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ABSTRACT

In this paper, we introduce a new lifelog retrieval system called
Memento that leverages semantic representations of images and
textual queries projected into a common latent space to facilitate
effective retrieval. It bridges the semantic gap between complex vi-
sual scenes/events and user information needs expressed as textual
and faceted queries. The system, developed for the 2021 Lifelog
Search Challenge, also has a minimalist user interface that includes
primary search, temporal search, and visual data filtering compo-
nents.
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1 INTRODUCTION

Lifelogging can be defined as the process of passively gathering,
processing, and reflecting on life experience data collected by an in-
dividual using a variety of wearable sensing devices[13]. Lifelogging
as a concept has a long history and was initially introduced by Van-
nevar Bush in 1945. He proposed a hypothetical electromechanical
device (the Memex) for the purpose of storing personal information
and retrieving it with "exceeding speed and flexibility"[4].

However, lifelogging has evolved into a popular research area in
the last couple of decades after the seminal MylifeBits project[10]
(Gemmel and Bell). The popularity of lifelogging was further aided
by the rapid growth of low-cost sensing devices and enhanced data
storage capabilities. Lifelogging has a wide range of application
domains, such as memory aids[2], health monitoring[1], activity
recognition [5], etc.
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The Lifelog Search Challenge (LSC) is a comparative bench-
marking workshop founded in 2018 [14] to foster advances in mul-
timodal information retrieval similar to previous activities like
NTCIR-Lifelog tasks[11] and the ImageCLEF Lifelog tasks[7]. LSC
poses a unique information retrieval problem to the participants,
where the major challenges are on two fronts, one being efficient
data organization and structuring as lifelog data is multimodal,
noisy, and repetitive, and the other is regarding the contextual
understanding of data to facilitate event retrieval. The evaluation
queries in LSC are structured in a way so as to mimic how humans
recall events from their daily life, revealing information gradually
at a 30 seconds interval and sometimes negating/correcting earlier
revealed information.

In this work, we introduce a prototype system that has been de-
veloped to participate in the 2021 edition of Lifelog Search challenge.
Our system aims to address the challenge of interactive lifelog re-
trieval on two fronts, bridging the semantic gap between queries
and images, and supporting the efficient searching/browsing of the
lifelog data. We use the CLIP model [22] to generate semantic repre-
sentations from the lifelog images which help us better encode the
meaning and the relationship among the entities within the image.
This is because the model is not optimized for one single task but
rather, can perform a variety of them e.g object recognition, activ-
ity recognition, scene recognition, optical character recognition
etc. Moreover, the model supports instructions in natural language
which is similar to how the evaluation queries in LSC are struc-
tured allowing us to dictate complex visual scenes efficiently. Our
system also has a minimalist user interface that is simple and easy
to use. We have integrated visual data filtering (discussed in section
3.7) into our system to help users get an overview of the search
results quickly and aid them in better decision-making given the
time sensitive nature of the competition.

Memento also supports temporal event search allowing the user
to search for some event in close vicinity of another one, as well as
temporal navigation to sequentially browse the images around a
probable target image. These features were included in the system
to tackle those evaluation queries which focus more on temporal in-
formation as compared to visual information about the scene/event.

2 RELATED WORK

Since the inaugural Lifelog Search Challenge held in 2018, the event
has attracted significant levels of attention and active participation
from the research community.

During the last three years, several novel ideas have been pro-
posed to approch this task. A fully immersive virtual reality inter-
face to query lifelog data [9] was proposed at the first event in 2018,
which was also the best performing system that year. Several video
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retrieval systems [18] [17] [15] which did well in the VBS challenge
have also participated in previous LSC events (2018, 2019, 2020)
with some modifications/improvements to their original system.
The Exquisitor system [16] used relevance feedback to build a model
of the user’s information needs without using any explicit query
mechanism, while SOMHunter[20] and THUIR [19] employed user
feedback to iteratively refine the retrieved results. MySceal[24]
proposed a temporal query mechanism that allowed to search for
up to 3 consecutive events simultaneously and also introduced a
concept weighing methodology to determine the importance of
visual annotations in the data.

Several systems have tried to address the issues regarding se-
mantic gap between query and images, and poor contextual under-
standing of the data. FIRST [25] uses an autoencoder like approach
to map query text and images into a common semantic space to
measure the similarity between them, LifeGraph [23] used a knowl-
edge graph to represent the lifelog data to capture the internal
relations of the various data modalities and linked it to external
static data sources for better semantic understanding. Chu et al[6]
extracted relation graphs from lifelog images to better describe the
relationship between entities (subject-object) present within the
image.

Our proposed system addresses the semantic gap issue by gen-
erating contextual representations for both image and query text
using a pretrained model[22] and ranking the images based on co-
sine similarity scores. Since the model is not optimized for a specific
task but can rather perform a variety of tasks such as object recog-
nition, scene recognition, activity recognition, optical character
recognition, etc., the generated image representations are semanti-
cally rich and encode a lot more information about the scene. This
allows the user to retrieve visually complex scenes efficiently using
natural language queries.

3 SYSTEM OVERVIEW

In this section, we present an overview of the LSC Dataset and
discuss the core components of our system such as semantic image
representation, search engine, user interface, etc., in detail, and
the enhancements/modifications we did to the existing metadata
to further improve it. We also further elaborate on the system’s
temporal search and navigation functionality and their underlying
algorithms.

3.1 LSC Dataset

LSC 2021 dataset [14] is slightly smaller (~ 8K fewer images) as
compared to the dataset of last year’s challenge which had ~191K
images collected using a wearable camera from a single lifelogger
spanning 114 days. The data also includes two sets of metadata,

e Visual Concepts: This file contains scene descriptions, ob-
ject tags with confidence scores, object bounding boxes, etc.,
for each image in the dataset.

e Biometrics/Location Data: This dataset contains location,
activity, elevation, and biometric data such as calories burnt,
heart rate, step count, etc., captured from a wearable device
at 60 seconds intervals.
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3.2 Semantic Image Representation

The lifelog dataset provided by the organizers is richly annotated
where every image is associated with tags for the detected objects,
scene descriptions, etc. However, the associated metadata though
comprehensive fails to convey the semantic meaning within the im-
age or the relationship between the detected objects. The evaluation
topics in LSC, which follow a conversational style however, demand
a finer understanding of the visual concepts and relationship among
entities within the image.

To facilitate semantic search over lifelog images we use the CLIP
model[22] from OpenAl to encode images into high-dimensional
representations which captures the overall semantics of the scene.
The CLIP model[22] is trained on a large corpus of 400M pairs of
images and captions sourced from the internet. The network is not
directly optimized for a specific task but is trained on a proxy ob-
jective of matching the captions with their respective images. This
training objective allows the model to learn a wide variety of visual
concepts which can then be used to solve multiple downstream
tasks like object and activity detection, optical character recogni-
tion, image retrieval, etc., using natural language instructions.

The most crucial aspect of the CLIP model, however, is its zero-
shot capabilities on several benchmarks, which allowed us to use
the pre-trained model for our use case without any data specific fine
tuning. We evaluated the model performance on various metrics
(discussed in section 4) and observed that the model is generalizing
well on the lifelog data and is able to comprehend finer details and
relationships within the image.

3.3 Metadata Enhancement

The metadata provided with the lifelog dataset contains visual
concepts/annotations for the images and also has information like
location, activity, date/time,etc., which is gathered from a wearable
device. Our focus here was to enhance and enrich the specific
part of the metadata dealing with location, activity type, date/time,
etc., wherever possible as these play a crucial role in information
retrieval given the fact that LSC evaluation queries explicitly reveal
these bits of information during the search process.

e Imputing ’semantic name’ (Location Name):
The location name information is missing at a lot of places
in the metadata, hence we tried to impute it wherever the lo-
cation co-ordinate information was available to us. Location
name was also important to us from the event segmentation
perspective as our approach (discussed in section 3.4) uses
this information to establish event boundaries. We initially
created a dictionary of location names (key) and location
co-ordinates (value) from the available information. In those
cases where one location name had multiple co-ordinates
(slightly deviated) we chose the mode value as the final co-
ordinate of that location. To impute missing location names,
we derived the distance between the co-ordinate for which
location name is missing and all co-ordinates from our dic-
tionary to assign a closest possible location name keeping
in mind a threshold value of < 3 KMs.

o Identifying blurred images: Lifelog images are captured
from a wearable camera that takes pictures at regular inter-
vals, no matter the place or activity. This leads to a large
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volume of images in the dataset being blurry or occluded
and hence not very useful [12]. We tried to identify and tag
blurred images in the dataset using an implementation of
variance of the laplacian method[21] in the OpenCV[3] li-
brary. The objective of this exercise is to minimize less useful
images during browsing of temporal events (discussed in
section 3.6) as more than 30% of the images in the corpus
have some degree of blurring/occlusion.
e Deriving specific fields from existing data:

We observed from the evaluation topics of previous editions
of LSC that having some key data columns like city, hour
of the day, name of the day, etc., in our dataset would help
us do data filtering effectively. Hence we extracted relevant
fields from the given metadata to later use them directly in
our faceted filtering functionality.

34

It has been known for a long time that Lifelog data is inherently
sequential in nature where each day can be broken into coherent
and meaningful chunks called ’events’. E.g. driving in the car from
home to the office can be one event while walking from office to the
cafeteria to grab a coffee can be another. We define event boundaries
based on how the current activity and location of the lifelogger
changes compared to what they were at a previous time step. We
devised a rule-based algorithm that evaluates the difference in data
(location name and activity) sequentially to determine an event
change, and assigns an event number which is a unique ID for
each event. However, there are edge cases that we have carefully
considered. E.g. when the lifelogger exits his/her home and gets
into his/her car the location name and activity might change from
(Home - None) to (None-Transport) indicating a change in the
event, however when driving across the city the location name will
continuously change while activity will remain static. In the latter
scenario the algorithm handles it as a single event despite changes
in location until the lifelogger finishes the car driving activity.

Previous approaches [8] [19] [24] to event segmentation in a
lifelog context have used image similarity metrics to decide the
event boundaries. i.e. images are processed chronologically and
their similarity is calculated with neighboring images (vector simi-
larity), where two dissimilar neighbors indicate the start of a new
event. We however approach event segmentation based on user
activity data as our goal is to do data filtering based on the previous,
next and current activity of the user as LSC queries also explicitly
specify user activity in temporal queries e.g Walking on a green
footpath, to my car. I got into my car and drove to a lunch which
indicates the current activity as walking and the next activity as
driving.

Segmentation of Each Day into Events

3.5 Search Engine

The image search and ranking functionality of our proposed system,
Memento is built using the Flask framework. The functionality is
delivered to the end-user via RESTful APIs that outputs results in
JSON format. Figure 1 shows a high-level overview of the system
architecture.

Following is the sequence of execution from query to end result:
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(1) End-user sends query string to the server using the web
client.
(2) The query string is translated to its vector representation
using the text encoder of the CLIP model.
(3) The image representations are already on the server as a
static npy file. The query vector is compared with image
representations using cosine similarity which gives us a
ranked list of image indices.
Image metadata is then fetched from a static CSV file stored
on the server using the image indices and the top 2000 are
returned to the web client as a JSON response. The quality of
the retrieved results will depend on how well the query was
’engineered’. Since the model is trained on image-caption
pairs, the query should mimic the language style of image
captions to get better results which the authors of [22] call
’prompt engineering’. LSC queries usually have information
scattered across multiple sentences which should be rewrit-
ten in a compact way before a query can be initiated.

The design to store image features and metadata as static files
is by choice, to leverage the power of vectorized operations for a
much faster turnaround time.
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Figure 1: System Architecture

3.6 Temporal Search and Navigation

Some of the LSC evaluation queries do not describe the visual scene
in great detail but they rather focus more on specifying temporal
events surrounding the main event. For e.g.

e Main Event: Buying a ticket for a train in Ireland from a
ticket vending machine.

o Next Event: After the purchase, I walked up stairs to the
platform and waited 8 minutes for the train to arrive.

e Previous Event: I had walked (for 36 minutes) to the station
after eating sushi and beer.

The temporal search functionality hence allows the user to effi-
ciently search such queries by specifying main and temporal events
(previous and next) as separate inputs to the system. Temporal
search in our proposed system is inspired by [24]. Our approach
however is fundamentally different as we leverage semantic repre-
sentations to search for temporal events similar to how searching
works across the system. We have also defined our search space
using ’event numbers’ as opposed to time duration because we felt
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it would help reduce the noise in our final result set. The tempo-
ral search functionality of our system has the following execution
steps:

(1) The user initiates a query to search for the main event (simi-
larly as discussed in section 3.5).

(2) Once the user has the ranked result set (based on cosine
similarity scores) on the screen, a temporal search can be
initiated by specifying either a previous event or next event,
or both.

(3) The temporal search algorithm iterates through the initial re-
sult set to search for previous and next events in a predefined
search space, which is (current event -2) for the previous
and (current event + 2) for the next event. (Every image in
our dataset has an event number associated to it already as
discussed in section 3.4).

(4) The algorithm assigns temporal scores (previous and next)
to every image in the initial result set, which is the maximum
cosine similarity score within their respective search spaces.

(5) The final score of each image is then computed as the sum
of temporal scores and initial cosine similarity score based
on which the images are re-ranked and rendered on screen.

The efficacy of this algorithm depends on how well the system
locates and ranks the main event. Searching for temporal events
when the main event is not within our initial result set, is futile.
However, we show in section 4 that there is a very high probability
of the target image being in the top-2000 results given that the
query string is engineered well.

The system also supports sequential browsing of previous and
next non-blurred images around a probable target image as in some
scenarios browsing is fast and sufficient to arrive at a decision.

3.7 User Interface

The user interface was designed with the goal of developing a
clutter-free as well as feature-loaded system. We have tried to max-
imize the result set visibility by separating the functionalities like
data filtering, temporal search, image starring, etc., into separate
overlay windows which helps to minimize clutter.

e Primary Search Interface: This interface has two major
components, one is the primary navbar on top of the win-
dow which embeds the search box and buttons to access
system functionalities while the other one is the component
to display search results. Figure 2 shows a snapshot of the
primary search interface.

e Data Filtering Component: The goal of this interface is
to provide data filtering functionality and at the same time
convey a mental picture of the data to the user to aid better
decision making. This component allows the users to filter
the result set on the basis of day, city, time, year, month and
activities or any combinations of these. Figure 3 shows a
snapshot of the data filtering interface.

o Starred Images: This functionality allows the user to book-
mark/star a particular image from the result set to view it
later. It displays the starred images as well as relevant meta-
data associated with it. The user can choose to submit the
image to the evaluation server using the *Submit’ button or
initiate temporal browsing to view previous and next images
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in sequence using ‘Inspect’ functionality. Figure 4 shows a
snapshot of Image starring interface rendered in an overlay
window.

4 SYSTEM EVALUATION

We evaluated our proposed system on the 24 evaluation topics from
LSC 2019. The evaluation topics reveal information sequentially
in parts at a regular time interval of 30 seconds (starting at t=0s
up to t= 150s), usually giving out visually descriptive information
early on and more explicit information like time, date, place, etc.,
at later stages. We chose to evaluate our search engine by only
considering the visual information available to us by t= 60 seconds
because the back end model powering the search engine has no
sense of explicit information like time, date, etc. The evaluation was
performed automatically; however, the evaluation queries going
in as input to the backend model were tweaked manually to make
them more compact.

We evaluated our system on the following metrics:

(1) Hit@K: For a given topic, Hit@K is defined as finding at

least one target image among top-K images in the result set;
(2) Precision@K;
(3) Recall@k.

t @ @3 @5 @10 @20 @50

0s 833 2500 29.17 29.17 37.50 50.00
30s 833 25.00 2500 3333 3333 54.17
60s 12.50 29.17 29.17 41.67 54.17 75.00

Table 1: Hit@K calculated at different amounts of elapsed
times, t and K values across 24 evaluation topics for LSC’19

Table 1 shows the hit percentages calculated for 24 evaluation
topics from LSC 2019 at different values of K and t. At t=60s and
K=50, we are able to find at least one target image in top-50 results
for 75% of the evaluation topics (18 out of 24 topics).

Figure 5 shows variation in hit percentage as we scale up K. We
observe a rapid increase in hit percentage as K increases up to 50,
after which the curve almost flattens outs at a maximum of 87.5%
(21 out of 24 topics) within the 1-2000 range for K. These results
provide evidence on the efficacy of the search engine given the fact
that we are only using a portion of the information (up to t=60s)
for each topic.

We further evaluated our system on precision and recall metrics
at multiple K values. Figure 6 shows the precision versus recall
curve at K = 1 to 100 averaged across 24 evaluation topics from
LSC 2019 with only considering the information available to us by
t=60s.

We observe an averaged maximum recall of 36.2% at K =100
while average maximum precision recorded is 15.2% at K=3. These
numbers however are relatively poor as compared to the system’s
performance on Hit@K metric discussed above. The reasons for
this could be the way LSC queries and their respective ground
truth images are structured. LSC queries typically search for some
specific event in time and they initially yield a visual description of
the scene/event. However, there might several images in the lifelog
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Figure 3: Visual data filtering interface displaying day fil- oo —
ters rendered in an overlay window. Visual filters for city, 700%
time, year and activities (previous-current-next) are also dis- 2 oo
played in the same window. & soo%
§ 400%
dataset that match the description but are unrelated to the actual to0%

event, such as a red car on a cloudy day, looking at flowers and lamp
and so on. In these scenarios, the search engine, despite correctly
finding images with the given visual description, might not be able
to perform well on precision as the ground truth images belong to
one specific day, time or place.

Furthermore, in the case of queries where temporal events are
also specified along with the main event, the ground truth usually

Figure 5: Hit percentage plotted against different K values (1
to 2000) considering information available at t=60s

consists of images from all events (temporal and main). For exam- the ground truth will contain images of the auditorium as well as
ple, for a query Watching people speak in a crowded auditorium. of the university campus. In this scenario, if we search for the main
Afterwards I went for a walk through a historical university campus, event the search engine will never be able to find relevant images
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Figure 6: Precision versus Recall curve at K = 1 to 100 aver-
aged across 24 evaluation topics from LSC’19

of the temporal event and vice versa, and hence will perform poorly
in terms of recall.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced our lifelog retrieval system called Me-
mento which uses a pre-trained model to generate semantic repre-
sentations for images and queries. We evaluated our system on mul-
tiple metrics and got good results despite testing in a constrained
environment which indicates that our system is successful in bridg-
ing the existing semantic gap between the two data modalities to a
much larger extent.

Since the system accepts natural language queries, the logical
next step would be to explore the feasibility of an interactive dia-
logue based retrieval system.
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