34 92.96/74.43 70.59/68.61 70.59/33.79
40 % 92.32/91.81 90.72/88.20 64.27/62.53 63.07/30.51
80 % 83.44/82.00 81.67/80.65 47.69/45.02 44.97/38.88

Table 5.4: Validation accuracy of M-DYR-H in CIFAR-10 and symmetric noise
(best/last) for different α values. Bold indicates best performance.

Noise level/α 0.1 0.5 1 2 4 8 32

0 % 95.02/94.67 95.43/89.79 95.34/89.95 95.07/87.82 94.41/90.85 94.27/91.82 94.14/94.14
40 % 82.46/70.68 87.33/75.24 90.11/84.82 91.58/88.30 92.90/92.43 93.32/93.10 93.41/93.29
80 % 67.32/30.59 70.64/40.53 81.98/54.33 86.48/79.23 88.58/88.11 89.28/88.72 86.68/85.95

noise on CIFAR-10).

Further exploration of mixup data augmentation configuration

Table 5.4 compares different values for the α parameter in mixup, which defines

the shape of the beta distribution that yields the strength of the interpolation in

every iteration: higher values of α lead to similar contributions from both samples

while smaller values lead to the dominance of one of the samples. These results show

that higher values of α provide more robust results for higher levels of noise, which

supports the claim that stronger regularization strategies help training CNNs in

label noise scenarios, particularly when the noise levels increase. We keep α = 32

unless otherwise stated.

5.2.4 Extreme cases of label noise

Table 5.5 presents an experimental exploration of model convergence under extreme

label noise conditions, showing that the proposed approach M-DYR-H fails to

converge in CIFAR-10 with 90% label noise (as also do the proposed alternatives
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Table 5.5: Validation accuracy on CIFAR-10 (top) and CIFAR-100 (bottom) with
extreme label noise. Key: M (mixup), MD (dynamic mixup), DYR (dynamic
bootstrapping + reg. from Eq. (5.12)), H (hard), SH (soft to hard), and S2 (soft +
regularization from Eq. (5.13). (*) denotes that we have run the algorithm. Bold
indicates best performance.

Alg./Noise level (%) 70 80 85 90

M-DYR-H
Best 89.6 86.8 71.6 40.8
Last 89.6 86.6 71.4 9.9

MD-DYR-H
Best 86.6 83.2 79.4 56.7
Last 85.2 80.5 77.3 50.0

MD-DYR-SH
Best 84.6 82.4 79.1 69.1
Last 80.8 77.8 73.9 68.7

M-DYR-S2
Best 91.2 85.6 58.3 40.8
Last 91.0 85.3 39.7 10.6

Alg./Noise level (%) 70 80 85 90

M-DYR-H
Best 54.4 48.2 29.9 12.5
Last 52.5 47.6 29.4 8.6

MD-DYR-H
Best 54.4 47.7 19.8 13.5
Last 50.8 41.7 8.3 3.9

MD-DYR-SH
Best 53.1 41.6 28.8 24.3
Last 47.7 35.4 24.4 20.5

M-DYR-S2
Best 61.3 50.5 32.3 12.5
Last 60.9 50.5 32.1 6.8

M-DYR-S and M-DYR-S2). Minor modifications to achieve convergence are proposed

in this subsection.

When clean and noisy samples are combined by mixup they are given the same

importance of approximately δ = 0.5 (as α = β = 32. While noisy samples benefit

from mixing with clean ones, clean samples are contaminated by noisy ones, whose

training objective is incorrectly modified. We propose a dynamic mixup strategy in

the input that uses a different δ for each sample to reduce the contribution of noisy

samples when they are mixed with clean ones:

x =

(
δp

δp + δq

)
xp +

(
δq

δp + δq

)
xq, (5.14)

where δp = p(k = 0 | `p) and δq = p(k = 0 | `q), i.e. we use the noise probability from

our BMM to guide mixup in the input. Note that for clean-clean and noisy-noisy

cases, the behavior remains similar to mixup with α = β = 32, which leads to δ ≈ 0.5
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(i.e. δp ≈ δq ⇒ δp/(δp + δq) ≈ 0.5).

This configuration simplifies the input to the network when mixing a sample

whose label is potentially useless (or even harmful) while retaining the strengths of

mixup for clean-clean and noisy-noisy combinations. This is used with the original

mixup strategy (Eq. (5.11)) to benefit from the regularization that an additional label

provides. Table 5.5 presents the results of this approach (MD-DYR-H), which exhibits

more stable convergence for 90% label noise in both datasets. Note that this approach

assigns higher weights to the clean samples, hence reducing the contribution of noisy

samples in the training. This resembles the approaches to curriculum learning or

importance sampling introduced in Chapter 2, where different samples have different

relevance through the training.

Table 5.2 reports that hard bootstrapping works better than the soft alternative.

Unfortunately, hard bootstrapping under high levels of label noise causes large varia-

tions in the loss that lead to drops in performance. To ameliorate such instabilities,

we propose a decreasing softmax technique [189] to progressively move from a soft

to a hard dynamic bootstrapping. This is implemented by modifying the softmax

temperature T in:

hij =
exp(sij/T )∑n
k=1 exp(sik/T )

, (5.15)

where sij denotes the score obtained in the last layer of the CNN model for the

element j, i.e. class j, in the prediction the of a sample xi. By default T = 1 gives the

soft alternative of Eq. (5.11). To move from soft to hard bootstrapping we linearly

reduce the temperature for hp and hq until we reach a final temperature in a certain

epoch (T = 0.001 and epoch 200 in our experiments). We experimented with linear,

logarithmic, tanh, and step-down temperature decays with similar results. This

decreasing softmax MD-DYR-SH obtains much improved accuracy for 90% of label

noise (69.1 for CIFAR-10 and 24.3 for CIFAR-100), while slightly decreasing accuracy

compared to M-DYR-H and MD-DYR-H at lower noise levels. We significantly

outperform previous state-of-the-art for 90% of label noise, which is 58.3% and 58.0%

for best and last validation accuracies (reported in [175] with a PreAct ResNet-32 on
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CIFAR-10). The training process is slightly modified to introduce dynamic mixup

(epoch 106) before bootstrapping (epoch 111) for MD-DYR-H and MD-DYR-SH.

Note that, despite M-DYR-S2 providing better results than MD-DYR-SH across

noise levels, it still fails to converge to a competitive accuracy in extreme levels of

noise (90%). This could be due to weak guidance in later stages of the training given

by the soft-labels.

5.2.5 Comparison to the state-of-the-art

This subsection compares the proposed dynamic bootstrapping loss function with

relevant approaches from the literature. The work presented in [136, 137], however,

further explores this and other approaches in different label noise distributions. It is

also of particular interest to this thesis the approach from [103], denoted as DM, that

combines the loss modeling proposed in this chapter with the co-training technique

proposed in [146] to provide very competitive results. Note that despite being simpler

approaches, in terms of hyperparameter tuning and training epochs, the methods

proposed in [136, 137] (in close collaboration with the development of this thesis),

outperformed DM in most of the benchmarks, particularly in real-world datasets

(Subsection 5.3 further discusses these results).

Table 5.6 compares related works for different levels of label noise using a common

architecture and the 300 epochs training scheme (see Subsection 5.2.1). We introduce

bootstrapping in epoch 105 for ST H [150] and for the proposed methods, estimate

the T matrix of F [141] in epoch 75 (as done in [73], and use the configuration

reported in [218] for mixup. We outperform the related work in the presence of label

noise, obtaining improvements for high levels of noise (80% and 90%) where the

compared approaches do not learn as well from the noisy samples (see best accuracy)

and do not prevent fitting noisy labels (see last accuracy).

To allow for quantitative comparison we evaluate, in Table 5.7, the proposed

approach under symmetric noise introduced as in [86, 115, 151, 194] (as noted in

Subsection 5.2.1), where the true label is excluded when randomly swapping labels.
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Table 5.6: Comparison with the state-of-the-art in terms of validation accuracy on
CIFAR-10 (top) and CIFAR-100 (bottom). Key: ST-H (static hard bootstrapping),
F (forward), M (mixup), MD (dynamic mixup), DYR (dynamic bootstrapping +
reg. from Eq. (5.12)), H (hard), SH (soft to hard), and S2 (soft + regularization
from Eq. (5.13). (*) denotes that we have run the algorithm. Bold indicates best
performance.

Alg./Noise level (%) 0 20 50 80 90

ST-H [150]*
Best 94.7 86.8 79.8 63.3 42.9
Last 94.6 82.9 58.4 26.8 17.0

F [141]*
Best 94.7 86.8 79.8 63.3 42.9
Last 94.6 83.1 59.4 26.2 18.8

M [218]*
Best 95.3 95.6 87.1 71.6 52.2
Last 95.2 92.3 77.6 46.7 43.9

M-DYR-H
Best 93.6 94.0 92.0 86.8 40.8
Last 93.4 93.8 91.9 86.6 9.9

MD-DYR-SH
Best 93.6 93.8 90.6 82.4 69.1
Last 92.7 93.6 90.3 77.8 68.7

M-DYR-S2
Best 93.5 94.6 93.2 85.6 40.8
Last 93.2 94.4 93.0 85.3 10.6

Alg./Noise level (%) 0 20 50 80 90

ST-H [150]*
Best 76.1 62.1 46.6 19.9 10.2
Last 75.9 62.0 37.9 8.9 3.8

F [141]*
Best 75.4 61.5 46.6 19.9 10.2
Last 75.2 61.4 37.3 9.0 3.4

M [218]*
Best 74.8 67.8 57.3 30.8 14.6
Last 74.4 66.0 46.6 17.6 8.1

M-DYR-H
Best 70.3 68.7 61.7 48.2 12.5
Last 66.2 68.5 58.8 47.6 8.6

MD-DYR-SH
Best 73.3 73.9 66.1 41.6 24.3
Last 71.3 73.4 65.4 35.4 20.5

M-DYR-S2
Best 72.1 72.5 67.6 50.5 12.5
Last 71.3 72.1 67.6 50.5 6.8

In this case, label noise is defined as the percentage of incorrect labels instead of

random ones (i.e. the criterion followed in previous experiments). The proposed

method outperforms all related work in CIFAR-10 and CIFAR-100 with MD-DYR-

SH, while the results for M-DYR-H are slightly below those of [86] for low label

noise levels in CIFAR-100. Nevertheless, these results should be interpreted with

care due to the different architectures employed and the use of sets of clean data

during training in [86] and [151].
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Table 5.7: Comparison with the state-of-the-art in terms of validation accuracy on
CIFAR-10 (top) and CIFAR-100 (bottom). Key: M (mixup), MD (dynamic mixup),
DYR (dynamic bootstrapping + reg. from Eq. (5.12)), H (hard), SH (soft to hard),
WRN (Wide ResNet), PRN (PreActivation ResNet, and GCNN (Generic CNN).
Bold indicates best performance.

Algorithm Architecture
Noise level (%)

20 40 60 80

MentorNet [86] WRN-101 92.0 89.0 - 49.0
DimDriven [115] GCNN-12 85.1 83.4 72.8 -
L2-Reweight [151] WRN-28 - 86.9 - -
Iterative learning [194] GCNN-7 81.4 78.2 - -
M-DYR-H PRN-18 94.0 92.8 90.3 46.3
MD-DYR-SH PRN-18 93.8 92.3 86.1 74.1

Algorithm Architecture
Noise level (%)

20 40 60 80

MentorNet [86] WRN-101 73.0 68.0 - 35.0
DimDriven [115] RN-44 62.2 52.0 42.3 -
L2-Reweight [151] WRN-28 - 61.3 - -
M-DYR-H PRN-18 70.0 64.4 58.1 45.5
MD-DYR-SH PRN-18 73.7 70.1 59.5 39.5

5.2.6 Generalization: larger images and realistic noise dis-

tributions

Other datasets

Table 5.8 shows the results of the proposed approaches M-DYR-H, MD-DYR-SH,

and M-DYR-S2 compared to mixup [218] on TinyImageNet to demonstrate that our

approach is useful far from CIFAR data. The proposed approach outperforms [218] for

different levels of label noise, obtaining consistent results with the CIFAR experiments.

Note that we use the same network, hyperparameters, and learning rate policy as

with CIFAR.

For Clothing1M we followed a similar network and procedure as [175] with

ImageNet pre-trained weights and ResNet-50, obtaining over 71% test accuracy,

which falls short of the state-of-the-art (72.23% [175]). We found that fine-tuning a

pre-trained network for one epoch, as done in [175], easily fits label noise, limiting

our unsupervised label noise model. We believe this occurs due to the structured

nature of the noise in this dataset, the small learning rate, and the large amounts of
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Table 5.8: Comparison of test accuracy on TinyImageNet. Key: M (mixup) , DYR
(dynamic bootstrapping + reg. from Eq. (5.12)), H (hard), and SH (soft to hard).
(*) denotes that we have run the algorithm. Bold indicates best performance.

Alg./Noise level (%) 20 50 80

M [218]*
Best 53.2 41.7 18.9
Last 49.4 31.1 8.7

M-DYR-H
Best 51.8 44.4 18.3
Last 51.6 43.6 17.7

MD-DYR-SH
Best 60.0 50.4 24.4
Last 59.8 50.0 19.6

data compared to the CIFAR experiments. Training with cross-entropy alone gives

test accuracy over 69%, suggesting that the configurations used might be suboptimal.

Other noise distributions

We evaluate our approach in a more realistic label noise distribution by training our

method on CIFAR-10 with non-uniform (asymmetric) noise generated as described

in Subsection 5.2.1, where label flips are concentrated in classes sharing similar

visual patterns with the true class. Table 5.9 shows that the proposed approaches

M-DYR-H and M-DYR-S2 are a robust methodology for training in asymmetric label

noise scenarios, especially when the levels of noise are higher: for all the levels of label

noise they perform on pair with the best performing method Joint Optimization [175].

The experimental section of [136, 137] further explores this approach (among others)

in more complex and realistic scenarios (including OOD samples). As a highlight

of the experiments on these scenarios, Table 5.10, extracted from [136], compares

the approach discussed in this chapter with recent approaches in WebVision [105], a

dataset with annotations obtained directly from the web (see Chapter 2 for more

details on this dataset). Note that M-DYR-H outperforms the simpler approaches

(CE, FW, R) but fall short when compared to those that include strong regularization

techniques (M and DRPL).
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Table 5.9: Comparison of the proposed approach M-DYR-H and M-DYR-S2 with
the state-of-the-art in terms of validation accuracy on CIFAR-10 with asymmetric
noise. Key: CE (cross-entropy), M (mixup), F (Forward), J.O. (Joint Optimization).
Bold indicates best performance.

Alg./Noise level (%) 10 20 30 40

CE*?
Best 92.1 90.5 89.5 86.7
Last 90.1 85.5 80.8 74.5

M [218]*
Best 94.5 93.0 90.4 87.3
Last 94.2 93.0 89.7 84.6

F [141]*
Best 91.3 88.1 87.5 84.7
Last 91.2 86.2 82.6 76.4

J.O. [175]*
Best 93.8 93.4 93.2 91.5
Last 93.6 93.4 93.1 91.5

M-DYR-H
Best 92.5 92.1 92.0 91.2
Last 92.0 88.3 91.7 91.0

M-DYR-S2
Best 93.3 93.3 92.6 91.3
Last 93.2 93.2 92.6 91.3

Table 5.10: Top-1 accuracy in first 50 classes of WebVision. Results originally
reported in [136].

CE F [141] R [175] M [218] M-DYR-H P[213] DM[103] DRPL[136]

Best 73.88 74.68 76.52 80.76 79.68 79.96 78.16 82.08
Last 73.76 74.32 76.24 79.96 79.56 79.44 76.84 82.00

5.3 Synthetic and real-world noise distributions

In this section, we present additional work initially discussed in [136, 137] and

provides further insights into the dynamics of training in the presence of label noise.

Concretely, these two works explored the effects that different noise distributions

have on the training of CNN and proposed robust techniques to palliate the harmful

effect of noisy labels have in representation learning.

The main difference between symmetric, asymmetric, and real-world noise distri-

butions is the dependence of the incorrect labels on the corresponding images. This

dependence directly affects the learning process and interferes with representation

learning at different levels. As shown in [136], the differences between these noise

distributions can be seen in the quality of the features learned and in the label noise

detection capabilities of the model. The first type of noise distribution, symmetric

noise (or uniform), considerably hinders feature quality when not accounted for, but
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allows for an easy identification through the inspection of individual loss values; we

believe its presence in real-world datasets is small. The second type, asymmetric

noise (or non-uniform), shows a smaller effect on feature quality but is significantly

more challenging to identify and it requires more complex approaches rather than just

evaluating the loss value; this type of noise seems to be more abundant in real-world

noise.

These two types of noise distribution simulate two levels of dependence between

the noisy label and the image but do not account for an important factor in real-

world datasets: out-of-distributions samples. However, recently proposed benchmarks,

ImageNet-32 [136] and Mini-ImageNet-cwln [85], allow for an exploration of different

levels of OOD samples. This section introduces initial findings on these scenarios,

further explored in [136, 137], which constitute a pivotal part of the future research

work described in Chapter 7.

Subsection 5.3.2 addresses how noise modeling stages are affected by the different

noise distributions and provides intuitions on the organization of the feature space

when learning under label nose. Subsection 5.3.1 explores how the presence of label

noise corrupts CNN features and provides visualizations of the memorization effect

when training under these conditions.

5.3.1 Noise detection

Figure 5.6 illustrates the influence of the noise distribution in the quality of the

loss values as a feature to discriminate between clean and noisy samples. Figure 5.6

(left) shows the loss values of a model trained in the presence of symmetric noise,

the separation between the values corresponding to clean (blue) and noisy samples

(red) reflects the accuracy with which these two subsets can be separated (i.e. label

noise detection). Figure 5.6 (right) shows how the loss values of clean and noisy

samples overlap when the noise follows an asymmetric distribution; in this case,

these values result in a less accurate noise detection stage. To deal with this, [136]

proposes a relabeling technique that helps separate the loss values from noisy and
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Figure 5.6: Images obtained from [136] that illustrate loss values for clean (blue) and
noisy (red) samples for different label noise distributions in 100 classes of ImageNet-
32: 80% symmetric (left) and asymmetric (right) in-distribution noise. Training: 40
epochs with a PreAct ResNet-18 [71] with learning rate of 0.1 and cross-entropy loss.
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Figure 5.7: Images obtained from [136] that illustrate loss values for clean (blue) and
noisy (red) samples for different label noise distributions in 100 classes of ImageNet-
32: 80% symmetric (left) and asymmetric (right) out-of-distribution noise. Training:
40 epochs with a PreAct ResNet-18 [71] with learning rate of 0.1 and cross-entropy
loss.

clean samples, and [137] proposes a measure of label discrepancy between a sample

and its neighboring samples in the feature space. Both strategies target the scenario

where the noise has some structure (i.e. there is a dependence between corrupted

labels and images) and the individual sample loss values fail to discriminate between

clean and noisy samples. Additionally, to illustrate the effect of more realistic noise

distributions, Figure 5.7 shows loss values when the model is trained in the presence

of a noise distribution where the noisy images do not belong to the distribution of

labels in the testing set, i.e. OOD label noise.

To gain a better understanding of the feature space learned in the presence

of label noise, it is particularly interesting the noise detection approach proposed

in [137], since it is based on the nearest-neighbor graph of the features of the samples
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extracted by a trained model. The basic assumption behind it is that noisy samples

are allocated in heterogeneous regions of the feature space, meaning that they are

surrounded by samples with a high variety of labels. However, clean samples are in

homogeneous regions, among samples from a particular label. This homogeneity of

labels is what the metric proposed in [137] evaluates to discriminate clean and noisy

samples. Additionally, to improve noise detection, the labels used are consensus

labels obtained from a pool of the nearest neighbors of each sample, i.e. all samples

are relabeled, before the noise detection, with the most common label in a set of the

nearest neighbors. Intuitively, this approach searches for label consistency across

neighbors two “hops” from the current sample: i.e. the nearest neighbor of the

nearest neighbor.

To further explore the landscape of the feature space in search of noisy samples,

we explore graph diffusion mechanisms, as in [4, 81], to evaluate the neighborhood of

each sample through the structure of a nearest-neighbor graph. Table 5.11 shows

that graph diffusion (Diffusion-p and Diffusion-p̂) and the label discrepancy measure

proposed in [137] (k-NN-p and k-NN-p̂) result in similar noise detection results

(especially in CIFAR-100). To analyze the problem independently from the training

method, Table 5.11 reports AUC score of label noise detection using the features

learned after training a ResNet-18 with self-supervied strategies (i-Mix [102] for

CIFAR-100 and SimCLR for mini-ImageNet-cwln [29]). k-NN-p corresponds to the

label noise detection used in [137] that evaluates the discrepancy of the current

label with that of the nearest neighbors, k-NN-p̂ follows the same strategy, but first

corrects the labels with the majority label in the neighborhood. Similarly, Diffusion-p

and Diffusion-p̂ measure the discrepancy of the current label with the probability

distribution obtained after the diffusion of the current label, Diffusion-p, or the

corrected label, Diffusion-p̂. The results suggest that considering further neighbors

(k-NN-p̂) is beneficial in symmetric noise for CIFAR-100, but harmful in the real-world

noise from mini-ImageNet-cwln, Considering the nearest neighbor only (k-NN-p),

however, results in opposite results. This suggest that the label of farther neighbors is
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Table 5.11: AUC scores for noise detection strategies in 40% asymmetric noise
in CIFAR-100 and 40% of web label noise in mini-ImageNet-cwnl (“red” noise as
proposed in [85]). Bold indicates best performance.

CIFAR-100 mini-ImageNet-cwln

k-NN-p 0.61 0.75
k-NN-p̂ 0.85 0.72
Diffusion-p 0.58 0.70
Diffusion-p̂ 0.85 0.73

informative in very controlled scenarios without OOD samples (asymmetric noise in

CIFAR-100), but hinders noise detection when the noise distribution has a stronger

instance dependent structure and contains OOD samples (mini-ImageNet-cwln).

These experiments motivate further exploration of CNN training in the presence of

real-world noise distributions: Chapter 7 includes this as one of the main future lies

of work.

5.3.2 Training under label noise

The effect of different noise distributions in the representations learned by CNN pro-

vides relevant insights that help better understanding label noise. Results from [136,

137] show that similar levels of noise are less harmful when the distribution of noisy

labels is asymmetric rather than symmetric. This is observable in the experiments

on ImageNet-32/64 in [136] for uniform and non-uniform noise (symmetric and

asymmetric) and in [137] for the experiments in CIFAR-100. Particularly, a CNN

trained without addressing label noise, i.e. CE, under 40% of symmetric noise in

CIFAR-100 reaches 42.92 and 44.46 under asymmetric noise [136]. The strategy

to introduce the synthetic noise in CIFAR-10, however, does not allow for direct

comparison between similar levels of symmetric and asymetric noise: in the case

of asymmetric noise, only some classes are corrupted, resulting in a considerably

lower number of corrupted samples across the dataset. Similar results are reported

for ImageNet-32/64, showing higher average accuracy across noise levels when the

noise corruptions follow a symmetric distribution. We suggest that this stems from
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Figure 5.8: ImageNet-64 linear probes originally presented in [136]. A linear classifier
is trained using CNN features at different depths. Noise: in-distribution symmetric
(left) and asymmetric (right). Key: M: mixup. O: Ours.

training with labels that encode some structure of the dataset (asymmetric) against

training with completely random labels that do not contain useful information of

the samples (symmetric noise). The former scenario allows the CNN to leverage

the structure to learn features with some degree of generalization, while the latter

requires the CNN to allocate resources to pure memorization of labels that will not

generalize to the test set.

In this line of understanding the role of label noise in CNN training, Ortego et

al. [136] provide two more insightful observations of the corruption of CNN layers

when trained under these conditions. First, Figure 5.8 shows that label noise

degrades the quality of the representations learned by final layers in the model while

maintaining it in earlier: for deeper layers (L1 and L2 in the image) the performance

of different approaches for different levels of noise reach similar accuracy, but for

shallower layers (L3 and L4) the accuracy of models trained under higher levels of

noise drops with respect to the models trained without label noise. These results

correspond to linear classifiers trained on top of the features learned by the CNN

under symmetric (left) and asymmetric (right) noise in ImageNet-64 and tested on

unseen data (see [136] for the details in the usage of linear proves to evaluate the utility

of learned features). Similar observations were obtained when training in the presence

of out-of-distribution samples. Second, Figure 5.9 provides the Class Activation

Maps [226] (CAM) for the true class and the predicted class for noisy samples in

ImageNet-64 when training with the noise detection algorithm proposed in [136]
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Figure 5.9: Label noise memorization for undetected noisy images in ImageNet-64
(50% asymmetric noise). From top to bottom: image and Class Activation Map
(CAM) for the true and predicted class. Note that the predicted class (bottom) is
also the noisy label used during training. Image obtained from [136].

(i.e. sample relabeling based on [175]), which illustrate the attention distribution of

the CNN across the visual features of each image for the corresponding class. The

CAM obtained in Figure 5.9 shows the regions of the images that produce a highest

activation value for the corresponding label, i.e. the maps in the second row show

the regions of the image that most activate the correct label and the maps in the

third row, the regions that most activate the noisy label. This visualization suggests

that in the presence of noise, the network still learns patterns in the image that

justify memorizing a sample: in particular, the third row shows how the network

pays more attention to visual features that confirm the corresponding noisy label

used during training and ignores features that would incline the decision towards the

true label (provided in the second row). The observations in Figure 5.9 complement

previous findings regarding the ability of CNNs to overfit symmetric noise [216] and

illustrate the mechanisms by which CNNs overfit to noisy samples when these share

structure with the samples that truly belong to the given label; i.e. when trained

under asymmetric noise. These experiments correspond to 50% asymmetric noise

and are further analyzed in [136].

Finally, a secondary finding from [136, 137] that is worth remarking on suggests
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that regularization techniques might be an essential ingredient in designing label

noise robust models: experiments comparing state-of-the-art approaches in real-

world datasets show that methods that include stronger regularization techniques

are able to better leverage the visual features of images and avoid overfitting to the

noisy labels. As reported in Table 5.10, mixup alone is among the top-performing

approaches without any specific label noise technique, followed by [136], which

includes a pseudo-labeling stage combined with mixup; [103], which also includes

mixup; and [137], which includes regularization in the form of interpolation training

(mixup) on top of contrastive learning with strong data augmentation policies.

5.4 Conclusion

The tendency of recent approaches [103, 137] to combine different training strategies

suggests that to successfully learn robust representations in the presence of label

noise, there needs to be a complex system that accounts for several factors. First,

early stages of CNN training are more robust to label noise corruptions, which, as

demonstrated in this chapter, could be leveraged with bootstrapping techniques.

Other approaches, however, opt for two-stage alternatives [136, 137]: label noise

detection followed by semi-supervised learning. This introduces a second important

factor for label noise approaches, label noise detection. While several methods

address the problem without a noise detection stage [141, 175, 213], adding this

stage to the training has the potential of providing stronger guidance for the clean

samples and reducing the harmful influence of the noisy ones. The third major factor

involved in label noise approaches is regularization, as shown in several studies [218,

10, 103, 110, 137], it provides a significant boost in accuracy when training under

label noise.

As shown in this chapter, the dependence of the label corruptions with the images

deeply affects the training of CNN. Hence, a crucial step for this field to keep evolving

is to move to more realistic noise distributions. While symmetric and asymmetric

noise help understanding certain behaviors of CNN in the presence of label noise, they
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lack two main factors: instance-dependence noise, and out-of-distribution samples.

These are two key elements for future research in this field as they are unavoidable

challenges when automating the labeling process of large datasets. Potential initial

points are research on more complex dependencies between labels and images, e.g.

instance-dependent noise distributions, [191, 203, 35, 192] and out-of-distribution

samples exploration [194, 179, 154, 212]. Chapter 7 provides comments on these

directions.

5.5 Summary

The focus of this chapter is to explore the training of CNNs in the presence of

label noise through the study of the approach introduced in [10]. In particular, we

leverage mixture models (concretely a beta mixture model) as an unsupervised way of

modeling the two components of the distribution of loss values: one component with

the higher loss values and another with the lower, corresponding to noisy and clean

samples respectively. A mixture model provides an estimation of the probability of

a sample belonging to one or another component, i.e. the probability of a sample

being clean or noisy, which we use to dynamically guide a bootstrapping strategy to

mitigate the effect of noisy samples in the training: each label becomes the linear

weighted combination of the current label and the network prediction. This approach

is integrated with mixup data augmentation, which results in a very robust approach

to label noise.

Additionally, this chapter provides insights on the training of CNN under label

noise, including the findings reported in [103, 137] regarding noise distributions and

label noise detection. While the main experiments demonstrate the generalization of

the proposed approach in [10] on CIFAR, mini-ImageNet, and Clothing1M, further

experiments use WebVision, mini-ImageNet-cwln, and ImageNet-32/64 to explore

more realistic noise distributions and motivate future research in this direction.
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Budgeted training

The availability of vast amounts of labeled data is crucial when training deep

neural networks (DNNs) [117, 206]. Despite prompting considerable advances in

many computer vision tasks [211, 169], this dependence poses two challenges: the

generation of the datasets and the large computation requirements that arise as

a result. Research addressing the former has experienced great progress in recent

years via novel techniques that reduce the strong supervision required to achieve top

results [174, 184] by improving self-supervised learning, semi-supervised learning,

or training with noisy web labels as discussed in Chapters 3, 4, and 5. The latter

challenge has also experienced many advances from the side of network efficiency

via DNN compression [40, 107], neural architecture search [174, 26], or parameter

quantization [148, 82]. All these approaches are designed with a common constraint:

a large dataset is needed to achieve top results [206]. This conditions the success

of the training process on the available computational resources. Conversely, a

smart reduction of the number of samples used during training can alleviate this

constraint [91, 122].

The selection of samples plays an important role in the optimization of CNN

parameters during training, where SGD is often used. SGD guides the parameter

updates using the estimation of model error gradients over sets of samples (mini-

batches) that are uniformly randomly selected in an iterative fashion (see Chapter 2

for an in depth explanation of SGD). This strategy assumes equal importance

129
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across samples, whereas other works suggest that alternative strategies for revisiting

samples are more effective in achieving better performance [28, 92] and faster

convergence [91, 84]. Similarly, the selection of a unique and informative subset of

samples (core-set) [183, 37] can reduce the computation requirements during training,

while reducing the performance drop with respect to training on all data. However,

although removing data samples speeds up training, precise sample selection often

requires a pretraining stage that acts counter computational reduction [122, 157].

A possible solution to this limitation might be to dynamically change the impor-

tant subset during training, as is done by importance sampling methods [7, 219],

which select the samples based on a sampling distribution that evolves with the

model and often depends on the loss value or network predictions [111, 87]. An

up-to-date sample importance estimation is key for current methods to succeed but,

in practice, is infeasible to compute [91]. The importance of a sample changes after

each iteration and estimations become out-dated, yielding considerable performance

drops [28, 219]. Importance sampling methods focus on training with the most

relevant samples and achieve a convergence speed-up as a side effect. They do not,

however, strictly study the benefits on DNN training when restricting the number of

training iterations, i.e. the budget.

Budgeted training [127, 88, 104] imposes an additional constraint on the optimiza-

tion of a DNN: a maximum number of iterations. Defining this budget provides a

concise notion of the limited training resources. Li et al. [104] propose to address the

budget limitation using specific learning rate schedules that better suit this scenario.

Despite the standardized scenario that budgeted training poses to evaluate methods

when reducing the computation requirements, there are few works to date in this

direction [104, 91]. As mentioned, importance sampling methods are closely related,

but the lack of exploration of different budget restrictions makes these approaches

less applicable: the sensitivity to hyperparamenters that they often exhibit limits

their generalization [28, 111].

This chapter addresses the limitations outlined above by analyzing the effective-
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ness of importance sampling methods when a budget restriction is imposed [104].

Given a budget restriction, we study synergies between importance sampling and

data augmentation [172, 38, 218]. We find the improvements of importance sam-

pling approaches over uniform random sampling are not always consistent across

budgets and datasets. We argue and experimentally confirm (see Section 6.2.5) that

when using certain data augmentation strategies [172, 38, 218], existing importance

sampling techniques do not provide further benefits, making data augmentation the

most effective strategy to exploit a given budget.

The research presented in this Chapter is an adaptation of work published in

the British Machine Vision Conference (BMVC) 2021 [12] and the code to repli-

cate the experiments is available at https://git.io/JKHa3. Section 6.1 describes

the budgeted training paradigm and the adaptations used to evaluate importance

sampling techniques under budget restrictions. Section 6.2 empirically compares

the efficiency of alternatives to the vanilla SGD with different data augmentation

techniques when training under different budget restrictions. Finally, Section 6.3

provides a discussion on the findings of this chapter and on possible future research

to better exploit computational resources.

6.1 Training under budget constraints

The experiments presented in this chapter follow the practices described across the

thesis: models are trained by gradient based minimization of cross-entropy

L(W ) = − 1

n

n∑
i=1

yTi log hW (y|xi), (6.1)

where n is the number of samples in the dataset D = {(xi,yi)}ni=1, where yi ∈ {0, 1}c

is the one-hot encoding ground-truth label for sample xi, and c is the number of

classes. In this chapter we consider the output hW (y|xi) as the predicted posterior

probability of a CNN model given xi (i.e. the prediction after softmax normalization

as in previous chapters), and W are the parameters of the model. While in previous

https://git.io/JKHa3
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chapters convergence to a reasonable level of performance determines the end of the

training, in budgeted training there is a fixed iteration budget. In this chapter, we

adopt the setting defined by [104], where the budget is defined as a percentage of the

full training setup. Formally, we define the budget b ∈ [0, 1] as the fraction of forward

and backward passes used for training the model hW (x) with respect to a standard

full training. As we aim at analyzing importance sampling, the budget restriction

will be mainly applied to the amount of data n× b seen every epoch. However, a

reduction on the number of epochs t to t× b (where an epoch t is considered a pass

over all samples) is also considered as truncated training for budgeted training.

Truncated training is the simplest approach to budgeted training: keep the

standard SGD optimization and reduce the number of epochs trained by the model

to t×b. In this chapter we refer to this strategy, where the model sees all the samples

every epoch, as scan-SGD. While seeing all the samples is common practice, we

remove this constraint and draw the samples from a uniform probability distribution

at every epoch and call this strategy unif-SGD. In this approach the budget is defined

by randomly selecting n× b samples every epoch (and still training for t epochs). As

a result scan-SGD and unif-SGD always train the same number of iterations defined

by the budget: the former has longer epochs and restricts the number of them and

the latter reduces the number of iterations per epoch.

Importance sampling aims to accelerate the convergence of SGD by sampling

the most difficult samples Ds = {(xi,yi)}ns

i=1 more often, where ns = n × b (the

number of samples selected given a certain budget). Loshchilov and Hutter [111]

proposed a simple approach for importance sampling that uses the loss of every

sample as a measure of the sample importance. Chang et al. [28] adapts this approach

to avoid additional forward passes by using as importance:

pti =
1

t

t∑
k=1

(
1− yTi h

k
W (y|xi)

)
+ εt, (6.2)

where hkW (y|xi) is the prediction of the model given the sample xi in epoch k, and t

is the current epoch. Therefore, the average predicted probability across previous
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epochs associated to the ground-truth class of each sample defines the importance of

sample xi. The smoothing constant εt is defined as the mean per-sample importance

up to the current epoch: 1
n

∑n
i=1 p

t
i. The sampling distribution P t at a particular

epoch t is then given by:

P t
i =

pti∑n
j=1 pj

. (6.3)

By drawing samples from the distribution P t, this approach biases the training

towards the most difficult samples, and selects samples with highest loss value; we

name this method p-SGD. Similarly, Chang et al. [28] propose to select those samples

that are closer to the decision boundaries and favor samples with higher uncertainty

by defining the importance measure as cti = pti × (1 − pti); we name this approach

c-SGD.

Both p-SGD and c-SGD are very computationally efficient as the importance

estimation only requires information available during training. Conversely, Jiang et

al. [84] propose to perform forward passes on all the samples to determine the most

important ones and later reduce the number of backward passes; they name this

method selective backpropagation (SB). At every forward pass, SB stores the sample

xi with probability:

sti =
[
Fr(L(htW (xi),yi))

]γ
, (6.4)

where Fr is the cumulative distribution function from a history of the loss values of

the last r samples seen by the model and γ > 0 is a constant that determines the

selectivity of the method, i.e. the budget used during the training. In practice, SB

does as many forward passes as needed until it has enough samples to form a full

a mini-batch. It then performs the training forward and backward passes with the

selected samples to update the model.

Finally, as an alternative training paradigm to prioritize the most important

samples, Kawaguchi and Lu [92] propose to use only the q samples with highest

loss from a mini-batch in the backward pass. As the training accuracy increases, q

decreases until only 1/16 of the images in the mini-batch are used in the backward
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pass. The authors name this approach ordered SGD (OSGD) and provide a default

setting for the adaptive values of q, which change depending on the training accuracy.

Importance sampling methods under budgeted training give a precise

notion of the training budget. For unif-SGD, p-SGD, and c-SGD the adaptation

needed consists of selecting a fixed number of samples per epoch n× b based on the

corresponding sampling probability distribution Pt and still train the full t epochs.

For SB, the parameter γ determines the selectivity of the algorithm: higher values will

reject more samples. Note that this method requires additional forward passes that we

exclude from the budget as they do not induce the backward passes used for training.

By considering that each backward pass is twice as computationally expensive as a

forward pass we could approximate the budget used by SB as bSB = b + 1/3, e.g.

the results under b = 0.2 for SB correspond to b ≈ 0.5 for the other approaches. We

adapt OSGD by truncating the training as in scan-SGD : all the parameters are kept

constant but the total number of epochs is reduced to t× b. We also consider the

wall-clock time with respect to a full budget training as a metric to evaluate the

approaches.

6.2 Experiments and Results

6.2.1 Experimental framework

Datasets

We experiment on image classification tasks using CIFAR-10/100 [98], SVHN [129],

and mini-ImageNet [190] datasets. Since the budget training setup does not require

any alteration in the dataset, such as discarding or swapping labels as done in previous

chapters, the only pre-processing consist of the standardization of the images and

the widely used data augmentation techniques that we regard as standard data

augmentation: random cropping with padding of four pixels per side and random

horizontal flip (except in SVHN, where horizontal flip is omitted).
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Training details

We train a ResNet-18 architecture [72] for 200 epochs with SGD with momentum of

0.9 and a batch size of 128. We use two learning rate schedules: step-wise and linear

decay. For both schedules we adopt the budget-aware version proposed by Li et

al. [104] and use an initial learning rate of 0.1. In the step-wise case, the learning rate

is divided by 10 at 1/3 (epoch 66) and 2/3 (epoch 133) of the training. The linear

schedule decreases the learning rate value at every iteration linearly from the initial

value to approximately zero (10−6) at the end of the training. We always report the

average accuracy and standard deviation of the model across three independent runs.

For each budget, we report best results in bold and best results in each section –

data augmentation or learning rate schedule – in blue (baseline SGD is excluded).

6.2.2 Budget-free training for importance sampling

Current importance sampling methods from the state-of-the-art are optimized with

no restriction in the number of training iterations. While this allows the methods to

better exploit the training process, it makes it difficult to evaluate their computational

benefit. Therefore, Table 6.1 presents the performance, wall-clock time, and speed-up

relative to a full training of the methods presented in Section 6.1.

All methods train with a step-wise linear learning rate schedule. SGD corresponds

to a standard training as described in Subsection 6.2.1. p-SGD and c-SGD correspond

to the methods described in Section 6.1 introduced by Chang et al. [28] that for the

experiments in Table 6.1 train for 200 epochs where the first 70 epochs consist of a

warm-up stage with a uniform sampling strategy as done in the original paper. For

CIFAR-10 we use a budget of 0.8 for p-SGD and 0.7 for c-SGD, and for CIFAR-100

a budget of 0.9 for both approaches (budgets retaining most accuracy were selected).

Finally, SB and OSGD follow the setups described in the corresponding papers, [84]

and [92], and run on the official code.

While the simpler approaches to importance sampling, p-SGD and c-SGD, achieve

similar performance to SGD and reduce the computational time up to 29.08% (9.93%)
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Table 6.1: Test accuracy (%), time (min) and speed-up (%) with respect SGD under
a budget-free training. * denotes that we have used the official code.

CIFAR-10 CIFAR-100

Method Accuracy Time Speed up Accuracy Time Speed up

SGD 94.58 ± 0.33 141 0.0 74.56 ± 0.06 141 0.0
p-SGD 94.41 ± 0.19 113 19.9 74.44 ± 0.06 127 9.9
c-SGD 94.17 ± 0.11 100 29.1 74.40 ± 0.06 127 9.9
SB (*) 93.90 ± 0.16 85 39.7 73.39 ± 0.37 119 15.6
OSGD (*) 94.34 ± 0.07 139 0.1 74.22 ± 0.21 141 0.0

in CIFAR-10 (CIFAR-100), SB reduces the training time 39.72% (15.60%) in CIFAR-

10 (CIFAR-100) with very small drops in accuracy. These experiments support

observations from previous importance sampling studies: particular hyperparameter

configurations of importance sampling approaches effectively reduce computational

requirements at minor accuracy expenses.

6.2.3 Budgeted training for importance sampling

We adapt importance sampling approaches as described in Section 6.1 and configure

each method to constrain its computation to the given budget. Table 6.2 shows the

analyzed methods’ performance under the same budget for a step-wise learning rate

(SLR) decay and the linear decay (LLR) proposed by Li et al. [104] for budgeted

training (described in Section 6.2.1). Surprisingly, this setup shows that most methods

achieve very similar performance given a predefined budget, thus not observing faster

convergence when using importance sampling. Both p-SGD and c-SGD provide

marginal or no improvements: p-SGD marginally improves unif-SGD in CIFAR-10,

but fails to do so in CIFAR-100. Similar behavior is observed in c-SGD. Conversely,

SB surpasses the other approaches consistently for SLR and in most cases in the

LLR setup. However, SB introduces additional forward passes not considered as

budget, while the other methods do not (see Section 6.1 for an estimation of the

budget used by SB).

We consider scan-SGD and unif-SGD, as two naive baselines for budgeted training.

Despite having similar results (scan-SGD seems to be marginally better than unif-

SGD), we use unif-SGD for further experimentation in the remainder of the chapter
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Table 6.2: Test accuracy with a step-wise and a linear learning rate decay under
different budgets. Note that SB requires additional computation (forward passes).

CIFAR-10 CIFAR-100

SGD - SLR 94.58 ± 0.33 74.56 ± 0.06
SGD - LLR 94.80 ± 0.08 75.44 ± 0.16

Budget: 0.2 0.3 0.5 0.2 0.3 0.5

Step-wise decay of the learning rate (SLR)

scan-SGD 92.03 ± 0.24 93.06 ± 0.15 93.80 ± 0.15 70.89 ± 0.23 72.31 ± 0.22 73.49 ± 0.20
unif-SGD 91.82 ± 0.05 92.69 ± 0.07 93.71 ± 0.07 70.36 ± 0.30 72.03 ± 0.47 73.36 ± 0.20
p-SGD 92.28 ± 0.05 92.91 ± 0.18 93.85 ± 0.07 70.24 ± 0.28 72.11 ± 0.39 72.94 ± 0.36
c-SGD 91.70 ± 0.25 92.83 ± 0.30 93.71 ± 0.15 69.86 ± 0.36 71.56 ± 0.27 73.02 ± 0.34
SB 93.37 ± 0.11 93.86 ± 0.27 94.21 ± 0.13 70.94 ± 0.38 72.25 ± 0.68 73.39 ± 0.37
OSGD 90.61 ± 0.31 91.78 ± 0.30 93.45 ± 0.10 70.09 ± 0.25 72.18 ± 0.35 73.39 ± 0.22

Linear decay of the learning rate (LLR)

scan-SGD 92.95 ± 0.07 93.55 ± 0.21 94.22 ± 0.16 72.04 ± 0.42 72.97 ± 0.07 73.90 ± 0.43
unif-SGD 92.83 ± 0.14 93.48 ± 0.05 93.98 ± 0.11 72.02 ± 0.24 72.74 ± 0.57 73.93 ± 0.16
p-SGD 93.23 ± 0.14 93.63 ± 0.04 94.14 ± 0.11 71.72 ± 0.37 72.94 ± 0.37 74.06 ± 0.10
c-SGD 92.95 ± 0.17 93.54 ± 0.07 94.11 ± 0.24 71.37 ± 0.49 72.33 ± 0.18 73.93 ± 0.35
SB 93.78 ± 0.11 94.06 ± 0.37 94.57 ± 0.18 71.96 ± 0.67 73.11 ± 0.42 74.35 ± 0.34
OSGD 91.87 ± 0.36 93.00 ± 0.08 93.93 ± 0.22 71.25 ± 0.11 72.56 ± 0.36 73.40 ± 0.14

as it adopts a uniform random sampling distribution, which allows for a better

comparison with the importance sampling methods. Additionally, Table 6.2 confirms

the effectiveness of a linear learning rate schedule as proposed in [104]: all methods

consistently improve with this schedule and, in most cases, unif-SGD and LLR

perform on par with SB and SLR, and surpasses all the other methods when using

SLR.

6.2.4 Train-test bias in importance sampling

The failure of the sampling strategies to consistently outperform unif-SGD could

be explained by importance sampling breaking the assumption that samples are

i.i.d: SGD assumes that a set of randomly selected samples represents the whole

dataset and provides an unbiased estimation of the gradients. Importance sampling

explicitly breaks this assumption and biases the gradient estimates. While this might

produce gradient estimates that have a bigger impact on the loss, breaking the i.i.d.

assumption leads SGD to biased solutions [111, 28, 219], which offsets the possible

benefits of training with the most relevant samples. As a result, importance sampling

does not bring a consistent speed-up in training. Note that approaches that weight
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Figure 6.1: Error comparison for unif-SGD and p-SGD training under different
budget restrictions: error in the training (left) and testing (right) set for CIFAR-10
(up) and CIFAR-100 (bottom). Results run over three random seeds, we report
average error and standard deviation.

the contribution of each sample with the inverse sampling probability to generate an

unbiased gradient estimate obtain similar results [3, 56, 28, 87, 219].

To further explore this idea, Figure 6.1 reports training and testing accuracy of

unif-SGD and p-SGD for CIFAR-10 and CIFAR-100. These results suggest that

in some cases importance sampling approaches (e.g. p-SGD) provide a substantial

benefit in training accuracy that does not translate to the unseen samples in the

test set. This supports the claim that breaking the i.i.d. assumption might result in

models trained on biased subsets of the data: these models fit the biased statistics of

the training set and fail to generalize to the testing set.

6.2.5 Data variability importance during training

Core-set selection approaches [183, 37] aim to find the most representative samples

in the dataset to make training more efficient, while keeping accuracy as high as

possible. Figure 6.2 presents how core-set selection (Core-set) and a randomly chosen

subset (Random) both under-perform uniform random sampling of a subset each

epoch (unif-SGD), which approaches standard training performance (black dashed



CHAPTER 6. BUDGETED TRAINING

Random Core-set unif-SGD
80
82
84
86
88
90
92
94
96
98

A
cc

ur
ac

y 
(%

)

20% 30% 70%50% 100%

Random Core-set unif-SGD
30

40

50

60

70

80

Figure 6.2: Importance of data variability in CIFAR-10 (left) and CIFAR-100 (right)
and (d). Comparison of different training set selection strategies: randomly selecting
samples at every epoch (unif-SGD) outperforms fixed core-set or random subsets
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Figure 6.3: Importance of data variability in CIFAR-10 (left) and CIFAR-100 (right).
Comparison of the data variability of different training strategies: the entropy of
sample counts during training (0.3 budget) demonstrates that importance sampling,
linear learning rate, and data augmentation contribute to higher data variability
(entropy).

line). This shows that randomly selecting a different subset every epoch (unif-SGD),

which is equally computationally efficient, achieves substantially better accuracy.

This result supports the widely adopted assumption that data variability is key and

suggests that it might be more important than sample quality.

We also find data variability to play an important role within importance sampling.

Figure 6.3 shows data variability measured using the entropy H(c) of the number of

times that a sample is seen by the network during training, with c being the N -D

distribution of sample counts. These results show how increases in variability (higher

entropy) follow accuracy improvements in p-SGD when introducing the LLR, the

smoothing constant to the P t sampling distribution, the average of the predictions

across epochs, and data augmentation.
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6.2.6 Data augmentation for importance sampling

In this section, we explore the role of data augmentation techniques in budgeted train-

ing scenarios. Given the importance of data variability observed in Subsection 6.2.5,

this is a crucial step to understand how to better exploit limited computational

resources for training CNN. In particular, this section shows how data augmentation

present a better alternative than importance sampling techniques to leverage limited

computational resources. Importance sampling approaches usually do not explore

the interaction of sampling strategies with data augmentation techniques [111, 91,

84]. To better understand this interaction, we explore interpolation-based augmen-

tations via RICAP [172] and mixup [218], where samples and the corresponding

labels are linearly combined to smooth the decision boundaries between classes;

and non-interpolation augmentations using RandAugment [38], which provides a

considerably strong augmentation by randomly combining several augmentations

from a pool of the most widely used data augmentation techniques in the literature.

We implemented these data augmentation policies as reported in the original papers

(see Table 6.3 for the hyperparameters used in our experiments). Note that for mixup

and RICAP we combine two and four images respectively within each mini-batch,

which results in the same number of samples being shown to the network (t× b).

Tables 6.3 and 6.4 show that data augmentation is beneficial in a budgeted training

scenario: in most cases all strategies increase performance compared to standard data

augmentation. The main exception is for the lowest budget for SB where in some

cases data augmentation hurts performance. In particular, with RICAP and mixup,

the improvements from importance sampling approaches are marginal and the naive

unif-SGD provides results close to full training with standard augmentation. In some

cases, unif-SGD surpasses full-training with standard augmentations, e.g. RICAP

with 0.3 and 0.5 budget and both mixup and RICAP with 0.3 budget in CIFAR-

10/100. This is even more evident in SVHN where all the budgets in Table 6.4 for

unif-SGD with RICAP surpass full training (SGD) with standard augmentation.

Given that the cost of the data augmentation policies used is negligible (see
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Table 6.3: Data augmentation for budgeted importance sampling in CIFAR-10 and
CIFAR-100. N and M are the number and strength of RandAugment augmentations,
and α controls the interpolation in mixup and RICAP. Note that SGD corresponds
to the full training.

CIFAR-10 CIFAR-100

Budget: 0.2 0.3 0.5 0.2 0.3 0.5

Standard data augmentation

SGD (b = 1) 94.80 ± 0.08 75.44 ± 0.16
unif-SGD 92.83 ± 0.14 93.48 ± 0.05 93.98 ± 0.11 72.02 ± 0.24 72.74 ± 0.57 73.93 ± 0.16
p-SGD 93.23 ± 0.14 93.63 ± 0.04 94.14 ± 0.11 71.72 ± 0.37 72.94 ± 0.37 74.06 ± 0.10
SB 93.78 ± 0.11 94.06 ± 0.37 94.57 ± 0.18 71.96 ± 0.67 73.11 ± 0.42 74.35 ± 0.34

RandAugment data augmentation (N = 2, M = 4)

SGD (b = 1) 95.56 ± 0.12 75.52 ± 0.17
unif-SGD 92.76 ± 0.16 93.78 ± 0.11 94.64 ± 0.08 71.44 ± 0.37 73.23 ± 0.29 74.78 ± 0.45
p-SGD 92.95 ± 0.31 93.99 ± 0.28 94.91 ± 0.18 71.63 ± 0.27 72.91 ± 0.13 74.30 ± 0.04
SB 93.27 ± 0.38 94.64 ± 0.07 95.27 ± 0.26 66.84 ± 1.15 73.79 ± 0.40 74.87 ± 0.18

mixup data augmentation (α = 0.3)

SGD (b = 1) 95.82 ± 0.17 77.62 ± 0.40
unif-SGD 93.64 ± 0.27 94.49 ± 0.04 95.18 ± 0.05 73.28 ± 0.51 75.13 ± 0.52 75.80 ± 0.34
p-SGD 93.78 ± 0.04 94.41 ± 0.16 95.26 ± 0.06 73.35 ± 0.29 75.05 ± 0.15 75.87 ± 0.15
SB 93.62 ± 0.36 93.92 ± 0.08 94.51 ± 0.17 73.38 ± 0.13 74.88 ± 0.31 75.57 ± 0.23

RICAP data augmentation (α = 0.3)

SGD (b = 1) 96.17 ± 0.09 78.91 ± 0.07
unif-SGD 93.85 ± 0.10 94.93 ± 0.29 95.47 ± 0.18 74.87 ± 0.28 76.27 ± 0.32 77.83 ± 0.15
p-SGD 94.02 ± 0.18 94.79 ± 0.18 95.63 ± 0.15 74.59 ± 0.15 76.50 ± 0.22 77.58 ± 0.49
SB 89.93 ± 0.84 93.64 ± 0.42 94.76 ± 0.02 56.66 ± 0.65 72.24 ± 0.58 76.26 ± 0.22

Table 6.5 for the wall-clock times when b = 0.3), our results show that adequate

data augmentation alone can reduce training time at no cost in accuracy and in

some cases with a considerable increase in accuracy. For example, a 70% reduction

in training time (0.3 budget) corresponds to an increase in accuracy from 75.44%

to 76.27% in CIFAR-100 and from 94.80% to 94.93% in CIFAR-10. Also, a 50%

reduction (0.5 budget) corresponds to an increase in accuracy from 75.44% to 77.83%

in CIFAR-100 and from 94.80% to 95.47% in CIFAR-10.

We also experimented with extremely low budgets (see Table 6.6) and found that

importance sampling approaches (p-SGD and SB) still bring little improvement over

uniform random sampling (unif-SGD). Here, additional data augmentation does

not bring a significant improvement in accuracy and in the most challenging cases,

hinders convergence. For example, when introducing RICAP with b = 0.05, the

accuracy drops approximately two points in accuracy in CIFAR-10, five points in

CIFAR-100, and seven points in mini-ImageNet with respect 87.90%, 62.66%, and
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Table 6.4: Data augmentation for budgeted importance sampling in SVHN and mini-
ImageNet. N and M are the number and strength of RandAugment augmentations,
and α controls the interpolation in mixup and RICAP.

SVHN mini-ImageNet

Budget: 0.2 0.3 0.5 0.2 0.3 0.5

Standard data augmentation

SGD (b = 1) 97.02 ± 0.05 75.19 ± 0.16
unif-SGD 96.56 ± 0.12 96.78 ± 0.13 96.95 ± 0.07 70.87 ± 0.56 72.19 ± 0.43 73.88 ± 0.42
p-SGD 96.52 ± 0.03 96.75 ± 0.03 96.84 ± 0.06 71.05 ± 0.29 72.39 ± 0.45 73.66 ± 0.39
SB 96.93 ± 0.07 96.85 ± 0.01 96.97 ± 0.06 69.68 ± 0.09 71.46 ± 0.15 73.51 ± 0.30

RandAugment data augmentation (N = 2, M = 4)

SGD (b = 1) 97.59 ± 0.14 74.15 ± 0.22
unif-SGD 97.38 ± 0.05 97.50 ± 0.07 97.60 ± 0.05 71.29 ± 0.25 73.04 ± 0.34 73.21 ± 0.52
p-SGD 97.25 ± 0.03 97.44 ± 0.02 97.52 ± 0.03 71.43 ± 0.25 72.36 ± 0.15 73.21 ± 0.38
SB 97.42 ± 0.09 97.43 ± 0.19 97.56 ± 0.05 67.17 ± 2.51 71.69 ± 0.31 73.28 ± 0.03

mixup data augmentation (α = 0.3)

SGD (b = 1) 97.24 ± 0.03 76.28 ± 0.28
unif-SGD 96.99 ± 0.09 97.04 ± 0.08 97.24 ± 0.07 72.50 ± 0.51 73.76 ± 0.26 75.05 ± 0.29
p-SGD 96.92 ± 0.08 97.34 ± 0.49 97.37 ± 0.49 72.21 ± 0.81 73.63 ± 0.13 74.54 ± 0.53
SB 96.80 ± 0.09 96.92 ± 0.09 96.96 ± 0.09 70.12 ± 0.51 72.01 ± 0.72 73.76 ± 0.36

RICAP data augmentation (α = 0.3)

SGD (b = 1) 97.61 ± 0.06 78.75 ± 0.40
unif-SGD 97.47 ± 0.04 97.62 ± 0.16 97.55 ± 0.04 73.56 ± 0.24 75.15 ± 0.45 77.20 ± 0.33
p-SGD 97.48 ± 0.08 97.45 ± 0.06 97.57 ± 0.05 73.67 ± 0.60 75.46 ± 0.27 77.25 ± 0.47
SB 97.34 ± 0.03 97.40 ± 0.06 97.45 ± 0.01 53.26 ± 0.71 71.75 ± 0.67 75.65 ± 0.40

Table 6.5: Wall-clock time (minutes) in CIFAR-100 for a training of 0.3 of budget.
Note that SGD corresponds to a baseline that uses the full budget and standard
data augmentation.

Approaches: unif-SGD p-SGD SB

SGD (b = 1) 141
Standard data augmentation 47 48 91
RandAugment [38] 48 48 93
mixup [218] 48 48 93
RICAP [172] 49 49 95

56.38% for unif-SGD with standard data augmentation.

6.3 Conclusion

The research described in this chapter exposes the complexity of efficiently training

CNNs. While some importance sampling techniques seem to provide substantial

improvements for CNN optimization and reduce computational costs, these are very

dependent on training configurations and datasets. In particular, when adapted

to budget restricted setups, importance sampling fails to consistently accelerate
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Table 6.6: Test accuracy for CIFAR-10/100 and mini-ImageNet under extreme
budgets.

CIFAR-10 CIFAR-100 mini-ImageNet

Budget: 0.05 0.1 0.05 0.1 0.05 0.1

Standard data augmentation

unif-SGD 87.90 ± 0.40 91.46 ± 0.08 62.66 ± 0.65 69.34 ± 0.68 56.38 ± 0.11 67.61 ± 0.52
p-SGD 88.86 ± 0.17 91.66 ± 0.11 62.20 ± 0.56 69.32 ± 0.17 56.95 ± 0.43 67.67 ± 0.41
SB 79.45 ± 4.31 92.66 ± 0.14 50.53 ± 2.27 68.29 ± 0.68 11.19 ± 3.46 61.25 ± 1.76

RandAugment data augmentation (N = 2, M = 4)

unif-SGD 83.24 ± 0.06 88.95 ± 0.22 47.64 ± 3.34 64.48 ± 0.10 42.35 ± 1.54 64.98 ± 0.47
p-SGD 83.94 ± 0.26 89.77 ± 0.38 48.78 ± 1.48 65.05 ± 0.37 41.72 ± 0.77 65.88 ± 0.15
SB 32.21 ± 4.14 33.86 ± 5.02 5.05 ± 0.64 5.05 ± 0.64 5.61 ± 0.66 5.94 ± 0.13

mixup data augmentation (α = 0.3)

unif-SGD 87.33 ± 0.42 91.74 ± 0.04 59.90 ± 0.71 70.43 ± 0.45 53.13 ± 0.83 68.54 ± 0.98
p-SGD 87.56 ± 0.67 91.59 ± 0.17 59.68 ± 0.71 70.31 ± 0.10 54.20 ± 0.95 68.39 ± 0.46
SB 77.72 ± 5.31 92.56 ± 0.15 43.27 ± 7.37 69.64 ± 0.24 12.10 ± 0.27 61.01 ± 0.64

RICAP data augmentation (α = 0.3)

unif-SGD 85.61 ± 0.24 91.32 ± 0.28 55.85 ± 0.51 69.43 ± 0.33 48.95 ± 0.65 67.26 ± 0.63
p-SGD 85.57 ± 0.70 90.94 ± 0.16 56.09 ± 0.71 70.05 ± 0.07 49.35 ± 0.60 67.27 ± 0.85
SB 44.93 ± 2.67 54.76 ± 4.31 10.75 ± 0.72 13.33 ± 0.39 8.71 ± 0.45 10.84 ± 0.86

CNN convergence, especially when considering the additional costs of computing the

importance of the samples. We argue that the disagreement between theoretical and

experimental results steams from the bias introduced in the dataset when prioritizing

a subset of the samples, i.e. those that are more “important” at every step of the

training. While this might be beneficial under particular training configurations, it

fails across setups and datasets, leading to the primary contribution of this chapter:

data variability trumps data importance.

We explore the effect of data variability when the training is limited to a predefined

budget of iterations and conclude that prioritizing variety in the samples shown to

the model is a more effective option than exploiting the most relevant or important

samples during training. In other words, given a limited budget, CNNs benefit the

most from data augmentation rather than sample selection approaches. For instance,

we show that adequate data augmentation surpasses state-of-the-art importance

sampling methods and allows for up to a 70% reduction of the training time (budget)

with no loss (and sometimes an increase) in accuracy. This, however, might not apply

to cases of extreme budget restrictions where data augmentation might introduce

too much difficulty for the CNN to learn useful features. We leave for future work
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the exploration of extreme budgets, and the synergies between such cases and other

factors that influence convergence, such as learning rate schedules, sample selection

policies, or data augmentation techniques.

Finally, we find of particular interest the high accuracy reached under extreme

budgets with the standard training (standard data augmentation and unif-SGD). For

instance, it is remarkable that 10% of the training iterations (b = 0.1) in CIFAR-10

(91.46) leads to over 95% of the accuracy reached with 100% of the budget (94.80).

These results might be very valuable for more computationally expensive tasks: e.g.

classification in ImageNet or video classification. These scenarios often present larger

samples that contain more information and ease the representation learning stage of

the training: the CNN is able to fit more filter multiplication for each convolution,

thus the filters see more variety within an image. This additional variety, however,

does not span across samples as additional data augmentation does, but results in

larger disparity in the difficulty, or importance, of each sample. This suggest that

additional data augmentation in these scenarios might be a good approach to boost

performance in budgeted scenarios. Chapter 7 discusses possible future work to

extend on these observations and to explore their implications into the optimization

process of CNN.

6.4 Summary

This chapter empirically addresses the study of budgeted training as a paradigm to

explore the efficiency of training CNNs. Concretely, we explore the role of importance

sampling and data augmentation techniques. In Subsection 6.2.2 and 6.2.3, we show

a strong dependence of current importance sampling approaches to the training

setup. In Subsection 6.2.5 then, we report the need for variety in the data, and in

Subsection 6.2.6 the effectiveness of data augmentation techniques when aiming at

leveraging a given budget of training iterations to learn the best possible CNN features.

Additionally, in this chapter we identify potential future work on exploring extreme

budget restrictions and possible synergies with other elements of the training.
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Conclusions

Convolutional neural networks have reached impressive results in many machine

learning applications, populated the research landscape in computer vision, and

achieved new state-of-the-art performance in most computer vision tasks. These

results, however, come with certain requirements: To reach top results convolutional

neural networks need large datasets, strong supervision in the form of precise annota-

tions, and long training processes. While it is relatively easy to obtain large amounts

of data, the annotation process often requires considerable human intervention and

is likely to result in imperfect datasets where labels might be incorrect. Adding to

this challenge (and assuming the datasets are properly annotated), convolutional

neural networks need to visit every sample several times, which results in training

processes that could last from a few hours to several days depending on the size of the

dataset and the CNN model. The research presented in this thesis addresses these

two challenges: Chapters 3, 4, and 5 address alternatives to reduce the dependence

to strong supervision during training, and Chapter 6 address alternatives to reach

top accuracy while reducing the computation requirements.

Concretely, in Chapter 3, we provide a study of self-supervised learning, i.e. where

convolutional neural networks train directly from the images and the supervision

comes from visual properties in the images. In particular, the approach studied,

Exemplar-CNN [47], replaces the label supervision with surrogate classes: it encour-

ages the CNN to predict transformations of patches from an image as belonging to
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a particular instance: the original sample. In this chapter, we propose a clustering

algorithm to group similar images and to allow the Exemplar-CNN to leverage

larger amounts of unlabeled data. In Chapter 4 we eased the supervision restriction

and assumed the availability of a small labeled set of samples, i.e. semi-supervised

learning. In this case, the proposed approach addresses confirmation bias as the main

drawback of pseudo-labeling techniques – approaches that leverage model predictions

to further guide the training. This chapter shows that pseudo-labeling techniques

can reach state-of-the-art results when properly regularized. The focus of Chapter 5

is the training of convolutional neural networks under the presence of label noise:

all samples are labeled but potentially incorrectly. In this chapter, we present a

bootstrapping method and a noise modeling approach to identify the likelihood of a

sample being noisy, i.e. incorrectly labeled. In this chapter we also provide insights

into the label noise setup and the interaction between different noise distributions

and CNN training. Finally, in Chapter 6 we assumed correct labels in the training

set and a restricted number of iterations to train the model, i.e. budgeted training.

Particularly, this chapter focuses on techniques that prioritize the most important

samples to better leverage the given budget and the corresponding experiments reveal

that in these conditions data diversity is a crucial factor.

In this chapter, Section 7.1 address the hypothesis described in Chapter 1, and

how the research presented in Chapters 3 to 6 addresses the hypothesis through

the research questions also introduced in Chapter 1. Section 7.2 summarizes the

research contributions of this thesis. Section 7.3 elaborates on the suggestions for

future research introduced in the main chapters of the thesis. Finally, Section 7.4

provides the closing remarks for this thesis.

7.1 Hypothesis and research questions

The hypotheses introduced in Chapter 1 are discussed in this section in light of the

research presented in the corresponding chapters. Each of the research questions

associated with each hypothesis is addressed to provide a more concise notion of the
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contribution of this thesis.

Hypothesis 1

Given a large set of unlabeled images, clustering algorithms aid the self-supervised

training of neural networks by enforcing the assumption that images belonging to

the same class, or images with similar visual features, are closer than those that are

from different classes when mapped to the representation space learned by the neural

network.

Research question 1: How could the clustering assumption be enforced

in the self-supervised training of neural networks? Could

neural networks benefit from clustering the features learned

during a self-supervised training?

Experiments described in Chapter 3 show the benefits that clustering algorithms

yield in a self-supervised scenario in the STL-10 benchmark [36]. The proposed

approach applies a clustering algorithm to self-supervised CNN features to obtain

visually similar images. These images are grouped to create a more compact initial

step for the self-supervised approach studied, Exemplar-CNN [47], and to allow

the introduction of larger amounts of unlabeled data. In this setup, the clustering

algorithm enforces the clustering assumption by using the model predictions to

cluster together similar images and to reduce the number of initial instances, while

including more data in the training. The results reported in Chapter 3 are inline

with recent findings [27] that show the benefits of applying clustering techniques

while learning representations in a self-supervised fashion. In this scenario, clustering

algorithms encourage similar images to be represented by features that are nearby in

the representation space.

Hypothesis 2

Neural networks can overcome the dependence on strong supervision from carefully an-

notated datasets by leveraging a trustworthy small subset of the data and extrapolating
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the features learned to the rest of the data.

Research question 2: How can neural networks overcome the main lim-

itation when propagating knowledge from a reliable subset

of the data to the remaining larger subset? How can one

determine which subset is reliable?

Chapters 4 and 5 empirically show that convolutional neural networks are able

to leverage the structure from certain subsets of samples to learn better features: a

subset of labeled samples in the former and a potentially clean subset of samples in the

latter. Concretely, the experiments described in Chapter 4 show that the availability

of a labeled set of samples allows the CNN to leverage vasts amounts of unlabeled

data to learn better features. In particular, we conclude that model predictions

are a valuable alternative to use as pseudo-labels for the unlabeled samples in the

dataset. From the experiments in Chapter 5, we conclude that bootstrapping is also

an effective approach to leverage reliable samples in the label noise scenario. This

chapter also answers the second part of Research question 2, and proposes several

approaches to identify reliable subsets of samples.

Hypothesis 3

In scenarios where the training budget is restricted to a certain amount of computation,

neural networks do not benefit from seeing the most important samples, but from

seeing more variety in the data.

Research question 3: Are there some samples more useful than others

when training a neural network? Is it possible to leverage

them to achieve better performance when the training is

limited to a certain budget?

Experiments conducted in Chapter 6 investigate the effect of prioritizing certain

samples during training, as done by importance sampling approaches, when the

training is limited to a given budget. From these experiments, we conclude that
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certain samples have a higher contribution to the training and that presenting them

to the model more frequently accelerates convergence to a better performance. This,

however, does not result in an effective speed-up of the training process for two

reasons. Firstly, the most important samples change from iteration to iteration and

the computation of the sample importance requires additional iterations that offset

the gains from selecting the “important” samples. Secondly, prioritizing a subset of

samples biases the model and harms generalization.

7.2 Research Contributions and proposed solutions

The contributions of this research are collected and summarized in the following list:

• Chapter 3: self-supervised learning through Exemplar-CNN

1. We address the main drawback of Exemplar-CNN by reducing the number

of near-duplicates in STL-10 through an agglomerative clustering technique

that allows the model to scale to larger numbers of unlabeled samples.

2. Visual exploration of the widely-used unsupervised learning benchmark

STL-10 revealed certain drawbacks that should be considered: artifacts

in the samples, out-of-distribution samples, and a large number of near-

duplicate samples.

• Chapter 4: semi-supervised learning

1. We identify the main source of feature degradation when training pseudo-

labeling approaches: confirmation bias.

2. We propose an approach to pseudo-label that combines targeted regular-

izations to reduce the effect of confirmation bias.

3. Thorough ablation studies of the proposed pseudo-labeling approach

provide valuable insights for its application.

• Chapter 5: label noise
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1. We propose a bootstrapping approach to learn robust features in the

presence of label noise and a noise detection approach that leverages

mixture models to estimate the per sample probability of being noisy.

2. We provide insights into the training of convolutional neural networks in

the presence of different noise distributions and discussed their relevance

in real-world noisy datasets.

• Chapter 6: budgeted training

1. Evaluation of importance sampling approaches under budget constraints

shows these approaches to be impractical.

2. We propose an alternative approach to better leverage a given budget and

obtain competitive CNN features.

We also identifiy potential directions for future work in each of the chapters to

further push the field towards more realistic scenarios and to improve the applicability

of convolutional neural networks in real-world challenges. We elaborate on these

observations in Section 7.3.

7.3 Recommendations and future work

We compile in this subsection the main research directions introduced across the

thesis, and potential opportunities for future research in these areas:

• Dependence of self-supervised approaches on data augmentation techniques:

– As demonstrated in [181], image transformations are crucial for contrastive

approaches to self-supervised learning – some seem to be more useful than

others. This dependence is also observed in Exemplar-CNN, which fails to

converge to a reasonable performance if data augmentation is not properly

selected. These strong augmentations are very random and vastly increase

the image space making feature learning difficult. Hence, it is natural to
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think that self-supervised learning approaches would benefit from more

specific transformations that ease the training process and allow for less

computationally intensive training.

– In this same direction, since the current data augmentation techniques

are specific to images, we find it valuable to develop domain-agnostic ap-

proaches that generalize to other types of data, e.g. graphs, or audio. This

could include research on input or intermediate feature transformations

as well as research on contrastive learning approaches that better leverage

these types of transformations.

• Robustness of semi-supervised approaches to distribution mismatch between

labeled and unlabeled samples:

– Current experimental scenarios do not reflect a distribution mismatch

between these two subsets, which is very likely when dealing with real-

world data: The unlabeled samples are likely to belong to classes that are

not in the testing set (out-of-distribution samples), might not belong to

the training labeled set (label distribution mismatch), or might not be

uniformly distributed across classes (long-tail distributions). Hence, we

believe that it is important to further challenge the current semi-supervised

methods and evaluate their performance in benchmarks that include these

additional challenges. We find particularly interesting the exploration

of works on domain adaptation [208, 126, 90] to address distribution

mismatch between sets.

• Robustness of label noise approaches to distribution mismatch between clean

and noisy samples:

– Unlike with semi-supervised learning, recent label noise benchmarks al-

ready include out-of-distribution samples. However, the methods proposed

do not directly tackle the differences in the distributions from these two

subsets. Aside from out-of-distribution samples, a secondary source of
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mismatch between distributions is the imbalance in the distribution of

samples across classes: long-tailed distributions. Addressing this mismatch

would result in methods that better generalize to real-world datasets.

– Current methods could, also, be improved by exploiting the behavior of

the network at different stages of the training: some samples might be

correctly predicted at early stages and incorrectly after the model fits

the noise distribution. While some approaches already consider model

predictions across epochs for noise detection, this has not been studied

for improving training robustness.

• Further exploration of CNN training under a predefined iteration budget:

– In this setup, CNN training is amply aided by variety in the data. However,

the metrics used in the literature to prioritize certain samples only account

for the difficulty, or importance, of those samples and result in models

trained on biased subsets of data. Approaches that design mini-batches to

account for variation in the data could be beneficial for accelerating the

convergence of the training. We believe that this could be an alternative to

strong data augmentation policies, which harm convergence when training

under extreme budget restrictions.

– Additionally, the results observed in Chapter 6 when training under ex-

treme budgets, suggest that different data augmentations benefit different

budget restrictions and motivate the design of epoch dependent data

augmentation techniques: models trained under extreme budgets with

weak augmentations could be enhanced by further training stages with

stronger augmentation policies.

– Finally, we find it highly interesting to explore how the conclusions from

Chapter 6 scale to larger tasks such as classification in the full size

ImageNet dataset or video classification.
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7.4 Closing remarks

Recent advances in computer vision have been mostly driven by deep learning

methods, including the successful training of convolutional neural networks. These

methods have allowed to leverage vast amounts of labeled data to train models able

to extract powerful representations from visual data. The research conducted during

the development of this thesis focuses the applicability of deep learning methods when

the data and training conditions present certain challenges: scarcity or corruption

of labels, and computational limitations. The motivation for the former lies in

the dilemma of having vasts amounts of available data and the costs of obtaining

labeled data to train deep learning models. The latter, however, is motivated by

the long training processes required to obtain top performance when labeled data

is available. The approaches explored and developed in this thesis are of particular

interest for those applications where the training resources are scarce, both in terms

of label availability and computational resources. Self-supervised learning, semi-

supervised learning and learning with label noise could be of significant benefit to

applications where data availability and annotation is most challenging: e.g. medical

imaging where due to the need of expert knowledge the annotations are scarce, or

self-driving cars where large amounts of data are easily accessible but very costly

to annotate. Budgeted training, however, would be a valuable addition to those

applications where computation is limited: e.g. research itself, where comparing

different computationally expensive algorithms often slows down the exploration of

the field, or smart environments where models need to be trained on the edge.

Concretely, this thesis explores methods to train in scenarios where only unlabeled

data is available, where a small set of labeled data is available alongside a large set of

unlabeled data, where the available labels are unreliable, and where training iterations

are restricted to a predefined budget. The author finds particularly interesting the

inherent robustness shown by deep learning methods: in the different scenarios, the

performance degradation is substantially reduced when the challenges in the dataset

are accounted for. For example, when training under label noise, standard methods
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show considerable performance degradation, but when the model incorporates label

noise techniques, even high levels of label corruption (up to 90%) provide a good

training set up for convolutional neural networks. Likewise, when restricting the

number of iterations allowed during training (down to 10%), convolutional neural

networks with proper data augmentation are able to reach near full performance.

By leveraging this robustness, deep learning methods have become a pivotal tool

for computer vision and we believe that further exploration of the challenging

scenarios mentioned earlier will result in methods that better generalize to practical

applications.
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